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Abstract 

Financial Viability of Offshore Wind on the Texas Gulf Coast 

Cody Scott Hoffman, MA; MBA 

The University of Texas at Austin, 2019 

Supervisor: Fred C. Beach 

Offshore wind is already a significant component of the electricity generation mix 

in Europe, and improvements in technology and cost are enabling increased offshore wind 

penetration in new markets around the world. Thus far, the US has struggled to materially 

participate in this industry, with only a single 30 MW offshore project in operation. 

Navigating a complicated regulatory framework, the lack of a coherent national policy, and 

facing local opposition, the industry has experienced some spectacular failures in recent 

years. However, the US now has an opportunity to take advantage of the lessons learned 

from years of (primarily) European development and combine them with excellent offshore 

wind resources close to transmission-constrained load centers. 

By far the leader of the US onshore wind industry, and with a long history of 

offshore oil and gas development, Texas has some major advantages when it comes to 

offshore wind. Wind resources in the Gulf of Mexico are more than adequate for economic 

production. With shallow depths and relatively calm seas, the Texas Gulf Coast is also well 

suited to offshore wind construction. These factors, coupled with a pro-development state 
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regulatory scheme and extended jurisdiction over submerged lands, suggest that Texas is 

an ideal candidate for offshore wind development.  

With no currently active projects in the pipeline, this thesis examines the economic 

viability of offshore wind development on the Texas Gulf Coast at the project level. Using 

an ideal location and cost data from National Renewable Energy Laboratory (NREL), the 

Energy Information Administration (EIA), and industry sources, a hypothetical “test 

project” was developed and evaluated against three cost estimate cases and ten regulatory 

scenarios. These inputs were fed into a Discounted Cash Flow model to determine potential 

competitiveness in the Power Purchase Agreement (PPA) market in the ERCOT region. 

Results indicate that without significant cost reductions or major changes to either 

market conditions or federal/state incentive schemes, Texas Gulf Coast offshore wind 

cannot compete with other forms of onshore renewable generation. With ever-decreasing 

costs, it is not impossible that offshore wind could become viable at some point in the 

future, but given current conditions, it is not likely that any projects are on the near-term 

horizon. 
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Chapter 1: Introduction 

THE OFFSHORE WIND INDUSTRY 

What is Offshore Wind? 

Recorded human use of wind power goes back as far as 7,000 years, beginning with 

sail powered-boats, and evolving into wind harnessing devices for water pumping and grain 

processing. The wind industry has waxed and waned over the years, with its fortunes tied 

to technological advances and the advent (and fluctuating prices of) other power sources. 

As a low density and variable energy source, wind has significant disadvantages compared 

to more reliable and energy dense forms of energy like fossil fuels and nuclear fission. 

These issues make wind economics a game of very narrow margins. It was not until the 

late 20th century that significant investment was made in its use as a grid-supplying 

electrical power source. 

Offshore wind is simply an extension of onshore utility-scale wind technology to 

untapped resources off the coast. However, the increased costs of offshore wind are 

significant impediments to development. Though estimates vary, offshore capital 

expenditure (CAPEX) and operations and maintenance (O&M) costs can be between two 

and three times as expensive as onshore installations (Stehly, Beiter and Heimiller 2018, 

vii, Lazard 2018).  

While offshore conditions are far more challenging for personnel and equipment, 

the wind resource itself is often much stronger and more consistent (DOE 2019b), and in 

many areas more closely matches demand. If these resources are attractive enough, they 

can overcome the economic challenges posed by the need for more robust turbines, more 

highly skilled installers, and more expensive maintenance regimes. Offshore installations 
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also tend to be much closer to load centers than rural onshore projects, which can reduce 

transmission costs.  

Historical Offshore Wind Development 

The first-ever offshore wind farm was the Vindeby Project, near Lolland, Denmark 

(see Figure 1). Built in 1991, the 0.45 MW turbines, 11 in total, were constructed as a test 

to see if offshore wind development was possible (Lempriere 2017).  

 
Figure 1: Vindeby Offshore Wind Farm 

 

Source: (Lempriere 2017), photo courtesy of Ørsted 
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The Vindeby farm operated for 26 years until it was decommissioned and 

dismantled by Ørsted in 2017. While the project itself was quite small, development of the 

Vindeby farm propelled Denmark to become a world leader in wind energy.  

Though the Vindeby farm can be thought of as the beginning of the offshore wind 

industry, the industry did not reach significant size for many years. What is considered the 

first large scale offshore wind farm, the 40 MW Middelgrunden wind farm (another Danish 

project, see Figure2), did not go into service until 2000 (Wind Europe 2019).  

 
Figure 2: Middelgrunden Wind Farm 

 

Source: author’s photograph 
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Much of the early offshore wind development was in Europe due to a confluence 

of local expertise, an abundance of suitable sites which were more favorable than onshore 

locations, and supportive public policies. 

Despite all this development, the cumulative offshore wind capacity in Europe did 

not break 1 GW until 2007 (Bilgili, Yasar and Simsek 2011, 910). At that time European 

offshore wind farms accounted for more than 99% of worldwide offshore capacity, with 

only Japan and China having installed capacities of 11 and 2 MW respectively. Until 

recently, only China has built out significant non-European offshore capacity (Beiter, 

Spitsen, et al. 2018).  
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Chapter 2: State of the Offshore Wind Industry 

TECHNOLOGY 

Turbine and supporting infrastructure technologies have come a long way since the 

early days of offshore development. The biggest difference has been the massive increase 

in the size of offshore turbines. Figure 3 illustrates the rapid pace of increasing nameplate 

capacities, rotor diameters, and hub heights.  

 
Figure 3: Global Turbines Capacities, Rotor Diameters, 

and Hub Heights by Installation Year 

 

Source: (Beiter, Spitsen, et al. 2018, 60) 

 

Modern offshore turbines are many times more powerful than their earlier 

counterparts. Larger turbines are inherently more efficient, and technological advances in 
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substructures have allowed for siting in deeper waters further offshore to access better wind 

resources (see Figure 4 for a depiction of different substructure types).  

 
Figure 4: Offshore Wind Substructure Types 

 

Source: Adapted from (Beiter, Musial, et al. 2016, 8) 

 

Substructure requirements vary by depth of installation. While many early 

installations used simple concrete gravity bases (not pictured in Figure 4), most offshore 

wind turbines today are mounted on steel monopiles. These steel monopiles are often the 

cheapest option, but are suitable only for shallow waters with stiff soil conditions (Beiter, 

Musial, et al. 2016, 8). Deeper waters and very large turbines often require more complex 



 7 

and expensive substructures, and in depths beyond approximately 60 meters, only floating 

turbines (still in the experimental and testing stages) are viable.  

EUROPEAN AND WORLDWIDE DEPLOYMENT 

As of 2017, there was approximately 16.5 GW of total offshore wind capacity 

worldwide. As shown in Figure 5, the United Kingdom and Germany have become the two 

leading countries as measured by total capacity, and European turbine manufacturers and 

developers such as Siemens Gamesa, Vestas, and Ørsted have come to dominate the 

industry.  

