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Open access to health data can bring enormous social and economical
benefits. However, such access can also lead to privacy breaches, which may
result in discrimination in insurance and employment markets. Privacy is a
subjective and contextual concept, thus it should be interpreted from both sys-
temic and information perspectives to clearly understand potential breaches
and consequences. This dissertation investigates three popular use cases of
healthcare data: specifically, 1) synthetic data publication, 2) aggregate data
utilization, and 3) privacy-aware API implementation. For each case, we de-
velop statistical models that improve the privacy-utility Pareto frontier by
leveraging a variety of machine learning techniques such as information theo-
retic privacy measures, Bayesian graphical models, non-parametric modeling,
and low-rank factorization techniques. It shows that much utility can be ex-
tracted from health records while maintaining strong privacy guarantees and

protection of sensitive health information.
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Chapter 1

Introduction

In 2011, the World Health Organization reported that the total health-
care spending of the United States recorded the highest in the world [1]. The
Department of Health and Human Services expects that such spending will
continue to increase [74]. It is increasingly believed that “data-driven” ap-
proaches can help reduce current healthcare expenditure growth in the United
States [93]. The Institute of Medicine mentioned that data science is a crit-
ical component for continuous healthcare quality improvement [69] (see Fig-
ure 1.1). Effective data-driven solutions can prevent cost leakage and waste in

healthcare systems [10] as well as can provide “best care at lower cost” [125].

1.1 Trade-off between Utility and Privacy

McKinsey & Company, Inc. reported that “open data” has the po-
tential to generate more than $300 billion a year in the healthcare domain
alone [88]. The United States government has launched several open data ini-
tiatives, for example data.gov, healthdata.gov, and data.cms.gov. The Health
Data Consortium, a collaboration among government, non-profit, and private

sector organizations, has been formed to foster the availability and innovative



Figure 1.1: Data science is a key component in improving healthcare quality
and lowering costs. [Source]: Institute of Medicine, Best Care at Lower Cost:
The Path to Continuously Learning Health Care in America.

use of open health data. U.S. Open Data Action Plan [98], a recent article

from the Office of Science and Technology Office, starts by stating that

Throughout his Administration, President Obama has articulated
a vision of the U.S. Government managing information as a na-
tional asset and opening up its data, where possible, as a public
good to advance government efficiency, improve accountability, and
fuel private sector innovation, scientific discovery, and economic

growth. ...

Sharing personal health information can bring enormous economical

benefits. In fact, several legal theorists have argued that privacy is overrated



compared to the social gains of sharing health information. Judge Posner
viewed that privacy can be used “to manipulate the world around them by
selective disclosure of facts about themselves” [105]. Professor Epstein stated
that regulations on data privacy may create “an elaborate set of cross-subsidies
that reduces the total level of social wealth as it transfers wealth between par-
ties” [48]. In a complex healthcare system, however, the negative consequences
for open access of health information overwhelm the idealistic economical ben-
efits [124]. For example, insurance companies and employers can maliciously
utilize such data to increase their revenues, discriminating out unhealthy sub-
populations. Thus, there exists a delicate equilibrium point between utility

and privacy, and an extreme point cannot be a viable solution.

Privacy is a subjective and contextual concept, and it conveys different
connotations and interpretations in different fields; e.g. banking and health-
care sectors focus on different privacy aspects [46]. In the healthcare sec-
tor, the definition of privacy is commonly accepted as “a person’s right and
desire to control the disclosure of their personal health information” [116],
where the type of health information ranges from a person’s identity to dis-
ease/medication history. The concept of healthcare data privacy sometimes
extends to cover organizational information such as hospitals and insurance

companies, not just patient information [5].

Contrary to the systemic views on medical privacy, in the computer
science and statistics literature, privacy is often approached from an infor-

mation theoretic perspective in an attempt to quantify the level of privacy



[135, 4]. Popular privacy metrics include k-anonymity [128], [-diversity [87],
and e-differential privacy [44]. Different privacy measures assume different ac-
cess settings and attack scenarios; for example, k-anonymity and [-diversity
fit in a data publication setting, and e-differential privacy is motivated from
the statistical database literature. Privacy, especially in healthcare, should be
interpreted from both systemic and information perspectives to clearly under-

stand potential breaches and consequences [75].

1.2 Current Practices and Limitations

In recent years, both public and private sectors have released and pub-
lished an incredible amount of data that were previously not accessible. For ex-
ample, data.gov, the open data initiative of the U.S. government, has curated
more than 80,000 datasets from over 200 organizations. There are multiple
non-profit organizations catalyzing and promoting the open data movement,
such as Open Data Institute founded by Sir Tim Berners-Lee and Professor
Nigel Shadbolt, and Open Knowledge founded by Rufus Pollock. Several state
governments, e.g. Texas, New York, and California, have published patient

discharge records and billing information for research purposes.

Public use data typically need to to satisfy two competing objectives:
maintaining relevant statistical properties of the original data and protecting
privacy of individuals. To address these two goals, various statistical disclosure
limitation techniques have been developed [135]. Some popular disclosure

techniques are data swapping [31, 50|, top-coding, feature generalization, and



additive random noise with measurement error models [59]. Each method has
distinct utility and risk aspects. In practice, however, it is extremely difficult to
balance out utility and privacy. Overly privacy-protecting data would provide
not so much useful information, and easily accessible data are vulnerable to

privacy attacks. We visit two real examples for both cases.

Case Study 1.2.1 (EHR and HIE). In 2009, the United States government
enacted the Health Information Technology for Economic and Clinical Health
Act (HITECH) that includes an incentive program totaling up to $27 billion
for the adoption and meaningful use of Electronic Health Records (EHRs).
Health information exchanges (HIE) have emerged to facilitate the meaningful
use of health information by sharing and exchanging somewhat disparate and
distributed EHRs. According to HITECH, the meaningful use of EHRs can
help “improve care coordination, reduce disparities, engage patients and their
families, and improve population and public health” [24]. Such meaningful
use can only be achieved through carefully controlled sharing and exchanging
of personal health information and complying with existing regulations such
as Health Insurance Portability and Accountability Act (HIPAA), otherwise
the privacy of patients may be severely damaged. In the US, 75% of patients
have expressed concerns about un-informed sharing of their health information

[110, 35], possibly due to the frequent data breaches in medical institutions
[65].

Case Study 1.2.2 (Claims and Billing data). One of the most notable and im-

mediate impacts of the Patient Protection and Affordable Care Act (PPACA,



also called Obamacare) has been a surge of interest in modeling and predicting
hospital costs in the USA. In particular, to set up and run an Affordable Care
Organization (ACO), a type of health care organization greatly encouraged by
PPACA, being able to predict such costs is critical since ACOs are reimbursed
for a fixed amount per patient, which is dramatically different from the fee-
for-service model that has ruled healthcare in the USA all these years. Centers
for Medicare & Medicaid Services recently published Medicare Provider Uti-
lization and Payment Data [23] that contain average price information per
procedure code. Recent studies have revealed that hospital bills in the United
States vary greatly across regions and hospitals [92, 12]. Although such com-
parisons may help bringing transparency to the current healthcare landscape,
comparing hospital charges based on procedure billing codes overlook the true
nature of the cost. The procedure codes used in billing systems are abstracted
forms of actually performed procedures, and such codes do not capture the
full information about a patient’s conditions, complications, and types of fa-
cilities. Regarding the cost variation across hospitals, teaching hospitals tend
to treat more critical patients. In essence, estimating hospital charges is a
multi-faceted problem, and it is also important to discriminate costs that are
legitimate versus those that are primarily due to bad practices/management,
fraud, etc. To effectively address the cost problems in healthcare, we need

individual-level public use files with a comprehensive set of relevant variables.
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Figure 1.2: Data privacy from three different perspectives: data publisher
(red), data analyst (yellow), and data APT (green).

1.3 Our Approaches

The pursuits for utility and privacy in sharing healthcare data are al-
most Pareto-efficient; the utility of data cannot be increased without sacrificing
the privacy of data. In Case Study 1, Centers for Medicare & Medicaid Services
released only a few variables, because providing other variables may increase
the risk for correlation attacks and linking attacks. On the other hand, in Case
Study 2, patients are worried about un-informed sharing of health informa-
tion, since their electronic health records can be readily accessible by multiple
physicians. These two cases are only a subset of multiple use case scenarios.

Problems with privacy and utility are, in fact, even more complicated, because



each use case exhibits distinct utility and risk perspectives.

In this dissertation, we investigate three popular use cases of healthcare
data (see Figure 1.2), and propose statistical models that can improve the

privacy-utility Pareto frontier for each case. Specifically, we focus on:

1. Data Publication: Privacy-preserving mechanisms for releasing public
use files have been extensively studied in the statistics and computer sci-
ence literature. Even if all personal identifiable information is removed, a
publicly released dataset can be linked using some other variables reveal-
ing identities of a group of people. For example, in 2006, Netflix, an on-
line DVD-rental and streaming service, released an “anonymized” train-
ing dataset with random user IDs. The dataset was designed for a compe-
tition for improving the company’s recommender system. Narayanan and
Shmatikov [96], however, linked the Internet Movie Database (IMDB)
dataset with the Netflix dataset using movie rating information, then

de-anonymized a subset of the Netflix competition dataset.

The generation of synthetic data [119] is a popular public data release
methodology. For example, multiple imputation, which was originally
developed to impute missing values in survey responses [118], can also
be used to generate either partially or fully synthetic data. As syn-
thetic data preserves the structure and resolution of the original data,
preprocessing steps and analytical procedures on synthetic data can be
effortlessly transferred to the original data. This aspect has contributed

to adoption of synthetic data in diverse research areas.



We propose a categorical data synthesizer algorithm that guarantees
a quantifiable disclosure risk. Our algorithm, named Perturbed Gibbs
Sampler (PeGS), can handle high-dimensional categorical data that are
intractable if represented as contingency tables. PeGS involves three in-
tuitive steps: 1) disintegration, 2) noise injection, and 3) synthesis. We
first disintegrate the original data into building blocks that (approxi-
mately) capture essential statistical characteristics of the original data.
This process is efficiently implemented using feature hashing and non-
parametric distribution approximation. In the next step, an optimal
amount of noise is injected to the estimated statistical building blocks to
guarantee differential privacy or [-diversity. Finally, synthetic samples

are drawn using a customized Gibbs sampler.

. Utilization of Public Use File: In the past few years, the government
and other agencies have publicly released a prodigious amount of data
that can be potentially mined to benefit the society at large. However,
data such as health records are typically only provided at aggregated
levels (e.g. per State, per Hospital Referral Region, etc.) to protect
privacy. Unfortunately aggregation can severely diminish the utility of
such data when modeling or analysis is desired at a per-individual basis.
The use of aggregate data is typically limited to group-level studies, often

referred to as ecological studies for historic reasons.

Applying the result from aggregate data to individual-level inference

often results in the classic problem of ecological fallacy [117]. Ecolog-



ical fallacy occurs when aggregate-level statistics are misinterpreted as
individual-level inferences. For example, the high correlation between
“per capita consumption of dietary fat” and “breast cancer” in different
countries [21] does not necessarily imply that dietary fat causes breast

cancer.

So, not surprisingly, despite the increasing abundance of aggregate data,
there have been very few successful attempts in exploiting them for
individual-level analyses. We introduce LUDIA, a novel low-rank ap-
proximation algorithm that utilizes aggregation constraints in addition
to auxiliary information in order to estimate or “reconstruct” the origi-
nal individual-level values from aggregate data. If the reconstructed data
are statistically similar to the original individual-level data, off-the-shelf
individual-level models can be readily and reliably applied for subsequent
predictive or descriptive analytics. LUDIA is more robust to nonlin-
ear estimates and random effects than other reconstruction algorithms.
It solves a Sylvester equation and leverages multi-level (also known as
hierarchical or mixed-effect) modeling approaches efficiently. A novel
graphical model is also introduced to provide a probabilistic viewpoint
of LUDIA. Experimental results using a Texas inpatient dataset show
that individual-level data can be reasonably reconstructed from county-,
hospital-, and zip code-level aggregate data. Several factors affecting the
reconstruction quality are discussed, along with the implications of this

work for current aggregation guidelines.

10



3. Implementation of Privacy-preserving APIs: In recent years, a
large portion of enterprise databases have been migrated to cloud com-
puting environments, and internal databases are commonly accessed
through Application Programming Interfaces (APIs). The applications
of APIs include a wide range of Software as a Service (SaaS) applications
such as recommender systems, prediction algorithms, and data manage-
ment services. A data access through API is substantially different from
traditional publication/utilization scenarios; API outputs are released,
not data. Thus, a novel approach to address the privacy risk for an API

call is required.

There have been several privacy breaches reported in data APIs. Calan-
drino et al. [19] showed that passive observations of Amazon.com’s col-
laborative filtering outputs, which can be viewed as a data-mining API,
can reveal customers’ transaction records. Narayanan and Shmatikov
[97] showed that topological information, which cab be obtained through
Facebook and Twitter APIs, can be used to de-anonymize social network
data. Preventing privacy breaches from data APIs is critical as the web

is becoming more social and personalized.

In this dissertation, we demonstrate a proper implementation of privacy-
preserving risk score APIs for patients. Risk scores are computed using
an ensemble of Differentially Private a-Trees (DPaT). a-Tree is a gen-
eralization of C4.5 that uses a-divergence as its splitting criterion. We

develop an algorithm that constructs O-differentially private decision tree

11



structure, and then e-differential Laplace noise is added to an API out-
put. We show that an ensemble of DPaTs can increase the accuracy of

the API outputs while adhering to e-differential privacy.

In Chapter 2, we overview traditional privacy-preserving approaches
for public use files. Texas inpatient discharge datasets are used to demon-
strate variable reduction, generalization and suppression, and synthesizing
techniques. Chapter 3 introduces our privacy-preserving synthesizing mecha-
nism (PeGS), which is a promising alternative for preparing public use files,
and then Chapter 4 explains a novel aggregate data utilization technique (LU-
DIA). We discuss an implementation method for privacy-preserving decision
tree APIs (DPaT) in Chapter 5, and summarize and discuss future work in

Chapter 6.

12



Chapter 2

Background

This chapter describes a variety of methods that have been developed
and deployed for modifying health-related data sets before data release. We use
the Texas Inpatient Public Use Data File from the Texas Department of State
Health Services (DSHS, [130]) to concretely illustrate existing approaches for
preparing public use files. Hospital billing records collected from 1999 to 2007
are publicly available through their website. Each yearly dataset contains
about 2.8 millions events with more than 250 features. Except for a few
exempt hospitals, all the hospitals in Texas reported inpatient discharge events
to DSHS. This chapter uses the inpatient records from the fourth quarter of
2006, and we specifically focus on the natural delivery events from Parkland
Memorial Hospital. The dataset is already anonymized, and does not contain
any identifiable information such as name, social security number, and driver

license number.

2.1 Variable Reduction and Coarsening

Let us assume that a group of researchers submitted a pilot study

proposal about modeling the relationship between demographic factors (sex,

13
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Figure 2.1: Cross-Scatter Plots of the original Texas Inpatient Data.

address), insurance, and hospital charges. Our objective is to publish this
dataset for the specified research objective while protecting patients’ privacy.
We first remove irrelevant variables for the research objective except for five
research-related variables: sex (of an infant), zip code, payment source (pri-
mary insurance), length of stay, and total charges. Before applying actual
privacy-preserving algorithms, the first step is to check the characteristics of
the data. Figure 2.1 shows the cross-scatter plots of the original data. As
can be seen, there is one missing zip code record (zipcode=0), and very few
patients paid more than $10K. Such outliers and rare events can be vulnerable
to linking attack (see Section 2.2), thus we filter out these records. The “total

charges” variable contains the original numeric scale dollar values. Such nu-

14



meric variables tend to have many unique entries, which can be easily utilized
in linking attack as well. Therefore, we bin the original numeric values of total

charges into 20 ranges: [0, 500), [500, 1000), . ..[9500, 10000).

Table 2.1: Summary Statistics of Texas Inpatient Data.

sex zipcode paysrc  los total_charges

F:648 75217 : 82 09: 155  Min. :0.000 Min. : 0

M:844 75211 : 79 11: 1 Ist Qu.:1.000  1st Qu.:1000
75220 : 79 12: 30 Median :1.000 Median :1000
75061 : 68 15: 3 Mean :1.068 Mean :1160

75228 : H4 HM: 5 3rd Qu.:1.000  3rd Qu.:1000
75231 : 54 MC:1298 Max. :6.000 Max. :9500
(Other):1076

Table 2.1 illustrates overall summary statistics of this preprocessed
dataset. From the total 1432 patients, 1298 patients were paid by the Med-
icaid program (pay-src=MC), and 155 patients self-paid (pay_src=09). On
average, patients stayed 1.068 days (Mean los=1.068), and paid 1160 dollars
(Mean total _charges=1160). Figure 2.2 shows the cross-scatter plots of the
preprocessed data. As can be seen, we effectively removed easily identifiable

data points by coarsening and truncating data.

These simple procedures are, however, not sufficient for comprehensive
privacy protection. For example, we can observe that only one patient is paid
by a non-federal program (pay_src=11). If an attacker has a list of beneficiaries
from this non-federal program, then the patient identity of the record can be
easily hacked. Figure 2.3 shows the histogram of duplicate records from the

dataset. With the full combination of five variables, 134 (about 10%) records

15
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2.2 Generalization and Suppression
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Figure 2.2: Scatter Plots of the preprocessed Texas Inpatient Data.

are unique. Population uniqueness is a very important concept in privacy-

preserving algorithms. In Section 2.2, we will illustrate the potential threats

The most basic step before publishing sensitive data is to remove any
personal identifiable variables such as name, telephone number, social secu-
rity number, and driving license number. For the Texas inpatient data, the
Texas Department of State Health Services has already removed these explicit
identifiers, and assigned an arbitrary record number to each row. As another

example, the Synthetic Data from Centers for Medicare and Medicaid Ser-
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Figure 2.3: Histogram of Duplicate Records.

vices replaced explicit identifiers with random hash codes, so that users can
link and match the records from the same patient, but not with external data
sources. This seemingly intuitive process, however, is not sufficient to protect

the patient identities from “linking attack”.

Sweeney [128] provided a simple example by linking two datasets: a
dataset from the Group Insurance Commission (GIC) in Massachusetts and
the voter registration list for Cambridge. The GIC dataset does not include
explicit identifiers, but the voter registration list does; it contains name and
address. These two datasets have three common variables: ZIP, birth date, and
sex. By linking the two datasets using these three variables, she demonstrated
that the governor of Massachusetts can be identified from the GIC data. This
type of privacy attack is called a linking attack. A linking attack is difficult
to foresee and prevent, since it is almost impossible to check all the external

linking datasets before publishing.

