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Abstract

The growing disparity between data set sizes and the amount of fast internal memory

available in modern computer systems is an important challenge facing a variety of

application domains. This problem is partly due to the incredible rate at which data

is being collected, and partly due to the movement of many systems towards increas-

ing processor counts without proportionate increases in fast internal memory. Without

access to sufficiently large machines, many application users must balance a trade-off be-

tween utilizing the processing capabilities of their system and performing computations

in memory. In this thesis we explore several approaches to solving this problem.

We develop effective and efficient algorithms for compressing scientific simulation

data computed on structured and unstructured grids. A paradigm for lossy compression

of this data is proposed in which the data computed on the grid is modeled as a graph,

which gets decomposed into sets of vertices which satisfy a user defined error constraint

ε. Each set of vertices is replaced by a constant value with reconstruction error bounded

by ε. A comprehensive set of experiments is conducted by comparing these algorithms

and other state-of-the-art scientific data compression methods. Over our benchmark

suite, our methods obtained compression of 1% of the original size with average PSNR

of 43.00 and 3% of the original size with average PSNR of 63.30. In addition, our

schemes outperform other state-of-the-art lossy compression approaches and require on

the average 25% of the space required by them for similar or better PSNR levels.

We present algorithms and experimental analysis for five data structures for repre-

senting dynamic sparse graphs. The goal of the presented data structures is two fold.

First, the data structures must be compact, as the size of the graphs being operated on

continues to grow to less manageable sizes. Second, the cost of operating on the data

structures must be within a small factor of the cost of operating on the static graph,

else these data structures will not be useful. Of these five data structures, three are

approaches, one is semi-compact, but suited for fast operation, and one is focused on

compactness and is a dynamic extension of any existing technique known as the Web-

Graph Framework. Our results show that for well intervalized graphs, like web graphs,

the semi-compact is superior to all other data structures in terms of memory and access
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time. Furthermore, we show that in terms of memory, the compact data structure out-

performs all other data structures at the cost of a modest increase in update and access

time.

We present a virtual memory subsystem which we implemented as part of the

BDMPI runtime. Our new virtual memory subsystem, which we call SBMA, bypasses

the operating system virtual memory manager to take advantage of BDMPI’s node-level

cooperative multi-taking. Benchmarking using a synthetic application shows that for

the use cases relevant to BDMPI, the overhead incurred by the BDMPI-SBMA system

is amortized such that it performs as fast as explicit data movement by the application

developer. Furthermore, we tested SBMA with three different classes of applications

and our results show that with no modification to the original program, speedups from

2×–12× over a standard BDMPI implementation can be achieved for the included ap-

plications.

We present a runtime system designed to be used alongside data parallel OpenMP

programs for shared-memory problems requiring out-of-core execution. Our new run-

time system, which we call OpenOOC, exploits the concurrency exposed by the OpenMP

semantics to switch execution contexts during non-resident memory access to perform

useful computation, instead of having the thread wait idle. Benchmarking using a syn-

thetic application shows that modern operating systems support the necessary memory

and execution context switching functionalities with high-enough performance that they

can be used to effectively hide some of the overhead incurred when swapping data be-

tween memory and disk in out-of-core execution environments. Furthermore, we tested

OpenOOC with practical computational application and our results show that with no

structural modification to the original program, runtime can be reduced by an average

of 21% compared with the out-of-core equivalent of the application.
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Chapter 1

Introduction

A recent trend in many disciplines is the recognition of large scale data analysis as an

integral component of the scientific discovery process. This new paradigm has been

coined, “data-driven science” and is referred to by some as the “fourth paradigm” of

science [2] — along with theoretical, experimental, and computational. This change is as

much due to the increasing potential for scientists to generate and collect rich datasets,

commonly dubbed the “data deluge”, as it is to the robust computational tools being

developed to process and extract knowledge from the data. Despite the richness of the

data and the availability of sophisticated analysis tools, for many scientists, scientific

inquiry is still limited. One major cause of this is the disproportionate increase in the

size of datasets relative to the capacity of fast storage (main memory) in the computing

systems where the data is analyzed. In other words, the datasets have outgrown the

computers’ ability to store the data in a place where it can be quickly accessed for

analysis. This predicament can be referred to as memory-constrained computation.

This is especially troublesome for the multitude of domain scientists who have access to

large scale datasets, but do not have access to the class of computing system necessary

to analyze the data in main memory. This thesis focuses on two methodologies to

address the issue of memory-constrained computation, namely in-memory compression

and external memory computation. It is explicitly divided into two parts, one for each

methodology.

1



2

In-memory compression The first of these methodologies relies on our understand-

ing of the hardware capabilities and limitations of modern computers. Namely, that

within a computer, a memory hierarchy exists, such that accessing data that is stored

at the top of the hierarchy (cache and main memory) is extremely fast, while accesses at

the bottom (hard disk) are extremely slow. The catch is that the capacity of cache and

main memory are orders of magnitude less than that of hard disk. Thus, for problems

requiring datasets that are larger than the amount of main memory, a compact repre-

sentation of the data, that will allow it to fit into main memory is required. If a main

memory representation of the data can be realized, then the potential for improvements

in analysis runtime is increased considerably. In this thesis, we explore two different

approaches for creating compressed representations. One approach is to analyze the

data as it is being generated, so called in-situ analysis. Based on the results of the

analysis, the data can be reduced in way the preserves the ability to analyze later, but

may not retain all components of the original data. Another approach is to preserve the

original data as-is, but use standard compression techniques to identify redundancy in

the data and then choose a representation for the data that exploits the redundancy.

External-memory computation An orthogonal methodology to solve the memory-

constrained computation problem is external-memory computation, also known as out-

of-core computation [3, 4]. External-memory computation is an algorithmic technique

that exploits locality to reduce the amount of data movement to/from external mem-

ory [3, 4]. In this way, computations are localized to the partitions that reside in main

memory as much as possible. Here external-memory means any type of secondary stor-

age storage medium, whose access costs are significantly higher than main memory.

Common Examples of this could be tape, spinning, or solid-state drives. This method-

ology addresses the inverse relationship between problem size and main memory size,

but often means that algorithms need to be re-engineered to explicitly make consid-

erations for the amount data movement required per computation. Further, for many

external-memory computations, despite the explicit attention paid to minimizing data

movement, the bandwidth between physical memory and secondary storage will still be

be a major performance bottleneck.

As a result of these challenges, recent years have seen a significant amount of research
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related to providing efficient and transparent external-memory computation [5–17].

However, current state-of-the-art solutions to this problem either introduce entirely

new programming frameworks / languages that cooperate with associated runtimes to

provide external-memory computation, or limit themselves to problems of some partic-

ular form. In this thesis, two external-memory solutions are proposed to this problem,

each targeting a different memory architecture, which are extensions to existing and

widely used programming frameworks.

