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Abstract 
 
Counts obtained from point count bird surveys can be treated as an index to bird 

abundance, but imperfect detectability can complicate inferences about abundance.  

Adjustment analysis methods, including double-observer, replicated counts, removal, and 

distance sampling methods, have been developed to estimate detection in addition to 

abundance.  These methods require additional information to estimate detection, which 

may entail added logistical costs or be additional sources of error.  It is not clear when or 

if adjustment methods outperform index methods, or how the benefits of adjustment 

methods compare to their costs.  I simulated point counts of birds, modeling birds 

spatially as moving within bivariate normal territories, modeling song production as an 

autocorrelated process, and modeling perceptibility as a logit function of distance to the 

observer.  In Chapter 1, I simulated counts using a test scenario with parameters 

reflecting surveys of black-throated blue warblers (BTBW, Setophaga caerulescens), 

analyzed counts using index and adjustment analysis methods, then evaluated and 

compared the performance of analysis methods.  Estimates from index methods 

underestimated true density of birds (Dp) for all survey types, but were highly correlated 

with true density.  Adjusted estimates from distance sampling and removal analysis 

methods showed a reduction in bias as compared to index estimates, but had reduced 

correlation with true density.  Adjusted estimates from double-observer analysis methods 

were nearly unchanged from index estimates.  Adjusted estimates from replicated counts 

analysis methods were susceptible to highly inflated density estimates, resulting in 

extremely high bias and low correlation with true density.  Index methods, while biased, 

were better correlated with true density and would provide better information about 

changes in abundance than an adjustment analysis method for the BTBW scenario.  If 

detection is constant and relative abundance is sufficient to meet survey objectives, using 

an index method is often preferable.  For systems with variable detection probability 

where inference about absolute abundance is necessary to meet objectives, practitioners 

should select adjustment methods suited to model the source of imperfect detection in 

their system.  Ill-suited adjustment methods will not improve inference and are no more 

useful than an index.   
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In Chapter 2, I used the model to simulate counts for scenarios with high or low 

availability and high or low perceptibility.  I also included scenarios where abundance 

was confounded with perceptibility, and scenarios where they were independent.  I then 

analyzed count data using index methods and adjustment methods.  Although index 

methods were biased and only had a strong correlation with true density when 

detectability was high, adjustment methods generally did not offer an improvement.  As 

compared to index methods, adjustment method performance ranged from far worse 

(replicated counts), to no added value (double-observer) to moderate improvement (in 

bias only, for removal and distance sampling in specific scenarios).  Practitioners should 

carefully consider the sources of variation in detection probability in their system.  If 

detection components are unknown or known to be variable, I advise practitioners to 

perform a pilot study to estimate detection components.  Additionally, practitioners 

should standardize their methods to increase availability and perceptibility in their 

surveys and to lower the variation in these detection components.   

In Chapter 3, I conducted simulated bird surveys using recorded bird songs to assess 

factors affecting detection probability in grassland bird point counts.  I used mixed effects 

logistic regression models to estimate factors affecting detection probability and to 

estimate and visualize the variation in the area around the observer where birds can be 

perceived (the perceptible area).  I conducted simulated surveys with 8926 binary 

opportunities for detection in Minnesota grasslands in 2011 and 2012.  Species, distance 

to the observer, wind speed and direction, observer, and density of vegetation all affected 

detection of recorded bird songs.  Species had a strong effect; the size of the predicted 

perceptible area around the observer differed by more than 10-fold among species.  Wind 

also had a strong effect on detection.  As wind speed increased, probability of detection 

downwind of the observer was reduced and the perceptible area around the observer 

became smaller and more asymmetrical.  The effective distance at which an observer is 

more likely to detect a bird than to not detect it may differ among species and angles to 

the wind, even within the same survey.  I recommend using fixed-radius counts for bird 

surveys in grasslands and reducing the variation in detection probability by standardizing 

surveys across wind conditions.   
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Chapter I 

Effects of Imperfect Detection on Inferences from Bird Surveys: A Simulation Study 

 

Summary: Counts obtained from point count bird surveys can be treated as an index to 

bird abundance, but imperfect detectability can complicate inferences about abundance.  

Adjustment analysis methods, including double-observer, replicated counts, removal, and 

distance sampling methods, have been developed to estimate detection in addition to 

abundance.  These methods require additional information to estimate detection, which 

may entail added logistical costs or be additional sources of error.  It is not clear when or 

if adjustment methods outperform index methods, or how the benefits of adjustment 

methods compare to their costs.  I simulated point counts of birds, modeling birds 

spatially as moving within bivariate normal territories, modeling song production as an 

autocorrelated process, and modeling perceptibility as a logit function of distance to the 

observer.  I simulated counts using a test scenario with parameters reflecting surveys of 

black-throated blue warblers (BTBW, Setophaga caerulescens), analyzed counts using 

index and adjustment analysis methods, then evaluated and compared the performance of 

analysis methods.  Estimates from index methods underestimated true density of birds 

(Dp) for all survey types, but were highly correlated with true density.  Adjusted estimates 

from distance sampling and removal analysis methods showed a reduction in bias as 

compared to index estimates, but had reduced correlation with true density.  Adjusted 

estimates from double-observer analysis methods were nearly unchanged from index 

estimates.  Adjusted estimates from replicated counts analysis methods were susceptible 

to highly inflated density estimates, resulting in extremely high bias and low correlation 

with true density.  For replicated counts, using the maximum count among replicated 

counts (an index method) produced estimates with lower bias than N-mixture model 

estimates.  Index methods, while biased, were better correlated with true density and 

would provide better information about changes in abundance than an adjustment 

analysis method for the BTBW scenario.  If detection is constant and relative abundance 

is sufficient to meet survey objectives, using an index method is often preferable.  For 
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systems with variable detection probability where inference about absolute abundance is 

necessary to meet objectives, practitioners should select adjustment methods suited to 

model the source of imperfect detection in their system.  Ill-suited adjustment methods 

will not improve inference and are no more useful than an index.   

             

Point count bird surveys are commonly used to address a number of objectives, including 

abundance estimation and population monitoring (Scott and Ralph 1981).  Point counts 

are ubiquitous in avian monitoring, yet there is significant debate regarding how count 

information can best be used.  Of particular importance is the role played by detection 

probability (p, see Glossary, Appendix A), which is described as 

𝑝 =  𝐶
𝑁
  (eq. 1.1), 

where C is the count obtained during a point count survey and N is the number of birds 

present. 

If p is constant, or if variation in p is small compared to variation in C (Johnson 2008), C 

can serve as an index to N, which is the basis for index surveys (Dawson 1981, Conroy 

1996).  The relationship between N and C can become muddied or totally obscured if 

variation in p is great or associated with sites being compared (e.g., different detection 

probabilities for different habitats).  If p and N are not independent, C could provide 

misleading information about N.  Index methods do not directly provide information 

about p, and both p and N are unknown in field surveys.  Any inferences about N from 

index methods must therefore rely on an assumed relationship between N and C. 

To better discuss the factors affecting detection probability, p can be broken into parts, as 

by Nichols et al. (2009).  They address detection of birds within a superpopulation (N*), 

defined as all birds whose territories or home ranges at least partially overlap the area 

over which inferences will be made (the area of inference).  Nichols et al. (2009) 

decomposed p from equation 1.1 into 4 parts: ps, the probability that a bird’s territory at 

least partially overlaps the surveyed area of a survey site; pp, the probability that a bird is 
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present in the surveyed area at the time of the survey, given that its territory at least 

partially overlaps the surveyed area of a survey site; pa, availability, the probability that a 

bird is available (e.g., vocalizes) during a survey, given that it is present; and pd, 

perceptibility, the probability that a bird is detected, given that it is present in the 

surveyed area, and available during the survey.  The expected value for a count (E(C)) 

during a survey is thus 

E(C) = N*ps pp pa pd,  (eq. 1.2). 

Detection probability can be affected by a wide variety of factors (Verner 1985), 

including species (Diefenbach et al. 2003), survey elements (length of survey, survey 

type; Dawson et al. 1995, Bollinger et al. 1988, Cimprich 2009), behavioral factors 

(singing rate, volume, and motion of birds; Wilson and Bart 1985, McShea and Rappole 

1997, Alldredge 2007b), environmental factors (precipitation, wind speed, ambient noise, 

time of day, time within the breeding season, even tides; Robbins 1981a, Wilson and Bart 

1985, Zembal and Massey 1987, Rosenberg and Blancher 2005, Pacifici et al. 2008), and 

observer effects (hearing ability, skill, distance from the source; Sauer et al. 1994, 

Alldredge 2007b).  Survey methods can be adjusted to reduce variability in detection 

probability, such as by using experienced observers (Robbins et al. 1986), training 

observers (Kepler and Scott 1981), or using a standardized survey length and survey 

radius (Ralph et al. 1993, Ralph et al. 1995, North American Breeding Bird Survey 1998, 

Matsuoka et al. 2014).  Survey methods may also be adjusted to maximize components of 

detection probability, such as maximizing pa by conducting surveys when birds are most 

likely to sing (Robbins 1981b) or maximizing pd by constricting survey radius such that 

all available birds can be assumed to be detected (Ralph et al. 1995). 

Two major groups of analysis methods are available for making inferences about 

abundance: “index methods”, which assume that counts are an index to abundance, and 

“adjustment methods”, which estimate both detection probability and abundance.  The 

simplest form of an index is the simple count analysis method, where counts from a 

survey are used as an estimator of abundance.  Other indices add information to reduce 

bias.  A maximum count uses the largest count among repeat visits to a site as an index to 
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abundance.  A bounded count also requires repeat visits, using twice the maximum count, 

minus the second largest count (Robson and Whitlock 1964, Johnson et al. 2007).  

Common use of indices includes acknowledging their limitations; Seber (1982) 

recommends that users “simply recognize that the estimates are biased and treat them as 

relative rather than absolute measures of abundance” (pg. 458).  I consider four 

adjustment methods. Double-observer (also referred to as multiple-observer) analysis 

methods (Cook and Jacobson 1979, Nichols et al. 2000) use the discrepancies in 

individual detections between two observers to estimate detection probability.  Distance 

sampling analysis methods (Burnham et al. 1980, Buckland et al. 1993) estimate 

detection probability as a function of distance from the observer, assuming that detection 

probability at the observer’s location is 1.  Removal (Farnsworth et al. 2002) and time-of-

detection (Alldredge et al. 2007a) analysis methods estimate detection probability by 

comparing initial detections that occur during different periods of the survey.  The 

replicated counts analysis method (Royle 2004) uses N-mixture models to estimate 

detection probability across sites with temporally replicated counts.  By estimating 

components of detection probability (eq. 1.2), adjustment methods theoretically reduce 

the bias for estimates of N, as compared to index analysis methods which do not estimate 

p.   

Within an analysis method, one or more estimators may be used to estimate abundance, 

where an estimator is defined as a statistic (i.e., a function of the data) that is used to infer 

the value of an unknown parameter.  For example, in the simple count analysis method, 

the sum of counts across all sites within a year forms the “simple index estimator” for the 

number of birds present at those sites.   It is important to note that the meanings of the 

quantities estimated by detection and abundance estimators differ among adjustment 

analysis methods, and that no single adjustment method estimates all components of p.  

Recall that for index methods, variation in detection probability is not separated from 

abundance (equation 1.2), so counts estimate N*ps pp pa pd.  Distance sampling and 

double-observer analysis methods model detection probability using variation in the 

observation process, exhibited by heterogeneity of detection due to distance from the 

observer for distance sampling methods, and discrepancies in the detection of individual 
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birds by observers for double-observer methods.  The detection estimator for these 

methods therefore estimates pd, and the abundance estimator estimates N*ps pp pa.  

Removal or time-of-detection analysis methods (hereafter called removal analysis 

methods) model detection probability using temporal variation within surveys, which 

incorporates variation both in the observation process and availability (e.g., song 

production).  The detection estimator for removal methods therefore estimates pa pd and 

the abundance estimator estimates N*ps pp.  For the replicated counts analysis method, 

detection probability is modeled using variation among temporally replicated visits to 

multiple sites, which includes variation in observation, availability, and movement of 

birds within their home ranges.  The detection estimator for replicated counts methods 

therefore estimates pp pa pd and the abundance estimator estimates N*ps.   

When comparing abundance estimates across analysis methods, it is often preferable to 

discuss the density of birds (D) within the surveyed area (A), where 

𝐷 =  𝑁
𝐴
  (eq. 1.3).  

Density estimates account for any differences across methods in area surveyed, while 

abundance estimates do not.  For example, fixed-radius surveys set a maximum distance 

from the observer beyond which birds are not recorded (Ralph and Scott 1995), but 

distance sampling methods customarily determine a maximum distance for observations 

by truncating a percentage of the most-distant observations (Buckland et al. 2001).  If 

comparing years of surveys with different numbers of survey sites, annual abundance 

across sites must be summarized as mean site-abundance or converted to density.  To 

avoid confusion when comparing surveys with different radii or number of sites, I use 

density rather than abundance to discuss quantification of bird populations. 

Although these analysis methods are conceptually attractive, there can be drawbacks to 

using them.  Double-observer methods (Nichols et al. 2000) require data collected via 

multiple field observers making simultaneous observations and replicated count methods 

(Royle 2004) require data collected with repeat visits to sites.  For both analysis methods, 

if human effort is kept constant, the number of overall sites visited is reduced compared 
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to a simple count, resulting in smaller survey extent.  Removal methods (Farnsworth et 

al. 2002, Alldredge et al. 2007a) typically require the observer to spend more time at each 

site compared to a simple count survey, at some logistical cost.  Birds also have more 

opportunities to move during longer survey periods common in removal survey types, 

which could bias results (Scott and Ramsey 1981, Granholm 1983, Dawson et al. 1995).  

Johnson (2008) argued that adjustment methods are “an assumption or a consequence of 

an assumption” and that their use is not universally preferable to index methods.  

Adjustment methods may entail additional sources of error, such as when distance must 

be estimated by observers for distance sampling methods (Alldredge et al. 2007c) or 

consensus must be reached by multiple observers for double-observer methods 

(Alldredge et al. 2006).  How birds are surveyed has the potential to affect inferences 

about bird density, but these effects have not been quantified, nor has consensus been 

reached on the best analysis methods to use in different situations.  

Thus far, most comparisons among analysis methods have been field studies (e.g., Moore 

et al. 2004, Forcey et al. 2006, Thompson and La Sorte 2008).  The drawback of 

modeling detection probability in field studies is that the true population is unknown, so 

the accuracy of estimators is also unknown.  By simulating counts and comparing 

analysis methods, it is possible to compare estimates to a known population, but few such 

simulation studies have been attempted.  Efford and Dawson (2009) assessed bias in 

abundance estimators by simulating counts and including heterogeneity in detection due 

to distance from the observer.  Although that study provided valuable information on 

estimator performance, it only addressed one component of detection probability (pd) and 

one source of detection variation (distance to the observer).  Until now, no 

comprehensive simulation has included variation in all components of detection (ps, pp, 

pa, and pd). 

Here, I present a model of bird surveys that incorporates variation in detection at multiple 

levels to produce counts that can be analyzed with a variety of estimators for index and 

adjustment analysis methods.  I describe the model generally and evaluate the 

performance of density estimators using parameters reflecting surveys of black-throated 

blue warblers (BTBW, Setophaga caerulescens).   
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BTBW have several advantages for a preliminary analysis.  First, nesting densities have 

been shown to be correlated with density of shrubs (Steele 1992, Steele 1993, Holmes et 

al. 2005), which is easily translatable into a model where a habitat variable affects 

abundance.  BTBW are relatively well-studied, with ample spatial information available 

(Holmes et al. 2005), so parameters were based on empirical data.  BTBW exhibit stable 

or increasing population trends across their range (Holmes et al. 1986, Sauer et al. 2014), 

making it a non-controversial choice for an example species.  Finally, recordings of 

BTBW songs were used by Pacifici et al. (2008), Alldredge et al. (2007b), and Simons et 

al. (2007) in their estimations of perceptibility, allowing the parameterization of 

perceptibility to be based on more empirical data than would be possible for most 

species. 

 

Methods 

Model Structure 

I coded model in Program R (R Development Core Team, Vienna, Austria, 

http://www.R-project.org).  I simulated surveys for singing males of one species at a 

time.  I refer to each research question to which I applied this model as a scenario.  Input 

parameters (affecting, for example, song rate or movement rate) were customized for 

each scenario to reflect the biology of bird species and habitat of interest. 

The conceptual foundation for this model was equation 1.2.  Based on this deterministic 

conceptual model, I developed a stochastic simulation model of the detection process in 

bird surveys.  I used stochastic processes to model variation in detection at three 

fundamental levels: spatial arrangement (represented conceptually by ps and pp), 

availability (pa), and perceptibility (pd).   

In discussing bird surveys, I distinguish the “survey type”, meaning a specific survey 

scheme of temporal and spatial replication of survey sites and number of observers, from 

the analysis method.  I consider five survey types: (1) simple counts, where counts are 

conducted without collection of accessory data, (2) double-observer, where counts are 
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conducted with two simultaneous observers, (3) distance sampling, where the observer 

estimates the distance to each bird counted, (4) removal, where the survey period is split 

into 3 time periods and the observer records the time period in which each bird was first 

detected, and (5) replicated counts, where counts are conducted at sites visited 3 times 

within each season (Table 1.3).  More than one analysis method can often be applied to 

data from a particular survey type, e.g., count data from a double-observer survey type 

can be analyzed using an index method or an adjustment method.  Adjustment methods 

require data gathered in a specific survey type.  For example, to use a replicated counts 

analysis method (Royle 2004), the data must be collected in a replicated counts survey 

type, where multiple visits to sites are conducted within a season.   

A single run of the model represented one year or season of surveys.  To make reference 

to the R code easier, I refer to variables by their R object names, in italics.  The stochastic 

model structure included 6 hierarchical levels: (1) year (y = 1, 2, … , NYears), (2) site, 

defined as a single point visited and surveyed by the observer(s) (i = 1, 2, ... , 

NSurveySites,), (3) bird (j = 1, 2, … , NBirds.yi), (4) replication, defined as the within-

season visit to a survey site (r = 1, 2, …, NReps), (5) interval, defined as a short period of 

time akin to the duration of one bird song, usually 2 or 3 seconds (k = 1, 2, … , 

NIntervals), and (6) observer (o = 1, 2, …, NSimultaneousObservers).  Interval length 

was constant within a scenario.  Survey types allot survey effort differently, which 

required running NYears simulations for each survey type within a scenario (e.g., for 

NYears = 30, 150 total simulations were necessary to generate data for 5 survey types).  

Variable NYears was scenario-specific, NSurveySites, NReps, NIntervals, and 

NSimultaneousObservers were survey type-specific, and NBirds.yi was site-specific. 

Within the code for the model (Appendix B), R object names included an identifier, 

similar to a subscript, but instead connected with a “.”. For example, an observer-specific 

effect is coded with a “.yijrko”, such as a detection of bird j by observer o in year y, at 

site i, during interval k of replication r (e.g., Detected.yijrko).  Scenario-specific and 

survey type-specific effects have no identifier, such as the number of sites surveyed 

annually, NSurveySites.   
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Abundance 

I modeled surveys for each site i in a 2000 m x 2000 m Cartesian grid centered on the 

observer (total area = 400 ha).  I chose this scale to be sufficiently large that birds could 

move into and out of the observational range of the observer during the survey.   

I modeled abundance as a function of habitat available at sites.  The proportion of site i 

covered by habitat (PercentHabitat.yi) was drawn from a scenario-specific distribution.  

The remainder of each site was covered by matrix, with a proportion equal to 1- 

PercentHabitat.yi.  Mean density of birds in habitat (HabitatDensity.y) was greater than 

or equal to mean density of birds in matrix (MatrixDensity.y).  Specialist species could be 

modeled with greater disparity between HabitatDensity.y and MatrixDensity.y; generalist 

species could be modeled with HabitatDensity.y ≈ MatrixDensity.y.   

I modeled site-specific abundance as Poisson-distributed (NBirds.yi), modeled as the sum 

of 2 Poisson-distributed random variables, BirdsInHabitat.yi and BirdsInMatrix.yi, which 

were described respectively by parameters LambdaHabitat.yi and LambdaMatrix.yi. 

LambdaHabitat.yi and LambdaMatrix.yi were each a product of the size of the modeled 

area around the observer (Area.yi = 400 ha), the density of birds in habitat or matrix 

(HabitatDensity.y and MatrixDensity.y), and PercentHabitat.yi.  Thus,  

NBirds.yi ~ [ Poisson(HabitatDensity.y × Area.yi × PercentHabitat.yi) + 

Poisson(MatrixDensity.y × Area.yi × (1-PercentHabitat.yi)) ] .  (eq. 1.4) 

Spatial Modeling 

I modeled locations for each bird j using x- and y-coordinates based on a bivariate normal 

distribution, resulting in elliptical territories.  Spatial parameters (Spatial.yij) were 

generated for each bird j, including the center of the territory (CenterX.yij, CenterY.yij), 

the area of a 95% elliptical density contour (Area.yij), the eccentricity of the ellipse 

(Ecc.yij), and an angle of rotation (Theta.yij; for distributions governing spatial 

parameters, see Appendix C).   
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I allowed territories to overlap only peripherally.  I compared territory edges using a 

scenario-specific percentage for the elliptical density contour, and eliminated territories if 

any of the 4 axes or center overlapped the utilization ellipse of any other territory.  Direct 

overlap comparison was computationally intensive, so I added a precursor step to reduce 

simulation run-time (Appendix C).  Each bird j had an interval-specific location 

(Location.yijrk) and distance from the observer(s) (Distance.yijrk).  For each interval k > 

1, a Bernoulli-distributed random variable DoesBirdMove.yijrk was generated via the 

mean probability that the bird moved (PrBirdMoves.yijrk), parameterized with movement 

information for the species.  If DoesBirdMove.yijrk = 1, a new Location.yijrk was 

generated from the bivariate normal distribution.  If DoesBirdMove.yijrk = 0, then the 

location remained the same (Location.yijrk = Location.yijr(k-1) ).  

Availability 

I modeled bird availability as an interval-specific event Sings.yijrk with 2 possible states 

(1 = song, 0 = no song).  To produce temporal song patterns reflective of breeding males, 

I incorporated autocorrelation at 2 scales.  Coarse-scale temporal autocorrelation referred 

to bird j being in or out of “singing mode,” a state in which vocalization is frequent and 

songs occur at relatively regular intervals.  If the bird was not in singing mode (i.e., if 

SingingMode.yijrk = 0), then bird j necessarily did not vocalize during interval k and 

Sings.yijrk = 0.  If the bird was in singing mode, (i.e., if SingingMode.yijrk = 1), then 

Sings.yijrk could be 0 or 1: these vocalizations were modeled with fine-scale temporal 

autocorrelation.   

I modeled coarse-scale temporal autocorrelation with a positive recurrent Markov chain 

(Stroock 2005), where the state of bird j at interval k is related to its state at interval k-1.  

There were 2 possible states, being in singing mode (S) or not being in singing mode 

(NS).  The coarse-scale transition matrix Pcoarse described the probabilities of remaining 

in a state or switching states, given the previous state (Table 1.1).  For example, for a bird 

that was in singing mode in the previous interval, P(S|S) is the probability of remaining in 

singing mode and P(NS|S) is the probability of switching to non-singing mode.  Because 

the rows of any transition matrix sum to 1,  
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P(S|S) + P(NS|S) = 1  ,  (eq. 1.5)   

 and  

P(S|NS) + P(NS|NS) = 1  .  (eq. 1.6) 

Empirical data describing singing mode is scarce.  Indeed, if singing mode is a biological 

phenomenon, it may be impossible to accurately measure in the field; birds that are in 

singing mode but not currently singing are indistinguishable from birds not in singing 

mode.  There are, however, some species-specific data describing the probability that a 

bird sings at least once in a several minute period (e.g., Emlen 1977).  I refer to this type 

of song rate information as the “singing probability,” and assume that the number of birds 

in singing mode that never sing is negligible.  By making some assumptions about the 

transition matrix, I created a Markov chain process that produced a population of 

simulated birds with the desired singing probability. 

The steady-state vector [q1 q2] (also called the limiting or stationary distribution) is the 

vector of the proportion of time spent in each state (singing mode, q1, or non-singing 

mode, q2) in the long run (i.e., after the initial state has been “forgotten”; Stroock 2005).  

It also represents the average proportion of the population in each state in any given 

interval.  The probability that a bird j is in singing mode at least once in NIntervals 

intervals, or singing probability, is: 

ZNIntervals = q1 + (1 - q1) × (1 - P(NS|NS) NIntervals)  ,  (eq. 1.7) 

where q1 is the probability that bird j begins in singing mode and (1 - P(NS|NS) NIntervals) 

is the probability that the bird never switches into singing mode (given that it did not 

begin in singing mode; for additional information about modeling ZNIntervals, see Appendix 

C).  For birds in singing mode, I modeled fine-scale autocorrelation with a Markov chain 

to produce the desired pattern of songs and pauses.  Interval length equaled the length of 

a song in the model, so an interval represented a binary opportunity for detection.  The 

Markov chain had 4 states: singing (S) and 3 stages of not singing (NS1, NS2, NS3).  

Singing was always followed by 2 intervals without singing (P(NS1|S) = P(NS2|NS1) = 

1).  After the second interval of non-singing, the bird would either sing or not sing, 
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according to the probabilities in the fine-scale transition matrix TransitionMatrix.fine.  I 

used successive approximation to select transition probabilities that produced pauses in 

the song pattern with the desired pause length mean and standard deviation. 

Perceptibility 

Observer-specific perceptibility was modeled as a Bernoulli-distributed event with 

probability of detection perceptibility.yijrko.  If bird j was detected by observer o during 

interval k, then Detected.yijrko = 1; if not, Detected.yijrko = 0.  Modeling of 

perceptibility.yijrko was based on a logit link.  Specifically,  

Logit (perceptibility.yijrko) = log � 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦.𝑦𝑖𝑗𝑟𝑘𝑜 
1−𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦.𝑦𝑖𝑗𝑟𝑘𝑜 

� = β0 + βvXv , (eq. 1.8) 

for v covariates X with coefficients β.   

Observers’ estimation of the distance between the observer and birds may include 

observer error (Alldredge et al. 2007c).  I simulated observer-estimated distances 

(ObsEstimatedDistance.yijrko) stochastically, adding an observer-specific error due to 

observation to the true distance Distance.yijrk. 

Each bird had an observer-specific count status Count.yijrko, where Count.yijrko = 1 

indicated that the bird was counted and Count.yijrko = 0 indicated that it was not counted.  

If a bird was not detected (Detected.yijrko = 0), then Count.yijrko = 0.  If a bird was 

detected (Detected.yijrko = 1), it was counted only if the observer estimated distance to 

the bird (ObsEstimatedDistance.yijrko) was within the survey radius 

(MaxSurveyDistance).  

Analysis Methods 

For all adjustment analysis methods, I estimated abundance within each year by fitting 

models and comparing them using AIC (Burnham and Anderson 2002).  For removal 

sampling analysis, I fit models using function multinomPois() in Program unmarked 

(Fiske and Chandler 2011), a package for Program R.  To fit N-mixture models, I used 

function pcount() in Program unmarked.  For removal and N-mixture analysis methods, I 
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compared 3 models: a null model, and models with PercentHabitat.yi as a site-specific 

covariate affecting abundance or detection.   

I used function multinomPois() in Program unmarked to obtain adjusted abundance 

estimates for the double-observer survey type, using the independent observer approach 

(Alldredge et al. 2006).  I compared a null model, a model with observer effect, and 

models with an observer effect and with PercentHabitat.yi as a site-specific covariate 

affecting abundance or detection (4 models total).  I also used the Nichols et al. (2000) 

estimator to obtain adjusted abundance estimates using the dependent observer approach. 

I carried out conventional and covariate distance sampling analysis with Program 

Distance version 6.2 release 1 (Thomas et al. 2010) and hierarchical distance sampling 

with function distsamp() in Program unmarked.  With Program Distance, I fitted 9 

conventional distance sampling models (all combinations of 3 key functions, half-normal, 

hazard rate, and uniform, and 3 adjustment methods, cosine, polynomial, and hermite; 

Buckland et al. 2001).  I also fitted two models with a site-level covariate for 

PercentHabitat.yi, using hazard-rate and half-normal key functions.  With Program 

unmarked, I tested 3 null models using each of the key functions, and models for all key 

functions using PercentHabitat.yi as a covariate affecting abundance or detection (9 

models total).  All models used continuous distance (not binned).  I fitted models and 

estimated parameters within year using Program unmarked (where one year was one 

model run).  To fit models and estimate parameters in Program Distance, I used year as 

“region” and obtained estimates for each year.   

For non-distance sampling survey types, I used 3 radii for surveys (MaxSurveyDistance = 

50 m, 100 m, and 150 m).  For the distance sampling survey type, I truncated the most 

distant 10% of observations to prevent model over-fitting, as suggested by Buckland et 

al. (2001), and used the year-specific truncation distance as MaxSurveyDistance.  For all 

adjusted estimates, I estimated abundance and converted it to density by dividing by the 

survey area A, where A = π×MaxSurveyDistance2.   

In evaluating estimators, it is critical to consider what “true” density is used for 

comparison.  Invoking Nichols et al. (2009), I used equation 1.2 and conceptual equation 
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1.1 to define 4 abundances and densities that may be useful when providing comparison 

to estimators.  Abundance Ns = N*ps and corresponding density Ds = N*ps / A refer to 

birds with territories that overlapped the survey radius.  Because territories were defined 

in my model by a bivariate normal probability distribution, the exact boundaries of 

territories were uncertain.  I defined site-specific Ns (CloseTerrBirds.yi) as the number of 

birds having territories with 95% utilization distributions overlapping the survey radius.  

Abundance Np = N*ps pp and corresponding density Dp = N*ps pp / A refer to birds present 

within the survey radius at the beginning of the survey.  Site-specific Np was 

CloseBirds.yi.  Abundance Na = N*ps pp pa and corresponding density Da = N*ps pp pa / A 

refer to birds available, given that they were present within the survey radius at the 

beginning of the survey.   Site-specific Na was CloseSingers.yi.  Conceptually, the 

realized count C = N*ps pp pa pd refers to birds detected, given that they were available 

and present within the survey radius at the beginning of the survey.  Site-specific C was 

RawCount.yi, and included birds that were detected and estimated by the observer to be 

within the survey radius at the time of first detection.  Thus, RawCount.yi could include 

birds that moved into the survey radius during the survey or were falsely estimated to be 

within the survey radius and were not included in CloseSingers.yi.   

Assuming a closed population, where birds do not move among sites and abundance is 

constant within surveys, the total abundance across sites is Σ Np.  For bird surveys where 

the objective is to make inference about abundance across sites, Np is therefore the 

optimal “true” abundance to use for comparison when evaluating estimators.  I therefore 

used Dp as the primary representative of true density for comparisons of estimators, with 

Ds and Da reported for reference.   

Within each survey type, I report true density, index method density estimates, and 

adjustment method density estimates (birds/ha) for the sake of comparison, even though 

indices are not usually assumed to directly estimate density (e.g., Seber 1982).  I 

calculated true density as true abundance divided by the survey area A, where A = 

π×MaxSurveyDistance2.  Mean and standard deviation for density estimators and true 

density were calculated across 30 simulated years.   
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The primary index I use is the simple index density estimator, or the sum of counts across 

all sites within a year, divided by the area surveyed.  The simple index estimator with 

perfect distance estimation refers to the birds that would have been counted if the 

observer’s estimation of distance were perfect (i.e., there were no errors in determining if 

birds were inside or outside the survey radius), and is provided as a comparison to the 

simple index estimator to illustrate the effect of distance estimation error on indices.  I 

also report density estimates from 2 additional indices for the replicated count survey 

type.  Maximum count density was the sum across sites of all site-specific maximum 

counts (among the 3 counts within a year), divided by the area surveyed.  Bounded count 

density was the sum of the bounded counts (twice the maximum count, minus the second 

largest count; Johnson et al. 2007), divided by the area surveyed.  For adjustment 

methods, I report model-averaged density estimates and estimates produced by the top 

model in each year.  For all estimates, I removed outliers and reported the number 

removed, where outliers were defined as density estimates that were > 3 standard 

deviations away from the mean of remaining estimates.   

To investigate the relationship between estimates and true density, I calculated year-

specific bias as the difference between estimated density and true Dp (negative bias 

indicated underestimation of true density).  I report median bias to reduce the effect of 

some density estimates that were inflated.  I also calculated Pearson correlation 

coefficients between density estimators and Ds, Dp, and Da.  I calculated bias and 

correlation coefficients after removing outliers.   

Parameters for BTBW Scenario  

For the BTBW scenario, I ran 30 simulations representing 30 years of simulated data for 

each survey type (simple count, double-observer, removal, replicated count, and distance 

sampling).  NSurveySites, NReps, NSimultaneousObservers, and SurveyLength were 

survey type-specific and resulted in the same amount of human effort for each survey 

type (Table 1.3).   

Surveys began on ordinal date 150 (i.e., May 30).  For removal surveys, 6 surveys 

occurred per day; for all other methods, 7 surveys occurred per day.  Simulated survey 
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time and travel time between sites varied by survey type (Table 1.3), with a combined 

time with length LogisticalSurveyTime minutes.  Surveys were planned to begin 

immediately after the previous survey, starting at dawn (TimeinIntervals.yirk = 0 

intervals) with start times PlannedStartTimesAll.  To model variation in travel time, the 

actual start times for surveys (ActualStartTimesAll) were normally distributed, with mean 

= PlannedStartTimesAll and SD = 5 minutes.  For the removal survey type, 

PlannedStartTimesAll had range 0-150 minutes after sunrise.  For all other survey types, 

PlannedStartTimesAll had range 0-138 minutes after sunrise.  

Abundance Parameters 

I used an empirical estimate for density of breeding pairs in BTBW habitat 

(HabitatDensity.y = 0.534 birds/ha, Holmes et al. 1986) and derived the density of birds 

in matrix (MatrixDensity.y = 0.00305 birds/ha) from additional empirical parameters 

(Appendix C).  I assumed a year-specific proportion of the study area was covered by 

habitat (StudyHabitatProportion.y ~ U(0.7,1)).  The proportion of site i in year y covered 

by habitat (PercentHabitat.yi) was drawn from a beta distribution with μ = 

StudyHabitatProportion.y and θ = 8 (alternative parameterization of the beta distribution 

from Link and Barker 2010: 319).  As a result, PercentHabitat.yi had mean = 0.85 

(SD=0.14).  Site-specific abundance was given by equation 1.4.  For an average site 

(PercentHabitat.yi = 0.85), mean density was 0.454 birds/ha. 

Spatial Parameters 

Territory overlap was evaluated using 56.5% elliptical density contours.  This level of 

overlap was chosen to allow density of birds in habitat HabitatDensity.y = 0.534 birds/ha 

(Holmes et al. 1986) and mean territory size MeanTerrArea = 3.6 ha (Sherry and Holmes 

1985).  I used standard deviation of territory size SDTerrArea = 1.0 ha.  Bird-specific 

territory size Area.yij was log-normally distributed, where Area.yij ~ lognormal(3.6 ha, 

1.0 ha). 

Interval-specific probability of movement (PrBirdMoves.yijrk) was normally distributed, 

PrBirdMoves.yijrk ~ N(0.005, 0.0005).   Using these parameters, a 3-minute survey will 
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have 36% of birds modeled that move at least once on average, with a mean number of 

movements = 0.45; a 10-minute survey will have 78% of birds modeled that move at 

least once on average, with a mean number of movements = 1.5.  These movement 

parameters were chosen to reflect a frequently-moving species; for 3 passerine species, 

Granholm (1983) found the probability of movement within a 10-minute period was 

36%, 64%, and 72%. 

Availability Parameters 

To estimate song length, I timed songs and pauses to the nearest second for the first 

minute of 4 BTBW recordings from the Macaulay Library (1992, 1994, 2000, 2010).  

Mean song length in recordings was 2.11 seconds (SD = 0.33 seconds), mean pause 

length was 6.64 seconds (SD = 1.47 seconds).  Assuming an equal ratio of songs and 

pauses (songs having length SongLength and pauses having length PauseLength, both 

having units in intervals), the proportion of time spent singing in the recordings was 

q1.fine, where  

q1.fine = SongLength/(SongLength+PauseLength) = 0.241.  (eq. 1.9) 

I selected fine-scale availability parameters to produce a similar pattern to that observed 

in the Macaulay Library (1992, 1994, 2000, 2010) recordings.  I set the length of a single 

interval, IntervalLength = 2 seconds, which also represented the length of a song.  

Through successive approximation, I determined values for transition matrix 

TransitionMatrix.fine (Table 1.2).  Monte Carlo simulations using TransitionMatrix.fine 

produced song patterns with mean pause length = 6.3 seconds (SD = 1.25 seconds) and a 

realized proportion of time spent singing while in singing mode = 0.241 (akin to q1.fine, 

eq. 1.9). 

For coarse-scale autocorrelation, the interval-specific probability of being in singing 

mode for at least 1 interval within 10 minutes was termed the singing probability, or 

PrSing.yijrk.   PrSing.yijrk was modeled as a function of day within the breeding season 

(represented as a maximum daily song rate, MaxDailySongRate.yir) and time of day 

(represented as a weight, SongWeight.yijrk),  
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PrSing.yijrk = MaxDailySongRate.yir × SongWeight.yijrk . (eq. 1.10) 

The replication-specific maximum daily song rate (MaxDailySongRate.yir) was based on 

arrival and departure dates of birds on breeding territories (Holmes et al. 2005, Figure 

1.2).  MaxDailySongRate.yir = 0.9 for the BTBW scenario, which is representative of 

warblers during periods of high availability (e.g., Stacier et al. 2006, Robbins et al. 2009).  

The result was PrSing.yijrk with range 0.72 – 0.90 for the period when most surveys 

occurred (from dawn until surveys completed, approximately 150 minutes later).  

PrSing.yijrk as low as 0.18 was possible for pre-dawn surveys, but occurred rarely 

(Figure 1.3).  The function for SongWeight.yijrk (Figure 1.3) was selected to produce 

PrSing.yijrk values that reflected information from Breeding Bird Surveys (P. Blancher, 

Environment Canada, personal communication).  Values for the transition matrix Pcoarse 

(Table 1.1) were selected via optimization such that ZNIntervals (eq. 1.7) equaled the desired 

PrSing.yijrk, with constant P(S|S) = 0.98.   

Perceptibility Parameters 

Using equation 1.8, I chose parameters affecting perceptibility.yijrko (Figure 1.4) based 

on detection estimates for BTBW in Pacifici et al. (2008).  For the BTBW scenario, I 

used coefficients (Table 1.4) from Pacifici et al. (2008) estimated for mixed pine-

hardwood forest with leaves present, assuming those conditions were most applicable to 

BTBW breeding season surveys.  I modeled ambient noise as a replication-specific 

binary condition, where presence of noise indicated an effect on the slope and intercept 

equal to that of an added 10 dB “brown noise” from speakers 5 m from observers seen in 

Pacifici et al. (2008).  The probability of a replication having that level of ambient noise 

was PrNoise = 0.15.  For the observer effect on the intercept, I calculated the standard 

deviation (SD = 0.820) among observer coefficients (K. Pacifici, personal 

communication) for BTBW observations in Pacifici et al. (2008).  I assumed that 

Observer 1 was ½ SD better than average and Observer 2 was ½ SD worse than average 

(observer effects = ±0.410).   

Error in distance estimation by observers was normally distributed, incorporating error 

estimates reported in Alldredge et al. (2007c).  I used the overall mean error reported for 
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trained observers (7.6 m, SD = 21.4 m; Alldredge et al. 2007c) for distances ≥ 62.3 m 

(the mean for distances investigated).  For closer distances (< 62.3 m), I assumed the 

mean error and variation decreased as a linear function as distance approached 0 m 

(Figure 1.5). 

 

Results 

For one year of simulated counts for the double-observer survey type, the Program 

unmarked model with detection as a function of observer and percent habitat did not 

converge for the 150-m survey radius and was removed from the suite of competing 

models.  For one year of simulated counts for the removal survey type, the Program 

unmarked model with detection as a function of percent habitat did not converge for the 

50-m survey radius, and was removed from model selection.  No more than 4 estimates 

(of 30) were removed as outliers per estimator (Table 1.5). 

Simple index density estimates (Table 1.5) underestimated true density of birds (Dp) for 

all survey types and at all survey radii (Figures 1.6, 1.7), although bias for simple index 

estimates (Table 1.6) for the removal survey type was lower than for other survey types.  

Simple index estimates with perfect distance estimation showed similar bias to simple 

index estimates, indicating observer error in estimating distance (i.e., errors in 

determining if birds were inside or outside the survey radius) did not strongly affect 

simple index estimator performance. 

For the double-observer survey type, no estimator was less biased than the simple index 

estimator (Table 1.6, Figures 1.6 b, 1.7 b) and the adjusted estimates using the dependent 

(Nichols et al. 2000) and independent (Alldredge et al. 2006) approaches were nearly 

unchanged from simple index estimates.  Birds that were available during surveys often 

sang many times (mean = 9.06 songs, SD = 6.37), so even with the difference modeled in 

observer skill, a bird detected by one observer was typically detected by both observers 

(i.e., perceptibility was very high).   
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For the removal survey type, the simple index estimator was less biased than for other 

survey types (Table 1.6) and the difference between true Dp and true Da was smaller than 

for other survey types (Table 1.5).  Both results indicate a greater proportion of birds 

within the survey radius were available over the length of the survey as compared to 

other survey types, due to the longer survey period (10 minutes; all other survey types 

had 3-minute surveys).  Adjusted density estimates for the removal survey type were less 

biased than simple index estimates for 50-m and 100-m surveys (Table 1.6, Figure 1.7 c).   

For the replicated counts survey type, adjusted density estimates from N-mixture models 

were highly inflated for approximately half to two-thirds of simulated years (Figures 1.6 

d, 1.7 d).  These inflated estimates were common enough that they did not meet the 

criteria to be removed as outliers (i.e., > 3 standard deviations away from the mean of 

remaining estimates).  Inflated density estimates occurred when estimated detection was 

approximately ≤ 0.06 (Figure 1.8).  N-mixture model density estimates for 50-m radius 

surveys were the most inflated; inflation was somewhat less for surveys with larger radii 

(Table 1.6, Figure 1.8).  Bounded count and maximum count density estimates generally 

had less bias than the simple index estimates for the replicated counts survey type, 

although the bounded count density estimator overestimated density for 50-m and 100-m 

radius surveys (Table 1.6, Figure 1.7 d). 

For the distance sampling survey type, adjusted density estimates were slightly less 

biased than simple index estimates (Table 1.6 b, Figure 1.7 e).  In Program Distance, the 

top model as determined by AIC comparison had a uniform key function with a simple 

polynomial adjustment (Table 1.7).  The bulk of the AIC weight was spread across 9 

models, but density estimates were similar across those models (Table 1.7).   

Generally, index estimators were significantly positively correlated with true density.  

For 100-m and 150-m radius surveys, simple index estimators were significantly 

correlated with Ds, Dp, and Da, and had the strongest correlation with Da (Table 1.8).  For 

50-m radius surveys, simple index estimators for 4 of the 5 survey types were 

significantly correlated only with Dp and Da, and had the strongest correlation with Da.  A 
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notable exception was the bounded count estimator, which had lower correlation with 

true densities than the simple index estimator (Table 1.8, Figure 1.7 d). 

Adjusted density estimators had less consistent correlation with true density across 

survey types than did the simple index estimator (Table 1.8).  For the double-observer 

survey type, adjusted density estimates were as correlated with true density as simple 

index estimates (estimates were very similar).  For the removal survey type, adjusted 

density estimates were more weakly correlated with true densities than simple index 

estimates.  For the replicated count survey type, N-mixture model estimates were not 

significantly correlated with any true density (Ds, Dp, or Da) for 50-m radius surveys and 

had a significant negative correlation with true density for 100-m and 150-m radius 

surveys (Table 1.8).  This lack of correlation is due to highly inflated N-mixture model 

density estimates for many simulated years (Figures 1.6 d, 1.7d).  For the distance 

sampling survey type, adjusted density estimates were more weakly correlated with true 

densities than simple index estimates (Table 1.8d).   

Estimates using the smallest survey radius were generally less biased than estimates using 

larger radii, but for adjusted estimators only, they were also more likely to have inflated 

estimates.  Surveys with larger radii generally had stronger correlation with true densities.  

 

Discussion 

Analysis methods used to estimate bird density from simulated BTBW counts varied 

widely in their performance, and adjustment analysis methods generally did not 

outperform index analysis methods.  Simple index estimates were biased, but they were 

also highly correlated with true density (Dp), particularly for surveys with larger radii.  

The simple index estimator would therefore track population changes well, providing 

valuable information for management.  Among survey types, the removal survey type 

showed the least bias, largely because the additional time spent surveying allowed a 

greater proportion of the population to be available to be detected.  This advantage could 

be diminished in real-world removal surveys if birds were more likely to be double-
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counted due to the longer survey period (double-counting was not included in my model).   

Compared to simple index estimates, adjusted estimates in the distance sampling and 

removal survey types showed a reduction in bias.  The maximum count density estimator 

for the replicated counts survey type also showed a reduction in bias compared to the 

simple index estimator.  Adjusted density estimates were less strongly correlated with Dp 

than were simple index estimates (Table 1.8), with the exception of adjusted estimates for 

the double-observer survey type, which did not differ.  Adjusted density estimates using 

N-mixture models for the replicated counts survey type were prone to inflated estimates 

and high positive bias.  Unadjusted counts, while biased, were better correlated with true 

abundance and would provide better information about changes in abundance than an 

adjustment analysis method for the BTBW scenario, where abundance and detection were 

independent of one another. 

My bird survey counts model is extensive and included variation in detection due to 

spatial arrangement, availability, and perceptibility of birds.  By incorporating all three 

components and using empirical data to inform model parameters, this model allows a 

more comprehensive investigation into detection probability than has previously been 

attempted with simulation.  Complexity, however, is a double-edged sword because 

modeling requires making assumptions about the detection process.  I modeled birds 

spatially as remaining in territories, I modeled song production as an autocorrelated 

process, and I modeled perceptibility as a logit function of distance to the observer.  To 

the extent that these assumptions are violated, or that the parameters I selected do not 

represent a particular species of interest, this model will not accurately reflect counts 

from real bird surveys.  Also, any simulation is a simplification.  My model does not 

include double-counting, misidentification, false positives, swamping of observers, or 

effects of the observer (or other birds) on song production or movement.  Also, the 

BTBW scenario is a situation where an index might be expected to perform well because 

abundance and detection probability are not confounded.  Investigating additional 

scenarios with a wider range of parameters affecting detection probability would expand 

the utility of this study’s conclusions. 
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Simulations can provide insight that field studies cannot.  Nichols et al. (2009) 

recommended that analysis methods for estimating abundance be evaluated for situations 

where assumptions were likely violated, as capture-recapture models were evaluated in 

the 1970s and 1980s.  My model represents one such evaluation.  Because birds move 

throughout my simulated surveys, my model allows violations of the closure assumption 

(that there is no change in the population of birds within the sample area during a survey) 

which is assumed across all analysis methods I consider (Nichols et al. 2009).  Simulated 

birds in the BTBW scenario moved often (on average, 78% of birds moved at least once 

within a 10-minute survey period for the removal survey type and 36% of birds moved at 

least once within a 3-minute survey period for all other survey types).  With a mean 

(uncompressed) territory size of 3.6 ha (about half the area surveyed with 150-m radius 

point count), many birds moved into or out of the survey area, violating the closure 

assumption.  The removal survey type was longer (10 minutes) than all other survey 

types (3 minutes), allowing more birds to become available, but also allowing more birds 

to move into or out of the survey radius.  For surveys with the BTBW parameters, indices 

for removal surveys were less biased than all other survey types, an indication that the 

benefits of increased availability can outweigh the increase in violations of the closure 

assumption for longer surveys. 

By including observer error and variation in estimation of distance to birds, my model 

allows violations of the assumption that birds are correctly recorded as inside or outside 

the survey radius, commonly assumed across analysis methods (Nichols et al. 2009), and 

the distance sampling analysis method’s assumption that distances to birds are estimated 

accurately (Thomas et al. 2002).  Error in observer-estimated distance had mean 7.6 m 

for distances > 62.3 m (Alldredge et al. 2007c).  The mean error for observations was 

therefore ≤ 12% on average (i.e., 7.6/62.3), a relatively mild effect.  For simple index 

estimators, there was little improvement in bias or correlation with Dp when observer 

error was omitted (i.e., distance estimation was perfect).  At the effect size estimated by 

Alldredge et al. (2007c), observer error in estimation of distance is unlikely to 

substantially bias results. 
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For distance sampling and double-observer survey types, the Program unmarked 

adjustment estimators were relatively unbiased estimators of Da (Figure 6b, 6e).  The 

value of estimating Da, however, may vary situationally.  Having good inferences about 

the density of singing birds is only useful if that density can be related to the total density 

of birds (i.e, to have an estimate of pa or to be able to make an assumption about pa).  

Availability is highly variable across time of day, day within season, and mating status 

(Wilson and Bart 1985, McShea and Rappole 1997, Rosenberg and Blancher 2005), so pa 

would best be estimated simultaneously with abundance (e.g., Diefenbach et al. 2007).  

Doing so may be time-consuming and expensive.  Estimators that are better correlated 

with Dp, such as removal adjustment estimators (Figure 6c), provide clearer inference 

about the total density of birds. 

I found no benefit to using the double-observer adjustment method in the BTBW scenario 

because perceptibility was ~1 or ~0 for most birds (Figure 1.4); only birds within a 

narrow range of radii had perceptibility such that discrepancies in observation were 

probable.  Adjustment methods that are ill-suited to model the detection component 

responsible for imperfect detection will not improve inference and are no more useful 

than an index.  The double-observer adjusted estimates had similar bias to the simple 

index estimates, yet an unaware practitioner might claim that the adjusted estimates were 

unbiased because he or she used an adjustment method and detection probability was 

“accounted for”.  I recommend against assuming that any adjustment method “accounts 

for” detection probability, unless there is evidence or reasoning that the adjustment 

method correctly addressed the source(s) of imperfect detection in the system.   

When selecting an analysis method to estimate abundance, a crucial first step is for 

practitioners to use their knowledge of the system to consider detection and to consider 

their objectives.  If detection components can be reasonably assumed to be constant and 

relative abundance is sufficient to meet survey objectives, using an index method is 

preferable.  If detection is low but constant and absolute abundance is of interest, a 

simple correction factor may be used.  For any detection components that are unknown or 

known to be variable, I recommend that practitioners perform a pilot study to estimate the 

mean value and variability of each component.  If a detection component is highly 
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variable, the best adjustment method will include that detection component in its 

detection estimator.  However, adjustment estimators risk over-correcting counts (such as 

the N-mixture models here) and should be used cautiously if estimated detection is low.  

An alternative method is to follow Skalski and Robson’s (1992) recommendation to 

collect information to estimate detection and then to select among competing models that 

do and do not include adjustment.  The downside of this suggestion is that logistical costs 

of collecting such data will be spent even if an index method is eventually selected.  The 

difficulty of recording the distance to all birds detected, the survey interval in which they 

are first detected, and reconciling observations between observers may not be trivial, 

especially in multi-species surveys or surveys with many individuals.  Still, if the data 

can be collected accurately without hindering the counting accuracy of observers, those 

costs may be worthwhile if detection in a system is not well understood. 

Whenever possible, I recommend standardizing surveys to reduce variation in detection 

components.  Using longer survey times in my model (as seen in the removal survey 

type) increased availability and increased the correlation of the simple index estimator 

with Dp.  I recommend performing surveys during times of high availability (e.g., 

morning surveys during the height of breeding season singing) or using methods to 

increase availability such as callback surveys for secretive marsh birds (Conway and 

Gibbs 2005) to increase the correlation of counts with Dp.  Callback methods, however, 

can cause birds to move towards the observer (e.g., Johnson et al. 2014) and should be 

carefully investigated before use.  To the extent possible, I also recommend training and 

testing observers to increase pd and reduce its variability (Kepler and Scott 1981). 