Generalization and suppression techniques alleviate the disclosure risks

17
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Figure 2.4: Generalization of the ZIP code from the Texas inpatient dataset.

that may arise from linking attacks [122, 127]. Generalization replaces a value
with a less specific but semantically consistent value. For example, a ZIP
code can be generalized into city or county. On the other hand, suppression
replaces a value to a non-informative value e.g. 70512 — *. In Figure 2.4,
we demonstrated two types of generalization: city-level generalization, and
three-digit ZIP code generalization by removing the last two digits. Parkland
Memorial Hospital is located in Dallas, and of course, most of the patients live
in Dallas (the zip codes of Dallas start with 752). As can be seen, the Dallas
population is shown as the peaks on both bar charts. We are, however, more

interested in low-count categories such as Waco and 761** (high-risk values).

Sweeney [128] proposed k-anonymity to formalize and quantify the dis-

closure risk of unique populations. The definition of k-anonymity is as follows:

Definition 2.2.1 (k-anonymity). A table is said to satisfy k-anonymity if

and only if each set of quasi-identifiers from the table appears with at least k

18
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occurrences.

In other words, to adhere to the k-anonymity principle, each row in
a dataset should be indistinguishable with at least kK — 1 other rows. Quasi-
identifiers are the attributes that can be used for linking. For this example,
we assume that sex, payment source, and address are the quasi-identifiers of

the dataset.

Suppose that we want to publish a dataset that satisfies 3-anonymity.
Figure 2.5 shows mosaic plots of the quasi-identifiers for two different ZIP
code generalization methods. Mosaic plots visualize multi-way contingency
tables. The vertical axis (y-axis) represents the generalized ZIP codes, and the
horizontal axis (z-axis) shows the cross-tabulation of sex (top) and payment
source (bottom). The areas of the rectangles specify the number of entries
with the corresponding attribute values; bigger rectangles mean more data
points. For example, the Medicare population in Dallas is shown as two big
boxes in Figure 2.5 (a), and the HMO populations are shown as tiny boxes (®
represents no entry). Mosaic plots are useful not only in categorical variable
analysis, but also in visual diagnostics for data privacy assessment. For more
information about mosaic plots, see [57, 58]. As can be seen, there exist many
unique data points even if we generalize the address variable into either city or
three-digit ZIP code. The three-digit ZIP code generalization has less unique
data points i.e. small-sized rectangles, but the address resolution became

overly coarsened.

20



To achieve 3-anonymity (k = 3), we combine generalization and sup-
pression. Using the city-level generalized data, we collect the data points that
are unique or appearing only two times. We suppress these rare data points to
*. Figure 2.6 shows the mosaic plot of the generalized and suppressed quasi-
identifiers. As can be seen, there are no more unique data points, and at the
same time, the original data properties are reasonably preserved. Note that
generalization and suppression should not be abused, otherwise the utility of
data can be seriously damaged. As an illustrative example, k-anonymity with
higher k values can be easily obtained by generalizing the address variable to a
state-level variable, or suppressing all the rows; the address variable does not
contain any information. Therefore, generalization and suppression should be

minimally applied to the extent that the transformed data satisfy k-anonymity.

Achieving the optimal k-anonymity is, in fact, NP-hard, and there are
several heuristic and greedy algorithms developed. Sweeney [127] proposed
the Preferred Minimal Generalization (MinGen) algorithm. However, the pro-
posed algorithm was computationally inefficient, and numerous practical algo-
rithms were later proposed e.g., Incognito [80] and Mondrian [81]. Satisfying
k-anonymity is not a perfect protective solution, and there exist several fail-
ure modes. Machanavajjhala [87] discovered two attack scenarios in which
k-anonymity can fail: homogeneity attack and background knowledge attack,
and suggested an extended privacy metric, [-diversity. Xiao and Tao [13§]
proposed a linear-time algorithm that satisfies [-diversity. Li et al. [82] pro-

posed a privacy metric, t-closeness, that overcomes limitations of k-anonymity
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and [-diversity, and Xiao and Tao [139] suggested a generalization principle,

m-~invariance, that caters to re-publication issues of microdata.

2.3 Synthetic Data using Multiple Imputation

The generation of synthetic data [119] is an alternative (and sometimes
complementary) approach to data transforming disclosure techniques. Mul-
tiple imputation, which was originally developed to impute missing values in
survey responses [118], can also be used to generate either partially or fully
synthetic data. Abowd and Woodcock [3] synthesized a French longitudinal
linked database, and Raghunathan et al. [108] provided general methods for
obtaining valid inferences using multiply imputed data. Markov Chain Monte
Carlo simulation methods and generalized linear models are typically used for
sampling. Decision trees models, such as CART and Random forests, can also
be used as imputation models in multiple imputation [112, 18]. Some illus-
trative empirical studies have used U.S. census data [37], German business

database [113], and U.S. American Community Survey [121].

Let us start from the missing value imputation setting. Consider a sur-
vey with two variables x and z, D = {(z, 2)}, where some of the x responses
are missing. Let x,, be the observed subset of . In the multiple imputa-
tion approach, the unobserved responses are imputed using samples from a

predictive posterior model as follows:

x ~ Pr(x | Zops, 2)
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Note that the predictive posterior can be modeled using the observed subset,
and often obtained using generalized linear models, Bayesian Bootstrapping
methods, or Markov Chain Monte Carlo simulations [123, 112]. For exam-
ple, an R package for multivariate imputation for chained equation [133] pro-
vides nine different imputation models including predictive mean matching,
Bayesian linear regression, Linear regression, Unconditional mean imputation,
etc. Generating fully synthetic data is straightforward from this framework!.
First, z is drawn from Pr(z), then z is drawn from the predictive posterior
distribution. Typically, this entire process is repeated independently K times

to obtain K different synthetic datasets.

Raghunathan et al. [108] showed that valid inferences can be obtained
from multiply imputed synthetic data. Let @ be a function of (z,z). For
example, () may represent the population mean of (x,z) or the population
regression coefficients of x on z. Let ¢; and v; be the estimate of () and its
variance obtained from the ith synthetic dataset. Then, valid inferences on @)

can be obtained as follows:

K
ik =Y /K
i=1

1
T, = (1 + E)bk — VK

where b = 3.5 (¢:—Gx)?/ (K —1) and 5 = Y. v;/ K. These two quantities

gk and T estimate the original () and the variance from sampling.

1To see the difference between partially and fully synthetic datasets, see [36]
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For our Texas inpatient example, we fit simple imputation models
based on linear regression. Note that, in theory, multiple imputation for
fully /partially synthetic data requires sampling from predictive posterior dis-
tributions, and our approach can be viewed as a pseudo multiple imputation

2. 'We build two regression models for length of stay and to-

implementation
tal charges, respectively. The other three variables, sex, payment source, and
address, are categorical variables, and can also be modeled using generalized
linear models, but we skip the process since 1) the goodness of fit of the fit-
ted generalized linear models are poorly measured, and 2) these three variables

are already k-anonymized. Specifically, for the two numeric variables, we build

regression models as follows:

length of stay ~ sex + payment source + city + total charges

total charges ~ sex + payment source + city + length of stay (los)

We estimate regression coefficients and residual variances shown in Table 2.2
(length of stay) and Table 2.3 (total charges). As can be seen, the length of
stay variable is primarily determined by the total charges variable, and vice
versa. Interestingly, the total charges are slightly affected by the city variable
e.g. see the coefficients of cityDesoto and cityPlano. Male infants generally
cost more, since many of them receive circumcision. Figure 2.7 shows the

goodness of fit of the regression models: the fitted values (y-axis) and the

2Multiple imputation is a sophisticated Bayesian methodology, and there are several
different aspects from the example we presented. Our example is designed to convey the
overall idea of multiple imputation. For more information, see [36].
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Figure 2.7: Scatter plots of the original and fitted data for synthetic data.

original values (z-axis). From the fitted data, synthetic data can be obtained

by adding Gaussian noise with the estimated residual variances.

2.4 Measuring Utility and Risk

As privacy is a subjective and contextual concept, so is “utility”. Utility
can be measured in multiple ways, depending on the research objectives. For
our Texas inpatient example, if we want to find out relevant variables and their

coefficients that affect hospital charges, we can measure the utility as follows:

Utlllty = eXp(_”ﬁoriginal - ﬂsynthetic||2)

where Bigina1 a0d Bgypinetic are regression coefficients from the original and
synthetic data, respectively. This utility metric is maximized when B ;gin. =

Beynthetic: Note that this utility metric is one of many other utility metrics that

can measure similar quantities. As an another example, if aggregate statistics
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Table 2.2: Regression coefficients for the “length of stay” model.

Estimate Std. Error t value Pr(>|t])

(Intercept) 0.1759 0.0889 1.98 0.0481
sexF -0.0049 0.1002 -0.05 0.9610

sexM -0.1198 0.1007 -1.19 0.2342
pay_src09 0.0101 0.0470 0.21 0.8302
pay_srcl2 -0.1005 0.1489 -0.67 0.4999

city Addison 0.1015 0.1839 0.55 0.5813
cityAllen 0.0666 0.2703 0.25 0.8053
cityArlington 0.2729 0.2471 1.10 0.2696
cityCarrollton 0.1263 0.1473 0.86 0.3913
cityCedar Hill 0.1475 0.3080 0.48 0.6321
cityCorsicana 0.0715 0.3239 0.22 0.8253
cityDallas 0.0812 0.1327 0.61 0.5405
cityDesoto -0.7054 0.2072 -3.40 0.0007
cityDuncanville -0.1657 0.2241 -0.74 0.4597
cityEnnis 0.2673 0.3240 0.82 0.4096
cityEuless -0.3476 0.3082 -1.13 0.2596
cityGarland 0.1374 0.1394 0.99 0.3245
cityGrand Prairie 0.1048 0.1459 0.72 0.4727
cityGrapevine 0.1929 0.3081 0.63 0.5314
citylrving 0.0394 0.1363 0.29 0.7725
cityKaufman 0.1290 0.2472 0.52 0.6019
cityLancaster 0.0443 0.2645 0.17 0.8670
cityLewisville 0.0153 0.2196 0.07 0.9444
cityMesquite 0.0999 0.1498 0.67 0.5052
cityPlano 0.1227 0.1593 0.77 0.4414
cityRed Oak 0.3240 0.3241 1.00 0.3176
cityRichardson 0.1738 0.1748 0.99 0.3203
cityRockwall -0.0763 0.2240 -0.34 0.7333
cityRowlett 0.1025 0.2343 0.44 0.6618
citySeagoville 0.1107 0.2647 0.42 0.6760
cityThe Colony -0.1469 0.3241 -0.45 0.6504
cityWylie 0.0960 0.2241 0.43 0.6684
total_charges 0.0008 0.0000 48.54 0.0000

are the primary concerns, the utility can be measured as follows:
Utlhy - exp(_“E[ZEOriginal] - E[xsynthetic] ||2)

where z is the variable of interest. It is recommended to try several different

utility metrics before publishing transformed data.

Even if there exist theoretical privacy guarantees for transformed datasets,
rigorous risk analyses should be performed before actual publishing. Re-

searchers need to consider possible and worst-case attack scenarios, and try
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Table 2.3: Regression coefficients for the “total charges” model.

Estimate  Std. Error t value Pr(>]t])

(Intercept) 359.1373 91.9207 3.91 0.0001
sexF 27.3817 103.9231 0.26 0.7922

sexM 174.8796 104.3848 1.68 0.0941
pay-src09 -48.5822 48.7065 -1.00 0.3187
pay-srcl2 95.4214 154.4706 0.62 0.5368
cityAddison  -234.4290 190.7568 -1.23 0.2193
cityAllen -174.5079 280.3842 -0.62 0.5338
cityArlington = -297.4287 256.3879 -1.16 0.2462
cityCarrollton  -159.3104 152.7674 -1.04 0.2972
cityCedar Hill -112.9648 319.5768 -0.35 0.7238
cityCorsicana  -201.8896 336.0570 -0.60 0.5481
cityDallas  -175.0181 137.5925 -1.27 0.2036
cityDesoto 897.3799 214.5596 4.18 0.0000
cityDuncanville -76.4373 232.5305 -0.33 0.7424
cityEnnis  -287.8444 336.1882 -0.86 0.3920
cityEuless 35.7392 319.8752 0.11 0.9111
cityGarland  -196.9284 144.5687 -1.36 0.1734
cityGrand Prairie -98.2934 151.3952 -0.65 0.5163
cityGrapevine  -341.1746 319.5782 -1.07 0.2859
citylrving  -192.8540 141.3302 -1.36 0.1726
cityKaufman -275.6385 256.4033 -1.08 0.2825
cityLancaster -64.9637 274.4042 -0.24 0.8129
cityLewisville -118.7260 227.8391 -0.52 0.6024
cityMesquite  -204.3538 155.3656 -1.32 0.1886
cityPlano  -264.5943 165.1621 -1.60 0.1094
cityRed Oak  -535.2229 336.0570 -1.59 0.1115
cityRichardson -226.1209 181.3205 -1.25 0.2126
cityRockwall -67.1545 232.4419 -0.29 0.7727
cityRowlett  -312.5497 243.0179 -1.29 0.1986
citySeagoville  -249.3875 274.6011 -0.91 0.3639
cityThe Colony -77.5973 336.3026 -0.23 0.8176
cityWylie  -231.5758 232.4009 -1.00 0.3192

los 815.3706 16.7967 48.54 0.0000

simulating such attacks. Matching internal databases, and searching already
published external databases are good practices as well. By doing so, data
publishers can estimate the potential consequences of privacy breaches. Pri-
vacy breaches may result in significant amount of legal and social costs, and

data publishers should to be aware of the worst case scenarios.

Privacy must be interpreted both contextually and through information

theoretic ways. In healthcare systems, some variables may be more sensitive
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than others. For example, address or name can be less sensitive than dis-
ease or medication history. Domain knowledge and data exploration steps are
exceptionally important because of the complex healthcare ecosystem. Fur-
thermore, perceptions on privacy also changes over time with new technologies:
e.g. social network services. Therefore, for successful privacy-preserving data
publishing in healthcare, one needs to understand social infrastructures as well

as information-theoretic or statistical privacy concepts.
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Chapter 3

Privacy-aware Synthetic Data Publication

The two competing requirements for public use data similarly apply
to synthetic data disclosure. Synthetic data need to be accurate enough to
answer relevant statistical queries without revealing private information to
third parties. On the other hand, synthetic data from overly accurate models

may leak private information [2].

The balance between accuracy and privacy can be addressed by using
cryptographic privacy measures such as e-differential privacy [44]. However,
several attempts to achieve such strong privacy guarantees have shown to be
impractical to implement. For example, Barak et al. [8] showed that it is
possible to release contingency tables under the differential privacy regime
using Fourier transform and additive Laplace noise. However, this proposed
release mechanism was later criticized for being too conservative and disrupt-
ing statistical properties of the original data [140, 25]. On the other hand,
Soria-Cormas and Drechsler [126] claimed that e-differential privacy can be
a useful privacy measure when disclosing a large size of data with a limited
number of variables. For example, differentially private synthetic data have

been demonstrated using the Census Bureau’s OnTheMap data that consists
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Table 3.1: Synthesizer algorithms discussed in this chapter.

Name Abbreviated Model Eq. Parameters
Contingency table Pro(x) non-parametric
Marginal Bayesian Bootstrap wa Pro(z;) non-parametric
Multiple imputation Hf\/f Pr (x; | x—;) w: model parameter
Perturbed Gibbs Sampler Hf” Pro o(z; | h(x—;)) o privacy parameter
Block PeGS with Reset Hf ]_LM Prop o(z; | h(x—;)) B: sample block size

of approximately one million records but with only two variables [86].

In this chapter, we propose a practical multi-dimensional categorical
data synthesizer that satisfies e-differential privacy. The proposed synthesizer
can handle multi-dimensional data that are not practical to be represented as
contingency tables. We demonstrate our algorithm using a subset of Califor-
nia Patient Discharge data, and generate multiple synthetic discharge datasets.
Although e-differential privacy is extensively used in our algorithm analyses,
we note that e-differential privacy is one of many descriptive measures for
disclosure risks. Differential privacy is a measure for functions, not for data
[51], and this measure can be overly pessimistic for data-specific applications.
Thus, we also evaluate disclosure risks of the proposed algorithms using the
population uniqueness of synthetic records [30] and indirect-matching prob-
abilistic disclosure risks [41]. To measure the statistical similarities between
synthetic and the original data, we compare marginal and conditional distri-
butions, and regression coefficients from the synthesized data to those from

the original data.
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There are two brute-force approaches to generating synthetic categor-
ical data. As statistical properties of categorical data are fully captured in
contingency tables, in theory, a synthetic sample x can be drawn directly from
an M-way full contingency table Pry(x), where M is the total number of fea-
tures. For data with a small number of features, this contingency table can be
estimated by either direct counting or log-linear models [136, 137]. However,
this strategy does not scale for high-dimensional datasets. As we will see in
Section 3.3, our experiment dataset has 13 features and their possible feature
combinations are approximately 2.6 trillion. More importantly, sampling from
an exact distribution may reveal too much detail about the original data, thus
this is not a privacy-safe disclosure method. On the other extreme, one may
model the joint distribution as a product of univariate marginal distributions.
Although this approach can easily achieve differential privacy [89], the syn-
thetic data loses critical joint distributional information about the original

data.

The proposed algorithm generates realistic but not real synthetic sam-
ples by calibrating a privacy parameter «. In addition, the exponentially
number of cells in a contingency table is avoided by using chained equations
and feature hashing [134] as follows:

foriinl: M

@i ~ Pro (i | h(x_)) (3.1)

where x_; is a feature vector except for the ith feature and h(x_;) represents a
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hashed feature vector. Prp o(z; | h(x_;)) is the compressed and perturbed con-
ditional distribution of the ith feature and M is the total number of features.
The joint probability distribution is represented as M conditional distribu-
tions. Note that the conditional distribution in Equation (3.1) is not exact.
The full condition x_; is compressed using a hash function h(x_;) and per-
turbed by a privacy parameter «. Ignoring these two additional components
i.e. h(x_;) and a, if the probability is modeled using generalized linear models,
then the proposed algorithm is the same as a multiple imputation algorithm for
fully synthetic data. The proposed synthesizer is named as Perturbed Gibbs
Sampler (PeGS). This process is somewhat analogous to multivariate imputa-
tion by chained equations (also known as sequential regression multiple impu-
tation) [109, 133]. In Section 3.2.4, we will show that this synthesis cycle can
also be recursively applied multiple times i.e. s = PeGS(PeGS(...PeGS(x))).
This recursive synthesis will be shown to be very effective in our block sampling

algorithm.

Table 3.1 summarizes the synthesizer models that are described in this
chapter. More details on this list and privacy guarantees for both one iteration

and multiple iterations are described in Section 3.2.

The objective of PeGS is to generate a single realistic synthetic dataset
that adheres to rigorous privacy metrics, balancing the trade-off between util-
ity and risk in a flexible and effective manner. This is substantially different
from the goal of multiple imputation, which primarily focuses on improving

the analytical validity of missing data imputation and not on privacy vs. util-
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ity trade-off. The name multiple imputation refers to the fact that multiple
imputed datasets are released to alleviate sampling uncertainty. Disclosing
multiple datasets can be helpful for numerous statistical analyses, but at the
same time, the improved accuracy may lead to an unexpected privacy breach.
Consider a statistical database that provides a synthetic data row per query.
To obtain N rows, intuitively, we need N queries. According to the sequential
composition rule of differential privacy [90], the privacy risk for N queries is
N times greater than the risk of one query. Similarly, releasing K imputed

datasets can be K times more risky than releasing a single dataset.