1.1 Contributions

The contributions of this thesis are the development of effective and efficient solutions

for solving computational problems on computing systems whose memory availability is

insufficient for the desired problem. We show that under a variety of different circum-

stances, the algorithms and libraries discussed herein allow researchers to solve com-

putational problems that would otherwise be inaccessible due to unfavorable memory

limitations of available computing systems.

1.1.1 In-Memory Compression-Based Methods

Scientific Data Compression We developed a class of algorithms for compressing

scientific simulation data computed on structured and unstructured grids. We propose

a paradigm for lossy compression of this data in which the data computed on the grid

is modeled as a graph, which gets decomposed into sets of vertices which satisfy a user

defined error constraint ε. Each set of vertices is replaced by a constant value with

reconstruction error bounded by ε. Our novel approach outperforms state-of-the-art

lossy compression approaches and require on the average 25% of the space required by

them for similar or better reconstruction quality. Moreover, the near linear complexity

of our proposed algorithms makes them ideally suited for performing in situ compression

in memory-constrained systems.

Dynamic Graph Compression We explore the space of data structures capable of

representing dynamic sparse graphs in a format that is both compact and operationally

efficient. We present existing and novel algorithms along with experimental analysis
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for five data structures designed with this in mind. Of these five algorithms, three

are baseline approaches, one is semi-compact, but suited for fast operation, and one is

focused on compactness and is a dynamic extension of the state-of-the-art WebGraph

Framework. Our results show that for well intervalized graphs, like web graphs, the semi-

compact data structure is superior to all other data structures in terms of memory and

access time. Furthermore, in the general case, the compact data structure outperforms

all other data structures in terms of memory, at the cost of a modest increase in update

and access time, making it ideal for graph operations in memory constrained systems.

1.1.2 External Memory-Based Methods

Distributed Memory Architecture We developed a virtual memory subsystem

which we implemented as part of the Big Data Message Passing Interface library (BDMPI)

runtime. Our new virtual memory subsystem, which we call SBMA, bypasses the op-

erating system virtual memory manager to take advantage of BDMPI’s node-level co-

operative multi-taking. Benchmarking using a synthetic application shows that for the

use cases relevant to BDMPI, the overhead incurred by the BDMPI-SBMA system is

amortized such that it performs as fast as explicit data movement by the application

developer. Furthermore, we tested BDMPI-SBMA with three different classes of appli-

cations and our results show that with no modification to the original program, speedups

from 2×–12× over a standard BDMPI implementation can be achieved for the included

applications.

Shared Memory Architecture We developed a runtime system to be used along-

side data parallel OpenMP programs for shared-memory problems requiring out-of-core

execution. Our new runtime system, which we call OpenOOC, exploits the concurrency

exposed by the OpenMP semantics to switch execution contexts during non-resident

memory access to perform useful computation, instead of having the thread wait idle.

Benchmarking using a synthetic application shows that modern operating systems sup-

port the necessary memory and execution context switching functionalities with high-

enough performance that they can be used to effectively hide some of the overhead

incurred when swapping data between memory and disk in out-of-core execution envi-

ronments. Furthermore, we tested OpenOOC with practical computational application
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and our results show that with no structural modification to the original program, run-

time can be reduced by an average of 21% compared with the out-of-core equivalent of

the application.

1.2 Outline

This thesis is divided into two parts according to the type of approach used for solving

the memory-constrained computing problem. The thesis is organized as follows:

• Part I includes Chapters 2 to 4, and focuses on compression based solutions.

– In Chapter 2 an overview of prior work done on the subjects of scientific

data compression and graph compression is presented along with necessary

definitions and notations.

– In Chapter 3, scientific data compression is addressed. A class of lossy com-

pression algorithms is investigated, including detailed descriptions and analy-

sis of the algorithms as well as experimental results using real-world datasets.

– In Chapter 4, compressed data structures for representing graphs is ad-

dressed. More specifically, the space of data structures for representing dy-

namic sparse graphs is investigated in terms of computational efficiency for

analysis queries, as well as memory efficiency. This is accompanied by an

in-depth discussion of experimental results for a set of benchmark problems.

• Part II includes Chapters 5 to 7, and focuses on out-of-core computation based

solutions.

– In Chapter 5 an overview of prior work in the area of out-of-core computation

is presented along with necessary definitions and notations.

– In Chapter 6, the BigData Message Passing Interface (BDMPI) library and

its virtual memory subsystem, called Storage Backed Memory Allocation

(SBMA), are presented. The BDMPI-SBMA library addresses out-of-core

computing in distributed memory systems. Along with a brief overview of the

base BDMPI library, a detailed explanation of SBMA, is presented, Finally,



6

an experimental analysis is presented, comparing BDMPI-SBMA with the

best known BDMPI configurations.

– In Chapter 7, the Open Out-of-core library (OpenOOC) library is presented.

The OpenOOC library addresses out-of-core computing in shared memory

systems. Along with a detailed description of the library, a detailed analysis

of system characteristics is presented as well as an experimental analysis,

comparing OpenOOC with the best known OS configurations.

• In Chapter 8, the conclusions are presented and several future research directions

are proposed.

1.3 Related Publications

The work in this dissertation has been published in the following venues.

• Jeremy Iverson, Chandrika Kamath, and George Karypis. Fast and effective

lossy compression algorithms for scientific datasets. In European Conference on

Parallel Processing, 843–856, Springer, 2012.

• Jeremy Iverson and George Karypis. Storing dynamic graphs: speed vs. storage

trade-offs. Technical Report 14-018, University of Minnesota, 2014.

• Jeremy Iverson and George Karypis. A memory management system optimized

for bdmpi’s memory and execution model. In Proceedings of the 22nd European

MPI Users’ Group Meeting, 2015.

• Jeremy Iverson and George Karypis. A virtual memory manager optimized

for node-level cooperative multi-tasking in memory constrained systems. In The
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Chapter 2

Preliminaries

2.1 Literature Reviews

2.1.1 Scientific Data Compression

The most popular techniques in this area are based on wavelet theory [18] that produces

a compression-friendly sparse representation of the original data. To further sparsify

this representation, coefficients with small magnitude are dropped with little impact

on the reconstruction error [19, 20]. Depending on the intended use of the compressed

representation, i.e., storage or visualization, these approaches may simply threshold the

coefficients to reduce the amount of required data to store [19, 20], or they may create

elaborate data structures [21, 22] to store the wavelet coefficients for progressive trans-

mission or fast random access [23–25]. Due to the nature of the wavelet transform,

classical wavelet methods apply only to structured grids. A notable application of this

technique is the JPEG2000 image compression standard [26]. An alternative to wavelet

compression is Adaptive Coarsening (AC) [27]. AC is an extension of the adaptive sub-

sampling technique first introduced for transmitting HDTV signals [28], which is based

on down-sampling a mesh in areas which can be reconstructed within some error toler-

ance and storing at full resolution the others. In [29], the authors use AC to compress

data on structured grids and compare the results to wavelet methods. Even though AC

can potentially be extended for unstructured grids [27], current implementations are

limited to structured grids.