 
Figure 5: Share of Cumulative Offshore Wind Capacity by Country 

 

Source: (Beiter, Spitsen, et al. 2018, 42) 
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Much of this development has come on the back of significant government 

subsidies from European countries. The types and mechanisms for these subsidies have 

varied over the years, and currently, many countries run reverse auctions where developers 

bid on who will take the lowest subsidy (Graré, et al. 2018).  

Non-European development has been led by China with a seven-fold increase in 

offshore capacity in the last five years. While still lagging behind the UK and Germany 

China now fields the third largest offshore fleet with 1796 MW installed (Beiter, Spitsen, 

et al. 2018, 42).  

US DEVELOPMENT 

Block Island, the first US offshore wind farm 

The offshore wind industry in the US faces many difficulties and has been slow to 

develop. Pictured in Figure 6, the first and only currently operating offshore installation is 

the Block Island Wind Farm off Rhode Island, which did not enter commercial operation 

until December 2016. The array itself is quite small, with only a 30 MW capacity from five 

turbines. The site was developed by Deepwater Wind (recently acquired by Ørsted) 

utilizing GE turbines (Deepwater Wind 2019).  
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Figure 6: Block Island Wind Farm 

 

Source: Deepwater Wind 

 

The Block Island Wind Farm provides power to nearby Block Island, which had relied on 

expensive diesel generators, but it is also connected by undersea cable to the mainland. 

While the project is successfully operating, the long-term Power Purchase Agreement 

(PPA) price of $0.244/kWh with a 3.5% annual escalator (Trabish 2015) is far above even 

the relatively high Independent System Operator (ISO) New England system average price 

of ~$0.044/kWh (ISO New England 2019). 

Federal Regulatory Environment 

The Submerged Lands Act of 1953 established the jurisdictional boundaries for the 

development of resources within United States’ submerged lands. For all states except 

Texas and the Gulf Coast of Florida, those state submerged lands extend from the coastline 

to 3 nmi. The Bureau of Ocean Energy Management (BOEM) is designated as the lead 

agency, and, in conjunction with other federal and state agencies, is charged with the 
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management of these resources. The federal leasing process automatically triggers the need 

for a major federal permitting and review process. 

 
Table 1: Federal Regulatory Requirements and Agencies 

Regulatory Requirement Controlling Statute Agency 

Leasing and royalty 
requirements 

Outer Continental Shelf 
Lands Act of 1953 (as 
amended by the Energy 
Policy Act of 2005) 

BOEM 

Environmental impact review National Environmental 
Policy Act (NEPA) of 1969 

EPA 

Endangered species 
biological 
assessments/incidental take 
permits 

Endangered Species Act of 
1973 

NMFS/FWS 

Migratory birds Migratory Bird Treaty Act of 
1918 

FWS 

Water quality Clean Water Act of 1977 EPA 

Maritime traffic, navigation, 
and safety 

Ports and Waterways Safety 
Act of 1972; Rivers and 
Harbors Act of 1899; 33 CFR 
§66.01 

USCG/Army Corps of 
Engineers 

Impacts on historic 
properties/sites 

National Historic 
Preservation Act of 1966 

BOEM in consultation with 
Advisory Council on Historic 

Preservation; NPS 

Crew safety requirements Occupational Health and 
Safety Act of 1970 

DOL/OSHA 

Aviation safety Federal Aviation Act of 
1958; 49 U.S.C. §44718 

FAA 

Source: (Cameron Jr. and Mathews 2016) (Eisen, et al. 2015, 836-838) 

 

Table 1 offers a synopsis of the major federal regulations that commonly apply to offshore 

wind development. It is by no means exhaustive but serves to illustrate the volume of 



 11 

regulatory and permitting issues facing an offshore project. One other requirement to note 

is Jones Act compliance. Under the Jones Act, shippers moving goods between US ports 

must utilize US built, flagged, and crewed vessels. Currently, there are no US flagged 

turbine installation vessels nor US-based offshore turbine manufacturing facilities. Given 

the requirement, developers may be required to ship turbines from Europe directly to the 

installation vessel on site (Smith, et al. 2018, §9.05).  

Despite recent efforts by the Department of the Interior (DOI) to streamline the 

federal approval process for offshore wind developments with its “Smart from the Start” 

program (Eisen, et al. 2015, 836), the regulatory and permitting process remains a 

significant impediment. Even for projects that are fully compliant, the legal fees, 

environmental study costs, administrative overhead, and delays can accumulate to the point 

that they adversely affect project returns and may even kill an otherwise viable project.  

State and Local Regulation 

While states do not have leasing or final environmental permitting authority for 

projects in federal waters, they do have significant ability to influence offshore wind 

installations. Avoiding state and local opposition has become an important factor in initial 

site selection.  

Though a project may be sited in federal water, some portions of the development 

process, especially during installation, are directly in state and local jurisdiction. Probably 

the most significant regulatory hurdle is approval under the state Coastal Zone 

Management Plan (CZMP). Pursuant to the Coastal Zone Management Act of 1972, states 

create their own CZMPs to regulate their state’s coastal areas and submerged lands in 

partnership with the federal government (Cameron Jr. and Mathews 2016). States can be a 

major obstacle if they are unsupportive of a project because they are given broad leeway 
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to define requirements for transmission and permits for the use of coastal facilities. 

Developers must also obtain state Clean Water Act (CWA), Right-of-Way (ROW), and 

Department of Transportation (DOT) permits (Eisen, et al. 2015, 837-838). 

Even in states with broad support for clean energy, offshore development is not 

always welcome. As a recent example, Ocean City, Maryland passed an ordinance in 2018 

opposing offshore developments that can be seen from shore (Smith, et al. 2018, §9.05). 

Despite federal siting and approvals, state and local opposition is a common and significant 

issue for offshore wind.  

Failures, Issues, and Controversy 

Beyond cost, offshore wind developments face many more hurdles than onshore 

projects. The Cape Wind project was a spectacular example of difficulties developers face 

in the US. Originally conceived in 2001 to be the first US offshore development and located 

in Nantucket Sound, the project’s developers faced years of setbacks, delays, and 

opposition until finally abandoning the project in 2017 (Walton 2017).  

Cape Wind, like other offshore projects, found itself facing significant local 

opposition. While this is not completely uncommon for onshore projects, given the 

population density and affluent nature of many coastal communities, NIMBYism (Not In 

My Back Yard) is magnified. Located in federal portions of Nantucket Sound, the Cape 

Wind project was challenged by committed and well-funded groups on nearly all 

conceivable grounds. While this project’s tortured history may be an extreme example, it 

brought to the forefront many issues offshore developers must now take into account when 

considering a new project.  
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FUTURE OF OFFSHORE WIND 

Without the onshore logistical limitations imposed by highway and train transport, 

the average size of offshore wind turbines will only continue to grow. Increases in 

efficiency and cost reductions will also make offshore wind more cost competitive with 

other resources. As floating turbine designs become proven and operationally available, 

vast resource areas may open up for development. Furthermore, concerns about greenhouse 

gas emissions as well as geopolitical risks surrounding energy security will drive more 

countries to consider offshore development as an integral part of their generation mix.  