The target use case of our synthetic data is also quite different from
traditional uses of synthetic data. Our algorithms are primarily designed to
protect the privacy of the original data, and then, within the privacy con-
straint, to maximize the statistical validity and utility of synthetic data. Such
synthetic data can be useful when providing a single “realistic” dataset to
third party data scientists so that they can explore and develop innovative
data applications. As an illustrative example, Centers for Medicare & Medi-

caid Services recently released synthetic public use files!, saying that:

... Although the DE-SynPUF has very limited inferential research
value to draw conclusions about Medicare beneficiaries due to the
synthetic processes used to create the file, the Medicare DE-SynPUF

does increase access to a realistic Medicare claims data file in a

'http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-
Trends-and-Reports/SynPUFs/DE_Syn_PUF.html
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timely and less expensive manner to spur the innovation necessary
to achieve the goals of better care for beneficiaries and improve the

health of the population. ...

The users of our synthetic data can be from a wide range of disciplines such as
statistics, computer science, and healthcare policy studies. Providing synthetic
data is much more than just providing the data schema. Users can write
scripts and codes for exploring and extracting information using the “realistic”
synthetic data, and deliver their applications to the data owner to check the

validity of their claims.

The rest of this chapter is organized as follows: In Section 3.1, we
cover the basics of privacy measures and synthetic data. In Section 3.2, the
details of the PeGS algorithms are illustrated, and the privacy guarantees of
the proposed algorithms are derived. We demonstrate our algorithms using

California Patient Discharge dataset in Section 3.3.

3.1 Preliminaries & Related Work

Privacy is an abstract concept, and it can be defined and quantified in
many different ways. We describe two privacy measures that are popular in
computer science, e-differential privacy and [-diversity. These two measures
will be also used in our algorithm to quantify the privacy risks of synthetic

data.

Differential privacy [44] is a mathematical measure of privacy that
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quantifies disclosure risks of statistical functions. To satisfy e-differential pri-
vacy, the inclusion or exclusion of any particular record in data cannot af-
fect the outcome of functions by much. Specifically, a randomized function

f:D — f(D) provides e-differential privacy, if it satisfies:

Pr(f(D;) € 8)
Pr(f(Ds) € 8)

for all possible D1, Dy € D where D, and D, differ by at most one element, and

< exp(e)

V8 € Range(f(D)). For a synthetic sample, this definition can be interpreted
as follows [89]:

Pryp, (x)

Pra, () = P19 o

where x represents a random sample from synthesizers. In other words, a data
synthesizer Pry(x) is e-differentially private, if the probabilities of generating

x from D; and D, are indistinguishable to the extent of exp(e).

Several mechanisms have been developed to achieve differential privacy.
For numeric outputs, the most popular technique is to add Laplace noise with
mean 0 and scale Af/e where Af is the L sensitivity of function f. Expo-
nential mechanism [91] is a general differential privacy mechanism that can be
applied to non-numeric outputs. For categorical data, Dirichlet prior can be

used as a noise mechanism to achieve differential privacy [86, 89).

[-diversity. When publishing a public use file, a certain combination
of features can identify an individual from an anonymized dataset, even if per-

sonal identifiers, such as driver license number and social security number, are
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removed from a dataset. Such threats are commonly prevented by generalizing
or suppressing features; for example, ZIP codes with small population are re-
placed by corresponding county names (generalization), or can be replaced by
* (suppression). Sweeney [128] proposed a privacy definition for measuring the
degree of such feature generalization and suppression, k-anonymity. To adhere
the k-anonymity principle, each row in a dataset should be indistinguishable

with at least & — 1 other rows.

The definition of k-anonymity, however, does not include two important
aspects of data privacy: feature diversity and attackers’ background knowl-
edge. Machanavajjhala [87] illustrated two potential threats to a k-anonymized
dataset, then proposed a new privacy criterion, [-diversity. The definition of
[-diversity states that the diversity of sensitive features should be kept within
a block of samples. There are several ways of achieving [-diversity; in this
chapter, we use Entropy [-diversity. A dataset is Entropy [-diverse if

— ZPr(xi | x_;)log Pr(z; | x_;) > logl (3.3)
where 1 < [. This definition originally applies to a dataset with feature gen-
eralization or suppression. For a synthetic sample, Park et al. [103] suggested
an analogous definition of [-diversity: A synthetic dataset is synthetically -
diverse if a synthetic sample z; is drawn from a distribution that satisfies

[-diversity.

Synthetic data generation typically involves two steps: 1) statistical

modeling of the original data, and 2) sampling from the obtained model. In the
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modeling step, one can apply a wide range of statistical models, from a sim-
ple linear regression model to advanced Markov Chain Monte Carlo sampling
methods. Disclosure risks of synthetic samples are traditionally analyzed after
the sampling step, but recently several researchers have attempted to merge
privacy metrics in the modeling and sampling steps. Depending on the ap-
plication, synthetic data can replace either the entire original data [119], or
specific columns or values that bear high disclosure risks i.e. partially syn-
thetic data [83]. The notion of fully synthetic data in the multiple imputation
literature is slightly different from our notion. Figure 3.1 shows various cate-
gories of synthetic data. Note that, in this chapter, fully synthetic data refers

to completely synthetic data with no original records.

The quality of a synthetic dataset is mainly determined by the quality
of the statistical model used. Lombardo and Moniz [85] proposed generating
synthetic medical records for outbreak studies. They suggested using both
domain knowledge and actual data. The underlying dynamics of the original
data is modeled through a set of sub-models such as exposure model, infection
model, disease model, and behavior model. Buczak et al. [17] demonstrated
a pilot study for generating synthetic medical records. In their pilot study,
the synthetic data were generated through three steps: 1) patient informa-
tion generation, 2) similar patients clustering, and 3) adapting care models to
synthesized patients. As can be seen, these approaches require a considerable
amount of domain knowledge and non-automated processes. Furthermore, no

privacy measure was incorporated in the synthesizing processes.
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Machanavajjhala et al. [86] generated a differentially private synthetic
dataset for commuting pattern studies. They derived an appropriate amount
of Laplace smoothing is derived to guarantee e-differential privacy. A sub-
set from the Census Bureau’s OnTheMap microdata was used in their study.
However, the demonstrated dataset had only three columns (id, origin block,
destination block), and the suggested algorithm was specific to the applica-
tion. Barak et al. [8] suggested a differentially private release mechanism for
contingency tables. Note that releasing a contingency table is different from
releasing a synthetic dataset, but one always can sample a synthetic sample
from the released contingency table. Their approach used Fourier transform
and Linear programming to guarantee differential privacy. Although the the-
oretical results are solid, experimental results using real datasets show that
the suggested differential privacy mechanism is not practical for data mining

purposes [140].

Synthetic data generation has also been used for privacy-aware dis-
tributed data mining scenarios. In the prototypical approach [94, 95], para-
metric models are separately learnt on individual (local) databases. Then,
only the model parameters are transmitted to a trusted central site from each
local database, instead of the raw data, to address privacy concerns. At the
central site, the parameters received are used to generate synthetic data that
(approximately) represents the union of the different databases. Finally, a
global model is learnt using such data. However, privacy constraints such as

[-diversity are not directly built into the data generation or modeling process,
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as it is in this chapter. Also, the goal is to attain a global statistical model
under sharing constraints, rather than create a synthetic dataset for public

release.
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Figure 3.1: Three different notions of synthetic data. In multiple imputation,
only sensitive columns are synthesized. To create a fully synthetic dataset, one
replaces the unobserved sensitive values with synthetic values [36]. A partially
synthetic dataset only replaces the observed sensitive values that bear high
disclosure risks. Our definition of fully synthetic data refers to “completely”
synthetic data with no original records regardless of sensitive or non-sensitive
columns.

The disclosure risks of (multiply imputed) synthetic datasets are typi-
cally measured after synthetic datasets are generated i.e. using post hoc risk

analysis. This flexibility makes it difficult to apply and analyze rigorous pri-
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vacy measures, such as differential privacy and [-diversity, in a unified frame-
work. In contrast, we derive the relationship between the amount of Laplace
smoothing and privacy measures (e in differential privacy and [ in [-diversity)
by using a simple non-parametric model. Our algorithm directly incorporates
these privacy measures in the synthesizing process, guaranteeing the desired

level of privacy for synthetic data.

3.2 Perturbed Gibbs Sampler

In this section, we propose the Perturbed Gibbs Sampler (PeGS) for
categorical synthetic data. We first overview the algorithm, then describe its
three main components: feature hashing, statistical building blocks, and noise
mechanism. Next, we illustrate how the PeGS algorithm can be efficiently
extended to draw a block of random samples. Finally, we show that multiple
imputation can be similarly extended to satisfy differential privacy, which will

be used as our baseline model in Section 3.3.

3.2.1 Algorithm Overview

Perturbed Gibbs Sampler (PeGS) is a categorical data synthesizer that

consists of three main steps:

1. Disintegrate: In this step, the original data D is disintegrated into sta-
tistical building blocks i.e. Prp(z; | h(x_;)) where h is a suitable hash
function. These compressed conditional distributions are estimated by

counting the corresponding occurrences in the original data.
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Figure 3.2: PeGS Process Diagram for a four feature dataset: {(Sex, Age,
Race, Income)}. Four types of conditional distributions are estimated from the
original data, then uniform Dirichlet priors are used to perturb the conditional
distributions. Synthetic samples are drawn by iterating over the statistical
building blocks.

2. Inject Noise: For a specified privacy parameter «, the statistical building

blocks are modified to satisfy differential privacy or [-diversity, Pro(z; |

h(x_;)) = Prop o(x; | h(x=;)).

3. Synthesize: We first pick a random seed from a predefined pool; this can
be regarded as a query to our model. The seed sample is transformed to a
synthetic sample by iteratively sampling each feature from the statistical

building blocks, x; ~ Prp o(z; | h(x—;)).

Figure 3.2 visualizes the overall sequential steps of the PeGS algorithm. Fig-
ure 3.3 illustrates the synthesis step. Three components are essential in the
PeGS algorithm: feature hashing, statistical building blocks, and perturba-
tion. The number of possible conditions is exponential with respect to the
number of features, Therefore, feature hashing is used to compress the num-
ber of the possible conditions x_;. Statistical building blocks are built based

on this feature hashing, which are essentially multiple hash-tables describing
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compressed conditional distributions. They serve a key role when we try to
sample a block of synthetic examples. Perturbation is required to guarantee

the differential privacy. Without perturbation, synthetic samples may reveal

too much about the original data.

h i = =
(race, age, income) sex=(M, F) . race hirace, sex, income) age
h(age, sex, income) (white, black, =(young, old)
h(white, young, low) asian) h(white, male, low)
= h(black, young, low) h(young, male, low) = h(black, male, low)
= h(asian, young, low) (0.45,0.55) = h(young, male, middle) 0.5 0.4.0.1 = h(asian, male, low) ©7.0.3)
= "young::low” = h(young, male, high) (0.5,0.4,0.1) = “male::low”
h(white, young, middle) = youngzmale” h(white, male, middle)
= h(black, young, middle) h(young, female, low) = h(black, male, middle) 4
= h(asian, young, middie) | (-5 04 = hiyoung, female, middle)| 0 = h(asian, male, middle) | (% %%
="young::middle” = h(young, female, high) 4,0.5,0.1) =“male::middle”
=" ::f le” N .
h(white, young, high) young:temale h(white, male, high)
= h(bléck, young, h!gh) (06,0.4) B h(old, male, |(?W) ih(bla.lck, male, h!gh) (05,05)
= h(asian, young, high) = h(old, male, middle) 03,0403 = h(asian, male, high)
="young::high” = h(old, male, high) (0.3.04,0.3) ="“male::high”
h(white, old, low) = ‘oldzmale” h(white, female, low)
= h(black, old, low) h(old, female, low) = h(black, female, low) (0.6,0.4)
= h(asian, old, low) | %048 = h(old, female, middle) | . = hasian, female, low) 6, 0
= “old::low” = h(old, female, high) (0:32,035,0.33) =“female:low”
h(white, old, middle) = "old:female” \ h(white, female, middle)
= h(black, old, middle) = h(black, female, middle) 03,07)
= h(asian, old, middle) (0.5,0.5) = h(asian, female, middle) e
="old::middle” ="“female::middle”
h(white, old, high) h(white, female, high)
= h(black, old, high) = h(black, female, high) o
N . .4, 0.6
= h(asian, old, high) | (48 0-52) = h(asian, female, high) ( )
="old::high” = “female::high”

seed: (male, white, old, middle) — (female, white, old, middle) —> (female, asian, old, middle) —>

Figure 3.3: Synthesis Steps in PeGS. Three tables represent the statistical
building blocks of the example in Figure 3.2. In the disintegration step, these
three statistical building blocks are stored. In the noise injection step, the
probability vectors of the tables are perturbed. In the synthesis step, a new
sample is generated by iteratively sampling over the tables.

3.2.2 Feature Hashing

The hash function h(x_;) in PeGS maps a feature vector to an integer

key, where the range of the hash key is much smaller than 2¥ (exponential in
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the number of features). In essence, our purpose is to design a hash function
that exhibits good compression while maintaining the statistical properties of
data. Such a hash function has been deeply investigated in the machine learn-
ing literature for compressing high-dimensional feature spaces. This technique
is sometimes known as the hashing trick [134]. For extremely high-dimensional,
sparse, and unstructured data such as natural language texts, Locality Sensi-
tive Hashing [68] and min-hashing [61] can be good candidates for the PeGS

hash function.

We use a simpler approach to compress the feature space, as we are
using lower dimensional data. We select the m variables that have the most
mutual information with z; to form the hash key, and ignore the other vari-
ables. Thus:

To(1) ** 2 To(m) — 1..H

TV
trivial hash Hash key

where H < 2™ and z,(j) represents the feature with the jth highest mutual
information with x;. Let C; be the number of categories for x;, and Cp.x =
max; C;. The key space of this simple hash function is upper bounded by
(Cunax)™ < [T, Ci.

Figure 3.3 illustrates the basic idea of feature hashing. The left and
right columns of the conditional tables represent hashed features h(x_;) and
smoothed probability estimates Prp,(z; | h(x_;)), respectively. The first
table uses race, age, income as conditional variables, and sex as a target

variable. For illustrative purposes, we use m = 2, and assume that the
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target variable is closely related to the age and income variables. In other
words, the race variable is ignored while constructing the conditional table
i.e. h(white, young, low), h(black, young, low), and h(asian, young, low) belong
to the same bin. The smoothed probability distributions are estimated based
on a subset of samples that have the same hash key. Synthetic samples are
sequentially drawn from these based and smoothed estimates, as Figure 3.3
shows. The details about smoothing and sampling processes will be discussed

in Section 3.2.3.

The compressed conditional distribution Pr(x; | h(x_;)), which is ba-
sically a occurrence count hash-table for a given hash key, can now be stored
in either memory or disk. There are several advantages of using this com-
pressed conditional distribution over parametric modeling. First, the process
of building statistical building blocks does not involve complicated statistical
procedures such as parameter estimation and model selection. Second, the
resulting statistical building blocks are robust to overfitting. Overfitting may
occur when there are not enough samples in a table entry. Hashing reduces
the number of table cells and smoothes out the estimated probability vector.
Finally, this simple table representation is intuitive, and the process is easily
extensible. This aspect is critical in our efficient block sampling scheme, which

will be illustrated in Section 3.2.4.

Note that our feature hashing is different from multinomial models in
which certain main effects and interactions are set to zero. The key difference

is that our process is iterative. As an illustrative example, suppose that we
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have three features x1, xo, and x5, and we use m = 1. Let us assume that
x1 depends on z9, x5 depends on x3, and x3 depends on x;. Then z; and x3
get coupled and are not independent. Thus the synthetic process does not

translate to simple multinomial models.

We now provide a brief guideline for determining the value of m. As a
rule of thumb, we suggest that each cell approximately contains at least 30 data
points to estimate probabilities. There are other physical constraints on the
value of m such as the size of memory and hard disk. For example, if we want
to minimize the access to hard disk, m should also satisfy 2™ < Memory Size.
But, if m is too small, then this hash function effectively imposes an unrealistic
conditional independence assumption. Therefore, the value of m should be

carefully determined considering these listed aspects.

3.2.3 Perturbed Conditional Distribution

To satisfy the differential privacy, a certain amount of noise should
be injected to the compressed conditional distributions. The form of noise
may depend on applications and privacy measures. For example, noise can be
added to maximize entropy [104] or to satisfy [-diversity [102, 103]. We use
the Dirichlet prior perturbation to smooth out raw count based estimators to
satisfy differential privacy and [-diversity. Specifically, o virtual samples are
added to each category of the variable x;, when the conditional distribution
Pro(z; | h(x_;)) is estimated. The amount « is a privacy parameter that

controls the degrees of differential privacy and [-diversity. To be more precise,
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our differentially private perturbation requires a single value of «, while our I-
diverse perturbation needs different « values for each hashed condition h(x_;)
i.e. apx_,). For analytical simplicity, we assume « virtual samples, ajx_,)
virtual samples for [-diversity, are uniformly added to all the categories of the
variable x; (see Equation 3.6). In practice, different amounts of virtual samples
can be added to different categories of the variable xz;; for example, o can be

proportional to the corresponding marginal distribution i.e. o o< Pr(z; = j).

We first derive the probability of sampling x from the PeGS algorithm.
From a random seed sample s (or a query), the probability of synthesizing x

is factorized as follows:

M
Pro, o(x | 8) = [ [ Pro, (@i | A(x1-1), SG41)0)) (3.4)

i=1
where 1.0 and s(41): are just null values. For another dataset D, that
differs by at most one element, the probability of sampling x can be similarly

derived.
For differential privacy (see Equation 3.2), the ratio between two quan-
tities should satisfy the following relation:

Prop, o(x | s) _ sz\; Pro, o(; | h(xlz(ifl), 3(i+1):M))

Prp,o(x]s) 1Y, Pro, o(zi | h(z161), S@rn)ar)

< exp(€) (3.5)

Let us focus on the ith component as follows:

_ N + «
Nipx_) + Ciax

Niey = S 1(h(x) = hix_)) (3.7)

Pro, oz = j | h(x;))
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where Nj,«_,) is the total number of rows that have the same hash key as h(x_;)
and n;; is the count of the jth category i.e. x; = j within the Ny _,) samples.
In other words, the probability of sampling the jth category is proportional
to the number of the original samples that have the jth category. The privacy
parameter « acts as a uniform Dirichlet prior on this raw multinomial count

estimate.

The value of o depends on the privacy criterion. We study two cases:

differential privacy and [-diversity.