8
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Another approach is spectral compression that extends the discrete cosine trans-

form used in JPEG, from 2D regular grids to the space of any dimensional unstructured

grids [30]. This method uses the Laplacian matrix of the grid to compute topology

aware basis functions. The basis functions serve the same purpose as those in the

wavelet methods and define a space where the data can be projected to, in order to

obtain a sparse representation. Since the Laplacian matrix can be defined for the nodes

of any grid, this method is not limited to structured grids. However, deriving the basis

functions from the Laplacian matrix of large graphs is computationally prohibitive. For

this reason, practical approaches first use a graph partitioning algorithm to decompose

the underlying graph into small parts, and each partition is then compressed indepen-

dently using spectral compression [30]. Finally, another approach, introduced in [31], is

diffusion wavelets. The motivation for diffusion wavelets is the same as that of spectral

compression, and is used to generate basis functions for a graph. However, instead of

using the eigenvectors of the Laplacian matrix to derive these basis functions, diffusion

wavelets generate them by taking powers of a diffusion operator. The advantage of dif-

fusion wavelet is that its basis functions capture characteristics of the graph at multiple

resolutions, while spectral basis functions only capture global characteristics.

2.1.2 Dynamic Graph Compression

One of the driving motivations for dynamic graph compression has been the alarming

growth rate of the World Wide Web. A snapshot of the World Wide Web can be modeled

as a graph, commonly referred to as the Web Graph, with Web pages represented

as vertices and hyperlinks represented by directed edges. One of the first attempts

at compressing the Web graph was the Link Database [32, 33]. The system achieved

compression by representing each Web page with a numerical ID after lexicographically

sorting the Web page URLs, then delta encoding the IDs of the neighbors of each vertex.

This technique is known as gap encoding [33]. Another early attempt, by Adleret al.

in [34], extended this technique by adding the notion of reference vertices. The authors

developed an algorithm, which they called Find-Reference, that identified vertices in

the graph that had many common neighbors. One of these vertices was chosen to be

used as a reference when describing the neighbors of the other, thereby reducing the

size of the second vertices neighbor list. Together these two works represent the basic
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foundation about which most modern work on Web graph compression has been based.

Further attempts to compress the Web graph have largely relied on our deepening

understanding of the structure of the Web graph itself. One of the most noteable such

works is the WebGraph Framework [35, 36]. In their work, Boldi et al. leverage a

great deal of study of the structure of the web [35] to introduce improved methods for

finding references vertices and subsequently encoding neighbor lists. In [37], Boldi et al.

investigated vertex reordering algorithms for the Web graph which are more amenable to

compression. Later, the authors extended their work to social networks by considering

alternative vertex reordering algorithms designed specifically for social networks [38].

Other work has been done to exploit the structure of the Web graph for the purpose

of compression. In [39] the authors focused on distinguishing between the types of

vertices in the neighbor list, local vs non-local, and then coding the lists accordingly.

Alternatively, the authors of [40] represent the Web graph hierarchically, using so called

S-node representations, to expose its locality structure, which is then exploited for

efficient coding, much like previous work.

More recently, many attempts have been made to improve over the standard set by

Boldi et al. [36]. The authors of [41] took an approach very similar to [39] and parti-

tion the set of neighbor connections into local and non-local. However, instead of using

a single Huffman code to encode the connections, they opt for a more sophisticated

encoding scheme, which results in compression rates slightly better than those of [36].

The authors of [42] took an different approach and relied on the well-known dictionary-

based compression technique, Re-Pair [43], to compress the neighbor lists of vertices.

This resulted in compression rates nearly identical to those of [36], but with much faster

navigation of the graph. Lastly, another new and promising technique was introduced

in [44], called Virtual Node Miner, which uses patten-mining to extract meaningful con-

nectivity formations. By representing the common connectivity formations as “virtual

nodes” in the compressed graph, compression is improved and certain computations can

be performed directly on the compressed graph.
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2.2 Definitions and Notations

Many scientific simulations are carried out such that their underlying physical domain is

modeled by a grid. A grid is a tessellation of Euclidean space by simple shapes such as

triangles or tetraheda, often referred to as cells. The intersection of the lines that make

up the cells are known as nodes. For the datasets explored in this thesis, the nodes are

the ”points-of-interest” in the space where some value(s) is being computed. Without

loss of generality, we assume there is only one value being computed for each node of

the grid. We also assume that the grid topology is fixed and thus can be represented

and stored separately from the data which is computed on it.

A grid can be either structured or unstructured. A structured grid is a collection of

cells which have an implicit geometric structure. That structure is a basic rectangular

matrix structure, such that in R3, the nodes can be indexed by a triplet (x, y, z). Thus,

the grid topology can be described simply by the number of nodes in each of the three

dimensions. An unstructured grid has no implicit structure. Since there is no implicit

structure, the topology is described by identifying the cells which each node belongs to.

A graph G = (V,E, L) consists of a set of vertices V , a set of edges E, and optionally

a set of labels L. The set of adjacent vertices of a particular vertex u is expressed as

Γ(u) and the degree of u can then be stated as δ(u) = |Γ(u)|. The maximum degree of

any vertex in G is denoted ∆(G) = max∀u∈V δ(u) and by abuse of notation, simply ∆.

A sparse graph is a graph where |V | � |E|. There are two commonly used data

structures for sparse graphs. The first is vertex-centric and is typically referred to

as adjacency list representation. In this representation, each vertex is treated as an

object and stores a list of the vertex ids of those vertices which it is adjacent to. In its

most standard form, this representation uses linked-lists or arrays to store each vertex’

adjacency list. However, the compressed sparse row (CSR) or Yale format, can also be

used to store vertex adjacency lists in a more compact / cache friendly way. In this

format, each vertex stores the index (IA) into an array (JA), which stores in consecutive

indices, the ids of adjacent vertices for each vertex in the graph. Thus the edges which

vertex i is incident, can be identified as JA[IA[i]] to JA[IA[i+ 1]]. The second is edge-

centric and is best exemplified by the coordinate list (COO) format. In this format,

each edge is represented as a pair of vertex ids (u, v), where u and v are the endpoints
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Figure 2.1: Example graph (left) along with its CSR format (middle) and COO format

(right).

1 2

3 4

5

CSR

IA JA

0 2, 3, 4, 5

4 1, 3, 4, 5

8 1, 2, 4, 5

12 1, 2, 3, 5

16 1, 2, 3, 4

20

COO

(1, 2) (3, 4)

(1, 3) (3, 5)

(1, 4) (4, 1)

(1, 5) (4, 2)

(2, 1) (4, 3)

(2, 3) (4, 5)

(2, 4) (5, 1)

(2, 5) (5, 2)

(3, 1) (5, 3)

(3, 2) (5, 4)

of the edge. This means that the topology of the graph is expressed as a list of endpoint

pairs. Each of these formats is illustrated in Figure 2.1. In both cases, the labels, L,

can be stored along with or parallel to the edges.