Globally 

Worldwide deployment of offshore wind will continue to accelerate over the next 

several years, but, as shown in Figure 7, much more development will occur in Asia and 

specifically China. 

 
Figure 7: Comparison of Current Share by Country vs. Under Construction 

 

Source: (Beiter, Spitsen, et al. 2018, 43) 
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Already a leader, China will more than triple its current offshore capacity with 

projects already under construction. Taiwan has entered the market, with a plan to construct 

5.5 GW of offshore wind by 2025 (Beiter, Spitsen, et al. 2018, 40). As shown in Figure 8, 

the total global pipeline of announced projects, which includes the projects under 

construction from Figure 7 as well as projects at earlier stages in the development pipeline, 

exceeds 200 GW, representing a 12-fold increase. 

 
Figure 8: Global Offshore Wind Pipeline (MW) 

 

Source: (Beiter, Spitsen, et al. 2018, 45) 

 



 15 

United States 

Despite the setbacks and challenges, the offshore industry is poised to take off in 

the US. Taking advantage of cost reductions and lessons learned built on years of (mostly) 

European development, many new US projects are in the pipeline.  

 
Figure 9: US Offshore Wind Pipeline (June 2018) 

Source: (Beiter, Spitsen, et al. 2018, 22) 

 

While there are over 25 GW in the total pipeline, new US projects are, overall, still 

very much in the early stages of development. Announced projects are predominantly 

located in the New England/Mid-Atlantic region. The combination of excellent wind 
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resources, environmental impact interests, and high wholesale power prices in transmission 

and land-constrained markets have made this area attractive to developers. Without an 

overarching federal scheme and with federal tax credits quickly expiring, states have 

modified existing or developed new procurement mechanisms to encourage offshore 

growth (see Table 2). States like Massachusetts, New York, New Jersey, and Connecticut 

have completed or announced requests for proposals (RFPs) for offshore wind, and some 

are implementing specialized Renewable Energy Credit (REC) programs specifically 

targeting offshore wind. Early stage projects are also in development to centralize 

transmission via an offshore transmission network.  

 
Table 2: State Offshore Wind Procurement Targets 

State Offshore Wind 

Procurement Target  

Year 

Massachusetts 
 

1,600 MW 2027 

Connecticut 
 
 

825,000 MWh/yr  

New York 2,400 MW 
 
 

2030 

New Jersey 3,500 MW 2030 

Maryland 2.5% of retail sales  

Source: (Beiter, Spitsen, et al. 2018, 33) 

 

Due to increased depths and the requirement for floating turbines, development 

progress in the Pacific is much slower. California and Hawaii both have projects in the 

planning stages, which stand to take advantage of high prices in both regions if the 

technology can be proven at acceptable cost levels.  
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Chapter 3: Offshore Wind Development in Texas 

In an effort to avoid federal jurisdiction and regulation, Texas has developed it’s 

own, non-interconnected, transmission grid. Managed by the Electric Reliability Council 

of Texas (ERCOT), operating as an ISO, the ERCOT region covers about 90% of the Texas 

load (ERCOT 2019). 

RESOURCES 

The state of Texas is rich in natural resources. Already a major energy producer 

with large oil and gas deposits, Texas quickly became a leader in onshore wind energy 

production in the mid-‘90s, and has rapidly expanded installed wind capacity as shown in 

Figure 10. 

 
Figure 10: Wind Capacity in ERCOT 

 

Source: (ERCOT 2019) 
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In 2018, 69,796,019 MWh of wind energy was consumed in ERCOT; or 18.6% of the 

total load (ERCOT 2019). Most of this wind generation is in West Texas and the 

panhandle, with some onshore coastal wind as well.  

Texas also has significant offshore wind resource potential, as illustrated in the 

wind speed map in Figure 11.  

 
Figure 11: Texas 90 m Offshore Wind Speed 

Source: (NREL 2011) 
 

Close to major coastal cities and avoiding much of the transmission congestion new 

west Texas and panhandle wind development faces, Texas offshore wind is very attractive 
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from a resource perspective. An additional benefit which is already making onshore coastal 

wind production more valuable is its generation profile.  

 
Figure 12: ERCOT Summer Renewable Production 

 

Source: (Potomac Economics 2018, 88) 

 

As shown in figure 12, the coastal wind generation profile (shown in red) very closely 

follows the total load curve. The additional buildout of coastal and offshore wind has the 

potential to meet much of the generation need in ERCOT with less reliance on dispatchable 

resources to match generation to load. Additional coastal and offshore wind would also 

reduce the steep ramping need caused by increased solar penetration which drops off 

shortly before peak demand times.  
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REGULATORY AND MARKET ENVIRONMENT 

As stated earlier, ERCOT has significant autonomy with regards to its management 

of the grid. It has also invested heavily in the infrastructure needed to accurately forecast 

wind generation, making it possible for ever higher levels of intermittent resources on the 

Texas grid (ERCOT 2019). Both the state legislature and the Public Utility Commission 

(PUC) of Texas have, through the restructuring of the electricity market to introduce 

competition, also been supportive of new generation development. 

One of the only areas in the country with growing electricity demand, the market 

for wholesale electricity in Texas is vibrant. The system is built around a day-ahead and 

real-time market administered by ERCOT, supplemented by long-term PPAs that allow 

Load Serving Entities (LSEs) to hedge price risk and provide the necessary revenue 

predictability needed to finance generation projects.  

The state has developed a unique arrangement where, after a generator reaches 

commercial operation, the security deposit that the developers pay to the Transmission 

Service Provider (TSP) for the required upgrades to transmission facilities for 

interconnection are returned (Smith, et al. 2018, §7.02). The TSP (as a fully regulated 

entity) recovers the cost through its rates for all customers. This socialization of 

transmission costs makes generation interconnection in Texas more affordable than in other 

states where generators pay for much of the of upgrade costs. 

Though the regulatory burden in Texas is significantly reduced, developers must 

contend with requirements beyond ERCOT’s interconnection rules, some of which are 

described below: 
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General Land Office (GLO)  

For projects sited on state lands, the GLO manages the permitting and leasing 

process, functioning in a similar manner to the Department of the Interior. The GLO also 

manages state submerged lands off the Gulf Coast out to the state submerged land 

boundaries. As a remnant of Texas’ unique history and under the Outer Continental Shelf 

Lands act of 1953 and subsequent Supreme Court ruling (Smith, et al. 2018, §9.01), Texas’ 

submerged lands extend out to 9 nmi (vs. 3 nmi for all other states except the Florida Gulf 

Coast) to what is known as the Three Marine League Line (TMLL). This stipulation has 

provided a windfall of resources and revenues for the state and potentially provides a 

significant advantage to developers if they are able to avoid the federal leasing process by 

locating solely on state-administered submerged lands. Lease agreements work in two 

phases: an initial development term paid per acre followed by a second term of construction 

and operation which is paid as a percentage of revenues (Smith, et al. 2018, §9.02). 