A. Differential Privacy. The two datasets for defining differential
privacy D; and D, have at most one different row. Without loss of generality,
let us assume that D; has one more row than Dy i.e. D; = DyUx?. Except for
the entry with hash keys {h(x?,)}, , the other entries of the two hash tables
from D; and D, are identical; only one entry of the hash table is different.
For the different entries of the hash tables, there are two possibilities:

B ng + «
Npx_y + 1+ Cia

. nij + 1 +
Npx_y +1+ Cia

it 2 #j,  Proa(af =7 h(xL))

else if z¢ =7, Pry, o(xf = j | h(x?;))

Given « > 0, we obtain the upper-bound for the ith component as follows:

nij-i-l—‘,-a
P ;=7 | h(x_; Np(x_,)+1+Ci 1
- Prml,a(:ﬂz =J | h(x ) ¢ max S
D102 Pro, o(zi = j | h(X_4)) ~ D1.D2 Nie_)+Cia o

where the first inequality is because the two datasets only differ by at most

Nnx_y+Cia

Nh(x_i)-f—l—l—Cia < 1

one element. The second inequality comes from the fact that
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and that the equation is maximized when n;; = 0. As we iterate this process

for the M variables, the differential probability is upper-bounded by:

M M
Hi:l Pl"Dl,a($i | h(zl:(ifl)ys(iJrl):M)) < H(l + l)
[T, Pro,a (@i | h(@vaon, sarnan)) ~ a

Therefore, we obtain the relation between « and e as follows:
1
Mlog(1+—) <e
o

Rearranging the terms, we have:

1

= oxple/M) =1 (38)

Note that for univariate binary synthetic data, [89] showed the relationship

1

between o and € as a = .
exp(e)—1

Equation (3.8) says that a higher level
of privacy (low €) needs a high value of «. Intuitively, high values of o mean
stronger priors, thus the synthetic data are more strongly masked by the priors

(or virtual samples).
B. [-Diversity. For [-diversity (See Equation 3.3), perturbed condi-
tional distributions need to satisfy the synthetic [-diversity criterion:

Hy(z; | x) =— Z Pry , log Pro o > logl

J

where H,(x; | x_;) is the Shannon entropy of the perturbed distribution,
Prp o. The entropy H, is a monotonically increasing function with respect to
a. To satisfy the synthetic [-diversity criterion with minimal perturbation, we

set « as follows:

of st — Zj Prp o logProp o, =logl, if H, <logl
o =
0, otherwise
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where « is set to zero when H,, already satisfies the [-diversity criterion. Unlike
the single « for differential privacy, the « values for [-diversity vary depending
on conditional distributions. This is because [-diversity applies to a dataset,
whereas differential privacy applies to a function. [-diversity is data-aware,
but may not provide rigorous guarantees for privacy. This is also noted in [28]
who observed that syntactic methods such as k-anonymity and [-diversity are
designed for privacy-preserving data publishing, while differential privacy is
typically applicable for privacy-preserving data mining. Thus these two ap-
proaches are not directly competing, and indeed can be used side-by-side. This
chapter also provides a detailed assessment of both the limitations and promise

of both types of approaches.

3.2.4 Removing Sampling Footprints

This section illustrates an effective block sampling extension of PeGS,
and is specific to differential privacy. PeGS generates one synthetic sample for
one seed sample. In other words, one synthetic sample costs € in the differential
privacy regime. We modify the PeGS algorithm to sample a block of samples
from one seed sample, while achieving the same e-differential privacy. One
sampling iteration of PeGS is now repeated many times, but each time, the
visited conditional distributions are reset. The procedure of Block PeGS with

Reset (PeGS.rs) is as follows:

1. Pick a random seed s from a predefined pool.

2. Forbin1: B,
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(a) Sample x*) using PeGS seeded by the previous sample x| where

(b) Reset all visited conditional distributions Pr(x; | h(x_;)) to uniform

distributions

This algorithm produces a block of synthetic samples (x(V), ..., x(®)) with the
same privacy cost €. Figure 3.4 illustrates the process of PeGS with Reset. The
synthesizing process of PeGS.rs is exactly the same as the process of PeGS Fig-
ure 3.3 except for the resetting step. After sampling from conditional tables,
the probability distribution of the visited bin is set to a uniform distribution.
The red lines in Figure 3.4 illustrate this resetting step. In our block sampling
scheme, there is a chance of re-visiting the bins that are already visited in the
previous sampling steps. For such cases, new samples are drawn from uniform

distributions, since probability estimates are reset to uniform.

To analyze the privacy aspect of this modified PeGS algorithm, we first

need to calculate the probability of synthesizing a block of samples:
Prgha(x(l), . ,X(B) | s) = PrD1 N \ S l_IPrD1 N x(® | x(bfl))

where Prg) (x® | x(*=1) is the transition probability from x*~1 to x®). Note

that Pr® and Pr®*Y are different conditional distributions, as M components
of Pr® are reset to the initial states. The ratio between two probabilities is
written as follows:

1 B b _
Priy) (x| ) [T, Prf) (x| D)

1,

Prgz,a(x(l) | s) HbB:2 Pr%);a(x(b) | x(b-1)

< exp(e)
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seed: (male, white, old, middle) — (female, white, old, middle) — (female, asian, old, middle) —

Figure 3.4: Synthesis Steps in PeGS with Reset. Visited rows in statistical
building blocks are reset to the initial state. In this example, the initial states

are uniform distributions over categories.

Recall that the statistical building blocks from both datasets differ at most
M components, as the two datasets differ at most one element. We provide a

sketch of the proof that this algorithm satisfies e-differential privacy as follows:

1. To generate the same block of samples, the sequences of statistical build-
ing blocks need to be the same as well. In other words, as the two sam-
ples, x® | D; and x®) | Dy, are the same, x(_bz | Dy and x(_bz | Dy will also
be the same. Thus, they use the building blocks from the same location

(b)

for sampling z; at the bth iteration, Pry, . (7; | x_;) and Prgg;a(xi | x_;).
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2. There are at most M different components between Prgf ., and Prgz o

and let M be the set of different components. This is because D; and

D, differ by at most one row.

(M—d)

3. If Prgia touched (M — d) components in M, then =

€ privacy cost is

spent in the process (see Section 3.2.3).

4. If Pr%l)va touched (M — d) components in M, then the rest of the se-
quences can differ at most d components. This is because those (M — d)
components are reset to uniform distributions, and they became indis-
tinguishable i.e. the visited components from D; and Dy became the
same uniform distribution. Every visit of an element in M decreases the

number of different elements.

5. Therefore, the whole sequence can differ at most M components (upper-
bound), thus the proposed block sampling algorithm satisfies the same

e-differential privacy for generating a block of B samples.

As we have more samples for the same cost, the privacy cost per sample can

be written as:

1
>
~ exp(¢B/M) —1

(3.9)

where €/ B = €. The privacy cost is smaller by a factor of B. As an illustrative
example, suppose that we need 10 synthetic samples that satisfy e-differential
privacy. To obtain 10 samples from PeGS, we perturb the statistical building

block by apeas = m. On the other hand, if we use B = 10, the amount
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of perturbation for PeGS.rs is given as apeasys = which can be

1
exp(10e/M)—1"
much smaller than ap.qs. However, the block size B cannot be arbitrarily
large. As every visited statistical building block is reset, the synthetic samples

tend to be more noisy as we increase the size of the block.

The relationship between « and e represents the trade-off between util-
ity and risk. Low « values can generate more realistic synthetic data, and low
€ values can provide higher levels of privacy protection. Note the difference
between Equation 3.8 and Equation 3.9. PeGS.rs has the additional parameter
B that can fine-tune the relationship between o and €. A smart choice of B
can improve the trade-off curve depending on the characteristics of a dataset.

This property will be illustrated using a real dataset in Section 3.3.

3.2.5 Perturbed Multiple Imputation

The Dirichlet perturbation can similarly be applied to multiple impu-
tation, specifically the multiple imputation using sequential regressions. Per-
turbed Multiple Imputation is a naive extension of multiple imputation that
satisfies e-differential privacy. A multiple imputation with generalized linear

models can be written as follows:
M
Prio (%) = [ ] ga: (Wi(D1) "x_,))
i=1

where g, (W;(D;)"x_;)) is the estimated response probability of z; using a
generalized linear model. We assume that the response is a normalized prob-

ability measure, thus g,, € [0,1]. We propose perturbed multiple imputation
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as follows:

Pryx),a( ngl (W;(D1) "x_,))

Perturbed multiple imputation satisfies e-differential privacy, if the output is

perturbed as

. T (Wi(Dy)Tx) +
fe? Ai D T )= gzz(wz( 1) z) + « _ gzz(wz( 1 i
gxi(W (D1) x4) Zx Gorex, Wi(D1)Tx_;) + Ciax 1+ Ciar

where oo = 1/(exp(e/M)—1). The proof is analogous to the proof for the PeGS
algorithm. With o = 0, this algorithm is the same as a multiple imputation

with generalized linear model.

3.3 Empirical Study

In this section, we evaluate the PeGS algorithm using a real dataset
from two perspectives: utility and risk of the PeGS-synthesized data. The util-
ity is measured by comparing marginal, conditional distributions and regres-
sion coefficients with those from the original data. The risk is first measured
by the differential privacy parameter e. As the differential privacy parameter
can be too conservative for a real dataset, we also measure population unique-
ness and indirect probabilistic disclosure risks. The presented experiments are
mainly for the differentially private perturbation, and the experiment with the

[-diversity perturbation can be found in [102, 103].
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3.3.1 Dataset Overview

We use public Patient Discharge Data from California Office of Statewide
Health Planning and Development?. This dataset contains inpatient, emer-
gency care, and ambulatory surgery data collected from licensed California
hospitals. Each row of the data represents either one discharge event of a pa-
tient or one outpatient encounter. The data are already processed with several
disclosure limitation techniques. Feature generalization and masking rules are

applied to the data based on population uniqueness.

For our experiment, we use 2011 Los Angeles data. Although there
are almost 40 variables in the provided data, we use 13 important variables.
The selected variables are listed in Table 3.2. For the numeric variables such
as age and charge, we transformed the variables into categorical variables by
grouping. We subset the data to focus on populous zip code areas, and use
this preprocessed dataset to be our ground-truth original data. As can be
seen, the possible combinations of the categories are approximately 2 trillion:
2x 102 ~6x 18 x3x4xT7x16x 16 x 13 x 9 x25x 25 x 3 x 2. A table of

this size cannot be stored in a personal computer.

Diagnostic and procedural codes are not included in this experiment.
In the original data, diagnoses and procedures are coded following the rules
of International Classification of Diseases (ICD-9). Both codes can specify

very fine levels of diagnoses and procedures; for example, the ICD-9 codes

2http://www.oshpd.ca.gov/HID/Data_Request_Center/Manuals_Guides.html
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include information about a underlying disease and a manifestation in a par-
ticular organ. These diagnostic and procedural codes can be grouped into a
smaller number of categories. Major Diagnostic Categories (MDC) and Medi-
care Severity Diagnosis-Related Group (MSDRG) are two examples of coarser
diagnostic codes. In this example, we only include higher level abstractions
of the detailed features. To keep the semantics of the data, we recommend a
two step procedure: first generating a higher level feature, then synthesizing

detailed features based on the higher level feature.

Three numeric variables, age, length-of-stay (los), and charge, are
grouped and transformed into categorical features. The age variable is equipar-
titioned to have 5 years gap between consecutive categories. The los and
charge variables are grouped based on their marginal distributions. For ex-
ample, almost half of the population stayed less than 10 days in a hospital.
Thus, the los variable is grouped to have 1 day gap before 10 days thresh-
old, and 20 days gap after 10 days. The charge variable exhibited a similar
marginal distribution; almost a half of the population pay less than 20K dol-
lars, and we binned this variable to have almost equal sizes of population. The

grouping rules are illustrated in Table 3.2.

3.3.2 Sampling Demonstration

PeGS transforms each feature one by one conditioned on the rest of
the features. This approach differs from a multiple imputation strategy in two

aspects. First, PeGS estimates compressed conditional distributions rather
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Table 3.2: California discharge data. Los Angeles.

Variable  Description Category Values

typ Type of care Acute Care, Skilled Nursing, etc. (6 levels)
age.yrs Age of the patient (5 years bin) 0, 5, 10, 15, ..., 80, NA (18 levels)

sex Gender of the patient Male, Female, NA (3 levels)

ethncty Ethnicity of the patient Hispanic, Non-Hispanic, etc. (4 levels)
race Race of the patient White, Black, Asian, etc. (7 levels)
patzip Patient ZIP code (in LA) 900xx, 902xx, ... , 935xx (16 levels)

los Length of stay (in days) 0,1,2,..,9,50-70, 90+, NA (16 levels)
disp The consequent arrangement Routine, Acute Care, etc. (13 levels)

pay Payment category Meicare, Medi-Cal, Private, etc. (9 levels)
charge Total hospital charges 0, 2K, 6K, 8K, 10K, ..., 100K+ (25 levels)
MDC Major diagnostic category Nervous sys., Eye, ENMT, etc. (25 levels)
sev Severity code 0, 1, 2 (3 levels)

cat Category code Medical, Surgical (2 levels)

than parameterized approximations e.g., generalized linear models. Second,
the compressed conditional distributions can be further perturbed by calibrat-
ing the privacy parameter, which makes synthetic data e-differentially private.
Table 3.3 shows how PeGS transforms a random seed into a private synthetic
sample. The first row of the table is a random seed, and each consecutive
row shows the corresponding sampling step. Note that some features change
their values, whereas other features maintain the original values. The final
sample is shown in the last row. As can be seen, the final transformed sample
is different from the seed; for example, it has a different age, zip code, and

disposition code.

PeGS can be iterated many times, however, without the reset option,
there is no gain for the privacy cost. The reset option in PeGS.rs removes
sampling footsteps, but the synthetic samples after many iterations may not be

useful for representing the original data. Figure 3.5 shows histograms from the
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Table 3.3: Detailed Sampling Steps in the PeGS synthesis step. Four variables,
sex, race, payment category (pay), category code (cat), are not changed in the
final transformed example.

sequence typ age sex eth race zip los disp pay chg MDC sev cat
seed 4 55 2 1 1 917 8 1 3 40K 25 1 M
X1 X 5 55 2 1 1 917 8 1 3 40K 25 1 M
Xo| X o 5 75 2 1 1 917 8 1 3 40K 25 1 M
X3 | X_3 5 75 2 1 1 917 8 1 3 40K 25 1 M
Xa| X4 5 75 2 2 1 917 8 1 3 40K 25 1 M
X5| X_5 5 75 2 2 1 917 8 1 3 40K 25 1 M
X6 | X_6 5 75 2 2 1 913 8 1 3 40K 25 1 M
X7 | X7 5 75 2 2 1 913 9 1 3 40K 25 1 M
Xg | X_3 5 75 2 2 1 913 9 5 3 40K 25 1 M
Xo| X9 5 75 2 2 1 913 9 5 3 40K 25 1 M
X10|X-10 b 75 2 2 1 913 9 5 3 65K 25 1 M
X1 | X1 5 75 2 2 1 913 9 5 3 65K 7 1 M
X12|X-12 5 75 2 2 1 913 9 5 3 65K 7 0 M
X13|X-13 5 75 2 2 1 913 9 5 3 65K 7 0 M

generated samples. As can be seen, the block samples from PeGS.rs are more
uniformly distributed than those from PeGS. The distributions from PeGS are
actually closer to the distribution of the original data than those from PeGS.rs.
It is important to note that the PeGS and PeGS.rs in this experiment have
different privacy cost; PeGS.rs only used €, while PeGS requires € x Iterations.
The goal of this experiment is to show the limitation of PeGS.rs. Although
PeGS.rs provides more number of samples given the same privacy cost, an

arbitrarily large size of block may not be useful in practice.

3.3.3 Risk (¢) vs. Utility

Reducing disclosure risk and improving data utility are two compet-

ing objectives when publishing privacy-safe synthetic data. As these two goals
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Figure 3.5: Dataset comparisons with PeGS.rs (PeGS with Reset), PeGS, and
the original.

cannot be satisfied at the same time, a certain trade-off is necessary for prepar-
ing public use data. This trade-off has been traditionally represented using a
graphical measure, called R-U confidentiality map [40]. The R-U confidential-
ity map consists of two axis: typically a risk measure on the x-axis and a utility
measure on the y-axis. Note that risk and utility measures can be domain and
application specific. In this chapter, we first show R-U maps where the risk
is measured using differential privacy. The utility is primarily measured by

comparing statistics from the original data and synthetic data.

We use three different algorithms and seven different privacy parame-

ters for each algorithm as follows:

e PeGS: Perturbed Gibbs Sampler
e PeGS.rs: Perturbed Gibbs Block Sampler with Reset. Block size = 10.

e PMI: Perturbed Multiple Imputation (baseline algorithm). With higher

values of €, this is the same as a multiple imputation strategy for fully
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Figure 3.6: R-U maps where the negative utility is measured as the difference
in marginal distributions; smaller distances imply greater utilities.

synthetic data. In PMI, the conditional distributions are modeled us-
ing the elastic-net regularized multinomial logistic regression, specifically
glmnet package in R 2.15.3 [56]. The variable z; is regressed on the rest of
the variables x_;, and the regularization parameter A was tuned based-on

cross-validation:
Pr(z; = j | x_;) oc exp(cy + /BiTiji)
where ¢;; and 3;; are estimated from the data.
where the privacy parameters are given as € € {0.1,0.5,1,5,10,50,100} per

synthetic sample. We generated 1000 samples for each case. As a result, we

have 21 = 7 x 3 synthetic datasets and one original dataset.

The negative utility is first measured using the distance between marginal
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(a) Distributional distances conditioned on the age variable, X; | age.yrs
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Figure 3.7: R-U maps where the negative utility is measured as the difference
in conditional distributions; smaller distances imply greater utilities.
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and conditional distributions. The term “negative” implies that smaller the
distances, greater the utilities. Marginal and conditional distributions are mea-
sured from the original and synthetic datasets, then distances are calculated

as follows:

Marginal MSE = Avgxiexi(lﬁrsymhye(xi) — Progg(z:))?
Marginal MAE = Avg, . |Prognth.e(:) — Prosig ()]
Conditional MSE = Avg, .y Avgxiexi(lﬁrsynth,e(xi | ;) — Prosg(z; | 2;))?

Conditional MAE = Avg, .x Avg, . Xi|prsynth,e(x,» | ;) — Prosg(zi | ;)]

where these distances are inverse surrogates for the utility. Figure 3.6 and
Figure 3.7 show the R-U maps where the utility is measured as the difference
in marginal and conditional distributions, respectively. As can be seen, all
synthetic datasets become similar to the original data with higher values of e.
However, for smaller values of ¢, the synthetic data from PeGS.rs are much
more similar to the original than the others. The distributional distances of
PeGS are slightly smaller than those of PeGS.rs for higher values of €. Since
« values are very small for these privacy parameters, the reset operation of
PeGS.rs becomes more noticeable, and it pushes synthetic samples away from

the original distributions.