To varying degrees, adjusted estimators for the replicated counts, removal, and distance 

sampling survey types were susceptible to inflation due to low estimates of detection 

(Figure 1.8), especially for surveys with the smallest radius.  If using adjustment 

methods, I recommend removing potential outlier estimates, particularly if an unusually 

high abundance is estimated for a year with low estimated detection.  For the removal and 

distance sampling survey types, this inflation happened rarely and removing outliers 

adequately corrected estimates.  Inflation was the norm, however, for density estimates 

from N-mixture models for the replicated counts survey type, a problem also explored by 



26 
 

Dennis et al. (2015).  Because the replicated counts survey type required repeated visits, 

the N-mixture model density estimator had a small sample size (20 survey sites) and 

frequently estimated very low p (Figure 8), resulting in inflated estimates of density.   I 

suggest that future simulations should examine if this adjustment method performs better 

with a larger sample size, but it is noteworthy that no other analysis method suffered this 

drawback.



27 
 

Table 1.1: Definitions for the transition matrix (Pcoarse) used to modeling autocorrelation for coarse-scale bird 

availability.  P(S|S) = 0.98 and P(NS|S) = 0.02 for all scenarios.  P(NS|NS) and P(S|NS) varied to produce ZNIntervals (eq. 

1.7) that equaled the desired interval-specific probability of a bird being in singing mode for at least 1 interval within 

10 minutes (PrSing.yijrk).    

  State at interval k 

  Bird j is in singing mode in interval k. Bird j is not in singing mode in interval k. 

St
at

e 
at

 in
te

rv
al

 k
-1

 

Bird j was in 

singing mode 

in interval k-1. 

P(S|S): 

Probability that bird j is in singing mode in 

interval k, given that it was in singing mode in 

interval k-1. 

P(NS|S): 

Probability that bird j is not in singing 

mode in interval k, given that it was in 

singing mode in interval k-1. 

Bird j was not 

in singing 

mode in 

interval k-1. 

P(S|NS): 

Probability that bird j is in singing mode in 

interval k, given that it was not in singing mode 

in interval k-1. 

P(NS|NS): 

Probability that bird j is not in singing 

mode in interval k, given that was not in 

singing mode in interval k-1. 
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Table 1.2: Transition matrix (TransitionMatrix.fine) values used to model fine-scale 

autocorrelation for the black-throated blue warbler (BTBW) scenario. The pattern of 

fine-scale singing was produced using 1 state in which Sings.yijrk = 1 (S) and 3 states 

in which Sings.yijrk = 0 (NS1, NS2, NS3).  Values represent the probability of 

transitioning to the given state at interval k, given the previous state at interval k – 1. 

  State at Interval k 

  S NS1 NS2 NS3 

St
at

e 
at

 In
te

rv
al

 k
-1

 S 0 1 0 0 

NS1 0 0 1 0 

NS2 0.08 0 0 0.92 

NS3 0.80 0 0 0.20 
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Table 1.3: Parameter values for survey types in the black-throated blue warbler (BTBW) scenario.  Survey time 

(sites × survey length) and logistical time (20 minutes travel to each site per observer) were used to estimate human 

effort needed to accomplish surveys.  

Survey Type Sites Replications 

Survey 

Length 

(min) 

Simultaneous 

Observers 

Survey 

Time 

(min) 

Logistical 

Time (min) 

Total 

(min) 

Simple counts 60 1 3 1 180 1200 1380 

Double-observer 30 1 3 2 180 1200 1380 

Removal 46 1 10 1 460 920 1380 

Replicated counts 20 3 3 1 180 1200 1380 

Distance sampling 60 1 3 1 180 1200 1380 

  



30 
 

Table 1.4: Perceptibility coefficients for the black-throated blue warbler 

(BTBW) scenario, based on values from Pacifici et al. (2008).  

Observer-specific perceptibility (perceptibility.yijrko) was modeled with 

equation 1.8. 

Intercept 13.3 

Slope -0.109 

Observer 1 Intercept Effect 0.410 

Observer 2 Intercept Effect -0.410 

Noise Slope Effect -0.023 

Noise Intercept Effect -0.849 
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Table 1.5 (a): Density estimates and true densities (birds/ha) for surveys with 50-m radius for the black-throated blue warbler (BTBW) 

scenario.  Density was calculated for area A around the observer, where A = π × survey radius2.  True densities are Ds, the density of 

birds with territories that overlapped the survey area (Ds = N* ps / A); Dp, the density of birds present at the beginning of the survey (Dp 

= N* ps pp / A); and Da, the density of available birds present at the beginning of the survey (Da = N* ps pp pa / A).  Mean and standard 

deviation (SD) for density estimates and true density were calculated across 30 simulated years.   

    Estimate 
  

 True Density 

   Ds Dp Da 
Survey 
Type Estimator Mean SD Outliers 

Removed 
 

Mean SD Mean SD Mean SD 

Simple 
Counts 

Simple Index Density 0.174 0.057 0 
 1.68 0.232 0.392 0.080 0.163 0.049 

Simple Index Density with Perfect Distance  0.172 0.050 0 
 

Double-
Observer 

Simple Index Density 0.279 0.122 0 
 

1.71 0.309 0.446 0.127 0.192 0.090 
Simple Index Density with Perfect Distance  0.199 0.083 0 

 Model-Averaged Adjusted Density 0.298 0.120 0 
 Top Model Adjusted Density 0.304 0.130 0 
 Nichols et al. (2000) Density 0.294 0.111 2 
 

Removal 

Simple Index Density 0.321 0.099 0 
 1.81 0.263 0.402 0.116 0.312 0.088 Simple Index Density with Perfect Distance  0.328 0.078 0 
 Model-Averaged Adjusted Density 0.414 0.139 3 
 Top Model Adjusted Density 0.441 0.170 2 
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Table 1.5 (a) continued. 

    Estimate 
  

 True Density 

   Ds Dp Da 
Survey 
Type Estimator Mean SD Outliers 

Removed 
 

Mean SD Mean SD Mean SD 

Replicated 
Counts 

Simple Index Density 0.183 0.060 0 
 

1.55 0.290 0.458 0.109 0.191 0.062 

Simple Index Density with Perfect Distance  0.199 0.062 0 
 Model-Averaged Adjusted Density 44.2 35.8 0 
 Top Model Adjusted Density 46.6 40.1 0 
 Maximum Count Density 0.465 0.141 0 
 Bounded Count Density 0.849 0.267 0 
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Table 1.5 (b): Density estimates and true densities (birds/ha) for surveys with 100-m radius for the black-throated blue warbler 

(BTBW) scenario.  Density was calculated for area A around the observer, where A = π × survey radius2.  True densities are Ds, the 

density of birds with territories that overlapped the survey area (Ds = N* ps / A); Dp, the density of birds present at the beginning of the 

survey (Dp = N* ps pp / A); and Da, the density of available birds present at the beginning of the survey (Da = N* ps pp pa / A).  Mean 

and standard deviation for density estimates and true density were calculated across 30 simulated years.   

    
Estimate 

  True Density 

  
 Ds Dp Da 

Survey 
Type Estimator Mean SD Outliers 

Removed   
Mea

n SD Mean SD Mean SD 

Simple 
Counts 

Simple Index Density 0.155 0.026 0 
 1.39 0.130 0.410 0.055 0.176 0.028 

Simple Index Density with Perfect Distance  0.182 0.027 0 
 

Double-
Observer 

Simple Index Density 0.222 0.046 0 
 

1.43 0.152 0.437 0.067 0.185 0.042 
Simple Index Density with Perfect Distance 0.199 0.039 0 

 Model-Averaged Adjusted Density 0.224 0.047 0 
 Top Model Adjusted Density 0.226 0.048 0 
 Nichols et al. (2000) Density 0.222 0.046 0 
 

Removal 

Simple Index Density 0.314 0.041 0 
 1.45 0.135 0.427 0.057 0.325 0.043 Simple Index Density with Perfect Distance 0.360 0.045 0 
 Model-Averaged Adjusted Density 0.385 0.069 0 
 Top Model Adjusted Density 0.385 0.069 0 
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Table 1.5 (b) continued. 

    
Estimate 

  True Density 

  
 Ds Dp Da 

Survey 
Type Estimator Mean SD Outliers 

Removed   
Mea

n SD Mean SD Mean SD 

Replicated 
Counts 

Simple Index Density 0.167 0.037 0 
 

1.41 0.154 0.421 0.070 0.175 0.038 

Simple Index Density with Perfect Distance 0.180 0.038 0 
 Model-Averaged Adjusted Density 10.8 9.37 0 
 Top Model Adjusted Density 11.6 10.2 0 
 Maximum Count Density 0.333 0.053 0 
 Bounded Count Density 0.533 0.083 0   
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Table 1.5 (c): Density estimates and true densities (birds/ha) for surveys with 150-m radius for the black-throated blue warbler 

(BTBW) scenario.  Density was calculated for area A around the observer, where A = π × survey radius2.  True densities are Ds, the 

density of birds with territories that overlapped the survey area (Ds = N* ps / A), Dp, the density of birds present at the beginning of the 

survey (Dp = N* ps pp / A), and Da, the density of available birds present at the beginning of the survey (Da = N* ps pp pa / A).  Mean 

and standard deviation for density estimates and true density were calculated across 30 simulated years.   

    
Estimate 

  True Density 

  
 Ds Dp Da 

Survey 
Type Estimator Mean SD Outliers 

Removed   
Mean SD Mean SD Mean SD 

Simple 
Counts 

Simple Index Density 0.138 0.020 0 
 1.03 0.099 0.413 0.049 0.175 0.025 

Simple Index Density with Perfect Distance  0.154 0.022 0 
 

Double-
Observer 

Simple Index Density 0.161 0.026 1 
 

1.08 0.106 0.432 0.048 0.188 0.032 
Simple Index Density with Perfect Distance  0.169 0.029 1 

 Model-Averaged Adjusted Density 0.162 0.026 1 
 Top Model Adjusted Density 0.162 0.026 1 
 Nichols et al. (2000) Density 0.161 0.026 1 
 

Removal 
Simple Index Density 0.285 0.033 0 

 1.10 0.106 0.435 0.053 0.330 0.039 Simple Index Density with Perfect Distance  0.318 0.040 0 
 Model-Averaged Adjusted Density 0.355 0.058 1 
 Top Model Adjusted Density 0.354 0.055 1 
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Table 1.5 (c) continued. 

    
Estimate 

  True Density 

  
 Ds Dp Da 

Survey 
Type Estimator Mean SD Outliers 

Removed   
Mean SD Mean SD Mean SD 

Replicated 
Counts 

Simple Index Density 0.140 0.023 0 
 

1.05 0.117 0.418 0.050 0.176 0.025 
Simple Index Density with Perfect Distance  0.153 0.023 0 

 Model-Averaged Adjusted Density 4.65 4.00 0 
 Top Model Adjusted Density 4.86 4.28 0 
 Maximum Count Density 0.243 0.028 0 
 Bounded Count Density 0.355 0.038 0   
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Table 1.5 (d): Density estimates and true densities (birds/ha) for surveys with unlimited radius for the black-throated blue warbler 

(BTBW) scenario (distance sampling survey type only).  Data were right-truncated, eliminating the most distant 10% of observations 

(Buckland et al. 2001).  For index estimates and true densities, the area surveyed was considered  to be A = π × survey radius2, where 

the survey radius was the truncation distance.  True densities are Ds, the density of birds with territories that overlapped the survey 

area (Ds = N* ps / A); Dp, the density of birds present at the beginning of the survey (Dp = N* ps pp / A); and Da, the density of available 

birds present at the beginning of the survey (Da = N* ps pp pa / A).  Mean and standard deviation for density estimates and true density 

were calculated across 30 simulated years.   

    
Estimate  

True Density 

   Ds Dp Da 
Survey 
Type 

Estimator Mean SD Outliers 
Removed  

Mean SD Mean SD Mean SD 

Distance 
Sampling 

Simple Index Density 0.144 0.022 0 
 

1.05 0.113 0.431 0.053 0.189 0.026 

Simple Index Density with Perfect Distance 0.153 0.023 0 
 Model-Averaged Adjusted Density 0.213 0.051 4 
 Top Model Adjusted Density 0.217 0.050 2 
 Program Distance Top Model Density 0.260 0.027 0 
 Program Distance Model-Averaged Density 0.237 0.021 0   
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Table 1.6 (a):  Bias for density estimates for the black-throated blue warbler (BTBW) scenario, for non-distance survey types. Bias 

was calculated as the median difference between the density estimate and the density of birds present at the beginning of the survey, 

Dp.  Dp = N* ps pp / A, where A = π × survey radius2. 

 Survey 
Type Estimator 

Bias 
50-m radius  100-m radius  150-m radius 

Simple 
Counts 

Simple Index Density -0.223 -59% 
 

-0.249 -61% 
 

-0.263 -67% 
Simple Index Density with Perfect Distance Estimation -0.223 -55% 

 
-0.223 -56% 

 
-0.251 -63% 

Double-
Observer 

Simple Index Density -0.170 -37% 
 

-0.202 -48% 
 

-0.269 -62% 
Simple Index Density with Perfect Distance Estimation -0.255 -59% 

 
-0.233 -55% 

 
-0.259 -61% 

Model-Averaged Adjusted Density -0.144 -32% 
 

-0.201 -48% 
 

-0.267 -62% 
Top Model Adjusted Density -0.127 -30% 

 
-0.202 -48% 

 
-0.267 -62% 

Nichols et al. (2000) Density -0.170 -37% 
 

-0.202 -48% 
 

-0.267 -62% 

Removal 
Simple Index Density -0.083 -23% 

 
-0.111 -26% 

 
-0.146 -34% 

Simple Index Density with Perfect Distance Estimation -0.069 -16% 
 

-0.066 -15% 
 

-0.114 -26% 
Model-Averaged Adjusted Density -0.011 -2% 

 
-0.048 -12% 

 
-0.098 -23% 

Top Model Adjusted Density -0.007 -2% 
 

-0.048 -11% 
 

-0.097 -23% 

Replicated 
Counts 

Simple Index Density -0.265 -60% 
 

-0.255 -61% 
 

-0.281 -67% 
Simple Index Density with Perfect Distance Estimation -0.255 -56% 

 
-0.244 -57% 

 
-0.270 -63% 

Model-Averaged Adjusted Density 58.6 13113% 
 

11.1 2295% 
 

2.24 520% 
Top Model Adjusted Density 80.1 14553% 

 
12.4 2527% 

 
2.08 529% 

Maximum Count Density -0.021 -4% 
 

-0.088 -22% 
 

-0.170 -41% 
Bounded Count Density 0.350 70%   0.106 26%   -0.050 -12% 
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Table 1.6 (b):  Bias for density estimates for the black-throated blue warbler (BTBW) scenario, for surveys with unlimited radius 

(distance sampling survey type only).  Bias was calculated as the median difference between the density estimate and the density of 

birds present at the beginning of the survey, Dp.  Dp = N* ps pp / A, where A = π × survey radius2.   Data were right-truncated, 

eliminating the most distant 10% of observations (Buckland et al. 2001).  For index estimates and true densities, the survey radius 

was considered to be the truncation distance.   

  
Bias 

Survey Type Estimator 
(Radius determined by 

10% truncation) 

Distance 
Sampling 

Simple Index Density -0.293 -67% 
Simple Index Density with Perfect Distance Estimation -0.283 -64% 
Model-Averaged Adjusted Density -0.226 -53% 
Top Model Adjusted Density -0.222 -53% 
Program Distance Top Model Density -0.176 -39% 
Program Distance Model-Averaged Density -0.205 -45% 
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Table 1.7: Models compared in Program Distance using AIC (Burnham and Anderson 2002) for the black-throated blue 

warbler (BTBW) scenario.  Data were right-truncated, eliminating the most distant 10% of observations (Buckland et al. 2001).   

Key Function Adjustment Covariate Parameters Δ AIC 
AIC 

Weight 

Effective 
Detection 

Radius (m) 

Estimated 
Density 

(birds/ha) 

Density 
95% CI 
Lower 

Density 
95% CI 
Upper 

Uniform Polynomial none 2 0 0.211 138 0.260 0.234 0.288 
Hazard Hermite none 3 0.490 0.165 137 0.261 0.236 0.289 
Hazard Polynomial none 3 0.891 0.135 140 0.253 0.236 0.271 
Hazard Cosine none 2 0.980 0.129 141 0.247 0.234 0.260 

Hazard NA 
Percent 
Habitat 

3 1.01 0.127 142 0.246 0.237 0.255 

Half-Normal Polynomial none 2 1.01 0.127 136 0.267 0.244 0.293 
Uniform Hermite none 3 2.46 0.062 137 0.261 0.235 0.291 
Half-Normal Cosine none 5 4.51 0.022 124 0.322 0.236 0.439 
Uniform Cosine none 5 4.66 0.021 124 0.320 0.238 0.431 
Half-Normal Hermite none 2 15.1 >0.01 134 0.277 0.241 0.318 

Half-Normal NA 
Percent 
Habitat 

2 30.6 >0.01 127 0.306 0.294 0.319 
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Table 1.8 (a): Pearson correlation coefficients (ρ) for correlation of density estimates with true density for surveys with 50-m radius 

for the black-throated blue warbler (BTBW) scenario.  Density was calculated for area A around the observer, where A = π × survey 

radius2.  Each estimator was compared to Ds, the density of birds with territories that overlapped the survey radius (Ds = N* ps / A); 

Dp, the density of birds present at the beginning of the survey (Dp = N* ps pp / A); and Da, the density of available birds present at the 

beginning of the survey (Da = N* ps pp pa / A).  Significant correlation coefficients (according to a t-distribution with NYears-2 

degrees of freedom) are noted: * P<0.05, **P<0.01, ***P<0.001. 

Survey Type Estimator ρ Ds ρ Dp ρ Da 

Simple Counts Simple Index Density 0.143  0.337  0.689 *** 
Simple Index Density: Perfect Distance 0.278  0.565 ** 0.869 *** 

 
 

      

Double-Observer 

Simple Index Density 0.223  0.530 ** 0.693 *** 
Simple Index Density: Perfect Distance -0.021  0.580 *** 0.894 *** 
Model-Averaged Adjusted Density 0.098  0.565 ** 0.700 *** 
Top Model Adjusted Density 0.017 

 
0.550 ** 0.660 *** 

Nichols et al. (2000) Density 0.236  0.426 * 0.651 *** 

       

Removal 

Simple Index Density 0.378 * 0.635 *** 0.615 *** 
Simple Index Density: Perfect Distance 0.096  0.709 *** 0.740 *** 
Model-Averaged Adjusted Density 0.278  0.505 ** 0.582 ** 
Top Model Adjusted Density 0.307 

 
0.343 

 
0.399 * 
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Table 1.8 (a) continued. 

Survey Type Estimator ρ Ds ρ Dp ρ Da 

        

Replicated Counts 

Simple Index Density 0.211  0.609 *** 0.761 *** 
Simple Index Density: Perfect Distance 0.270   0.690 *** 0.869 *** 
Model-Averaged Adjusted Density -0.007  -0.204  -0.146  
Top Model Adjusted Density -0.075 

 
-0.301 

 
-0.280 

 Maximum Count Density 0.265  0.561 ** 0.700 *** 
Bounded Count Density 0.282  0.491 ** 0.610 *** 
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Table 1.8 (b): Pearson correlation coefficients (ρ) for correlation of density estimates with true density for surveys with 100-m 

radius for the black-throated blue warbler (BTBW) scenario.  Density was calculated for area A around the observer, where A = π × 

survey radius2.  Each estimator was compared to Ds, the density of birds with territories that overlapped the survey radius (Ds = N* ps 

/ A); Dp, the density of birds present at the beginning of the survey (Dp = N* ps pp / A); and Da, the density of available birds present 

at the beginning of the survey (Da = N* ps pp pa / A).  Significant correlation coefficients (according to a t-distribution with NYears-2 

degrees of freedom) are noted: * P<0.05, **P<0.01, ***P<0.001. 

Survey Type Estimator ρ Ds ρ Dp ρ Da 

Simple Counts 
Simple Index Density 0.534 ** 0.648 *** 0.816 *** 
Simple Index Density: Perfect Distance 0.623 *** 0.742 *** 0.928 *** 

        

Double-Observer 

Simple Index Density 0.515 ** 0.388 * 0.762 *** 
Simple Index Density: Perfect Distance 0.543 ** 0.641 *** 0.928 *** 
Model-Averaged Adjusted Density 0.460 * 0.347  0.745 *** 
Top Model Adjusted Density 0.411 * 0.299 

 
0.710 *** 

Nichols et al. (2000) Density 0.515 ** 0.388 * 0.762 *** 
       

Removal 
Simple Index Density 0.586 *** 0.583 *** 0.583 *** 
Simple Index Density: Perfect Distance 0.647 *** 0.764 *** 0.802 *** 
Model-Averaged Adjusted Density 0.426 * 0.198  0.090  
Top Model Adjusted Density 0.442 * 0.200 

 
0.086 
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Table 1.8 (b) continued. 

Survey Type Estimator ρ Ds ρ Dp ρ Da 

 
Replicated 
Counts 

Simple Index Density 0.696 *** 0.643 *** 0.833 *** 
Simple Index Density: Perfect Distance 0.691 *** 0.772 *** 0.925 *** 
Model-Averaged Adjusted Density -0.337  -0.358  -0.509 ** 
Top Model Adjusted Density -0.335 

 
-0.365 * -0.503 ** 

Maximum Count Density 0.656 *** 0.583 *** 0.733 *** 
Bounded Count Density 0.427 * 0.345  0.432 * 
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Table 1.8 (c): Pearson correlation coefficients (ρ) for correlation of density estimates with true density for surveys with 150-m 

radius for the black-throated blue warbler (BTBW) scenario.  Density was calculated for area A around the observer, where A = π × 

survey radius2.  Each estimator was compared to Ds, the density of birds with territories that overlapped the survey radius (Ds = N* ps 

/ A); Dp, the density of birds present at the beginning of the survey (Dp = N* ps pp / A); and Da, the density of available birds present 

at the beginning of the survey (Da = N* ps pp pa / A).  Significant correlation coefficients (according to a t-distribution with NYears-2 

degrees of freedom) are noted: * P<0.05, **P<0.01, ***P<0.001. 

Survey Type Estimator ρ Ds ρ Dp ρ Da 

Simple 
Counts 

Simple Index Density 0.616 *** 0.660 *** 0.817 *** 
Simple Index Density: Perfect Distance 0.702 *** 0.690 *** 0.877 *** 

        

Double-
Observer 

Simple Index Density 0.607 *** 0.573 ** 0.853 *** 
Simple Index Density: Perfect Distance 0.574 ** 0.587 *** 0.918 *** 
Model-Averaged Adjusted Density 0.605 *** 0.571 ** 0.851 *** 
Top Model Adjusted Density 0.605 *** 0.571 *** 0.851 *** 
Nichols et al. (2000) Density 0.601 *** 0.567 ** 0.849 *** 
       

Removal 

Simple Index Density 0.816 *** 0.809 *** 0.851 *** 
Simple Index Density: Perfect Distance 0.788 *** 0.822 *** 0.846 *** 
Model-Averaged Adjusted Density 0.527 ** 0.519 ** 0.553 ** 
Top Model Adjusted Density 0.568 *** 0.553 ** 0.579 *** 
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Table 1.8 (c) continued. 

Survey Type Estimator ρ Ds ρ Dp ρ Da 

 
Replicated 
Counts 

Simple Index Density 0.728 *** 0.764 *** 0.873 *** 
Simple Index Density: Perfect Distance 0.749 *** 0.787 *** 0.876 *** 
Model-Averaged Adjusted Density -0.360  -0.386 * -0.430 * 
Top Model Adjusted Density -0.369 * -0.379 * -0.406 * 
Maximum Count Density 0.647 *** 0.697 *** 0.754 *** 
Bounded Count Density 0.405 * 0.445 * 0.423 * 
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Table 1.8 (d): Pearson correlation coefficients (ρ) for correlation of density estimates with true density for surveys with unlimited 

radius for the black-throated blue warbler (BTBW) scenario (distance sampling survey type only).  Data were right-truncated, 

eliminating the most distant 10% of observations (Buckland et al. 2001).  For estimates and true densities, the area surveyed was 

considered to be A = π × survey radius2, where the survey radius was the year-specific truncation distance (mean 158 m).  True 

densities are Ds, the density of birds with territories that overlapped the survey area (Ds = N* ps / A); Dp, the density of birds present 

at the beginning of the survey (Dp = N* ps pp / A); and Da, the density of available birds present at the beginning of the survey (Da = 

N* ps pp pa / A).  Significant correlation coefficients (according to a t-distribution with NYears-2 degrees of freedom) are noted: * 

P<0.05, **P<0.01, ***P<0.001. 

Survey Type Estimator 
Mean 
Radius 

ρ Ds ρ Dp ρ Da 

Distance 
Sampling 

Simple Index Density 158 0.743 *** 0.714 *** 0.839 *** 
Simple Index Density: Perfect Distance 158 0.777 *** 0.765 *** 0.866 *** 
Model-Averaged Adjusted Density 158 0.384 

 
0.555 ** 0.665 *** 

Top Model Adjusted Density 158 0.296 
 

0.506 ** 0.592 *** 
Program Distance Top Model Density 158 0.492 ** 0.593 *** 0.717 *** 
Program Distance Model-Averaged Density 158 0.497 ** 0.587 *** 0.709 *** 
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Chapter II 

Performance of Bird Density Estimators for Simulated Counts with Differential 

Availability and Perceptibility 

 

Summary: Point count surveys of birds are commonly analyzed to make inferences about 

bird abundance or density. Counts are considered the product of true abundance (N) and 

p, the detection probability, and can be used as an index to abundance if p is constant.  

Adjustment analysis methods, such as double-observer, removal, replicated counts, and 

distance sampling methods, attempt to estimate both N and p to provide better inference.  

These adjustment methods have not been thoroughly investigated in a simulated setting, 

and it is uncertain how they perform in comparison to one another.  In Chapter 1, I 

described a model to simulate bird survey counts, which included variation in spatial 

arrangement, availability (the probability that a bird is available (vocalizes) during a 

survey, given that it is present) and perceptibility (the probability that a bird is detected, 

given that it is available and present).  Here, I used the model to simulate counts for 

scenarios with high or low availability and high or low perceptibility.  I also included 

scenarios where abundance was confounded with perceptibility, and scenarios where they 

were independent.  I then analyzed count data using index methods and adjustment 

methods.  Although index methods were biased and only had a strong correlation with 

true density when detectability was high, adjustment methods generally did not offer an 

improvement.  As compared to index methods, adjustment method performance ranged 

from far worse (replicated counts), to no added value (double-observer) to moderate 

improvement (in bias only, for removal and distance sampling in specific scenarios).  

Practitioners should carefully consider the sources of variation in detection probability in 

their system.  If detection components are unknown or known to be variable, I advise 

practitioners to perform a pilot study to estimate detection components.  Additionally, 

practitioners should standardize their methods to increase availability and perceptibility 

in their surveys and to lower the variation in these detection components.   
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Point count surveys of birds, consisting of the collection of count data, are the most 

common data source used to make inferences about bird occurrence, distribution, and 

population status and trends (Rosenstock et al. 2002).  Recall from equation 1.1 that any 

count (C) obtained from a survey can be considered the product of N, the number of birds 

present, and p, the detection probability.  Nichols et al. (2009) decomposed that detection 

probability into 4 parts: ps, the probability that a bird’s territory at least partially overlaps 

the surveyed area of a survey site; pp, the probability that a bird is present in the surveyed 

area at the time of the survey; pa or availability, the probability that a bird is available 

(vocalizes) during a survey, given that it is present; and pd or perceptibility, the 

probability that a bird is detected, given that it is present in the surveyed area and 

available during the survey (equation 1.2).   

Analysis methods used to analyze bird count data can be roughly categorized into two 

groups: index methods, which use counts as an index to abundance, and adjustment 

methods, which attempt to estimate both abundance and detectability (Rosenstock et al. 

2002, Johnson 2008, Nichols et al. 2009).  Many adjustment methods have been 

proposed, including double-observer methods (Nichols et al. 2000), distance sampling 

methods (Burnham et al. 1980, Buckland et al. 1993), removal methods (Farnsworth et al. 

2002, Alldredge et al. 2007a), and replicated counts methods (Royle 2004).  By parsing 

out detection probability, these methods attempt to directly estimate abundance, rather 

than relying on counts as an index (Rosenstock et al. 2002, Nichols et al. 2009).   

Despite the wealth of analysis methods available, there is a lack of clarity regarding the 

relative performance of these methods, particularly the best method to use in specific 

field situations (Johnson 2008, Nichols et al. 2009).  Chapter 1 describes the simulation I 

created to simulate bird survey counts, with the goal of comparing estimators among 

analysis methods.  I define an estimator as a statistic that is used to infer the value of an 

unknown population parameter.  For each scenario (defined as a set of parameters 

designed to reflect a particular biological situation), the simulation generated counts by 

modeling variability in N, ps, pp, pa, and pd as follows.  Abundance modeling (N) included 
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variation among survey sites due to an underlying habitat covariate.  Spatial modeling (ps 

and pp) included variation in bird locations by using a bivariate normal distribution to 

simulate birds on territories.  Availability modeling (pa) included variation in song 

occurrence by using Markov chains to create autocorrelation and varying the probability 

of singing due to time of day and time within season.  Perceptibility modeling (pd) 

included variation in observation by using a logit-link function to describe the probability 

of perception as a function of distance from the observer and varying the shape of the 

logit function due to observer skill and presence of ambient noise.  In Chapter 1, I 

selected scenario parameters to represent surveys of black-throated blue warblers 

(Setophaga caerulescens): a suitable test case, but limited in its scope.   

To expand the range of inference possible regarding the performance of abundance 

estimators, I here apply the model to additional scenarios.  To provide the most useful 

inference, I created scenarios that reflected the variation in detection probability likely to 

occur across species and habitats where point count surveys are commonly used.  

Availability is known to vary widely among species (Emlen 1977, Mayfield 1981), but 

also within species due to time of day (Hochachka et al. 2009) or reproductive status 

(Stacier et al. 2006, Robbins et al. 2009).  Perceptibility can vary with species (Wolf et al. 

1995, Schieck 1997, Alldredge et al. 2007b, Pacifici et al. 2008, also see Chapter 3), 

habitat conditions (Schieck 1997, Pacifici et al. 2008), and observer (Alldredge et al. 

2007b, Pacifici et al. 2008, also see Chapter 3).   

Using counts as indices to abundance is particularly suspect when detection is 

confounded with abundance.  For example, Ruiz-Gutiérrez et al. (2010) found differences 

in detectability across habitat types and species’ level of forest-dependence, concluding 

that their occupancy and colonization results would have been biased if they had used 

index methods.  This confounding effect would be apparent in a species that favored 

dense vegetation where perceptibility was low.  Using an index method to estimate 

abundance for such a species might not show increased abundance at sites with dense 

vegetation when compared to sites with sparser vegetation and higher detection.  To 

assess the effect of such a confounding on estimator performance, I included scenarios 
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where both perceptibility and site-specific abundance were a function of habitat, an 

underlying covariate.   

My objective was to evaluate the effect of variation in availability, perceptibility, and the 

effect of habitat on perceptibility on the performance of density estimators for both index 

methods and adjustment methods.  I applied the model described in Chapter 1 to 

scenarios with parameters reflecting the variation in availability, perceptibility, and effect 

of habitat on perceptibility that can be commonly expected across the wide range of 

species and habitats where point count bird surveys are conducted.  I then evaluated the 

performance of density estimators, using simulated counts generated by that model. 

 

Methods 

I simulated bird survey counts (Chapter 1) to investigate the effect of availability, 

perceptibility, and a confounded effect of perceptibility with abundance on the 

performance of several commonly used density estimators.  I used 3 binary options for 

scenario parameters: high vs. low availability, high vs. low perceptibility, and an effect of 

habitat on perceptibility vs. no effect.  The result was 8 scenarios including all possible 

binary combinations (Table 2.1).  All scenarios used the same spatial and abundance 

parameters (below).   

Within each scenario, I conducted separate simulations for each survey type, defined as a 

specific survey scheme of temporal and spatial replication of survey sites and number of 

observers (see Chapter 1, Table 1.3).  I considered 5 survey types: simple counts, double-

observer, distance sampling, removal, and replicated counts (Table 1.3).  Adjustment 

estimators are survey type-specific (e.g., double-observer adjustment estimators can only 

be applied to data from the double-observer survey type).  Simple index estimators 

(counts, or counts converted to density) can be applied to any survey type. 

Abundance 
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For each site, where a site was 400 ha modeled in a Cartesian grid with the observer at 

the center, I modeled site-specific abundance (NBirds.yi) as a Poisson-distributed random 

variable, described by parameter LambdaHabitat.yi.  LambdaHabitat.yi was a product of 

the size of the modeled area around the observer (Area.yi = 400 ha), the density of birds 

in habitat (HabitatDensity), and a site-specific proportion of habitat (PercentHabitat.yi).  

Thus,  

NBirds.yi ~  Poisson(HabitatDensity.y × Area.yi × PercentHabitat.yi)   (eq. 2.1). 

Within each survey type, PercentHabitat.yi was randomly selected for year 1, with half 

of sites having a high proportion of habitat (PercentHabitat.yi ~ N(0.8, 0.09)) and half of 

sites having a low proportion of habitat (PercentHabitat.yi ~ N(0.4, 0.09)).  To reduce 

nuisance variation, PercentHabitat.yi in year 1 was the same across scenarios within 

survey types, as if the same sites were being surveyed under different biological 

situations.  Variation in PercentHabitat.yi was normally-distributed [N(0,0.1)] and added 

annually, such that 95% of annual changes in PercentHabitat.yi would be ≤ 2%. 

Across species and habitats, bird density and territory size are highly variable.  I 

examined studies of forest bird density and territory size in variable habitats to guide my 

selection of parameters (Table 2.2). I assigned site abundance by assuming that all birds 

were found in habitat (as opposed to matrix).  HabitatDensity was 1 bird/ha in year 1 and 

declined linearly to 0.7 birds/ha in year 30.  A high PercentHabitat.yi site with 

PercentHabitat.yi = 0.8 (the mean for high PercentHabitat.yi sites) would have an 

abundance drawn from a Poisson distribution with λ = 0.8 × 400 ha × 1 bird/ha = 320 

birds in year 1.  A similar site in year 30 would have an abundance drawn from a Poisson 

distribution with λ = 0.8 × 400 ha × 0.7 bird/ha = 224 birds.  A low PercentHabitat.yi site 

with PercentHabitat.yi = 0.4 (the mean for low PercentHabitat.yi sites) would have an 

abundance drawn from a Poisson distribution with λ = 0.4 × 400 ha × 1 bird/ha = 160 

birds in year 1 or λ = 0.4 × 400 ha × 0.7 bird/ha = 112 birds in year 30. 

Spatial  
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Movements for each simulated bird were within a bivariate normally distributed territory 

(Chapter 1), with a constant probability of movement within the territory = 0.005 

between interval k and interval k+1.  Interval length was 2 seconds. 

Individual bivariate normal territories were prevented from overlapping in the model by 

eliminating a territory if any of the 4 axes or center of the territory overlapped the 

utilization ellipse of any existing territory (or vice versa).  Such overlap comparisons 

were conducted on 60% utilization ellipses for the bivariate normal territories (56.5% 

utilization ellipses were used for Chapter 1, based on territory and density information 

available for black-throated blue warblers).  For high density (~1 bird/ha) sites, I used 0.5 

ha as the maximum allowable size for 60% utilization ellipses.  This limitation prevented 

the modeled space from being more than 50% filled with territories (the point at which 

computation becomes unreasonably slow, as determined by trial and error, see Appendix 

C).  From Jennrich and Turner (1969, equation 12), a 0.5-ha 60% utilization ellipse 

corresponds to a 95% utilization ellipse with area 1.64 ha.  Using the ovenbird (Seiurus 

aurocapilla) as an example (Smith and Shugart 1987), I assumed territories could be 

compressed 4-fold.  Thus, 95% utilization ellipses for uncompressed territories (at low-

density sites) had a maximum size of 1.64 ha × 4 = 6.56 ha.  Territory size was log-

normally distributed, with mean size of the 95% utilization ellipse 1.64 ha – 6.56 ha (SD 

= 1 ha), in keeping with the range of territory sizes observed for passerines by Schoener 

(1968). 

Availability 

As in Chapter 1, I modeled availability as an interval-specific event Sings.yijrk with 2 

possible states (1 = song, 0 = no song).  To produce temporal song patterns reflective of 

breeding males, I incorporated autocorrelation at 2 scales.  Coarse-scale autocorrelation 

referred to bird j being in or out of “singing mode,” a state in which vocalization is 

frequent and songs occur at relatively regular intervals.  If the bird was not in singing 

mode (i.e., if SingingMode.yijrk = 0), then bird j necessarily did not vocalize during 

interval k and Sings.yijrk = 0.  If the bird was in singing mode, (i.e., if SingingMode.yijrk 
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= 1), then Sings.yijrk could be 0 or 1: these vocalizations were modeled with fine-scale 

autocorrelation.   

Field estimates of availability (pa) are highly variable.  Availability is often reported as 

the probability that a bird sings at least once in X minutes (for brevity, PrSingX).  Emlen 

(1977) found a wide range of pa (0-0.80) among 16 species for 5 different weeks of the 

breeding season.  Mayfield (1981) found nearly the same range (0-0.90) among 20 

species for “census efficiency” over 10 replicate surveys (census efficiency in that study 

was roughly equivalent to PrSing10).   Much intraspecific variation in availability is 

related to time of day (e.g., Hochachka et al. 2009) and reproductive status (e.g., Stacier 

et al. 2006, Robbins et al. 2009).  To capture the range seen in field studies, I developed 2 

availability scenarios: high pa and low pa. 

I used estimates of high availability (including estimates for unpaired males) to 

parameterize the high pa scenarios (Table 2.3).  Using these estimates, I selected PrSing5 

= 0.80 as the mean availability for birds in the high pa scenarios. (Note: under the Markov 

chain availability modeling described in Chapter 1, PrSing5 = 0.80 corresponds to 

PrSing3 = 0.67 and PrSing10 = 0.94.)   

I used estimates of availability from low-availability species (such as grassland birds and 

paired males) to parameterize the low pa scenarios (Table 2.3).  Additionally, Conway 

and Gibbs (2005) found probability of detection < 0.3 for 10 of 12 secretive marsh bird 

species passively surveyed (their estimates include surveys of varying lengths, and thus I 

did not include them in Table 2.3).  Using these estimates, I selected PrSing5 = 0.45 as 

the mean availability for birds in the low pa scenarios. (Note, PrSing5 = 0.45 corresponds 

to PrSing3 = 0.34 and PrSing10 = 0.65.)   

For availability modeling, PrSing5 was equal to the product of a maximum daily song 

rate and a time-of-day weight (see Chapter 1).  I held the maximum daily song rate at 

0.99 for the high-availability scenario, because many high-availability species have 

periods when availability during a 3-4 minute survey is almost assured (e.g., Scott et al. 
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2005, Stacier et al. 2006, Robbins et al. 2009, Hochachka et al. 2009).  I used a maximum 

daily song rate of 0.56 for low pa scenarios. 

For the time-of-day weight, I consulted data from P. Blancher (Environment Canada, 

personal communication, Figure 2.1).  Based on these curves, I created a time-of-day 

weight function for high and low pa (Figure 2.2).  I estimated the mean time-of-day 

weight by averaging across the time needed to survey a Breeding Bird Survey (BBS) 

route (from 30 minutes before sunrise until 4 hours after sunrise; North American 

Breeding Bird Survey 1998).  For high pa, the product of this mean weight and the 

maximum daily song rate was 0.8, the desired PrSing5.  Lacking evidence that time of 

day affects low-availability species differently than high-availability species, I used the 

same time-of-day weight function for both scenarios (Figure 2.2), achieving the desired 

mean PrSing5 = 0.45 for low pa scenarios.  I did not include variation due to ordinal date 

in maximum daily song rate (thus assuming that all surveys fell within a peak singing 

period for the species).  To simulate variation inherent in field work, planned survey start 

times were spaced 23 minutes apart (30 minutes for the removal survey type) from 

sunrise to 2.5 hours after sunrise, and actual starting times were normally distributed 

based on planned times (SD = 5 minutes).  Because these simulated surveys do not last as 

long as BBS surveys and availability peaks early in the day (Figure 2.2), the realized 

availability in my model may have exceeded the desired PrSing5 = 0.8 and PrSing5 = 

0.45. 

Perceptibility 

I modeled Perceptibility as a function of distance to the observer (x).  I used 2 

perceptibility scenarios: high pd [such as a brown thrasher (Toxostoma rufum) or white-

throated sparrow (Zonotrichia albicollis); Figure 2.3] and low pd [such as a black-and-

white warbler (Mniotilta varia) or golden-crowned kinglet (Regulus satrapa); Figure 

2.3].  All curves used a logit link, where logit(pd) = β0 + β1x.  For the high pd scenarios, I 

used parameters β0 = 6, β1 = -0.02 for the average observer in optimal observation 

conditions (Figure 2.3).  This function was informed by pd curves for a highly detectable 

species (brown thrasher) in Pacifici et al. (2008).  For low pd scenarios, I used the black-
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and-white warbler (BAWW) as a guide because many detection studies have included 

BAWW as a low-detectability species (e.g., Alldredge et al. 2007, Pacifici et al. 2008).  

For the average observer in optimal observation conditions, I used parameters β0 = 6.3, 

and β1 = -0.07  for low pd scenarios (Figure 2.3). 

I modeled observer skill as an effect on the intercept (β0) for both the high pd and low pd 

scenarios.  The observer skill effect was year-specific (as if new observers were selected 

every year, which differs from the model in Chapter 1) and drawn from a normal 

distribution [N(0,0.75)], meaning 95% of observer skill effects were within the range -1.5 

to 1.5 (effect size = 3).  This effect size was informed by the effect of observer on 

detection in Pacifici et al. (2008), where the effect sizes for 3 species were 2.3, 3.0, and 

4.2.  Observers (n = 6) in Alldredge et al. (2007b) had about a third that variability.  That 

difference may be in part due to the larger sample of observers (n = 12) used in Pacifici et 

al. (2008).  Observer skill was also estimated in Chapter 3; effect size for 4 observers 

varied among species, with range 1.0 to 3.4.  The choice to use the same observer skill 

effect for high and low pd scenarios is debatable, as the estimated observer effects in 

Pacifici et al. (2008) were larger for BAWW (observer coefficient range -3.1 to 1.1) than 

for other species (brown thrasher range -1.7 to 0.5; black-throated blue warbler range -2.0 

to 1.0).  With comparison only among 3 species in Pacifici et al. (2008), I did not see 

adequate evidence that observer variability is greater for species with lower detectability.   

I modeled observation conditions as an effect on the slope (β1) for both the high pd and 

low pd scenarios, with range -0.02 to 0 for high pd scenarios and range -0.04 to 0 for low 

pd scenarios.  For scenarios where perceptibility was a function of habitat, the observation 

conditions effect was the product of the slope effect and the site-specific percent habitat 

(which also affects site abundance).  For scenarios where perceptibility was not a 

function of habitat, the observation conditions effect was the product of the slope effect 

and a uniformly distributed, site-specific random variable between 0 and 1.  The 

observation conditions effect was therefore similar in magnitude across all scenarios, but 

was only confounded with abundance in scenarios where perceptibility was a function of 

habitat.  In keeping with the patterns in habitat effects on detection seen in Pacifici et al. 
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(2008), the detection functions I used were steeper for sites with poorer observation 

conditions, with detection dropping off at shorter distances (Figure 2.3).   

The resulting high and low pd functions I used were consistent with perceptibility 

estimated in field studies.  For the most-detectable species, Pacifici et al. (2008) 

estimated pd from 60% - 90% at 100 m for the 4 lowest-detectability habitats investigated 

(with ambient noise) and pd from 90%-100% for the other 4 habitats.  For the high pd 

function I used, at 100 m observers had pd with range 62% - 97% in the poorest 

observation conditions and pd with range 92% - 99.5% for the best observation 

conditions.  For the least-detectable species, Pacifici et al. (2008) estimated the range of 

distances at which pd = 50% to be 50 m – 130 m for the 8 habitats investigated.  For the 

low pd function I used, pd = 50% at 44 – 111 m.  For the 4 least-detectable species 

studied, Wolf et al. (1995) estimated the distance at which pd = 50% to be < 100 m.  My 

low pd function was consistent, with pd = 50% for all observation conditions and 

observers at distances ≤ 112 m.   For the 4 most detectable species studied, Wolf et al. 

(1995) estimated the distance at which pd = 50% to be 170-272 m.  My high pd function 

had a similar range for average observers (pd = 50% at 150-300 m across observation 

conditions) but included more observer variation (pd = 50% at 112-375 m across all 

observers and observation conditions) than seen in Wolf et al. (1995).  Schieck (1997) 

found detection of BAWW songs ranged from 67% to 100% at 50 m and from 0% to 

67% at 100 m across habitat types; my low pd function had range 33% to 99% at 50 m 

and 0.2% to 69% at 100 m across all observers and observation conditions.  For the 3 

most detectable species studied, Schieck (1997) found pd = 1 at 100 m across a range of 

observation conditions; my high pd function had range 88% to 98% at 100 m for average 

observers across all observation conditions.  The range of maximum detection distance 

(63 m – 137 m) for BAWW songs in Simons et al. (2007) is consistent with the range of 

distances at which detection becomes negligible for my low pd function (pd < 5% occurs 

between 70 and 153 m across all observation conditions and observers).  Note, however, 

that Simons et al. (2007) compared among wind and noise conditions, not habitats.   

Estimators and True Density 
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I analyzed simulated counts generated by my model to produce abundance estimates.  I 

then converted abundance estimates to density (birds/ha, equation 1.3) because density is 

a common currency across survey types and accounts for the difference in area surveyed 

across methods.  For example, fixed-radius surveys set a maximum distance from the 

observer beyond which birds are not recorded (Ralph and Scott 1995), but distance 

sampling methods customarily determine a maximum distance for observations by 

truncating a percentage of the most-distant observations (Buckland et al. 2001).  If 

comparing years of surveys with different numbers of survey sites, annual abundance 

across sites must be summarized as mean site-abundance or converted to density.  To 

avoid confusion when comparing surveys with different radii or number of sites, I use 

density rather than abundance to discuss estimation of bird population parameters.   

For each density estimator, I calculated correlation with true density, Dp (the density of 

simulated birds present within the survey radius at the beginning of the survey).  

Assuming a closed population (birds do not move among sites and abundance is constant 

within surveys), the total abundance across sites is Σ Np.  For bird surveys where the 

objective is to make inference about abundance across sites, Np is therefore the optimal 

“true” abundance to use for comparison when evaluating estimators.  I therefore used Dp 

as the primary representative of true density for comparisons of estimators.  For distance 

sampling adjustment methods, observations were truncated such that the most distant 

10% were excluded (Buckland et al. 2001).  This truncation distance was used as the 

survey radius for calculating density for distance sampling adjustment estimators.  For all 

other estimators, density was calculated for a 150-m survey radius.  

I used 2 criteria for evaluating estimators: density estimator bias as compared to true 

density, and density estimator correlation with true density. I calculated year-specific bias 

as the difference between estimated density and true Dp (negative bias indicated 

underestimation of true density).  I also calculated Pearson correlation coefficients 

between density estimators and true Dp.  I calculated bias and correlation coefficients 

after removing outliers (defined as density estimates that were > 3 standard deviations 

away from the mean of remaining estimates) and report the number of outliers removed.   
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Simple Index Estimator Analysis 

My first analysis investigated the performance of simple index estimators, defined as the 

sum of counts across all sites within a year, divided by the area surveyed.  I compared 

bias of simple index estimators for surveys with 150-m radius across survey types using a 

linear model, performing an analysis of variance across survey types.  Then, within each 

survey type, I compared bias of simple index estimators across the 3 binary parameter 

options for scenarios (high/low availability, high/low perceptibility, and perceptibility as 

a function of percent habitat or not), using a linear model with the binary parameter 

options as factors.  I analyzed correlation of simple index estimators with Dp by 

calculating a 95% confidence interval for each correlation coefficient using a Fisher Z-

transformation (Zou 2007).  Overlap comparison for confidence intervals can be too 

conservative, resulting in the null hypothesis (that correlation coefficients do not differ) 

being rejected less often than it should (Schenker and Gentleman 2001).  To compare 

correlation coefficients of interest, I calculated a 95% confidence interval for the 

difference between correlation coefficients, treating the correlations as independent (Zou 

2007). 

Adjustment Estimator Analysis 

For comparison to simple index estimators, I used Program unmarked to calculate model-

averaged density estimates as well as top model density estimates for the double-

observer, distance sampling, removal, and replicated counts survey types (see Chapter 1 

for estimator details).  I also included estimators specific to survey type, namely the 

Nichols et al. (2000) estimator for the double-observer survey type (using the dependent 

observer approach), model-averaged and top model results from Program Distance for the 

distance sampling survey type, and bounded count (Johnson et al. 2007) and maximum 

count estimators for the replicated counts survey type.  Bounded count density was the 

sum of the bounded counts (twice the maximum count minus the second largest count), 

divided by the area surveyed.  Maximum count density was the sum of all maximum 

counts for each site (among the 3 counts within a year) divided by the area surveyed.   
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Again using bias and correlation with true density (Dp) as indicators of performance, I 

compared simple index estimators to other estimators.  Within each survey type and pair 

of binary parameter options (high/low availability and high/low perceptibility), I used a 

linear model to compare estimator bias for the simple index estimator and adjusted 

density estimators from Program unmarked (model-averaged results and results from 

using the top model for each simulated year).  All reports of significance for linear 

models of effects on estimator bias use α = 0.05. 

Within each scenario and survey type, I calculated the correlation coefficient for each 

estimator with true density (Dp) across 30 simulated years.  I then calculated a 95% 

confidence interval for each correlation coefficient using a Fisher Z-transformation (Zou 

2007).  To avoid overly conservative comparisons (Schenker and Gentleman 2001), I 

calculated a 95% confidence interval for the difference between correlation coefficients 

of interest, treating the correlations as independent (Zou 2007).  I compared estimators 

within each survey type, and for simple index estimators and adjusted density estimators 

from Program unmarked, I compared estimators across survey types. 

Trend Analysis 

I calculated the population trend for true abundance (Np) and estimators of abundance as 

the geometric mean rate of change from year 1 to year 30 (Link and Sauer 1998).  For 

each estimator with site-specific estimates, I calculated the mean trend (and 95% 

confidence interval) across all sites.  For sites with a zero estimate in year 1 or 30, I 

added 1 to site abundance in both years to avoid inestimable trends due to the log 

transform in the Link and Sauer (1998) method. 

 

Results 

Simple Index Estimators  
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Simple index estimators were negatively biased for all survey types (Table 2.4, Appendix 

D).  Bias differed among survey types (analysis of variance P < 0.001).  Across all 

scenarios, simple index estimators were the least biased for the removal survey type 

(mean = -0.170 birds/ha, SE = 0.00706); the range of mean bias across other survey types 

was -0.295 birds/ha (SE = 0.00706) to -0.259 birds/ha (SE = 0.00706). 

Bias of simple index estimators was significantly more negative for scenarios with low 

availability than for scenarios with high availability (P < 0.001 for all survey types), and 

significantly more negative for scenarios with low perceptibility than for high 

perceptibility (P < 0.001 for all survey types).  Within each survey type, low availability 

had a greater effect on simple index estimator bias than did low perceptibility 

(coefficients for low availability had range -0.176 to -0.129 across survey types, 

coefficients for low perceptibility had range -0.141 to -0.115 across survey types).  For 

the distance sampling and removal survey types, simple index estimators were less biased 

for scenarios with perceptibility as a function of percent habitat as compared to scenarios 

without (P = 0.012 and P = 0.016, respectively).  For the simple count, double-observer, 

and replicated counts survey types, simple index estimator bias did not differ for 

scenarios with perceptibility as a function of percent habitat as compared to scenarios 

without (P range 0.14 - 0.45 across survey types).   

For scenarios with high availability and perceptibility (Scenarios 1 and 5, Table 2.1), 

correlation of simple index estimators with Dp was uniformly high (> 0.75) across survey 

types (Table 2.5, Figure 2.4).  Within survey types, simple index estimator correlation 

with Dp was more variable but did not significantly differ across other scenarios.  The 

removal survey type had simple index estimators with the least variation in correlation 

with Dp (range 0.719 – 0.916 across scenarios) and the replicated counts survey type had 

the most variation (range 0.0149 – 0.904 across scenarios) (Figure 2.4). 

Adjustment Estimators  

Estimator performance differed by survey type (Appendix D).  Across all estimators, a 

maximum of 4 (of 30) estimates were removed as outliers (Appendix D).  For the double-
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observer survey type, the density estimates from Program unmarked and Nichols et al. 