Developers must also gain right-of-way easements for transmission lines and accommodate 

existing oil and gas leases and easements.  

Texas Counties 

Texas county and school district taxing jurisdictions extend seaward to into the Gulf 

to the TMLL. Without a state income tax, property taxes properties are a significant source 

of revenue, but Texas counties and school districts have wide latitude in creating abatement 

agreements to attract local development. 

Federal Requirements 

Projects on Texas submerged lands do not avoid all federal regulation. Approvals 

under the Clean Water Act and from the Army Corps of Engineers are still required, and a 

full environmental review under NEPA may still be necessary (Smith, et al. 2018, §9.01).  
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CURRENT TEXAS OFFSHORE DEVELOPMENT 

While the GLO has issued leases, no offshore wind farms have been built on the 

Texas Gulf Coast. Baryonyx secured leases in 2009 and received a DOE grant to help fund 

project, but allowed its lease to expire in 2014 (Smith, et al. 2018, §9.02). Other leases 

have been issued, but no projects have made it past the development stage.  
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Chapter 4: Testing the Business Case for Offshore Wind on the Texas 
Gulf Coast 

METHODOLOGY 

Several studies exist that test the total possible generating capacity of offshore wind 

resources in the United States or look into levelized cost analysis comparisons between 

generation sources. However, in order to test the feasibility of actually developing a wind 

farm off the Texas Gulf Coast, a hypothetical test project was needed to prove out 

assumptions and test the competitiveness of a prospective project. 

As shown in Figure 13, NREL’s “Framework for Project Development in the 

Renewable Energy Sector” visually depicts the intuitive process a developer would use to 

narrow down prospective projects. 
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Source: (Springer 2013) 

 

Through this iterative process, a project location was chosen. This hypothetical or 

“test” project allows for generic inputs from NREL and other sources to be incorporated 

into a location specific financial model and then tested against local market conditions. 

While these market conditions fluctuate significantly over both the short and long term, it 

is possible to specify a reasonable range so that the inputs can be varied as appropriate to 

test the overall viability of a project. 

Figure 13: General Iterative Process Concept in Project Development 
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A firm’s decision to invest in an offshore wind farm on the Texas Gulf coast will 

rely on finding economic opportunity in a regulatory environment that will allow 

development. The purpose here is not to discern whether or not this specific project area is 

suitable, but to determine if a suitable combination of resource, topography, market, and 

regulatory characteristics exists on the Texas Gulf Coast, and if not, what conditions are 

needed to make development feasible. 

As previously depicted in Figure 11: Texas 90 m Offshore Wind Speed, the area 

just south of Corpus Christi Bay provides the highest wind potential as estimated by NREL 

at a 90 m hub height, and serves as a starting point to identify a suitable site. Winds in this 

area average 8.5-9 m/s, comparable to some of the best wind resources in the Texas 

Panhandle and Great Plains wind corridor (NREL 2019). This area is also bisected by 

offshore oil and gas pipeline easements and platforms, and it was assumed that future wind 

leases would have to avoid these areas. Cross-referencing this resource area against other 

constraints yields a suitable test project area depicted in Figure 14.  
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Figure 14: Test Project Area 

 

 

This area contains approximately 37,000 acres that meet the minimum economic 

wind speed and are in water depths of less than 30 meters (the average in this area is less 

than 25 meters). It also remains within Texas state-owned submerged lands (inside the 

Three Marine League Line), avoiding the federal leasing process. While this is certainly an 

effort to “cherry pick” what seems to be the best location, that is precisely where a 

prospective developer would start their search. Additionally, if an offshore wind farm is 

not economically viable here, it is unlikely to be viable anywhere else along the Texas Gulf 

Coast. A much more detailed location study would need to be performed to validate this 

precise location as a viable development option; however, a cursory map search/cross-

referencing effort is sufficient to illustrate the potential for development off the Texas Gulf 

Coast as well as provide meaningful inputs for cost and production estimation. If chosen 
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to move forward, a long term (and costly) wind condition study with semi-permanent 

meteorological towers would be required to validate resource assumptions. 

With a test project area identified, its economic feasibility can be measured using a 

Discounted Cash Flow (DCF) model as illustrated in Figure 15 and provided as Appendix 

A.  

 

See Appendix A for DCF Model 

 

A DCF model was chosen as the main method of evaluating the economic 

feasibility of this project for several reasons: 

Figure 15: Offshore Wind DCF Model 
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1. Simplicity-While there are a large number of inputs, this type of model 

breaks down evaluation process into reasonable estimates and assumptions 

that can be combined and evaluated as a whole.  

2. Flexibility-DCF models allow for the ability to vary inputs that are 

uncertain and track outcomes that vary based on different sets of 

assumptions. 

3. Replicability-Though not the only type of financial model used for these 

kinds of projects, DCF models are well understood and are considered a 

standard method for evaluating wind projects.  

DATA 

Site and Market Characteristics 

At 37,000 acres, the test project area is not particularly large as compared to other 

sites under development in both the US and Europe (recent leases on the east coast have 

been signed for 80,000 acres or more (Chesto 2018)), but it is large enough to develop a 

project of reasonable size. It is bounded/reduced by several factors: 

• The Three Marine League Line: As defined by the GLO and previously 

described, this line depicts the limit of Texas state submerged lands. Leases 

in this area would be made with the GLO and avoid a number of federal 

permitting complications.  

• <=30 meters depth: 30 meters is identified as approaching the limit for 

simple monopile foundation designs as well as the max operating depth for 

smaller installation vessels (Beiter, Musial, et al. 2016, 59). Fixed 

substructure installation is possible in much deeper depths, but for 

simplicity and cost-savings, the 30-meter limit was chosen for this test 
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project. Due to the other site limitations, the actual depth in the area is all 

less than 25 meters, which should help project economics.  

• Shipping Fairways: Corpus Christi is home to significant port facilities, and 

obstruction of shipping fairways is prohibited. While shipping routes exist 

in the general area, they did not affect the test project.  

• National Seashore Park Boundaries: Padre Island National Seashore is 

situated on the barrier island just south of Corpus Christi Bay. Though 

offshore oil and gas facilities exist off the coast of the National Seashore, 

the northern seaward border of the park boundary was chosen as the test 

project’s southern limiting factor to avoid public opposition. 

• Existing Oil and Gas Pipeline Easements: Several easements are depicted 

in the area, and it was assumed that it would be necessary to avoid these 

areas when siting wind turbines. 

Since Texas county boundaries and taxing authorities extend to state submerged lands, and 

the test site is split at approximately 55/45 percent between Nueces and Kleberg counties 

respectively. The modeling assumptions assume the same 55/45 ratio when calculating 

taxes. 