The utility can be measured in many different ways. In this example,
we examine whether synthetic samples preserve the ordering of marginal and
conditional distributions of the original data. Marginal and conditional distri-

butions are first ranked based on frequencies. We then compare the ranks from
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Figure 3.8: Rank correlation between marginal distributions vs. privacy pa-
rameter €. As € increases, the ordering of a marginal distribution remains the
same as the original ordering.

the original and synthetic distributions using Kendall’s 7 and Spearman’s p:

(number of concordant pairs) — (number of discordant pairs)
5Ci(1—C;)
Zj(r;') - Ci/2)(7”]5' - Ci/2)
Vg = Cif2)2 3,5 = Cif2)?

where C; represents the number of categories for z;, and 77 and r; are ranks of

Kendall’s 7 =

Spearman’s p =

the j category from the original and synthetic data, respectively. Both 7 and p
lie between -1 (strong negative correlation) and 1 (strong positive correlation).
These rank correlation statistics are visualized in Figure 3.8 and 3.9 with
respect to the privacy parameter €. As can be seen, less perturbed synthetic
datasets better preserve the ordering of distributions. Overall, PeGS.rs best

preserves the frequency order of the original distributions.
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Figure 3.9: Rank correlation between conditional distributions vs. privacy
parameter €. As € increases, the ordering of a marginal distribution remains
the same as the original ordering.
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Figure 3.10: R-U maps where the utility is measured as the difference in

regression coefficients.
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Figure 3.11: Estimated logistic regression coefficients for (a) ¢ = 0.1 and (b)
¢ = 1. The coefficients from ¢ = 10 (lower level of privacy) are closer to the
original coefficients than those from € = 0.1 (higher level of privacy).
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Next, we compare the coefficients from regression models learned on

the datasets. We learned logistic and linear models as follows:

I(charge > 25K) ~ as.numeric(age.yrs) + sev + cat + as.numeric(los)

as.numeric(charge) ~ as.numeric(age.yrs) + sev + cat + as.numeric(los)

where some of the features are changed to numeric features based on their
actual meaning. The choice of the target variable was arbitrary, as the goal
of this illustrative experiment is to show the applicability of synthetic data in
predictive modeling tasks. After learning the coefficients of each model, the

distance between the coefficients is measured as follows:

Regression Distance = Z |ﬁi’Syrlth — ﬁi’orig|
i

i,orig
Figure 3.10 shows the R-U map from the regression experiment. As can be
seen, the synthetic samples from PeGS.rs provide the most similar coefficients
to those from the original data. Figure 3.11 shows each coefficient deviation
from the linear regression example. Notice that the intercept coefficients from
the synthetic datasets tend to overshoot the actual value, while the other
feature coefficients tend to undershoot. This is because the perturbation de-
creases all feature correlations including the correlation between the target

and independent variables.

3.3.4 Estimating Re-identification Risk

Although differential privacy provides a theoretically sound framework

for measuring disclosure risks, the measure is originally designed for functions,
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Figure 3.12: Simulated attack scenarios on the MDC and charge variables (left
and center), and population uniqueness (right).

not data [32]. For many cases, the measures can be overly conservative or strict
for a real dataset. In the statistical disclosure limitation literature, there have
been many attempts to measure disclosure risks for synthetic data. Franconi
and Stander [52] proposed a method to quantify disclosure risks for model-
based synthetic data. Their proposed approach checks whether it is possible
to recognize a unit in the released data assuming the original data are given
to an intruder. This provides a somewhat conservative measure, but is still
useful to compare the risks from different release mechanisms. Reiter [111]
later formalized measuring probabilistic disclosure risk scores for partially or
fully synthetic data. Probabilistic disclosure risks are used to asses the risks

of the fully synthetic data using Random Forests in Caiola and Reiter [18].

We measure the disclosure risks from two different angles: recoverability
of feature values and population uniqueness. First, we examine whether it is
possible to infer the values of sensitive feature given demographic information.

Specifically, if the intruder knows someone’s age, sex, los, and zip, we would
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like to measure the likelihood of getting the correct values as follows:

E[1(inferred MDC # correct MDC) | age, sex, zip]

E[|inferred charge — correct charge| | age, los, zip|

where the inferred values are (1) the most frequent MDC categories and (2)
sample means from conditioned synthetic samples. We also measure the pop-
ulation uniqueness based on age, sex, and zip code information. Figure 3.12
shows the results from this simulated intruder experiment. Private records
are more difficult to reconstruct if misclassification rates and absolute errors
are high. The probability of recovering MDC is significantly lower than using
a simple bootstrap method, but no one method is distinctly better than the
other. The absolute distance of hospital charges shows that synthetic data has
comparable predictive power with the bootstrap method. Noticeably, the ab-
solute errors are higher when the differential privacy parameters are low, and
this finding partially supports our use of differential privacy as a disclosure
risk measure. As can be seen in Figure 3.12 (right), the perturbed synthetic
datasets have more unique samples. This is the most distinct characteristics
of PeGS compared to other statistical disclosure techniques. Privacy preserv-
ing algorithms, such as k-anonymity and [-diversity, try to reduce population
uniqueness, while PeGS increases the diversity of samples. The former al-
gorithms apply privacy-preserving transforms on the original data, while the

latter algorithm synthesizes a diversified dataset.
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3.4 Summary

We proposed a categorical data synthesizer that guarantees prescribed
differential privacy or [-diversity levels. The use of a hash function allows the
Perturbed Gibbs Sampler to handle high-dimensional categorical data. The
non-parametric modeling of categorial data provides a flexible alternative to
traditional (GLM-based) Multiple Imputation techniques. Additionally, this
simple representation of conditional distributions is a crucial component of our
block sampling algorithm that enhances the utility of synthetic data given a

fixed privacy budget.

The California Patient Discharge dataset was used to demonstrate
the analytical validity and utility of the proposed synthetic methodologies.
Marginal and conditional distributions, as well as regression coefficients of
predictive models learned from the synthesized data were compared to those
from the original data to quantify the amount of distortion introduced by the
synthesization process. Simulated intruder scenarios were studied to show the
confidentiality of the synthesized data. The empirical studies showed that the

proposed mechanisms can provide useful risk-calibrated synthetic data.

Currently, PeGS only deals with categorical variables. Numeric vari-
ables need to be binned to form categorical variables. Although this approach
may be adequate enough for some applications, brute-force binning ignores
numeric similarity or ordering information. For example, two consecutive val-
ues from an ordinal variable are more similar than separated values. Consider

a size variable with three values: small, medium, and large. The ordering in-
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formation states that similarity(small, medium) > similarity(small, big), but
this information is lost if we bin the size variable into three (non-ordered) cat-
egories. Such semantic correlation cannot be captured in the current synthetic

and perturbation model.

Although it was originally designed for computational efficiency, the
hashing step of PeGS also provides an added degree of privacy protection.
When building the PeGS statistical building blocks, each row x of the original
data is hashed based on h(x_;), and aggregated with other rows with the same
hash key, {z | h(z_;) = h(x_;)}. This aggregation (or hashing) step should be
also incorporated for a tighter guarantee of privacy. The privacy guarantee of
PeGS will be affected by different hash resolutions and mechanisms, and this

topic needs to be covered in future work.

Although the proposed algorithms show substantially better perfor-
mance on e-differential privacy and [-diversity® measures, they were only marginally
better than PMI in other probabilistic disclosure risk measures. The differen-
tial privacy measure may be too conservative for real data, and the probabilis-
tic measure may not exhaustively capture all the attack scenarios. This is why
we provided multiple risk measures. The connection between the differential
privacy and disclosure risks should be further addressed to better evaluate the

validity and utility of the synthetic data.

In practice, multiple disclosure techniques are sequentially mixed to

3Experimental results on I-diversified synthetic data are presented in [102].
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achieve better protection of the records. For example, PeGS can be applied
on top of feature generalization or masking techniques. Furthermore, some
features can be modeled using generalized linear models; for example, numeric
features. It would be worthwhile to investigate novel cocktails of different

statistical disclosure limitation techniques.
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Chapter 4

Privacy-aware Aggregate Data Utilization

Individual-level datasets that contain one or more records per person
are rich sources for data mining applications. In the healthcare domain, the
application of advanced data mining methods on individual level records across
large populations can enable major breakthroughs in both personalized and
population-level healthcare, leading to much improved, more cost-effective and
timely diagnoses and interventions [106]. However, such data often contain a
substantial amount of privacy-sensitive attributes. In practice, as previously
described in Chapter 2, privacy concerns are typically addressed through mul-
tiple Statistical Disclosure Limitation (SDL) techniques [39], such as data ag-
gregation [6], data swapping [31, 50], top-coding, feature generalization such
as k-anonymity [128] or [-diversity [87], and additive random noise with mea-
surement error [59]. Each method has distinct utility and risk aspects. Often
an appropriate mix of disclosure limitation techniques is carefully chosen by
domain experts and statisticians. For example, Centers for Medicare and Med-
icaid Services applied six different SDL techniques when publishing synthetic

public use files': variable reduction, suppression, substitution, imputation,

Mhttp: //www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/SynPUFs/DE_Syn_PUF.html
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data perturbation, and coarsening.

Among various SDL approaches, data aggregation is currently the most
widely used. Data aggregation is a process of summarizing individual-level
data into a small set of representative values such as mean and median statis-
tics computed over groups that are typically geographically or administratively
defined (such as county, hospital group, state, etc). This process is straight-
forward to apply on diverse datasets: wireless sensor networks [66], regional
healthcare statistics [22], and government data [33]. Moreover, such aggregate
data can be efficiently and effortlessly generated in RDBMS [99] and statis-
tical programming languages [129]. Data collecting agencies publish various
aggregate datasets at different levels of aggregation (including individual-level
for non-sensitive information). In particular, the U.S. government’s open data
project, data.gov has recently released a substantial amount of regional and
topic-based aggregate data regarding agriculture, education, and energy. Cen-
ters for Disease Control and Prevention annually publishes various regional
statistics related to aging, cancer, and diabetes. Other notable sources of

aggregated health data are dartmouthatlas.org and healthdata.gov.

The use of aggregate data is typically limited to group-level studies,
often referred to as ecological studies for historic reasons. Applying the result
from aggregate data to individual-level inference often results in the classic
problem of ecological fallacy [117]. Ecological fallacy occurs when aggregate-
level statistics are misinterpreted as individual-level inferences. For exam-

ple, the high correlation between “per capita consumption of dietary fat” and
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“breast cancer” in different countries [21] does not imply that dietary fat causes

breast cancer.

There have been many attempts to circumvent the ecological fallacy
while analyzing aggregate data. This is because individual-level data acquisi-
tion is usually expensive, and it is sometimes legally and ethically implausible.
Duncan [42] developed the method of bounds that uses the constraints of
contingency tables, but the bounds are often uninformative in real applica-
tions [54]. The constancy assumption, suggested by Goodman [64], allows an
individual-level interpretation of ecological regression. Suppose that we want
to check the relationship between Length of Stay (LoS) and Hospital Charge

(HC) variables from state-level aggregate data:

HCstate ~ Cgtate T /BstateLOSstate

The constancy assumption states that daily hospital charge rates are the same
across different states i.e. Bgate = 0 and cgate = ¢. Of course, this assumption
is rarely true in real datasets; for this example, it is more natural to assume
that each state has a different daily charge rate, thereby indicating that multi-
level modeling can be used [62]. Such an approach, however, is under-identified
and can’t be solved using aggregate data, since we have more parameters
than observations. King [76, 77] proposed a Bayesian prior-based multi-level
approach to overcome the limitation of Goodman’s assumption, but Freedman
[53] criticized that King’s method cannot be validated on the basis of aggregate

data.
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Table 4.1: Tllustrative health data files: artificial individual-level data (left)
and aggregate-level summary (right) [73].

ID Age Length State State  Avg. Hospital Charge

T 19 T day TX CA $ 2,706
2 35  2days CA FL $ 1,809
3 3 10 days ~ FL NY $ 1,954
6

68 100 days FL TX $ 2,001

We provide a novel approach for addressing the ecological fallacy dilemma
by leveraging available sources of individual-level data for which the values of
the partitioning or aggregation variable is known. For example, an aggregation
variable can indicate state, county, or zip codes, that can be used to link to
aggregate-level dataset that is aggregated along such geographical regions. In
practice, it is not difficult to collect multiple datasets with different levels of
aggregations from multiple agencies, so little added data-collection expense is

involved.

Table 4.1 shows a simple, illustrative example of two health datasets.
Non-sensitive fields are published at individual-level, while a sensitive field
(hospital charge) is aggregated over the partition variable “state”. Our ap-
proach is substantially different from previous ecological fallacy solutions where

only aggregate data were considered.

We use a two-stage approach to avoid the ecological fallacy. We first
reconstruct the masked individual-level variables from aggregate data, then
apply multi-level regression models to the reconstructed data. In other words,

we first synthesize “pseudo individual-level” data that are statistically similar
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to the original (unseen) individual-level data. Not only multi-level regression
models, but also numerous off-the-shelf data mining algorithms can be easily
applied to such pseudo individual-level data. Our reconstruction algorithm is

based on two key observations:

e Aggregation is a linear transformation, thus it preserves several algebraic

properties including the associative property.

e Using a proper data model, additional individual-level data can provide
statistical clues for the reconstruction of the masked columns. From
the previous hospital charge example, if we know a prior: that hospital
charge (aggregate-level) is a function of length of stay (individual-level),
we roughly expect that a person with a longer stay may have paid more
than a person who stayed only a day. We demonstrate that such clues

can be captured using a low rank model.

We demonstrate our reconstruction algorithm on both simulated and real
datasets. Many factors contribute to the reconstruction quality, for exam-
ple, the number of data points per aggregation and correlation strength with
other columns. These factors will be illustrated in Section 4.5 using Texas

Inpatient Public Use Files. The main contributions are:

e We formulate a data model, LUDIA, that reconstructs individual values

from aggregate values.
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o We derive efficient algorithms for solving optimization problems associ-

ated with LUDIA.

e We show that our reconstructed data can capture aggregate-level random
effects, thus the reconstructed data can be used for multi-level analyses

as well as more sophisticated data mining applications.

The first two contributions will be illustrated in Section 4.3, the last contri-
bution will be explained in Section 4.4. Experimental results are provided in

Section 4.5.

4.1 Preliminaries & Related Work

This section starts by setting up the notation of this chapter, and visit-
ing two key existing approaches for tackling aggregate data. We extend these
approaches to reconstruct the original individual-level data, and briefly discuss

their modeling assumptions and limitations.

Aggregation is a compressive linear transformation, which we denote
as A. For example, suppose that there are five individuals from two differ-
ent groups: the first two from Group A and the last three from Group B.
Individual-level observations, say y = [1 2 3 4 5}T, can be aggregated

into two groups by multiplying an aggregation matrix defined as follows:

[T S

Table 4.2 summarizes the notation of this chapter.
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Table 4.2: Notation. For simplicity but without loss of generality, we use d = 1
in this chapter.

Symbol  Explanation

X n X m, individual-level matrix

X 1 X m, ith row of X

y n X d, masked individual-level vector
A p X n, aggregation matrix

s p X d, aggregate-level vector i.e. Ay
u,v n X r, m X r low-rank matrices

The processes of aggregation and reconstruction can be illustrated as

follows:

. compressive linear
(Compression) A >

low-rank modeling

A

(Reconstruction) y Recon(s, A, X)

where X represents individual-level data, and Recon is a reconstruction algo-
rithm. To give a brief overview, our reconstruction algorithm, LUDIA (Low-
rank factorization Using Different levels of Aggregation), is a constrained low-
rank factorization algorithm that can capture multi-level effects. Figure 4.1
illustrates the overall idea of LUDIA and other reconstruction algorithms.
We have two sources of errors that construct our reconstruction triangle: ag-
gregation and modeling errors. LUDIA reduces the aggregation error using a

low-rank model, but the LUDIA error is lower-bounded by the modeling error.

To illustrate existing approaches for aggregate data, let us consider the
previous “hospital charge vs. length of stay” example. When using aggregate

data, three approaches have been popular:

e The neighborhood model [55], proposed by Freedman, will imply that

hospital charges are more influenced by geographical attributes rather
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Figure 4.1: Reconstruction triangle and LUDIA.

than the length of stay variable, since each geographical partition is

assumed to contain a homogeneous population group.

Ecological regression [63], suggested by Goodman, will assume that the
effect size of length of stay is the same across different states, based on
the constancy assumption. According to the constancy assumption, geo-

graphical partitions are treated as different batches of i.i.d. experiments.

Ecological inference, also known as King’s method [77], combines the
method of bounds and Goodman’s ecological regression. King’s method
is a multi-level approach that models different effect sizes for different
states. The multi-level parameters are first characterized by their accept-
able regions using the method of bounds, then their joint distributions
are modeled under three assumptions [78]: uni-modal joint distribution,
absence of spatial correlation, and independence between multi-level co-
efficients and dependent variables. However, these assumptions are not

verifiable on the basis of aggregate-level data [53], and this method re-
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quires manual tuning of the parameter distributions. In short, ecological
inference is a method with many knobs and unverifiable assumptions,

and we do not include this method in our baseline methods.

These previous approaches have been developed to tackle aggregate
data, and need to be slightly modified to synthesize individual-level data.
Imagine that we now obtained individual-level length of stay data? X and
each individual’s location information A. To reconstruct the masked hospital
charge data y, two direct extensions from the previous approaches can be

considered:

e Moore-Penrose (MP) solution is an extension of the neighborhood model.
As the neighborhood model only focuses on the aggregation matrix A,
the reconstructed values are obtained by applying the Moore-Penrose

pseudo-inverse of A to the aggregate data:
yMp = Afs
where At = A(AAT)L.

e Ecological Regression (ER) solution is an extension of Goodman’s eco-

logical regression. Assuming that the effect sizes are the same across

2Note: This simple example has only one individual level (LoS) and one aggregated
(HC) feature, and one level of aggregation, called “State”, so as to convey the concepts
most easily. Our approach readily generalizes to multiple individual and aggregate variables
as well as multiple levels of aggregations, as will be seen later
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different states, we obtain the regression parameter B from the aggre-

gate data, then apply to the individual-level covariate:
YER = /BERX

where Brr = (Z"Z)"'Z"s and Z is the aggregate-level representation of

X ie. AX.

MP and ER exhibit different failure modes. MP ignores the effects of individual-
level covariates, which may substantially leverage the utility of aggregate data.
On the other hand, ER relies on the constancy assumption, which is rarely
true in real settings.

For our hospital charge example, daily charge rates are significantly dif-
ferent across city and rural areas (see Section 4.5). This geographical variation

on daily charge rates can be expressed as follows:

Yi = Xi/Bstate + CState +€; €; ~~ N<O7 ‘73)
ﬁstate = IBglobal + Nstate Nstate ™ N(07 0727D)

Cstate ~ N(07 O-g)

where (gstate and 7,0 represent state-level biases for the intercept and slope;
they are called random intercept and random slope, respectively. Assuming

that we have two states A and B, and individuals listed by state, this multi-
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level approach [60] can be written in a matrix form:

n X1 X1 0 10

Yo X9 X9 0 10 Na

= | Baemt | i | +E
Ca

Yn—1 Xn—1 0 x,1 01 (B

Yn Xn 0 Xn 0 1

We define new matrices v (random effects) and G (covariates for random

effects) to obtain a compact form:
Y = XBgoba + Gy + E (4.1)
Aggregate data are obtained through the aggregation operation as follows:
Ay = AXByopa T AGY + AE

globa/

As can be seen, the ER solution is valid only if
e v =0 (no random effect)
o (AX)TAX) HAX)TAy = (XTX)" Xy
These two conditions are rarely realistic in real applications.