(2000) estimates (Table 2.4, Appendix D: D6, D10, D14) were nearly identical to simple 

index estimates (Table 2.4, Appendix D: D2).   Bias did not differ for that survey type 

between adjustment estimators and index estimators (Table 2.4).  Within scenarios, the 

correlation of density estimators with Dp was similar across estimators for the double-

observer survey type (Table 2.5, Figure 2.5).  

For Program unmarked estimators in the distance sampling survey type, the mean 

truncation distance for observations had range 372 m – 410 m for the scenarios with high 

perceptibility, and range 130 m – 140 m for scenarios with low perceptibility.  For the 

distance sampling survey type, all estimators were negatively biased (P < 0.01; Table 2.4, 

Appendix D: D5, D9, D13, D17).  For scenarios with low perceptibility, adjusted 

estimators were significantly less negatively biased than simple index estimators (P < 

0.001).  For scenarios with high perceptibility and high availability, Program Distance 

estimators and simple index estimators had similar bias but Program unmarked estimators 

were significantly less negatively biased than simple index estimators (P < 0.001).  For 

scenarios with high perceptibility and low availability, the Program unmarked top model 

estimator, Program Distance estimators, and simple index estimators had similar bias, but 

the Program unmarked model-averaged estimator was significantly less negatively biased 

(P = 0.038).  For Scenario 1, the correlation of the simple index estimator with Dp was 

greater than for all adjustment estimators for the distance sampling survey type (Figure 

2.6).  For Scenarios 2, 5, and 6 (Table 2.1), the correlation of the simple index estimator 

with Dp was greater than for the Program unmarked estimators, but not the Program 

Distance estimators.  For all other scenarios using the distance sampling survey type, 

there was no difference in the correlation with Dp among estimators. 

For removal survey type scenarios with low availability (Scenarios 2, 4, 6, and 8; Table 

2.1), adjusted estimators were significantly less negatively biased than the simple index 

estimator (P < 0.001, Appendix D: D4, D8, D12).  For removal survey type scenarios 

with high availability and high perceptibility, adjusted estimators and the simple index 

estimator were similarly negatively biased.  For removal survey type scenarios with high 
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availability and low perceptibility, adjusted estimators were less negatively biased 

compared to the simple index estimator (P < 0.001).  Simple index estimators had a 

higher correlation with Dp than did adjusted estimators for low availability scenarios in 

the removal survey type (Table 2.5, Figure 2.7).  For high availability scenarios for the 

removal survey type, there was no difference among estimators in the correlation with 

Dp. 

For the replicated counts survey type, all adjustment estimators showed significant 

positive bias compared to simple index estimators.  Many adjusted estimates were highly 

inflated for replicated count surveys, despite removal of outliers (Appendix D: D7, D11).  

Bias for bounded count estimators and maximum count estimators did not significantly 

differ from bias for simple index estimators, but had positive coefficients.  Simple index 

estimators for the replicated counts survey type (Appendix D: D3) had greater correlation 

with Dp than adjustment estimators for Scenarios 1, 2, 5, 6, and 7 (Table 2.1, Figure 2.8).  

For the replicated counts survey type, all estimators for had similar correlation with Dp 

for Scenarios 3, 4, and 8 (Table 2.1).  Correlation with Dp did not differ between the 

maximum count estimator and the bounded count estimator within any scenario for the 

replicated counts survey type.  

Trend 

There was a negative trend in true abundance (Np) over 30 simulated years, with range -

0.92% to -2.0% annually across scenarios and survey types.  Across all survey types, the 

simple index estimator detected a negative trend for abundance for all but one high-

availability scenario (distance sampling survey type, Scenario 3; Table 2.1).  For simple 

counts and replicated counts survey types, the simple index estimator did not detect a 

trend for any low availability scenarios.  For the removal survey type, the simple index 

estimator detected a trend for low availability and high perceptibility scenarios, but not 

low availability and low perceptibility scenarios.  For the double-observer survey type, 

the simple index estimator detected a trend only for Scenario 6 (Table 2.1) among low 

availability scenarios.  For the distance sampling survey type, the simple index estimator 

detected a trend for all low availability scenarios except Scenario 2 (Table 2.1). 
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For the double-observer and distance sampling survey types, all adjusted estimators 

detected a negative trend for all scenarios, with the exception of the low availability, low 

perceptibility scenarios for the distance sampling survey type.  Trend detection by 

adjusted estimators was more mixed for the replicated counts and removal survey types. 

For the replicated counts survey type, a negative trend was detected for scenarios 4, 6, 

and 8 by both adjusted estimators, for scenario 3 by the model-averaged adjusted 

estimator only, and for scenario 5 by the top model adjusted estimator only (for scenario 

numbers, see Table 2.1).  For the removal survey type, adjusted estimators detected a 

negative trend for scenarios 3 and 4, as well as in scenario 6 for the top model estimators 

only. 

 

Discussion 

Although index methods were biased and only had a strong correlation with true density 

when detectability was high, adjustment methods generally did not offer an improvement.  

Compared to bias of index methods and correlation of index methods with true density, 

adjustment method performance ranged from far worse (replicated counts), to no added 

value (double-observer) to moderate improvement (in bias only, for removal and distance 

sampling in specific scenarios).  Adjustment methods performed better at detecting a 

trend in abundance with 2 of the 4 adjustment survey types (distance sampling and 

double-observer), but index methods detected a negative trend when availability was 

high.   

These results expand upon Chapter 1 by applying the model to a wider array of scenarios. 

By using parameters informed by empirical data, this analysis examines the performance 

of density estimators across the range of availability and perceptibility expected to occur 

in bird surveys.  The model I used makes critical assumptions about bird behavior and 

human observations, most importantly that abundance is influenced by habitat 

availability, that birds move within bivariate normal territories, that song production is an 

autocorrelated process, and that detection as a function of distance takes the form of a 
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logit function.  If a bird’s behavior or detection violates these assumptions (by moving 

linearly across the landscape, say, or singing randomly through time) these simulation 

results may not be applicable.  Additionally, the natural world is complicated, and any 

simulation is a simplification.  This model does not include double-counting, false 

positives, species misidentification, an influence of the observer on the behavior of the 

birds, or interactions among birds.   

Still, simulation studies can provide an important evaluation of analysis methods.  Efford 

and Dawson (2009) assessed bias in abundance estimates by simulating counts and 

including distance-related heterogeneity of individual detection probability.  They 

concluded that no adjustment method effectively estimated population size from point 

counts.  While adjustment methods (Nichols et al. 2000, Burnham et al. 1980, Buckland 

et al. 1993, Farnsworth et al. 2002, Alldredge et al. 2007a, Royle 2004) and combinations 

of adjustment methods (Riddle et al. 2010, Stanislav et al. 2010, Amundson et al. 2014) 

have proliferated, few attempts have been made to evaluate these methods via simulation.  

To my knowledge, my model is the most comprehensive modeling of the detection 

process in bird surveys to date.  Ideally, bird survey practitioners can evaluate availability 

and perceptibility in their subject species and choose a survey type and analysis method 

informed by the scenario here that most closely matches their system. 

Counts can provide valuable information about bird populations and, when considered 

carefully, their use as an index to abundance can be constructive.  Indices performed best 

for scenarios with high availability and perceptibility.  To the extent possible, 

practitioners should standardize their methods to increase availability and perceptibility 

in their surveys and to lower their variation.  Banks-Leite et al. (2014) found that 

controlling for covariates of detection probability before data collection was just as 

effective as using adjustment methods, and recommended that analysis methods be 

tailored to research objectives.  Adjusting survey timing (both regarding time of day and 

time within season) to the time when birds are most consistently vocal can increase 

availability.  The standardized North American Marsh Bird Monitoring Protocol 

(Conway 2011) also uses broadcast recordings of calls as a mechanism for increasing 
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availability.  Surveys targeting other birds with known low availability (such as grassland 

birds) could potentially benefit from a similar playback procedure.  Longer survey 

periods also increase availability.  Surveyors seeking to maximize availability can 

perform 5- or 10-minute surveys (Ralph et al. 1993, 1995, Matsuoka et al. 2014) rather 

than commonly-used 3-minute surveys.  Observer training can increase perceptibility and 

lower variability among observers (Kepler and Scott 1981, McLaren and Cadman 1999).  

Conducting surveys during preferable conditions (e.g., low wind) can increase 

perceptibility (Robbins 1981a, Chapter 3).  My results suggest that these efforts have a 

greater potential benefit to assuring reliable inferences from count data than using 

adjustment estimators.   

Collecting additional information necessary for adjustment methods comes at some cost.  

In my model, human effort was held constant, so that cost was represented by fewer 

surveyed sites for the double-observer, replicated counts, and removal survey types as 

compared to the simple counts and distance sampling survey types.  There may also be an 

added cost to the observer’s attention due to recording additional information, exhibited 

by a reduction in pd.  Collecting information on the distance to each bird for the distance 

sampling survey type, the interval in which they were observed for the removal survey 

type, and reconciling detections between observers for the double-observer survey type 

may take up a non-trivial portion of an observer’s attention.  The problem may be 

exacerbated for multi-species surveys or high-abundance sites.  Incorporating the 

additional information for an adjustment method incorporates an addition potential source 

of error (e.g., Alldredge et al 2007c).  If estimating absolute density is a desired objective, 

the cost of collecting removal data was arguably worthwhile, as adjusted removal 

estimates were less biased than other survey types.  For the double-observer survey type, 

however, only half as many sites were surveyed as compared to the simple counts, but 

there was no added value in using the double-observer adjusted estimator.  Replicated 

counts surveys had only a third of the sites as compared to simple counts surveys, 

producing highly unreliable adjustment estimators (e.g., Dennis et al. 2015).  When 

additional data collected for adjustment methods do not produce better estimates, the best 

survey type is the one that maximizes the number of sites surveyed. 
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Most importantly, no adjustment method consistently provided better density estimates 

than index methods across the biological scenarios I compared.  Because there is no 

“silver bullet” analysis method that can perform well across the range of bird availability 

and perceptibility, practitioners should carefully consider the sources of variation in 

detection probability in their system, and select an appropriate method.  If detection 

components are unknown or known to be variable, I advise practitioners to perform a 

pilot study to estimate the mean value and variability of each component.  Alternatively, 

practitioners may follow Skalski and Robson’s (1992) recommendation to collect 

information to estimate detection and then to select among competing models that do and 

do not include adjustment.  The downside of this suggestion is that logistical costs of 

collecting such data will be spent even if an index method is eventually selected.  Still, 

those costs may be well spent if detection in a system is not well understood.  
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Table 2.1: Scenarios parameterized to reflect 3 binary options for scenario 

parameters: high vs. low availability, high vs. low perceptibility, and the presence or 

absence of an effect of habitat on perceptibility.  The result was 8 scenarios making 

up all possible binary combinations.  For high and low availability and perceptibility 

parameters, see Figures 2 and 3. 

Scenario Availability Perceptibility Perceptibility ~ Habitat 

1 high high yes 

2 low high yes 

3 high low yes 

4 low low yes 

5 high high no 

6 low high no 

7 high low no 

8 low low no 
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Table 2.2: Forest songbird densities and territory size reported in 3 studies across 

multiple species and habitats. 

 
Density (birds/ha)  Territory Size (ha) 

Study Maximum Mean Median  Minimum Maximum Mean 

Schoener 1968a 
   

 0.11 13.23  

Morse 1976 2.08 0.90 0.76  0.22b 1.1  

Smith and Shugart 

1987    

 
0.13 0.38 0.26 

Thompson et al. 

1992 
1.13 0.19 0.12 

 
   

Wenny et al. 1993 0.21 0.11 0.09     
a Minimum and maximum territory sizes reported for passerines only. 
b Approximate. 
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Table 2.3: Availability estimates for passerine species used to select parameters for 

high and low availability scenarios. 

Mini-

muma 

Maxi-

mum Mean Species Source 

  
0.85 

Kirtland's warbler  
(Setophaga kirtlandii) 

Mayfield 1981 

  
0.55 

prairie warbler  
(Setophaga discolor) 

Mayfield 1981 

0.43 0.78 
 

house wren  
(Troglodytes aedon) 

Wilson and Bart 
1985 

0 0.99 0.96 
least Bell’s vireo  
(Vireo belli pusillus) 

Scott et al. 2005 

0.92 1 0.99 
American redstart, unpaired 
(Setophaga ruticilla) 

Stacier et al. 2006 

0.16 0.74 0.49 American redstart, paired Stacier et al. 2006 

  
0.44 

Henslow’s sparrow  
(Ammodramus henslowii) 

Diefenbach et al. 
2007 

  
0.12 

grasshopper sparrow  
(Ammodramus savannarum) 

Diefenbach et al. 
2007 

0.09 > 1 0.51 multiple Confer et al. 2008 

0.92 0.97 
 

cerulean warbler, unpaired 
(Setophaga cerulean) 

Robbins et al. 2009 

0.54 0.62 
 

cerulean warbler, paired Robbins et al. 2009 

  
0.62 cerulean warbler (all) Robbins et al. 2009 

0.75 1 
 

Florida grasshopper sparrow 
(Ammodramus savannarum floridanus) 

Hochachka et al. 
2009 

a Estimates of availability refer to the probability that a bird sings at least once within 

5 minutes (PrSing5).  Estimates published for different time periods were transformed, 

using the assumptions that song intervals were 2 seconds long and the probability of 

remaining in singing mode given that the bird was previously in singing mode was 

0.98.  
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Table 2.4: Density estimates, true density, and bias of estimates, scenarios 1-8 (Table 2.1).  Each density estimate was compared to Dp 

(the density of birds present at the beginning of the survey, Dp = N* ps pp / A).   

  Survey Type Estimator Density 
Estimate 

True 
Density 

(Dp) 

Median 
Bias 

Percent 
Bias 

Sc
en

ar
io

 1
 

Simple Counts Simple Index Density 0.346 0.477 -0.130 -27% 

Double-
Observer 

Simple Index Density 0.415 0.490 -0.068 -14% 
Model-Averaged Adjusted Density 0.417 0.490 -0.068 -14% 
Top Model Adjusted Density 0.417 0.490 -0.067 -14% 
Nichols et al. (2000) Density 0.415 0.490 -0.068 -14% 

Replicated 
Counts 

Simple Index Density 0.363 0.497 -0.132 -27% 
Model-Averaged Adjusted Density 1.65 0.497 0.568 114% 
Top Model Adjusted Density 1.43 0.497 0.446 90% 
Bounded Count Density 0.631 0.497 0.133 27% 
Maximum Count Density 0.494 0.497 -0.002 -0.47% 

Removal 
Simple Index Density 0.433 0.484 -0.054 -11% 
Model-Averaged Adjusted Density 0.435 0.484 -0.050 -10% 
Top Model Adjusted Density 0.435 0.484 -0.050 -10% 

Distance 
Sampling 

Simple Index Density 0.314 0.501 -0.190 -38% 
Model-Averaged Adjusted Density 0.485 0.506 -0.004 -0.8% 
Top Model Adjusted Density 0.486 0.506 0.004 0.8% 
Program Distance Model-Averaged Density 0.383 0.501 -0.115 -23% 
Program Distance Top Model Density 0.383 0.501 -0.115 -23% 
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Table 2.4 continued: Density estimates, true density, and bias of estimates, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).   

  Survey Type Estimator Density 
Estimate 

True 
Density 

(Dp) 

Median 
Bias 

Percent 
Bias 

Sc
en

ar
io

 2
 

Simple Counts Simple Index Density 0.162 0.473 -0.312 -66% 

Double-
Observer 

Simple Index Density 0.193 0.503 -0.307 -61% 
Model-Averaged Adjusted Density 0.193 0.503 -0.307 -61% 
Top Model Adjusted Density 0.193 0.503 -0.307 -61% 
Nichols et al. (2000) Density 0.193 0.503 -0.307 -61% 

Replicated 
Counts 

Simple Index Density 0.169 0.511 -0.347 -68% 
Model-Averaged Adjusted Density 5.71 0.511 7.289 1428% 
Top Model Adjusted Density 6.13 0.511 7.493 1468% 
Bounded Count Density 0.410 0.511 -0.105 -21% 
Maximum Count Density 0.284 0.511 -0.229 -45% 

Removal 
Simple Index Density 0.304 0.484 -0.172 -36% 
Model-Averaged Adjusted Density 0.394 0.484 -0.122 -25% 
Top Model Adjusted Density 0.375 0.484 -0.126 -26% 

Distance 
Sampling 

Simple Index Density 0.144 0.499 -0.348 -70% 
Model-Averaged Adjusted Density 0.171 0.498 -0.328 -66% 
Top Model Adjusted Density 0.170 0.498 -0.328 -66% 
Program Distance Model-Averaged Density 0.174 0.499 -0.325 -65% 
Program Distance Top Model Density 0.173 0.499 -0.326 -65% 



 

73 
 

Table 2.4 continued: Density estimates, true density, and bias of estimates, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).   

  Survey Type Estimator Density 
Estimate 

True 
Density 

(Dp) 

Median 
Bias 

Percent 
Bias 

Sc
en

ar
io

 3
 

Simple Counts Simple Index Density 0.206 0.477 -0.276 -58% 

Double-
Observer 

Simple Index Density 0.241 0.490 -0.248 -51% 
Model-Averaged Adjusted Density 0.246 0.490 -0.243 -50% 
Top Model Adjusted Density 0.246 0.490 -0.243 -50% 
Nichols et al. (2000) Density 0.245 0.490 -0.245 -50% 

Replicated 
Counts 

Simple Index Density 0.224 0.497 -0.275 -55% 
Model-Averaged Adjusted Density 3.07 0.497 0.641 129% 
Top Model Adjusted Density 3.32 0.497 0.378 76% 
Bounded Count Density 0.442 0.497 -0.067 -14% 
Maximum Count Density 0.330 0.497 -0.166 -33% 

Removal 
Simple Index Density 0.340 0.484 -0.132 -27% 
Model-Averaged Adjusted Density 0.388 0.484 -0.102 -21% 
Top Model Adjusted Density 0.379 0.484 -0.104 -22% 

Distance 
Sampling 

Simple Index Density 0.232 0.497 -0.257 -52% 
Model-Averaged Adjusted Density 0.445 0.498 -0.057 -12% 
Top Model Adjusted Density 0.429 0.498 -0.058 -12% 
Program Distance Model-Averaged Density 0.467 0.497 -0.029 -5.9% 
Program Distance Top Model Density 0.467 0.497 -0.029 -5.9% 



 

74 
 

Table 2.4 continued: Density estimates, true density, and bias of estimates, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).   

  Survey Type Estimator Density 
Estimate 

True 
Density 

(Dp) 

Median 
Bias 

Percent 
Bias 

Sc
en

ar
io

 4
 

Simple Counts Simple Index Density 0.091 0.473 -0.390 -83% 

Double-
Observer 

Simple Index Density 0.110 0.503 -0.394 -78% 
Model-Averaged Adjusted Density 0.112 0.503 -0.393 -78% 
Top Model Adjusted Density 0.112 0.503 -0.393 -78% 
Nichols et al. (2000) Density 0.112 0.503 -0.393 -78% 

Replicated 
Counts 

Simple Index Density 0.091 0.511 -0.422 -83% 
Model-Averaged Adjusted Density 4.43 0.511 4.577 896% 
Top Model Adjusted Density 4.48 0.511 2.430 476% 
Bounded Count Density 0.266 0.511 -0.246 -48% 
Maximum Count Density 0.172 0.511 -0.342 -67% 

Removal 
Simple Index Density 0.198 0.481 -0.277 -58% 
Model-Averaged Adjusted Density 0.323 0.481 -0.181 -38% 
Top Model Adjusted Density 0.297 0.481 -0.200 -42% 

Distance 
Sampling 

Simple Index Density 0.102 0.501 -0.389 -78% 
Model-Averaged Adjusted Density 9.67 0.502 -0.298 -59% 
Top Model Adjusted Density 15.8 0.502 -0.292 -58% 
Program Distance Model-Averaged Density 0.217 0.501 -0.272 -54% 
Program Distance Top Model Density 0.217 0.501 -0.272 -54% 
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Table 2.4 continued: Density estimates, true density, and bias of estimates, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).   

  Survey Type Estimator Density 
Estimate 

True 
Density 

(Dp) 

Median 
Bias 

Percent 
Bias 

Sc
en

ar
io

 5
 

Simple Counts Simple Index Density 0.352 0.479 -0.125 -26% 

Double-
Observer 

Simple Index Density 0.420 0.500 -0.083 -16% 
Model-Averaged Adjusted Density 0.420 0.500 -0.083 -16% 
Top Model Adjusted Density 0.420 0.500 -0.083 -16% 
Nichols et al. (2000) Density 0.420 0.500 -0.083 -16% 

Replicated 
Counts 

Simple Index Density 0.357 0.497 -0.138 -28% 
Model-Averaged Adjusted Density 2.78 0.497 0.759 153% 
Top Model Adjusted Density 2.66 0.497 0.644 130% 
Bounded Count Density 0.629 0.497 0.129 26% 
Maximum Count Density 0.491 0.497 -0.011 -2.1% 

Removal 
Simple Index Density 0.437 0.484 -0.049 -10% 
Model-Averaged Adjusted Density 0.440 0.484 -0.047 -10% 
Top Model Adjusted Density 0.440 0.484 -0.047 -10% 

Distance 
Sampling 

Simple Index Density 0.297 0.498 -0.198 -40% 
Model-Averaged Adjusted Density 0.373 0.502 -0.134 -27% 
Top Model Adjusted Density 0.370 0.502 -0.137 -27% 
Program Distance Model-Averaged Density 0.363 0.498 -0.126 -25% 
Program Distance Top Model Density 0.363 0.498 -0.126 -25% 
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Table 2.4 continued: Density estimates, true density, and bias of estimates, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).   

  Survey Type Estimator Density 
Estimate 

True 
Density 

(Dp) 

Median 
Bias 

Percent 
Bias 

Sc
en

ar
io

 6
 

Simple Counts Simple Index Density 0.158 0.471 -0.317 -67% 

Double-
Observer 

Simple Index Density 0.196 0.486 -0.290 -60% 
Model-Averaged Adjusted Density 0.197 0.486 -0.290 -60% 
Top Model Adjusted Density 0.197 0.486 -0.290 -60% 
Nichols et al. (2000) Density 0.196 0.486 -0.290 -60% 

Replicated 
Counts 

Simple Index Density 0.170 0.505 -0.328 -65% 
Model-Averaged Adjusted Density 4.67 0.505 3.340 661% 
Top Model Adjusted Density 5.15 0.505 3.247 642% 
Bounded Count Density 0.394 0.505 -0.117 -23% 
Maximum Count Density 0.278 0.505 -0.210 -42% 

Removal 
Simple Index Density 0.311 0.481 -0.166 -35% 
Model-Averaged Adjusted Density 0.388 0.481 -0.100 -21% 
Top Model Adjusted Density 0.381 0.481 -0.110 -23% 

Distance 
Sampling 

Simple Index Density 0.138 0.500 -0.366 -73% 
Model-Averaged Adjusted Density 0.200 0.501 -0.292 -58% 
Top Model Adjusted Density 0.197 0.501 -0.296 -59% 
Program Distance Model-Averaged Density 0.168 0.500 -0.341 -68% 
Program Distance Top Model Density 0.167 0.500 -0.341 -68% 
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Table 2.4 continued: Density estimates, true density, and bias of estimates, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).   

  Survey Type Estimator Density 
Estimate 

True 
Density 

(Dp) 

Median 
Bias 

Percent 
Bias 

Sc
en

ar
io

 7
 

Simple Counts Simple Index Density 0.182 0.477 -0.305 -64% 

Double-
Observer 

Simple Index Density 0.214 0.494 -0.269 -54% 
Model-Averaged Adjusted Density 0.218 0.494 -0.266 -54% 
Top Model Adjusted Density 0.218 0.494 -0.267 -54% 
Nichols et al. (2000) Density 0.218 0.494 -0.267 -54% 

Replicated 
Counts 

Simple Index Density 0.200 0.504 -0.294 -58% 
Model-Averaged Adjusted Density 1.48 0.504 0.306 61% 
Top Model Adjusted Density 1.39 0.504 0.320 63% 
Bounded Count Density 0.423 0.504 -0.081 -16% 
Maximum Count Density 0.308 0.504 -0.192 -38% 

Removal 
Simple Index Density 0.305 0.484 -0.171 -35% 
Model-Averaged Adjusted Density 0.353 0.484 -0.120 -25% 
Top Model Adjusted Density 0.353 0.484 -0.124 -26% 

Distance 
Sampling 

Simple Index Density 0.215 0.506 -0.290 -57% 
Model-Averaged Adjusted Density 0.476 0.508 -0.056 -11% 
Top Model Adjusted Density 0.489 0.508 -0.035 -6.8% 
Program Distance Model-Averaged Density 0.478 0.506 -0.019 -3.8% 
Program Distance Top Model Density 0.481 0.506 -0.016 -3.1% 
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Table 2.4 continued: Density estimates, true density, and bias of estimates, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).   

  Survey Type Estimator Density 
Estimate 

True 
Density 

(Dp) 

Median 
Bias 

Percent 
Bias 

Sc
en

ar
io

 8
 

Simple Counts Simple Index Density 0.080 0.473 -0.396 -84% 

Double-
Observer 

Simple Index Density 0.097 0.494 -0.382 -77% 
Model-Averaged Adjusted Density 0.100 0.494 -0.377 -76% 
Top Model Adjusted Density 0.100 0.494 -0.376 -76% 
Nichols et al. (2000) Density 0.098 0.494 -0.378 -76% 

Replicated 
Counts 

Simple Index Density 0.084 0.506 -0.417 -83% 
Model-Averaged Adjusted Density 3.92 0.506 1.048 207% 
Top Model Adjusted Density 4.19 0.506 0.687 136% 
Bounded Count Density 0.256 0.506 -0.238 -47% 
Maximum Count Density 0.162 0.506 -0.338 -67% 

Removal 
Simple Index Density 0.175 0.481 -0.306 -64% 
Model-Averaged Adjusted Density 0.274 0.481 -0.233 -48% 
Top Model Adjusted Density 0.272 0.481 -0.235 -49% 

Distance 
Sampling 

Simple Index Density 0.092 0.507 -0.413 -81% 
Model-Averaged Adjusted Density 0.309 0.505 -0.290 -57% 
Top Model Adjusted Density 0.251 0.505 -0.311 -62% 
Program Distance Model-Averaged Density 0.243 0.507 -0.272 -54% 
Program Distance Top Model Density 0.269 0.507 -0.246 -49% 
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Table 2.5: Pearson correlation coefficients (ρ) for density estimators, scenarios 1-8 (Table 2.1).  Each density estimator was compared 

to true density Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).  Upper and lower limits of a 95% 

confidence interval (CI) were calculated with a Fisher Z-transformation (Zou 2007).   

  
Survey Type Estimator 

Survey 
Radius (m) ρ Dp 

Upper 
CI 

Lower 
CI 

Sc
en

ar
io

 1
 

Simple Counts Simple Index Density 150 0.890 0.947 0.780 

Double-Observer 

Simple Index Density 150 0.878 0.941 0.757 
Model-Averaged Adjusted Density 150 0.874 0.939 0.751 
Top Model Adjusted Density 150 0.873 0.938 0.747 
Nichols et al. (2000) Density 150 0.878 0.940 0.756 

Replicated Counts 

Simple Index Density 150 0.901 0.952 0.800 
Model-Averaged Adjusted Density 150 -0.074 0.294 -0.423 
Top Model Adjusted Density 150 0.205 0.527 -0.167 
Bounded Count Density 150 0.801 0.901 0.619 
Maximum Count Density 150 0.890 0.947 0.779 

Removal 
Simple Index Density 150 0.916 0.960 0.829 
Model-Averaged Adjusted Density 150 0.909 0.956 0.817 
Top Model Adjusted Density 150 0.910 0.957 0.818 

Distance Sampling 

Simple Index Density 150 0.919 0.961 0.836 
Simple Index Density 410 0.930 0.966 0.856 
Model-Averaged Adjusted Density 410 0.766 0.883 0.561 
Top Model Adjusted Density 410 0.704 0.849 0.460 
Program Distance Model-Averaged Density 410 0.618 0.800 0.331 
Program Distance Top Model Density 410 0.618 0.800 0.331 
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Table 2.5 continued: Pearson correlation coefficients (ρ) for density estimators, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).  Upper and lower limits of a 95% 

confidence interval (CI) were calculated with a Fisher Z-transformation (Zou 2007).   

  
Survey Type Estimator 

Survey 
Radius (m) ρ Dp 

Upper 
CI 

Lower 
CI 

Sc
en

ar
io

 2
 

Simple Counts Simple Index Density 150 0.785 0.893 0.592 

Double-Observer 

Simple Index Density 150 0.463 0.706 0.124 
Model-Averaged Adjusted Density 150 0.490 0.723 0.158 
Top Model Adjusted Density 150 0.491 0.723 0.159 
Nichols et al. (2000) Density 150 0.463 0.706 0.124 

Replicated Counts 

Simple Index Density 150 0.764 0.882 0.558 
Model-Averaged Adjusted Density 150 -0.239 0.132 -0.552 
Top Model Adjusted Density 150 -0.272 0.098 -0.576 
Bounded Count Density 150 0.623 0.803 0.338 
Maximum Count Density 150 0.741 0.869 0.520 

Removal 
Simple Index Density 150 0.824 0.913 0.660 
Model-Averaged Adjusted Density 150 0.490 0.722 0.157 
Top Model Adjusted Density 150 0.447 0.695 0.103 

Distance Sampling 

Simple Index Density 150 0.830 0.916 0.669 
Simple Index Density 406 0.881 0.942 0.762 
Model-Averaged Adjusted Density 406 0.177 0.505 -0.195 
Top Model Adjusted Density 406 0.212 0.532 -0.160 
Program Distance Model-Averaged Density 406 0.791 0.896 0.602 
Program Distance Top Model Density 406 0.791 0.896 0.602 
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Table 2.5 continued: Pearson correlation coefficients (ρ) for density estimators, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).  Upper and lower limits of a 95% 

confidence interval (CI) were calculated with a Fisher Z-transformation (Zou 2007).   

  
Survey Type Estimator 

Survey 
Radius (m) ρ Dp 

Upper 
CI 

Lower 
CI 

Sc
en

ar
io

 3
 

Simple Counts Simple Index Density 150 0.691 0.842 0.440 

Double-Observer 

Simple Index Density 150 0.724 0.860 0.491 
Model-Averaged Adjusted Density 150 0.732 0.864 0.504 
Top Model Adjusted Density 150 0.707 0.850 0.465 
Nichols et al. (2000) Density 150 0.736 0.866 0.511 

Replicated Counts 

Simple Index Density 150 0.557 0.764 0.247 
Model-Averaged Adjusted Density 150 0.180 0.507 -0.193 
Top Model Adjusted Density 150 0.168 0.498 -0.204 
Bounded Count Density 150 0.513 0.737 0.187 
Maximum Count Density 150 0.615 0.798 0.327 

Removal 
Simple Index Density 150 0.741 0.869 0.519 
Model-Averaged Adjusted Density 150 0.505 0.732 0.176 
Top Model Adjusted Density 150 0.406 0.668 0.053 

Distance Sampling 

Simple Index Density 140 0.674 0.832 0.414 
Simple Index Density 150 0.538 0.752 0.220 
Model-Averaged Adjusted Density 140 0.556 0.763 0.244 
Top Model Adjusted Density 140 0.584 0.780 0.283 
Program Distance Model-Averaged Density 140 0.627 0.805 0.345 
Program Distance Top Model Density 140 0.627 0.805 0.345 
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Table 2.5 continued: Pearson correlation coefficients (ρ) for density estimators, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).  Upper and lower limits of a 95% 

confidence interval (CI) were calculated with a Fisher Z-transformation (Zou 2007).   

  
Survey Type Estimator 

Survey 
Radius (m) ρ Dp 

Upper 
CI 

Lower 
CI 

Sc
en

ar
io

 4
 

Simple Counts Simple Index Density 150 0.609 0.795 0.319 

Double-Observer 

Simple Index Density 150 0.169 0.499 -0.204 
Model-Averaged Adjusted Density 150 0.190 0.515 -0.183 
Top Model Adjusted Density 150 0.192 0.517 -0.180 
Nichols et al. (2000) Density 150 0.173 0.502 -0.199 

Replicated Counts 

Simple Index Density 150 0.265 0.571 -0.105 
Model-Averaged Adjusted Density 150 0.070 0.419 -0.298 
Top Model Adjusted Density 150 0.019 0.377 -0.344 
Bounded Count Density 150 0.444 0.693 0.099 
Maximum Count Density 150 0.436 0.688 0.090 

Removal 
Simple Index Density 150 0.719 0.857 0.484 
Model-Averaged Adjusted Density 150 0.208 0.529 -0.164 
Top Model Adjusted Density 150 0.193 0.518 -0.179 

Distance Sampling 

Simple Index Density 138 0.306 0.600 -0.061 
Simple Index Density 150 0.401 0.665 0.048 
Model-Averaged Adjusted Density 138 0.013 0.371 -0.349 
Top Model Adjusted Density 138 0.108 0.451 -0.263 
Program Distance Model-Averaged Density 138 0.347 0.629 -0.015 
Program Distance Top Model Density 138 0.347 0.629 -0.015 
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Table 2.5 continued: Pearson correlation coefficients (ρ) for density estimators, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).  Upper and lower limits of a 95% 

confidence interval (CI) were calculated with a Fisher Z-transformation (Zou 2007).   

  
Survey Type Estimator 

Survey 
Radius (m) ρ Dp 

Upper 
CI 

Lower 
CI 

Sc
en

ar
io

 5
 

Simple Counts Simple Index Density 150 0.871 0.937 0.743 

Double-Observer 

Simple Index Density 150 0.773 0.886 0.572 
Model-Averaged Adjusted Density 150 0.774 0.887 0.573 
Top Model Adjusted Density 150 0.773 0.886 0.572 
Nichols et al. (2000) Density 150 0.773 0.886 0.572 

Replicated Counts 

Simple Index Density 150 0.904 0.954 0.807 
Model-Averaged Adjusted Density 150 0.045 0.398 -0.321 
Top Model Adjusted Density 150 0.073 0.422 -0.295 
Bounded Count Density 150 0.838 0.920 0.684 
Maximum Count Density 150 0.901 0.952 0.801 

Removal 
Simple Index Density 150 0.912 0.957 0.821 
Model-Averaged Adjusted Density 150 0.904 0.954 0.806 
Top Model Adjusted Density 150 0.904 0.954 0.807 

Distance Sampling 

Simple Index Density 150 0.922 0.962 0.840 
Simple Index Density 372 0.889 0.946 0.778 
Model-Averaged Adjusted Density 372 0.704 0.849 0.460 
Top Model Adjusted Density 372 0.713 0.854 0.475 
Program Distance Model-Averaged Density 372 0.817 0.910 0.648 
Program Distance Top Model Density 372 0.817 0.910 0.648 
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Table 2.5 continued: Pearson correlation coefficients (ρ) for density estimators, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).  Upper and lower limits of a 95% 

confidence interval (CI) were calculated with a Fisher Z-transformation (Zou 2007).   

  
Survey Type Estimator 

Survey 
Radius (m) ρ Dp 

Upper 
CI 

Lower 
CI 

Sc
en

ar
io

 6
 

Simple Counts Simple Index Density 150 0.403 0.667 0.050 

Double-Observer 

Simple Index Density 150 0.670 0.830 0.409 
Model-Averaged Adjusted Density 150 0.662 0.825 0.396 
Top Model Adjusted Density 150 0.661 0.825 0.395 
Nichols et al. (2000) Density 150 0.670 0.830 0.409 

Replicated Counts 

Simple Index Density 150 0.679 0.835 0.422 
Model-Averaged Adjusted Density 150 0.127 0.466 -0.245 
Top Model Adjusted Density 150 0.087 0.434 -0.282 
Bounded Count Density 150 0.347 0.629 -0.015 
Maximum Count Density 150 0.537 0.752 0.219 

Removal 
Simple Index Density 150 0.827 0.915 0.664 
Model-Averaged Adjusted Density 150 0.506 0.733 0.178 
Top Model Adjusted Density 150 0.445 0.694 0.101 

Distance Sampling 

Simple Index Density 150 0.864 0.934 0.731 
Simple Index Density 372 0.832 0.917 0.673 
Model-Averaged Adjusted Density 372 0.588 0.782 0.289 
Top Model Adjusted Density 372 0.535 0.751 0.217 
Program Distance Model-Averaged Density 372 0.765 0.882 0.559 
Program Distance Top Model Density 372 0.765 0.882 0.559 
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Table 2.5 continued: Pearson correlation coefficients (ρ) for density estimators, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).  Upper and lower limits of a 95% 

confidence interval (CI) were calculated with a Fisher Z-transformation (Zou 2007).   

  
Survey Type Estimator 

Survey 
Radius (m) ρ Dp 

Upper 
CI 

Lower 
CI 

Sc
en

ar
io

 7
 

Simple Counts Simple Index Density 150 0.608 0.794 0.318 

Double-Observer 

Simple Index Density 150 0.614 0.798 0.325 
Model-Averaged Adjusted Density 150 0.614 0.798 0.325 
Top Model Adjusted Density 150 0.615 0.798 0.327 
Nichols et al. (2000) Density 150 0.611 0.796 0.321 

Replicated Counts 

Simple Index Density 150 0.806 0.904 0.628 
Model-Averaged Adjusted Density 150 0.079 0.427 -0.290 
Top Model Adjusted Density 150 -0.028 0.336 -0.384 
Bounded Count Density 150 0.678 0.834 0.420 
Maximum Count Density 150 0.766 0.883 0.560 

Removal 
Simple Index Density 150 0.758 0.878 0.547 
Model-Averaged Adjusted Density 150 0.584 0.780 0.284 
Top Model Adjusted Density 150 0.524 0.744 0.201 

Distance Sampling 

Simple Index Density 130 0.507 0.733 0.180 
Simple Index Density 150 0.622 0.803 0.338 
Model-Averaged Adjusted Density 130 0.383 0.653 0.027 
Top Model Adjusted Density 130 0.381 0.652 0.024 
Program Distance Model-Averaged Density 130 0.621 0.802 0.336 
Program Distance Top Model Density 130 0.621 0.802 0.336 
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Table 2.5 continued: Pearson correlation coefficients (ρ) for density estimators, scenarios 1-8 (Table 2.1).  Each density estimator was 

compared to Dp (the density of birds present at the beginning of the survey, Dp = N* ps pp / A).  Upper and lower limits of a 95% 

confidence interval (CI) were calculated with a Fisher Z-transformation (Zou 2007).   

  
Survey Type Estimator 

Survey 
Radius (m) ρ Dp 

Upper 
CI 

Lower 
CI 

Sc
en

ar
io

 8
 

Simple Counts Simple Index Density 150 0.513 0.737 0.187 

Double-Observer 

Simple Index Density 150 0.500 0.729 0.170 
Model-Averaged Adjusted Density 150 0.533 0.750 0.214 
Top Model Adjusted Density 150 0.541 0.754 0.224 
Nichols et al. (2000) Density 150 0.496 0.727 0.165 

Replicated Counts 

Simple Index Density 150 0.015 0.373 -0.347 
Model-Averaged Adjusted Density 150 0.194 0.518 -0.179 
Top Model Adjusted Density 150 0.170 0.500 -0.203 
Bounded Count Density 150 0.067 0.417 -0.300 
Maximum Count Density 150 0.059 0.411 -0.308 

Removal 
Simple Index Density 150 0.730 0.863 0.501 
Model-Averaged Adjusted Density 150 0.173 0.502 -0.200 
Top Model Adjusted Density 150 0.132 0.470 -0.240 

Distance Sampling 

Simple Index Density 135 0.413 0.673 0.062 
Simple Index Density 150 0.426 0.681 0.077 
Model-Averaged Adjusted Density 135 -0.006 0.355 -0.365 
Top Model Adjusted Density 135 0.101 0.445 -0.269 
Program Distance Model-Averaged Density 135 0.417 0.676 0.066 
Program Distance Top Model Density 135 0.417 0.676 0.066 
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Chapter III 

Factors Affecting Detection Probability and Effective Area Surveyed for Grassland Bird 

Point Counts 

 

Summary: I conducted simulated bird surveys using recorded bird songs to assess factors 

affecting detection probability in grassland bird point counts.  I used mixed effects 

logistic regression models to estimate factors affecting detection probability and to 

estimate and visualize the variation in the area around the observer where birds can be 

perceived (the perceptible area).  I conducted simulated surveys with 8926 binary 

opportunities for detection in Minnesota grasslands in 2011 and 2012.  Species, distance 

to the observer, wind speed and direction, observer, and density of vegetation all affected 

detection of recorded bird songs.  Species had a strong effect; the size of the predicted 

perceptible area around the observer differed by more than 10-fold among species.  Wind 

also had a strong effect on detection.  As wind speed increased, probability of detection 

downwind of the observer was reduced and the perceptible area around the observer 

became smaller and more asymmetrical.  The effective distance at which an observer is 

more likely to detect a bird than to not detect it may differ among species and angles to 

the wind, even within the same survey.  I recommend using fixed-radius counts for bird 

surveys in grasslands and reducing the variation in detection probability by standardizing 

surveys across wind conditions.   

             

Point counts are commonly used in bird surveys to achieve a number of objectives, 

including estimating abundance, population monitoring, and evaluating factors affecting 

bird populations (Ralph et al. 1995).  Point counts are ubiquitous in biological 

monitoring, yet there is significant debate regarding how count information can best be 

used.  Of particular importance is the role played by detection probability.  The expected 

value of the count (E(C)) for any point is equal to the product of the number of birds 
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present (N) and the probability of detection (p; Nichols et al. 2009).  Detection 

probability can be affected by a wide variety of factors (Verner 1985), including species 

(Diefenbach et al. 2003), survey elements (length of survey, survey type; Dawson et al. 

1995, Bollinger et al. 1988, Cimprich 2009), behavioral factors (singing rate, volume, and 

motion of birds; Wilson and Bart 1985, McShea and Rappole 1997, Alldredge 2007b), 

environmental factors (precipitation, wind speed, ambient noise, time of day, time within 

the breeding season, even tides; Robbins 1981a, Wilson and Bart 1985, Zembal and 

Massey 1987, Rosenberg and Blancher 2005, Pacifici et al. 2008), and observer effects 

(hearing ability, skill, distance from the source; Sauer et al. 1994, Alldredge 2007b).  

Over the last 20 years, great effort has gone into crafting methods to account for detection 

probability in bird surveys (“adjustment methods”), such as double observer surveys 

(Nichols et al. 2000), replicated samples (Royle 2004), distance sampling (Burnham et al. 

1980, Buckland et al. 1993), and removal (Farnsworth et al. 2002) or time-of-detection 

(Alldredge et al. 2007a) methods. 

A component of detection probability is perceptibility, the probability of detecting a bird, 

given that it is present at the site and makes itself available for detection during the 

survey (e.g, it sings or is visible).  Perceptibility decreases as a function of increased 

distance between the observer and the bird, which is the basis for distance sampling 

(Burnham et al. 1980, Buckland et al. 1993).  Variation in perceptibility may also affect 

the distance at which birds are detected.  I define the effective radius as the distance at 

which an observer is more likely to detect a bird than to not detect it (i.e, probability of 

detection  ≥ 0.5).  For example, 2 observers with different hearing abilities may have 

different effective radii.  Observers with different effective radii have different areas in 

which they can effectively detect birds, or perceptible areas.   

How variation in the effective radius affects an analysis depends on the analysis method 

used.  In unlimited-distance point counts, observers record all birds detected, but for 

fixed-radius point counts observers censor detections at a certain radius (or record birds 

in “bands” of fixed radii; Ralph et al. 1993).  Survey radii selected for fixed-radius counts 

vary, although 50 m is often used (Ralph et al. 1993, Ralph et al. 1995, Matsuoka et al. 
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2014).  It is unclear how an observer’s effective radius and perceptible area compares to 

the survey radius and area theoretically surveyed for fixed-radius counts.  For some 

analysis methods, such as using counts as a index to abundance, standardizing the survey 

radius or distance bands across surveys has an implicit assumption that detection within 

those bands will be constant across surveys.  Even less clear is how the area surveyed 

differs among unlimited-radius counts. 

Despite the emphasis on the importance of detectability in bird surveys, there has been 

relatively little research to quantify factors affecting detection probability in the field due 

to the difficulty of measuring factors affecting detectability of wild birds.  Calculating 

detectability is simple if true populations are known, but that is seldom, if ever, the case 

in the field.  Simons et al. (2007) described a multi-speaker system to broadcast bird 

songs to multiple observers, thus simulating bird surveys with known populations.  

Alldredge et al. (2007b) used the system to investigate effects on detectability in mature 

bottomland hardwood and mixed pine-hardwood forest, estimating effects of singing rate, 

species, observer, and distance, and interactions among main effects.  Pacifici et al. 

(2008) used a similar setup to estimate effects of habitat type (deciduous forest vs. mixed 

pine-hardwood), presence/absence of foliage, ambient noise, observer, and distance.  

These studies remain the most intensive investigations to date.   

Grasslands have markedly different structure and species composition than the forests 

examined in previous studies of factors affecting detectability (Alldredge et al. 2007b, 

Pacifici et al. 2008).  Grassland birds across North America have experienced widespread 

population declines for decades, increasing conservation concern for the group (Peterjohn 

and Sauer 1999).  Making population goals or planning conservation actions to benefit 

grassland bird populations requires an accurate assessment of population status and 

trends.  Inferences about populations can be affected by the type of analysis method used 

to estimate abundance (Chapters 1 and 2).  Selecting an analysis method to provide good 

inferences about abundance requires an understanding of the sources of variation in 

detection in a system (Chapter 2).  An understanding of factors affecting detectability in 
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grassland bird surveys would guide and improve bird survey methodology for an 

increasingly imperiled group.   

To address these information needs, my objectives in this study were to (1) assess factors 

affecting the detection probability of recorded bird songs in a grassland setting, and (2) 

estimate and visualize the variation in the area around the observer where birds can be 

perceived (the perceptible area) in relation to factors affecting detection probability.  

Information gained would improve grassland bird surveyors’ ability to assess the effect of 

variation in detection probability in their system, as well as better understand the true size 

of the area surveyed. 

 

Study Area 

In 2011, I carried out field work on Waterfowl Production Areas (WPAs) in the Morris 

Wetland Management District near Morris, Minnesota.  Land cover in this region is 

highly fragmented, with agriculture (primarily corn and soybeans) dominant.  

Historically, this region was part of the tallgrass prairie ecosystem that stretched from 

Canada to Texas, though modern prairie in Minnesota has declined an estimated 99.6% 

from historical area (Samson and Knopf 1994).  WPAs are protected for the dual purpose 

of waterfowl production and public recreation opportunities, including hunting (Morris 

Wetland Management District 2011).  WPAs usually include a wetland for adult 

waterfowl and broods in addition to upland habitat for nesting (Morris Wetland 

Management District 2011).  This study focused on upland prairie, though wetlands were 

included incidentally.  In 2012, we performed field work on land owned by the Belwin 

Conservancy near Afton, Minnesota, Carver Park Reserve near Victoria, Minnesota and 

Murphy-Hanrehan Park Reserve near Burnsville, Minnesota.  These sites were managed 

as grasslands to provide habitat for wildlife and for recreation.   

 

Methods 
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Field Work 

In 2011, I selected survey sites in the Morris Wetland Management District within a 30-

km radius of Morris, Minnesota in Pope, Grant, Stevens, and Swift counties, with 

supplemental sites up to 70 km from Morris to provide a wider diversity of habitat 

conditions.  In 2012, I selected survey sites within a 30-mile radius of the St. Paul 

campus of the University of Minnesota.  I chose sites using aerial photography (U.S. 

Department of Agriculture 2010).  Eligible sites had a grassland area with at least a 150-

m radius that did not intersect with roads, developed land, or other manmade structures.  

Sites included ≥ 50% grassland.  Site perimeters were within 200 m of a road to ensure 

access, but were located ≥ 500 m from highways to reduce noise interference.  Roads 

adjacent to sites were seldom traveled, with passing traffic rates under 10 automobiles per 

hour.  I eliminated actively grazed sites, and sites with elevation changes > 10 m and sites 

with tree cover > 20%.  I selected survey sites to provide a wide range of habitat 

conditions, from lightly vegetated, recently grazed or mown sites to heavily vegetated, 

shrubby sites.   

I surveyed 35 sites alone in 2011.  Four observers (including myself) performed surveys 

simultaneously at 12 sites in 2012 (Table 3.1).  Two observers in 2012 had experience 

identifying grassland bird songs in the field and two observers did not, although they had 

previously identified songs of other species.  I classified the former 2 observers as 

experienced observers and the latter 2 as inexperienced observers.  We performed 

surveys under a variety of wind conditions, with winds recorded from 0-9 ms-1.  We 

performed all surveys in autumn to minimize the presence of real singing birds. 

We performed surveys at locations within each survey site as follows. Surveys took place 

at “sampling points” located along each of 6 linear “sampling legs” (Figure 3.1).  

Sampling points were located  at 30, 60, 90, 120, and 150 m from the central point (as 

measured with a GPS).  Sampling legs radiated from the central point, spaced 60º apart 

(Figure 3.1).  The first leg of each site was oriented directly into the wind, or due north 

when there was no detectable wind.  In 2011, I conducted surveys at all 6 legs (30 
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sampling points were surveyed per site).  In 2012, we conducted surveys at only 4 legs 

(legs at either 60º and 120º or 240º and 300º were eliminated as redundant, 20 sampling 

points were surveyed per site).  I eliminated sampling points if obstacles (ditches, deep 

water, heavy forest) prohibited observer access, but such eliminations were rare.  When 

suitable grassland habitat was adjacent to non-suitable habitat (forested or wetland 

habitat), we performed surveys at suitable legs and omitted surveys of non-suitable legs.  

We did not perform any surveys at a site if fewer than half of legs could be surveyed. 

In 2011, I broadcast recorded bird songs from the central point of each survey site with 

an Apple iPod music player connected to Poly-Planar MA4055 marine speakers via a 

Poly-Planar ME-60 amplifier.  I positioned the speakers at the beginning of surveys for 

each survey leg to broadcast toward the observer.  In 2012, I replaced the speakers with a 

TIC GS 5P OmniSpeaker, which broadcasts 360º, to allow simultaneous listening by 

observers in multiple orientations.  I mounted all speakers such that they stood at 1-m 

height during surveys (roughly representative of perch height in grasslands).   

I used song recordings from the Macaulay Library at Cornell University for 10 species 

that inhabit grasslands in Minnesota:  horned lark (Eremophila alpestris, HOLA, 

Macaulay Library 1988b), bobolink (Dolichonyx oryzivorus, BOBO, Macaulay Library 

1988a), eastern meadowlark (Sturnella magna, EAME, Macaulay Library 1998), vesper 

sparrow (Pooecetes gramineus, VESP, Macaulay Library 1988e), savannah sparrow 

(Passerculus sandwichensis, SAVS, Macaulay Library 1988d), grasshopper sparrow 

(Ammodramus savannarum, GRSP, 1990a), Henslow's sparrow (Ammodramus henslowii, 

HESP, 1992b), Le Conte's sparrow (Ammodramus leconteii, LCSP, 1988c), dickcissel 

(Spiza Americana, DICK, 1988f), and sedge wren (Cistothorus platensis, SEWR, 

Macaulay Library 1990b).  I trimmed song recordings in .WAV format to 6-second files 

using Program Audacity (open source, http://audacity.sourceforge.net).  To ensure that all 

songs were played at the same volume regardless of species, I adjusted song volume 

using the function Amplify in Program Audacity.  Selected songs produced a maximum 

volume of 90 dB (± 1.5 dB; Brackenbury 1979, Simons et al. 2007) when measured 1 m 

from the speaker system using a Martel Electronics model 325 mini sound level meter 
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(Derry, NH, http://www.martelcorp.com).  Within years, once I achieved consistent 

volume, I used the same 10 songs for all surveys.  I calibrated song volume at each 

survey site to 90 dB at 1 m, measured with the sound level meter positioned upwind of 

the speakers. 

Each simulated survey at a sampling point consisted of a 1-minute listening period during 

which the speaker system played a playlist of 10, 6-second audio files.  Each audio file 

contained either a bird song or silence, with 1 to 10 songs played in each sampling event.  