A grid graph is an undirected graph that models the grid on which a scientific

simulation is conducted. In a grid graph, the set of vertices, V , models the nodes of the

grid for which values, L, are computed. The set of edges E, models the connectivity of

adjacent nodes, where two nodes are adjacent if they are adjacent to the same cell in

the grid.

A web graph is a directed graph whose vertex set V , represents pages from the World

Wide Web and whose edge set E, captures the hyperlinks between the pages which exist

in V . An online social graph is a directed or undirected graph where vertices represent

individuals or organizations and the edges imply some type of relationship between the

participating entities. Classic examples of online social graphs include Twitter (directed)

and Facebook (undirected). In this thesis, all graphs are assumed to be undirected, since

storage of directed graphs can be directly extended from storage of undirected graphs

by storing an indicator of directedness with each edge or storing the graph transpose.

A dynamic graph is a graph whose vertex or edge sets are not static, i.e., they can
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change. The vertex or edge sets of a dynamic graph may be changed as a consequence

of updates: the addition and/or removal of vertices or edges, to the graph. In terms of

graph data structures, dynamic context refers to the case in which the data structure

used to store the graph is persisted across all updates.

An ε-bounded set-based decomposition of G is a partitioning of its set of vertices into

non-overlapping sets {V1, . . . , Vk} such that for each Vi, ∀vq, vr ∈ Vi, |lq − lr| ≤ ε (i.e.,

each set contains vertices whose values differ at most by ε). When the induced subgraph

Ri = (Vi, Ei) of G is connected, the set Vi will also be referred to as a region of G. When

all sets in an ε-bounded set-based decomposition form regions, then the decomposition

will be referred to as an ε-bounded region-based decomposition of G. Given a set of

vertices Vi, the average value of its vertices will be referred to as its mean value and will

be denoted by µ(Vi). Given a region Vi, its boundary vertices are its subset of vertices

Bi ⊆ Vi that are adjacent to at least one other vertex not in Vi, and its interior vertices

are the subset of vertices Ii ⊆ Vi that are adjacent only to vertices in Vi. Note that

Ii ∪Bi = Vi.



Chapter 3

Scientific Data Compression

3.1 Introduction

Straightforward approaches for scientific data compression exist in lossless techniques

designed specifically for floating-point data. However, due to the high variability of the

representation of floating-point numbers at the hardware level, the compression factors

realized by these schemes are often very modest [45,46]. Since most post-run analysis is

robust in the presence of some degree of error, it is possible to employ lossy compression

techniques rather than lossless, which are capable of achieving much higher compression

rates at the cost of a small amount of reconstruction error. As a result, a number of

approaches have been investigated for lossy compression of scientific simulation datasets

including classical [18] and diffusion wavelets [31], spectral methods [30], and methods

based on the techniques used for transmission of HDTV signals [28]. However, these

approaches are either applicable only to simulations performed on structured grids or

have high computational requirements for in situ data compression applications.

In this chapter we investigate the effectiveness of a class of lossy compression ap-

proaches that replace the actual values associated with sets of grid-nodes with a constant

value whose difference from the actual value is bounded by a user-supplied error tol-

erance parameter. We develop approaches for obtaining these sets by considering only

the nodes and their values and approaches that constrain these sets to connected sub-

graphs in order to further reduce the amount of information that needs to be stored.

To ensure that these methods are applicable for in situ compression applications, our

14
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work focuses on methods that have near-linear complexity and are equally applicable

to structured and unstructured grids. We experimentally evaluate the performance of

our approaches and compare it against that of other state-of-the-art data compression

methods for scientific simulation datasets. Over our benchmark suite, our methods ob-

tained compression of 1% of the original size with average PSNR of 43.00 and 3% of

the original size with average PSNR of 63.30. Our experiments show that our methods

achieve compressed representations, which on average, require 50%–75% less space than

competing schemes at similar or lower reconstruction errors.

3.2 Methods

In this work we investigated the effectiveness of a lossy compression paradigm for grid-

based scientific simulation datasets that replaces the values associated with a set of nodes

with a constant value whose difference from the actual values is bounded. Specifically,

given a graph G = (V,E,L) modeling the underling grid, this paradigm computes an

ε-bounded set-based decomposition {V1, . . . , Vk} of G and replaces the values associated

with all the nodes of each set Vi, with its mean value µ(Vi). This paradigm bounds the

point-wise error to be no more than ε, whose actual value is explicitly controlled by the

users based on their subsequent analysis requirements. Since the values associated with

the nodes tend to exhibit local smoothness [47], these value substitutions increase the

degree of redundancy, which can potentially lead to better compression.

Following this paradigm, we developed two classes of approaches for obtaining the

ε-bounded set-based decomposition of G. The first class focuses entirely on the vertices

of the grid and their values, where the second class also takes into account the connec-

tivity of these vertices in the graph. In addition, we developed different approaches for

encoding the information that needs to be stored on the disk in order to maximize the

overall compression. The description of these algorithms is provided in the subsequent

sections.

In developing these approaches, our research focused on algorithms whose underlying

computational complexity is low because we are interested in being able to perform the

compression in-situ with the execution of the scientific simulation on future exascale-

class parallel systems. As a result of this design choice, the algorithms that we present
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tend to find sub-optimal solutions but do so in time that in most cases is bounded by

O(|V | log |V |+ |E|).

3.2.1 Set-Based Decomposition

This class of methods derives the ε-bounded set-based decomposition {V1, . . . , Vk} of the

vertices by focusing entirely on their values. Towards this end, we developed two dif-

ferent approaches. The first is designed to find the decomposition that has the smallest

cardinality (i.e., minimize k), whereas the second is designed to find a decomposition

that contains large-size sets.

The first approach, referred to as SBD1, operates as follows. The vertices of G are

sorted in non-decreasing order based on their values. Let 〈vi1 , . . . , vin〉 be the sequence

of the vertices according to this ordering, where n is the number of vertices in G. The

vertices are then scanned sequentially from vi1 up to vertex vij such that lij − li1 ≤ ε

and lij+1 − li1 > ε. The vertices in the set {vi1 , . . . , vij} satisfy the constraint of an

ε-bounded set and are used to form a set of the set-based decomposition. These vertices

are then removed from the sorted sequence and the above procedure is repeated on the

remaining part of the sequence until it becomes empty. It can be easily shown that the

above greedy algorithm will produce a set-based decomposition that has the smallest

number of sets for a given ε.