MP and ER are formulated based on two orthogonal assumptions. MP
assumes that only geographical partitions affect the dependent variable, while
ER posits that geographical partitions are merely random groupings. These
assumptions are necessary to obtain some meaningful results from aggregate
data, as the ecological fallacy is, in fact, the problem of statistical under-
identification [115]. However, the direct extensions from the previous ap-

proaches do not utilize the full potential of auxiliary individual-level data.
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4.2 CUDIA

CUDIA [100], which is our previous work as well as the motivation of
this chapter, is a probabilistic clustering algorithm that utilizes both aggre-
gated and individual-level data. The parameters of CUDIA are estimated us-
ing a Monte-Carlo Expectation Maximization (MCEM) algorithm. Although
CUDIA can reasonably reconstruct the data based on the estimated cluster
centers, the primary objective of CUDIA is still clustering rather than recon-
struction. Furthermore, the presented MCEM algorithm is not scalable to
large-scale data. We show that CUDIA is, in fact, a special case of LUDIA
with a non-negative constraint on U (see Section 4.4.3). LUDIA generalizes
CUDIA with a more flexible representation of U. This generalization provides

an efficient optimization algorithm that is suitable for large-scale data.

4.2.1 Problem Formulation

Suppose two datasets from possibly multiple sources are available for
research where their aggregation levels are also different. We refer to the
dataset with a finer granularity as the individual-level dataset, and the other
dataset as the aggregate-level dataset. Assuming that the dataset of inter-
est is generated by a mixture model that represents underlying heterogeneous
groups, we introduce a novel generative process that captures the underly-
ing distributions using a Bayesian directed graphical model and the Central
Limit Theorem. Figure 4.2 illustrates the overall flow of the algorithm. Many

datasets in the healthcare domain are divided into multiple tables contain-

83



£\ N\
- -+n -i-l'l'u

|deal Original Data Sensitive Columns CUDIA Re-Constructed Data “assumes Heterogeneity, captured by
are Aggregated What we usually can obtain Clusters of individuals”

Figure 4.2: The orange and blue columns represent non-sensitive and sensitive
features, respectively. The sensitive column is aggregated, and we typically
observe the summary statistics. With the heterogeneity assumption, our algo-
rithm re-constructs the individual-level data.

ing different levels of aggregation (sometimes obtained from different sources),
and the suggested methodology in this section can be useful in increasing the

utility in such scenarios.

Suppose a “complete” microdata, D = {(z,y);}Y, where z and y
are two random variables. We assume that x contains non-sensitive infor-
mation, while y comprises of a sensitive field such as a disease record. The

privacy-sensitive variable is aggregated over partitions that are defined as:

P = {D!, D2 .., DI}, where U§:1 D? = D and D (D7 =  for any dis-

tinct p,q. The aggregate statistics of y are obtained as D, = {sp}le, where
s, = Average(y; | ¢ € DP). In other words, s = Ay following the notation in

Section 4.1.

We postulate the sample population is heterogeneous, thus there exist

K distinct clusters denoted by a discrete random variable z. For a technical
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reason, we additionally assumes that two feature vectors are conditionally
independent given their cluster labels: p(z,y | 2) = p(xz | 2)p(y | z). Let
mp = ((z = 11 D) p(z = 2| DY), ypl(z = K | DP)) = (Tt s s i),
which represents the mixing coefficients of partition p. Let & and 6 be the
sufficient statistics for the probability densities p(z | z = k) and p(y | z =
k) respectively. If all data features are observed at the individual level, an
LDA-like clustering model can be built based on the conditional independence

assumption.

The complexity of the model can be reduced by removing the unob-
served variable y. Assuming that N, = |DP| is large enough, let 7, and T}
be the mean and covariance of the distribution, p(y | z = k). Using the lin-
earity of mean statistics and the Central Limit Theorem (CLT), s, can be

approximated as being generated from a normal distribution as follows:

s, ~ Normal(,, EIZ,) (4.2)
fp = Tp - 1) (4.3)
£2 =l (7 + 1) ) (4.4
p
where n = (1,72, ..., nK) ", T2 = (T3, T2,...,T%)T. We now remove y re-

sulting in the Clustering Using features with DIfferent levels of Aggregation
(CUDIA) model. The full generative process for CUDIA is as follows:

For s, in D,
Sample 7, ~ Dirichlet(cx)
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Sample s, ~ N(pp, X2)
For z in DP

Sample z ~ Multinomial(7r,)

Sample x ~ p(z | 6,)

where 7 is sampled from a Dirichlet distribution parametrized by a, and the
observed sample mean statistics s is generated from a Normal distribution
parametrized by a mixture of true means n’s and a covariance ¥2. The clus-
tering index z in each partition is sampled from a Multinomial distribution
parametrized by 7, which is specific to the partition, and corresponding x is
sampled from a distribution p(z | 6,), where the suitable form of p(z | 6,)

depends on the properties of the variable x.

Algorithm 1: CUDIA MCEM algorithm
Input: x,s
Output: 17,0,
repeat
(E-Step) Algorithm 2 in [100];
(M-Step) Learn a and 6;
H* = (II"WII + \I) " 'TI"WS;;

until Convergence;
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4.2.2 Parameter Estimation

From the generative process, the likelihood function of the CUDIA

model is as follows:

p(x,s)

= Z/P(Xys | 2, m)p(z, 7)dm
=3 [ vl | ahpls | wpte | wop()a
- Z/ Hp(xz | 2i)p(2i | 7p) Hp(sp | 70,)p(7,)dm

A generic EM algorithm [34] cannot estimate this posterior distribution,
since the normalization constant of its posterior distribution is intractable.
Collapsed Gibbs sampling [84] also cannot be applied because 7 cannot be
integrated out due to non-conjugacy between s and 7r. In this case, the model
can be learned using either variational methods or Gibbs sampling approaches,
and CUDIA follows the latter alternative. Naive Gibbs sampling approaches
are computationally inefficient. We employ an approximated Gibbs sampling
approach, which can be applied when the dimension of x is small. The model
parameter estimation follows the MCEM algorithm [14] using this approxima-

tion technique. Algorithm 1 describes the overall idea (for detail, see [100])

4.3 LUDIA

LUDIA is a low-rank factorization algorithm using aggregate data. We
first describe the underlying data model of LUDIA, then formulate LUDIA’s
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objective function. Because of the non-trivial aggregation constraint, we derive

a customized minimization approach that uses the Sylvester equation.

4.3.1 Low-rank Data Model

LUDIA employs a bottom-up approach starting from individual level
data. We first design a data model for a complete matrix D = [X y], then
formulate an objective function when y is masked and only s = Ay is provided.
The data model for LUDIA is based on the low-rank approximation theory as

follows:

X y]=UV' +E=U[V] v/]+E (4.5)

Y

where U € R, V. € R™ E € R"™™ and r < min(n,m). Note that
we divided V into two block matrices: V, and v,, so that X ~ UV, and

y ~ Uv,.

The main objective of our approach is to reconstruct the masked val-
ues, y. In theory, under certain assumptions such as an underlying low-rank
structure and a uniform missing mechanism, missing values in a matrix can
be reconstructed. Candes and Recht [20] showed that, for matrix entries that
are missing at random, they can be exactly recovered if the number of obser-
vations exceed a certain threshold value. However, the settings for the matrix
completion problem are not suitable for our problem, since we consider a sit-
uation wherein one or more columns of a matrix is entirely missing, but its

aggregated statistics are given.
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We approximate the original matrix using two low-rank matrices. This
problem is different from the matrix completion problem [71]. Low-rank ap-

proximation is typically posed as a minimization problem as follows:
min |[D —D|%2 s.t. rank(D) <r

where D and D are both n x m matrices, and r < min(n,m). The Eckart-
Young-Mirsky theorem [47] says that rank r approximation of the data matrix

D is given as follows:
D =Urv' = (ur¥»r2v"h =uv’

where U, I', V are n xr, r xr, m X r truncated Singular Vector Decomposition
matrices, respectively. The data model in Equation 4.5 is, however, inappli-
cable to our reconstruction application. The model should instead reflect the

constraint that y is masked and only s = Ay is provided.

4.3.2 Aggregation Constraint

A novel optimization problem for three latent matrices y, U, and V is
proposed as follows:
min || [X y] - Uv'|%
yov (4.6)
subject to Ay =s

A simultaneous minimization over y, U, and V is a difficult non-convex opti-
mization problem. However, minimization over one set of variables alone is a

convex problem.
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We tackle this problem by removing the equality constraint. The equal-
ity constraint on y can be eliminated if we fix the other two variables. Given

that U and V are fixed, the optimality condition [15] is given as:
Ay*=s and Vf(y")+AT¥* =0

where f(Y) = |[X=UV]|%+|y—Uv, [|3 and ¥* € R? is a dual variable. Y*
is optimal if and only if there exists W™ satisfying the optimality conditions.

It turns out that, for this system, y* can be solved in a closed form.

To eliminate the constraint, we solve Karush-Kuhn-Tucker (KKT) equa-

tions as follows:
Viy)+ATT* =2y* — 2UV;— +ATE* =0
We multiply A on both sides of the second KKT equation, and solve for ¥*:

2Ay" —2AUv, + AAT®" =0

U* = 2(AA") (s — AUv,)
Thus, the optimal y* is:
y*=Uv, + AT(AAT)"'(s — AUv,)) (4.7)
We plug the optimal y* into the original objective function to obtain:
131‘1} X —UV,||% + (s — AUv,) " (AAT) (s — AUv,) (4.8)

We have thus transformed the original objective function with three variables
and an equality constraint into a simpler unconstrained objective function with

two variables.
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4.3.3 Objective Function

Although we simplified the constrained optimization problem to the
non-constrained optimization problem in Equation 4.8, solving the objective
function poses another challenge. Intuitively, one can approach the problem
using an alternating minimization approach over U and V. Solving for U,
however, does not have a closed form solution, because the low rank matrix
U is surrounded by A and v,. Using a divide-and-conquer approach, we can
solve for one row u; of U, and iterate over the entire rows. This divide-and-
conquer approach is, however, susceptible to the sequence of rows, and cannot

be generalized to an arbitrary aggregation matrix.

We propose a simple and efficient optimization solution by introducing
an auxiliary variable IT = AU where we treat IT as an independent variable.

We also relax the hard relationship between IT and U as a penalty term.
Combining these two tricks, our new objective function is written as
follows:

min [|X = UV ||+ [|VW(s — TIv, )[[3 + [|AU — I3 (4.9)

where W = (AAT)"!. This objective function is LUDIA’s objective func-
tion, and denote as £(U, V,II). We now apply our alternating minimization

technique to Equation 4.9.

Solving for U. First, we derive the partial derivative of the LUDIA
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objective function with respect to U:

0L (U, V, 1)

-0 =-XV,+UV,V,+ATAU-ATII=0

Rearranging the terms, we obtain:
UV V,+ATAU=XV, +A'Tl

This is a type of a Sylvester equation [9]. This form of equation widely appears
in the field of control theory [11], and the continuous Lyapanov equation is a
special case of the Sylvester equation. If V]V, and AT A have no common

eigenvalues, a unique solution exists and it is given as:
vec(U) = (V] V,®I, +I, ® ATA)'vec(XV, + ATII)

where vec is a vectorization operator, and ® represents the Kronecker product.

For example, vec(U) is defined as:

T
VeC(U) = [ul,l e Up1 U2 -0 Ulp,- - un,r:|

Solving for II. Next, we derive a partial derivative of the LUDIA

objective function with respect to II:

0L(U, V, )

AT =-W(s—Ilv,)v, - AU+ II=0

Rearranging the terms, we obtain another Sylvester equation:

WIlv, v, + IT = Wsv, + AU
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The solution is given as:

vec(IT) = (I, ® I, + V;Vy ® W) 'vec(Wsv, + AU)

Solving for V. Finally, we derive closed form update equations for
two block matrices V, and v,. The partial derivative with respect to V, is

given as:

0L(U, V,II)

=-U'(X-UV,)=0
oV, ( )

Rearranging the terms, we obtain:
V,=(UTU)'Uu'X

Similarly, the partial derivative with respect to v, is:

0L(U, V,II)

T T
5. = II"W(s —IIv]) = 0

Thus, the update form is:
v, = (II"WII)"'II' W5s

4.3.4 Algorithm

Algorithm 2 summarizes our alternating minimization approach com-
bining three different minimization equations for U, II, and V. The algorithm
takes three input matrices: individual-level matrix X, aggregation matrix A,
and aggregate-level matrix s. The output of the algorithm is the reconstructed

individual-level data y. The algorithm does not require any other parameters.
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Algorithm 2: LUDIA Estimation Algorithm
Data: X, A,s
Result: y
r = rank(X));
y = Ats;
U,V = SVD([X Sf] ,rank = 7);
II = AU;
while not converged do
vec(U) = (V] V, a1, + L ® ATA) vec(XV, + ATII);
Vec(H) =L oL +v, vy @ W)~ lvec(Wsv, + AU);
= (
= (

;t
T
y

U'uU)- 1UTX
IMMTAATII)- 1HTAATs;
end

y=Uv,;

// correction equation;

y =+ A(s— A7)

The initialization of U and V is based on the MP solution. We first
pseudo-reconstruct the masked individual-level data using MP, then run SVD
on the pseudo-complete matrix. The rank parameter of the SVD algorithm is
given as the rank of X. This setting captures both our low-rank data model and
a linear model defined as y = X3. If this linear model is the true underlying
data model for the data, then the rank of the complete matrix is the same as

the rank of X.

The last line of the algorithm calibrates the final output. Recall that the
optimal y* was given in Equation 4.7. This correction equation ensures that
the aggregation of the reconstructed values are the same as the given aggregate
data i.e. s = Ay. However, if the aggregate values do not necessarily need to

match the reconstructed values (possibly from noise or sub-sampling), we can
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ignore the last line of the algorithm.

4.4 Extensions

We illustrate two extensions of the LUDIA algorithm. The first exten-
sion shows that LUDIA can directly incorporate multi-level data models. This
extended reconstruction method can capture group-level effects, which were
not possible in classical frameworks. The second extension explores whether
we can improve the reconstruction quality if we have multiple levels of aggre-

gate data.

4.4.1 Multi-level Modeling

The ecological fallacy problem is essentially statistical under-identification
[115]. For aggregate data analyses, the maximum degrees of freedom are lim-
ited by the number of partitions. Individual-level analyses, such as multi-level
models [62], often require more parameters than the number of partitions. This
under-identification problem is traditionally approached by more assumptions;
Goodman’s and King’s assumptions are two extreme cases. These assumptions
are usually unrealistic, and they are almost impossible to verify on the basis

of aggregate data.

Smartly utilizing auxiliary individual-level data can provide higher de-
grees of freedom than the number of partitions. The key observation comes
from the connection between the degrees of freedom and the rank of a full

matrix. Suppose that a target y is a function of r degrees of freedom. Then
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the rank of the full matrix [X y] is r, since y can be expressed by a lin-
ear combination of X. Analogously, if a target is a multi-level function of r
variables and p levels, then the degrees of freedom for this model is given by
(r x p). To capture the variability of the target, the corresponding full matrix
needs to have the rank of (r x p). In this section, we show that this rank

augmentation can be seamlessly integrated with the LUDIA framework.
As illustrated in Equation 4.1, a multi-level model can be compactly
written as:

y=XB8+Gy+E~ [X G] {5}

where v € R™*! is a random effect vector, and G € R™*! represents encoded
covariates according to «. For this model, the degrees of freedom are given as
(r 4+ 1) where r = rank(X). The full matrix has (r + 1+ 1) columns, and this

matrix can be written as a product of two rank (r + [) matrices.

To fully reconstruct the masked individual-level data, the rank of our
low-rank model should be at least (r+1). This can be achieved by augmenting

the data by I:

~ ~ V;r \7901 VT
[X G y] - |:U U} |:\~/m2 vxS V?j:|

where U € R™! V,. € R and v, € R

Although one can run LUDIA with these augmented terms, we show
that a simple post-processing approach can mimic the result from this aug-

mentation. The block matrix V, can be treated as a nuance parameter, since
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it does not directly affect the reconstruction of y. The trick is to specify our

low-rank matrices to be of a specific form as follows:

V) 0 v/
[X(}ﬂzﬂJGwO Lvﬂ

Then we do not need to estimate U and V,, but only v,. The augmented

term v, needs to minimize the second term of Equation 4.9:

a

win VWG - AU 6] [V ]l
The solution for this minimization problem is given as follows:
v, = (AG)"WAG) ' (AG) ' W(s — AUV;)
Using this v,, we calibrate the reconstruction of y:
y=Uv, + GV,

This adjustment equation mimics the original augmentation.

This data augmentation technique for multi-level modeling is not suit-
able for the MP and ER frameworks. MP only focuses on the aggregation ma-
trix, and does not involve individual-level covariates. Adding the augmented
block matrix G requires a different approach. The number of covariates in ER
is upper-bounded by the number of partitions. The simplest multi-level model,
a random intercept model, requires the number of covariates to be the same as
the number of partitions. LUDIA utilizes the full potential of individual-level

covariates, and thus it can be easily extended to more complex models.
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4.4.2 Aggregation Stacking

Thus far, we have considered only one source of aggregate data. There
can be many levels of groupings based on geography, administration, or other
factors. This section answers how one can further improve the reconstruction

quality with additional aggregate data.

The key trick is to stack two aggregate-level datasets and create a new
aggregate dataset. Algorithm 3 illustrates this approach. In the algorithm,
we have two sources of aggregate data: (Aj,s;) and (Ag,sy). For example,
there can be county-level and state-level aggregate data, respectively. This
kind of augmentation can further improve the reconstruction accuracy. This
is because we have more constraints on y, and the degrees of freedom for y

decrease accordingly.

Algorithm 3: LUDIA with Aggregation Stacking
Data: X, Aq,s1,A9, 89
Result: y
_ (A _ [s1].
A = [Az} and s = [Sz],

y = LUDIA(X, A, s);

4.4.3 Probabilistic Interpretation

This section presents a probabilistic interpretation of the proposed LU-
DIA objective function. Figure 4.3a shows our low-rank model for the complete
data. Note that the node for y is not shaded, since the variable is masked. To

incorporate the aggregation constraint, we draw another plate that represents
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Figure 4.3: Probabilistic Models for LUDIA.

groupings. Figure 4.3b illustrates the graphical model for LUDIA. Each u; in
a group is assumed to be drawn from a multivariate Gaussian centered at .

Thus, the log-likelihood log p(U, V,IT | X, s) of LUDIA is written as:

—(X-UV)'Z (X -UV))
—(s—TIv,) =, (s — v,

Y

— (I — AU)"S_}(IT — AU) + const.