I randomly selected number of songs from a uniform distribution rounded to the nearest 

integer (1-10) and assigned species of songs randomly, with replacement, from a list of 

10 species.  I ordered songs and pauses randomly, but eliminated playlists with 

consecutive songs of the same species to avoid confusion.  I constructed playlists in 

Program R (R Development Core Team, Vienna, Austria, http://www.R-project.org) and 

played with Program iTunes (Apple Inc., Cupertino, CA, http://www.apple.com/itunes). 

Surveys began with all observers at the site’s center point.  I triggered playback of 

playlists for the first leg and observers walked from the central point to their first 

sampling points, 30 m away along a survey leg.  I always began by surveying the leg 

directly upwind.  Other observers (if present) simultaneously performed surveys along 

legs in different directions.  Each observer performed one survey at each sampling point 

along each survey leg once per site.   

Playlists played automatically throughout a leg, with walking time (94 seconds in 2011, 

60 seconds in 2012) allowed before each 1-minute listening period.  The beginning of the 

listening period was signaled by loud beeps sounded at 9 seconds before the listening 

period and immediately before the listening period. The observers wrote down all 

detected bird songs heard during the listening periods, also noting if extraneous noise 

interfered with their observation ability.  During each listening period I measured average 

wind speed over a 10-second period using a Kestrel 2000 anemometer (Birmingham, 

MI).  There was no audible warning at the end of the listening period, requiring the 

observers to time the 1-minute interval.  When listening periods at all 5 sampling points 
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of the first leg were complete, the observers returned to the central point to begin surveys 

for subsequent survey legs. 

I measured habitat characteristics using 2-m profile boards divided into 0.33-m sections 

by alternating black and white paint (Nudds 1977).  I staked boards into the ground 1 m 

to the left or right of each sampling point and 1 m from the central point.  We took care 

not to trample vegetation in front of each board.  I estimated horizontal visibility for each 

profile board stratum to the nearest 5% from 30 m.  I intended horizontal visibility as an 

index of vegetation density that might affect sound attenuation between the speakers and 

the observer.  The horizontal visibility estimates for the 30-m sampling point, for 

example, were taken with the observer standing at 30 m from the central point and 

estimating percent visibility of the profile board stationed at the central point.  I 

calculated a habitat index (H) from the horizontal visibility estimates, where H = Σ (% 

stratum visibility × midpoint of stratum (m)) across all 6 strata, with a range 0 to 6. When 

wind was too extreme for profile boards to be used, we recorded song detections during 

listening periods as usual and I recorded habitat conditions on a calmer day, no more than 

1 week later.   

Analysis 

I analyzed factors affecting detection with mixed effects logistic regression models, using 

correct detection of a broadcast song as the binary response variable.  To allow for an 

iterative model selection process, I divided the data into 3 groups.  I performed initial 

analyses using 25 randomly selected sites from 2011 (Group 1), withholding data from 10 

sites for validation purposes (Group 2).  Data from 2012 (12 sites) constituted Group 3.  I 

included survey site as a random effect and analyzed each species separately.   

For Group 1 data analysis, I rescaled all input variables via mean centering and dividing 

by 2 standard deviations (Gelman 2007).  Fixed effects included wind speed in ms-1 (S), 

wind speed squared (S2), a wind index [W, where W = cos(180º - wind direction) × S, 

with range S to –S], distance from the sound source to the observer in meters (D), 

distance from the sound source to the observer squared (D2), habitat index (H), and 
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observer-indicated binary variables for human-made noise (M), bird noise from real birds 

(B), and other noise (N).  I created a model set of 197 logistic regression models with 0 to 

6 covariates each.  I created the set of models by including all combinations of covariates 

that fit the following rules: 

(1) A model could include S, S2, both, or neither.   

(2) A model could include D or D2, or neither. 

(3) A model could include M or B or N or no noise covariate. 

(4) A model could include H or not. 

(5) A model could include W or not. 

(6) All models included the random effect of survey site. 

I ranked models by Akaike Information Criterion (AIC) values and calculated species-

specific variable importance weights (VIWi) for each fixed effect, where VIWi = Σ AIC 

weights for models in which fixed effect i appeared (Burnham and Anderson 2002).  

Average VIWi was calculated as the mean of species-specific VIWi.  I designated fixed 

effects with mean VIWi ≥ 0.5 as “important” predictors of detection and designated fixed 

effects with mean VIWi < 0.5 as “unimportant” fixed effects.  I did not include 

unimportant fixed effects in further model selection steps. 

I estimated important fixed effects using Group 1 data, predicted detection for Group 2 

data, and evaluated the performance of predictions.  I estimated important fixed effects 

using 6 mixed effects models containing the important fixed effects (D, W, S, S2, and H) 

and the random effect of survey site.  The model set included all combinations of 

covariates that fit the following rules:  

(1) All prediction models included D and W.   

(2) A model could include S, S and S2, or neither. 

(3) A model could include H or not. 

(4) All models included the random effect of survey site. 
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For each detection opportunity, I assigned a predicted detection = 1 if the predicted 

probability of detection was ≥ 0.5 and predicted detection = 0 if the predicted probability 

of detection was < 0.5.  I then calculated the proportion of correct predictions by model 

and species.  I also examined model-predicted probability of detection and actual 

detections as functions of distance and wind index to assess model fit.   

My next objective was to determine the best way to model the effect of observer for 

Group 3 data.  I created a model set of 18 models, using the 6 mixed effects models used 

in the previous step and adding either O, a factor with 4 levels (1 for each observer); E, a 

factor with 2 levels (1 indicating an experienced observer and 0 indicating an 

inexperienced observer); or neither observer effect.  Within each species, I ranked the 18 

models by AIC and calculated VIWi for each observer effect (O, E, and no effect). 

The final model set therefore contained models with the following rules: 

(1) All prediction models included D and W.   

(2) A model could include S, S and S2, or neither. 

(3) A model could include H or not. 

(4) All models included O or E, depending on species. 

(5) All models included the random effect of survey site. 

I used the final model set to estimate species-specific fixed and random effects for factors 

affecting detection using all data (Groups 1, 2, and 3).  I ranked models by AIC within 

each species and calculated model weights.  For observer effects, I used a simple coding 

contrast matrix (UCLA Statistical Consulting Group 2011), which produces an intercept 

that represents the grand mean (mean of group means) across the observer categories.  

The reported intercepts therefore do not represent the intercept for the reference observer 

(as with a dummy variable contrast) but rather the intercept for the average observer.  I 

rescaled H via mean centering and dividing by 2 standard deviations (Gelman 2007) so 

that using a covariate value H = 0 referred to average horizontal visibility conditions.   
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Using fixed effects estimates from the final model set, I predicted and graphed species-

specific, model-averaged probability of detection across a 1 x 1 m grid of points 

surrounding a hypothetical observer (located at the origin).  I report predicted probability 

of detection for 4 wind speeds: 0 ms-1, 1 ms-1, 2.5 ms-1, and 4.5 ms-1.  These wind speeds 

correspond to Beaufort numbers 0, 1, 2, and 3, respectively.  The instructions for the 

Breeding Bird Survey recommend performing bird surveys when conditions warrant a 

Beaufort Number ≤ 2 and prohibits surveys if conditions warrant a Beaufort Number > 3 

(Patuxent Wildlife Research Center 1998).  For each wind speed examined, I also 

calculated species-specific perceptible areas, which I defined as the area around the 

observer for which the predicted probability of detection was ≥ 0.5.   

 

Results 

We surveyed sites from 9 September to 11 October 2011 and from 7 September to 21 

October 2012.  There were 8926 binary opportunities for detection across the 2-year 

study (Table 3.1).   

For the analysis of Group 1 data, best-supported models varied among species for the 197 

logistic regression models tested.  Covariates D, W, S, S2, and H had mean VIWi ≥ 0.5 

and were considered important predictors of detection (Table 3.2).  Covariates D and W 

had highest VIWi (Table 3.2) and appeared in all models with ∆AIC < 5 for all species.  I 

therefore included D and W in all prediction models for later model sets. 

The 6 models using fixed effects estimates from Group 1 data to predict detection for 

Group 2 data all performed well; the proportion of correct predictions had range 0.680 – 

0.900 across species and models (Table 3.3).  Variation in prediction performance was 

greater among species than within models (Table 3.3).  EAME was the most predictable 

species, with range 86.2% – 90.0% correctly predicted detections among the 6 models.  

HESP was the least predictable, with 68.2% - 73.4% correctly predicted detections.  

LCSP had the lowest proportion of predicted detections (range 0.096 – 0.125) and EAME 

had the highest proportion of predicted detections (range 0.862 – 0.900).  Visual 
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examination of the distribution of incorrect predictions in reference to covariates did not 

show clusters of failed predictions, thus indicating good model fit. 

For the analysis of Group 3 data, models with the observer effect O had the majority of 

model weight (higher VIWi) for species BOBO, GRSP, and SEWR (Table 3.4).  For all 

other species, models with the observer effect E had the majority of model weight.  For 

species SAVS, summed model weights were nearly equal for each observer effect, but 

models including E had lower ΔAIC than similar models including O.  I therefore 

included observer effect O in prediction models for BOBO, GRSP, and SEWR and 

included observer effect E in prediction models for all other species. 

I estimated fixed effects for models in the final model set using all data (Groups 1, 2, and 

3; Table 3.5).  All fixed effects estimates for D were negative, indicating detection 

decreased with increasing distance between the observer and the sound source (Table 

3.5).  All fixed effects estimates for W were positive, indicating that detection was higher 

for locations upwind of the observer and lower for downwind locations.  All fixed effects 

estimates for E were positive, indicating that observer experience increased probability of 

detection (Table 3.5).  Species-specific model selection for the final model set showed 

that model weight was not concentrated in a single model for most species (Table 3.6).  I 

therefore used fixed effect estimates (Table 3.5) to estimate model-specific probability of 

detection a 1x1 m grid of locations around the observer, then model-averaged estimates.    

The predicted perceptible area around the observer varied among species and modeled 

wind speeds (Appendix E).  The size of the perceptible area had range 0.474 - 5.30 ha 

across species for wind speed = 0 ms-1, 0.389 - 5.60 ha for wind speed = 1 ms-1, 0.275 - 

5.31 ha across species for wind speed = 2.5 ms-1, and 0.162 ha - 3.84 ha for wind speed = 

4.5 ms-1 (Table 3.7, Figure 3.2).  Asymmetry of the predicted perceptible area increased 

with increased wind speed (Appendix E).  The perceptible area was concentrated upwind 

of the observer, particularly for greater wind speeds. 
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Discussion 

Species, distance to the observer, wind speed and direction, observer, and density of 

vegetation all affected detection of recorded bird songs in grasslands.  Although ambient 

noise has been shown in other studies to affect detection (Alldredge et al. 2007b, Simons 

et al. 2007), observer-reported presence of ambient noise was not a good predictor of 

detection in this study.  Species had a strong effect on detection probability.  Due to 

species-specific variation in perceptibility, the size of the predicted perceptible area 

around the observer differed by more than 10-fold among species when wind speed was 

held constant (Table 3.7).  Wind also had a strong effect on detection.  Wind is a 

particularly important concern for breeding season surveys of grassland birds because 

high winds are common during spring and grasslands lack structures or trees to block 

wind.  As wind speed increased, probability of detection downwind of the observer was 

reduced and the perceptible area around the observer became smaller and more 

asymmetrical.   

The perceptible area effectively surveyed by the observer varied widely due to species 

and wind speed.  Fixed-radius bird survey methods (Ralph and Scott 1981) require that 

observers record birds within a certain survey radius.  Because the perceptible area varied 

across species and wind conditions, it may be very difficult to know the effective radius 

for a particular survey.  Indeed, in the presence of wind, the effective radius may be 

different in different directions during the same survey.   

I found significant variation in perceptible area across species and wind conditions.  

Comparing counts across species, even from the same multi-species survey, is ill-advised 

unless the area surveyed for the species is similar, either because the species have similar 

perceptible areas, or if counts are constrained within a survey radius that is smaller than 

both effective radii.  I recommend against comparing counts across species for unlimited-

radius point counts unless the species have similar perceptible areas because the area 

surveyed for each species may vastly differ.  Such counts should be used to estimate 

intraspecific relative abundance only. 
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The simulated bird surveys I describe were well-suited for estimating factors affecting 

detection of single bird songs.  By using a mobile speaker system, I was able to survey a 

variety of grasslands, broadening the applicability of the results.  Also, this method could 

be easily and inexpensively reproduced to estimate factors affecting detection in other 

landscapes or for other species.  Mobility was a benefit when compared to the more 

elaborate and less mobile speaker systems used by Simons et al. (2007), Alldredge et al. 

(2007b), and Pacifici et al. (2008), but both systems required the simplifying assumption 

that birds were detected by sound only.  The necessary simplifications of my speaker 

system had some additional drawbacks.  I used only 1 sound source, playing only 1 song 

at a time, which is much simplified compared to a real bird survey.  I was therefore not 

able to investigate double-counting, observer confusion of individual birds, or swamping 

effects of numerous birds.  Still, this study represents an important expansion of the work 

of Simons et al. (2007), Alldredge et al. (2007b), and Pacifici et al. (2008) to a grassland 

setting.  Estimating the role of wind, particularly, was important for understanding 

detection probability in grasslands.   

To reduce the variation in detection probability across surveys, bird surveyors should 

standardize grassland surveys across wind conditions.  Surveys should be conducted on 

no-wind or low-wind days to the greatest extent possible.  Surveyors also should engage 

in training to increase their detection rate; experienced observers had higher detection 

than inexperienced observers in this study.  The speaker system used in this study can 

also be used as a training tool.   Testing identification and detection skills and comparing 

results to a known playlist is a practical way to increase detection rate for observers. 

I recommend using fixed-radius counts for bird surveys in grasslands, such as recording 

birds separately within and outside a 50-m band (Matsuoka et al. 2014).  If a species has 

a varying perceptible area larger than the survey radius, using an unlimited-radius count 

will add variation to counts.  I recommend against comparing unadjusted counts of birds 

for different species as estimates of absolute abundance unless there is evidence that their 

perceptible areas are of similar size across the range of conditions surveyed.  For 

example, BOBO and DICK had perceptible areas of similar size for higher wind speeds 
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(Table 3.7) and could be compared without introducing much error due to variation in 

perceptible area size.   
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Table 3.1: Opportunities for detection of recorded bird songs in 

grasslands near Morris, Minnesota (2011) and near the Minneapolis 

- St. Paul, Minnesota metro area (2012).   

Year Sites Observers 

Sampling 

Legs 

Sampling 

Points 

Detection 

Opportunities 

2011 35 1 192 942 4445 

2012 12 4 48 240 4481 
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Table 3.2: Variable importance weights (VIWi) for each covariate i, for 197 logistic regression models 

of detection of recorded bird songs in grasslands.  I analyzed data separately for each bird species; 

species are referenced by their alpha code (Bird Banding Laboratory 2016).  VIWi were calculated as 

the sum of the Akaike Information Criterion (AIC) weights for the models in which the covariate 

appeared (Burnham and Anderson 2002).  Fixed effects included distance from the sound source to the 

observer in meters (D), distance from the sound source to the observer squared (D2), wind speed in ms-

1 (S), wind speed squared (S2), a wind index (W, where W = cos(180º - wind direction) × S, which had 

range S to -S), habitat index (H), and binary observer-indicated noise variables for noise from real 

birds (B), manmade noise (M), bird noise and other noise (N).  Survey site was included in all models 

as a random effect.  

 
Covariate 

Species D D2 S S2 W H B M N 
BOBO 0.987 0.006 0.582 0.492 0.849 0.493 0.216 0.229 0.331 
DICK 0.989 0.005 0.658 0.494 0.684 0.524 0.294 0.244 0.257 
EAME 0.964 0.023 0.544 0.567 0.838 0.487 0.256 0.247 0.247 
GRSP 0.991 0.005 0.554 0.480 0.613 0.489 0.258 0.249 0.240 
HESP 0.968 0.019 0.547 0.564 0.790 0.493 0.281 0.236 0.234 
HOLA 0.925 0.040 0.611 0.600 0.963 0.514 0.252 0.231 0.268 
LCSP 0.973 0.017 0.534 0.467 0.546 0.481 0.248 0.253 0.244 
SAVS 0.995 0.003 0.639 0.489 0.682 0.485 0.261 0.242 0.241 
SEWR 0.975 0.012 0.685 0.501 0.929 0.482 0.241 0.244 0.251 
VESP 0.909 0.044 0.709 0.555 0.871 0.553 0.250 0.243 0.243 
Mean  0.968 0.017 0.606 0.521 0.777 0.500 0.256 0.242 0.256 
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Table 3.3: Species-specific predicted detection of recorded bird songs for 6 logistic 

regression models.  I estimated fixed effects using Group 1 data, then predicted 

detection for Group 2 data.  Fixed effects included distance from the sound source to 

the observer in meters (D), wind speed in ms-1 (S), wind speed squared (S2), a wind 

index [W, where W = cos(180º - wind direction) × S, which had range S to –S], and 

habitat index (H).  Species are referenced by their alpha code (Bird Banding 

Laboratory 2016).   

Species Proportion 
Detected Fixed Effects 

Proportion with     
> 0.5 Predicted 
Probability of 

Detection 

Proportion Correctly 
Predicted 

Mean SD 

GRSP 0.397 

D + W 0.345 0.828 0.379 
D + W + H 0.345 0.828 0.379 
D + W + S + H 0.319 0.802 0.400 
D + W + S 0.319 0.802 0.400 
D + W + H + S + S2 0.319 0.802 0.400 
D + W + S + S2 0.336 0.802 0.400 

      

SEWR 0.677 

D + W 0.605 0.750 0.435 
D + W + H 0.621 0.766 0.425 
D + W + S + H 0.661 0.742 0.439 
D + W + S 0.597 0.710 0.456 
D + W + H + S + S2 0.661 0.742 0.439 
D + W + S + S2 0.597 0.710 0.456 

      

HESP 0.609 

D + W 0.445 0.680 0.468 
D + W + H 0.445 0.711 0.455 
D + W + S + H 0.531 0.734 0.443 
D + W + S 0.484 0.703 0.459 
D + W + H + S + S2 0.508 0.727 0.447 
D + W + S + S2 0.477 0.695 0.462 

      

EAME 0.885 

D + W 0.862 0.869 0.338 
D + W + H 0.869 0.862 0.347 
D + W + S + H 0.892 0.900 0.301 
D + W + S 0.900 0.892 0.311 
D + W + H + S + S2 0.885 0.892 0.311 
D + W + S + S2 0.877 0.869 0.338 
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Table 3.3 continued. 

Species Proportion 
Detected Fixed Effects 

Proportion with     
> 0.5 Predicted 
Probability of 

Detection 

Proportion Correctly 
Predicted 

Mean SD 

HOLA 0.797 

D + W 0.692 0.783 0.414 
D + W + H 0.706 0.797 0.403 
D + W + S + H 0.762 0.825 0.381 
D + W + S 0.762 0.797 0.403 
D + W + H + S + S2 0.748 0.825 0.381 
D + W + S + S2 0.727 0.804 0.398 

      

VESP 0.806 

D + W 0.769 0.843 0.365 
D + W + H 0.806 0.866 0.342 
D + W + S + H 0.866 0.821 0.385 
D + W + S 0.858 0.813 0.391 
D + W + H + S + S2 0.866 0.836 0.372 
D + W + S + S2 0.873 0.828 0.378 

      

DICK 0.695 

D + W 0.636 0.768 0.423 
D + W + H 0.649 0.781 0.415 
D + W + S + H 0.662 0.768 0.423 
D + W + S 0.649 0.755 0.432 
D + W + H + S + S2 0.662 0.768 0.423 
D + W + S + S2 0.656 0.748 0.435 

      

BOBO 0.730 

D + W 0.680 0.803 0.399 
D + W + H 0.672 0.779 0.417 
D + W + S + H 0.738 0.828 0.379 
D + W + S 0.697 0.787 0.411 
D + W + H + S + S2 0.738 0.828 0.379 
D + W + S + S2 0.697 0.787 0.411 

      

SAVS 0.703 

D + W 0.694 0.739 0.441 
D + W + H 0.694 0.739 0.441 
D + W + S + H 0.721 0.766 0.425 
D + W + S 0.712 0.739 0.441 
D + W + H + S + S2 0.730 0.757 0.431 
D + W + S + S2 0.712 0.721 0.451 
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Table 3.3 continued. 

Species Proportion 
Detected Fixed Effects 

Proportion with     
> 0.5 Predicted 
Probability of 

Detection 

Proportion Correctly 
Predicted 

Mean SD 

      

LCSP 0.199 

D + W 0.103 0.875 0.332 
D + W + H 0.096 0.838 0.370 
D + W + S + H 0.125 0.824 0.383 
D + W + S 0.125 0.809 0.395 
D + W + H + S + S2 0.125 0.824 0.383 
D + W + S + S2 0.125 0.809 0.395 
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Table 3.4: Variable importance weights (VIW) for comparison of 

observer effects.  Models for Group 3 data contained observer effect 

O, a factor with 4 levels (1 for each observer), observer effect E, a 

factor with 2 levels (1 indicating an experienced observer and 0 

indicating an inexperienced observer), or neither observer effect. 

 Species O E 
No Observer 

Effect 

BOBO 0.982 0.018 <0.001 

DICK 0.274 0.675   0.051 

EAME 0.198 0.802 <0.001 

GRSP 0.920 0.078   0.002 

HESP 0.128 0.854   0.018 

HOLA 0.135 0.865 <0.001 

LCSP 0.221 0.779 <0.001 

SAVS 0.457 0.543 <0.001 

SEWR 0.964 0.036 <0.001 

VESP 0.163 0.837 <0.001 
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Table 3.5: Species-specific fixed effects estimates for 6 logistic regression models of detection of recorded bird songs, estimated 

using all data.  Fixed effects included distance from the sound source to the observer in meters (D), wind speed in ms-1 (S), wind 

speed squared (S2), a wind index (W, where W = cos(180º - wind direction) × S, which had range S to -S), habitat index rescaled via 

mean centering and dividing by 2 standard deviations (Gelman 2007) (H), observer effect (O) for 4 observers, and experienced 

observer effect (E).  Species are referenced by their alpha code (Bird Banding Laboratory 2016).   

Species Fixed Effects AIC 
Weight 

Inter-
cept D W S S2 H (re-

scaled) O2 O3 O4 E 

BOBO D + W + H + S + O 0.537 5.39 -0.044 0.467 -0.536 
 

-0.458 -2.66 -1.93 -1.12 
 BOBO D + W + H + S + S2 + O 0.199 5.42 -0.044 0.466 -0.564 0.004 -0.458 -2.66 -1.92 -1.12 
 BOBO D + W + S + O 0.193 5.25 -0.044 0.457 -0.497 

  
-2.62 -1.90 -1.10 

 BOBO D + W + S + S2 + O 0.071 5.28 -0.044 0.456 -0.519 0.003 
 

-2.62 -1.90 -1.10 
 BOBO D + W + O 0.000 4.07 -0.043 0.460 

   
-2.64 -1.90 -1.08 

 BOBO D + W + H + O 0.000 4.11 -0.043 0.467 
  

-0.297 -2.67 -1.92 -1.09 
 

             DICK D + W + H + S + S2 + E 0.704 4.41 -0.041 0.461 -0.083 -0.063 -0.546 
   

0.850 
DICK D + W + H + S + E 0.164 4.84 -0.040 0.424 -0.489 

 
-0.547 

   
0.812 

DICK D + W + S + S2 + E 0.107 4.31 -0.041 0.452 -0.030 -0.064 
    

0.830 
DICK D + W + S + E 0.024 4.75 -0.041 0.416 -0.443 

     
0.793 

DICK D + W + H + E 0.000 3.74 -0.040 0.383 
  

-0.342 
   

0.721 
DICK D + W + E 0.000 3.74 -0.040 0.380 

      
0.715 

              
  



 

109 
 

Table 3.5 continued. 

Species Fixed Effects AIC 
Weight 

Inter-
cept D W S S2 H (re-

scaled) O2 O3 O4 E 

EAME D + W + H + S + S2 + E 0.850 6.01 -0.046 0.637 0.314 -0.133 -0.722 
   

2.13 
EAME D + W + S + S2 + E 0.097 5.99 -0.047 0.624 0.341 -0.131 

    
2.08 

EAME D + W + H + S + E 0.046 6.72 -0.045 0.590 -0.466 
 

-0.694 
   

2.04 
EAME D + W + S + E 0.006 6.71 -0.046 0.582 -0.427 

     
2.00 

EAME D + W + H + E 0.000 5.66 -0.044 0.595 
  

-0.579 
   

2.01 
EAME D + W + E 0.000 5.70 -0.045 0.585 

      
1.97 

             GRSP D + W + S + S2 + O 0.517 3.06 -0.057 0.444 0.208 -0.086 
 

-1.48 -1.24 -1.09 
 GRSP D + W + H + S + S2 + O 0.196 3.08 -0.057 0.444 0.192 -0.085 -0.060 -1.49 -1.25 -1.10 
 GRSP D + W + S + O 0.184 3.55 -0.057 0.414 -0.293 

  
-1.46 -1.22 -1.07 

 GRSP D + W + H + S + O 0.075 3.58 -0.057 0.413 -0.307 
 

-0.109 -1.47 -1.23 -1.08 
 GRSP D + W + O 0.021 2.88 -0.056 0.392 

   
-1.44 -1.18 -1.02 

 GRSP D + W + H + O 0.008 2.88 -0.056 0.392 
  

0.030 -1.43 -1.18 -1.02 
 

             HESP D + W + H + S + S2 + E 0.708 5.14 -0.054 0.580 -0.099 -0.061 -0.624 
   

0.869 
HESP D + W + H + S + E 0.208 5.59 -0.054 0.553 -0.516 

 
-0.674 

   
0.853 

HESP D + W + S + S2 + E 0.072 4.88 -0.053 0.572 0.017 -0.069 
    

0.866 
HESP D + W + S + E 0.012 5.37 -0.053 0.541 -0.448 

     
0.848 

HESP D + W + H + E 0.000 4.40 -0.053 0.522 
  

-0.453 
   

0.804 
HESP D + W + E 0.000 4.36 -0.052 0.516 

      
0.804 
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Table 3.5 continued. 

Species Fixed Effects AIC 
Weight 

Inter-
cept D W S S2 H (re-

scaled) O2 O3 O4 E 

LCSP D + W + S + E 0.403 2.77 -0.067 0.260 -0.348 
     

1.27 
LCSP D + W + H + S + E 0.216 2.75 -0.068 0.259 -0.321 

 
0.259 

   
1.27 

LCSP D + W + S + S2 + E 0.197 2.52 -0.067 0.272 -0.124 -0.038 
    

1.28 
LCSP D + W + H + S + S2 + E 0.110 2.48 -0.068 0.271 -0.076 -0.042 0.272 

   
1.28 

LCSP D + W + H + E 0.042 2.03 -0.068 0.232 
  

0.454 
   

1.28 
LCSP D + W + E 0.033 1.95 -0.066 0.228 

      
1.28 

             SAVS D + W + H + S + E 0.634 4.63 -0.044 0.400 -0.483 
 

-0.567 
   

2.71 
SAVS D + W + H + S + S2 + E 0.235 4.65 -0.044 0.399 -0.503 0.003 -0.568 

   
2.71 

SAVS D + W + S + E 0.096 4.50 -0.044 0.398 -0.431 
     

2.68 
SAVS D + W + S + S2 + E 0.035 4.49 -0.044 0.398 -0.427 -0.001 

    
2.68 

SAVS D + W + H + E 0.000 3.45 -0.042 0.386 
  

-0.327 
   

2.62 
SAVS D + W + E 0.000 3.44 -0.042 0.385 

      
2.61 

             SEWR D + W + S + O 0.385 4.73 -0.041 0.518 -0.490 
  

-1.14 -2.24 0.165 
 SEWR D + W + H + S + O 0.279 4.78 -0.041 0.519 -0.512 

 
-0.250 -1.16 -2.25 0.148 

 SEWR D + W + S + S2 + O 0.199 4.57 -0.041 0.528 -0.340 -0.023 
 

-1.15 -2.24 0.166 
 SEWR D + W + H + S + S2 + O 0.138 4.63 -0.041 0.528 -0.372 -0.022 -0.243 -1.17 -2.26 0.150 
 SEWR D + W + O 0.000 3.64 -0.040 0.491 

   
-1.01 -2.07 0.313 

 SEWR D + W + H + O 0.000 3.64 -0.040 0.491 
  

-0.060 -1.01 -2.07 0.312 
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Table 3.5 continued. 

Species Fixed Effects AIC 
Weight Intercept D W S S2 H 

rescaled O2 O3 O4 E 

HOLA D + W + H + S + S2 + E 0.341 4.98 -0.042 0.629 -0.065 -0.064 -0.394 
   

1.54 
HOLA D + W + H + S + E 0.267 5.40 -0.043 0.622 -0.439 

 
-0.391 

   
1.53 

HOLA D + W + S + S2 + E 0.216 4.87 -0.042 0.622 -0.028 -0.063 
    

1.51 
HOLA D + W + S + E 0.175 5.29 -0.043 0.615 -0.400 

     
1.50 

HOLA D + W + E 0.001 4.31 -0.041 0.618 
      

1.46 
HOLA D + W + H + E 0.000 4.32 -0.041 0.622 

  
-0.192 

   
1.47 

             VESP D + W + H + S + S2 + E 0.702 5.10 -0.040 0.569 -0.087 -0.083 -0.515 
   

2.38 
VESP D + W + H + S + E 0.147 5.65 -0.040 0.536 -0.615 

 
-0.517 

   
2.35 

VESP D + W + S + S2 + E 0.125 4.98 -0.040 0.560 -0.048 -0.082 
    

2.31 
VESP D + W + S + E 0.026 5.57 -0.040 0.532 -0.574 

     
2.29 

VESP D + W + E 0.000 4.09 -0.038 0.526 
      

2.20 
VESP D + W + H + E 0.000 4.09 -0.038 0.531     -0.304       2.23 
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Table 3.6: Model selection results for final model set of 6 logistic regression models 

of detection of recorded bird songs, estimated using all data.  Fixed effects included 

distance from the sound source to the observer in meters (D), wind speed in ms-1 (S), 

wind speed squared (S2), a wind index (W, where W = cos(180º - wind direction) × S, 

which had range S to -S), rescaled habitat index (H), observer effect (O), and 

experienced observer effect (E).  Species are referenced by their alpha code (Bird 

Banding Laboratory 2016).   

Species Fixed Effects AIC Δ AIC AIC 
Weight 

Log 
Likelihood 

BOBO D + W + H + S + O 733.7 0.000 0.537 -357.9 
BOBO D + W + H + S + S2 + O 735.7 1.983 0.199 -357.8 
BOBO D + W + S + O 735.8 2.046 0.193 -359.9 
BOBO D + W + S + S2 + O 737.7 4.036 0.071 -359.9 
BOBO D + W + O 753.8 20.09 0.000 -369.9 
BOBO D + W + H + O 754.1 20.42 0.000 -369.1 

      DICK D + W + H + S + S2 + E 745.4 0.000 0.704 -364.7 
DICK D + W + H + S + E 748.3 2.911 0.164 -367.2 
DICK D + W + S + S2 + E 749.2 3.768 0.107 -367.6 
DICK D + W + S + E 752.2 6.752 0.024 -370.1 
DICK D + W + H + E 768.8 23.33 0.000 -378.4 
DICK D + W + E 769.1 23.64 0.000 -379.5 

      EAME D + W + H + S + S2 + E 566.9 0.000 0.850 -275.4 
EAME D + W + S + S2 + E 571.2 4.331 0.097 -278.6 
EAME D + W + H + S + E 572.7 5.850 0.046 -279.4 
EAME D + W + S + E 576.6 9.769 0.006 -282.3 
EAME D + W + H + E 583.6 16.76 0.000 -285.8 
EAME D + W + E 585.7 18.84 0.000 -287.8 

      GRSP D + W + S + S2 + O 692.8 0.000 0.517 -337.4 
GRSP D + W + H + S + S2 + O 694.7 1.939 0.196 -337.4 
GRSP D + W + S + O 694.8 2.067 0.184 -339.4 
GRSP D + W + H + S + O 696.6 3.861 0.075 -339.3 
GRSP D + W + O 699.2 6.441 0.021 -342.6 
GRSP D + W + H + O 701.2 8.425 0.008 -342.6 
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Table 3.6 continued. 

Species Fixed Effects AIC Δ AIC AIC Weight Log 
Likelihood 

HOLA D + W + H + S + S2 + E 749.6 0.000 0.341 -366.8 
HOLA D + W + H + S + E 750.1 0.489 0.267 -368.1 
HOLA D + W + S + S2 + E 750.6 0.914 0.216 -368.3 
HOLA D + W + S + E 751.0 1.337 0.175 -369.5 
HOLA D + W + E 762.2 12.58 0.001 -376.1 
HOLA D + W + H + E 763.5 13.87 0.000 -375.8 

      LCSP D + W + S + E 522.7 0.000 0.403 -255.3 
LCSP D + W + H + S + E 523.9 1.248 0.216 -255.0 
LCSP D + W + S + S2 + E 524.1 1.432 0.197 -255.1 
LCSP D + W + H + S + S2 + E 525.3 2.598 0.110 -254.6 
LCSP D + W + H + E 527.2 4.526 0.042 -257.6 
LCSP D + W + E 527.7 5.009 0.033 -258.8 

      SAVS D + W + H + S + E 744.0 0.000 0.634 -365.0 
SAVS D + W + H + S + S2 + E 746.0 1.989 0.235 -365.0 
SAVS D + W + S + E 747.8 3.772 0.096 -367.9 
SAVS D + W + S + S2 + E 749.8 5.772 0.035 -367.9 
SAVS D + W + H + E 763.0 19.02 0.000 -375.5 
SAVS D + W + E 763.0 19.05 0.000 -376.5 

      SEWR D + W + S + O 757.2 0.000 0.385 -370.6 
SEWR D + W + H + S + O 757.8 0.645 0.279 -369.9 
SEWR D + W + S + S2 + O 758.5 1.320 0.199 -370.3 
SEWR D + W + H + S + S2 + O 759.2 2.051 0.138 -369.6 
SEWR D + W + O 778.0 20.78 0.000 -382.0 
SEWR D + W + H + O 779.9 22.70 0.000 -381.9 

      HESP D + W + H + S + S2 + E 719.5 0.000 0.708 -351.7 
HESP D + W + H + S + E 721.9 2.452 0.208 -354.0 
HESP D + W + S + S2 + E 724.1 4.571 0.072 -355.0 
HESP D + W + S + E 727.7 8.211 0.012 -357.8 
HESP D + W + H + E 739.5 20.02 0.000 -363.8 
HESP D + W + E 741.2 21.69 0.000 -365.6 

  



 

114 
 

Table 3.6 continued. 

Species Fixed Effects AIC Δ AIC AIC Weight Log 
Likelihood 

VESP D + W + H + S + S2 + E 698.7 0.000 0.702 -341.3 
VESP D + W + H + S + E 701.8 3.125 0.147 -343.9 
VESP D + W + S + S2 + E 702.1 3.453 0.125 -344.1 
VESP D + W + S + E 705.2 6.576 0.026 -346.6 
VESP D + W + E 732.3 33.64 0.000 -361.1 
VESP D + W + H + E 732.3 33.66 0.000 -360.2 
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Table 3.7: The perceptible area around the observer, predicted using fixed effects 

estimated using all data.  Wind speeds 0, 1, 2.5, and 4.5 are associated with 

Beaufort numbers 0, 1, 2, and 3, respectively (Patuxent Wildlife Research Center 

1998). 

Species 
Wind Speed 

(ms-1) 
Wind Speed 

(mph) Area (m2) Area (ha) 
EAME 0 0 52986 5.30 
SAVS 0 0 34780 3.48 
GRSP 0 0 9683 0.97 
LCSP 0 0 4739 0.47 
VESP 0 0 51371 5.14 
HOLA 0 0 45361 4.54 
HESP 0 0 29417 2.94 
SEWR 0 0 40197 4.02 
BOBO 0 0 46331 4.63 
DICK 0 0 37954 3.80 

     EAME 1 2.2 55972 5.60 
SAVS 1 2.2 28043 2.80 
GRSP 1 2.2 9841 0.98 
LCSP 1 2.2 3891 0.39 
VESP 1 2.2 47017 4.70 
HOLA 1 2.2 41363 4.14 
HESP 1 2.2 27097 2.71 
SEWR 1 2.2 32990 3.30 
BOBO 1 2.2 37766 3.78 
DICK 1 2.2 34768 3.48 

     EAME 2.5 5.6 53111 5.31 
SAVS 2.5 5.6 19881 1.99 
GRSP 2.5 5.6 9021 0.90 
LCSP 2.5 5.6 2753 0.28 
VESP 2.5 5.6 37599 3.76 
HOLA 2.5 5.6 35004 3.50 
HESP 2.5 5.6 22646 2.26 
SEWR 2.5 5.6 24199 2.42 
BOBO 2.5 5.6 27348 2.73 
DICK 2.5 5.6 28191 2.82 
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Table 3.7 continued. 

Species 
Wind Speed 

(ms-1) 
Wind Speed 

(mph) Area (m2) Area (ha) 
EAME 4.5 10.1 38377 3.84 
SAVS 4.5 10.1 12577 1.26 
GRSP 4.5 10.1 6686 0.67 
LCSP 4.5 10.1 1617 0.16 
VESP 4.5 10.1 23492 2.35 
HOLA 4.5 10.1 27224 2.72 
HESP 4.5 10.1 16282 1.63 
SEWR 4.5 10.1 16606 1.66 
BOBO 4.5 10.1 17881 1.79 
DICK 4.5 10.1 18277 1.83 

 



 

117 
 

Figure 1.1: Singing probability (the probability that a bird sings at least once in a given 

number of minutes) for different values of P(S|S), the probability that a bird sings given 

that it sang in the previous interval.  Singing probability is shown as a function of P(S|S) 

and q1, the average proportion of total birds singing at any given interval.  I used P(S|S) = 

0.98 for all scenarios;  P(S|S) = 0.92 and P(S|S) = 0.99 are shown for comparison.   For 

P(S|S) = 0.92, birds transition too frequently, resulting in singing probability ≈ 1 if > 10% 

of birds sing in any given interval.  For P(S|S) = 0.99, too few birds transition between 

modes.   
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Figure 1.2: Maximum daily song rate (MaxDailySongRate.yir) for the black-throated blue 

warbler (BTBW) scenario, simulated as a function of ordinal date.  Song rate was highest 

when birds arrived on breeding grounds (day 122) and declined later in the season 

(Holmes et al. 2005).  The BTBW scenario used the ordinal date range 150-160, so 

MaxDailySongRate.yir = 0.9. 

 

 

 

  

Ordinal Date 
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Figure 1.3: The time of day weight (SongWeight.yijrk) as a function of time (minutes 

after sunrise) for the black-throated blue warbler (BTBW) scenario.  Interval-specific 

singing probability (PrSing.yijrk), the product of  the maximum daily song rate 

(MaxDailySongRate.yir) and a weight due to the time of day (SongWeight.yijrk).  The 

time of day weight was based on information from Breeding Bird Surveys (P. Blancher, 

Environment Canada, personal communication).  The vertical grey lines represent the 

planned beginning and end for surveys within a day (actual starting times included 

variation that could exceed those limits). 
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Figure 1.4: Observer-specific perceptibility of a single song (a) and perceptibility given 9 

opportunities for detection (b), as a function of distance to observer for the black-throated 

blue warbler (BTBW) scenario.  Mean number of songs produced by birds that sang was 

9.06 for double-observer surveys (SD = 6.37 songs).  The dashed lines represent 

perceptibility for the Observers 1 and 2 when ambient noise was present during surveys; 

the solid lines represent perceptibility during surveys without noise.  For the BTBW 

scenario, presence of noise was replication-specific, with probability of presence PrNoise 

= 0.15. 

 
(a)  
 

 
(b) 
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Figure 1.5: Observer-estimated distance (ObsEstimatedDistance.yijrko) for the black-

throated blue warbler (BTBW) scenario, simulated stochastically as the sum of the true 

distance (Distance.yijrk) and a value for observer error.  I used error estimates (mean 

error = 7.6 m, SD = 21.4 m) for observer-estimated distance from Alldredge et al. 

(2007c), assumed error was 0 at 0 m, and assumed error changed as a linear function 

between 0 m and the mean of distances Alldredge et al.  investigated (62.3 m).  Mean 

observer-estimated distance (solid line) ± standard deviation (dashed lines) are shown.    
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Figure 1.6 (a):  Comparison of density estimates to true densities for the simple counts survey type for the black-throated blue warbler 

(BTBW) scenario.  Estimates are from 30 simulated years.  Density was calculated for area A around the observer, where A = π × 

survey radius2.  Estimated density is shown compared to true density values Ds, the density of birds with territories that overlapped the 

survey radius (Ds = N* ps / A); Dp, the density of birds present at the beginning of the survey (Dp = N* ps pp / A); and Da, the density of 

available birds present at the beginning of the survey (Da = N* ps pp pa / A).  Perfect estimates would fall on the y=x line (shown for 

reference). 
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Figure 1.6 (b): Comparison of density estimates to true densities for the double-observer survey type for the black-throated blue 

warbler (BTBW) scenario.  Estimates are from 30 simulated years.  Density was calculated for area A around the observer, where A = 

π × survey radius2.  True density values are Ds, the density of birds with territories that overlapped the survey radius (Ds = N* ps / A); 

Dp, the density of birds present at the beginning of the survey (Dp = N* ps pp / A); and Da, the density of available birds present at the 

beginning of the survey (Da = N* ps pp pa / A).  Perfect estimates would fall on the y = x line (shown for reference). 
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Figure 1.6 (b) continued. 

 50-m Survey Radius 100-m Survey Radius 150-m Survey Radius 

Model-
Averaged 
Adjusted 
Density 

   
 
 
  



 

125 
 

Figure 1.6 (c):  Comparison of density estimates to true densities for the removal survey type for the black-throated blue warbler 

(BTBW) scenario.  Estimates are from 30 simulated years.  Density was calculated for area A around the observer, where A = π × 

survey radius2.  True density values are Ds, the density of birds with territories that overlapped the survey radius (Ds = N* ps / A); Dp, 

the density of birds present at the beginning of the survey (Dp = N* ps pp / A); and Da, the density of available birds present at the 

beginning of the survey (Da = N* ps pp pa / A).  Perfect estimates would fall on the y = x line (shown for reference). 
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Figure 1.6 (c) continued. 
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Figure 1.6 (d): Comparison of density estimates to true densities for the replicated counts survey type for the black-throated blue 

warbler (BTBW) scenario.  Estimates are from 30 simulated years.  Density was calculated for area A around the observer, where A = 

π × survey radius2.  True density values are Ds, the density of birds with territories that overlapped the survey radius (Ds = N* ps / A); 

Dp, the density of birds present at the beginning of the survey (Dp = N* ps pp / A;, and Da, the density of available birds present at the 

beginning of the survey (Da = N* ps pp pa / A).  Perfect estimates would fall on the y = x line (shown for reference). 
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Figure 1.6 (d) continued. 
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Figure 1.6 (e): Comparison of density estimates to true densities for the distance sampling survey type for the black-throated blue 

warbler (BTBW) scenario.  Data were right-truncated, eliminating the most distant 10% of observations (Buckland et al. 2001).  

Estimates are from 30 simulated years.  Density was calculated for area A around the observer, where A = π × truncation distance2 

(mean truncation distance 158 m).  True density values are Ds, the density of birds with territories that overlapped the survey radius 

(Ds = N* ps / A); Dp, the density of birds present at the beginning of the survey (Dp = N* ps pp / A); and Da, the density of available 

birds present at the beginning of the survey (Da = N* ps pp pa / A).  Estimators were evaluated for surveys with radius 50 m, 100 m, and 

150 m.  Perfect estimates would fall on the y = x line (shown for reference). 
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Figure 1.7 (a): Comparisons of density estimates (birds/ha) from index methods to the true density of birds present during the survey 

(Dp) for the simple counts survey type for the black-throated blue warbler (BTBW) scenario.  The simple index estimator used 

observer-estimated distance to determine if birds were within the survey radius.  The simple index estimator with perfect observer 

estimation of distance assumed observers knew distance to birds exactly.   
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Figure 1.7 (b): Comparisons of estimates (birds/ha) from index and adjustment methods to the true density of birds present 

during the survey (Dp) for the double-observer survey type for the black-throated blue warbler (BTBW) scenario.  Estimates 

using the Nichols et al. (2000) double-observer analysis method were similar for independent and dependent observer 

methods; only results from the independent method are shown for simplicity.   
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Figure 1.7 (b) continued. 
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Figure 1.7 (c): Comparisons of estimates (birds/ha) from index and adjustment methods to the true density of birds present 

during the survey (Dp) for the removal survey type for the black-throated blue warbler (BTBW) scenario.   
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Figure 1.7 (c): continued. 
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Figure 1.7 (d): Comparisons of estimates (birds/ha) from index and adjustment methods to the true density of birds present 

during the survey (Dp) for the replicated counts survey type for the black-throated blue warbler (BTBW) scenario.  

Maximum count density was the sum of all maximum counts for each site (among the 3 counts within a year), divided by 

the area surveyed.  Bounded count density was the sum of the bounded counts (twice the maximum count, minus the second 

largest count, Johnson et al. 2007), divided by the area surveyed.   
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Figure 1.7 (d) continued. 
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Figure 1.7 (d) continued. 
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Figure 1.7 (e): Comparisons of estimates (birds/ha) from index and adjustment methods to the true density of birds present during the 

survey (Dp) for the distance sampling survey type for the black-throated blue warbler (BTBW) scenario.  Data were right-truncated, 

eliminating the most distant 10% of observations (Buckland et al. 2001).   
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Figure 1.7 (e): continued. 
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Figure 1.8: Adjusted density estimates from N-mixture models for the replicated counts survey type, as a function of estimated 

detection (p), for the black-throated blue warbler (BTBW) scenario.  Density estimates were inflated when detection was estimated < 

0.06.   
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Figure 2.1:Bird detections by time of day (as reflected by stop number), as seen on the 

Breeding Bird Survey (BBS; P. Blancher, Environment Canada, personal 

communication) for 4 species: American crow (Corvus brachyrhynchos), mourning dove 

(Zenaida macroura), ovenbird (Seiurus aurocapilla), and yellow-bellied sapsucker 

(Sphyrapicus varius).  Species were chosen because they displayed a similar pattern of 

detection.  Because detections are summed across many BBS routes, years, and 

observers, I assumed that differences in detection are largely due to changes in 

availability.  Lines are 6th order polynomial regressions  fit to the data (Rosenberg and 

Blancher 2005). 
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Figure 2.2: Availability for high and low availability scenarios.  Availability was 

modeled as PrSing5 (probability that a bird sings at least once in a 5-minute period) and 

was the product of the maximum daily song rate and the time-of-day weight.  Solid line 

represents high-availability species, maximum daily song rate = 0.99, mean PrSing5 = 

0.80.  Dashed line represents low-availability species, maximum daily song rate = 0.56, 

mean PrSing5 = 0.45.  The shaded area represents approximate survey period in a 

simulated survey (actual simulations included variation in survey period).  Shape of the 

curves was based on 4 species provided by P. Blancher (Environment Canada, personal 

communication), see Figure 2.1. 
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Figure 2.3 – Perceptibility (pd) for high perceptibility (top) and low perceptibility 

(bottom) scenarios, as a function of distance from the observer.  The range of 

perceptibility for an average observer (thick lines) varied continuously between optimal 

observation conditions (thick dashed line) and the worst observation conditions (thick 

solid line).  Thin lines indicate the range of observer ability between best and worst 

observers.  For high perceptibility scenarios (top), curves were based on information from 

easy-to-detect species, such as brown thrashers (Toxostoma rufum).  For low 

perceptibility scenarios (bottom), curves were based on hard-to-detect species such as 

black-and-white warblers (Mniotilta varia).   
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Figure 2.4: Correlations of simple index estimators with true density (Dp) was calculated across survey types and scenarios (Table 

2.1).  Correlation coefficients were highest and most uniform across survey types for scenarios with high availability and perceptibility 

(Scenarios 1 and 5) and for the removal survey type.   
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Figure 2.5:  Correlation of estimators with true density (Dp) was calculated across scenarios (Table 2.1) for the double-observer survey 

type.  Within each scenario, correlation with Dp did not differ among estimators for the double-observer survey type. 
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Figure 2.6: Correlation of estimators with true density (Dp) was calculated across scenarios (Table 2.1) for the distance sampling 

survey type.  For Scenario 2, the correlation of the Program unmarked estimators with Dp was lower than the simple index estimator 

and Program Distance estimators, which was also true for the top model Program unmarked estimator only in Scenarios 3 and 7, and 

the model-averaged Program unmarked estimator only in Scenario 8. 
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Figure 2.7: Correlation of estimators with true density (Dp) was calculated across scenarios (Table 2.1) for the removal survey type.  

Simple index estimators had a significantly greater correlation with Dp than adjusted estimators did for removal Scenarios 1,2,4,6, and 

8.  For Scenarios 5 and 7, there was no difference among estimators in the correlation with Dp. 
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Figure 2.8: Correlation of estimators with true density (Dp) was calculated across scenarios (Table 2.1) for the replicated counts survey 

type.  Simple index estimators had greater correlation with Dp than adjusted estimators for Scenarios 1, 2, 5, 6, and 7.  For scenarios 3, 

4, and 8, all estimators for had similar correlation with Dp.  Correlation with Dp did not differ between the maximum count estimator 

and the bounded count estimator within any scenario. 
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Figure 3.1: Survey site layout.  The central point of each survey site (filled dot) was 

surrounded by 6 survey legs in a radial arrangement.  Surveys occurred at sampling 

points along the legs, spaced 30 m apart.  Speakers broadcast bird songs from the central 

point and detections were recorded at each sampling point.  Orientation of the survey legs 

was determined by wind direction (first survey extended directly into the wind). 
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Figure 3.2: Outlines of the perceptible area around the observer (for which the predicted 

probability of detection was ≥ 0.5), for 3 species.  EAME and LCSP had the largest and 

smallest perceptible areas, respectively. Wind direction was modeled as coming from due 

north.  The position of the observer at (0,0) is marked with a +.  Distances are in meters. 
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A  

The area surveyed during a bird survey. 
 
Abundance 
N, the number of birds that could potentially be counted during a survey.  More precise 
definitions of abundance exist, see N*, Np, Ns, and Na. 
 
ActualStartTimesAll 
The actual start time for surveys in the simulation.  ActualStartTimesAll is normally-
distributed  
with mean PlannedStartTimesAll to include variation in travel time to sites or other 
logistical variation. 
 
Adjustment Methods or Adjustment Analysis Methods 
Analysis methods which attempt to estimate both detectability and abundance (or 
density).  See also “Analysis Method”. 
 
Analysis Method 
The method used to analyze data obtained from a survey.  More than one analysis method 
can often be applied to data from a particular survey type, and adjustment analysis 
methods often require data gathered in a specific survey type.   
 
Area.yij 
The bird-specific parameter that describes the area of a 95% elliptical density contour of 
a bird’s bivariate normally-distributed territory.  Area.yij was log-normally distributed 
with mean MeanTerrArea and standard deviation SDTerrArea.  See also Spatial.yij. 
 
Availability 
pa: the probability that a bird is available (vocalizes) during a survey, given that it is 
present. 
 
BAWW 
Black-and-white warbler (Mniotilta vari), the species upon which parameters for the low 
pd parameters in Chapter 2 were based. 
 
BirdsInHabitat.yi  
The site and year-specific number of birds simulated occurring in habitat in the 400 ha 
around the observer.  BirdsInHabitat.yi is modeled as a Poisson-distributed random 
variable with parameter LambdaHabitat.yi. 
 
BirdsInMatrix.yi 
The site and year-specific number of birds simulated occurring in matrix in the 400 ha 
around the observer.  BirdsInMatrix.yi is modeled as a Poisson-distributed random 
variable with parameter LambdaMatrix.yi. 
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Bounded Count Analysis Method 
An analysis method that requires replicated visits to sites, using twice the maximum 
count, minus the second largest count as an index to abundance.   
 
BTBW 
Black-throated blue warbler (Setophaga caerulescens), the species upon which 
parameters for Chapter 1 were based.  
 
C 
see “Count”. 
 
CenterX.yij, CenterY.yij 
The bird-specific parameters that describe the x and y coordinates of the center of a bird’s 
bivariate normally-distributed territory.  See also Spatial.yij. 
 
CloseBirds.yi  
Site-specific Np, the abundance of birds present within the survey radius at the beginning 
of the survey.   
 