The second approach, referred to as SBD2, utilizes the same sorted sequence of ver-

tices 〈vi1 , . . . , vin〉 but it uses a different greedy strategy for constructing the ε-bounded

sets. Specifically, it identifies the pair of vertices viq and vir such that lir − liq ≤ ε and

r − q is maximized. The vertices in the set {viq , . . . , vir} satisfy the constraint of an

ε-bounded set and are used to form a set of the set-based decomposition. The original

sequence is then partitioned into two parts: 〈vi1 , . . . viq−1〉 and 〈vir+1 , . . . , vin〉, and the

above procedure is repeated recursively on each of these subsequences. Note that the

greedy decision in this approach is that of finding a set that has the most vertices (by

maximizing r − q). It can be shown that SDB2 will lead to a decomposition whose

maximum cardinality set will be at least as large as the maximum cardinality set of

SBD1 and that the cardinality of the decomposition can be greater than that of SDB1’s

decomposition.
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Decomposition Encoding We developed two approaches for encoding the vertex val-

ues derived from the ε-bounded set-based decomposition. In both of these approaches,

the encoded information is then further compressed using standard lossless compression

methods such as GZIP [48], BZIP2 [49], and LZMA [50].

The first approach uses scalar quantization and utilizes a pair of arrays Q and M .

Array Q is of size k (the cardinality of the decomposition) and Q[i] stores the mean

value µ(Vi) of Vi. Array M is of size n (the number of vertices) and M [j] stores the

number of the set that vertex vj belongs to. During reconstruction, the value of vj

is given by Q[M [j]]. Since for reasonable values of ε, k � n, the number of distinct

values in M will be small, leading to a high degree of redundancy that can be exploited

by the subsequent lossless compression step. We will refer to this approach as scalar

quantization encoding and denote it by SQE.

The second approach encodes the information by sequentially storing the vertices

that belong to each set of the decomposition. Specifically, it uses three arrays Q, S,

and P , of sizes k, k, and n, respectively. Array Q is identical to the Q array of SQE

and array S stores the number of vertices in each set (i.e., S[i] = |Vi|). Array P is

used to store the vertices of each set in consecutive positions, starting with those of

set V1, followed by V2, and so on. The vertices of each set are stored by first sorting

them in increasing order based on their number and then representing them using a

differential encoding scheme. The smallest numbered vertex of each set is stored as is

and the number of each successive vertex is stored as the difference from the preceding

vertex number. Since each vertex-set will likely have a large number of vertices, the

differential encoding of the sorted vertex lists will tend to consist of many small values,

and thus increase the amount of redundancy that can be exploited by the subsequent

lossless compression step. We will refer to this approach as differential encoding and

denote it by DE.

Vertex Ordering To achieve good compression using the above encoding schemes,

vertices which are close in the vertex ordering should have similar values. Towards this

end, we investigate three vertex orderings which are as follows. The first is the original

ordering of the nodes, that is often derived by the grid generator and tends to have a

spatial coherence. The second ordering is a breadth first traversal of the graph starting
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from a randomly selected vertex. The third ordering is a priority first traversal, in which

priority is given to those vertices which are adjacent to the most vertices which have

been previously visited. Arranging the vertices according to their visit order is intended

to put together in the ordering vertices that are close in the graph topology. Due to the

local smoothness of values, vertices that appear close in the ordering will share similar

values.

3.2.2 Region-Based Decomposition

This class of methods derives an ε-bounded set-based decomposition {V1, . . . , Vk} by re-

quiring that each set Vi also forms a region (i.e., its induced subgraph of G is connected).

The motivation behind this region-based decomposition is to reduce the amount of data

that needs to be stored by only writing information about Vi’s boundary vertices and

a select few of its interior vertices. During reconstruction, by taking advantage of Vi’s

connectivity, its non-saved interior vertices can be identified by a depth- or breadth-first

traversal of G starting at the saved interior vertices and terminating at its boundary

vertices. The set of vertices visited in the course of this traversal will be exactly those in

Vi. From this discussion, we see that the amount of compression that can be achieved by

this class of methods is directly impacted by the number of boundary vertices that must

be stored. Thus, the region identification approaches must try to reduce the number of

boundary vertices. Towards this end, we developed three different heuristic approaches

whose description follows.

The first approach, referred to as RBD1, is designed to compute a decomposition

that minimizes the number of regions. The motivation behind this approach is that by

increasing the average size of each region (due to a reduction in the decomposition’s

cardinality), the number of interior vertices will also increase. RBD1 initially sorts the

vertices in a way identical to SBD1, leading to the sorted sequence s = 〈vi1 , . . . , vin〉.
Then, it selects the first vertex in the sequence (vi1), assigns it to the first region V1,

and removes it from s. It then proceeds to select from s a vertex vij that is adjacent

to at least one vertex in V1 and lvij − lv1 ≤ ε, inserts it into V1, and removes it from

s. This step is repeated until no such vertex can be selected or s becomes empty.

The above algorithm ensures that V1 is an ε-bounded set and that the subgraph of G

induced by V1 is connected. Thus, V1 is a region and is included in the region-based
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decomposition. The above procedure is then repeated on the vertices remaining in s,

each time identifying an additional region that is included in the decomposition. Note

that unlike the algorithm for SBD1, the above algorithm does not guarantee that it will

identify the ε-bounded region-based decomposition that has the minimum number of

regions.

The second approach, referred to as RBD2, is designed to compute a decomposition

that contains large regions, as the regions that contain a large number of vertices will also

tend to contain many interior vertices. One way of developing such an algorithm is to

use the greedy approach similar to that employed by SBD2 to repeatedly find the largest

region from the unassigned vertices and include it in the decomposition. However, due

to the region’s connectivity requirement, this is computationally prohibitive. For this

reason, we developed an algorithm that consists of two steps. The first step is to obtain

an ε-bounded set-based decomposition {V1, . . . , Vk} using SBD1. The second step is to

compute an ε-bounded region-based decomposition of each set Vi. The union of these

regions over V1, . . . , Vk is then used as the region-based decomposition computed by

RBD2. This two-step approach is motivated by the following observation. One of the

reasons that prevents RBD1 from identifying large regions is that it starts growing each

successive region from the lowest-valued unassigned vertex and does not stop until all of

the unassigned vertices adjacent to that region have values that will violate the ε bound.

This will tend to fragment subsequent regions as the are constrained by the initial

vertices that have low values. RBD2, by forcing RBD1’s region identification algorithm

to stay within each set Vi, prevents this from happening and as our experiments will

later show, lead to a decomposition that has smaller number of boundary vertices and

better compression.

Finally, the third approach, referred to as RBD3, is designed to directly compute

a decomposition whose regions have a large number of interior vertices. It consists

of three distinct phases. The first phase identifies a set of core regions that contain at

least one interior vertex, the second phase expands these regions by including additional

vertices to them, and the third phase creates non-core regions. Let V ′ be the subset of

vertices of V such that ∀v ∈ V ′, v ∪ adj(v) is an ε-bounded set, where adj(v) is the set

of vertices adjacent to v. A core region, Vi, is created as follows. An unassigned vertex

v ∈ V ′ whose adjacent vertices are also unassigned is randomly selected and v ∪ adj(v)



20

is inserted into Vi. Then the algorithm proceeds to identify an unassigned vertex u ∈ V ′

such that: (i) it is connected to at least one vertex in Vi, (ii) all the vertices in adj(u)\Vi
are also unassigned, and (iii) Vi ∪ {u} ∪ adj(u) is an ε-bounded set. If such a vertex u

exists, then u and adj(u) \ Vi are inserted into Vi. If no such vertex exists, then Vi’s

expansion stops. The above procedure is repeated until no more core regions can be

created. Note that by including u and its adj(u) \ Vi vertices into Vi, we ensure that u

becomes an interior vertex of Vi. During the second phase of the algorithm, the vertices

that have not been assigned to any region are considered. If a vertex v can be included

to an existing region while the resulting region remains an ε-bounded set, then it is

assigned to that. Finally, the third phase is used to create additional regions containing

the remaining unassigned vertices (if they exist), which is done using RBD1.