In our setting, each row of X is i.i.d., thus 3, can be modeled as an identity
matrix I,. Before characterizing ¥,, we first show that AAT is invertible
and positive-semidefinite. This property can be shown from the fact that
rank(A) = p and AAT € RP*?. Moreover, the (p, p)th diagonal component of
(AAT)~1is the same as n,, the number of data points in group p. Thus, AAT
can replace 3,. Finally, if we assume that 3, = I,, then this log-likehood is

actually a negative of the LUDIA objective function.

To show the connection to CUDIA, let us assume that we restrict the
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shape of U to be as follows:
UC S.t. Uyj € {0, 1} and Zuij =1
J

In other words, each column of U becomes an indicator column for clusters.
The rank parameter r of LUDIA is now interpreted as r different clusters, and
V represents cluster centers. If we plug in this constraint to the LUDIA’s
log-likelihood function, we obtain the log-likelihood of CUDIA. Although this
formulation may provide a different perspective on combining multiple sources
of data, the minimization of the CUDIA objective function is more complicated
to solve because of the non-negative constraint. Thus, CUDIA requires a
computationally heavy MCEM algorithm, or greedy deterministic algorithm

[100]. As the non-negative case is a special case of U, we also have:
ID - UVTE <D - UV

This is why the CUDIA imputation is not so suitable for complex model-
ing such as multi-level modeling and non-linear estimates, while the LUDIA

reconstruction provides valid inferences in such situations (see Section 4.5).

4.5 Empirical Study

We provide experimental results using simulated data and Texas Inpa-
tient Discharge data. A simulated dataset is used to illustrate the differences
between ER, MP, and LUDIA. Next, we illustrate reconstruction tasks using

actual health data. In this set of experiments, we mask sensitive columns, then
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show how well LUDIA can reconstruct the masked original values for different

analytical tasks including non-linear estimates and multi-level modeling.

4.5.1 Simulated Data

We generate four different simulated datasets as follows:

e Low-Rank (LR) model emulates the model assumption of LUDIA. The
parameters are given as r = 2 and m = 4. The equation for simulated

data is as follows:
X y]=UV' +E

where U and V are drawn from the standard normal distribution, and
the noise matrix E is drawn from a normal distribution with 0.4 standard

deviation.

e Fixed Effect (FE) model emulates the model assumption of ER. We
generate individual-level matrices with m = 2 from the standard normal

distribution. The model equation is:
y=c+XB+E

where E is drawn from a normal distribution with 0.2 standard deviation.

e Random Intercept (RE1) and Random Slope (RE2) model check whether

the LUDIA’s multi-level argument is valid. The model equation is:
y=c+XB8+Gy+E

where 7y is drawn from a normal distribution with 0.2 standard deviation.
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We fix the number of partitions to be five, and vary the number of total
data points. Aggregation matrices are generated using random assignment of

partitions.

Figure 4.4 shows the reconstruction errors for different simulated data
and reconstruction methods. Each cell represents a different simulated dataset,
and the horizontal axes represent the number of data points per partition. The
lower the curve is, the better the reconstruction quality is. MP is not affected
by the number of data points per partition, but its performance is the worst
from the experiments. The performance of ER is comparable with that of
LUDIA for the FE dataset, but it does not capture the low-rank structure
and random effects. For the random effect datasets, ER is largely affected
by the number of data points per partition. LUDIA shows robust and stable

performances over different datasets.

Figure 4.5 shows the reconstructed values compared to the original val-
ues from the RE1 dataset. The leftmost first two cells show the reconstructed
values from MP and ER, respectively. In this figure, we show three different
initialization methods for LUDIA: MP, ER, and random initialization meth-
ods. The alternating minimization approach of LUDIA does not guarantee the
convergence to the global optimum, and the algorithm is susceptible to ini-
tial points. All three initialization methods provide comparable performances,
and it would be worthwhile to investigate the better choice of initialization
methods. The rest of the experiments use the MP initialization to maintain

the consistency of our algorithm.
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Figure 4.4: Reconstruction error vs. number of data points per partition.
Except the FE case, the LUDIA reconstruction shows the least absolute errors.

4.5.2 Texas Inpatient Data

We use Texas Inpatient Public Use Data File [131] from the Texas De-
partment of State Health Services (DSHS). Hospital billing records collected
from 1999 to 2007 are publicly available through their website. Each yearly
dataset contains about 2.8 millions events with more than 250 features includ-
ing hospital name, county, patient ZIP codes, etc. Specifically, we use the
inpatient records from Central Texas in the fourth quarter of 2006. Except for
a few exempt hospitals, all the hospitals in Texas reported inpatient discharge
events to DSHS. The public use data file we use is a subset of the DSHS’s

hospital discharge database. Our primary interest is the hospital charge for
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Figure 4.5: Reconstructed vs. original. We show three different initializations
for LUDIA: MP, ER, and random initializations. All these three LUDIA recon-
structions are closer to the original values, and the MP initialization performs
the best.

normal delivery. We aggregate the individual-level hospital charges at county-,
hospital-, and ZIP code-levels. We assume that some of the individual-level

covariates are available such race, specialty unit, length of stay variables.
Hospital charge is primarily a function of length of stay, but it is sub-
stantially different across regions and is also affected by many other factors:

HC = BhospitalLOS® + unit + severity + . . . + error

where HC and LoS represent Hospital Charge and Length of Stay, respectively.
Note that the coefficient for LoS is indexed by hospital, since daily charge rate
is a function of hospital. The distribution of HC is, in fact, similar to a log-
normal distribution. It is a better practice to log-transform the data, before

applying a linear model:

log HC = log Bhospital + @ log LoS + ... + Error’
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Table 4.3: Reconstruction Accuracy of the Texas dataset

Level Model MAE MSE
MR 0.648 (£ 0.75)  0.976 (£ 3.28)
County ER  0.466 (£ 0.45) 0.422 (& 0.87)
LUDIA 0.514 (£ 0.48) 0.497 (& 1.14)
MR 0.609 (£ 0.69) 0.851 (& 2.92)
Hospital ER 0513 (£ 0.49) 0.501 (& 1.10)
LUDIA 0.435 (£ 0.40) 0.348 (&£ 0.68)

MR 0589 (&£ 0.69) 0.824 (& 2.92)
Patient ZIP  ER  0.319 (+ 0.28)  0.184 (& 0.38)
LUDIA 0.289 (£ 0.26) 0.152 (& 0.34)

This log-transformed linear model turns out to be a simple random intercept

model.

Table 4.3 shows the reconstruction errors from three different levels
of aggregation. Except for the county-level case, the LUDIA-reconstructed
values are the closest to the original values with smallest variances. ER per-
forms slightly better than LUDIA for the county-level aggregate data. This
is because the multi-level effects at county-level are not distinctive enough i.e.
the constancy assumption can be applied. Figure 4.6a illustrates the recon-
structed values compared to the original values. If reconstruction is perfect,
points should lie on the dotted diagonal lines. As can be seen, the MP recon-
structions do not capture the tails. This is because, when the HC values are
averaged, those tail values are typically cancelled out, and MP cannot infer
beyond the provided average statistics. The ER reconstructions perform rea-
sonably well, but does not capture the multi-level bias. LUDIA provides better

estimates for the original values in terms of Mean Absolute Error (MAE).
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Figure 4.6: (a) Reconstructed vs. original for the 3 models. (b) Estimated
histograms of daily hospital charges. LUDIA histogram is the closest to the
original.

The advantages of LUDIA are even more highlighted when calculating
non-linear estimates. As an illustrative example, suppose that we want to
estimate average daily charges. To calculate this value, we first need to re-
construct individual-level hospital charges, and then divide the reconstructed
charges by the individual-level length of stay variable. In other words, average

daily charges are calculated as follows:

1« HC;
Average Daily Charge = —
n < LoS;

Figure 4.6b show the histograms of the estimated average daily charges. As
can be seen, the histogram from LUDIA captures the asymmetrical shape of

the original histogram.

As shown in Section 4.4, multi-level modeling can be directly integrated

with LUDIA. We extract rural counties of Central Texas, and compare the
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Figure 4.7: Multi-level modeling and the mean squared errors, shown as
“MSE(Random Effects)”, between the original random effects and estimated
random effects. LUDIA’s random effects are almost the same as the original.

hospital charges by applying a random intercept model. Figure 4.7 shows the
fitted lines from the multi-level models. As can be seen, the original data
clearly show the random intercept terms. It was impossible to estimate the
slope term from the MP reconstructed values. For the ER reconstructed values,
although the global model was similar to the original data, we cannot visually
check the random intercepts. This is because ER ignores the information from
the aggregation matrix. On the other hand, LUDIA provides almost the exact

same random effect coefficients.

Reconstructed values from aggregate data can be used in various data

mining applications. We show a simple predictive analysis when a target
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column is provided in an aggregate form. By reconstructing the individual-
level target values from the aggregate data, we can train a model, and then

apply the model to test data as follows:

1. Combine the aggregate and individual-level data, then reconstruct the

masked column
2. Train a predictive model using the pseudo complete data

3. For new data points, predict the target values using the trained model

We first divided the Texas inpatient dataset into a training (80%) and a
hold-out (test, 20%) set. Assuming the total charges (target) are provided
in only an aggregate form, we reconstruct the target using three different
algorithms. We trained a Lasso regression model, and then measured the pre-
dictive accuracies of the target. Figure 4.8 shows the results from the test
set. As can be seen, the LUDIA-reconstructed training dataset provides the
best Lasso model in terms of MAEs. In this example, we included the perfor-
mance of a model that is trained on CUDIA-reconstructed data. The CUDIA-
reconstructed dataset provides better predictive accuracies than the MP- and
ER-reconstructed training datasets. However, CUDIA is still a clustering al-
gorithm, and the reconstruction from CUDIA is based on estimated cluster
centers. Although CUDIA provides homogenous cluster centers, it does not
generate fine-grained reconstruction like LUDIA. The predictive Lasso model
trained on the CUDIA-reconstructed dataset exhibits higher MAE and vari-

ances than the model trained on the LUDIA-reconstructed dataset.
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Figure 4.8: Predictive performance of the Lasso (glmnet) models trained on
the reconstructed data. Absolute errors are measured using a hold-out dataset.

4.6 Summary

The implication of LUDIA can be viewed from two perspectives.

Utility perspective. Our method allows aggregated data to be effec-
tively utilized in individual-level inferential tasks. This is particularly impor-
tant since standard imputation techniques do not make use of the summary
statistics provided by aggregated data that are widely available for social good.
Many machine learning algorithms that require completely observed data can

now be directly applied to the LUDIA-reconstructed data.

Privacy perspective. Although the reconstructed values are not
guaranteed to be identical to the true values, it is clear that the estimated

values are correlated with the actual values. If additional theoretical guar-
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antees are developed, data aggregation may be no longer perfectly safe from
privacy attacks. With enough auxiliary information, it is possible that private
information gets revealed using techniques similar to LUDIA. This implies
that, in the future, reconstruction performance will need to be considered

prior to data aggregation, to guarantee that privacy requirements are met.

The proposed LUDIA framework can be extended to more complex
data models. It is also worthwhile to investigate more efficient solutions for
the Sylvester equation. One can also explore theoretical reconstruction guar-
antees that depend on the characteristics of the datasets and of the aggregation

matrices.
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Chapter 5

Privacy-aware Decision Tree API

Open API (Application Programming Interface) is a set of end point
protocols between websites. The technology has been rapidly adopted in Web
2.0 applications; in 2011, Twitter Inc. processed 13 billion API calls per day
on average [43]. Through APIs, developers can quickly build websites that
interact with external computational servers and databases. In recent years,
several government agencies, such as the United States Census Bureau' and
the Bureau of Labor Statistics?, have opened access to their databases through
APIs. Healthdata.gov® and Data.gov? also have released APIs that allow users

to access their healthcare datasets.

In this chapter, we are primarily interested in implementing data-
mining APIs that access healthcare databases. Such APIs can facilitate and
catalyze developments of mobile and web applications for patient engagement
and compliance. As an illustrative example, consider two APIs that provide

risk scores for diabetes and septic shock:

http://www.census.gov/developers/
2http://www.bls.gov/developers/
3http://healthdata.gov/data-api
‘https://www.data.gov/developers/apis
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e Diabetic Risk Score API

POST /diabeteScore
Request
Content-type: application/json
{ "glucoselLevel": "130", "bodyMassIndex":
Response
Content-type: application/json

{ "riskScore": "80%" }
e Septic Shock Risk Score API

POST /septicShockScore
Request
Content-type: application/json
{ "systolicBP": "105", "heartRate": "61",
Response
Content-type: application/json

{ "riskScore": "60%" }

ceptually illustrates our API call framework.

Data access scenarios through APIs are substantially different from
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where users send their health information, and receive risk scores using the

RESTful (Representational State Transfer) framework [49]. Figure 5.1 con-

traditional publication and utilization scenarios, so are privacy breaches. Al-

though individual records are not directly revealed, an attacker can combine
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Figure 5.1: Privacy-preserving API call.

a certain set of API calls, and identify the structures, algorithms, parameters,
and sometimes individual records of external databases. Calandrino et al. [19]
showed that passive observations of Amazon.com’s collaborative filtering out-
puts, which can be viewed as a data-mining API, can reveal customers’ trans-
action records. By observing temporal changes of recommendation outputs,
the authors designed an algorithm that achieves 80% accuracy on estimating
transactions for a subset of customers. Privacy breaches from APIs are not
limited to collaborative filtering applications. Narayanan and Shmatikov [97]
showed that topological information, which can be obtained through Facebook
and Twitter APIs, can be used to de-anonymize social network data. Prevent-
ing privacy breaches from data APIs is critical as the web is becoming more

social and personalized.

Even our straightforward risk score APIs can be vulnerable from privacy

attacks:
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Case Study 5.0.1. Alice was showing Bob her new diabetic risk score mobile
application, and Bob happened to see her diabetic risk score by chance. Bob
knows Alice’s basic health information such as age and gender, but he does
not know whether she has other chronic conditions e.g. hypertension. He
downloads the same mobile application, and simulates chronic conditions until
he gets exactly the same score that he saw from Alice’s phone. Now, Bob knows

which other chronic conditions Alice has.

Case Study 5.0.2. This time, Bob discovered that the training dataset of the
risk score application is, in fact, derived from his hospital. He also found out
that the app is using a decision tree as its risk score algorithm. Bob knows that
Dave is the only one who has similar demographic and health conditions in the
hospital. Bob wants to know whether Dave has diabetes, and finds that the
structures and estimates of decision trees change depending on Dave’s diabetic
conditions {True, False}. After testing some simulated inputs, Bob now knows

that Dave has diabetes.

These two cases are only a subset of potential privacy attack cases.
In practice, privacy attacks can accompany more sophisticated and malicious
techniques such as eavesdropping and wire-tapping. Therefore, the API out-
puts and internal algorithms should be properly randomized to alleviate the

risks for privacy breaches.

To address the privacy breaches in data-mining APIs, this chapter pro-

poses differentially private decision tree, Differentially Private a-Tree (DPaT).
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In the proposed framework, each API call costs € in the differential privacy
regime. Note that, in practice, ¢ can be associated with a dollar amount in
proprietary API engines e.g. Google Map charges $0.5 per 1000 map loadings.

DPaT is a two stage algorithm:

1. Model-layer: We construct a 0-differentially private tree structure i.e.
a decision tree structure that does not change regardless of inclusion or

deletion of any record in the training dataset.

2. Output-layer: We calculate the sensitivity of the output, and add

Laplace noise to achieve e-differential privacy.

The performance of DPaT is, of course, inversely correlated with the level of
privacy protection; higher levels of privacy guarantees result in lower accura-
cies of the results. This Pareto-frontier can be improved through a classifier
ensemble technique. We show that an ensemble of DPaTs can enhance the
risk score performance at a given privacy level. Our empirical study using
Pima Indian and MIMIC-II datasets shows that accurate risk score APIs can

be implemented without sacrificing data privacy.

In this chapter, D represents a dataset that consists of feature variables
{X;}¥ and class label Y. We focus on binary classification problems, thus
Y € {0,1}. Without loss of generality, we assume that X; is a binary feature.
Such binary features can be obtained by 1) dummy-coding for categorical
variables, and 2) thresholding for numerical variables. For example, for a

numeric variable Z € R, we set up K number of thresholds (¢,ts,...,tx),
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and then create K + 1 number of binary variables by I(tx_1 < Z < t)) where
kel: K+1,ty= —o0, and tx.1 = oco. The binary feature variables X in
this chapter is obtained from the original feature variable Z that can be multi-
category and numeric variables i.e. X = Binarize(Z) where Z refers to the
original feature variable. Since all the features are binary variables, selecting a
splitting “variable” is equivalent to partitioning the original dataset into two

groups, {(X,Y) | X;« =0} (left) and {(X,Y) | X;« = 1} (right).

5.1 Preliminaries
Decision trees are rule-based classification algorithms that can be ob-

tained through:

1. selecting a splitting feature based on a certain criterion,
2. partitioning input data based on the selected splitting feature, and then

3. recursively repeating this process until certain stopping criteria are met.

Decision trees use different splitting criteria, e.g. C4.5 and ID3 use Information
Gain and Information Gain Ratio [107], CHAID uses the Chi-squared test,
and CART [16] uses the Gini impurity measure. There are numerous other
impurity measures such as misclassification rate and Hellinger distance. It is
generally believed that no single splitting criterion is guaranteed to outperform

over the other criteria [38, p. 161].
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A divergence, D, (P||Q), is a function that measures the distance be-
tween two distributions: P and Q. There exists many different kinds of diver-
gences such as f-divergence [29] and (- and 7-divergences [27]. a-Tree uses
a-divergence [70, 141], defined as follows:

[, aP(x) + (1 — 0)Q(x) — P(2)*Q(z)'"da
a(l — a)

Da(PlQ) = (5.1)

where P and Q are two probability distributions, and « is a real number.
The a-divergence was introduced by Chernoff [26] to upper-bound the the-
oretical error probability of classification tasks. The mathematical form of
a-divergence is closely related to those of Renyi entropy [114], Tsallis entropy

[132], and generalized diversity index [72]; all four share the exponent term «.

If both P and Q are proper probability density functions (i.e. [ P(z)dz =
[, Q(x)dx = 1), then Equation (5.1) simplifies to:

Da(PlQ) = 1= J: P;((xl)"‘_QOE;:) e (5.2)
Some special cases are:
D) =5 [ (5.3
lim D, (PQ) = KL(QP) (5.4)
Dy(P1Q) =2 [ (V&) - Q)i (5.5)
lim D, (PQ) = KL(P|[Q) (5.6)
DplQ) = [ O (5.7
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Equation (5.5) is Hellinger distance, and Equations (5.4) and (5.6) are KL-
divergences. Note that a-Divergence is always positive and is zero if and only if
P = Q. Hence, a-divergence can be used as a (dis)similarity measure between

two distributions.

a-Tree is a generalization of several decision trees, such as C4.5 and
CART. The impurity reduction criterion in C4.5 can be written as a divergence

maximization criterion as follows:

min ZP H(Y | x)

=max H(Y)—-H(Y | X)

= max T 0 P(z,y)
= ) P18 By,

= max KL(P(X,Y)|[P(X)P(Y))

= max_lim D,(P(X,Y)[[P(X)P(Y))

Replacing the KL divergence with the a-divergence yields the a-Tree algo-
rithm, outlined in Algorithm 4. Thus, the a-divergence criterion selects a
splitting feature which gives the maximum a-divergence between P(X,Y") and

P(X)P(Y). The C4.5 splitting criterion can be obtained using a = 1.