Access to appropriately sized transmission facilities with available additional 

capacity is a make-or-break criterion for all generation projects. While additional build-out 

is not out of the question, the slim margins renewables projects operate under do not allow 

for significant transmission expenditures. Though there are several major transmission 

facilities on the mainland in the vicinity of where the test project’s undersea transmission 

cables could be routed, transmission infrastructure information is sensitive in nature, and a 

detailed transmission capacity study is beyond the scope of this study. Therefore, it was 
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assumed that adequate transmission infrastructure with available capacity is available with 

reasonable interconnection costs.  

Wholesale Electricity Market 

This test project is within the ERCOT South Zone. Projects in this zone have access 

to historically higher than statewide average prices (Potomac Economics 2018, iii). They 

also have the benefit of reduced congestion issues and direct ties to coastal load centers. 

This avoids a major issue facing Panhandle and West Texas onshore projects where 

transmission bottlenecks stifle access to load centers in the Central and East Texas and 

sometimes push market prices to zero or negative.  

Wholesale market prices for the project were projected based on the most recently 

available South Zone weighted average prices (Potomac Economics 2018, iii). This 

baseline price was then run against three scenarios: 

• Flat prices: no annual change/40% probability 

• Increasing: +3.5% per year/35% probability 

• Decreasing: -1% probability/25% probability 

 Anyone with a view on long term market prices would likely utilize different rates 

and probabilities, and the base model can accommodate those changes. Generally 

increasing prices, common in industries where increasing regulation and labor costs drive 

up the cost of production, is a likely scenario with an assumed probability of 35%. 

However, given recent ERCOT market prices trending lower (Potomac Economics 2018, 

iii), lower for longer natural gas price outlooks (EIA 2019a, 73), and the general 

competitiveness of the ERCOT wholesale market, flat, or even declining prices are 

possible. These two scenarios were assumed to occur with a probability of 40% and 25%, 

respectively. A weighted average of those scenarios yields an expected case of 0.9% annual 
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increase in prices was used for the life of the project as a base case, which is in line with 

some private market estimates. These values are used as reasonable, but not authoritative, 

possibilities for future market conditions.  

The effect of wholesale market prices is not as direct as it would appear because 

they only affect project economics while the project operates as a “merchant” plant, selling 

directly into the day-ahead or real-time market. Like most generators, offshore wind 

developers require long term Power Purchase Agreements (PPAs) as a prerequisite for 

moving forward. Prevailing wholesale market prices clearly affect PPA rates, but 

competition among other generators, conflicting views of long-term market trends, and 

other factors have significant effects as well. Once these PPA rates are locked in, wholesale 

market changes have little effect on project revenues during the term of the PPA contract, 

which can extend for most of the life of the project.  

Major Project Assumptions 

Due to the complexity of modeling offshore wind development, particularly in the 

absence of direct supplier pricing information, a number of assumptions were made in 

order to both simplify the modeling parameters as well as to define base case starting values 

that could be varied against other assumptions and hypothetical market conditions.  

Turbines 

The basis of any wind project is the turbines themselves. Dozens of manufacturers 

offer turbines with nameplate capacities of under 1 MW up to 12 MW (General Electric 

2019). Arguments can be made for larger or smaller turbines; however, given that a number 

other assumptions are taken from various NREL sources, the test project utilizes NREL’s 

Commercial Operating Date (COD) 2022  turbine assumptions (Beiter, Musial, et al. 2016, 
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15). Given the likely COD of any Texas Gulf Coast offshore project would be much after 

2022, the use of larger and more advanced turbines is not unlikely. In the interest of 

alignment with other assumptions and to avoid complicating this theoretical, early-stage 

development process, NREL’s 2022 baseline turbine assumptions were used (shown in 

Table 3). 
 

Table 3: Turbine Assumptions 

Key Assumptions COD 2015 2022 2027 

Turbine Rated Power (MW)  3.4 6 10 

Turbine Hub Height (m)  85 100 125 

Turbine Rotor Diameter (m)  115 155 205 
 

Source: Adapted from NREL assumptions (Beiter, Musial, et al. 2016, 15) 

 

Project useful life was estimated at 20 years, in line with NREL estimates (Beiter, 

Musial, et al. 2016, 11). Though this is shorter than the 25-30 year expected life estimate 

for many onshore installations, the offshore environment is much harsher, and long-term 

additional maintenance becomes cost prohibitive.  

Annual production degradation rate estimates vary significantly and are not fully 

known. Staffel and Green’s research on a large sample of many active European offshore 

wind farms yielded an expected value of -0.4%/year (Staffell and Green 2014) which was 

used for base case estimates in this study.  



 33 

Target Project Capacity 

A project target capacity of 150 MW as chosen as a sizeable but not excessively 

large project appropriate for an undeveloped area. Utilizing midrange NREL turbine 

separation estimates (Beiter, Musial, et al. 2016, 144), a project of this capacity would 

require approximately 9,500 acres, allowing for array design flexibility and expansion 

opportunities in the 37,000 acres available in the defined project area.  

Net Capacity Factor 

Individual turbine and overall project capacity factors are driven by a number of 

variables such as wind resource, turbine efficiency, and wake losses. A developer seriously 

considering building in a new resource area would make the investment to install 

meteorological (met) towers as soon as they have site control in order to gain reasonable 

assurances that their capacity factor, and therefore production estimates are correct. A 

number of these details, as well as long-term met tower data, are not available, so an 

estimated capcity factor of 47.7% from NREL (Stehly, Beiter and Heimiller 2018, 21) for 

similarly situated projects was used as a baseline.  

CAPEX 

Capital expenditures are one of, if not the most important, factors in project 

economics. These costs are drastically higher in offshore installations vs. onshore. Table 4 

provides a breakdown of CAPEX cost estimates from NREL’s most recent Cost of Wind 

Energy Review, which provides a good set of baseline assumptions for the test project. 
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Table 4: CAPEX Estimates 

Capital Cost $/kW 

Turbine 1557 

Substructure 613 

Port and Staging 56 

PM, Assembly, and Installation 364 

Electrical Infrastructure 1,106 

Const. Ins., De-commissioning, 

Contingency 

690 

Development Costs 150 

Total CAPEX/kW 4,536 

Total CAPEX for 150MW Array $680,400,000 

Source: Adapted from NREL 2017 Cost of Wind Energy Review (Stehly, Beiter and 

Heimiller 2018, 21) 

 

It is important to note that with a 4,536 $/kW baseline estimate, offshore CAPEX 

is approximately 2.5x onshore CAPEX cost estimates (Stehly, Beiter and Heimiller 2018, 

14).  

Operations and Maintenance 

While not a major driving factor for onshore wind farms, O&M cost are drastically 

higher offshore. Many different factors affect offshore O&M costs, such as distance from 

shore, average sea states, reliability factors of the turbines, and availability of trained 

maintenance personnel. An EIA estimate of $80.14/kW/yr (EIA 2019b, 2) was used as a 

baseline, which is likely high given the test project’s proximity to port facilities and 
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relatively calm sea state. An escalator of 2% per year was included to reflect rising labor 

costs and increased maintenance requirements as turbines age.  