Decomposition Encoding As discussed earlier, the region-based decomposition al-

lows us to reduce the storage requirements by storing only the boundary vertices along

with the interior vertices that are used as the seeds of the (depth- or breadth-first)

traversals. For each region Vi, the set of seed-vertices Isi is determined as follows. An

interior vertex is randomly selected, added to Isi , and a traversal from that vertex is

performed terminating at Vi’s boundary vertices. If any of Vi’s interior vertices has

not been visited, then the above procedure is repeated on the unvisited vertices, each

time adding an additional source vertex into Isi . In most cases, one seed vertex will

be sufficient to traverse all the interior vertices, but when regions are contained within

other regions, multiple seed vertices may be required. Also, in the cases in which Vi

consists of only boundary vertices, Isi will be empty.

An additional storage optimization is possible, as there is no need to store the bound-

ary vertices for all the regions. In particular, consider a region Vi and let {Vi1 , . . . , Vim}
be the set of its adjacent regions in the graph. We can then identify Vi by performing

a traversal from the vertices in Isi that terminates at the boundary vertices of Vi’s ad-

jacent regions. All the vertices visited during that traversal (excluding the boundary

vertices) along with Isi will be exactly the vertices of Vi. Thus, we can choose not to

store Vi’s boundary vertices as long as we store the boundary vertices for all of its adja-

cent regions. In our algorithm, we choose the regions whose boundary information will

not be stored in a greedy fashion based on the size of their boundaries. Specifically, we
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construct the region-to-region adjacency graph (i.e., two regions are connected if they

contain vertices that are adjacent to each other), assign a weight to the vertex corre-

sponding to Vi that is equal to |Bi| (i.e., the size of its boundary), and then identify

the regions whose boundary information will not be stored by finding a maximal weight

independent set of vertices in this graph using a greedy algorithm.

Given the above, we can now precisely describe how the region-based decomposition

is stored. Let {V1, . . . , Vk} be the ε-bounded region-based decomposition, B1, . . . , Bk

be the sets of boundary vertices that need to be stored (if no boundary information is

stored for a region due to the earlier optimization, then the corresponding boundary set

is empty), and Is1 , . . . , I
s
k be the sets of internal seed-vertices that have been identified.

Our method stores five arrays, Q, NI , NB, II , and IB. The first three arrays are of

length k, II is of length equal to the total number of seed vertices (
∑

i |Isi |), and IB is

of length equal to the total number of boundary vertices (
∑

i |Bi|). Array Q stores the

mean values of each region, whereas arrays NI and NB store the number of seed and

boundary vertices of each region, respectively. Array II stores the indices of the regions

in consecutive order starting from Is1 , whereas array IB is used to store the boundary

vertices of each region in consecutive positions starting from B1. These indices are

stored using the same differential encoding approach described in Section 3.2.1 and like

that approach, the results of this encoding are further compressed using a standard

lossless compression method.

3.3 Experimental Design

Datasets We evaluated our algorithms using seven real world datasets obtained from

researchers at UMN and our colleagues at NASA and LLNL. These datasets corre-

spond to fluid turbulence and combustion simulations and contain both structured and

unstructured grids. Their characteristics are shown in Table 3.1.

Evaluation Methodology & Metrics We measured the performance of the various

approaches along two dimensions. The first is the error introduced by the lossy com-

pression and the second is the degree of compression that was achieved. The error was

measured using three different metrics: (i) the root mean squared error (RMSE), (ii)
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Table 3.1: Information about the various datasets.

Dataset |V | |E| µ(V ) Grid Type

d1 486051 4335611 0.9958 unstruct.

d2 589824 1744896 0.5430 struct.

d3 1936470 15399496 0.9874 unstruct.

d4 16777216 50102272 163.70 struct.

d5 31590144 94562224 0.0176 unstruct.

d6 41472000 123926400 0.2107 struct.

d7 100663296 300744704 4.5644 struct.

the maximum point-wise error (MPE), and (iii) the peak signal-to-noise ratio (PSNR).

The RMSE is defined as

RMSE =

√√√√ 1

|V |

|V |∑
i=1

|lj − l̂j |2, (3.1)

where lj is the original value of vertex vj and l̂j , is its reconstructed value. RMSE is a

standard measure of difference between observed values and their approximations. The

MPE is defined as

MPE = max(|l1 − l̂1|, ..., |ln − l̂n|), (3.2)

which is the `∞-norm of the point-wise error vector. The MPE measure is presented in

tandem with RMSE to identify those algorithms which achieve low RMSE, but sustain

high point-wise errors. Finally, the PSNR is defined as

PSNR = 20 · log10

(
max(x1, ..., xn)

RMSE

)
, (3.3)

which is a normalized error measure; thus, facilitating comparisons of error between

datasets with values that differ greatly in magnitude. The compression effectiveness was

measured by computing the compression ratio (CR) of each method, which is defined

as follows:

CR =
compressed size

uncompressed size
. (3.4)
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The wavelet and spectral methods were implemented in Matlab R©. The spectral

method uses METIS [51] as a pre-processing step to partition the graph before com-

pressing. The adaptive coarsening implementation was acquired from the authors of [29]

and modified to provide the statistics necessary for these experiments. All algorithms

described in Section 3.2 were implemented in C++. Finally, for the lossless compression

of the decomposition encodings, we used LZMA compression (7-zip’s implementation)

as it resulted in better compression than either GZIP or BZIP2. In addition, the same

LZMA-based compression was applied to the output of the spectral and wavelet-based

compressions. Note that AC does not need that because it achieves its compression by

coarsening the graph and reducing the data output.

3.4 Results

Our experimental evaluation is done in two parts. First, we select a fixed set of values

for RMSE and compare the various algorithmic choices for the set- and region-based

decomposition approaches in terms of their compression ability. Second, we compare

the compression performance of the best combinations of these schemes against that

achieved by other approaches for two different levels of lossy compression errors.

3.4.1 Set-Based Decomposition

Figure 3.1 shows the compression performance achieved by SBD1 and SBD2 for the

different datasets across the different decomposition encoding schemes described in Sec-

tion 3.2.1. These results show that SBD1 tends to perform better than SBD2 and

on average, it requires 5% less storage for each specific combination of decomposition

encoding and vertex ordering scheme. This can be attributed to the fact that the car-

dinality of its decomposition is often considerably lower than SBD2’s, which tends to

outweigh the benefits achieved by the few larger sets identified by SBD2.