CloseSingers.yi.   
Site-specific Na, the abundance of birds available and present within the survey radius at 
the beginning of the survey.    
 
 
CloseTerrBirds.yi 
Site-specific Ns: the number of simulated birds having territories with 95% utilization 
distributions overlapping the survey radius.   
 
Count 
C, The sum of birds detected during a survey.  Theoretically, the count C = N*× ps pp × 
pa× pd.  In R code, site-specific count was RawCount.yi, and included birds that were 
detected and estimated by the observer to be within the survey radius at the time of first 
detection.  Thus, RawCount.yi could include birds  that moved into the survey radius 
during the survey or were falsely estimated to be within the survey radius and were not 
included in CloseSingers.yi (see “Na”).   
 
Count.yijrko 
Observer-specific count status where Count.yijrko = 1 indicated that bird j was counted 
during interval k and Count.yijrko = 0 indicated that it was not counted.   
 
D  
Density of birds within the surveyed area (A).  More precise definitions of density exist, 
see Dp, Ds, and Da. 
 
Da  
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N*× ps × pp × pa  / A: Density of birds available, given that they were present within the 
survey radius at the beginning of the survey.    
 
Detected.yijrko 
Bernoulli-distributed event with probability of detection perceptibility.yijrko describing 
whether bird j was detected by observer o during interval k.  If bird j was detected, then 
Detected.yijrko = 1; if not, Detected.yijrko = 0.   
 
Detection probability 
p: the overall probability that a bird is detected during a survey 
 
Distance Sampling Analysis Method  
An analysis method that estimates detection probability as a function of distance from the 
observer, assuming that detection probability at the observer’s location is 1 (Burnham et 
al. 1980, Buckland et al. 1993). 
 
Distance Sampling Survey Type 
A survey type where the observer estimates and records the distance to each bird counted.  
See also “Survey Type”. 
 
Distance.yijrk 
The interval-specific distance from the observer(s) of bird j. 
 
DoesBirdMove.yijrk 
A Bernoulli-distributed random variable with parameter PrBirdMoves.yijrk that describes 
whether a bird moved between interval k-1 and interval k.  
 
Double-Observer Analysis Method 
An analysis method that uses the discrepancies in individual bird detections between two 
observers to estimate detection probability (Nichols et al. 2000).  Also referred to as 
multiple-observer analysis method. 
 
Double-Observer Survey Type 
A survey type where counts are conducted with two simultaneous observers.  See also 
“Survey Type”. 
 
Dp  
N*× ps× pp / A: Density of birds present within the survey radius at the beginning of the 
survey.   
 
Ds 
N*× ps / A: Density of birds with territories that overlapped the survey radius.  Because 
territories were defined in my simulation by a bivariate normal probability distribution, 
the exact boundaries of territories are uncertain.  Site-specific Ds was the density of birds 
having territories with 95% utilization distributions overlapping the survey radius.   
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Ecc.yij 
The bird-specific parameter that describes the eccentricity of the ellipse of a bird’s 
bivariate normally-distributed territory.  See also Spatial.yij. 
 
Estimator 
A statistic (i.e., a function of the data) that is used to infer the value of an unknown 
parameter, either abundance or density.   
 
HabitatDensity.y  
Year-specific mean density of birds in habitat.  HabitatDensity.y is greater than or equal 
to mean density of birds in matrix (MatrixDensity.y). 
 
Index Methods or Index Analysis Methods  
Analysis methods which use counts as an index to abundance or density.  See also 
“Analysis Method”. 
 
Interval 
A short period of time with length  IntervalLength, akin to the duration of one bird song, 
usually 2 or 3 seconds.   
 
IntervalLength 
The length of a single interval. 
 
LambdaHabitat.yi  
The parameter describing the Poisson-distributed random variable BirdsInHabitat.yi. 
 
LambdaMatrix.yi  
The parameter describing the Poisson-distributed random variable BirdsInMatrix.yi. 
 
Location.yijrk  
The interval-specific location of bird j.  
 
LogisticalSurveyTime 
Combined time needed to perform one bird survey, including survey time and travel time 
between sites. 
 
MatrixDensity.y 
Year-specific mean density of birds in matrix.  MatrixDensity.y is less than or equal to 
mean density of birds in habitat (HabitatDensity.y). 
 
MaxDailySongRate.yir 
The replication-specific maximum daily song rate.  See also PrSing.yijrk. 
 
Maximum Count Analysis Method 
An analysis method that uses the largest count among repeat visits to a site as an index to 
abundance.   
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MaxSurveyDistance 
The radius of a survey. 
 
MeanTerrArea  
Mean territory size for simulated birds, used to model log-normally distributed Area.yij. 
 
N 
Abundance, the number of birds that could be potentially counted during a survey.  More 
precise definitions of abundance exist, see N*, Np, Ns, and Na.  
 
N* 
Superpopulation: all birds whose territories or home ranges at least partially overlap the 
area over which inferences will be made (the area of inference).   
 
Na  
N*× ps × pp× pa: Abundance of birds available, given that they were present within the 
survey radius at the beginning of the survey.   In R code, site-specific Na was 
CloseSingers.yi.   
 
NBirds.yi 
Year and site-specific number of birds simulated within the 400 ha around the observer.   
 
NIntervals 
Survey type-specific number of intervals that occur during a survey.  See also “Interval”. 
 
Np 
N* × ps × pp: Abundance of birds present within the survey radius at the beginning of the 
survey.  In R code, site-specific Np was CloseBirds.yi.   
 
NReps 
Survey type-specific number of replications.  For the replicated counts survey type, 
NReps = 3, for all other survey types, NReps = 1.  See also “Replications”. 
 
Ns  
N*× ps: Abundance of birds with territories that overlapped the survey radius.  Because 
territories were defined in my simulation by a bivariate normal probability distribution, 
the exact boundaries of territories are uncertain.  In R code, site-specific Ns 
(CloseTerrBirds.yi) was the number of birds having territories with 95% utilization 
distributions overlapping the survey radius.   
 
NSimultaneousObservers 
Survey type-specific number of simultaneous observers performing surveys.  For the 
double-observer survey type, NSimultaneousObservers = 2, for all other survey types, 
NSimultaneousObservers = 1. 
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NSurveySites 
Survey type-specific number of sites simulated.  See Table 3 for parameters. 
 
NYears 
Scenario-specific number of years simulated.  For all scenarios considered, NYears = 30. 
 
ObsEstimatedDistance.yijrko 
Observer-specific estimated distance to bird j during interval k.  Modeled by adding 
observer-specific error due to observation to the true distance Distance.yijrk. 
 
p  
Detection probability: the overall probability that a bird is detected during a survey. 
 
pa 
Availability: the probability that a bird is available (vocalizes) during a survey, given that 
it is present. 
 
PauseLength  
Mean length of pauses between songs in recordings used to estimate parameters for 
modeling availability.  See also SongLength.  
 
Pcoarse  
The coarse-scale transition matrix describing the probabilities of remaining in a state or 
switching states, given the previous state (Table 1).   
 
pd 
Perceptibility: the probability that a bird is detected, given that it is present in the 
surveyable area and available during the survey.   
 
PercentHabitat.yi  
The proportion of site i covered by habitat in year y. 
 
Perceptibility 
pd: the probability that a bird is detected, given that it is present in the surveyable area 
and available during the survey.   
 
perceptibility.yijrko 
Observer-specific probability of detection for bird j during interval k.   
 
PlannedStartTimesAll 
Planned start times for bird surveys within the simulation.  See also ActualStartTimesAll. 
 
pp 
The probability that a bird is present in the surveyable area at the time of the survey, 
given that the bird’s territory at least partially overlaps the surveyable area of a survey 
site. 
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PrBirdMoves.yijrk  
The parameter describing Bernoulli-distributed random variable DoesBirdMove.yijrk. 
 
PrNoise  
The scenario-specific probability of a replication having an effect of ambient noise.  
PrNoise was used only for simulations in chapter 1. 
 
PrSingX 
The probability that a bird sings at least 1 time in X minutes.  For example, PrSing5 
refers to the probability that a bird sings at least 1 time in 5 minutes. 
 
PrSing.yijrk   
Interval-specific probability of being in singing mode for at least one interval within a 
designated number of minutes, also termed “singing probability”.  For chapter 1 
PrSing.yijrk referred to singing probability within 10 minutes, for chapter 2 PrSing.yijrk 
referred to singing probability within 5 minutes.  PrSing.yijrk is the product of 
MaxDailySongRate.yir and SongWeight.yijrk. 
 
ps 
The probability that a bird’s territory at least partially overlaps the surveyable area of a 
survey site. 
 
q1  
For the 2-state Markov process modeling coarse-scale autocorrelation in singing, the 
proportion of time spent in singing mode in the long run (i.e., after the initial state has 
been “forgotten”).  Also the average proportion of the population in singing mode in any 
given interval. 
 
q1.fine  
The proportion of time spent singing in recordings used to estimate parameters for 
modeling availability. 
 
q2 
For the 2-state Markov process modeling coarse-scale autocorrelation in singing, the 
proportion of time spent in non-singing mode in the long run (i.e., after the initial state 
has been “forgotten”).  Also the average proportion of the population in non-singing 
mode in any given interval. 
 
RawCount.yi  
Site-specific C, the count of birds detected and estimated by the observer to be within the 
survey radius at the time of first detection.   
 
Removal Analysis Method 
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An analysis method that estimates detection probability by comparing first detections 
during different periods of the survey (Farnsworth et al. 2002).  Also called time of 
detection analysis method (Alldredge et al. 2007a). 
 
Removal Survey Type 
A survey type where the survey period is split into time periods and the observer records 
the time period in which each bird was first detected. 
 
Replications 
For a survey type, the number of times within a season a site was surveyed.   
 
Replicated Counts Analysis Method  
An analysis method that uses N-mixture models to estimate detection probability across 
spatially and temporally replicated sites (Royle 2004). 
 
Replicated Counts Survey Type  
A survey type where counts are conducted at sites visited multiple times within each 
season. 
 
Scenario 
A set of model parameters designed to reflect a particular biological situation. 
 
SDTerrArea  
Standard deviation for territory size for simulated birds, used to model log-normally 
distributed Area.yij. 
 
Simple Count Analysis Method 
An analysis method wherein counts from a survey are used as an estimator of abundance.  
See also “Analysis Methods”. 
 
Simple Count Survey Type 
A survey type where counts are conducted without collection of accessory data.  See also 
“Survey Type”. 
 
Simple Index Estimator  
An estimator in the simple count analysis method, equal to the sum of counts across all 
sites within a year. 
 
SingingMode.yijrk 
A binary, interval-specific event signifying if bird j was in signing mode during interval 
k.  If SingingMode.yijrk = 1, bird j was in singing mode, if SingingMode.yijrk = 0, bird j 
was not in singing mode. 
 
Singing Probability  
The probability that a bird sings at least once within a given number of minutes. 
 



172 
 

Sings.yijrk 
A binary, interval-specific event signifying if bird j sang during interval k.  If Sings.yijrk 
= 1, then bird j sang, if Sings.yijrk = 0, then bird j did not sing. 
 
Site 
Within the simulation, a single location where observer(s) performed a bird survey. 
 
SongLength 
Mean length of songs in recordings used to estimate parameters for modeling availability.  
See also PauseLength. 
 
SongWeight.yijrk 
An interval-specific weight representing the effect of time of day on availability.  See 
also PrSing.yijrk. 
 
Spatial.yij  
The bird-specific set of spatial parameters that describe a bird’s bivariate normally-
distributed territory.  
 
Steady State Vector 
For the transition matrix of a 2-state Markov chain, the vector [q1 q2] of the proportion of 
time spent in each state in the long run (i.e., after the initial state has been “forgotten”).  
Also called the limiting or stationary distribution.   
 
Study Area 
The region about which one wants to make inferences about bird abundance.  
 
StudyHabitatProportion. 
The year-specific proportion of the study area was covered by habitat. 
 
Superpopulation 
N*: all birds whose territories or home ranges at least partially overlap the area over 
which inferences will be made (the area of inference).   
 
Survey Type 
A specific survey scheme of temporal and spatial replication of survey sites and number 
of observers (Chapter 1, Table 3).  This dissertation considers 5 survey types: simple 
counts, double-observer, distance sampling, removal, and replicated counts.   
 
Theta.yij 
The bird-specific parameter that describes the angle of rotation of a bird’s bivariate 
normally-distributed territory.  See also Spatial.yij. 
 
Time of Detection Analysis Method 
See “Removal Analysis Method”. 
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TimeinIntervals.yirk 
The time of day for interval k during replication r.  Dawn is TimeinIntervals.yirk = 0 and 
has units intervals  (e.g., if TimeinIntervals.yirk = 50, the time is 50 intervals × 
IntervalLength seconds past dawn). 
 
TransitionMatrix.fine 
The fine-scale transition matrix describing the probabilities of remaining in a state or 
switching states, given the previous state (Table 2).   
 
Trend 
The geometric mean rate of change for a population from year 1 to the last year of 
surveys. 
 
Year 
Within the simulation, a complete set of sites surveyed. 
 
ZNIntervals 
The probability that a bird j is in singing mode at least once in NIntervals intervals. 
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########################## 

##FUNCTIONS 
##All functions for dissertation project 
 
##Alternate parameterization of Beta Distribution  
rbetaAlt <- function(n, MEAN, theta)  
{   
  a<- MEAN*theta        ## parameters = mean (mu) and concentration parameter (theta) 

instead of a,b 
  b<- theta-MEAN*theta  ## See Link's Bayesian Analysis book, p. 319 bottom 
  rbeta(n, a, b) 
} 
 
##Alternate parameterization of Beta Distribution for Vectorized inputs 
rbetaAlt2 <- function(MEAN, theta)  
{   
  if(length(MEAN)==length(theta)){ 
    a<- MEAN*theta        ## parameters = mean (mu) and concentration parameter (theta) 

instead of a,b 
    b<- theta-MEAN*theta  ## See Link's Bayesian Analysis book, p. 319 bottom 
    return(rbeta(length(MEAN), a, b)) 
  } 
  if(length(MEAN)!=length(theta)){return("rbetaAlt2 error: Mean and theta vectors are of 

unequal length")} 
} 
 
##Alternate parameterization of LogNormal distribution: input N, arithmetic mean and 

arithmetic SD of desired final distribution 
rlnormAlt<-function(N, DesiredMean, DesiredSD) 
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{mu<-log(DesiredMean)-0.5*log(1+(DesiredSD^2)/(DesiredMean^2)) 
 sigma<-sqrt(log(1+(DesiredSD^2)/(DesiredMean^2))) 
 rlnorm(N,mu,sigma) 
} 
 
######################### 
##Spatial functions 
######################### 
 
##Add 2 vectors: a distance and angle from origin + a movement (distance and angle from 

1st position) 
PolarSolve<- function(r1, theta1, rmove,thetamove)  
{  ##PolarSolve is a function to add 2 (r,theta) vectors  
  ##      Vector 1 = Distance and Angle (degrees!) of bird from observer at time i 
  ##      Vector 2 = Distance and Angle (degrees!) of bird's position at time i+1 from 

position at time i 
  radtheta1<- theta1*(2*pi/360) 
  radthetamove<- thetamove*(2*pi/360) 
  x1<- r1*cos(radtheta1) 
  y1<- r1*sin(radtheta1) 
  xmove<- rmove*cos(radthetamove) 
  ymove<- rmove*sin(radthetamove) 
  x2<- x1+xmove 
  y2<- y1+ymove 
  r2<- sqrt(x2^2+y2^2) 
  radtheta2<- atan(y2/x2) ##Note: atan alone moves everything to right half of unit 

circle  
  if(x2<0) {theta2<- (radtheta2+pi)*(360/(2*pi))} 
  if(x2>=0) {theta2<- (radtheta2)*(360/(2*pi))} 
  PolarSolveResults<- c(r2, theta2) 
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  return(PolarSolveResults) 
  ##PolarSolve(r1, theta1, rmove,thetamove)[1] = New Distance of bird from Obs  
  ##PolarSolve(r1, theta1, rmove,thetamove)[2] = New Angle of bird from Obs 
}   
 
##Calculate the distance between an observer at the origin and a bird with location (x,y) 
ObsDistance<-function(x,y) 
{Distance.yijrk<- sqrt(x^2+y^2)  ##radius 
 BirdAnglePolar.yijrk<-atan2(y,x)    ##polar coordinates angle 
 if(BirdAnglePolar.yijrk<0) BirdAnglePolar.yijrk<-BirdAnglePolar.yijrk+2*pi 
 BirdAngleCompass.yijrk<- (-1*BirdAnglePolar.yijrk + (pi/2))  ##Compass rose angle of 

bird in relation to obs 
 if(BirdAngleCompass.yijrk<0) BirdAngleCompass.yijrk<-BirdAngleCompass.yijrk+2*pi 
 return(list("Distance.yijrk"=Distance.yijrk, 
             "BirdAnglePolar.yijrk"=BirdAnglePolar.yijrk, 
             "BirdAngleCompass.yijrk"=BirdAngleCompass.yijrk)) 
} 
 
## Calculate the distance between the center of a single GenSpatialParameters 
## object and the centers of a list of GenSpatialParameters objects. 
DistanceCenters<-function(SpatialCandidate, SpatialList)  
{ xc<-SpatialCandidate$CenterX.yij 
  yc<-SpatialCandidate$CenterY.yij 
   
  xs<-unname(unlist(SpatialList)[names(unlist(SpatialList))=="CenterX.yij"]) 
  ys<-unname(unlist(SpatialList)[names(unlist(SpatialList))=="CenterY.yij"]) 
   
  Distances<-sqrt((xc-xs)^2 + (yc-ys)^2) 
  return(Distances)   
} 
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##Rotate X and Y coordinates around THE ORIGIN by an angle, theta 
RotatePoints<- function(X1, Y1, theta)  
{ ##Input angle as degrees 
  radtheta<- theta*(2*pi/360) 
  Xnew<- X1*cos(radtheta) - Y1*sin(radtheta) 
  Ynew<- X1*sin(radtheta) + Y1*cos(radtheta) 
  RotateResults<- cbind(Xnew, Ynew) 
  return(RotateResults)   
  #RotatePoints(X2, Y2, Theta)[,1] #will return column of x coordinates 
  #RotatePoints(X2, Y2, Theta)[,2] #will return column of y coordinates 
} 
 
##Generate parameters needed to generate Bivariate normal territories 
##Input: Area (mean & SD) of territory and PercentUD.yij (the percent of locations 

contained by a HR that large) 
##Output: CenterXyij, CenterY.yij, Theta.yij, SDy.yij, SDx.yij, Area.yij, a.yij, b.yij, 

Ecc.yij 
GenSpatialParameters<- function(HRAreamean, ## mean territory/HR size 
                                HRAreaSD,   ## SD territory/HR size 
                                PercentUD.yij=0.95,  ## What % of location are contained 

by a territory of mean size? 
                                ylim=c(-1000,1000),  ##How many meters wide is area 

modeled? 
                                xlim=c(-1000,1000),  ##How many meters tall is area 

modeled? 
                                OverlapUD=0.8)  #What % Utilization ellipse of used for 

overlap comparisons? 
                                { CenterX.yij<- runif(1,xlim[1], xlim[2])  ##x-coordinate 

for center of ellipse 
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  CenterY.yij<- runif(1,ylim[1], ylim[2])  ##y-coordinate for center of ellipse 
  Theta.yij<- runif(1,0,360)   ##Angle at which ellipse will be rotated 
   
  ##Area of a 95% Home Range Ellipse (Jennrich and Turner 1969, eq. 13): 
  ## Area = 6*pi*sqrt(determinent of var/covar matrix) 
  ##      = 6*pi*SDx*SDy)  (assumes covariance = 0) 
  Area.yij <- rlnormAlt(1,HRAreamean, HRAreaSD) ##Area of territory/HR for bird j in 

survey site i 
  ##Area.yij generated from a lognormal distribution to prevent negative areas 

(nonsensical) 
   
  #rhoij<-runif(1,-0.95, 0.95)  ##rhoij==0 !! covariance=0 
  #Ecc.yij<- rbetaAlt(1,.8,20)  ##Determine desired eccentricity of HR ij with beta 

distribution 
  Ecc.yij<-runif(1,0,0.95) ##Determine desired eccentricity of HR ij with uniform 

distribution 
  a.yij<-((Area.yij^2)/((1-Ecc.yij^2)*pi^2))^(1/4) ##intercept on major axis of similar 

ellipse centered at origin 
  b.yij<-Area.yij/(pi*a.yij)                     ##intercept on minor axis of similar 

ellipse centered at origin 
  C<- sqrt(log((1-PercentUD.yij)^-2))  ##(C^2)*pi*sqrt(det(Sigma))=Area of ellipse  
   
  SDx.yij<-sqrt((a.yij*Area.yij)/(C^2*pi*b.yij)) ##for 95% UD, C^2=6 
  SDy.yij<-b.yij*SDx.yij/a.yij 
   
  radtheta.yij<- Theta.yij*(2*pi/360) 
  Xmeanrotated<- CenterX.yij*cos(radtheta.yij) - CenterY.yij*sin(radtheta.yij) 
  Ymeanrotated<- CenterX.yij*sin(radtheta.yij) + CenterY.yij*cos(radtheta.yij) 
  Xdif.yij <- CenterX.yij - Xmeanrotated 
  Ydif.yij <- CenterY.yij - Ymeanrotated 
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  Sigma<-matrix(c(SDx.yij^2, 0,0,SDy.yij^2),2,2) 
  eSigma<-eigen(Sigma) 
  U<-c(CenterX.yij, CenterY.yij) 
   
  ##Unrotated Axes 
  UnRMajorAxis1<- U+C*(sqrt(eSigma$values[1])*eSigma$vectors[,1]) 
  UnRMajorAxis2<- U-C*(sqrt(eSigma$values[1])*eSigma$vectors[,1]) 
  UnRMinorAxis1<- U+C*(sqrt(eSigma$values[2])*eSigma$vectors[,2]) 
  UnRMinorAxis2<- U-C*(sqrt(eSigma$values[2])*eSigma$vectors[,2]) 
  
  ##Rotated, unshifted Axes 
  #RotatePoints(UnRMajorAxis1[1], UnRMajorAxis1[2], Theta.yij) 
   
  RMajorAxis1<-RotatePoints(UnRMajorAxis1[1], UnRMajorAxis1[2], Theta.yij) 
  RMajorAxis2<-RotatePoints(UnRMajorAxis2[1], UnRMajorAxis2[2], Theta.yij) 
  RMinorAxis1<-RotatePoints(UnRMinorAxis1[1], UnRMinorAxis1[2], Theta.yij) 
  RMinorAxis2<-RotatePoints(UnRMinorAxis2[1], UnRMinorAxis2[2], Theta.yij) 
   
  ##Rotated, shifted Axes 
  RSMajorAxis1.yij<-RMajorAxis1+ c(Xdif.yij,Ydif.yij) 
  RSMajorAxis2.yij<-RMajorAxis2+ c(Xdif.yij,Ydif.yij)  
  RSMinorAxis1.yij<-RMinorAxis1+ c(Xdif.yij,Ydif.yij) 
  RSMinorAxis2.yij<-RMinorAxis2+ c(Xdif.yij,Ydif.yij) 
   
  ##### 
  ##parameters for OverlapEllipse% UD ellipse, all other parameters same - useful for 

overlap calculation 
  ## NOTE: OE stands for "Overlap Ellipse" in all variable names 
  AreaOE.yij<-Area.yij*((log((1-OverlapUD)^-2))/(log((1-PercentUD.yij)^-2))) ##Area of an 

OverlapEllipse% UD, other parameters same 
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  aOE.yij<-((AreaOE.yij^2)/((1-Ecc.yij^2)*pi^2))^(1/4)  ##intercept on major axis of 
OverlapEllipse% UD ellipse centered at origin 

  bOE.yij<-AreaOE.yij/(pi*aOE.yij) ##intercept on minor axis of OE% UD ellipse centered 
at origin 

  COE<- sqrt(log((1-OverlapUD)^-2)) ## constant C for an OverlapEllipse% UD ellipse 
   
  SDOEx.yij<-sqrt((aOE.yij*AreaOE.yij)/(COE^2*pi*bOE.yij)) ##for 95% UD, C^2=6 
  SDOEy.yij<-bOE.yij*SDOEx.yij/aOE.yij 
  SigmaOE<-matrix(c(SDOEx.yij^2, 0,0,SDOEy.yij^2),2,2) 
  eSigmaOE<-eigen(SigmaOE) 
  ##Unrotated Axes - OverlapEllipse% UD ellipse 
  UnROEMajorAxis1<- U+COE*(sqrt(eSigmaOE$values[1])*eSigmaOE$vectors[,1]) 
  UnROEMajorAxis2<- U-COE*(sqrt(eSigmaOE$values[1])*eSigmaOE$vectors[,1]) 
  UnROEMinorAxis1<- U+COE*(sqrt(eSigmaOE$values[2])*eSigmaOE$vectors[,2]) 
  UnROEMinorAxis2<- U-COE*(sqrt(eSigmaOE$values[2])*eSigmaOE$vectors[,2]) 
   
  ##Rotated, unshifted Axes - OverlapEllipse% UD ellipse 
  #RotatePoints(UnROverlapEllipseMajorAxis1[1], UnROverlapEllipseMajorAxis1[2], 

Theta.yij) 
   
  ROEMajorAxis1<-RotatePoints(UnROEMajorAxis1[1], UnROEMajorAxis1[2], Theta.yij) 
  ROEMajorAxis2<-RotatePoints(UnROEMajorAxis2[1], UnROEMajorAxis2[2], Theta.yij) 
  ROEMinorAxis1<-RotatePoints(UnROEMinorAxis1[1], UnROEMinorAxis1[2], Theta.yij) 
  ROEMinorAxis2<-RotatePoints(UnROEMinorAxis2[1], UnROEMinorAxis2[2], Theta.yij) 
   
  ##Rotated, shifted Axes - OverlapEllipse% UD ellipse 
  RSOEMajorAxis1.yij<-ROEMajorAxis1+ c(Xdif.yij,Ydif.yij) 
  RSOEMajorAxis2.yij<-ROEMajorAxis2+ c(Xdif.yij,Ydif.yij)  
  RSOEMinorAxis1.yij<-ROEMinorAxis1+ c(Xdif.yij,Ydif.yij) 
  RSOEMinorAxis2.yij<-ROEMinorAxis2+ c(Xdif.yij,Ydif.yij) 
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    ##Verify with plot that the rotation is correct 
  #   par(mfrow=c(1,3)) 
  #   

plot(c(CenterXij,UnRMajorAxis1[1],UnRMajorAxis2[1],UnRMinorAxis1[1],UnRMinorAxis2[1]
), 

  #        
c(CenterYij,UnRMajorAxis1[2],UnRMajorAxis2[2],UnRMinorAxis1[2],UnRMinorAxis2[2]), 
pch=16, xlim=c(-15,15), ylim=c(-10,20)) 

  #   
  #   plot(c(CenterXij,RMajorAxis1[1],RMajorAxis2[1],RMinorAxis1[1],RMinorAxis2[1]), 
  #        c(CenterYij,RMajorAxis1[2],RMajorAxis2[2],RMinorAxis1[2],RMinorAxis2[2]), 

pch=16, xlim=c(-15,15), ylim=c(-10,20)) 
  #    
  #   plot(c(CenterXij,RSMajorAxis1[1],RSMajorAxis2[1],RSMinorAxis1[1],RSMinorAxis2[1]), 
  #        c(CenterYij,RSMajorAxis1[2],RSMajorAxis2[2],RSMinorAxis1[2],RSMinorAxis2[2]), 

pch=16, xlim=c(-15,15), ylim=c(-10,20)) 
  #    
  return(list("CenterX.yij"=CenterX.yij,  
              "CenterY.yij"=CenterY.yij, 
              "Area.yij"=Area.yij, 
              "Theta.yij"=Theta.yij, 
              "a.yij"=a.yij, 
              "b.yij"=b.yij, 
              "SDx.yij"=SDx.yij, 
              "SDy.yij"=SDy.yij, 
              "Ecc.yij"=Ecc.yij, 
              "PercentUD.yij"=PercentUD.yij, 
              "Xdif.yij"=Xdif.yij, 
              "Ydif.yij"=Ydif.yij, 
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              "RSMajorAxis1.yij"=RSMajorAxis1.yij, 
              "RSMajorAxis2.yij"=RSMajorAxis2.yij, 
              "RSMinorAxis1.yij"=RSMinorAxis1.yij, 
              "RSMinorAxis2.yij"=RSMinorAxis2.yij, 
              "RSOEMajorAxis1.yij"=RSOEMajorAxis1.yij, 
              "RSOEMajorAxis2.yij"=RSOEMajorAxis2.yij, 
              "RSOEMinorAxis1.yij"=RSOEMinorAxis1.yij, 
              "RSOEMinorAxis2.yij"=RSOEMinorAxis2.yij, 
              "AreaOE.yij"=AreaOE.yij, 
              "aOE.yij"=aOE.yij, 
              "bOE.yij"=bOE.yij, 
              "SDOEx.yij"=SDOEx.yij, 
              "SDOEy.yij"=SDOEy.yij 
              )) 
} 
 
##Generate locations for a bird with territory parameters produced by 

GenSpatialParameters() 
GenLocations<-function(NPoints, EllipseParm) ##EllipseParm includes 

CenterX.yij,CenterY.yij,Theta.yij,SDx.yij,SDy.yij) 
{ require(MASS) 
  EllipseParm<-unlist(EllipseParm) 
   
  CenterX.yij<-EllipseParm["CenterX.yij"] 
  CenterY.yij<-EllipseParm["CenterY.yij"] 
  Theta.yij<-EllipseParm["Theta.yij"] 
  SDx.yij<-EllipseParm["SDx.yij"] 
  SDy.yij<-EllipseParm["SDy.yij"] 
   
  ##Generate Bivariate normal points for ellipse 
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  Sigma.yij<-matrix(c(SDx.yij^2,0,0,SDy.yij^2),2,2) #Covariance matrix 
  UnrotatedLocations.yijrk<- mvrnorm(NPoints, c(CenterX.yij, CenterY.yij),Sigma.yij) 
  if(NPoints==1) UnrotatedLocations.yijrk<-matrix(UnrotatedLocations.yijrk,1,2) 
  dimnames(UnrotatedLocations.yijrk)<-list(NULL,c("X.yijrk", "Y.yijrk")) 
  #return(UnrotatedLocations.yijrk) 
   
  ##Rotate Points  
  RotatedLocations.yijrk<-

RotatePoints(UnrotatedLocations.yijrk[,"X.yijrk"],UnrotatedLocations.yijrk[,"Y.yijrk
"], Theta.yij)  

  #return(RotatedLocations.yijrk) 
   
  ##Shift points back in place 
  radtheta<- Theta.yij*(2*pi/360) 
  Xmeanrotated<- CenterX.yij*cos(radtheta) - CenterY.yij*sin(radtheta) 
  Ymeanrotated<- CenterX.yij*sin(radtheta) + CenterY.yij*cos(radtheta) 
  Xdif.yij <- CenterX.yij - Xmeanrotated 
  Ydif.yij <- CenterY.yij - Ymeanrotated 
  RotatedAndShiftedLocations.yijrk<-

cbind("XRS"=(RotatedLocations.yijrk[,"Xnew"]+Xdif.yij),"YRS"=(RotatedLocations.yijrk
[,"Ynew"]+Ydif.yij)) 

   
  ##Plot unrotated, rotated, and rotated&shifted points 
  # par(mfrow=c(1,3)) 
  # plot(UnrotatedLocationsijk, ylim=c(-20,20), xlim=c(-20,20)) 
  # lines(CenterXij, CenterYij, col="red", pch=16, type="p") 
  # plot(RotatedLocationsijk, ylim=c(-20,20), xlim=c(-20,20)) 
  # lines(CenterXij, CenterYij, col="red", pch=16, type="p") 
  # plot(RotatedAndShiftedLocationsijk, ylim=c(-20,20), xlim=c(-20,20)) 
  # lines(CenterXij, CenterYij, col="red", pch=16, type="p") 
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  ##revise dimnames for NPoints=1 to avoid irritating false row name 
   
  if(NPoints==1) { 
    RSLdimnames<-dimnames(RotatedAndShiftedLocations.yijrk) 
    dimnames(RotatedAndShiftedLocations.yijrk)<-list(NULL,RSLdimnames[[2]])} 
  return(RotatedAndShiftedLocations.yijrk) 
} 
 
##Generate locations of ellipses for 2 stages of GenLocations() (Before,Rotated, 

Rotates&Shifted) 
GenEllipseAll<-function(EllipseParm) #EllipseParm includes CenterXij, CenterYij, aij, 

bij, Thetaij) 
{ 
  EllipseParm<-unlist(EllipseParm) 
  CenterX.yij<-EllipseParm["CenterX.yij"] 
  CenterY.yij<-EllipseParm["CenterY.yij"] 
  a.yij<-EllipseParm["a.yij"] 
  b.yij<-EllipseParm["b.yij"] 
  Theta.yij<-EllipseParm["Theta.yij"] 
   
  EllipseXs<-(CenterX.yij-a.yij):(CenterX.yij+a.yij) ##Range of x-coordinates for 

plotting Ellipse 
  OriginXs<- -a.yij:a.yij                        ##Range of x-coordinates if ellipse were 

plotted at origin instead of centerpoint 
  OriginYs<- sqrt((b.yij^2)*abs(1-(OriginXs^2/a.yij^2)))  ##y-coordinates if ellipse were 

plotted at origin instead of centerpoint 
   
  radtheta<- Theta.yij*(2*pi/360) 
  Xmeanrotated<- CenterX.yij*cos(radtheta) - CenterY.yij*sin(radtheta) 
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  Ymeanrotated<- CenterX.yij*sin(radtheta) + CenterY.yij*cos(radtheta) 
  Xdif.yij <- CenterX.yij - Xmeanrotated 
  Ydif.yij <- CenterY.yij - Ymeanrotated 
   
  ##Ellipse before rotation 
  EllipseBefore1<- cbind("EllipseBefore1X"=EllipseXs, 

"EllipseBefore1Y"=CenterY.yij+OriginYs) 
  EllipseBefore2<- cbind("EllipseBefore2X"=EllipseXs[order(-EllipseXs)], 

"EllipseBefore2Y"=CenterY.yij-OriginYs) 
   
  ##Ellipse rotated (around origin) 
  EllipseR1<-RotatePoints(EllipseBefore1[,1], EllipseBefore1[,2], Theta.yij) 
  EllipseR2<-RotatePoints(EllipseBefore2[,1], EllipseBefore2[,2], Theta.yij) 
   
  ##Ellipse rotated and shifted 
  EllipseRS1<-cbind("EllipseRS1X"=EllipseR1[,1]+Xdif.yij, 

"EllipseRS1Y"=EllipseR1[,2]+Ydif.yij) 
  EllipseRS2<-cbind("EllipseRS2X"=EllipseR2[,1]+Xdif.yij, 

"EllipseRS2Y"=EllipseR2[,2]+Ydif.yij) 
   
  HH<- 

data.frame(cbind(EllipseBefore1,EllipseBefore2,EllipseR1,EllipseR2,EllipseRS1,Ellips
eRS2)) 

  return(HH) 
} 
 
##Generate locations of ellipses for plotting ONLY rotated and shifted Ellipses) 
GenEllipsePlot<-function(EllipseParm)  ## EllipseParm includes CenterXij, CenterYij, aij, 

bij, Thetaij) 
{    
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  EllipseParm<-unlist(EllipseParm) 
  CenterX.yij<-EllipseParm["CenterX.yij"] 
  CenterY.yij<-EllipseParm["CenterY.yij"] 
  a.yij<-EllipseParm["a.yij"] 
  b.yij<-EllipseParm["b.yij"] 
  Theta.yij<-EllipseParm["Theta.yij"] 
   
  EllipseXs<-(CenterX.yij-a.yij):(CenterX.yij+a.yij) ##Range of x-coordinates for 

plotting Ellipse 
  OriginXs<- -a.yij:a.yij                        ##Range of x-coordinates if ellipse were 

plotted at origin instead of centerpoint 
  OriginYs<- sqrt((b.yij^2)*abs(1-(OriginXs^2/a.yij^2)))  ##y-coordinates if ellipse were 

plotted at origin instead of centerpoint 
   
  radtheta<- Theta.yij*(2*pi/360) 
  Xmeanrotated<- CenterX.yij*cos(radtheta) - CenterY.yij*sin(radtheta) 
  Ymeanrotated<- CenterX.yij*sin(radtheta) + CenterY.yij*cos(radtheta) 
  Xdif.yij <- CenterX.yij - Xmeanrotated 
  Ydif.yij <- CenterY.yij - Ymeanrotated 
   
  ##Ellipse before rotation 
  EllipseBefore1<- cbind("EllipseBefore1X"=EllipseXs, 

"EllipseBefore1Y"=CenterY.yij+OriginYs) 
  EllipseBefore2<- cbind("EllipseBefore2X"=EllipseXs[order(-EllipseXs)], 

"EllipseBefore2Y"=CenterY.yij-OriginYs) 
   
  ##Ellipse rotated (around origin) 
  EllipseR1<-RotatePoints(EllipseBefore1[,1], EllipseBefore1[,2], Theta.yij) 
  EllipseR2<-RotatePoints(EllipseBefore2[,1], EllipseBefore2[,2], Theta.yij) 
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  ##Ellipse rotated and shifted 
  EllipseRS1<-cbind("EllipseRS1X"=EllipseR1[,1]+Xdif.yij, 

"EllipseRS1Y"=EllipseR1[,2]+Ydif.yij) 
  EllipseRS2<-cbind("EllipseRS2X"=EllipseR2[,1]+Xdif.yij, 

"EllipseRS2Y"=EllipseR2[,2]+Ydif.yij) 
   
  EllipseRSAll<- rbind(EllipseRS1, EllipseRS2) 
   
  #HH<- 

data.frame(cbind(EllipseBefore1,EllipseBefore2,EllipseR1,EllipseR2,EllipseRS1,Ellips
eRS2)) 

  return(EllipseRSAll) 
} 
 
##Generate locations of Overlap Ellipse % UD ellipses for plotting ONLY rotated and 

shifted Ellipses) 
GenOEEllipsePlot<-function(EllipseParm)  ## EllipseParm includes CenterXij, CenterYij, 

aij, bij, Thetaij) 
{    
  EllipseParm<-unlist(EllipseParm) 
  CenterX.yij<-EllipseParm["CenterX.yij"] 
  CenterY.yij<-EllipseParm["CenterY.yij"] 
  aOE.yij<-EllipseParm["aOE.yij"] 
  bOE.yij<-EllipseParm["bOE.yij"] 
  Theta.yij<-EllipseParm["Theta.yij"] 
   
  EllipseXs<-(CenterX.yij-aOE.yij):(CenterX.yij+aOE.yij) ##Range of x-coordinates for 

plotting Ellipse 
  OriginXs<- -aOE.yij:aOE.yij                        ##Range of x-coordinates if ellipse 

were plotted at origin instead of centerpoint 
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  OriginYs<- sqrt((bOE.yij^2)*abs(1-(OriginXs^2/aOE.yij^2)))  ##y-coordinates if ellipse 
were plotted at origin instead of centerpoint 

   
  radtheta<- Theta.yij*(2*pi/360) 
  Xmeanrotated<- CenterX.yij*cos(radtheta) - CenterY.yij*sin(radtheta) 
  Ymeanrotated<- CenterX.yij*sin(radtheta) + CenterY.yij*cos(radtheta) 
  Xdif.yij <- CenterX.yij - Xmeanrotated 
  Ydif.yij <- CenterY.yij - Ymeanrotated 
   
  ##Ellipse before rotation 
  EllipseBefore1<- cbind("EllipseBefore1X"=EllipseXs, 

"EllipseBefore1Y"=CenterY.yij+OriginYs) 
  EllipseBefore2<- cbind("EllipseBefore2X"=EllipseXs[order(-EllipseXs)], 

"EllipseBefore2Y"=CenterY.yij-OriginYs) 
   
  ##Ellipse rotated (around origin) 
  EllipseR1<-RotatePoints(EllipseBefore1[,1], EllipseBefore1[,2], Theta.yij) 
  EllipseR2<-RotatePoints(EllipseBefore2[,1], EllipseBefore2[,2], Theta.yij) 
   
  ##Ellipse rotated and shifted 
  EllipseRS1<-cbind("EllipseRS1X"=EllipseR1[,1]+Xdif.yij, 

"EllipseRS1Y"=EllipseR1[,2]+Ydif.yij) 
  EllipseRS2<-cbind("EllipseRS2X"=EllipseR2[,1]+Xdif.yij, 

"EllipseRS2Y"=EllipseR2[,2]+Ydif.yij) 
   
  EllipseRSAll<- rbind(EllipseRS1, EllipseRS2) 
   
  #HH<- 

data.frame(cbind(EllipseBefore1,EllipseBefore2,EllipseR1,EllipseR2,EllipseRS1,Ellips
eRS2)) 
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  return(EllipseRSAll) 
} 
 
 
 
##Check if point (x,y) is inside ellipse.  Returns TRUE / FALSE 
XYCheckInsideEllipse<-function(x,y,ExistingEllipseParm) 
{ 
  ExistingEllipseParm<-unlist(ExistingEllipseParm) 
  CenterX.yij<-ExistingEllipseParm["CenterX.yij"] 
  CenterY.yij<-ExistingEllipseParm["CenterY.yij"] 
  a.yij<-ExistingEllipseParm["a.yij"] 
  b.yij<-ExistingEllipseParm["b.yij"] 
  Theta.yij<-ExistingEllipseParm["Theta.yij"] 
   
  radtheta<- Theta.yij*(2*pi/360) 
  A<- (cos(radtheta)^2)/a.yij^2 + (sin(radtheta)^2)/b.yij^2 
  B<- 2*cos(radtheta)*sin(radtheta)*(1/a.yij^2 - 1/b.yij^2) 
  C<- (sin(radtheta)^2)/a.yij^2 + (cos(radtheta)^2)/b.yij^2 
  Verify<- A*x^2+ B*x*y+ C*y^2- (2*A*CenterX.yij + CenterY.yij*B)*x- 

(2*C*CenterY.yij+B*CenterX.yij)*y+ 
(A*CenterX.yij^2+B*CenterX.yij*CenterY.yij+C*CenterY.yij^2) 

  ifelse(Verify<=1, return(TRUE), return(FALSE)) 
} 
 
 
##Check if any of 4 axes points OR center of NewEllipse are inside 1 Existing Ellipse.   
##Returns TRUE / FALSE 
AxesCheckInsideEllipse<-function(NewEllipseParm,ExistingEllipseParm) 
{ 
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  Major1<-unlist(NewEllipseParm[["RSMajorAxis1.yij"]]) 
  Major2<-unlist(NewEllipseParm[["RSMajorAxis2.yij"]]) 
  Minor1<-unlist(NewEllipseParm[["RSMinorAxis1.yij"]]) 
  Minor2<-unlist(NewEllipseParm[["RSMinorAxis2.yij"]]) 
  CenterA<-c(NewEllipseParm[["CenterX.yij"]], NewEllipseParm[["CenterY.yij"]]) 
   
  Axes<-(rbind(Major1,Major2, Minor1, Minor2, CenterA)) 
   
  ExistingEllipseParm<-unlist(ExistingEllipseParm) 
  CenterX.yij<-ExistingEllipseParm["CenterX.yij"] 
  CenterY.yij<-ExistingEllipseParm["CenterY.yij"] 
  a.yij<-ExistingEllipseParm["a.yij"] 
  b.yij<-ExistingEllipseParm["b.yij"] 
  Theta.yij<-ExistingEllipseParm["Theta.yij"] 
  Inside<-rep(NA,nrow(Axes)) 
   
  for(i in 1:nrow(Axes)){ 
    x<-Axes[i,1] 
    y<-Axes[i,2] 
     
    radtheta<- Theta.yij*(2*pi/360) 
    A<- (cos(radtheta)^2)/a.yij^2 + (sin(radtheta)^2)/b.yij^2 
    B<- 2*cos(radtheta)*sin(radtheta)*(1/a.yij^2 - 1/b.yij^2) 
    C<- (sin(radtheta)^2)/a.yij^2 + (cos(radtheta)^2)/b.yij^2 
    Verify<- A*x^2+ B*x*y+ C*y^2- (2*A*CenterX.yij + CenterY.yij*B)*x- 

(2*C*CenterY.yij+B*CenterX.yij)*y+ 
(A*CenterX.yij^2+B*CenterX.yij*CenterY.yij+C*CenterY.yij^2) 

    ifelse(Verify<=1, Inside[i]<-1, Inside[i]<-0) 
    ##Above equations from 

http://www.maa.org/external_archive/joma/Volume8/Kalman/General.html 
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    ##Also saves as .htm in Detection/REFS/Ellipse Geomoetry & Bivariate Distributions 
  } 
  ifelse(sum(Inside)==0, return(FALSE), return(TRUE)) 
} 
 
##Check if any of 4 axes points OR center of NewEllipse are inside multiple Existing 

Ellipses.   
##Returns TRUE / FALSE 
AxesCheckInsideEllipsesVectorized<-function(NewEllipseParm,ExistingEllipseParm) 
{ 
  ##NewEllipseParm is a GenSpatialParameters generated list 
  ##ExistingEllipseParm is a list of GenSpatialParameters lists 
   
  ##Create matrix of Existing Ellipse parameters 
  ExistingEllipses<-rbind(unlist(ExistingEllipseParm[[1]])) 
  if(length(ExistingEllipseParm)>=2){ 
    for(ii in 2:length(ExistingEllipseParm)){ 
      ExistingEllipses<-rbind(ExistingEllipses, 
                              rbind(unlist(ExistingEllipseParm[[ii]]))) 
    } 
  } 
  Major1<-unlist(NewEllipseParm[["RSMajorAxis1.yij"]]) 
  Major2<-unlist(NewEllipseParm[["RSMajorAxis2.yij"]]) 
  Minor1<-unlist(NewEllipseParm[["RSMinorAxis1.yij"]]) 
  Minor2<-unlist(NewEllipseParm[["RSMinorAxis2.yij"]]) 
  CenterA<-c(NewEllipseParm[["CenterX.yij"]], NewEllipseParm[["CenterY.yij"]]) 
   
  Axes<-(rbind(Major1,Major2, Minor1, Minor2, CenterA)) 
   
  CenterX.yij<-ExistingEllipses[,"CenterX.yij"] 
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  CenterY.yij<-ExistingEllipses[,"CenterY.yij"] 
  a.yij<-ExistingEllipses[,"a.yij"] 
  b.yij<-ExistingEllipses[,"b.yij"] 
  Theta.yij<-ExistingEllipses[,"Theta.yij"] 
  Inside<-list() 
   
  for(i in 1:nrow(Axes)){ 
    x<-Axes[i,1] 
    y<-Axes[i,2] 
     
    radtheta<- Theta.yij*(2*pi/360) 
    A<- (cos(radtheta)^2)/a.yij^2 + (sin(radtheta)^2)/b.yij^2 
    B<- 2*cos(radtheta)*sin(radtheta)*(1/a.yij^2 - 1/b.yij^2) 
    C<- (sin(radtheta)^2)/a.yij^2 + (cos(radtheta)^2)/b.yij^2 
    Verify<- A*x^2+ B*x*y+ C*y^2- (2*A*CenterX.yij + CenterY.yij*B)*x- 

(2*C*CenterY.yij+B*CenterX.yij)*y+ 
(A*CenterX.yij^2+B*CenterX.yij*CenterY.yij+C*CenterY.yij^2) 

    ##if Verify<=1, an axis point from the new ellipse is inside an existing ellipse 
    ##Above equations from 

http://www.maa.org/external_archive/joma/Volume8/Kalman/General.html 
    ##Also saved as .htm in Detection/REFS/Ellipse Geomoetry & Bivariate Distributions 
    Inside[[i]]<-sum(Verify<=1) 
  } 
  ifelse(sum(unlist(Inside))==0, return(FALSE), return(TRUE)) 
} 
 
 
#### 
 
##Check if any of 4 axes points OR center of Overlap Ellipse % UD NewEllipse are  
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## inside 1 Existing Ellipse (Overlap Ellipse % UD too).   
##Returns TRUE / FALSE 
AxesCheckInsideEllipseOE<-function(NewEllipseParm,ExistingEllipseParm) 
{ 
  Major1<-unlist(NewEllipseParm[["RSOEMajorAxis1.yij"]]) 
  Major2<-unlist(NewEllipseParm[["RSOEMajorAxis2.yij"]]) 
  Minor1<-unlist(NewEllipseParm[["RSOEMinorAxis1.yij"]]) 
  Minor2<-unlist(NewEllipseParm[["RSOEMinorAxis2.yij"]]) 
  CenterA<-c(NewEllipseParm[["CenterX.yij"]], NewEllipseParm[["CenterY.yij"]]) 
   
  Axes<-(rbind(Major1, Major2, Minor1, Minor2, CenterA)) 
   
  ExistingEllipseParm<-unlist(ExistingEllipseParm) 
  CenterX.yij<-ExistingEllipseParm["CenterX.yij"] 
  CenterY.yij<-ExistingEllipseParm["CenterY.yij"] 
  a.yij<-ExistingEllipseParm["aOE.yij"] 
  b.yij<-ExistingEllipseParm["bOE.yij"] 
  Theta.yij<-ExistingEllipseParm["Theta.yij"] 
  Inside<-rep(NA,nrow(Axes)) 
   
  for(i in 1:nrow(Axes)){ 
    x<-Axes[i,1] 
    y<-Axes[i,2] 
     
    radtheta<- Theta.yij*(2*pi/360) 
    A<- (cos(radtheta)^2)/a.yij^2 + (sin(radtheta)^2)/b.yij^2 
    B<- 2*cos(radtheta)*sin(radtheta)*(1/a.yij^2 - 1/b.yij^2) 
    C<- (sin(radtheta)^2)/a.yij^2 + (cos(radtheta)^2)/b.yij^2 
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    Verify<- A*x^2+ B*x*y+ C*y^2- (2*A*CenterX.yij + CenterY.yij*B)*x- 
(2*C*CenterY.yij+B*CenterX.yij)*y+ 
(A*CenterX.yij^2+B*CenterX.yij*CenterY.yij+C*CenterY.yij^2) 

    ifelse(Verify<=1, Inside[i]<-1, Inside[i]<-0) 
    ##Above equations from 

http://www.maa.org/external_archive/joma/Volume8/Kalman/General.html 
    ##Also saves as .htm in Detection/REFS/Ellipse Geomoetry & Bivariate Distributions 
  } 
  ifelse(sum(Inside)==0, return(FALSE), return(TRUE)) 
} 
 
##Check if any of 4 axes points OR center of Overlap Ellipse % UD NewEllipse are inside  
##multiple Existing Overlap Ellipse % UD Ellipses.   
##Returns TRUE / FALSE 
AxesCheckInsideEllipsesVectorizedOE<-function(NewEllipseParm,ExistingEllipseParm) 
{ 
  ##NewEllipseParm is a GenSpatialParameters generated list 
  ##ExistingEllipseParm is a list of GenSpatialParameters lists 
   
  ##Create matrix of Existing Ellipse parameters 
  ExistingEllipses<-rbind(unlist(ExistingEllipseParm[[1]])) 
  if(length(ExistingEllipseParm)>=2){ 
    for(ii in 2:length(ExistingEllipseParm)){ 
      ExistingEllipses<-rbind(ExistingEllipses, 
                              rbind(unlist(ExistingEllipseParm[[ii]]))) 
    } 
  } 
  Major1<-unlist(NewEllipseParm[["RSOEMajorAxis1.yij"]]) 
  Major2<-unlist(NewEllipseParm[["RSOEMajorAxis2.yij"]]) 
  Minor1<-unlist(NewEllipseParm[["RSOEMinorAxis1.yij"]]) 
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  Minor2<-unlist(NewEllipseParm[["RSOEMinorAxis2.yij"]]) 
  CenterA<-c(NewEllipseParm[["CenterX.yij"]], NewEllipseParm[["CenterY.yij"]]) 
   
  Axes<-(rbind(Major1,Major2, Minor1, Minor2, CenterA)) 
   