Financial Model Inputs/Assumptions 

Taxes and Royalties 

This project will be subject to a federal income tax withholding at 21%, and while 

Texas has no state income tax, it does have significant county, school district, and other 

local taxes. These rates can be hard to estimate as the local taxing entities have broad 

authority to provide tax abatements and the local central appraisal district must value the 

wind farm based on many factors.  

Two issues further complicate this project's tax situation. First, it is within 25 miles 

of Naval Air Station Corpus Christi. While local taxing entities can and usually do offer 

tax abatements to aid in development, recently passed Texas Senate Bill 277 states that 

wind farms “may not receive… a tax abatement if, on or after September 1, 2017, a wind-

powered energy device is installed or constructed…” within 25 nautical miles of the 

boundaries of a military aviation facility”. Furthermore, being split between Nueces and 

Kleberg counties, the project would be taxed based on differing rates (depicted in table 5) 

depending on what portions of the project fall into which jurisdiction.  

In order to estimate tax liabilities, the combined effective tax rate in each county 

was used at a pro-rata share equal to the proportion of the total project area located in each 

county. 
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Table 5: County Tax Rates 

County Combined Annual 

Tax Rate 

Proportion of 

Project 

Nueces 2.4569% 54.8% 

Kleberg 1.9515% 45.2% 

Source: Nueces and Kleberg County Central Appraisal Districts 

 

GLO royalty rates (paid as a percentage of revenue) are not publicly available. 

BOEM rates of 2% of revenues (assessed against prevailing wholesale market rates) are 

used as a proxy. 

Incentive Structure/Depreciation 

While the US government has chosen to incentivize renewables development 

strongly, a project off the Texas Gulf Coast built in the coming years would not be eligible 

for any federal tax incentives. Given the costs, it is not likely that a project would be built 

without some sort of subsidy. In order to begin to understand what it would take to get a 

project like this built, the original federal Production Tax Credit (PTC) rate (inflated along 

the statutory schedule) of 2.4 cents/kWh, was used (Smith, et al. 2018, §5.01), as well as 

the 30% Investment Tax Credit rate of 30%. This assumes a renewal of these incentives, 

possibly directed at more experimental renewable projects such as offshore wind.  

Capital Structure 

The base case analysis was conducted with a capital structure common to wind 

projects. Investment was split between tax equity and sponsor equity investors, each 

requiring an 8-9% return. While an NREL report suggests a Weighted Average Cost of 
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Capital (WACC) of over 10% may be required given the relative riskiness of offshore 

projects (Beiter, Musial, et al. 2016, 126), this analysis assumes rates more typical of 

current onshore projects.  

CASE ANALYSIS 

Given the multitude of possible values and the sheer number of variables, a single 

estimate would not adequately depict the results of this hypothetical test project. In order 

to get a more complete view of the possibilities, a number of cases and scenarios were run. 

While nearly ever variable could be a candidate for separate analysis, only some variables 

significantly impact returns individually or are likely to vary in a way that is meaningful to 

the project. A list of these impactful variables was determined and verified through a 

sensitivity analysis via Precision Tree software. 
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Figure 16: Sensitivity Analysis of Variable Impacts 

 

 

Figure 16 shows the effect of select variables on sponsor returns. While the project model 

is designed to yield the minimum PPA price with sponsor returns held to a narrow range, 

the mechanics of the model required the sensitivity analysis to be run against sponsor 

returns. This indicates both the magnitude and the precedence of the effect of these 

variables on project economics, which is useful for further testing. The results show that 

CAPEX is by far the most meaningful variable. Estimates for CAPEX also vary 

significantly from source to source and are known to be rapidly falling. Because of this, 

NREL’s baseline CAPEX estimates were used as the foundation for case analysis 

discussed later. Though much less impactful, O&M costs are also important and were 

tested as well. PPA and O&M escalator rates, and the carbon tax effect on wholesale 

market prices were less impactful, and are unlikely to vary significantly enough from 
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assumed values to alter the underlying conclusions. Proper benchmarks for insurance 

costs are not publicly available, but even drastic changes in insurance rates have minimal 

effect on project returns. See Appendix A for detailed sensitivity analysis results. 

PPA Rates and Structure 

Generally speaking, the most significant determining factor when deciding to move 

forward on a renewable energy project is the ability to lock in an economic PPA. For a 

project to be feasible, it must allow for PPA price that is both competitive in the wholesale 

electricity market as well as providing for the required returns. For this analysis, capital 

structure and cash flow allocations were optimized to minimize the required PPA rate via 

the Excel Solver application, subject to industry requirements or norms for capital 

structure, cash flow splits, and returns. The PPA term was assumed to be 15 years. While 

shorter terms are possible, given the risks of this project a longer-term PPA was chosen in 

order to lock in returns and attract financing. A 2% annual price escalator was also used 

for the base case, which is not required but commonly used in these agreements. The 

resulting PPA price was then compared against the mean value for ERCOT South projected 

wholesale market prices as a proxy for PPA contract prices since PPAs are not publicly 

available in sufficient quantity to make projections. Comparing calculated PPA rates to 

wholesale market prices makes it possible to evaluate the potential competitiveness of 

offshore projects on the Texas Gulf Coast. 

Cases 

Based on cost estimates, the three cases in Table 6 were constructed: a Baseline 

Cost Estimate Case, a current Industry Cost Estimate Case, and an Optimistic Cost 

Estimate Case. These cases were then further divided into regulatory scenarios.  
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Table 6: Cost Estimate Case and Regulatory Scenario Matrix 

 Baseline Case Industry Case Optimistic Case 
Regulatory 
Scenarios 

No Incentive 
• No Carbon 

Tax 
• w/ Carbon 

Tax 

No Incentive 
• No Carbon 

Tax 
• w/ Carbon 

Tax 

ITC+State RPS 
• w/ Carbon 

Tax 
 

 PTC 
• No Carbon 

Tax 
• w/ Carbon 

Tax 

PTC 
• No Carbon 

Tax 
• w/ Carbon 

Tax 

 

 ITC 
• No Carbon 

Tax 
• w/ Carbon 

Tax 

ITC 
• No Carbon 

Tax 
w/ Carbon Tax 

 

 State RPS 
• No Carbon 

Tax  
• w/ Carbon 

Tax 

State RPS 
• No Carbon 

Tax  
• w/ Carbon 

Tax 

 

 

Baseline Cost Estimates Case 

The Baseline Case utilizes total CAPEX data from NREL of 4,536 $/kW (Stehly, Beiter 

and Heimiller 2018, 21-24) and O&M cost data from the EIA of 80.14 $/kW/year (EIA 

2019b, 2). These estimates represent a conservative starting point for economic analysis.  

Current Industry Cost Estimates Case 

The Industry Cost Case utilizes offshore wind CAPEX cost estimates of 3,025 $/kW as 

determined by the investment bank and advisory firm Lazard in their Levelized Cost of 

Energy Analysis-Version 12 (Lazard 2018, 10). Lazar’s O&M cost estimates generally 

agreed with EIA estimates, so the same value of 80.14 $/kW/year was used.  
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Regulatory Scenarios 

No Incentive Program 

No federal Production Tax Credit (PTC), or Investment Tax Credit (ITC) and no state-level 

Renewable Portfolio Standard (RPS) Renewable Energy Credit (REC).  