Comparing the performance of the decomposition encoding schemes (SQE and DE),

we see that SQE performs considerably better across both decomposition methods and

ordering schemes. On the average, SQE requires only 75% of the storage of DE. These

results suggest that when compared to scalar quantization, the differential encoding of

the vertices in each set is not as effective in introducing redundancy in the encoding,
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Figure 3.1: Statistics for set-based decomposition.

which in turn reduces the compression that can be obtained by the lossless LZMA

compression. Finally, comparing the performance of the three vertex ordering schemes,

we found that the original ordering leads to greater compression than either of the

breadth first traversal or the priority first traversal. As discussed in Section 3.2.1, this

ordering utilizes information from the underlying grid geometry, and as such it has a

higher degree of regularity, leading to better compression. With respect to the other

two methods, we found that the priority first traversal tends to perform better than

breadth first.

3.4.2 Region-Based Decomposition

Figure 3.2 shows various statistics of the decompositions computed by RBD1, RBD2,

and RBD3 for the different datasets and their compression performance for the three

vertex ordering schemes. In terms of the number of regions into which G is decomposed,

we see that RBD1 results in the least number of regions, whereas RBD3 identifies a

considerably greater number of regions (often 2–7 times more regions than RBD1). We

also see that RBD2 only identifies slightly more regions than RBD1 (about 18% more

on average). In terms of the number of boundary vertices that need to be stored by each

decomposition, we see an inversion of the previous results. RBD2 and RBD3 produce the

smallest boundary sets, typically being within about 5% of each other, whereas RBD1
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Figure 3.2: Statistics for region-based decomposition, |R| refers to number of regions

identified, and NB refers to number of boundary vertices after storage optimization

described in Section 3.2.1.

produces boundary sets which are considerably larger, in some cases, more than twice

the size of those required by RBD2 and RBD3. These results suggest that the region

identification heuristics employed by RBD2 and RBD3 are quite effective in minimizing

the total number of boundary vertices, even though they find more regions.

In terms of compression performance, we see that across all datasets RBD2 results

in the lowest compression ratio. On the average, RBD2 requires only 70% of the storage

of RBD1 and 56% of RBD3. Contrasting this with the number of boundary vertices

identified by each approach, we see that there is a direct correlation, based on the size of

the boundary vertex set, between RBD1 and RBD2 in terms of which approach results

in lower compression ratio and by how much. RBD3 does not share in this correlation,

due to its significantly higher number of regions.

3.4.3 Comparison with Other Methods

In our last set of experiments, we compare the performance of the best-performing

combinations of the set- and region-based decomposition approaches (SBD1 with SQE

encoding and original vertex ordering, and RBD2 with original vertex ordering) against

wavelet compression (Wvlt), spectral compression (Spctrl), and adaptive coarsening

(AC). Among these techniques, the wavelet compression and adaptive coarsening can

only be applied to structured grids and are only presented for the d2, d4, d6, and d7

datasets. Also, due to its high computational requirements, we were not able to obtain
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results for the spectral compression for the largest problem (d7). In addition to these

schemes, we also experimented with diffusion wavelets [31]. However, we obtained poor

compression and we omitted those results.

Tables 3.2 and 3.3 shows the results of these experiments for two different compres-

sion levels, labeled “high error tolerance” and “low error tolerance”. These compression

levels result in RMSEs and MPEs that differ by approximately an order of magnitude,

and were obtained by experimenting with the parameters of the various schemes so that

to match their RMSEs for each of the datasets. However, for AC we were unable to

achieve the desired RMSEs at all error tolerance levels. In the case that we could not

achieve a desired RMSE, the results were omitted.

The results show that on average, our algorithms compress the simulation datasets to

2–5% of their original size. Compared with just lossless compression only, which results

in storage costs of 40–80% of the original size, this is a big improvement. The results

also show that for all but two experiments, SBD1 performs the best and that on average

it required only 36% of the storage of the next best algorithm. For unstructured grids it

requires on average 25% of the storage of Spctrl whereas for structured grids it requires

on average 48% and 38% of the space of Wvlt and AC, respectively. Moreover, we see

that as the amount of allowable error is lowered, the performance gap between SBD1 and

the other methods grows. In addition, for unstructured grids, RBD2 performs the second

best overall and requiring 61% of the space required by the Spctrl on average. We also

see that due to the ε constraint placed on the our methods, they consistently result in

MPE values which are much lower than those of the competing algorithms. These results

suggest that in the context of grid-based simulation, SBD1 and RBD2 are consistently

good choices for compression, providing low point-wise and global reconstruction error,

high compression ratio, and low computational complexity.
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Table 3.2: Comparison of scientific data compression algorithms for high error tolerance.

Dataset Algorithm RMSE PSNR MPE CR

d1

SBD1 6.30E-03 4.64E+01 1.89E-02 2.39E-02

RBD2 6.28E-03 4.65E+01 1.89E-02 2.52E-02

Spctrl 6.37E-03 4.63E+01 1.11E-01 4.00E-02

d2

SBD1 2.92E-02 3.60E+01 7.33E-02 2.51E-03

RBD2 2.88E-02 3.61E+01 8.02E-02 5.02E-03

Wvlt 3.10E-02 3.55E+01 2.34E-01 2.00E-02

Spctrl 3.17E-02 3.53E+01 7.34E-01 4.50E-02

AC 3.31E-02 3.49E+01 1.50E-01 1.86E-02

d3

SBD1 5.22E-03 4.88E+01 1.91E-02 1.27E-02

RBD2 5.18E-03 4.89E+01 1.93E-02 1.33E-02

Spctrl 5.27E-03 4.87E+01 2.14E-01 4.50E-02

d4

SBD1 2.36E+01 4.70E+01 1.63E+02 2.63E-03

RBD2 2.05E+01 4.83E+01 1.65E+02 6.30E-03

Wvlt 2.47E+01 4.66E+01 6.86E+02 7.50E-03

Spctrl 2.57E+01 4.63E+01 1.78E+03 3.50E-02

AC 2.30E+01 4.73E+01 3.01E+03 2.15E-02

d5

SBD1 4.97E-04 4.59E+01 1.78E-03 3.22E-03

RBD2 4.88E-04 4.61E+01 1.76E-03 4.47E-03

Spctrl 5.84E-04 4.45E+01 4.56E-02 5.00E-03

d6

SBD1 1.21E-02 3.82E+01 5.70E-02 9.30E-03

RBD2 1.20E-02 3.82E+01 5.71E-02 1.28E-02

Wvlt 9.48E-03 4.03E+01 1.56E-01 5.00E-03

Spctrl 1.60E-02 3.57E+01 6.37E-01 5.00E-03

AC 1.82E-02 3.46E+01 1.50E-01 1.11E-02

d7

SBD1 2.72E-01 4.27E+01 5.50E-01 2.82E-02

RBD2 2.70E-01 4.28E+01 7.41E-01 3.43E-02

Wvlt 2.76E-01 4.26E+01 2.75E+00 1.00E-02

AC 2.76E-01 4.26E+01 1.00E+00 1.82E-02
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Table 3.3: Comparison of scientific data compression algorithms for low error tolerance.