  CenterX.yij<-ExistingEllipses[,"CenterX.yij"] 
  CenterY.yij<-ExistingEllipses[,"CenterY.yij"] 
  a.yij<-ExistingEllipses[,"aOE.yij"] 
  b.yij<-ExistingEllipses[,"bOE.yij"] 
  Theta.yij<-ExistingEllipses[,"Theta.yij"] 
  Inside<-list() 
   
  for(i in 1:nrow(Axes)){ 
    x<-Axes[i,1] 
    y<-Axes[i,2] 
     
    radtheta<- Theta.yij*(2*pi/360) 
    A<- (cos(radtheta)^2)/a.yij^2 + (sin(radtheta)^2)/b.yij^2 
    B<- 2*cos(radtheta)*sin(radtheta)*(1/a.yij^2 - 1/b.yij^2) 
    C<- (sin(radtheta)^2)/a.yij^2 + (cos(radtheta)^2)/b.yij^2 
    Verify<- A*x^2+ B*x*y+ C*y^2- (2*A*CenterX.yij + CenterY.yij*B)*x- 

(2*C*CenterY.yij+B*CenterX.yij)*y+ 
(A*CenterX.yij^2+B*CenterX.yij*CenterY.yij+C*CenterY.yij^2) 

    ##if Verify<=1, an axis point from the new ellipse is inside an existing ellipse 
    ##Above equations from 

http://www.maa.org/external_archive/joma/Volume8/Kalman/General.html 
    ##Also saved as .htm in Detection/REFS/Ellipse Geomoetry & Bivariate Distributions 
    Inside[[i]]<-sum(Verify<=1) 
  } 
  ifelse(sum(unlist(Inside))==0, return(FALSE), return(TRUE)) 
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} 
 
 
## Determine closest axis point to the observer 
## Useful for determining if territory overlaps survey radius 
## Note: will use axes for PercentUD.yij used to create territory ExistingEllipseParm 
## (Default = 95% UD) 
AxesClosestObs<-function(ExistingEllipseParm){ 
  AxesDistances<-

c(unname(unlist(ObsDistance(ExistingEllipseParm[["RSMajorAxis1.yij"]][1],ExistingEll
ipseParm[["RSMajorAxis1.yij"]][2])["Distance.yijrk"])), 

                   
unname(unlist(ObsDistance(ExistingEllipseParm[["RSMajorAxis2.yij"]][1],ExistingEllip
seParm[["RSMajorAxis2.yij"]][2])["Distance.yijrk"])), 

                   
unname(unlist(ObsDistance(ExistingEllipseParm[["RSMinorAxis1.yij"]][1],ExistingEllip
seParm[["RSMinorAxis1.yij"]][2])["Distance.yijrk"])), 

                   
unname(unlist(ObsDistance(ExistingEllipseParm[["RSMinorAxis2.yij"]][1],ExistingEllip
seParm[["RSMinorAxis2.yij"]][2])["Distance.yijrk"]))) 

  return(min(AxesDistances)) 
} 
 
 
######################### 
###Availability Functions 
######################### 
 
##Generate DidBirdSing for a single interval with a Markov Process 
AutoCInstant<- function(DidBirdSingLastTime, PSS, PSNS){ 
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  ifelse(DidBirdSingLastTime==1,  
         X<-rbinom(1,1,PSS),  
         X<-rbinom(1,1,PSNS)) 
  return(X) 
} 
 
##Determine steady state vector [q1 q2] for Markov process 
##As t->infinity, Pr(Singing Mode=1)=q1, Pr(Singing Mode=0)=q2 
##Also, q1 = proportion of birds in Singing Mode at any given time 
MarkovSS<- function(PSS,PSNS){ 
  ##PSS= Pr(Singing Mode=1, given that it was 1 at t-1) 
  ##PSNS= Pr(Singing Mode=1, given that it was 0 at t-1) 
   
  pmatrix<- rbind(c(PSS, 1-PSS),  
                  c(PSNS, 1-PSNS))  ##transition matrix 
   
  q1<- (-1*pmatrix[2,1])/(pmatrix[1,1]-pmatrix[2,1]-1) 
  q2<- (-1*pmatrix[1,2])/(pmatrix[2,2]-pmatrix[1,2]-1) 
   
  return(c(q1,q2)) 
} 
 
##Determine transition matrix value P(S|NS), given desired steady state vector & P(S|S) 
MarkovTM<- function(q1, PSS){ 
  q2<- 1-q1 
  PSNS<- (-1*q1*(PSS-1))/q2 
  return(PSNS) 
} 
 
##Function for finding PSNS via optimization 
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##NOT a standalone function 
SolvePSNS<-function(Par,PSNS,PrSing, PSS, DataIntervals){ 
  PSNS<-Par[1] 
  qq<- {(PSNS/(1-PSS+PSNS) + (1-(PSNS/(1-PSS+PSNS)))*(1-((1-PSNS)^DataIntervals))) - 

PrSing} 
  return(abs(qq)) 
} 
##Example: 
#optimize(SolvePSNS, interval=c(0,0.05), PrSing=0.6, PSS=0.92, DataIntervals=200, 

maximum=F) 
##NOTE: **Starting values** are VERY important here 
##For PSS=0.99 and PSS=0.92, all optimal values of P(S|NS) < 0.02 
##Suggest using interval=c(0,0.05) for all 
##DataIntervals refers to number of intervals in X minutes in Pr(bird sings at least once 

in X minutes), NOT NIntervals 
 
 
##Determine the Pr(sing) within a survey,  
##given NIntervals, P(S|S), and P(S|NS). 
## 2 methods used, both should return equal results. 
ZNIntervals1<-function(PSS1=0.98, PSNS1=0.00264495, NIntervals=90){ 
  -1*PSNS1/(PSS1-PSNS1-1) + (1-(-1*PSNS1/(PSS1-PSNS1-1)))*(1-(1-PSNS1)^NIntervals) 
} 
 
ZNIntervals2<-function(q1=0.1168009,PSNS1=0.00264495, NIntervals=90){ 
  ## q1 = steady-state proportion of birds in Singing Mode at any given time 
  q1+ (1-q1)*(1-(1-PSNS1)^NIntervals) 
} 
# ZNIntervals1() 
# ZNIntervals2() 
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##Convert Probability a bird sings at least once in A min (PrSingA) to  
##  the Probability the bird sings at least once in B min (PrSingB). 
##NOTE: Requires function SolvePSNS, MarkovSS, ZNIntervals1, and ZNIntervals2 
 
ConvertPRSing<-function(PrSing.A=0.75, Minutes.A=10,Minutes.B=5, 
                        PSS.yijrA=0.98,IntervalLengthA=2){ 
   
  ##Use the same optimization routine from Simulation to determine PSNS 
   
  ##Here, PrSing.yijrk refers to Pr(bird sings at least 1x in ReportedPrSingMin min 

(usually 5 or 10)) 
  ##Therefore, use DataIntervals = ReportedPrSingMin (min) *60 

(sec/min)*(1/IntervalLength) (Intervals/sec) 
  ##units for DataIntervals: (min) * (60sec/min) * (Intervals/sec) = Intervals 
  ##PrSing calc is AFTER spatial to allow Pa ~ Distance to obs 
   
  OptimizePSNS.yijrkA<- optimize(SolvePSNS,                 
                                 interval=c(0,0.05),   ##NOTE: **Starting values** are 

VERY important here, suggest using interval=c(0,0.05) for all 
                                 PrSing=PrSing.A, 
                                 PSS=PSS.yijrA, 
                                 DataIntervals=Minutes.A*60*(1/IntervalLengthA), 
                                 maximum=F) 
  if(OptimizePSNS.yijrkA$objective>0.05) {stop("Failure to optimize PSNS")} 
  PSNS.yijrkA<- OptimizePSNS.yijrkA$minimum 
  q1.yijrkA<-MarkovSS(PSS.yijrA,PSNS.yijrkA)[1] 
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  ## Using the parameters you just estimated, 
  ## estimate PrSingB 2 ways (these should be equal!) 
  PrSing.B1<-ZNIntervals1(PSS1=PSS.yijrA, PSNS1=PSNS.yijrkA, 

NIntervals=Minutes.B*60*(1/IntervalLengthA)) 
  PrSing.B2<-ZNIntervals2(q1=q1.yijrkA,PSNS1=PSNS.yijrkA, 

NIntervals=Minutes.B*60*(1/IntervalLengthA)) 
  return(c(PrSing.B1, PrSing.B2)) 
} 
 
 
######################### 
###Perceptability Functions 
######################### 
 
 
## Produce an observer-estimated distance to bird j, given a known  
## true distance between the observer and bird j. 
## To output mean distance estimate, use Output="meanonly" (probabilistic answer). 
## To output SD for error estimate, use Output="sdonly" (for plotting). 
## To stochastically generate distance, use Output="stochastic". 
##NOTE: More Complex version - NOT CURRENTLY USED 
## DHJ felt the odd error curve in Alldredge could be situational 
## Simplified version (above) used intead 
 
ObserverEstDistance<-function(TrueDistance,  
                              DistanceCategories,  
                              Output="stochastic"){ 
  if(TrueDistance<0) stop("ObserverEstDistance() ERROR: Distance input cannot be 

negative") 
  if(TrueDistance<max(DistanceCategories$Distance)){ 
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    Row<-sum(DistanceCategories$Distance<=TrueDistance) 
     
    ## Determine mean error for x=TrueDistance assuming a straight line 
    ## between points (x1,y1) & (x2,y2) 
    x1<-DistanceCategories[Row,"Distance"] 
    x2<-DistanceCategories[Row+1,"Distance"] 
    y1<-DistanceCategories[Row,"meanerror"] 
    y2<-DistanceCategories[Row+1,"meanerror"] 
     
    ## Equation for a straight line between points (x1,y1) & (x2,y2), for point 

x=TrueDistance 
    MeanError<-y1+((y2-y1)/(x2-x1))*(TrueDistance-x1) 
     
    ## Determine SD error for x=TrueDistance assuming a straight line 
    ## between points (x1,y1) & (x2,y2) 
    x3<-DistanceCategories[Row,"Distance"] 
    x4<-DistanceCategories[Row+1,"Distance"] 
    y3<-DistanceCategories[Row,"sderror"] 
    y4<-DistanceCategories[Row+1,"sderror"] 
     
    ## Equation for a straight line between points (x1,y1) & (x2,y2), for point 

x=TrueDistance 
    SDError<-y3+((y4-y3)/(x4-x3))*(TrueDistance-x3) 
  } 
   
  ## to extrapolate beyond existing distance data, use values for greatest data point 
  if(TrueDistance>=max(DistanceCategories$Distance)){ 
    MeanError<-

DistanceCategories[DistanceCategories$Distance==max(DistanceCategories$Distance),"me
anerror"] 
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    SDError<-
DistanceCategories[DistanceCategories$Distance==max(DistanceCategories$Distance),"sd
error"] 

     
  } 
  ## Mean observer-estimated distance for TrueDistance (probabilistic estimate) 
  MeanEstDistance<-TrueDistance+MeanError 
   
  ## Stochastic observer-estimated distance for TrueDistance 
  StoEstDistance<-TrueDistance+rnorm(1,MeanError,SDError) 
   
  ## Output the mean distance estimated for point x=TrueDistance 
  if(Output=="meanonly") return(MeanEstDistance) ##Output the mean distance estimated for 

point x=TrueDistance 
  if(Output=="stochastic") return(StoEstDistance)   ##Output a stochastic value for 

distance estimated for point x=TrueDistance 
  if(Output=="sdonly") return(SDError) 
   
} 
 
 
######################### 
### Estimators & Likelihoods 
######################### 
 
##Likelihood estimators 
## The following functions are not standalone functions 
## They are designed to estimate paramters via optim() or optimx() 
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##################################### 
## MLEstimator for Multiple observer survey (Nichols 2000) 
## This is a closed-form estimator:  
##  it produces estimates without optim() . 
 
MultObs.Nichols<-function(x11, x21, x22, x12){ 
  ## x11 = seen by obs 1 on stops when obs 1 was primary 
  ## x21 = seen by obs 2 on stops when obs 1 was primary 
  ## x22 = seen by obs 2 on stops when obs 2 was primary 
  ## x12 = seen by obs 1 on stops when obs 2 was primary 
  x11<-sum(x11) 
  x22<-sum(x22) 
  x12<-sum(x12) 
  x21<-sum(x21) 
   
  if(x11==0 | x22==0)print("N & p not calculable: One or more observers had Count=0 when 

primary observer.") 
   
  p1hat<-(x11*x22-x12*x21)/(x11*x22+x22*x21) 
  p2hat<-(x11*x22-x12*x21)/(x11*x22+x11*x12) 
  phat<- 1-(x12*x21)/(x22*x11) 
  xdotdot<-x11+x21+x22+x12 
  Nhat<-xdotdot/phat 
  return(list("p1hat"=p1hat,  
              "p2hat"=p2hat,  
              "phat"=phat,  
              "xdotdot"=xdotdot,  
              "Nhat"=Nhat)) 
} 
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#################################### 
##Optimizable estimator for Farnsworth Removal method  
## 3 intervals: 3 min,2 min,5 min (10 min total) 
 
FarnsworthRemoval10min.negLL<- 
  function(Param,xes){ 
    #function(cc,qq,xes){#(Param,xes){ ##for mle2 
    cc=Param[1] 
    qq=Param[2] 
     
#     cc<-0.3 
#     qq<-0.7 
     
    x1<-xes[1] 
    x2<-xes[2] 
    x3<-xes[3] 
     
#     xes<-II.data[,c("FarnsRemovalPeriod1.yi", 
#                "FarnsRemovalPeriod2.yi", 
#                "FarnsRemovalPeriod3.yi")] 
     
    NLL.A<- log(1-cc*qq^3)-log(1-cc*qq^10) 
    NLL.B<- log(cc*qq^3)+log(1-qq^2)-log(1-cc*qq^10) 
    NLL.C<- log(cc*qq^5)+log(1-qq^5)-log(1-cc*qq^10) 
    NLL.All<- -1*(x1*NLL.A + x2*NLL.B + x3*NLL.C) 
     
    return(sum(NLL.All))#NegLL)#negLL) 
  } 
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####################################################### 
##Function to calculate geometric mean rate of change 
##From Link and Sauer 1998 "Estimating population change from count data..." 
##Geometric mean rate of change = Bi(ta,tb)-1 (top R of pg 261) 
##From eq.3, Bi(ta,tb)=exp[(hi(tb)-h(ta))/(tb-ta)] 
##Note: assumes that time interval is from Year 1 of survey to year B (year B must be >1) 
GeoRateChange<-function(PopulationYeara,PopulationYearb,Yearb){ 
  ##Because zero values screw up the trend estimates, 
  ## add 1 to each abundance if only one is a zero. 
  ##If both=0, it will produce an NaN (no information about trend). 
  ##NOTE: this works with single values but did not work for vectors 
  ## Moved to HabSimA6d script instead. 
  # if(PopulationYeara==0 & PopulationYearb>0 |  
  #    PopulationYeara>0 & PopulationYearb==0){ 
  #   PopulationYeara<-PopulationYeara+1 
  #   PopulationYearb<-PopulationYearb+1 
  # } 
  TimeInterval<-Yearb-1  ##(tb-ta) 
  hi.ta<-0  ##by definition of trajectory 
  hi.tb<-log(PopulationYearb)-log(PopulationYeara) ##from eq. 1 
  B.ta.tb<-exp((hi.tb-hi.ta)/TimeInterval)  ##eq. 3 
  GeoMeanRateChange<-B.ta.tb-1 ##geo mean annual rate of change 
  return(GeoMeanRateChange)   
} 
 
#####END#FUNCTIONS############################################# 
 
############################# 
##PARAMETERS FOR BTBW SCENARIO (CH.1) 
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## Load necessary packages 
library(arm) 
library(reshape) 
 
############################# 
##Scenario Parameters   
{  
  ##Survey Type  
  #SurveyType<-    "multiple" # #"removal" #"nmixture" # "distance" #  
  #NSurveySites<- 1  ## No. of survey sites surveyed within one iteration (year, etc.)  
   
  ##Basic Modeling parameters 
  NYears<-1           ## No. of Years or Seasons across which surveys take place 
  NReps<- ifelse(SurveyType=="nmixture",3,1)          ## No. of replications (No. of 

times each survey site is surveyed WITHIN season) 
  IntervalLength <- 2 ## No. of SECONDS or one unit of time during which bird may 

vocalize (or not) 
  IntervalsPerHour<-(60*60)/IntervalLength  ##No. of intervals in 1 hour 
  IntervalsPerMinute<-IntervalsPerHour/60  ##No. of intervals in 1 MINUTE 
  SurveyLength<- ifelse(SurveyType=="removal",10,3)   ## No. of MINUTES that 1 bird 

survey lasts 
  NIntervals<- (SurveyLength*60)/IntervalLength ##No. of intervals of IntervalLength that 

make up each survey 
  if(as.integer(NIntervals)!=NIntervals){stop("ERROR - Number of intervals must be an 

integer.  Adjust parameter SurveyLength or IntervalLength.")} 
   
  if(SurveyType=="removal"){ 
    RemovalPeriods<-3 
    RemovalPeriod1Length<-2 
    RemovalPeriod2Length<-3 
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    RemovalPeriod3Length<-5 
     
    FarnsRemovalPeriod1Length<-3 
    FarnsRemovalPeriod2Length<-2 
    FarnsRemovalPeriod3Length<-5 
     
    RemovalPeriod1Intervals<-(RemovalPeriod1Length/SurveyLength)*NIntervals 
    RemovalPeriod2Intervals<-(RemovalPeriod2Length/SurveyLength)*NIntervals 
    RemovalPeriod3Intervals<-(RemovalPeriod3Length/SurveyLength)*NIntervals 
     
    FarnsRemovalPeriod1Intervals<-(FarnsRemovalPeriod1Length/SurveyLength)*NIntervals 
    FarnsRemovalPeriod2Intervals<-(FarnsRemovalPeriod2Length/SurveyLength)*NIntervals 
    FarnsRemovalPeriod3Intervals<-(FarnsRemovalPeriod3Length/SurveyLength)*NIntervals 
     
    

if(NIntervals!=sum(RemovalPeriod1Intervals,RemovalPeriod2Intervals,RemovalPeriod3Int
ervals) | 

         
NIntervals!=sum(FarnsRemovalPeriod1Intervals,FarnsRemovalPeriod2Intervals,FarnsRemov
alPeriod3Intervals)){ 

      stop("Intervals do not evenly divide among Removal periods") 
    } 
  } 
   
  Xlim<- c(-1000,1000)  #c(-500,500)     ##Min and max x coordinate for xy grid generated 

around observer 
  Ylim<- c(-1000,1000) #c(-500,500)   ##Min and max y coordinate for xy grid generated 

around observer 
  #EntireAreaRadius <-  2000 ## Radius (m) at which birds are modeled (so they can 

enter/leave survey site) 
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  #   SurveyAreaRadius<- 100 ##Fixed-distance cutoff (m) for observation during survey 
   
############################# 
  ##Population parameters 
  ContinentalPopulation<- 2100000/2 #rep(2100000/2, NYears) ##Total continental 

Population of Species  
  ## estimate from Partners in Flight - divide by 2 to get number of males 
  ContinentalPopulationCoef<-rep(1,NYears)#c(0.1, 0.5, 1, 2, 5, 0.1, 0.5, 1, 2, 5) 
  ContinentalPopulationAll.vector<-sort(ContinentalPopulationCoef*ContinentalPopulation) 
   
  HabitatPreference.y<-0.9 ## % of total population found in habitat (as opposed to 

matrix) across entire range 
  RangeArea<-3.62*10^11  ##(m^2)  Size of entire species' range (7*10^11 m^2 is the 

approx. size of Texas) 
  ##RangeArea from http://www.birdlife.org/datazone/species/factsheet/22721673   
  StudyArea<-3000*10000  ##(m^2) Size of study area (ps ~ StudyArea/RangeArea) 
  ##NOTE: StudyArea is 10x size of Hubbard Brook 
  ##http://www.hubbardbrook.org/overview/overview.shtml 
    HabitatDensity.y<- 0.534/10000#0.62/10000 ##Mean density (birds/m^2) for habitat 

within species range 
  ## from Holmes 1986, adjusted from individuals/10HA to males/m^2 
  #   DensityCoef<-c(0.1, 0.5, 1, 2, 5, 0.1, 0.5, 1, 2, 5) 
  #   HabitatDensity<-HabitatDensityMean*DensityCoef 
  #    
   
  RangeHabitatProportion.vector<-

(HabitatPreference.y*ContinentalPopulationAll.vector)/(HabitatDensity.y*RangeArea)  
## % of species' entire range that is habitat (as opposed to matrix) 

  #   StudyHabitatProportion.vector<-rep(0.95,NYears) #RangeHabitatProportion.vector ## % 
of study area that is habitat (as opposed to matrix)  
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  StudyHabitatProportion<-function(N=1, min, max){  ##Distribution for mean %Habitat for 

entire study area  
    Value<-runif(N, min, max) 
    return(Value) 
  } 
  StudyHabitatProportionmin<-0.7  ##Study area is between 70% and 100% habitat (mean for 

each Fauxyear) 
  StudyHabitatProportionmax<-1 
  ##If study area is range-wide, use HabitatProportionSurveyedArea.y<-

RangewideHabitatProportion.y 
  ##If study area is a subset of the range, use expected mean % habitat among sites 

(e.g., we picked sites with ~60% habitat) 
   
  #PercentHabitatStudy<-  ## % of total habitat within species' range that is contained 

by study area 
  #  (StudyHabitatProportion.vector*StudyArea)/(RangeHabitatProportion.vector*RangeArea) 
   
   
  ##BTBW pop. estimate=2,100,000 PAIRS, from Partners in Flight: 

http://rmbo.org/pifpopestimates/Database.aspx 
  #Ps <- 1             ## Proportion of ContinentalPopulationAll.vector that can be found 

in Area of Inference (AOI) 
  #AreaofInference<- 3.62*10^11  ##(m^2)  Size of Area of Inference (AOI),  (7*10^11 m^2 

is the approx. size of Texas) 
  #HabitatProportionAll<- rep(0.5,NYears)    ##Avg. % of AOI occupied by habitat 
  ##HabitatProportionAll is the vector of %AOI occupied by habitat, length=NYears 
  HabitatProportionThetaAll<- rep(8,NYears)   ##Concentration parameter for Beta 

distribution - see rbetaAlt function 
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########################## 
##Environmental / Temporal paramenters 
   
   
  ##Survey timing set up 
  StartingJulianDate<-150  ##First day of surveys 
  SurveysPerDay<-ifelse(SurveyType=="removal",6,7) 
  LogisticalSurveyTime <-ifelse(SurveyType=="removal",30,23)  ## mean MINUTES taken to 

conduct 1 survey, including travel time 
   
  ##NOTE: DailySurveyStartTime not currently used - see PlannedStartTimesAll in "A3 - 

Simulation Script.R" 
  DailySurveyStartTime <-0 ## mean minutes past sunrise when surveys begin daily 
  # StartingTimes<- round(runif(10000,min=5,max=11),2) ##Hours, Military time 
   
  EndingJulianDate<-220  ##Last possible day of surveys 
   
  ##Biological Parameters 
  ##Currently, Leaves are PRESENT for all surveys 
  FirstLeavesDay<-StartingJulianDate #+ 10  ##First day when Leaves=1 
  LeavesByDate<-c(rep(0,FirstLeavesDay-1), ##before Leaf Out 
                  rep(1,(EndingJulianDate-FirstLeavesDay+1))) 
  ##LeavesByDate is an index, where LeavesByDate[Day] indicates if there were leaves 

(0/1) on Julian Date "Day" 
   
  #SpecialistIndex<- 0.6        ##(from 0-1) Index of specialist 0=Generalist, 1= 

Specialist 
  BackgroundMovementRate<- 0.005  ## Species-specific Lowest reasonable probability of 

bird moving between interval t=0 and t=1   
  ## 0.005 = medium mobility value from Granholm 1983 
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  MeanTerrArea<- 3.60*10000 ##3.6HA, from Sherry and Holmes 1985, pg 288 in "Habitat 
Selection in birds", Martin Cody ed. (m^2)   

  SDTerrArea<-   10000 #1 HA            ##SD of territory area for this species (m^2) 
  OverlapUDTerr<- 0.565  ## %Utilization Distribution at which overlap of territories is 

accessed 
  UDTerr<-0.95  ##% Utilization Distribution modeled for all final bird territories 
 
########################################## 
  ##Perceptibility parameters 
  PrGrassland.y<- rep(0,NYears) ##Probability that site i is grassland (as opposed to 

forest) 
  PrDeciduous.y<- rep(0,NYears) ##If site i is forest, Probability that site i is 

Deciduous (as opposed to Mixed Pine-Deciduous) 
   
  ##  NoiseLevelDistrib<-round(runif(10000,0,10),2) # runif(1,0,10) 
  #   NoiseLevelMin<-0 
  #   NoiseLevelMax<-10 
   
  ##NOTE: Ambient Noise is currently BINARY at the amplitude Alldredge tested 
  PrNoise<-0.15 
   
  DailyMeanWindSpeedMin<-0.01  ##using true zero can create errors 
  DailyMeanWindSpeedMax<-10 
  RepMeanWindSpeedSD<-0.5 
   
  ##MeanWindSpeedDistrib<-round(runif(10000,0,10),2) ##WindSpeed distribution 

(note:WindSpeed>0) 
  WindVariability<- 0.94  ##Medium variability, from Justus 1977  
  ##1.05 ##Low variability, from Justus 1977  
  ##0.83  ##High variability, from Justus 1977  
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  SpeciesIntercept<- 11.816 ## Logit(Pd) intercept for species in scenario of interest 
   
  WindIndexIEffect<- 0 
  GrasslandIEffect<- 0 ##effect of grassland categorical variable on intercept of 

Logit(Pd) 
  DeciduousIEffect<- 0  ##effect of deciduous categorical variable on intercept of 

Logit(Pd) 
  LeavesIEffect<- 1.47 ##effect of leaves categorical variable on intercept of Logit(Pd) 
  NoiseIEffect<- 0.1035 ##effect of ambient noise on intercept of Logit(Pd) 
  DistanceEffect.yijr <- -0.0644 ## mean slope of Logit(Pd) 
  WindIndexSEffect<- 0 
  GrasslandSEffect<- 0 ##effect of grassland categorical variable on slope of Logit(Pd) 

(interaction of Distance and grassland) 
  DeciduousSEffect<- 0 ##effect of deciduous categorical variable on slope of Logit(Pd) 

(interaction of Distance and Deciduous) 
  LeavesSEffect<- -0.0444 ##effect of leaves categorical variable on slope of Logit(Pd) 

(interaction of Distance and Leaves) 
  NoiseSEffect<-  -0.0233 ##effect of ambient noise on slope of Logit(Pd) 
  NoiseXLeavesEffect<- -0.9528 
  NTotalObservers<-2 
  NSimultaneousObservers<-ifelse(SurveyType=="multiple",2,1) 
  ObserverVariation<-0.4097  ##0.4097=0.5*SD of observers for BTBW (Pacifici 2008) 
   
  ObserverIDs<-LETTERS[1:NTotalObservers] 
  ObserverIEffects<-data.frame("A"=0.002425+0.4097, "B"=0.002425-0.4097, "C"=0.002425, 

"D"=0.002425, "E"=0.002425, "F"=0.002425, "G"=0.002425)  ##All Observers have 
average skill 

  ObserverSEffects<-data.frame("A"=0, "B"=0, "C"=0, "D"=0, "E"=0, "F"=0, "G"=0) 
   



214 
 

  PrCorrectID<- 1  ##Pr(Bird is correctly ID'd) 
  PrDoubleCount<-0 ##Pr(1 bird is counted as 2) 
   
####################################### 
  ##Observer estimation of distance 
  ObserverDistanceCategories<-data.frame( 
    ## From Alldrege et al. 2007 "A field evaluation of distance measurement error..." 
     
    ##Alldredge distance-dependent error curve: 
    #     "Distance"=c(0,23,37,52,65,75,86,98), 
    #     "meanerror"=c(0,18.5,-1.6,8.8,14.8,5.5,-2.1,-7.9), 
    #     "sderror"=c(0,18.9,11,22.3,22.1,19.2,17.4,16.8)) 
     
    ##Alldredge error curve based on overall mean & SD error: 
    "Distance"=c(0,62.286), 
    "meanerror"=c(0,7.6), 
    "sderror"=c(0,21.4)) 
   
  ##Distance above uses mean of measured distances in Alldredge (2007)= 62.286 
  ##mean(c(23,37,52,65,75,86,98)) == 62.28571 
  #    
  #   #Plot the mean & SD error for Obs estimated Distance using above values 
  #   plot(NULL, NULL, xlim=c(0,210), ylim=c(0,210)) 
  #   for(ii in 1:200){ 
  #     MEAN<-ObserverEstDistance(ii,ObserverDistanceCategories,Output="meanonly") 
  #     SDD<-ObserverEstDistance(ii,ObserverDistanceCategories,Output="sdonly") 
  #     points(ii,MEAN) 
  #     points(ii,MEAN+SDD, col="blue") 
  #     points(ii,MEAN-SDD,col="blue") 
  #   } 
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  #   lines(c(0,200), c(0,200)) 
  #  
  ##PLACEHOLDER FOR PrSing DISTRIBUTION 
  ##Currently using *functions* JulDate & TimeOfDay to approximate PrSing 
   
  ##Coarse-scale Markov song Parameters 
   
  PSS.yijr<-0.98    ##Pr(Bird sings during next interval, given that it did sing before) 
   
  ##Fine-scale Markov song parameters (Species/Scenario-specific) 
  SongLength<-2.1/IntervalLength ##Number of intervals for avg. song length (interval=2 

sec) 
  PauseLength<-6.6/IntervalLength ##Number of intervals for avg. pause between songs 
  q1.fine<- SongLength/(SongLength+PauseLength) 
  #   PSS.fine<- 0.001 
  #   PSNS.fine<- MarkovTM(q1.fine, PSS.fine) 
  SingingStates.fine<- c("S", "NS1", "NS2", "NS3") 
  TransitionMatrix.fine<-matrix(c(0,0,0.08,0.8,1,0,0,0,0,1,0,0,0,0,0.92,0.2), nrow=4, 

ncol=4)  ##Transition matrix for fine-scale autocorrelation of Singing 
  ## above TransitionMatrix.fine produces Pauses w/mean length 6.3 seconds (SD=1.25 sec, 

q1=0.241) (BTBW values) 
  ## Values determined via simulation (file="Fine-scale autocorrelation - Simulation to 

determine values of 4-stage transition matrix.R") 
   
  ReportedPrSingMin<-10  ## x minutes in reported song rates: Pr(Bird j sings w/in x 

minutes) 
  ##PrSing.yijrk refers to Pr(bird sings at least 1x in ReportedPrSingMin min (usually 5 

or 10)) 
   
} 
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################################################################ 
## Scenario Distributions 
################################################ 
 
##Generate a k-specific probabiliy of movement 
PrBirdMoves<-function(N=1,MeanMovementRate){ 
  PrBirdMoves.yijrk<-MeanMovementRate+rnorm(N,0,0.0005)  
  if(sum(PrBirdMoves.yijrk<0)>0) stop("Negative values generated for PrBirdMoves - 

reevaluate variation!") 
  return(abs(PrBirdMoves.yijrk)) 
} 
#hist(PrBirdMoves(10000,BackgroundMovementRate)) 
 
####### 
##Generate probability that a bird flushes due to observer 
PrBirdMoveObs<-function(Intercept=1,Slope=-0.1, Distance){ 
  PrMoveObs<- invlogit(Intercept+Slope*Distance) 
  return(PrMoveObs) 
} 
##Plot Pr(Flush)~Distance 
#plot(1:200,PrBirdMoveObs(Distance=1:200))  
 
 
####################################### 
##Maximum daily song rate (Pr bird j sings w/in ReportedPrSingMin min), based on Julian 

Date 
MaxDailySongRate<-function(Day){ 
  if(Day<122) return(0)  ##before May 1, birds not on breeding grounds 
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  if(Day>=122 & Day<=197) return(0.9)  ## High PRSing, 1 May - 15 July 
  if(Day>197 & Day<=244) return(0.5)   ## Med PRSing, 16 July - 31 August 
  if(Day>244 & Day<=274) return(0.2)   ## Low PRSing, 1-30 September  
  if(Day>274) return(0)   ##Oct 1 and after, birds not on breeding grounds  
   
  ##MODERATE SINGER VERSION 
  #   if(Day<122 ) return(0)  ##before , birds not on breeding grounds 
  #   if(Day>=122 & Day<=197) return(0.5)  ## High PRSing, 1 May - 15 July 
  #   if(Day>197 & Day<=244) return(0.25)   ## Med PRSing, 16 July - 31 August 
  #   if(Day>244 & Day<=274) return(0.1)   ## Low PRSing, 1-30 September  
  #   if(Day>274) return(0)   ##Oct 1 and after, birds not on breeding grounds  
   
  ##WEAK SINGER VERSION 
  #   if(Day<122 ) return(0)  ##before , birds not on breeding grounds 
  #   if(Day>=122 & Day<=197) return(0.3)  ## High PRSing, 1 May - 15 July 
  #   if(Day>197 & Day<=244) return(0.1)   ## Med PRSing, 16 July - 31 August 
  #   if(Day>244 & Day<=274) return(0.1)   ## Low PRSing, 1-30 September  
  #   if(Day>274) return(0)   ##Oct 1 and after, birds not on breeding grounds  
   
} 
 
# plot(NULL,NULL, ylim=c(0,1), xlim=c(0,370)) 
# for(ii in 1:365){ 
#   points(ii,MaxDailySongRate(ii)) 
# } 
 
####### 
##Song rate weight, based on Time of Day 
## Units of Time.yijrk = No. intervals since sunrise (0=sunrise exactly) 
## To visualize, assume sun rises 6 AM daily. 
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##Parameterized with BTBW data from Blancher (personal comm) 
TimeOfDayWeight<-function(TimeinIntervals, IntervalsPerHour){ 
  if(TimeinIntervals<=-0.25*IntervalsPerHour) return(0.2)  ## before 15 min before 

sunrise 
  if(TimeinIntervals>-0.25*IntervalsPerHour & TimeinIntervals<=0*IntervalsPerHour) 

return(0.6)  ##between 15 min before sunrise and sunrise 
  if(TimeinIntervals>0*IntervalsPerHour & TimeinIntervals<=0.5*IntervalsPerHour) 

return(0.8)  ##between sunrise and 0.5 hours after sunrise 
  if(TimeinIntervals>0.5*IntervalsPerHour & TimeinIntervals<=1.5*IntervalsPerHour) 

return(1)  ##between 0.5 hours after sunrise and 1.5 hours after sunrise 
  if(TimeinIntervals>1.5*IntervalsPerHour & TimeinIntervals<=6*IntervalsPerHour) 

return(0.8)  ##between 1.5 hours after sunrise and 6 hours after sunrise 
  if(TimeinIntervals>6*IntervalsPerHour) return(0.2)   ##after 6 hours after sunrise 

(~noon) 
} 
 
# plot(NULL,NULL, ylim=c(0,1), xlim=c(-6*IntervalsPerHour, 18*IntervalsPerHour)) 
# for(ii in seq(-6*IntervalsPerHour, 18*IntervalsPerHour,100)){ 
#   points(ii,TimeOfDayWeight(ii,IntervalsPerHour)) 
# } 
# lines(c(0,0),c(0,1)) 
 
####### 
## Mean Noise Level for rep r 
##NOTE: Noise is currently BINARY at the amplitude Alldredge tested 
##Based on NoiseLevelMin & NoiseLevelMax parameters, above 
# NoiseLevelDistrib<-function(Number, Min, Max){ 
#   round(runif(Number,Min,Max),2) # runif(1,0,10) 
# } 
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NoiseLevelDistrib<-function(NumberTrials){ 
  rbinom(NumberTrials,1,PrNoise) # runif(1,0,10) 
} 
 
####### 
## Mean WindSpeed for Day.yr 
##Based on DailyMeanWindSpeedMin & DailyMeanWindSpeedMax parameters, above 
DailyMeanWindSpeedDistrib<-function(Number, Min, Max){ 
  round(runif(Number,Min,Max),2) # runif(1,0,10) 
} 
 
####### 
## Mean WindSpeed for rep r 
##Based on mean wind speed produced by above function & RepMeanWindSpeedSD 
RepMeanWindSpeedDistrib<-function(Number, Mean, SD){ 
  round(rlnormAlt(Number,Mean,SD),2) # runif(1,0,10) 
} 
 
 
#################################################### 
##PARAMETERS FOR HABITAT SIMULATION SCENARIOS (Ch. 2) 
 
##Scenario-Specific Parameters   
 
########################  
##pd scenarios (high/low) 
if(is.pd.high==T){ 
  SpeciesIntercept<- 6 ## Logit(Pd) intercept for species in scenario of interest 
  DistanceEffect.yijr <- -0.02 ## mean slope of Logit(Pd) 
} 
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if(is.pd.high==F){ 
  SpeciesIntercept<- 6.3 ## Logit(Pd) intercept for species in scenario of interest 
  DistanceEffect.yijr <- -0.07 ## mean slope of Logit(Pd) 
} 
 
######################## 
##For pd~Hab scenarios, use HabitatSEffect to add variability to site-specific pd 
##For pd not ~Hab, use SiteSEffect to add variability to site-specific pd 
 
##For low pd, effect on slope = -0.04 
##For high pd, effect on slope = -0.02 
 
if(is.PdHab==T){ 
  if(is.pd.high==T){ 
    HabitatSEffect<- -0.02 ##Coefficient on slope (of habitat with lowest detection) 
    SiteSEffect<- 0 
  } 
  if(is.pd.high==F){   
    HabitatSEffect<- -0.04 ##Coefficient on slope (of habitat with lowest detection) 
    SiteSEffect<- 0 
  } 
} 
 
if(is.PdHab==F){  ##site-specific variation for scenarios without pd~hab 
  if(is.pd.high==T){   
    HabitatSEffect<- 0 
    SiteSEffect<- -0.02 
    } 
  if(is.pd.high==F){ 
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    HabitatSEffect<- 0 
    SiteSEffect<- -0.04 
  } 
} 
 
######################## 
## Pa functions - ONLY Max Daily Song rate affected by pa high/low  
## (TOD curves are the same for both scenarios) 
 
if(is.pa.high==T){  ##High pa 
  ##Maximum daily song rate (Pr bird j sings w/in ReportedPrSingMin min), based on Julian 

Date 
  ##No seasonal effects  
  MaxDailySongRate<-function(Day){return(0.99)} 
} 
 
if(is.pa.high==F){  ##Low pa 
  ##Maximum daily song rate (Pr bird j sings w/in ReportedPrSingMin min), based on Julian 

Date 
  ##No seasonal effects  
  MaxDailySongRate<-function(Day){return(0.56)} 
} 
 
 
## Load necessary packages 
library(arm) 
library(reshape) 
########################  
##Scenario Parameters   
{  
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  ##Survey Type  
  #SurveyType<-    "multiple" # #"removal" #"nmixture" # "distance" #  
  #NSurveySites<- 1  ## No. of survey sites surveyed within one iteration (year, etc.)  
   
  ##Basic Modeling parameters 
  NYears<-1           ## No. of Years or Seasons across which surveys take place 
  NReps<- ifelse(SurveyType=="nmixture",3,1)          ## No. of replications (No. of 

times each survey site is surveyed WITHIN season) 
  IntervalLength <- 2 ## No. of SECONDS or one unit of time during which bird may 

vocalize (or not) 
  IntervalsPerHour<-(60*60)/IntervalLength  ##No. of intervals in 1 hour 
  IntervalsPerMinute<-IntervalsPerHour/60  ##No. of intervals in 1 MINUTE 
  SurveyLength<- ifelse(SurveyType=="removal",10,3)   ## No. of MINUTES that 1 bird 

survey lasts 
  NIntervals<- (SurveyLength*60)/IntervalLength ##No. of intervals of IntervalLength that 

make up each survey 
  if(as.integer(NIntervals)!=NIntervals){stop("ERROR - Number of intervals must be an 

integer.  Adjust parameter SurveyLength or IntervalLength.")} 
   
  if(SurveyType=="removal"){ 
    RemovalPeriods<-3 
    RemovalPeriod1Length<-2 
    RemovalPeriod2Length<-3 
    RemovalPeriod3Length<-5 
     
    FarnsRemovalPeriod1Length<-3 
    FarnsRemovalPeriod2Length<-2 
    FarnsRemovalPeriod3Length<-5 
     
    RemovalPeriod1Intervals<-(RemovalPeriod1Length/SurveyLength)*NIntervals 



223 
 

    RemovalPeriod2Intervals<-(RemovalPeriod2Length/SurveyLength)*NIntervals 
    RemovalPeriod3Intervals<-(RemovalPeriod3Length/SurveyLength)*NIntervals 
     
    FarnsRemovalPeriod1Intervals<-(FarnsRemovalPeriod1Length/SurveyLength)*NIntervals 
    FarnsRemovalPeriod2Intervals<-(FarnsRemovalPeriod2Length/SurveyLength)*NIntervals 
    FarnsRemovalPeriod3Intervals<-(FarnsRemovalPeriod3Length/SurveyLength)*NIntervals 
     
    

if(NIntervals!=sum(RemovalPeriod1Intervals,RemovalPeriod2Intervals,RemovalPeriod3Int
ervals) | 

         
NIntervals!=sum(FarnsRemovalPeriod1Intervals,FarnsRemovalPeriod2Intervals,FarnsRemov
alPeriod3Intervals)){ 

      stop("Intervals do not evenly divide among Removal periods") 
    } 
  } 
   
  Xlim<- c(-1000,1000)  #c(-500,500)     ##Min and max x coordinate for xy grid generated 

around observer 
  Ylim<- c(-1000,1000) #c(-500,500)   ##Min and max y coordinate for xy grid generated 

around observer 
  #EntireAreaRadius <-  2000 ## Radius (m) at which birds are modeled (so they can 

enter/leave survey site) 
  #   SurveyAreaRadius<- 100 ##Fixed-distance cutoff (m) for observation during survey 
 
  ########################  
  ##Population parameters 
  ContinentalPopulation<- 2100000/2 #rep(2100000/2, NYears) ##Total continental 

Population of Species  
  ## estimate from Partners in Flight - divide by 2 to get number of males 
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  ContinentalPopulationCoef<-rep(1,NYears)#c(0.1, 0.5, 1, 2, 5, 0.1, 0.5, 1, 2, 5) 
  ContinentalPopulationAll.vector<-sort(ContinentalPopulationCoef*ContinentalPopulation) 
   
  HabitatPreference.y<-1 ## % of total population found in habitat (as opposed to matrix) 

across entire range 
  RangeArea<-3.62*10^11  ##(m^2)  Size of entire species' range (7*10^11 m^2 is the 

approx. size of Texas) 
  StudyArea<-3000*10000  ##(m^2) Size of study area (ps ~ StudyArea/RangeArea) 
  ##StudyArea from http://www.birdlife.org/datazone/species/factsheet/22721673   
  HabitatDensity.y<- 1/10000  ##Mean density (birds/m^2) for habitat within species range 
  ##Assume 1 bird/ha in 100% habitat 
   
  HabitatDensity.y.List<-list() 
  HabitatDensity.y.List[[1]]<-1/10000  ##Mean density (birds/m^2) for habitat within 

species range 
  AnnualDensitySlope<- -0.01034/10000  ##Annual decline in Density (birds/m^2) - NOT a 

percentage 
  ##Assume 1 bird/ha in year 1 in 100% habitat 
  if(SimReps>1){ 
    for(ii in 2:SimReps){ 
      HabitatDensity.y.List[[ii]]<-HabitatDensity.y.List[[1]]+AnnualDensitySlope*(ii-1) 
    } 
  } 
  ##30% reduction in density across 30 years (from 1 bird/ha to 0.7) 
   
  RangeHabitatProportion.vector<-

(HabitatPreference.y*ContinentalPopulationAll.vector)/(HabitatDensity.y*RangeArea)  
## % of species' entire range that is habitat (as opposed to matrix) 

  #   StudyHabitatProportion.vector<-rep(0.95,NYears) #RangeHabitatProportion.vector ## % 
of study area that is habitat (as opposed to matrix)  
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  StudyHabitatProportion<-function(N=1, min, max){  ##Distribution for mean %Habitat for 

entire study area  
    Value<-runif(N, min, max) 
    return(Value) 
  } 
  StudyHabitatProportionmin<-0.7  ##Study area is between 70% and 100% habitat (mean for 

each Fauxyear) 
  StudyHabitatProportionmax<-1 
  ##If study area is range-wide, use HabitatProportionSurveyedArea.y<-

RangewideHabitatProportion.y 
  ##If study area is a subset of the range, use expected mean % habitat among sites 

(e.g., we picked sites with ~60% habitat) 
   
  ##Parameters to describe normal distributions for PercentHabitat.1i  
  LowPercentHabMean<-0.4 
  LowPercentHabSD<-0.09 
  HighPercentHabMean<-0.8 
  HighPercentHabSD<-0.09 
   
  ##Parameters for variation added to PercentHabitat.yi annually 
  PercentHabitatVarMean<-0 
  PercentHabitatVarSD<-0.01  ##95% of annual changes will be <2% 
   
  #PercentHabitatStudy<-  ## % of total habitat within species' range that is contained 

by study area 
  #  (StudyHabitatProportion.vector*StudyArea)/(RangeHabitatProportion.vector*RangeArea) 
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  ##BTBW pop. estimate=2,100,000 PAIRS, from Partners in Flight: 
http://rmbo.org/pifpopestimates/Database.aspx 

  #Ps <- 1             ## Proportion of ContinentalPopulationAll.vector that can be found 
in Area of Inference (AOI) 

  #AreaofInference<- 3.62*10^11  ##(m^2)  Size of Area of Inference (AOI),  (7*10^11 m^2 
is the approx. size of Texas) 

  #HabitatProportionAll<- rep(0.5,NYears)    ##Avg. % of AOI occupied by habitat 
  ##HabitatProportionAll is the vector of %AOI occupied by habitat, length=NYears 
  HabitatProportionThetaAll<- rep(8,NYears)   ##Concentration parameter for Beta 

distribution - see rbetaAlt function 
   
  ########################## 
  ##Environmental / Temporal parameters 
   
  ##Survey timing set up 
  StartingJulianDate<-150  ##First day of surveys 
  SurveysPerDay<-ifelse(SurveyType=="removal",6,7) 
  LogisticalSurveyTime <-ifelse(SurveyType=="removal",30,23)  ## mean MINUTES taken to 

conduct 1 survey, including travel time 
   
  ##NOTE: DailySurveyStartTime not currently used - see PlannedStartTimesAll in "A3 - 

Simulation Script.R" 
  DailySurveyStartTime <-0 ## mean minutes past sunrise when surveys begin daily 
  # StartingTimes<- round(runif(10000,min=5,max=11),2) ##Hours, Military time 
   
  EndingJulianDate<-220  ##Last possible day of surveys 
   
  ########################## 
  ##Biological Parameters 
  ##Currently, Leaves are PRESENT for all surveys 
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  FirstLeavesDay<-StartingJulianDate #+ 10  ##First day when Leaves=1 
  LeavesByDate<-c(rep(0,FirstLeavesDay-1), ##before Leaf Out 
                  rep(1,(EndingJulianDate-FirstLeavesDay+1))) 
  ##LeavesByDate is an index, where LeavesByDate[Day] indicates if there were leaves 

(0/1) on Julian Date "Day" 
   
  #SpecialistIndex<- 0.6        ##(from 0-1) Index of specialist 0=Generalist, 1= 

Specialist 
  BackgroundMovementRate<- 0.005  ## Species-specific Lowest reasonable probability of 

bird moving between interval t=0 and t=1   
  ## 0.005 = medium mobility value from Granholm 1983 
  MeanTerrArea<- 6.56*10000 ##6.56HA, in m^2  
  SDTerrArea<-   10000 #1 HA            ##SE of territory area for this species (m^2) 
  OverlapUDTerr<- 0.6  ## %Utilization Distribution at which overlap of territories is 

accessed 
  UDTerr<-0.95  ##% Utilization Distribution modeled for all final bird territories 
   
  ########################## 
  ##Perceptibility parameters 
  PrGrassland.y<- rep(0,NYears) ##Probability that site i is grassland (as opposed to 

forest) 
  PrDeciduous.y<- rep(0,NYears) ##If site i is forest, Probability that site i is 

Deciduous (as opposed to Mixed Pine-Deciduous) 
   
  ##  NoiseLevelDistrib<-round(runif(10000,0,10),2) # runif(1,0,10) 
  #   NoiseLevelMin<-0 
  #   NoiseLevelMax<-10 
   
  ##NOTE: Ambient Noise is currently BINARY at the amplitude Alldredge tested 
  PrNoise<-0 
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  DailyMeanWindSpeedMin<-0.01  ##using true zero can create errors 
  DailyMeanWindSpeedMax<-10 
  RepMeanWindSpeedSD<-0.5 
   
  ##MeanWindSpeedDistrib<-round(runif(10000,0,10),2) ##WindSpeed distribution 

(note:WindSpeed>0) 
  WindVariability<- 0.94  ##Medium variability, from Justus 1977  
  ##1.05 ##Low variability, from Justus 1977  
  ##0.83  ##High variability, from Justus 1977  
   
  ##SCENARIO SPECIFIC - moved to separate script 
  #   ##For pd~Hab scenarios, use HabitatSEffect to add variability to site-specific pd 
  #   ##For pd not ~Hab, use SiteSEffect to add variability to site-specific pd 
  #   if(is.PdHab==T){ 
  #      HabitatSEffect<- -0.02 ##Coefficient on slope (of habitat with lowest detection) 
  #      SiteSEffect<- 0} 
  #      
  #     if(is.PdHab==F){ 
  #        HabitatSEffect<- 0 
  #        SiteSEffect<- -0.02}  ##added site-specific variation for scenarios without 

pd~hab 
  #        
  #   ##pd scenarios (high/low) 
  #   if(is.pd.high==T){ 
  #     SpeciesIntercept<- 6 ## Logit(Pd) intercept for species in scenario of interest 
  #     DistanceEffect.yijr <- -0.02 ## mean slope of Logit(Pd) 
  #   } 
  #    
  #   if(is.pd.high==F){ 
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  #     SpeciesIntercept<- 10 ## Logit(Pd) intercept for species in scenario of interest 
  #     DistanceEffect.yijr <- -0.09 ## mean slope of Logit(Pd) 
  #   } 
   
  WindIndexIEffect<- 0 
  GrasslandIEffect<- 0 ##effect of grassland categorical variable on intercept of 

Logit(Pd) 
  DeciduousIEffect<- 0  ##effect of deciduous categorical variable on intercept of 

Logit(Pd) 
  LeavesIEffect<- 0 ##effect of leaves categorical variable on intercept of Logit(Pd) 
  NoiseIEffect<- 0 ##effect of ambient noise on intercept of Logit(Pd) 
  HabitatIEffect<-0  ##effect of habitat on intercept of Logit(Pd) 
  WindIndexSEffect<- 0 
  GrasslandSEffect<- 0 ##effect of grassland categorical variable on slope of Logit(Pd) 

(interaction of Distance and grassland) 
  DeciduousSEffect<- 0 ##effect of deciduous categorical variable on slope of Logit(Pd) 

(interaction of Distance and Deciduous) 
  LeavesSEffect<- 0 ##effect of leaves categorical variable on slope of Logit(Pd) 

(interaction of Distance and Leaves) 
  NoiseSEffect<-  0 ##effect of ambient noise on slope of Logit(Pd) 
  NoiseXLeavesEffect<- 0 
  NTotalObservers<-2 
  NSimultaneousObservers<-ifelse(SurveyType=="multiple",2,1) 
   
  ObserverIDs<-LETTERS[1:NTotalObservers] 
  ObserverSEffect<-0  ## year-specific obs effect - Slope 
  ObserverIMean<-0      ##rnorm mean for year-specific obs effect - Intercept 
  ObserverISD<-0.75     ##rnorm SD for year-specific obs effect - Intercept 
   
  PrCorrectID<- 1  ##Pr(Bird is correctly ID'd) 
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  PrDoubleCount<-0 ##Pr(1 bird is counted as 2) 
   
  ##Observer estimation of distance 
  ObserverDistanceCategories<-data.frame( 
    ## From Alldrege et al. 2007 "A field evaluation of distance measurement error..." 
     