Federal Production Tax Credit 

Though the window for projects to apply for and receive the PTC is closing, and any new 

projects on the Texas Gulf Coast are unlikely to meet the deadlines, it is possible that the 

program may be renewed in one form or another. To evaluate this possibility, a PTC value 

of 2.4 cents/kWh (the 2017 rate) was applied to the model to determine incentive 

effectiveness in encouraging offshore wind investment. 

Federal Investment Tax Credit 

More commonly used for solar projects, the ITC is available for offshore wind as well. 

Though rates are slated to be stepped down over the coming years, the ITC has also had a 

long and complicated history of renewals. The full 30% up-front tax credit value was 

applied to the model for this scenario to test ITC effectiveness. 

Hypothetical State Renewable Portfolio Standard 

While Texas has a Renewable Portfolio Standard and associated Renewable Energy Credit 

Program, the state has long surpassed its goals, and the REC market does not factor 

significantly into the revenues for renewable projects. Some states are experimenting with 

offshore specific RECs, so it is important to a scenario where the market for offshore 

specific RECs is a meaningful revenue driver. REC prices vary drastically by markets, so 

a mid-range levelized REC value of $10 per MWh was applied for this scenario. 
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Carbon Taxes 

Though some states are experimenting with mechanisms to internalize the social cost of 

carbon for electricity generation, these sorts of carbon policies are not currently being 

considered in Texas. Any prediction of future federal policy is at best a guessing game. 

However, it is important to attempt to test the effect of this type of policy. Though the 

effect of a carbon tax on wholesale electricity markets is indirect and difficult to predict, a 

carbon tax adder of $11.81/MWh was applied to market prices. This value was calculated 

based on a 2008 study of multiple price/ton scenarios and their effect on the ERCOT market 

averaged together and converted to 2019 dollars (Burtraw and Palmer 2008, 826, 835). 

While certainly a crude estimate, it does provide a starting point for determining the effect 

of carbon policies on the competitiveness of renewables projects. Each case/incentive 

combination was tested both with and without this carbon tax adder applied. 

Optimistic Case 

As a final analysis, it was useful to put together a “best case scenario” maximizing all 

factors that improve the competitiveness of a Texas offshore wind project. This “Optimistic 

Case” helps to determine at what point the combination of cost reductions and regulatory 

policies make an offshore project competitive in the ERCOT market. To evaluate this 

scenario, multiple factors were used. Total CAPEX was again taken from Lazard, but the 

low-end estimate of $2,250/kW was utilized (Lazard 2018, 17). The same O&M cost 

estimates from the EIA were used but were reduced by 15% to $68.12/kW/year in order to 

simulate future efficiency improvements. A full ITC value of 30%, as well as the $10/MWh 

REC value, were also included, as was the carbon tax adder.  
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Chap 5: Results and Analysis 

Overall results show that future Texas Gulf Coast offshore wind projects face 

significant economic hurdles in reaching cost-competitiveness in the ERCOT market. The 

results for each case and scenario are summarized below in Figure 17. 

  
Figure 17: Minimum PPA Offerings for each Case and Scenario 
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The resulting minimum PPA offering for each cost estimate case combined with each 

incentive scenario are depicted, both with and without a carbon tax applied. Estimated 

long-term ERCOT South wholesale market prices are also included to show how 

competitive each case/scenario combination is in the ERCOT market. 

BROAD TRENDS 

Though the results varied significantly between cases and scenarios, a few broader 

trends did emerge: 

Incentives matter 

Though it is obvious that incentives improve project economics, it is useful to point 

out that, while in many areas renewables (including offshore wind) have become cost 

competitive without incentives, prices in the ERCOT market are depressed to the point that 

higher-cost emerging technologies will have a very difficult time competing without the 

aid of significant incentives.  

Carbon policies have little direct effect 

A carbon tax adder was initially included in this analysis because it was assumed 

that carbon policies would have significant effects on PPA offerings. After running the 

scenarios, it became clear that, given the structure and terms of renewable energy projects 

and their PPAs, carbon tax effects are minimal. Were a carbon policy already in place at 

the time of a PPA signing, it may increase the price of that PPA by driving up wholesale 

market prices. But even this effect depends on what other generating assets are also offering 

contracts in that PPA market. If an offshore project was on the margins of being 

competitive, a carbon policy could make the project viable. It is unlikely, however, that a 

far-out of the money offshore project will become viable even with a large carbon tax value. 
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Were a carbon policy enacted after a PPA was already under contract (as this model more 

closely approximates), the increase in wholesale market prices would not affect the project 

until after the PPA contract expires. While this does translate to higher revenues during the 

“merchant tail” (the period after the initial PPA expires where a project is expected to be 

selling into the day-ahead and real-time market), those revenues are far into the future. 

Once discounted back to today, their effect on project economics is minimal, translating 

into less than a two dollar difference in minimum PPA offerings in all scenarios at the 

analyzed rate.  

INDIVIDUAL CASE/SCENARIO ANALYSIS 

Baseline Cost Estimates No Incentive 

As expected, the baseline cost estimate case with no incentives is the least 

competitive scenario. The minimum feasible PPA (no carbon tax) of $146.19 is far above 

the $30-35 ERCOT South wholesale market average.  

Baseline Cost Estimates + REC 

In this theoretical state RPS scenario, each MWh of production yields a REC worth 

$10, which in turn yields a minimum PPA offering of $136.26 (no carbon tax). A quick 

sensitivity analysis confirms that in this REC-only scenario, for each dollar of expected 

REC value, the minimum PPA offering is reduced by about a dollar in a nearly one-for-

one fashion. REC markets in certain states have reached as high as $60 in recent years 

(EPA 2019), which would drastically effect project finances. It is important to note 

however that this is a grossly simplified REC model. Prices in REC markets are fluid, and 

it would be unwise, even in a healthy and high-priced market, for a developer to not 

significantly discount their expected REC revenue due to its exposure to price and policy 
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risk. In this model, REC prices of about $100 would be required to bring PPAs in line with 

the ERCOT price forecast, which are not expected to occur.  

Baseline Cost Estimates + PTC 

Applying a full PTC value of 2.4 cents/kWh does significantly reduce the minimum 

PPA offer price to $127.92 (no carbon tax), a more than 12% reduction. While the PTC 

may make a project feasible in other markets, it is clear that the level of PTC incentive 

necessary to make this project with these costs competitive in the ERCOT market is 

unrealistic.  

Baseline Cost Estimates + ITC 

Though the PTC is more commonly utilized by onshore wind projects which are 

characterized by relatively low CAPEX and high production, the higher CAPEX levels for 

offshore projects make the ITC much more valuable. In this case/scenario, the ITC lowers 

the minimum PPA offering to $104.78 (no carbon tax), an over 28% reduction. In all of 

the case/scenario combinations tested, the ITC by far the most effective incentive 

mechanism, but resulting PPA prices remain well above the ERCOT South average. 