The « value determines the selection of splitting features, and different
values can yield distinct splitting features. This property has been used to

increase the diversity of base trees in an ensemble framework [101].
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Algorithm 4: a-Tree

Data: 8§ ={(X,Y)},a

Result: T

X;» = argmaxy, Do(P(X;, Y)||P(X;)P(Y)) ;

if stopping_criteria(8)="True then

| EY[8];

else
Tett = a-Tree({(X,Y) | Xi» =0}, ) ;
Tright = a-Tree({(X,Y) | X;» =1}, a) ;

end

T = {Tett, Tright }

5.2 Differentially Private Decision Tree

Differentially private decision trees are built in two phases: building
a O-differentially private decision tree structure, and adding noise to the leaf
nodes. We anatomize a decision tree into two parts: structure and nodes.
Figure 5.2 illustrates the concept. In short, structure refers to decision rules,

and nodes indicate probability estimates.

[]

] ] Node

Figure 5.2: Structure and Node of Decision Tree.
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5.2.1 Model-layer: obtaining 0-DiffStructure

In this section, we show that it is “possible” and “easy” to obtain
a O-differentially private decision tree structure. In the differential privacy
regime, O-differential privacy is achieved when a single data point does not
change the output of a function. Therefore, 0-differentially private decision
tree structure (henceforth, 0-DiffStructure) refers to a decision tree structure
that does not change regardless of any single data point being removed or
added. An algorithm for obtaining a 0-DiffStructure can be formally described

as follows:

Pr(T = 0-DiffStructure(D’))
Pr(T = 0-DiffStructure(D))

<exp(0)=1 (5.8)

where T is a tree structure, and D and D’ are two datasets that differ at most
one element. For a deterministic 0-DiffStructure algorithm, Equation 5.8 can

be re-written as:

T = 0-DiffStructure(D)
= 0-DiffStructure(D’)

VD" such that Do D'| <1

since Pr(T = 0-DiffStructure(D’)) = 1.

A decision tree structure is essentially a ordered list of splitting vari-
ables. If the list of splitting variables do not change regardless of training

datasets, then a decision tree structure can be said as O-differentially private.
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Table 5.1: Summary of all possible 8 cases.

PX=1,Y=1) P(X=1,Y=0) P(X=0Y=1) P(X=0,Y=0)

Case 1 ni +1 N1 no1 100
Case 2 ni1 nig + 1 no1 100
Case 3 ni nio ng1 +1 100
Case 4 n11 n10 101 ngo + 1
Case 5 ny —1 n10 01 100
Case 6 ni1 ny — 1 no1 100
Case 7 ni1 n10 nor — 1 100
Case 8 n11 n10 01 ngo — 1

0-DiffStructure admissible splitting variable is a variable that is consis-
tently chosen as a splitting variable across all the datasets that differ by at

most one element. Thus, a splitting variable is 0-DiffStructure admissible if:

X

D:Xi*

D VD st [DeD|<1

where X;-

D represents the splitting variable from dataset D. Recall that,

in a-Tree, a splitting variable is a variable that provide the highest a-gain.

X

D =arg max Do (Pp(X;,Y)|[Pp(X:)P(Y))

where Pp(X;,Y) and Pp(X;)Pp(Y) are estimated from data.

Obtaining a 0-DiffStructure admissible variable is relatively straight-
forward. When calculating a-gain values for each feature, the first step is to

construct a contingency table as follows:

Y=1Y=0
X=1 ni1 N10 nq.
X=0 No1 Moo no.
n.a N.o n..
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where n;; specifies the count of examples that are (X = 4,Y = j). The

relationships between n;;’s are given as:
n.j == noj + nlj
Nj. = Njo + N1
n.. =Mny. +Ng. =nN.q+ Ny

For this contingency table, a-gain is obtained as follows:

1=, P(X =0, Y = j)°P(X =)' *P(Y = j)"

o-gain =

a(l — )
. . Ny
P(X=4Y=j)=—
..
. M. N

Note that addition of a data point changes n;; to n;; 41, and deletion of a data
point transforms n;; to n;; — 1. Since ¢ and j can be either 0 or 1, there are
8 possible cases. Thus, the extensive permutation of all possible datasets can
be summarized into only 8 possible cases as shown in Table 5.1. From these 8
cases, we can derive the minimum and the maximum of a-gains across all the
possible datasets that differ at most one element from the original dataset D
ie. {D'||DeD| <1}

If X; is 0-DiffStructure admissible, then the minimum of a-gain should
be greater than the maximums of the other variables’ a-gains. Thus, we have

a simple sufficient condition for filtering 0-DiffStructure admissible variables:

min Do (Po (X, ¥V)|[Po (X )Po (V) = max Do (Po (X, V) |[Po(X;)Po(Y))
(5.9)
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where X;- is the 0-DiffStructure admissible variable, and X represents any

variable in the dataset that is not X;-.

An algorithm for obtaining a 0-DiffStructure is illustrated in Algo-

rithm 5. For each variable X;, the minimum and maximum of a-gain values

Algorithm 5: 0-DiffStructure
Data: § ={(X,Y)},«a
Result: T
Initialize kK, A = [J;
for ¢ in 1:M do

Initialize A = [|;

for case jin 1:8 do

| A = Da(Pesse s (X5, V)| Pesse s (X:) e s (V)
end

K; = min A;

A = max A;

end
Kix = max(K1, Ko, ... Knr);
if ki >\, Vj#7 then
Tete = 0-DiffStructure({(X,Y) | X;» = 0}, );
Tright = O-DiffStructure({(X,Y) | Xi» = 1}, o);
else
| return {Number of Pos. : n.;, Node Size : n..};
end

T = {Thetes Tright | ;

for the 8 cases are stored in k; and \;, respectively. We now use the sufficient
condition for 0-DiffStructure admissible variables, described in Equation (5.9).
The maximum of the minimums, i.e. max(ky, ks, ..., Ky ), is stored in k. If
ki is greater than the maximum a-gains A; of the other variables, then the

1*th variable is 0-DiffStructure admissible. If there exists a 0-DiffStructure
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admissible variable, then the algorithm is recursively applied to two disjoint
subsets of the input dataset that are partitioned based on X;«. Otherwise, the
0-DiffStructure algorithm stops and returns two values: the number of positive

class examples and the total number of examples.

Not all splitting variables are 0-DiffStructure admissible variables, so
the resultant tree from the 0-DiffStructure algorithm is typically smaller than
regular decision trees. Note that an obtained 0-DiffStructure is 0-differentially
private only for its decision tree structure, not the leaf nodes. To achieve

e-differential privacy, the leaf nodes need to be properly noised.

5.2.2 Output-layer: e-DiffPerturbation

Differentially Private a-Tree (DPaT) is a two-layered algorithm: O0-
DiffStructure (model-layer) and e-DiffPerturbation (output-layer). In this
section, we explain the latter part of the algorithm. Recall our API use
case scenario in Figure 5.1. When a query arrives, the query traverses a 0-
DiffStructure, and then eventually reaches a leaf node. The leaf node contains
two numbers: the number of positive class examples n.;, and the total number
of examples n... Without privacy concerns, the maximum likelihood estimator

for the positive class is as follows:

S

API output = —

*|

However, returning this naive estimate may result in privacy breaches such as

the kinds described in Case Study 5.0.1 and Case Study 5.0.2.
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For numeric outputs, differential privacy can be achieved by adding
calibrated noise to the true outcome of a query. Before adding calibrated

noise, the global sensitivity of a function needs to be defined.

Definition 5.2.1 (Sensitivity [45]). For f: D — R, the sensitivity of f is:

Af =max || f(D) — f(D) [h (5.10)

D, D!

where |D & D’| < 1.

Given the sensitivity of a function f, Theorem 5.2.1 provides the sim-

plest implementation of e-differential privacy.

Theorem 5.2.1 (Additive Laplace Noise [45]). For f: D — R, a mechanism
that adds independently generated noise with distribution Laplace(Af/€) to an

output term enjoys e-differential privacy.

The sensitivity of our output is straightforward:

ni+1 ng

¢ = max( n. ’n..—l)
. (n.1+1 n.l—l)
= min
X n.+1 n.—1
A=¢—x

Thus, we add Laplace noise as follows:

. A
API output = 1 + Laplace(0, —)
n. €

This mechanism provides e-differential privacy.

The full algorithm for Differentially Private a-Tree (DPaT) is as follows:
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1. Construct a 0-DiffStructure from the training dataset
2. For each API call,

(a) Traverse the constructed 0-DiffStructure
(b) Extract the corresponding leaf node
(c) Calculate the sensitivity of the node

(d) Add e-calibrated Laplace noise, then return

The predictive performance of DPaT is mainly determined by the level
of privacy imposed €. Higher € values (low level of privacy) provide more accu-
rate predictions, and lower e values tend to be more noisy providing higher level
of privacy protection. In DPaT, the privacy parameter € only affects the out-
put layer, as the model layer already achieves the highest level of privacy pro-
tection, O-differential privacy. Two extreme cases are 0- and oo-differentially
private a-trees. To implement a 0-DPaT, we add random noise sampled from
Unif(—o00,00). On the other hand, an co-DPaT outputs the true output as it

is, since Laplace(0,0) is a deterministic distribution.

5.2.3 Extension: Ensemble of Differentially Private a-Trees

The predictive performance of a single DPaT is generally not so good
as regular decision trees. There are two disjoint reasons that explain the

performance behavior:
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e Model-layer: 0-DiffStructure is generally more restrictive than regular

decision tree structures.

e Output-layer: Additive Laplace noise perturbs the true outputs.

Although 0-DiffStructure provides nice privacy guarantees, the structure prefers

only strong signals ignoring weakly related variables.

We show that we can enhance the predictive performance of DPaT
by leveraging the classifier ensemble theory. An ensemble of a diverse set of
classifiers can yield better results [79]. Recall that, in a-tree, the o value
determines the selection of splitting features, and different values of « can
yield distinct splitting features. Similarly, we can obtain a diverse set of 0-

DiffStructures by varying « in a-gain.

The difference from traditional ensemble methods is that we need to
combine the sensitivities of the base DPaT's as well. For each base 0-DiffStructure
7, the maximum and minimum of the output values are noted as ¢; and x;. Re-
call that the maximum and minimum are defined with respect to the extensive

8 cases:

n.g + 1 .

P — ) Xz
¢ max( n. n.. — 1) ‘
oong+1 ng—1
i ) XZ
X mm(n..—i—l n..—l) |

In theory, the maximum of the average output is achieved when all the base 0-

DiffStructures’ outputs hit their maximum, and the minimum is achieved when
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all the base 0-DiffStructures record their minimum. Thus, the sensitivity of

the average output can be obtained as follows:

A= Average(¢17 ¢27 to >¢E) - Average(Xb X2 7XE)

= Average(¢1 — X1, %2 — X2, -+ P2 — XE)
= Average(A1, Ag, ..., Ag)
where E represents the total number of base 0-DiffStructures.

The algorithm for Ensemble of Differentially Private a-Trees (EDPaT)

is illustrated as follows:

1. Construct E number of 0-DiffStructures from the training dataset by

varying «
2. For each API call,

(a) For each base 0-DiffStructure,

i. Traverse the constructed 0-Diff Structure
ii. Extract the corresponding leaf node

iii. Calculate the sensitivity of the node
(b) Combine the sensitivities of the base 0-DiffStructure

(¢) Add e-calibrated Laplace noise, then return

The values of o can be any real number. In practice, one can try many «

values and pick the values that give distinct 0-DiffStructures.
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5.3 Empirical Study

We provide two sets of experiments: diabetic risk scores using Pima

Indian dataset, and septic shock risk score using MIMIC-II dataset.

PIMA Indian. The Pima Indian Diabetes dataset is a well-studied
public machine learning dataset. The dataset contains 8 feature records of
768 female patients with Pima Indian heritage. The available features in the

dataset include:

e Glucose: Plasma glucose concentration in an oral glucose tolerance test
e BMI: Body Mass Index

e Other features: number of times pregnant, diastolic blood pressure, tri-

ceps skin fold thickness, etc.

The class label in the dataset indicates the diagnosis of diabetes. Although
there are missing values in the dataset (noted in [7]), we do not specifically

treat such missing values.

We first compare the regular tree structure (C4.5) and 0-DiffStructure
that are from the same dataset. Figures 5.3 and 5.4 show the regular tree
structure and 0-DiffStructure, respectively. As can be seen, both structures
have the same splitting variables until the second level splits. However, except
for the “bmz > 26.84” node, all the second stage nodes of the 0-DiffStructure
stopped growing, since there were no more 0-DiffStructure admissible vari-

ables. Figure 5.5 shows the values of a-gain measured from the root node and
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Figure 5.3: Regular a-Tree (a = 1, C4.5) trained on the Pima Indian Dataset.
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Figure 5.4: 0O-differentially private tree structure trained on the Pima Indian
Dataset.
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Figure 5.6: Results from the Pima Indian dataset.

the “plasma.glucose > 157.7" node (the last node) of the 0-DiffStructure. The
error bars in Figure 5.5 represent the minimum and maximum values computed
from the exhaustive 8 cases (see Table 5.1). In the root node, we can observe
that the minimum a-gain of “plasma glucose” is significantly higher than the
maximums of the other variables, hence “plasma glucose” is chosen as the 0-
DiffStructure admissible variable. On the other hand, at the ‘bmi < 26.84”
node, although “bmi” exhibits the highest a-gain value, but the minimum of
“bmi” is smaller than the maximum of “age”. Without the 0-DiffStructure
constraint, the “bmi” variable would have been chosen as a splitting variable.
In fact, the “bmi” variable is the next splitting variable in the regular decision

tree structure as shown in Figure 5.3.

Figure 5.6 shows the predictive performance of DPaT and EDPaT over
different privacy level constraints. The Pima Indian dataset is randomly par-

titioned into a training and test sets (50:50), and we measured the predictive
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performance (Area Under Receiver Operating Characteristics, AUROC) on
the test set. This experiment is repeated 30 times, and the error bars repre-
sent the standard deviations. As a baseline, we also measured the performance
of C4.5 without privacy constraints (shown as a green line). As can be seen,
EDPaT exhibits higher AUROC values than DPaT for the same privacy level
e. Noticeably, the performance of EDPaT is comparable to that of a regular
decision tree in the region of ¢ > 1. Figure 5.6 (b) shows the ROC curve at
e = 1. As the outputs of DPaT and EDPaT are perturbed using Laplace noise,

the resultant ROC curves are not so smooth as compared to the curve of C4.5.

MIMIC-II. The MIMIC-II database [120] is one of the largest pub-
licly available clinical databases. The database contains more than 30K pa-
tients and 40K ICU admission records. Among many other conditions, in this
chapter, we focus on patients with systemic inflammatory response syndrome
(SIRS) for septic shock prediction. The features are derived primarily from
non-invasive clinical measurements and include blood pressure (systolic and
diastolic measurements), body temperature, heart rate, respiratory rate, and
pulse oximetry. For each measurement, we use the last observed measurement
and three additional sets of derived features: max, min, average values within

the last 12 hours.

Septic shock is defined as “sepsis-induced hypotension, persisting de-
spite adequate fluid resuscitation, along with the presence of hypo perfusion
abnormalities or organ dysfunction” [13]. The time of septic shock onset was

defined using the criteria outlined in a recent work on septic shock prediction
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Figure 5.7: Results from the MIMIC-II dataset.

[67]. For this subset, there is a total of 1359 patients with 213 transitioning

to septic shock.

Figure 5.7 illustrates the results from the septic shock dataset. The sep-
tic shock dataset is randomly partitioned into a training and test sets (50:50),
and we measured the AUROCs on the test set. Similar to the Pima Indian
experiment, this experiment is also repeated 30 times, and the error bars rep-
resent the standard deviations. EDPaT again records higher AUROC values
than DPaT for the same privacy level e. Surprisingly, the performance of ED-
PaT is quite comparable to that of C4.5 in the region of € > 1. This implies
that it is possible that the predictive performance can be maintained while

providing rigorous privacy guarantees.
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5.4 Summary

This chapter developed an algorithm for privacy-preserving decision
tree APIs. DPaT and its ensemble extension EDPaT provide reasonable pre-
dictive performance while protecting the privacy of users. Although we pre-
sented only risk score API examples, numerous other APIs can be similarly
implemented. For example, hospital quality score estimation, readmission rate
prediction, and medical fraud detection problems are possible candidate ap-
plications for the DPaT framework. We believe that this kind of privacy-
preserving APIs can facilitate creating a safe and accessible environment for

healthcare mobile and web applications.
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Chapter 6

Conclusions and Future Directions

Open access to health data can unleash a myriad of research and in-
dustry opportunities, which will bring enormous social and economic benefits.
However, such access can also lead to privacy breaches, which may result in
discrimination in insurance and employment markets among others. Unfortu-
nately, the utility of data cannot be increased without sacrificing some privacy.
Calibrating the trade-off between utility and privacy will be the key for suc-

cessful adoption of open health data.

Privacy is a subjective and contextual concept, and it needs to be ad-
dressed from both systemic and information perspectives to precisely under-
stand privacy breaches and consequences. This dissertation specifically ad-
dressed three popular use cases of health data: 1) synthetic data publication,

2) aggregate data utilization, and 3) privacy-aware API implementation.

PeGS is a categorical data synthesizer algorithm that guarantees a
quantifiable disclosure risk. PeGS can handle high-dimensional categorical
data that are intractable if represented as contingency tables. California Pa-
tient Discharge data were used to demonstrate statistical properties of the

proposed synthetic methodology. In practice, PeGS can be applied to already
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k-anonymized (generalized and suppressed) data, yielding higher protection

on data privacy.

LUDIA and CUDIA are novel low-rank approximation algorithms
that utilize aggregation constraints in addition to auxiliary information in or-
der to estimate or “reconstruct” the original individual-level values from aggre-
gate data. Experimental results using a Texas inpatient dataset showed that
individual-level data can be reasonably reconstructed from county-, hospital-,
and zip code-level aggregate data. Several factors affecting the reconstruction

quality were also discussed.

DPaT is a privacy-preserving decision tree API framework. The pro-
posed API framework is a general framework that can be adapted to various
applications such as hospital quality score estimation, readmission rate pre-
diction, and medical fraud detection problems. Pima Indian and MIMIC-II

datasets were used to demonstrate diabetic and septic shock risk score APIs.

The landscape of open health data is rapidly evolving with new data
sources, collection methods, and formats. Mobile devices collect behavioral
and mobility tracking data, and social network services present graph data.
Unstructured data, such as doctors and nurses’ notes, are significant in the
healthcare domain. Perception of privacy also has changed dynamically over
time, and moreover, different cultures exhibit different levels of privacy aware-
ness. These are the open questions for future research to fully and precisely

understand the actual privacy risks and benefits of sharing data.
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