    ##Alldredge distance-dependent error curve: 
    #     "Distance"=c(0,23,37,52,65,75,86,98), 
    #     "meanerror"=c(0,18.5,-1.6,8.8,14.8,5.5,-2.1,-7.9), 
    #     "sderror"=c(0,18.9,11,22.3,22.1,19.2,17.4,16.8)) 
     
    ##Alldredge error curve based on overall mean & SD error: 
    "Distance"=c(0,62.286), 
    "meanerror"=c(0,7.6), 
    "sderror"=c(0,21.4)) 
   
   
   
  ############################################# 
  ##Coarse-scale Markov song Parameters 
  ##NOTE: Same for both high & low pa 
  PSS.yijr<-0.98    ##Pr(Bird sings during next interval, given that it did sing before) 
   
  ##Fine-scale Markov song parameters (Species/Scenario-specific) 
  SongLength<-2.1/IntervalLength ##Number of intervals for avg. song length (interval=2 

sec) 
  PauseLength<-6.6/IntervalLength ##Number of intervals for avg. pause between songs 
  q1.fine<- SongLength/(SongLength+PauseLength) 
  #   PSS.fine<- 0.001 
  #   PSNS.fine<- MarkovTM(q1.fine, PSS.fine) 
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  SingingStates.fine<- c("S", "NS1", "NS2", "NS3") 
  TransitionMatrix.fine<-matrix(c(0,0,0.08,0.8,1,0,0,0,0,1,0,0,0,0,0.92,0.2), nrow=4, 

ncol=4)  ##Transition matrix for fine-scale autocorrelation of Singing 
  ## above TransitionMatrix.fine produces Pauses w/mean length 6.3 seconds (SD=1.25 sec, 

q1=0.241) (BTBW values) 
  ## Values determined via simulation (file="Fine-scale autocorrelation - Simulation to 

determine values of 4-stage transition matrix.R") 
   
  ReportedPrSingMin<-5  ## x minutes in reported song rates: Pr(Bird j sings w/in x 

minutes) 
  ##PrSing.yijrk refers to Pr(bird sings at least 1x in ReportedPrSingMin min (usually 5 

or 10)) 
   
}  ## end Scenario Parameters  
 
 
################################################################ 
## Scenario Distributions 
################################################ 
 
##Generate a k-specific probability of movement 
PrBirdMoves<-function(N=1,MeanMovementRate){ 
  PrBirdMoves.yijrk<-MeanMovementRate+rnorm(N,0,0.0005)  
  if(sum(PrBirdMoves.yijrk<0)>0) stop("Negative values generated for PrBirdMoves - 

reevaluate variation!") 
  return(abs(PrBirdMoves.yijrk)) 
} 
#hist(PrBirdMoves(10000,BackgroundMovementRate)) 
 
####### 
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# ##Generate probability that a bird flushes due to observer 
# PrBirdMoveObs<-function(Intercept=1,Slope=-0.1, Distance){ 
#   PrMoveObs<- invlogit(Intercept+Slope*Distance) 
#   return(PrMoveObs) 
# } 
# ##Plot Pr(Flush)~Distance 
# #plot(1:200,PrBirdMoveObs(Distance=1:200))  
 
######################## 
## Pa functions - ONLY Max Daily Song rate affected by pa high/low  
## (TOD curves are the same for both scenarios) 
 
##SCENARIO SPECIFIC - moved to separate script 
# if(is.pa.high==T){  ##High pa 
#   ##Maximum daily song rate (Pr bird j sings w/in ReportedPrSingMin min), based on 

Julian Date 
#   ##No seasonal effects  
#   MaxDailySongRate<-function(Day){return(0.99)} 
# } 
#  
# if(is.pa.high==F){  ##Low pa 
#   ##Maximum daily song rate (Pr bird j sings w/in ReportedPrSingMin min), based on 

Julian Date 
#   ##No seasonal effects  
#   MaxDailySongRate<-function(Day){return(0.56)} 
# } 
 
####### 
##Song rate weight, based on Time of Day 
## Units of Time.yijrk = No. intervals since sunrise (0=sunrise exactly) 
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## To visualize, assume sun rises 6 AM daily. 
##Parameterized with AMCR,MODO,OVEN,YBSA, data from Blancher (personal comm) 
##SAME CURVE used for high and low pa scenarios 
##Distinguish the 2 by Max Daily Song Rate (0.99 vs. 0.56) 
TimeOfDayWeight<-function(TimeinIntervals, IntervalsPerMin){ 
  Early.Slope.Minutes<-0.01477  ##Slope for line from -45 to 9 minutes (0=sunrise) 
  Early.Int.Minutes<-0.8671  ##Intercept for line from -45 to 9 minutes 
   
  ##Pa for time=TimeinIntervals, -45 to 9 minutes (point on early line described above) 
  Early.Point<-(TimeinIntervals/IntervalsPerMin)*Early.Slope.Minutes +Early.Int.Minutes 
   
  Late.Slope.Minutes<--0.002159  ##Slope for line from 44-240 min after sunrise 
  Late.Int.Minutes<-1.095   ##Intercept for line from 44-240 min after sunrise 
   
  ##Pa for time=TimeinIntervals, 44-240 minutes (point on late line described above) 
  Late.Point<-(TimeinIntervals/IntervalsPerMin)*Late.Slope.Minutes +Late.Int.Minutes 
   
  if(TimeinIntervals<(-45)*IntervalsPerMin) return(0.2)  ## before 45 min before sunrise 

(extrapolation beyond data, therefore assume =0.2) 
  if(TimeinIntervals>=-45*IntervalsPerMin & TimeinIntervals<=9*IntervalsPerMin) 

return(Early.Point)  ##between 30 min before sunrise and 9 min after sunrise 
  if(TimeinIntervals>9*IntervalsPerMin & TimeinIntervals<=44*IntervalsPerMin) return(1)  

##9-42 min after sunrise 
  if(TimeinIntervals>44*IntervalsPerMin & TimeinIntervals<=240*IntervalsPerMin) 

return(Late.Point)  ##after 42 Minutes after sunrise until end of BBS route 
  if(TimeinIntervals>240*IntervalsPerMin) return(0.5768)   ##after BBS route is over 

(extrapolation beyone data, therefore assume=last value) 
} 
 
# ##Plot 4AM to noon 
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# plot(NULL,NULL, ylim=c(0,1), xlim=c(-2*IntervalsPerHour, 6*IntervalsPerHour)) 
# for(ii in seq(-6*IntervalsPerHour, 18*IntervalsPerHour,100)){ 
#   points(ii,TimeOfDayWeight(ii, IntervalsPerMinute)) 
# } 
# lines(c(0,0),c(0,1)) 
 
 
 
 
####### 
## Mean Noise Level for rep r 
##NOTE: Noise is currently BINARY at the amplitude Alldredge tested 
##Based on NoiseLevelMin & NoiseLevelMax parameters, above 
# NoiseLevelDistrib<-function(Number, Min, Max){ 
#   round(runif(Number,Min,Max),2) # runif(1,0,10) 
# } 
 
NoiseLevelDistrib<-function(NumberTrials){ 
  rbinom(NumberTrials,1,PrNoise) # runif(1,0,10) 
} 
 
####### 
## Mean WindSpeed for Day.yr 
##Based on DailyMeanWindSpeedMin & DailyMeanWindSpeedMax parameters, above 
DailyMeanWindSpeedDistrib<-function(Number, Min, Max){ 
  round(runif(Number,Min,Max),2) # runif(1,0,10) 
} 
 
####### 
## Mean WindSpeed for rep r 
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##Based on mean wind speed produced by above function & RepMeanWindSpeedSD 
RepMeanWindSpeedDistrib<-function(Number, Mean, SD){ 
  round(rlnormAlt(Number,Mean,SD),2) # runif(1,0,10) 
} 
 
 
########################  
###END PARAMETERS################################ 
 
########################  
##SIMULATION 
 
##NOTE: model was originally designed to loop through years (1:NYears) via y 
##Currently, years are looped via FauxYear in "A7 - Generic routine to run simulation via 

source" 
## y==1 throughout this script for all FauxYear 
 
##Generate data frames to track rare phenomena: 
MisID<-data.frame(y=NA,i=NA,j=NA,r=NA,k=NA,o=NA) 
DoubleCounted<-data.frame(y=NA,i=NA,j=NA,r=NA,k=NA,o=NA) 
 
##Generate .yir-level & .yirk-level parameters (Independent of individual birds) 
##Necessary here because reps are nested within birds in yijrk loops 
 
##SurveyDates - assume no. of surveys/day = SurveysPerDay 
## No weekends, survey order is i=1, then i=2, etc. 
##CURRENTLY ASSUMES ALL YEARS ARE THE SAME 
SurveyDatesAll<-StartingJulianDate+rep(0:100,each = 

SurveysPerDay)[1:(NSurveySites*NReps)] 
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SurveyDate.yir.List<-replicate(NYears, matrix(SurveyDatesAll ,NSurveySites, NReps), 
simplify=F) 

##Access via SurveyDate.yir.List[[y]][i,r] 
 
##Start time - how many MINUTES after sunrise does survey yir begin? 
StartTimeinMinutes.yir.List<-replicate(NYears, matrix(NA ,NSurveySites, NReps), 

simplify=F) 
for(yy in 1:NYears){ 
  PlannedStartTimesAll<-rep(0:(SurveysPerDay-

1)*LogisticalSurveyTime,100)[1:(NSurveySites*NReps)] 
  ActualStartTimesAll<-round(rnorm(n=length(PlannedStartTimesAll), 

mean=PlannedStartTimesAll,sd=5),2) 
 
  StartTimeinMinutes.yir.List[[yy]]<-matrix(ActualStartTimesAll, NSurveySites, NReps)  

##units = MINUTES 
} 
##Access via StartTimeinMinutes.yir.List[[y]][i,r] 
 
##WindSpeed: r-specific mean (.yir) 
##Must take into account surveys on the SAME DAY 
## rep-specific mean generated from day-specific mean 
# MeanWindSpeed.yir.List<-replicate(NYears, 
#                                   matrix(rep(NA,NReps*NSurveySites), 
#                                          #(MeanWindSpeedDistrib(NReps*NSurveySites, 

MeanWindSpeedMin, MeanWindSpeedMax), 
#                                          NSurveySites, NReps), simplify=F) 
# for(yy in 1:NYears){ 
#   UniqueDates<-unique(unlist(SurveyDate.yir.List[[yy]])) 
#   for(UD in UniqueDates){ 
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#     DailyMeanWindSpeed.yr<-DailyMeanWindSpeedDistrib(1, DailyMeanWindSpeedMin, 
DailyMeanWindSpeedMax) 

#     for(ii in 1:NSurveySites){ 
#       for(rr in 1:NReps){ 
#         if(SurveyDate.yir.List[[yy]][ii,rr]==UD){ 
#           MeanWindSpeed.yir.List[[yy]][ii,rr]<-

RepMeanWindSpeedDistrib(1,DailyMeanWindSpeed.yr, RepMeanWindSpeedSD) 
#         } 
#       } 
#     }     
#   } 
# } 
 
##Access via MeanWindSpeed.yir.List[[y]][i,r] 
 
 
##WindSpeed: k-specific windspeed(.yirk)  
##Windspeeds follow Weibull distribution, parameters from Justus 1977 
##Because scale parameter c includes term (1/k), Weibull becomes unstable for small 

values of k 
##Therefore, for low wind speeds, use k=0.5 
# WindSpeed.yirk.List<-vector("list", NYears) 
# for(yy in 1:NYears){ 
#   WindSpeed.yirk.List[[yy]]<-vector("list", NSurveySites) 
#   for(ii in 1:NSurveySites){ 
#     WindSpeed.yirk.List[[yy]][[ii]]<-vector("list", NReps) 
#     for(rr in 1:NReps){ 
#       ifelse(WindVariability*sqrt(MeanWindSpeed.yir.List[[yy]][ii,rr])>1, 
#              kparameter<-WindVariability*sqrt(MeanWindSpeed.yir.List[[yy]][ii,rr]), 
#              kparameter<-1) 
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#       cparameter<-MeanWindSpeed.yir.List[[yy]][ii,rr]/(gamma(1+1/kparameter)) 
#       WindSpeed.yirk.List[[yy]][[ii]][[rr]]<-rweibull(NIntervals, shape=kparameter, 

scale=cparameter) 
#     } 
#   } 
# } 
##Access via WindSpeed.yirk.List[[y]][[i]][[r]][k] 
 
##Ambient Noise: r-specific 1/0 value (.yir) 
# MeanNoiseLevel.yir.List<-replicate(NYears,  
#                                    matrix(NoiseLevelDistrib(NReps*NSurveySites),#, 

NoiseLevelMin, NoiseLevelMax 
#                                           NSurveySites, NReps), simplify=F) 
 
##NOTE: if you want sites to have certain Noise Levels, need to generate this at the .yi 

level instead of the .yir (currently .yir) 
##Access via MeanNoiseLevel.yir.List[[y]][i,r] 
 
##AmbientNoise: k-specific noise (.yirk) (currently constant across rep) 
# Noise.yirk.List<-vector("list", NYears) 
# for(yy in 1:NYears){ 
#   Noise.yirk.List[[yy]]<-vector("list", NSurveySites) 
#   for(ii in 1:NSurveySites){ 
#     Noise.yirk.List[[yy]][[ii]]<-vector("list", NReps) 
#     for(rr in 1:NReps){ 
#       Noise.yirk.List[[yy]][[ii]][[rr]]<-

rep(MeanNoiseLevel.yir.List[[yy]][ii,rr],NIntervals) 
#       ##Noise Level is currently r-specific - to make it k-specific, add distribution 

above 
#     } 
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#   } 
# } 
##Access via Noise.yirk.List[[y]][[i]][[r]][k] 
 
##Year-specific Observer Effects 
ObserverIEffects<-data.frame("A"=rnorm(1,ObserverIMean,ObserverISD),  
                             "B"=rnorm(1,ObserverIMean,ObserverISD))  
ObserverSEffects<-data.frame("A"=ObserverSEffect, "B"=ObserverSEffect) 
 
ifelse(SurveyType=="multiple",   
       PrimaryObsNumber.yir.List<-replicate(NYears, 

matrix(sample(1:NSimultaneousObservers,NReps*NSurveySites, replace=T),NSurveySites, 
NReps), simplify=F), 

       PrimaryObsNumber.yir.List<-replicate(NYears, 
matrix(rep(NA,NReps*NSurveySites),NSurveySites, NReps), simplify=F)) 

##Access via PrimaryObsNumber.yir.List[[y]][i,r] 
 
 
if(SurveyType!="multiple"){   
  ##For all surveys except multiple observer, Observer identity is a replication-level 

variable 
  ObserverIDNumber.yir.List<-replicate(NYears, 

matrix(sample(1:NTotalObservers,NReps*NSurveySites, replace=T),NSurveySites, NReps), 
simplify=F) 

  ##Access via ObserverIDNumber.yir.List[[y]][i,r] 
  ## for name, use ObserverIDs[ObserverIDNumber.yir.List[[y]][i,r]] 
} 
 
# Leaves.yir.List<-list() 
# for(LeavesYears in 1:NYears){ #length(SurveyDate.yir.List)){ 
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#   Leaves.yir.List[[LeavesYears]]<- 
matrix(LeavesByDate[SurveyDate.yir.List[[LeavesYears]]],NSurveySites, NReps)  

# } 
##Access via Leaves.yir.List[[y]][i,r] 
 
####################################### 
##Generate starting values & level-specific lists for storage  
ListYOutcomes.y<-vector("list", NYears) 
#ListYSummaryOutcomes.y<-vector("list", NYears) 
ListIOutcomes.yi<-vector("list", NYears) 
ListIRSummaryOutcomes.yi<-vector("list", NYears) 
ListROutcomes.yijr<-vector("list", NYears) 
# ListKOutcomes.yijrk<-vector("list", NYears) 
# ListOOutcomes.yijrko<-vector("list", NYears) 
 
 
for(y in 1:NYears){ 
   
  ##Generate year-specific parameters 
  ##Areal Parameters 
  StudyHabitatProportion.y<-StudyHabitatProportion(1,StudyHabitatProportionmin, 

StudyHabitatProportionmax) 
  RangeHabitatArea.y<-RangeArea*RangeHabitatProportion.vector[y] ## Size (m^2) of habitat 

in species' range 
  RangeMatrixArea.y<-RangeArea-RangeHabitatArea.y  ## Size (m^2) of matrix in species' 

range 
  StudyHabitatArea.y<-StudyArea*StudyHabitatProportion.y ##Size (m^2) of habitat in Study 

Area 
  StudyMatrixArea.y<-StudyArea-StudyHabitatArea.y  ##Size (m^2) of matrix in Study Area 
  ##StudyHabitatArea.y+StudyMatrixArea.y==StudyArea 



241 
 

   
  ##Abundance & Density Parameters 
  ContinentalPopulation.y<-ContinentalPopulationAll.vector[y] ##Continental population in 

year y 
  RangeHabitatAbundance.y<-round(ContinentalPopulation.y*HabitatPreference.y,0) ## No. 

birds found in habitat in species' range 
  RangeMatrixAbundance.y<-round(ContinentalPopulation.y*(1-HabitatPreference.y),0) ## No. 

birds found in matrix in species' range 
   
  MatrixDensity.y<-RangeMatrixAbundance.y/RangeMatrixArea.y  ##Density of birds in matrix 

in species' range (birds/m^2) 
  HabitatDensity.y<-HabitatDensity.y.List[[FauxYear]] 
  StudyHabitatAbundance.y<- round(HabitatDensity.y*StudyHabitatArea.y,0) 
  StudyMatrixAbundance.y<-round(MatrixDensity.y*StudyMatrixArea.y,0) ##No. of birds in 

matrix in study area 
  Ns.y<-StudyHabitatAbundance.y + StudyMatrixAbundance.y ##Total No. birds in Study Area 
   
  HabitatProportionTheta.y<-HabitatProportionThetaAll[y] ##Concentration parameter for 

beta distrib. of HabitatProportion.y 
   
  ##Generate starting values & level-specific lists for storage   
  ListIOutcomes.yi[[y]]<-vector("list", NSurveySites) 
  ListIRSummaryOutcomes.yi[[y]]<-vector("list", NSurveySites) 
  ListROutcomes.yijr[[y]]<-vector("list", NSurveySites) 
  #   ListKOutcomes.yijrk[[y]]<-vector("list", NSurveySites) 
  #   ListOOutcomes.yijrko[[y]]<-vector("list", NSurveySites) 
  TempAll.i.Outcomes.y<-vector("list", NSurveySites) 
   
  for(i in 1:NSurveySites){ 
     



242 
 

    ##Time the simulation 
    TIMER<-proc.time() 
     
    ##Generate survey site-specific parameters 
     
    ##PercentHab is the same for each site i in Year 1, across all Scenarios 
    if(FauxYear==1){  
      PercentHabitat.yi<- as.numeric(PercentHabitat.i.List[[y]][[i]][1]) 
      HabitatGroup.yi<- PercentHabitat.i.List[[y]][[i]][2] 
    } 
    ##Add annual variation to PercentHab: random walk based on last year's value 
    if(FauxYear>1){  
      PercentHabitat.yi<-as.numeric(PercentHabitat.i.List[[FauxYear-1]][[i]][1]) 
      PercentHabitat.yi<-

PercentHabitat.yi+rnorm(1,PercentHabitatVarMean,PercentHabitatVarSD) 
      HabitatGroup.yi<-PercentHabitat.i.List[[FauxYear-1]][[i]][2] 
      if(i==1){PercentHabitat.i.List[[FauxYear]]<-vector("list", NSurveySites)} 
      PercentHabitat.i.List[[FauxYear]][[i]][1]<-PercentHabitat.yi 
      PercentHabitat.i.List[[FauxYear]][[i]][2]<-HabitatGroup.yi 
    } 
     
    SiteVariationS.yi<-runif(1,0,1)  ##Non-Habitat variation: i-specific 
    ##if pd~Hab, no added variation  
     
    Area.yi<-abs(Xlim[2]-Xlim[1])*abs(Ylim[2]-Ylim[1])  ##Vicinity of survey site where 

birds are modeled 
    LambdaHabitat.yi<-PercentHabitat.yi*Area.yi*HabitatDensity.y 
    LambdaMatrix.yi<-(1-PercentHabitat.yi)*Area.yi*MatrixDensity.y 
    BirdsInHabitat.yi<-rpois(1,LambdaHabitat.yi) 
    BirdsInMatrix.yi<- rpois(1,LambdaMatrix.yi) 
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    NBirds.yi<- BirdsInMatrix.yi+ BirdsInHabitat.yi 
    ##Number of birds in habitat =Poisson(%Habitat*area*Density of birds in habitat) 
    ##Number of birds in matrix = Poisson(%Matrix* area*Density of birds in matrix) 
    #     IsSiteGrassland.yi<-rbinom(1,1,PrGrassland.y) 
    #     if(IsSiteGrassland.yi==1) {IsSiteDeciduous.yi<-0} 
    #     if(IsSiteGrassland.yi==0) {IsSiteDeciduous.yi<-rbinom(1,1,PrDeciduous.y)} 
     
    if(NBirds.yi==0){ 
       
      ListROutcomes.yijr[[y]][[i]]<-vector("list", 1) 
      #       ListKOutcomes.yijrk[[y]][[i]]<-vector("list", 1) 
      #       ListOOutcomes.yijrko[[y]][[i]]<-vector("list", 1) 
       
      ListROutcomes.yijr[[y]][[i]][[1]]<-vector("list", NReps) 
      #       ListKOutcomes.yijrk[[y]][[i]][[1]]<-vector("list", NReps) 
      #       ListOOutcomes.yijrko[[y]][[i]][[1]]<-vector("list", NReps) 
       
      ##For NBirds.yi==0 
      for(r in 1:NReps){ 
        StartTimeinIntervals.yir<- 

round(StartTimeinMinutes.yir.List[[y]][i,r]*IntervalsPerMinute,0)  
##Minutes*(intervals/Minute) 

        #         Leaves.yir<-Leaves.yir.List[[y]][i,r] 
         
        ##Generate starting values & level-specific lists for storage 
        #         ListKOutcomes.yijrk[[y]][[i]][[1]][[r]]<-vector("list", NIntervals) 
        #         ListOOutcomes.yijrko[[y]][[i]][[1]][[r]]<-vector("list", NIntervals) 
         
        ##For NBirds.yi==0 
        for(k in 1:NIntervals){ 
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          TimeinIntervals.yirk <- StartTimeinIntervals.yir+ (k-1) ##Intervals since 
sunrise (in intervals, 0=sunrise) 

          #           NoiseLevel.yirk<-Noise.yirk.List[[y]][[i]][[r]][k] 
          ##Ambient noise is currently rep-specific only 
          #           WindSpeed.yijrk<-as.numeric(WindSpeed.yirk.List[[y]][[i]][[r]][k]) 
          ##NOTE: WindIndex.yijrk does not apply: would require bird location, but 

NBirds.yi==0) 
           
          ##Generate starting values & level-specific lists for storage 
          #           ListOOutcomes.yijrko[[y]][[i]][[1]][[r]][[k]]<-vector("list", 

NSimultaneousObservers) 
           
          ##For NBirds.yi==0 
          for(o in 1:NSimultaneousObservers){ 
             
            if(SurveyType!="multiple"){   
              ObserverIDNumber.yijrko<-ObserverIDNumber.yir.List[[y]][i,r]} 
             
            if(SurveyType=="multiple"){   
              ObserverIDNumber.yijrko<-o} 
             
            Count.yijrko<-0  ##Currently, no false positives if NBirds.yi==0 
             
            ## Outcomes Complete    ##################################### 
             
             
            ## Index all o-specific objects for NBirds.yi==0 
            TempOutcomes.o<-list( 
              "Count.yijrko"=Count.yijrko,                 
              "Pdintercept.yijrko"=NA, 



245 
 

              "Pdslope.yijrko"=NA, 
              "Perceptibility.yijrko"=NA, 
              

"ObserverIDNumber.yijrko"=ifelse(SurveyType=="multiple",ObserverIDNumber.yijrko,NA), 
              "Detected.yijrko "=NA, 
              "CorrectID.yijrko"=NA, 
              "PrCorrectID.yijrko"=NA, 
              "PrDoubleCount.yijrko"=NA, 
              "DoubleCounted.yijrko"=NA, 
              "ObsEstimatedDistance.yijrko"=NA 
            ) 
             
            ##Store o-specific objects and summaries for NBirds.yi==0 
            #             ListOOutcomes.yijrko[[y]][[i]][[1]][[r]][[k]][[o]]<-list( 
            #               "DoubleCounted.yijrko"=NA, 
            #               "Detected.yijrko"=NA,   
            #               "CorrectID.yijrko"=NA, 
            #               "DoubleCounted.yijrko"=NA, 
            #               "Count.yijrk"=0 ##Currently, no false positives if 

NBirds.yi==0 
            #             ) 
             
          }  ## o for NBirds.yi==0 
           
          ## Index all k-specific objects for NBirds.yi==0 
          TempOutcomes.k<-list( 
            "TimeinIntervals.yirk"=TimeinIntervals.yirk, 
            #             "WindSpeed.yijrk"=WindSpeed.yijrk, 
            #             "WindIndex.yijrk"=NA, 
            #             "NoiseLevel.yirk"=NoiseLevel.yirk, 
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            "SingingMode.yijrk"=NA, 
            "SingingState.yijrk"=NA, 
            "PrSing.yijrk"=NA, 
            "Sings.yijrk"=NA, 
            "PSNS.yijrk"=NA, 
            "q1.yijrk"=NA, 
            "PrBirdMoves.yijrk"=NA, 
            "DoesBirdMove.yijrk"=NA, 
            "Distance.yijrk"=NA, 
            "Location.x.yijrk"=NA, 
            "Location.y.yijrk"=NA, 
            "SongWeight.yijrk"=NA 
          ) 
           
          #           ##Store-k-level objects and summaries for NBirds.yi==0 
          #           ListKOutcomes.yijrk[[y]][[i]][[1]][[r]][[k]]<-list( 
          #             "TimeinIntervals.yirk"=TimeinIntervals.yirk, 
          #             "WindSpeed.yijrk"=WindSpeed.yijrk, 
          #             "NoiseLevel.yirk"=NoiseLevel.yirk 
          #           ) 
           
        }  ##k for NBirds.yi==0 
         
        ##Make List of rep-specific outcomes (summary across intervals) 
        #         MeanObservedWindspeed.yijr<- 

mean(unlist(TempAll.k.Outcomes.r)[names(unlist(TempAll.k.Outcomes.r))=="WindSpeed.yi
jrk"]) 

        #         MeanObservedNoiseLevel.yir<- 
mean(unlist(TempAll.k.Outcomes.r)[names(unlist(TempAll.k.Outcomes.r))=="NoiseLevel.y
irk"]) 
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        ###NOTE: above will not work b/c TempAll.k.Outcomes.r is not set up for 
NBirds.yi==0 !! 

         
        ## Index all r-specific objects for NBirds.yi==0 
        TempOutcomes.r<-list( 
          #           "Leaves.yir"=Leaves.yir, 
          #"ObserverIDNumber.yir"=ObserverIDNumber.yijrko, 

#ObserverIDNumber.yir.List[[y]][i,r], 
           
          ###NOTE - is above correct??  
          ##Shouldn't it be ".yijrko=" ? 
           
          #           "MeanObservedWindspeed.yijr"=MeanObservedWindspeed.yijr, 
          #           "MeanObservedNoise.yijr"= MeanObservedNoiseLevel.yir, 
          "Count.yijr"=0, ##Currently, no false positives if NBirds.yi==0 

#max(unlist(TempOutcomes.k)["Count.yijrk"]), 
          "MeanObservedDistance.yijrk"=NA 
        )  
        ##Store-r-level objects and summaries for NBirds.yi==0 
        ListROutcomes.yijr[[y]][[i]][[1]][[r]]<-TempOutcomes.r  
         
      }  ##r for NBirds.yi==0 
       
    }  ##bracket refers to "if(NBirds.yi==0){" 
     
    if(NBirds.yi>0){ 
       
      ##Generate Mean & SD area for bird territories at site i  
      ##If density is sufficiently high, compress area so that only 50% of total area is 

filled by OverlapUDTerr % UD ellipses 
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      ##For compressed territories, SD is multiplied by ratio (compressed 
area/uncompressed territory size) 

      AllowedTerrSizeOE.yi<- (0.5*Area.yi)/NBirds.yi 
       
      ##What is the ratio in size between the %UD ellipse used to calc overlap and the 

final UD for territories? 
      ##See Equations 12 and 13 from Jennrich and Turner 1969 
      ##For example: Calculate allowed size for 95% ellipses from 80% UD 
      ##For all bivariate normal territories: 
      ## Area of 80% UD ellipse = 0.53724 * Area of 95% UD ellipse 
      ## Area of 95% UD ellipse = 1.86135 * Area of an 80% UD ellipse  
      OverlapCoef<- log((1-OverlapUDTerr)^-2) 
      FinalCoef<-log((1-UDTerr)^-2)  
      RatioTerrUDOverlapUD<-FinalCoef/OverlapCoef 
      AllowedTerrSize.yi<- AllowedTerrSizeOE.yi*RatioTerrUDOverlapUD 
      MeanTerrArea.yi<- min(c(AllowedTerrSize.yi, MeanTerrArea)) ##input smaller of 2 

values 
      SDTerrArea.yi<-min(c((AllowedTerrSize.yi/MeanTerrArea)*SDTerrArea, SDTerrArea)) 
       
      ##generate all spatial.yij for site yi (i level b/c they musn't overlap) 
      SpatialList.yi<-list() 
      SpatialCounter<-1 
       
      while(length(SpatialList.yi)<NBirds.yi){ 
        ##Make a candidate set of spatial parameters 
        SpatialCandidate.yij<-GenSpatialParameters(HRAreamean=MeanTerrArea.yi, 
                                                   HRAreaSD=SDTerrArea.yi, 
                                                   PercentUD.yij=UDTerr, 
                                                   ylim=Ylim,  
                                                   xlim=Xlim, 
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                                                   OverlapUD=OverlapUDTerr) 
         
        ##For birds other than the first: 
        if(length(SpatialList.yi)>0){ 
          CandidateDistances<-DistanceCenters(SpatialCandidate.yij,SpatialList.yi) 
          ClosestNeighborDistance<- min(na.omit(CandidateDistances)) 
          ##Max&minDiameter based on desired % UD ellipse - more closely packed 

territories 
          ## % UD Ellipse determined by parameter OverlapUDTerr 
          MaximumDiameter<-SpatialCandidate.yij[["aOE.yij"]] +  
            

max(unname(as.numeric(unlist(SpatialList.yi)[names(unlist(SpatialList.yi))=="aOE.yij
"]))) 

          MinimumDiameter<-SpatialCandidate.yij[["bOE.yij"]] +  
            

min(unname(as.numeric(unlist(SpatialList.yi)[names(unlist(SpatialList.yi))=="bOE.yij
"]))) 

           
          ## If nearest neighbor is FARTHER than candidate major radius +  
          ## largest existing major radius, save candidate 
          if(ClosestNeighborDistance > MaximumDiameter){  
            SpatialList.yi[[length(SpatialList.yi)+1]]<-SpatialCandidate.yij 
          } 
           
          ## If nearest neighbor is CLOSER than candidate major radius +  
          ## largest existing major radius, but FARTHER than candidate  
          ## minor radius + smallest existing minor radius, then go  
          ## through comparisons to see if  
          ##candidate overlaps any existing territories or vice versa. 
          if(ClosestNeighborDistance < MaximumDiameter & 
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               ClosestNeighborDistance > MinimumDiameter){ 
             
            #See if candidate overlaps any bird territories already generated   
            Overlap<-

AxesCheckInsideEllipsesVectorizedOE(SpatialCandidate.yij,SpatialList.yi) 
            if(Overlap==FALSE){ 
               
              ##See if any existing territory overlaps candidate territory 
              SumUp<-0 
              for(jjj in 1:length(SpatialList.yi)){ 
                SumUp<-SumUp + AxesCheckInsideEllipseOE(SpatialList.yi[[jjj]], 

SpatialCandidate.yij) 
              } 
              ##if there are no overlaps, save that territory  
              if(SumUp==0) { 
                SpatialList.yi[[length(SpatialList.yi)+1]]<-SpatialCandidate.yij 
              } 
            } 
          } 
        } 
         
        ##Generate territory for bird #1 
        if(length(SpatialList.yi)==0){ 
          SpatialList.yi[[1]]<-SpatialCandidate.yij } 
        SpatialCounter<-SpatialCounter+1 
        if(SpatialCounter>5000) stop("5000 attempts to generate territories exceeded - 

check density & NBirds.yi") 
      }  ## bracket refers to: while(length(SpatialList.yi)<NBirds.yi){ 
       
      ##Plot ellipses for site i territories 
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      #       par(mfrow=c(1,1)) 
      #       plot(NULL,NULL,xlim=Xlim, ylim=Ylim) 
      #        
      #       for(iii in 1:length(SpatialList.yi)){ 
      #         lines(GenEllipsePlot(SpatialList.yi[[iii]])) 
      #       } 
      # length(SpatialList.yi) 
      ##Generate starting values & level-specific lists for storage 
      ListROutcomes.yijr[[y]][[i]]<-vector("list", NBirds.yi) 
      #       ListKOutcomes.yijrk[[y]][[i]]<-vector("list", NBirds.yi) 
      #       ListOOutcomes.yijrko[[y]][[i]]<-vector("list", NBirds.yi) 
      TempAll.j.Outcomes.i<-vector("list", NBirds.yi) 
       
      #TempAll.roj.Outcomes.i<-vector("list", NReps) 
      TempAll.rj.Outcomes.i<-vector("list", NReps) 
      for(rr in 1:NReps){ 
        TempAll.rj.Outcomes.i[[rr]]<-vector("list", NBirds.yi) 
      } 
       
      for(j in 1:NBirds.yi){ 
         
        ##Generate Bird-specific parameters & distributions 
        Spatial.yij<-SpatialList.yi[[j]] 
        #           GenSpatialParameters(MeanTerrArea,SDTerrArea, 
        #                                           ylim=Ylim, xlim=Xlim) 
         
        ##Generate starting values & level-specific lists for storage         
        ListROutcomes.yijr[[y]][[i]][[j]]<-vector("list", NReps) 
        #         ListKOutcomes.yijrk[[y]][[i]][[j]]<-vector("list", NReps) 
        #         ListOOutcomes.yijrko[[y]][[i]][[j]]<-vector("list", NReps) 
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        TempAll.r.Outcomes.j<-vector("list", NReps) 
         
        for(r in 1:NReps){ 
           
          ##Generate replication-specific parameters  
          StartTimeinIntervals.yir<- 

round(StartTimeinMinutes.yir.List[[y]][i,r]*IntervalsPerMinute,0)  
##Minutes*(intervals/Minute) 

          #           Leaves.yir<-Leaves.yir.List[[y]][i,r] 
           
          ##Generate starting values & level-specific lists for storage 
          #           ListKOutcomes.yijrk[[y]][[i]][[j]][[r]]<-vector("list", NIntervals) 
          #           ListOOutcomes.yijrko[[y]][[i]][[j]][[r]]<-vector("list", 

NIntervals) 
          TempAll.k.Outcomes.r<-vector("list", NIntervals) 
          TempAll.ko.Outcomes.r<-vector("list", NSimultaneousObservers) 
          #TempAll.roj.Outcomes.i[[r]]<-vector("list", NSimultaneousObservers)  
           
           
          for(oo in 1:NSimultaneousObservers){ 
            TempAll.ko.Outcomes.r[[oo]]<-vector("list", NIntervals) 
            #TempAll.roj.Outcomes.i[[r]][[oo]]<-vector("list", NBirds.yi)   
          } 
           
           
          ##Small k-level lists - overwritten for each rep  
          #  TempOutcomes.k<-list() 
           
          #           WasBirdCounted.yijr<-0 
          #           WasBirdCountedObs.yijr<-c(0,0) 
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          #           DistanceFirstCount.yijr<-rep(NA,NSimultaneousObservers) 
          #           MinDistance.yijr<-NA 
          #            
          #            
           
          for(k in 1:NIntervals){ 
             
             
            ##Generate interval-specific ENVIRONMENT 
             
            TimeinIntervals.yirk<- StartTimeinIntervals.yir+ (k-1) ##time of survey 

interval (in intervals) 
            #             NoiseLevel.yirk<-Noise.yirk.List[[y]][[i]][[r]][k] 
            ##Ambient noise is currently rep-specific only 
             
            ##Generate interval-specific bird BEHAVIOR 
            ##Spatial: Does it Move? 
             
            PrBirdMoves.yijrk<-PrBirdMoves(N=1,MeanMovementRate=BackgroundMovementRate) 
             
            ##Generate initial spatial information for k=1 
            if(k==1){require(arm) 
                     Location.yijr0<-GenLocations(1,Spatial.yij)  ##Initial Location 
                     Distance.yijr0<- 

ObsDistance(Location.yijr0[1],Location.yijr0[2])[["Distance.yijrk"]] 
                     
                     ##Assumes no movement (flush) of birds due to obs arriving 
                     ##Thus, location at t=1 = location at t=0 
                     Location.yijrk<- Location.yijr0  
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                     ##Below: Allow birds to flush at t=0 due to observer arrival 
                     #                      PrBirdMovesObs.yijr1<-

PrBirdMoveObs(Distance=ObsDistance(Location.yijr0[1],Location.yijr0[2])[["Distance.y
ijrk"]]) 

                     #                      #                      PrBirdMovesObs.yijr1<-
invlogit(1-0.1*ObsDistance(Location.yijr0[1],Location.yijr0[2])[["Distance.yijrk"]]) 

                     #                      ##Distance-dependent Pr(bird moves due to 
obs) - drops to ~0.2 at 20 m 

                     #                      DoesBirdMoveObs.yijr1<-
rbinom(1,1,PrBirdMovesObs.yijr1) 

                     #                       
                     #                      if(DoesBirdMoveObs.yijr1==0) Location.yijrk<- 

Location.yijr0 ##If no movement, location at t=1 = location at t=0 
                     #                      if(DoesBirdMoveObs.yijr1!=0){                      

##If bird moves, 
                     #                        Distance.yijr0<-

ObsDistance(Location.yijr0[1],Location.yijr0[2])[["Distance.yijrk"]]  ## calc 
distance at t=0 

                     #                        CandidateDistance<-0 
                     #                        CandidateDistanceCounter<-0 
                     #                        while(CandidateDistance < Distance.yijr0)      
                     #                        {CandidateLocation<- 

GenLocations(1,Spatial.yij)  ##generate new locations until one is farther than 
location at t=0 

                     #                         CandidateDistance<- 
ObsDistance(CandidateLocation[1],CandidateLocation[2])[["Distance.yijrk"]] 

                     #                         CandidateDistanceCounter<- 
CandidateDistanceCounter+1 

                     #                         if(CandidateDistanceCounter>1000) break} 
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                     #                        
if(CandidateDistanceCounter>1000){Location.yijrk<- Location.yijr0} 

                     #                        
if(CandidateDistanceCounter<=1000){Location.yijrk<- CandidateLocation} 

                     #                      } 
            } 
            ##Generate spatial information for k>1 
            if(k!=1){  
              DoesBirdMove.yijrk<-rbinom(1,1,PrBirdMoves.yijrk) 
              if(DoesBirdMove.yijrk==1) {Location.yijrk<- GenLocations(1,Spatial.yij)}  
            } 
            Distance.yijrk<- 

ObsDistance(Location.yijrk[1],Location.yijrk[2])[["Distance.yijrk"]] 
             
            ##Track smallest distance between observer & bird j 
            #             if(k==1){MinDistance.yijr<-Distance.yijrk} 
            #             if(k!=1){MinDistance.yijr<-

min(Distance.yijrk,MinDistance.yijr)}             
            #              
             
            #             WindSpeed.yijrk<-

as.numeric(WindSpeed.yirk.List[[y]][[i]][[r]][k]) 
            #             WindIndex.yijrk<- 

WindSpeed.yijrk*cos(ObsDistance(Location.yijrk[1],Location.yijrk[2])[["BirdAngleComp
ass.yijrk"]]) 

            ##WindIndex assumes that wind is from due North at all sites (ok b/c bird 
territories are spatially random wrt observer) 

             
             
            ##Availability: Does It Sing? 
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            ##Maximum daily song rate for this species on day = 

SurveyDate.yir.List[[y]][i,r] 
            MaxDailySongRate.yir<-MaxDailySongRate(SurveyDate.yir.List[[y]][i,r]) 
             
            ##What is the effect (weight) of time of day on the max song rate? 
            SongWeight.yijrk<-TimeOfDayWeight(TimeinIntervals.yirk, IntervalsPerMinute) 
             
            ##What is interval-specific Pr(Bird Sings within ReportedPrSingMin minutes?) 
            PrSing.yijrk<-MaxDailySongRate.yir*SongWeight.yijrk 
             
            ##Here, PrSing.yijrk refers to Pr(bird sings at least 1x in ReportedPrSingMin 

min (usually 5 or 10)) 
            ##Therefore, use DataIntervals = ReportedPrSingMin (min) *60 

(sec/min)*(1/IntervalLength) (Intervals/sec) 
            ##units for DataIntervals: (min) * (60sec/min) * (Intervals/sec) = Intervals 
            ##PrSing calc is AFTER spatial to allow Pa ~ Distance to obs 
             
            OptimizePSNS.yijrk<- optimize(SolvePSNS,                 
                                          interval=c(0,0.05),   ##NOTE: **Starting 

values** are VERY important here, suggest using interval=c(0,0.05) for all 
                                          PrSing=PrSing.yijrk, 
                                          PSS=PSS.yijr, 
                                          

DataIntervals=ReportedPrSingMin*60*(1/IntervalLength), 
                                          maximum=F) 
            if(OptimizePSNS.yijrk$objective>0.05) {stop("Failure to optimize PSNS")} 
            PSNS.yijrk<- OptimizePSNS.yijrk$minimum 
            q1.yijrk<-MarkovSS(PSS.yijr,PSNS.yijrk)[1] 
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            ##Determine Singing Mode (1/0) for interval k 
            if(k==1){SingingMode.yijrk<-rbinom(1,1,q1.yijrk)  } 
            if(k>1){ 
              PreviousSingingMode<-TempAll.k.Outcomes.r[[k-1]]["SingingMode.yijrk"] 
              SingingMode.yijrk<- AutoCInstant(PreviousSingingMode,PSS.yijr,PSNS.yijrk) 
            } 
             
            ## Determine Singing (1/0) for interval k, given Singing Mode 
            if(SingingMode.yijrk==0) {Sings.yijrk<-0;  SingingState.yijrk<-NA} 
            if(SingingMode.yijrk==1 & k==1) { 
              SingingState.yijrk<-sample(SingingStates.fine,1) 
              ifelse(SingingState.yijrk=="S",Sings.yijrk<-1,Sings.yijrk<-0) 
            } 
            if(SingingMode.yijrk==1 & k>1){ 
              if(PreviousSingingMode==0) SingingState.yijrk<-sample(SingingStates.fine,1) 
               
              if(PreviousSingingMode==1) { 
                PreviousSingingState<-TempAll.k.Outcomes.r[[k-1]]["SingingState.yijrk"] 
                 
                if(PreviousSingingState=="S"|PreviousSingingState=="NS1"){   
                  PreviousSingingStateMatrix<-

matrix(as.numeric(SingingStates.fine==PreviousSingingState),1,4) 
                  NewSingingStateMatrix<-

PreviousSingingStateMatrix%*%TransitionMatrix.fine 
                  SingingState.yijrk<-

SingingStates.fine[as.numeric(NewSingingStateMatrix%*%c(1,2,3,4))] 
                } 
                if(PreviousSingingState=="NS2"){ 
                  ifelse(rbinom(1,1,TransitionMatrix.fine[3,1])==1, 
                         SingingState.yijrk<-"S", 
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                         SingingState.yijrk<-"NS3") 
                } 
                if(PreviousSingingState=="NS3"){ 
                  ifelse(rbinom(1,1,TransitionMatrix.fine[4,1])==1, 
                         SingingState.yijrk<-"S", 
                         SingingState.yijrk<-"NS3") 
                } 
                ifelse(SingingState.yijrk=="S",Sings.yijrk<-1,Sings.yijrk<-0) 
              } 
               
            } 
             
             
            ##Generate starting values & level-specific lists for storage 
            #             ListOOutcomes.yijrko[[y]][[i]][[j]][[r]][[k]]<-vector("list", 

NSimultaneousObservers) 
            TempAll.o.Outcomes.k<-vector("list", NSimultaneousObservers) 
             
            for(o in 1:NSimultaneousObservers){  ##For NBirds.yi>0 
               
              ##Perceptibility: Is it detected? 
              if(SurveyType!="multiple"){   
                ObserverIDNumber.yijrko<-ObserverIDNumber.yir.List[[y]][i,r]} 
               
              if(SurveyType=="multiple"){   
                ObserverIDNumber.yijrko<-o} 
               
              Pdintercept.yijrko<-( 
                #                                       

GrasslandIEffect*IsSiteGrassland.yi + 
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                #                                       
DeciduousIEffect*IsSiteDeciduous.yi + 

                #                                       LeavesIEffect*Leaves.yir + 
                #                                       NoiseIEffect*NoiseLevel.yirk + 
                #                                       

NoiseXLeavesEffect*NoiseLevel.yirk*Leaves.yir + 
                #                                       WindIndexIEffect*WindIndex.yijrk 

+ 
                SpeciesIntercept+ 
                  ObserverIEffects[,ObserverIDNumber.yijrko] + 
                  HabitatIEffect*(1-PercentHabitat.yi) 
              ) 
               
              Pdslope.yijrko<- ( 
                #                                   WindIndexSEffect*WindIndex.yijrk + 
                #                                   GrasslandSEffect*IsSiteGrassland.yi + 
                #                                   DeciduousSEffect*IsSiteDeciduous.yi + 
                #                                   LeavesSEffect*Leaves.yir + 
                #                                   NoiseSEffect*NoiseLevel.yirk + 
                DistanceEffect.yijr + 
                  ObserverSEffects[,ObserverIDNumber.yijrko] + 
                  HabitatSEffect*(1-PercentHabitat.yi)+ 
                  SiteSEffect*SiteVariationS.yi 
              ) 
               
              Perceptibility.yijrko<-

invlogit(Pdintercept.yijrko+Pdslope.yijrko*Distance.yijrk) 
              #               if(o==1){Perceptibility.yijrko<-0.5} 
              #               if(o==2){Perceptibility.yijrko<-0.5} 
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              if(Sings.yijrk==0) {Detected.yijrko <-0} 
              if(Sings.yijrk==1) {Detected.yijrko <-rbinom(1,1,Perceptibility.yijrko)} 
               
              PrCorrectID.yijrko<-PrCorrectID 
               
              if(Detected.yijrko ==0) {CorrectID.yijrko<-NA} 
              if(Detected.yijrko ==1) {CorrectID.yijrko<-rbinom(1,1,PrCorrectID.yijrko)} 
               
              PrDoubleCount.yijrko<-PrDoubleCount 
               
              if(is.na(CorrectID.yijrko)==T) {DoubleCounted.yijrko<-NA} 
              if(is.na(CorrectID.yijrko)==F){ 
                if(CorrectID.yijrko==0) {DoubleCounted.yijrko<-0} 
                if(CorrectID.yijrko==1) {DoubleCounted.yijrko<-

rbinom(1,1,PrDoubleCount.yijrko)} 
              } 
              Count.yijrko<-sum(na.omit(0+CorrectID.yijrko + DoubleCounted.yijrko)) 
               
              #               if(Count.yijrko>0 & WasBirdCountedObs.yijr[o]==0){ 
              #                 ##for first count of bird, record distance to obs 
              #                 DistanceFirstCount.yijr[o]<-Distance.yijrk} 
               
              #               if(Count.yijrko>0) {WasBirdCounted.yijr<-1 
              #                                   WasBirdCountedObs.yijr[o]<-1} 
               
              ## Observer estimation of distance 
              ObsEstimatedDistance.yijrko<-ObserverEstDistance(Distance.yijrk,  
                                                               

ObserverDistanceCategories,  
                                                               Output="stochastic") 
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              ##Prevent negative estimated distances 
              if(ObsEstimatedDistance.yijrko<0){ObsEstimatedDistance.yijrko<-1} 
              ## Outcomes Complete    ##################################### 
               
               
              ##Track Rare phenomena 
              if(is.na(CorrectID.yijrko)==F){ 
                if(CorrectID.yijrko==0) {MisID[nrow(MisID)+1,]<-c(y,i,j,r,k,o)} 
              } 
              if(is.na(DoubleCounted.yijrko)==F){ 
                if(DoubleCounted.yijrko==1) {DoubleCounted[nrow(DoubleCounted)+1,]<-

c(y,i,j,r,k,o)} 
              } 
               
              ## Index all o-specific objects for NBirds.yi>0 
              TempOutcomes.o<-list( 
                "Pdintercept.yijrko"=as.numeric(Pdintercept.yijrko), 
                "Pdslope.yijrko"=as.numeric(Pdslope.yijrko), 
                "Perceptibility.yijrko"=as.numeric(Perceptibility.yijrko), 
                "Detected.yijrko"=as.numeric(Detected.yijrko), 
                "PrCorrectID.yijrko"=as.numeric(PrCorrectID.yijrko), 
                "CorrectID.yijrko"=as.numeric(CorrectID.yijrko), 
                "PrDoubleCount.yijrko"=as.numeric(PrDoubleCount.yijrko), 
                "DoubleCounted.yijrko"=as.numeric(DoubleCounted.yijrko), 
                "Count.yijrko"=as.numeric(Count.yijrko), 
                "ObsEstimatedDistance.yijrko"=as.numeric(ObsEstimatedDistance.yijrko) 
                

#"ObserverIDNumber.yijrko"=ifelse(SurveyType=="multiple",ObserverIDNumber.yijrko,NA) 
              ) 
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              ##Store o-level objects and summaries 
              #               ListOOutcomes.yijrko[[y]][[i]][[j]][[r]][[k]][[o]]<-

TempOutcomes.o 
              #                
              #               if(SurveyType!="multiple"){ 
              #                 ListOOutcomes.yijrko[[y]][[i]][[j]][[r]][[k]][[o]]<-

TempOutcomes.o 
              #               } 
               
               
              ##Temp Store all TempOutcomes.o for each k 
              TempAll.o.Outcomes.k[[o]]<-TempOutcomes.o 
              TempAll.ko.Outcomes.r[[o]][[k]]<-TempOutcomes.o 
               
            }  ##o 
             
            ##Line below checks that parameters are properly specified 
            ##Needs to be here so it will break loops if parameters are wrong 
            if(SurveyType %in% SurveyOptions==FALSE) stop("SurveyType is invalid or 

misspelled") 
             
            ## Index all k-specific objects for NBirds.yi>0             
            TempOutcomes.k<-list( 
              #               "WindSpeed.yijrk"=as.numeric(WindSpeed.yijrk), 
              #               "WindIndex.yijrk"=as.numeric(WindIndex.yijrk), 
              #               "NoiseLevel.yirk"=as.numeric(NoiseLevel.yirk), 
              "TimeinIntervals.yirk"=as.numeric(TimeinIntervals.yirk), 
              "SingingMode.yijrk"=as.numeric(SingingMode.yijrk), 
              "SingingState.yijrk"=SingingState.yijrk, 
              "PrSing.yijrk"=as.numeric(PrSing.yijrk), 
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              "Sings.yijrk"=as.numeric(Sings.yijrk), 
              "PSNS.yijrk"=as.numeric(PSNS.yijrk), 
              "q1.yijrk"=as.numeric(q1.yijrk), 
              "PrBirdMoves.yijrk"=as.numeric(PrBirdMoves.yijrk), 
              "DoesBirdMove.yijrk"=ifelse(k>1,as.numeric(DoesBirdMove.yijrk),NA), 
              "Distance.yijrk"=as.numeric(Distance.yijrk), 
              "Location.x.yijrk"=as.numeric(Location.yijrk[1]), 
              "Location.y.yijrk"=as.numeric(Location.yijrk[2]), 
              "SongWeight.yijrk"=as.numeric(SongWeight.yijrk), 
              "TempAll.o.Outcomes.k"=TempAll.o.Outcomes.k 
            ) 
            #             EverDetectedByObs.yijro, 
            #             EverCorrectIDByObs.yijro, 
            #             EverDoubleCounted.yijro, 
            #             Count.yijro 
             
            ##Create k-level summaries           
                         
            Summaries.k<- 
              list( 
                #TempAll.o.Outcomes.k[[1]][["DoubleCounted.yijrko"]], 
                #TempAll.o.Outcomes.k[[1]][["Detected.yijrko "]] 
                 
              ) 
             
            #             ##Store-k-level objects and summaries 
            #             ListKOutcomes.yijrk[[y]][[i]][[j]][[r]][[k]]<-list( 
            #               "XLocation.yijrk"=Location.yijrk[1], 
            #               "YLocation.yijrk"=Location.yijrk[2], 
            #               "SingingMode.yijrk"=SingingMode.yijrk, 
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            #               "SingingState.yijrk"=SingingState.yijrk, 
            #               "Sings.yijrk"=Sings.yijrk) 
             
            ##Temp Store all TempOutcomes.k for each r 
            TempAll.k.Outcomes.r[[k]]<-TempOutcomes.k 
            #                                      append(TempOutcomes.k, 
            #                                      TempAll.o.Outcomes.k) 
             
             
          } ##k 
           
          ## Index all r-specific objects 
          TempOutcomes.r<-list( 
            #             "Leaves.yir"=Leaves.yir, 
            "StartTimeinIntervals.yir"=StartTimeinIntervals.yir, 
            "PSS.yijr"=PSS.yijr, 
            "MaxDailySongRate.yir"=MaxDailySongRate.yir 
          ) 
           
          ##Create r-level summaries 
          ## summaries.yijro 
          #"MeanPerceptibility.yijro"=MeanPerceptibility.yijro, 
          if(k!=NIntervals) stop("Intervals not complete! r summaries will be weird!") 
           