Industry Cost Estimates No Incentive 

Publicly available industry CAPEX estimates are significantly lower than NREL 

figures. With the estimates used in this analysis and with no incentives applied, the 

minimum PPA offerings are reduced from baseline estimates by nearly a third to $105.38 

(in the “no carbon tax” case).  
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Industry Cost Estimates + REC 

Similar to the base case + REC combination, the addition of a REC incentive yields 

an approximately one-for-one reduction in the minimum PPA offering under these 

parameters. A $10 expected REC value brings the minimum PPA offering to $95.38 

(without a carbon tax). 

Industry Cost Estimates + PTC 

The addition of tax incentives yields a required PPA of $86.17 in the industry case, 

which is much more in line with recently announced US offshore wind PPAs (Bade 2018). 

At this price, an offshore wind project with these costs and incentives could be cost 

competitive in many US markets, though it still does not compete well in the ERCOT 

market. 

Industry Cost Estimates + ITC 

Again, the ITC is found to be the most valuable incentive program tested. Industry 

cost estimates + the ITC brings the minimum PPA offering value down to $77.84 (without 

a carbon tax).  

Optimistic Cost Case + ITC + REC 

The previous analyses were designed to estimate the impact of each parameter in 

an independent sense. However, in practice, it is much more likely that multiple factors 

will simultaneously affect key outcomes. To test the impact of future cost improvements, 

an optimistic cost estimate + ITC + REC case/scenario combination was run that featured 

low-end industry CAPEX estimates, predicted efficiency gains in O&M spending, utilized 

the most effective tax incentive (the ITC), and a $10 expected value for RECs. This 

combination tests an optimistic, but not unrealistic, hypothetical future scenario. At the 
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tested values, a Texas offshore wind project could offer a PPA at $48.86 (including a 

carbon tax). While still slightly above the carbon tax-included market price estimate of 

$44.54 used in this analysis, the prospects for future offshore development in Texas 

become much more interesting under this scenario. 
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Chapter 6: Conclusion 

This analysis is not meant to describe an exact project size or a specific location 

that should be developed. Nor do the parameters, scenarios, or even the methodology used 

represent the only mechanisms one might use when testing the economic feasibility of an 

offshore wind project on the Texas Gulf Coast. It is meant to be an illustrative 

representation of the relative competitiveness of offshore wind in Texas. However, the 

results of this analysis do yield some interesting and broadly applicable findings.  

First, while offshore wind in Texas has some valuable advantages, under current 

cost, market, and regulatory conditions, offshore wind does not stack up economically 

compared to other more mature and readily available methods of generation in the ERCOT 

region. In a future of reduced costs and significant regulatory incentivization, it is not 

altogether unlikely that a combination of these factors and changing market conditions 

could make offshore wind on the Texas Gulf Coast a possibility.  

Second, as expected, this analysis confirms an important finding that, given its 

higher upfront costs, offshore wind projects are likely to benefit more from the ITC than 

the PTC. This is important when considering the future of federal tax incentives. Though 

it can be criticized for incentivizing spending and not the actual production of renewable 

energy, the ITC has proven to be an effective mechanism for encouraging renewables 

development. Before both the PTC and ITC sunset for wind projects in the next few years, 

it is likely that the ITC will continue to help the offshore wind industry in the US reach 

cost competitiveness, even as the benefit rates are reduced. However, it may be important 

for policymakers to either forgo the phase-out of the ITC or renew it in such a way that it 

benefits less mature technologies, including offshore wind.  
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Additionally, though offshore wind and likely any renewables developers would 

almost certainly support some type of carbon pricing mechanism, the effects of such a 

program are indirect and not nearly as meaningful as expected. The price on carbon that 

would be required to have a more direct and significant effect on offshore wind 

competitiveness would need to be much higher than is likely to be seen in the current 

political environment; if one were to be approved at all.  

NOTE ON ASSUMPTIONS, CONCERNS, AND AREAS FOR ADDITIONAL RESEARCH 

Since this analysis was done to provide a generalized and illustrative assessment of 

the economics of offshore wind on the Texas Gulf Coast, only publicly available data was 

used, and a number of simplifying assumptions were made. A case-by-case analysis 

utilizing privately negotiated cost estimates, return requirements, and future market 

expectations would be required before any prospective developer or interested party could 

move forward on a project or related matter. This analysis serves as an initial step in 

considering the pursuit of individual projects. 

For the hypothetical test project itself, several concerns which were outside the 

scope of this analysis were largely ignored. The hurricane risk in the Gulf is much higher 

than in other places, which could drastically affect insurance rates, maintenance, turbine 

costs, and other factors. Migratory birds, prevalent in the area, also bring about a number 

of environmental concerns and restrictions that could affect offshore wind’s prospects in 

the area.  

As a relatively new area of interest, the body of research on offshore wind in the 

US is not as mature as other generation sources. Though the issues of public perception 

and opposition in Texas are likely less of an issue than in other states, these were not 

addressed in this analysis and could be the subject of their own study. A more current and 
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market-specific study on the expected effects of carbon pricing policies on wholesale 

electricity markets could also be both interesting and useful for developers and 

policymakers alike.  
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Appendix A 

See supporting documents for DCF Model in excel format 
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Glossary 

BOEM Bureau of Ocean Energy Management 

CAPEX Capital Expenditures 

COD Commercial Operating Date 

CWA Clean Water Act 

CZMP Coastal Zone Management Plan 

DCF Discounted Cash Flow 

DOE Department of Energy 

DOI Department of the Interior 

DOL Department of Labor 

DOT Department of Transportation 

EIA Energy Information Administration 

EPA Environmental Protection Agency 

ERCOT Electric Reliability Council of Texas (Independent System Operator serving 

most of Texas) 

FAA Federal Aviation Administration 

FWS Fish and Wildlife Service 

GLO General Land Office (Texas state agency charged with stewardship of state-

owned lands and natural resources) 

GW Gigawatt 

GWh Gigawatt hour 
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ISO Independent System Operator 

ITC Investment Tax Credit 

kW Kilowatt 

kWh Kilowatt hour 

LSE Load Serving Entity 

MET Tower Meteorological Tower (large, semi-permanent weather stations installed in 

project areas to verify wind resource and conditions) 

MW Megawatt 

MWH Megawatt hour 

NEPA National Environmental Policy Act 

NIMBY Not In My Back Yard 

NMFS National Marine Fisheries Service 

NMI Nautical Mile 

NPS National Park Service 

NREL National Renewable Energy Laboratory 

O&M Operations and Maintenance 

OSHA Occupational Safety and Health Administration 

PPA Power Purchase Agreement 

PTC Production Tax Credit 

PUC Public Utility Commission 

REC Renewable Energy Credit 
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RFP Request for Proposal 

ROW Right-of-Way 

RPS Renewable Portfolio Standard 

TSP Transmission Service Provider 

USGC United States Coast Guard 

WACC Weighted Average Cost of Capital 
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