          #           TempAll.ko.Outcomes.r[[o]][[k]] 
          PreSummaries.r<-(vector("list", NSimultaneousObservers)) 
           
          for(oo in 1:NSimultaneousObservers){ 
            EverDetectedByObs.yijro<-(sum(as.numeric(unlist(TempAll.ko.Outcomes.r[[oo]])[ 
              names(unlist(TempAll.ko.Outcomes.r[[oo]]))=="Detected.yijrko"] ))) 



265 
 

            EverDetectedByObs.yijro<-ifelse(EverDetectedByObs.yijro>0,1,0) 
             
            EverCorrectIDByObs.yijro<-ifelse(EverDetectedByObs.yijro>0, 
                                             

sum(na.omit(as.numeric(unlist(TempAll.ko.Outcomes.r[[oo]])[ 
                                               

names(unlist(TempAll.ko.Outcomes.r[[oo]]))=="CorrectID.yijrko"] ))), 
                                             NA) 
            if(!is.na(EverCorrectIDByObs.yijro)){ifelse(EverCorrectIDByObs.yijro>0,1,0)} 
             
            EverDoubleCounted.yijro<-ifelse(EverDetectedByObs.yijro>0, 
                                            

sum(na.omit(as.numeric(unlist(TempAll.ko.Outcomes.r[[oo]])[ 
                                              

names(unlist(TempAll.ko.Outcomes.r[[oo]]))=="DoubleCounted.yijrko"] ))), 
                                            NA) 
            if(!is.na(EverDoubleCounted.yijro)){EverDoubleCounted.yijro<-

ifelse(EverDoubleCounted.yijro>0,1,0)} 
             
            Count.yijro<-max(as.numeric(unlist(TempAll.ko.Outcomes.r[[oo]])[ 
              names(unlist(TempAll.ko.Outcomes.r[[oo]]))=="Count.yijrko"] )) 
             
            if(Count.yijro>0){ 
              FirstIntervalCounted.yijro<-

which(unlist(TempAll.ko.Outcomes.r[[oo]])[names(unlist(TempAll.ko.Outcomes.r[[oo]]))
=="Count.yijrko"]>0)[1] 

              DistAtFirstDetection.yijro<-
as.numeric(unlist(unname(TempAll.k.Outcomes.r[[FirstIntervalCounted.yijro]]["Distanc
e.yijrk"]))) 
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              ObsEstDistAtFirstDetection.yijro<-
as.numeric(unlist(TempAll.ko.Outcomes.r[[oo]])[names(unlist(TempAll.ko.Outcomes.r[[o
o]]))=="ObsEstimatedDistance.yijrko"][FirstIntervalCounted.yijro]) 

            } 
            if(Count.yijro==0){ 
              FirstIntervalCounted.yijro<-NA 
              DistAtFirstDetection.yijro<-NA 
              ObsEstDistAtFirstDetection.yijro<-NA 
            } 
             
            PreSummaries.r[[oo]]<-list( 
              "EverDetectedByObs.yijro"=EverDetectedByObs.yijro, 
              "EverCorrectIDByObs.yijro"=EverCorrectIDByObs.yijro, 
              "EverDoubleCounted.yijro"=EverDoubleCounted.yijro, 
              "Count.yijro"=Count.yijro, 
              "FirstIntervalCounted.yijro"=FirstIntervalCounted.yijro, 
              "DistAtFirstDetection.yijro"=DistAtFirstDetection.yijro, 
              "ObsEstDistAtFirstDetection.yijro"=ObsEstDistAtFirstDetection.yijro 
            ) 
             
            #TempAll.roj.Outcomes.i[[r]][[oo]][[j]]<-PreSummaries.r 
          }  ##oo  
           
          EverDetected.yijr<-

ifelse(sum(as.numeric(unlist(PreSummaries.r)[names(unlist(PreSummaries.r))=="EverDet
ectedByObs.yijro"]))>0, 

                                           1,0) 
          EverCorrectID.yijr<-

ifelse(sum(as.numeric(unlist(PreSummaries.r)[names(unlist(PreSummaries.r))=="EverCor
rectIDByObs.yijro"]))>0, 
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                                     1,0) 
          EverDoubleCounted.yijr<-

ifelse(sum(as.numeric(unlist(PreSummaries.r)[names(unlist(PreSummaries.r))=="EverDou
bleCounted.yijro"]))>0, 

                                         1,0) 
          EverCounted.yijr<-

ifelse(sum(as.numeric(unlist(PreSummaries.r)[names(unlist(PreSummaries.r))=="Count.y
ijro"]))>0, 

                                   1,0) 
          FirstIntervalCounted.yijrObs1<-

as.numeric(unname(unlist(PreSummaries.r[[1]]["FirstIntervalCounted.yijro"]))) 
          DistAtFirstDetection.yijrObs1<-

as.numeric(unname(unlist(PreSummaries.r[[1]]["DistAtFirstDetection.yijro"]))) 
          ObsEstDistAtFirstDetection.yijrObs1<-

as.numeric(unname(unlist(PreSummaries.r[[1]]["ObsEstDistAtFirstDetection.yijro"]))) 
           
          if(SurveyType=="multiple"){ 
             
            ###NOTE: this section does not account for Double Counting 
            if(PrDoubleCount>0){stop("ERROR: Multiple Observer analysis cannot currently 

accept PrDoubleCount>0")} 
             
            ##FirstIntervalCounted.yijrObs1 etc. are above - here, add 2nd obs for 

multiple obs only 
            FirstIntervalCounted.yijrObs2<-

as.numeric(unname(unlist(PreSummaries.r[[2]]["FirstIntervalCounted.yijro"]))) 
            DistAtFirstDetection.yijrObs2<-

as.numeric(unname(unlist(PreSummaries.r[[2]]["DistAtFirstDetection.yijro"]))) 
            ObsEstDistAtFirstDetection.yijrObs2<-

as.numeric(unname(unlist(PreSummaries.r[[2]]["ObsEstDistAtFirstDetection.yijro"]))) 
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            CountObs1.yijr<-

as.numeric(unlist(unname(PreSummaries.r[[1]]["Count.yijro"]))) 
            CountObs2.yijr<-

as.numeric(unlist(unname(PreSummaries.r[[2]]["Count.yijro"])))     
             
            OnlyObs1.yijr<-0 
            OnlyObs2.yijr<-0 
            BothObs.yijr<-0 
             
            x11.yijr<-0 
            x21.yijr<-0 
            x22.yijr<-0 
            x12.yijr<-0             
             
            if(CountObs1.yijr!=0 | CountObs2.yijr!=0){  #If at least 1 obs had Count=1 
               
              if(CountObs1.yijr>0 & CountObs2.yijr>0) {BothObs.yijr<-1} 
              if(CountObs1.yijr>0 & CountObs2.yijr==0) {OnlyObs1.yijr<-1} 
              if(CountObs1.yijr==0 & CountObs2.yijr>0) {OnlyObs2.yijr<-1} 
               
              if(PrimaryObsNumber.yir.List[[y]][i,r]==1){ ##ObsA is primary obs 
                if(CountObs1.yijr==0) {x21.yijr<-1} 
                if(CountObs1.yijr==1) {x11.yijr<-1} 
              } 
               
              if(PrimaryObsNumber.yir.List[[y]][i,r]==2){ ##ObsB is primary obs 
                if(CountObs2.yijr==0) {x12.yijr<-1} 
                if(CountObs2.yijr==1) {x22.yijr<-1} 
              } 
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            } 
          } 
           
          if(SurveyType=="removal"){ 
            if(RemovalPeriods!=3) stop("Removal Periods does not = 3. Need to change 

removal period summary in Simulation") 
             
            if(EverCounted.yijr==0){ 
              EverCountedPeriod1.yijr<-0 
              EverCountedPeriod2.yijr<-0 
              EverCountedPeriod3.yijr<-0 
              FarnsEverCountedPeriod1.yijr<-0 
              FarnsEverCountedPeriod2.yijr<-0 
              FarnsEverCountedPeriod3.yijr<-0 
            } 
             
            if(EverCounted.yijr>0){ 
              Period1<-TempAll.ko.Outcomes.r[[o]][1:RemovalPeriod1Intervals] 
              Period2<-

TempAll.ko.Outcomes.r[[o]][(RemovalPeriod1Intervals+1):(RemovalPeriod1Intervals+Remo
valPeriod2Intervals)] 

              Period3<-
TempAll.ko.Outcomes.r[[o]][(RemovalPeriod1Intervals+RemovalPeriod2Intervals+1):NInte
rvals] 

               
              FarnsPeriod1<-TempAll.ko.Outcomes.r[[o]][1:FarnsRemovalPeriod1Intervals] 
              FarnsPeriod2<-

TempAll.ko.Outcomes.r[[o]][(FarnsRemovalPeriod1Intervals+1):(FarnsRemovalPeriod1Inte
rvals+FarnsRemovalPeriod2Intervals)] 
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              FarnsPeriod3<-
TempAll.ko.Outcomes.r[[o]][(FarnsRemovalPeriod1Intervals+FarnsRemovalPeriod2Interval
s+1):NIntervals] 

               
              EverCountedPeriod1.yijr<-

ifelse(sum(as.numeric(unlist(Period1)[names(unlist(Period1))=="Count.yijrko"]))>0,1,
0) 

              EverCountedPeriod2.yijr<-
ifelse(sum(as.numeric(unlist(Period2)[names(unlist(Period2))=="Count.yijrko"]))>0,1,
0) 

              EverCountedPeriod3.yijr<-
ifelse(sum(as.numeric(unlist(Period3)[names(unlist(Period3))=="Count.yijrko"]))>0,1,
0) 

               
              FarnsEverCountedPeriod1.yijr<-

ifelse(sum(as.numeric(unlist(FarnsPeriod1)[names(unlist(FarnsPeriod1))=="Count.yijrk
o"]))>0,1,0) 

              FarnsEverCountedPeriod2.yijr<-
ifelse(sum(as.numeric(unlist(FarnsPeriod2)[names(unlist(FarnsPeriod2))=="Count.yijrk
o"]))>0,1,0) 

              FarnsEverCountedPeriod3.yijr<-
ifelse(sum(as.numeric(unlist(FarnsPeriod3)[names(unlist(FarnsPeriod3))=="Count.yijrk
o"]))>0,1,0) 

            } 
          } 
           
          EverSing.yijr<-

ifelse(sum(as.numeric(unlist(TempAll.k.Outcomes.r)[names(unlist(TempAll.k.Outcomes.r
))=="Sings.yijrk"]))>0, 

                                1,0) 
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          EverSingingMode.yijr<-
ifelse(sum(as.numeric(unlist(TempAll.k.Outcomes.r)[names(unlist(TempAll.k.Outcomes.r
))=="SingingMode.yijrk"]))>0, 

                                       1,0) 
          EverMove.yijr<-

ifelse(sum(na.omit(as.numeric(unlist(TempAll.k.Outcomes.r)[names(unlist(TempAll.k.Ou
tcomes.r))=="DoesBirdMove.yijrk"])))>0, 

                                1,0) 
          NumberSongs.yijr<-

sum(as.numeric(unlist(TempAll.k.Outcomes.r)[names(unlist(TempAll.k.Outcomes.r))=="Si
ngs.yijrk"])) 

          NumberMoves.yijr<-
sum(as.numeric(unlist(TempAll.k.Outcomes.r)[names(unlist(TempAll.k.Outcomes.r))=="Do
esBirdMove.yijrk"][2:NIntervals])  ) 

          MinDistance.yijr<-
min(as.numeric(unlist(TempAll.k.Outcomes.r)[names(unlist(TempAll.k.Outcomes.r))=="Di
stance.yijrk"])) 

          MeanDistance.yijr<-
mean(as.numeric(unlist(TempAll.k.Outcomes.r)[names(unlist(TempAll.k.Outcomes.r))=="D
istance.yijrk"])) 

          ClosestAxesDistance.yij<-AxesClosestObs(Spatial.yij) ##For territory 
Spatial.yij, distance to closest of 4 major/minor axes 

          #           MeanObservedWindspeed.yijr<-
mean(as.numeric(unlist(TempAll.k.Outcomes.r)[names(unlist(TempAll.k.Outcomes.r))=="W
indSpeed.yijrk"])) 

          #           MeanObservedNoise.yijr<-
mean(as.numeric(unlist(TempAll.k.Outcomes.r)[names(unlist(TempAll.k.Outcomes.r))=="N
oiseLevel.yirk"])) 

           
          ##NOTE: Noiselevel is currently r-specific 
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          ## Therefore, NoiseLevel.yirk==Noise.yirk.List[[y]][[i]][[r]][k] for any k 
           
          Summaries.r<-list( 
            #             "PreSummaries.r"=PreSummaries.r, 
            #             

"ObserverIDNumber.yir"=ifelse(SurveyType!="multiple",ObserverIDNumber.yijrko,NA), 
            #             "MeanObservedWindspeed.yijr"=MeanObservedWindspeed.yijr, 
            #             "MeanObservedNoise.yijr"=MeanObservedNoise.yijr, 
            "EverDetected.yijr"=EverDetected.yijr, 
            "EverCorrectID.yijr"=EverCorrectID.yijr, 
            "EverDoubleCounted.yijr"=EverDoubleCounted.yijr, 
            "EverCounted.yijr"= EverCounted.yijr, 
            "EverSing.yijr"=EverSing.yijr, 
            "EverSingingMode.yijr"=EverSingingMode.yijr, 
            "EverMove.yijr"=EverMove.yijr, 
            "NumberSongs.yijr"=NumberSongs.yijr, 
            "NumberMoves.yijr"=NumberMoves.yijr, 
            "MinDistance.yijr"=MinDistance.yijr, 
            "CountObs1.yijr"=ifelse(SurveyType=="multiple",CountObs1.yijr,NA), 
            "CountObs2.yijr"=ifelse(SurveyType=="multiple",CountObs2.yijr,NA), 
            "x11.yijr"=ifelse(SurveyType=="multiple",x11.yijr,NA), 
            "x12.yijr"=ifelse(SurveyType=="multiple",x12.yijr,NA), 
            "x21.yijr"=ifelse(SurveyType=="multiple",x21.yijr,NA), 
            "x22.yijr"=ifelse(SurveyType=="multiple",x22.yijr,NA), 
            "OnlyObs1.yijr"=ifelse(SurveyType=="multiple",OnlyObs1.yijr,NA), 
            "OnlyObs2.yijr"=ifelse(SurveyType=="multiple",OnlyObs2.yijr,NA), 
            "BothObs.yijr"=ifelse(SurveyType=="multiple",BothObs.yijr,NA),     
            

"EverCountedPeriod1.yijr"=ifelse(SurveyType=="removal",EverCountedPeriod1.yijr,NA), 
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"EverCountedPeriod2.yijr"=ifelse(SurveyType=="removal",EverCountedPeriod2.yijr,NA), 

            
"EverCountedPeriod3.yijr"=ifelse(SurveyType=="removal",EverCountedPeriod3.yijr,NA), 

            
"FarnsEverCountedPeriod1.yijr"=ifelse(SurveyType=="removal",FarnsEverCountedPeriod1.
yijr,NA), 

            
"FarnsEverCountedPeriod2.yijr"=ifelse(SurveyType=="removal",FarnsEverCountedPeriod2.
yijr,NA), 

            
"FarnsEverCountedPeriod3.yijr"=ifelse(SurveyType=="removal",FarnsEverCountedPeriod3.
yijr,NA), 

            "MeanDistance.yijr"=MeanDistance.yijr, 
            "Distance.yijr0"=Distance.yijr0, 
            "ClosestAxesDistance.yij"=ClosestAxesDistance.yij, 
            "FirstIntervalCounted.yijrObs1"=FirstIntervalCounted.yijrObs1, 
            "DistAtFirstDetection.yijrObs1"=DistAtFirstDetection.yijrObs1, 
            "ObsEstDistAtFirstDetection.yijrObs1"=ObsEstDistAtFirstDetection.yijrObs1, 
            

"FirstIntervalCounted.yijrObs2"=ifelse(SurveyType=="multiple",FirstIntervalCounted.y
ijrObs2,NA), 

            
"DistAtFirstDetection.yijrObs2"=ifelse(SurveyType=="multiple",DistAtFirstDetection.y
ijrObs2,NA), 

            
"ObsEstDistAtFirstDetection.yijrObs2"=ifelse(SurveyType=="multiple",ObsEstDistAtFirs
tDetection.yijrObs2,NA) 

          ) 
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          ##Consider adding - mean perceptibility (obs-specific!) 
          #"Count.yijr"= max(unlist(TempOutcomes.o)["Count.yijrko"]), 
           
          ##Store-r-level objects and summaries for NBirds.yi>0 
          ListROutcomes.yijr[[y]][[i]][[j]][[r]]<-append(TempOutcomes.r,Summaries.r) 

#TempOutcomes.r  
          TempAll.rj.Outcomes.i[[r]][[j]]<-Summaries.r 
           
          ##Temp Store all TempOutcomes.r for each j 
          TempAll.r.Outcomes.j[[r]]<-TempOutcomes.r 
           
        } ##r 
         
        ## Index all j-specific objects 
        if(NBirds.yi>0){ 
          TempOutcomes.j<-list( 
            "Spatial.yij"=Spatial.yij 
          ) 
        } 
         
        if(NBirds.yi==0){ 
          TempOutcomes.j<-list( 
            "Spatial.yij"=NA 
          ) 
        } 
         
        ##Create j-level summaries 
         
        ##Store-j-level objects and summaries 
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        ## Currently there is no ListJOutcomes.yij !! 
         
         
        ##Temp Store all TempOutcomes.j for each i 
        TempAll.j.Outcomes.i[[j]]<-TempOutcomes.j 
         
      } ##j 
       
       
    }  ##bracket refers to "if(NBirds.yi>0){" 
     
    ## Index all i-specific objects   
    if(NBirds.yi==0){ 
      TempOutcomes.i<-list( 
        #         "IsSiteGrassland.yi"=IsSiteGrassland.yi, 
        #         "IsSiteDeciduous.yi"=IsSiteDeciduous.yi, 
        #         "SpatialList.yi"=NA, 
        "PercentHabitat.yi"=PercentHabitat.yi, 
        "Area.yi"=Area.yi, 
        "LambdaHabitat.yi"=LambdaHabitat.yi, 
        "LambdaMatrix.yi"=LambdaMatrix.yi, 
        "BirdsInHabitat.yi"=BirdsInHabitat.yi, 
        "BirdsInMatrix.yi"=BirdsInMatrix.yi, 
        "NBirds.yi"=NBirds.yi, 
        "AllowedTerrSize.yi"=NA, 
        "MeanTerrArea.yi"=NA, 
        "SDTerrArea.yi"=NA 
      ) 
    } 
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    if(NBirds.yi>0){ 
      ## Realized mean & sd of area of 95% UD ellipses for territories 
      RealTerrAreaMean.yi<-

mean(unlist(SpatialList.yi)[names(unlist(SpatialList.yi))=="Area.yij"]) 
      RealTerrAreaSD.yi<-

sd(unlist(SpatialList.yi)[names(unlist(SpatialList.yi))=="Area.yij"]) 
       
      TempOutcomes.i<-list( 
        #         "IsSiteGrassland.yi"=IsSiteGrassland.yi, 
        #         "IsSiteDeciduous.yi"=IsSiteDeciduous.yi, 
        #         "SpatialList.yi"=SpatialList.yi  ##Left out b/c info is stored at j 

level 
        "RealTerrAreaMean.yi"=RealTerrAreaMean.yi, 
        "RealTerrAreaSD.yi"=RealTerrAreaSD.yi, 
        "PercentHabitat.yi"=PercentHabitat.yi, 
        "HabitatGroup.yi"=ifelse(HabitatGroup.yi=="Low",1,0), 
        "Area.yi"=Area.yi, 
        "LambdaHabitat.yi"=LambdaHabitat.yi, 
        "LambdaMatrix.yi"=LambdaMatrix.yi, 
        "BirdsInHabitat.yi"=BirdsInHabitat.yi, 
        "BirdsInMatrix.yi"=BirdsInMatrix.yi, 
        "NBirds.yi"=NBirds.yi, 
        "AllowedTerrSize.yi"=AllowedTerrSize.yi, 
        "MeanTerrArea.yi"=MeanTerrArea.yi, 
        "SDTerrArea.yi"=MeanTerrArea.yi 
      ) 
    } 
     
    ##Create i-level summaries   
     



277 
 

    #     TempAll.rj.Outcomes.i[[r]][[j]][["EverDetected.yijr"]] 
    #     length(TempAll.rj.Outcomes.i[[1]]) 
     
    Summaries.ir<-vector("list", NReps) 
    for(rr in 1:NReps){ 
       
      EverCount.yir<-sum(as.numeric(unlist(TempAll.rj.Outcomes.i[[rr]])[ 
        names(unlist(TempAll.rj.Outcomes.i[[rr]]))=="EverDetected.yijr"] )) 
      EverMove.yir<-sum(na.omit(as.numeric(unlist(TempAll.rj.Outcomes.i[[rr]])[ 
        names(unlist(TempAll.rj.Outcomes.i[[rr]]))=="EverMove.yijr"] ))) 
      EverDoubleCounted.yir<-sum(na.omit(as.numeric(unlist(TempAll.rj.Outcomes.i[[rr]])[ 
        names(unlist(TempAll.rj.Outcomes.i[[rr]]))=="EverDoubleCounted.yijr"] ))) 
      EverCorrectID.yir<-sum(na.omit(as.numeric(unlist(TempAll.rj.Outcomes.i[[rr]])[ 
        names(unlist(TempAll.rj.Outcomes.i[[rr]]))=="EverCorrectID.yijr"] ))) 
      EverSingingMode.yir<-sum(as.numeric(unlist(TempAll.rj.Outcomes.i[[rr]])[ 
        names(unlist(TempAll.rj.Outcomes.i[[rr]]))=="EverSingingMode.yijr"] )) 
      EverSing.yir<-sum(as.numeric(unlist(TempAll.rj.Outcomes.i[[rr]])[ 
        names(unlist(TempAll.rj.Outcomes.i[[rr]]))=="EverSing.yijr"] )) 
       
      Summaries.ir[[rr]]<-list( 
        "EverCount.yir"=EverCount.yir, 
        "EverMove.yir"=EverMove.yir, 
        "EverDoubleCounted.yir"=EverDoubleCounted.yir, 
        "EverCorrectID.yir"=EverCorrectID.yir, 
        "EverSingingMode.yir"=EverSingingMode.yir, 
        "EverSing.yir"=EverSing.yir 
      ) 
    } 
    ##Store-i-level objects and summaries   
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    ListIOutcomes.yi[[y]][[i]]<-TempOutcomes.i 
    ListIRSummaryOutcomes.yi[[y]][[i]]<- Summaries.ir 
     
    print(paste("site", i)) 
    print(proc.time() - TIMER) 
     
    ##Temp Store all TempOutcomes.i for each y 
    TempAll.i.Outcomes.y[[i]]<-TempOutcomes.i 
     
  } ##i 
   
   
  ## Index all y-specific objects (Both NBirds.yi==0 & NBirds.yi>0) 
  TempOutcomes.y<-list( 
    # "SurveyType"=SurveyType, 
    "FauxYear"=FauxYear, 
    "Ns.y"= Ns.y, 
    "ContinentalPopulation.y"= ContinentalPopulation.y, 
    "ObserverIEffects.y1"=ObserverIEffects[,1], 
    "ObserverIEffects.y2"=ObserverIEffects[,2], 
    "RangeHabitatArea.y"= RangeHabitatArea.y, 
    "RangeMatrixArea.y"= RangeMatrixArea.y, 
    "StudyHabitatArea.y"= StudyHabitatArea.y, 
    "StudyMatrixArea.y"= StudyMatrixArea.y, 
    "RangeHabitatAbundance.y"=RangeHabitatAbundance.y, 
    "RangeMatrixAbundance.y"= RangeMatrixAbundance.y, 
    "MatrixDensity.y"= MatrixDensity.y, 
    "HabitatDensity.y"= HabitatDensity.y, 
    "StudyHabitatAbundance.y"= StudyHabitatAbundance.y, 
    "StudyMatrixAbundance.y"= StudyMatrixAbundance.y, 
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    "HabitatProportionTheta.y"= HabitatProportionTheta.y, 
    "StudyHabitatProportion.y"=StudyHabitatProportion.y, 
    "SurveyLength"=SurveyLength, 
    "RemovalPeriod1Length"=ifelse(SurveyType=="removal",RemovalPeriod1Length,NA), 
    "RemovalPeriod2Length"=ifelse(SurveyType=="removal",RemovalPeriod2Length,NA), 
    "RemovalPeriod3Length"=ifelse(SurveyType=="removal",RemovalPeriod3Length,NA), 
    "RemovalPeriod1Intervals"=ifelse(SurveyType=="removal",RemovalPeriod1Intervals,NA), 
    "RemovalPeriod2Intervals"=ifelse(SurveyType=="removal",RemovalPeriod2Intervals,NA), 
    "RemovalPeriod3Intervals"=ifelse(SurveyType=="removal",RemovalPeriod3Intervals,NA) 
  ) 
   
  ## Create y-level summaries 
   
  MeanPercentHabitat.y<-

mean(as.numeric(unlist(ListIOutcomes.yi[[y]])[names(unlist(ListIOutcomes.yi[[y]]))==
"PercentHabitat.yi"])) 

  #mean(ListIOutcomes.yi[[y]][["PercentHabitat.yi"]]) 
   
  Summaries.y<-list( 
    "MeanPercentHabitat.y"=MeanPercentHabitat.y 
  ) 
   
   
  ## Store-y-level objects and summaries 
  ListYOutcomes.y[[y]]<- append(TempOutcomes.y,Summaries.y) 
  #ListYSummaryOutcomes.y[[y]]<- Summaries.y 
   
  #print(paste(SurveyType,"FauxYear", FauxYear, "Complete")) 
   
  # ########################################################### 
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  # ##Save dataset for year y for future analysis 
#   DATE<-format(Sys.time(), "%m_%d_%Y") 
  SimName<-paste(SimulationName,SIMNUM,"Scenario",Scenario,SurveyType,"FauxYear", 

FauxYear, sep="_") 
   
  setwd(SaveDirectory) 
   
  save(NYears, NSurveySites, NReps, SurveyType, SurveyOptions,  
       NIntervals, NSimultaneousObservers, NTotalObservers, ObserverIDs, 
       PrimaryObsNumber.yir.List,  
       ListYOutcomes.y, 
       ListIOutcomes.yi, 
       ListROutcomes.yijr, 
       ListIRSummaryOutcomes.yi, 
       #        ListKOutcomes.yijrk, 
       #        ListOOutcomes.yijrko,  
       file=paste(SimName,".RData", sep="")) 
   
  setwd(MasterDirectory) 
   
  
   
} ##y 
 
 
##Clean up data frames tracking rare phenomena 
if(nrow(MisID)>1) MisID<-na.omit(MisID) 
if(nrow(DoubleCounted)>1) DoubleCounted<-na.omit(DoubleCounted) 
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#proc.time() - TIMERALL 
########END_SIMULATION########################################### 
 
 
 
################################## 
##SUMMARIZE SIMULATION RESULTS 
library(reshape) 
 
##NOTE: Lists from Sim stored but remain in memory for use in this script. 
##thus: There is no "load" currently in this script. 
 
##Melt the lists generated by the simulation  
##NOTE: KK and OO not used because they're too slow 
##      r-level summaries through simulation should replace them 
 
 
YY<-melt.list(ListYOutcomes.y) 
#head(YY) 
 
II<-melt.list(ListIOutcomes.yi) 
#head(II) 
 
RR<-melt.list(ListROutcomes.yijr) 
#head(RR) 
 
 
#head(ListIRSummaryOutcomes.yi) 
IIRR<-melt.list(ListIRSummaryOutcomes.yi) 
#head(IIRR) 
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# # #TIMER<-proc.time() 
# KK<-melt.list(ListKOutcomes.yijrk) 
# # head(KK) 
 
# #ListOOutcomes.yijrko[[1]][[1]][[1]][[1]][[1]] 
# #TIMER<-proc.time() 
# OO<-melt.list(ListOOutcomes.yijrko) 
# #proc.time() - TIMER 
# #head(OO) 
# # nrow(OO) 
# # nrow(II) 
# ## With y=1, i=20, j~40 this takes 10 min. 
# ## Object OO has 2 million lines with only y=1,i=20,j~150,r=1,k=60,o=2 
# ##If you're going to run this, run it over lunch. 
# # proc.time() - MeltTIMER 
#  
# # ifelse(length(unique(KK$X1))==1, KK$X1<-NULL, print("Cannot delete column - more than 

one value exists!")) 
# # ifelse(length(unique(KK$L6))==1, KK$L6<-NULL, print("Cannot delete column - more than 

one value exists!")) 
 
############################################ 
##Cast the data to get useful summaries 
## .yi level 
{ 
# cast(II, .~L3, length) ## number of data points for each variable,  (=y*i) 
#  
# cast(II, .~L3, mean) ##Mean variable values across all years 
# tapply(II$value, II$L3, mean) ##Same results as above, different structure 
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#  
# cast(II, .~L3+L1, mean) ##Mean variable values, year-specific 
# cast(II, .~L3+L2, mean) ##Mean variable values, site-specific 
 
} 
 
CastTIMER<-proc.time() 
 
############################################# 
##Create .y data frame with all necessary columns 
YY.data<-cast(YY, ...~L2) 
# head(YY.data) 
 
# unique(YY.data$L1) 
names(YY.data)[names(YY.data)=="L1"]<-"y"  ##rename columns 
 
length(unique(YY.data$y))==NYears 
##Make sure this is TRUE!!! 
 
 
############################################# 
##Create .yi data frame with all necessary columns 
II.data<-cast(II, ...~L3) 
# head(II.data) 
# hist(II.data$NBirds.yi) 
 
# unique(II.data$L1) 
names(II.data)[names(II.data)=="L1"]<-"y"  ##rename columns 
names(II.data)[names(II.data)=="L2"]<-"i" 
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length(unique(II.data$y))==NYears 
length(unique(II.data$i))==NSurveySites 
##Make sure these are TRUE!!! 
 
######################################## 
head(IIRR) 
IIRR.data<-cast(IIRR, ...~L4) 
 
head(IIRR.data) 
 
#unique(IIRR.data$L1) 
names(IIRR.data)[names(IIRR.data)=="L1"]<-"y"  ##rename columns 
#unique(IIRR.data$L2) 
names(IIRR.data)[names(IIRR.data)=="L2"]<-"i" 
#unique(IIRR.data$L3) 
names(IIRR.data)[names(IIRR.data)=="L3"]<-"r" 
 
 
length(unique(IIRR.data$y))==NYears 
length(unique(IIRR.data$i))==NSurveySites 
length(unique(IIRR.data$r))==NReps 
##Make sure these are TRUE!!! 
######################################## 
 
##Create .yijr data frame with all necessary columns 
head(RR) 
RR.data<-cast(RR, ...~L5) 
head(RR.data) 
#RR.data 
 



285 
 

#unique(RR.data$L1) 
names(RR.data)[names(RR.data)=="L1"]<-"y"  ##rename columns 
#unique(RR.data$L2) 
names(RR.data)[names(RR.data)=="L2"]<-"i" 
#unique(RR.data$L3) 
names(RR.data)[names(RR.data)=="L3"]<-"j" 
#unique(RR.data$L4) 
names(RR.data)[names(RR.data)=="L4"]<-"r" 
 
length(unique(RR.data$y))==NYears 
length(unique(RR.data$i))==NSurveySites 
length(unique(RR.data$r))==NReps 
##Make sure these are TRUE!!! 
 
##RR.1 replaced by IIRR.data 
##For nmixtures, need RR.1 
# RR.1<-cast(RR, L1+L2~L5+L4, sum) 
# # unique(RR.1$L2) 
# # unique(RR.1$L1) 
# names(RR.1)[names(RR.1)=="L1"]<-"y"  ##rename columns 
# names(RR.1)[names(RR.1)=="L2"]<-"i" 
#  
# length(unique(RR.1$y))==NYears 
# length(unique(RR.1$i))==NSurveySites 
# ##Make sure these are TRUE!!! 
#  
# head(RR.1) 
 
 
######################################## 
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# ##Create .yijrk data frame with all necessary columns 
# # head(KK) 
# #nrow(KK) 
# #unique(KK$L6) 
#  
# # unique(KK$L1) #y 
# # unique(KK$L5) #k 
#  
# KK.data<-cast(KK, ...~L6) 
# # head(KK.data) 
#  
# #unique(KK.data$L1) 
# #unique(KK.data$L2) 
# #unique(KK.data$L3) 
# #unique(KK.data$L4) 
# #unique(KK.data$L5) 
# names(KK.data)[names(KK.data)=="L1"]<-"y"  ##rename columns 
# names(KK.data)[names(KK.data)=="L2"]<-"i" 
# names(KK.data)[names(KK.data)=="L3"]<-"j" 
# names(KK.data)[names(KK.data)=="L4"]<-"r" 
# names(KK.data)[names(KK.data)=="L5"]<-"k" 
# #  
# length(unique(KK.data$y))==NYears 
# length(unique(KK.data$i))==NSurveySites 
# length(unique(KK.data$r))==NReps 
# length(unique(KK.data$k))==NIntervals 
# ##Make sure these are TRUE!!! 
#  
# # head(KK.data) 
# #  
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# # KK.data[KK.data[,"y"]==y &  
# #           KK.data[,"i"]==i &  
# #           KK.data[,"j"]==j & 
# #           KK.data[,"r"]==r & 
# #           KK.data[,"k"]==k,] 
 
# ############################################################### 
 
##Create .yijrko data frame with all necessary columns 
# head(OO) 
# nrow(OO) 
# unique(OO$L6) 
#  
# unique(OO$L1) #y 
# unique(OO$L5) #k 
# unique(OO$L6) #o 
#  
# OO.data<-cast(OO, ...~L7) 
# # head(OO.data) 
# # nrow(OO.data) 
# unique(OO.data$L1) 
# unique(OO.data$L2) 
# unique(OO.data$L3) 
# unique(OO.data$L4) 
# unique(OO.data$L5) 
# names(OO.data)[names(OO.data)=="L1"]<-"y"  ##rename columns 
# names(OO.data)[names(OO.data)=="L2"]<-"i" 
# names(OO.data)[names(OO.data)=="L3"]<-"j" 
# names(OO.data)[names(OO.data)=="L4"]<-"r" 
# names(OO.data)[names(OO.data)=="L5"]<-"k" 
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# names(OO.data)[names(OO.data)=="L6"]<-"o" 
#  
# length(unique(OO.data$y))==NYears 
# length(unique(OO.data$i))==NSurveySites 
# length(unique(OO.data$r))==NReps 
# length(unique(OO.data$k))==NIntervals 
# length(unique(OO.data$o))==NSimultaneousObservers 
# ##Make sure these are TRUE!!! 
#  
# # head(OO.data) 
#  
 
# proc.time()- CastTIMER 
# print(paste(SurveyType, "FauxYear=",FauxYear, "Reshape Complete")) 
 
# OO.data[OO.data[,"y"]==y &  
#           OO.data[,"i"]==i &  
#           OO.data[,"j"]==j & 
#           OO.data[,"r"]==r & 
#           OO.data[,"k"]==k,] 
 
 
 
## Attempted to save memory by removing unecessarly large original objects. 
# rm(OO) 
# rm(KK) 
##NOTE: Didn't seem to work.  These took a long time to generate, so don't do this in 

future. 
 
########################################################### 
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##Save dataset for future use 
DATE<-format(Sys.time(), "%m_%d_%Y") 
#  AnalysisName<-paste("Analysis",SIMNUM,SurveyType,"FauxYear", FauxYear, sep="_") 
AnalysisName<-

paste("Analysis",SimulationName,SIMNUM,"Scenario",Scenario,SurveyType,"FauxYear", 
FauxYear, sep="_") 

 
#setwd("C:\\Users\\rigby007\\Documents\\Detection\\Dissertation Project\\Sim 1 - BTBW 

example for AOU 2014\\") 
setwd(SaveDirectory) 
 
save(NYears, NSurveySites, NReps, SurveyType, SurveyOptions,  
     NIntervals, NSimultaneousObservers, NTotalObservers, ObserverIDs, 
     PrimaryObsNumber.yir.List, 
     #PrimaryObsNumber.yir, 
     YY.data, IIRR.data, II.data, RR.data,  
     # RR.1,  KK.data, OO.data,  
     file=paste(AnalysisName,".RData", sep="")) 
 
setwd(MasterDirectory) 
 
#   rm(ListYOutcomes.y)     
#   rm(ListIOutcomes.yi) 
#   rm(ListIRSummaryOutcomes.yi) 
#   rm(ListROutcomes.yijr) 
 
################################################ 
####END SUMMARIZE SIMULATION RESULTS 
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Spatial Modeling 

Spatial parameters (Spatial.yij) were generated for each bird j,  including the center of the 
territory (CenterX.yij, CenterY.yij), the area of a 95% elliptical density contour (Area.yij), 
the eccentricity of the ellipse (Ecc.yij), and an angle of rotation (Theta.yij).  CenterX.yij 
and CenterY.yij were uniform random variables: U(-1000, 1000).  Area.yij was a 
lognormally-distributed random variable with parameters μ and ơ2.   Using mean and 
standard deviation parameters for territory size (MeanTerrArea and SDTerrArea, 
respectively), μ and ơ2 were calculated as 

μ = ln(MeanTerrArea)  −  1
2
 ln(1 +  (𝑆𝐷𝑇𝑒𝑟𝑟𝐴𝑟𝑒𝑎)2

(𝑀𝑒𝑎𝑛𝑇𝑒𝑟𝑟𝐴𝑟𝑒𝑎)2
 ) , (eq. C.1) 

and 

ơ2 = ln(1 +  (𝑆𝐷𝑇𝑒𝑟𝑟𝐴𝑟𝑒𝑎)2

(𝑀𝑒𝑎𝑛𝑇𝑒𝑟𝑟𝐴𝑟𝑒𝑎)2
 ) .  (eq. C.2) 

Ecc.yij was a uniform random variable: U(0,0.95).  An ellipse with eccentricity Ecc.yij 
had a semi-major axis a.yij and semi-minor axis b.yij: 

𝑏.𝑦𝑖𝑗 =  𝑎.𝑦𝑖𝑗�1 − 𝐸𝑐𝑐.𝑦𝑖𝑗2  ,  (eq. C.3) 

𝑎.𝑦𝑖𝑗 =  𝑏.𝑦𝑖𝑗
�1−𝐸𝑐𝑐.𝑦𝑖𝑗2

  ,  (eq. C.4) 

Theta.yij was a uniform random variable describing the angle at which the elliptical 
territory was rotated: U(0°, 360°). 

The  overlap comparison of territories was computationally intensive, so a precursor step 
was added to reduce simulation run-time.  In that step, the distances between the center of 
the candidate territory and all existing territories (CandidateDistances, the smallest value 
of which was ClosestNeighborDistance) was compared to the length of the axes of all 
territories.  The sum of the candidate major axis and largest existing major axis was 
MaxmimumDiameter and the sum of the candidate minor axis and smallest existing minor 
axis was MinimumDiameter.  If ClosestNeighborDistance > MaximumDiameter, then 
there could be no overlap and the candidate was retained.  If ClosestNeighborDistance < 
MinimumDiameter, then there was overlap and the candidate was rejected.  If 
ClosestNeighborDistance < MaximumDiameter and ClosestNeighborDistance > 
MinimumDiameter, then the direct overlap comparison was carried out. 

Using empirical estimates of territory size to create non-overlapping territories was not 
expedient (or even not possible) when estimates of territory size and density from the 
literature conflicted.  For example, it would be impossible to create non-overlapping 
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territories with mean size 1 ha if density = 3 pairs / ha.  My solution had 2 parts.  First, I 
adjusted the elliptical density contour percentage used to evaluate overlap (using a 
smaller percentage increased allowable overlap).  Second, I compressed the mean area of 
territories at sites with high abundance.  Via simulations, I found that computation time 
increased drastically when the area covered by ellipses exceeded 50% of the modeled 
area.  I therefore used  

MeanTerrArea.yi = 0.5 × 𝐴𝑟𝑒𝑎.𝑦𝑖
𝑁𝐵𝑖𝑟𝑑𝑠.𝑦𝑖

  (eq. C.5) 

to parameterize Spatial.yij for sites where abundance was problematically high.  

 
Availability Modeling 

For the purposes of modeling, I wanted to specify parameters for P(S|S), P(S|NS), and 
NIntervals (see equation 1.11).  I therefore needed to rearrange equation 1.11 in terms of 
those variables.  By definition (Stroock 2005), the steady state vector is the vector for 
which the following is true, given enough time for initial states to be “forgotten”: 

[q1 q2] = [q1 q2] × Pcoarse    (eq. C.6), 

where Pcoarse is the coarse-scale interval-specific transition matrix (Table 1.1).  I also 
made use of the identity matrix I 

[q1 q2] = [q1 q2] × I  ,  (eq. C.7) 

to obtain 

[q1 q2] = [q1 q2] × Pcoarse  = [q1 q2] × I  .  (eq. C.8) 

By rearranging equation C.8, I obtained 

[q1 q2] × (Pcoarse - I) = 0  .  (eq. C.9) 

Completing the matrix multiplication of equation C.9 with the contents of Pcoarse (Table 
1.1) produced   

q1(P(S|S) - 1) + q2(P(S|NS)) = 0  ,  (eq. C.10) 

and  

q1(P(NS|S)) + q2(P(NS|NS) - 1) = 0  .  (eq. C.11) 

Combining and rearranging equation C.10 and equation C.11 gave 
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.  (eq. C.12) 
 

Therefore, substituting equation 1.6 and equation C.12 into equation 1.7 produced 

 
,    

(eq. C.13) 

thus describing ZNIntervals in terms of 3 parameters, P(S|S), P(S|NS), and NIntervals.  
NIntervals is defined by the survey length of the desired scenario.  I assumed that more 
variation in bird availability would be caused by variation in the probability of birds 
switching from non-singing mode into singing mode (P(S|NS)) than by variation in the 
tendency for birds to stay in singing mode (P(S|S)).  I therefore held P(S|S) constant and 
varied P(S|NS) to achieve the desired ZNIntervals.  I investigated the relationship between 
P(S|S), P(S|NS), and ZNIntervals for different values of P(S|S) (Figure 1.1).  P(S|S) > 0.98 
produced too few transitions (birds in singing mode almost never transitioned) and P(S|S) 
< 0.98 produced birds that transitioned too quickly (birds were so likely to transition into 
singing mode that q1 was very low and variation in ZNIntervals among simulations was 
high).  I therefore held constant P(S|S) = 0.98 for all simulations.  The P(S|NS) needed to 
produce a desired singing probability was determined with function optimize() in 
program R.  Because values of P(S|NS) were very small, the optimization process was 
sensitive to starting values; all analyses used a starting interval of 0 - 0.05 for P(S|NS).  

I used equation C.13, with ZNIntervals = PrSing.yijrk, P(S|S) = PSS.yijr = 0.98, and 
NIntervals (analysis method-specific), to determine the optimized value for P(S|NS) 
(PSNS.yijrk).  The interval-specific singing mode SingingMode.yijrk was determined 
from the interval-specific transition matrix Pcoarse (Table 1.1), using those values of 
PSS.yijr and PSNS.yijrk.  

For example, a species with an interval length of 2 seconds and a desired singing 
probability ZNIntervals = 0.6 could be produced by using P(S|S) = 0.98 and P(S|NS) = 
0.0037, creating the transition matrix 

 

. 

 

q1 = 
- P(S|NS) 

P(S|S) - P(S|NS) - 1 

ZNIntervals = 
-P(S|NS) 

+ ( 
 

1-  
-P(S|NS) ) × (1-(1-P(S|NS))NIntervals) 

P(S|S) - P(S|NS) - 1 P(S|S) - P(S|NS) - 1 

Pcoarse = 
P(S|S) = 0.98 P(NS|S) = 0.02 

P(S|NS) = 0.0037 P(NS|NS) = 0.9963 



294 
 

 

Abundance Parameters 

Parameters for the scenario were based on a study area (with size StudyArea = 3,000 ha) 
within the species’ range (with size RangeArea = 3.62×107 ha, BirdLife International 
2016).  The simulated study area was approximately the size of the Hubbard Brook 
Experimental Forest, a site where much BTBW research has taken place (e.g., Sherry and 
Holmes 1985, Holmes et al.1986, Holmes et al. 1996).  I used an empirical estimate for 
density of breeding pairs in BTBW habitat (HabitatDensity.y = 0.534 birds/ha, Holmes et 
al. 1986).  I used Partners in Flight’s (2015) estimate of continental abundance 
(BaseNStar = 1,050,000 males) and an assumed proportion of birds found in habitat (as 
opposed to matrix) across the species’ range (HabitatPreference.y = 0.9) to estimate the 
proportion of land in the BTBW range that is habitat (as opposed to matrix), 
RangeHabitatProportion.vector, where 

RangeHabitatProportion.vector = 𝐻𝑎𝑏𝑖𝑡𝑎𝑡𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒.𝑦 ×𝐵𝑎𝑠𝑒𝑁𝑆𝑡𝑎𝑟
𝐻𝑎𝑏𝑖𝑡𝑎𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦.𝑦 ×𝑅𝑎𝑛𝑔𝑒𝐴𝑟𝑒𝑎

 = 0.0489. (eq. C.14) 

From those parameters, I estimated the density of birds in matrix (MatrixDensity.y) as 

MatrixDensity.y = 𝐵𝑎𝑠𝑒𝑁𝑆𝑡𝑎𝑟 × (1− 𝐻𝑎𝑏𝑖𝑡𝑎𝑡𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒.𝑦) 
𝑅𝑎𝑛𝑔𝑒𝐴𝑟𝑒𝑎(1−𝑅𝑎𝑛𝑔𝑒𝐻𝑎𝑏𝑖𝑡𝑎𝑡𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛.𝑣𝑒𝑐𝑡𝑜𝑟 )  

  = 0.00305 birds/ha. (eq. 

C.15) 
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Appendix D 

 

Density Estimators for Chapter 2 
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D1 Survey Type: Simple Counts  Estimator: Simple Index Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 
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D2 Survey Type: Double-Observer  Estimator: Simple Index Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 
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D3 Survey Type: Replicated Counts Estimator: Simple Index Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 
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D4 Survey Type: Removal  Estimator: Simple Index Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 
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D5 Survey Type: Distance Sampling  Estimator: Simple Index Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 

    



301 
 

D6 Survey Type: Double-Observer  Estimator: unmarked Model-Averaged Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 
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D7 Survey Type: Replicated Counts  Estimator: unmarked Model-Averaged Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 
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D8 Survey Type: Removal  Estimator: unmarked Model-Averaged Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 
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D9 Survey Type: Distance Sampling  Estimator: unmarked Model-Averaged Estimator Survey Radius Determined by 10% Truncation 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 

    



305 
 

D10 Survey Type: Double-Observer Estimator: unmarked Top Model Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 

    



306 
 

D11 Survey Type: Replicated Counts Estimator: unmarked Top Model Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 

    



307 
 

D12 Survey Type: Removal Estimator: unmarked Top Model Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 
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D13 Survey Type: Distance Sampling Estimator: unmarked Top Model Estimator Survey Radius Determined by 10% Truncation 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
\    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 
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D14 Survey Type: Double-Observer Estimator: Nichols et al. (2000) Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
\    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 
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D15 Survey Type: Replicated Counts Estimator: Bounded Count Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
\    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 

    



311 
 

D16 Survey Type: Replicated Counts Estimator: Maximum Count Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
\    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 
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D17 Survey Type: Distance Sampling Estimator: Program Distance Top Model Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 
1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 

 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
\    Scenario 

5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 
 no habitat effect on pd  no habitat effect on pd  no habitat effect on pd  no habitat effect on pd 
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D18 Survey Type: Distance Sampling Estimator: Program Distance Model-Averaged Estimator Survey Radius  150 m 
Density estimator performance, as compared to true density of birds present at survey sites (Dp).  Eight scenarios (Table 1) were parameterized to reflect three 
binary options: high vs. low pa (Figure 2), high vs. low pd (Figure 3), and the presence or absence of an effect of habitat on pd.  Data points for perfect estimators 
would fall on the 45° line (shown for reference).  Estimator performance was assessed based on correlation coefficients (ρ) and bias (estimated density – Dp). 

Scenario 1:   high pa    high pd Scenario 2:   low pa    high pd Scenario 3:   high pa    low pd Scenario 4:   low pa    low pd 
 habitat effect on pd  habitat effect on pd  habitat effect on pd  habitat effect on pd 

    
\    Scenario 5:   high pa    high pd Scenario 6:   low pa    high pd Scenario 7:   high pa     low pd Scenario 8:   low pa    low pd 

 no habitat effect on 
pd 

 no habitat effect on pd 
 no habitat effect on pd 

 no habitat effect on pd 
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Appendix E 
 

Predicted Probability of Detection for 10 Grassland Bird Species
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Figure E1: The predicted perceptible area around the observer for BOBO.  The solid 
black border indicates the limit inside which predicted probability of detection ≥ 0.5.  
Wind was modeled as coming from due north.  The position of the observer at (0,0) is 
marked with a white +.  Distances are in meters. 
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Figure E2: The predicted perceptible area around the observer for DICK.  The solid 
black border indicates the limit inside which predicted probability of detection ≥ 0.5.  
Wind was modeled as coming from due north.  The position of the observer at (0,0) is 
marked with a white +.  Distances are in meters. 
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Figure E3: The predicted perceptible area around the observer for EAME.  The solid 
black border indicates the limit inside which predicted probability of detection ≥ 0.5.  
Wind was modeled as coming from due north.  The position of the observer at (0,0) is 
marked with a white +.  Distances are in meters. 
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Figure E4: The predicted perceptible area around the observer for GRSP.  The solid 
black border indicates the limit inside which predicted probability of detection ≥ 0.5.  
Wind was modeled as coming from due north.  The position of the observer at (0,0) is 
marked with a white +.  Distances are in meters. 
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Figure E5: The predicted perceptible area around the observer for HESP.  The solid 
black border indicates the limit inside which predicted probability of detection ≥ 0.5.  
Wind was modeled as coming from due north.  The position of the observer at (0,0) is 
marked with a white +.  Distances are in meters. 
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Figure E6: The predicted perceptible area around the observer for HOLA.  The solid 
black border indicates the limit inside which predicted probability of detection ≥ 0.5.  
Wind was modeled as coming from due north.  The position of the observer at (0,0) is 
marked with a white +.  Distances are in meters. 
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Figure E7: The predicted perceptible area around the observer for LCSP.  The solid 
black border indicates the limit inside which predicted probability of detection ≥ 0.5.  
Wind was modeled as coming from due north.  The position of the observer at (0,0) is 
marked with a white +.  Distances are in meters. 
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Figure E8: The predicted perceptible area around the observer for SAVS.  The solid 
black border indicates the limit inside which predicted probability of detection ≥ 0.5.  
Wind was modeled as coming from due north.  The position of the observer at (0,0) is 
marked with a white +.  Distances are in meters. 
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Figure E9: The predicted perceptible area around the observer for SEWR.  The solid 
black border indicates the limit inside which predicted probability of detection ≥ 0.5.  
Wind was modeled as coming from due north.  The position of the observer at (0,0) is 
marked with a white +.  Distances are in meters. 
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Figure E10: The predicted perceptible area around the observer for VESP.  The solid 
black border indicates the limit inside which predicted probability of detection ≥ 0.5.  
Wind was modeled as coming from due north.  The position of the observer at (0,0) is 
marked with a white +.  Distances are in meters. 
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