Dataset Algorithm RMSE PSNR MPE CR

d1

SBD1 6.66E-04 6.60E+01 1.86E-03 7.80E-02

RBD2 6.38E-04 6.63E+01 2.12E-03 1.28E-01

Spctrl 3.90E-03 5.06E+01 7.14E-02 1.05E-01

d2

SBD1 2.50E-03 5.74E+01 7.71E-03 1.27E-02

RBD2 1.91E-03 5.97E+01 7.71E-03 6.57E-02

Wvlt 2.59E-03 5.70E+01 2.38E-02 1.15E-01

Spctrl 7.04E-03 4.84E+01 3.56E-01 1.30E-01

AC 6.80E-03 4.87E+01 7.19E-01 5.17E-02

d3

SBD1 4.79E-04 6.96E+01 2.05E-03 3.56E-02

RBD2 4.54E-04 7.00E+01 2.07E-03 4.33E-02

Spctrl 3.31E-03 5.28E+01 1.35E-01 1.00E-01

d4

SBD1 2.43E+00 6.68E+01 1.34E+01 1.02E-02

RBD2 2.00E+00 6.85E+01 1.36E+01 3.51E-02

Wvlt 2.64E+00 6.61E+01 4.87E+01 2.50E-02

Spctrl 3.92E+00 6.26E+01 3.59E+02 1.95E-01

AC - - - -

d5

SBD1 5.43E-05 6.51E+01 1.28E-04 1.42E-02

RBD2 5.32E-05 6.53E+01 1.69E-04 4.96E-02

Spctrl 5.87E-05 6.45E+01 8.74E-03 6.50E-02

d6

SBD1 1.05E-03 5.94E+01 4.87E-03 2.96E-02

RBD2 8.75E-04 6.10E+01 4.87E-03 1.74E-01

Wvlt 1.05E-03 5.94E+01 1.17E-02 5.50E-02

Spctrl 1.05E-03 5.94E+01 4.32E-02 6.50E-02

AC - - - -

d7

SBD1 2.74E-02 6.26E+01 6.37E-02 8.70E-02

RBD2 2.17E-02 6.47E+01 7.99E-02 5.16E-01

Wvlt 3.05E-02 6.17E+01 2.00E-01 1.60E-01

AC - - - -



Chapter 4

Dynamic Graph Compression

4.1 Introduction

With the staggering growth rate of web graphs and online social network datasets in the

past decade, and the increasing demand for more efficient query and analysis of these

networks, comes a renewed interest in the data structures and algorithms with which

we represent and explore these networks. Historically, researchers have been limited to

studying static snapshots of the networks off-line. However, this simplistic approach

has two major drawbacks. First, real-time analysis is not possible when the network

in question must be captured and output before analysis can commence. Second, the

exploration of static networks is inherently limited by their time independent nature. It

has been shown that the evolution of networks can illuminate interesting and important

insights about the structure of the network [52].

Recently, researchers have acknowledged these limitations of static network analysis

and much of the focus has shifted to dynamic network analysis. However, many of

the contributions which can be attributed to this shift are aimed at specific problem

instances. For example, there is a great deal of literature related to the data structures

and algorithms necessary for maintaining network connectivity [53], shortest paths [54],

or maximal cliques [55], but there is a dearth of research addressing the problem of

which data structures are most appropriate for a general dynamic network framework

on top of which more complex analysis can be performed.

As graph analysis techniques continue to evolve, the desire to perform this analysis

29
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in a dynamic context is ever increasing. In this work we investigate data structures for

dynamic sparse graphs, with special attention being paid to memory requirements and

access times. Specifically, given a graph G = (V,E), we want to represent G using as

little memory as possible and at the same time, achieve access times which are as low as

possible. Due to the nature of sparse graphs, |V | � |E|, edge updates are significantly

more likely than vertex updates. For this reason, edge updates will be the focus of

this thesis. However, an algorithm for vertex updates is presented and is included

in the experimental results. Furthermore, in each of the data structures described in

this work, an algorithm for edge removal can easily be deduced from the algorithm for

edge insertion. Thus, due to lack of space, we will not go into detail on edge removal

algorithms.

In this chapter we investigate the space of data structures for representing dynamic

networks in terms of computational efficiency for network analysis queries, as well as

memory efficiency. The latter is an important factor, since the dynamic networks

which are the focus of this thesis are web and online social networks, both of which

are increasingly large. Along with previously known dynamic network data structures

like: Linked-List (LL), Batch Compressed Sparse Row (BCSR), and Dynamic Adja-

cency Array (DAA), we introduce two extensions of static network representations:

Dynamic Intervalized Adjacency Array (DIAA) and Dynamic Compressed Adjacency

Array (DCAA), which are especially applicable to the types of networks addressed by

this thesis. We theoretically and experimentally evaluate each of the data structures

in terms of operation time and memory requirements. Over our benchmark suite, we

show that in terms of operation time, BCSR is superior to the other data structures and

LL is inferior in all cases. We also show that BCSR requires more memory under all

circumstances and does not scale as well as DIAA. In terms of memory, DCAA outper-

forms all other data structures, but in most cases, does so at the cost of operation time.

DAA and DIAA strike a balance between memory requirements and operation time,

with DIAA exceeding DAA in operation time, as well as memory, for well intervalized

graphs, such as web graphs.
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Table 4.1: Storage and update complexity.

Data structure Storage Edge Update

LL Θ(|V |+ 2|E|) O(∆)

BCSR O(|V |+ 2|E|) O(∆)

DAA Θ(|V |+ |E|) O(∆)

DIAA O(|V |+ |E|) O(∆)

DCAA O(|V |+ |E|) O(3∆)

∗ BCSR also incurs a cost to fold LL into static CSR, which is O(|E|) over all folds

4.2 Methods

We investigate five data structures for representing dynamic sparse graphs. In each

approach, a different trade-off is made to improve memory requirements or access time.

Asymptotically, each of the five approaches exhibits identical behavior, namely, O(|V |+
|E|) memory and O(∆) time for edge update; however, in practice, memory access

patterns and internal data structure representation can cause significant variations in

absolute memory used or access time. The O(∆) update complexity is a direct result of

the requirement that ∀u ∈ V , Γ(u) is stored in sorted order. Maintaining this invariant

is typical of many applications, due to its requirement for many graph operations,

i.e., finding common neighbors of a vertex (set intersection). A sixth approach, based

on the packed-memory array data structure described in [56] and applied to dynamic

graphs in [57] was also implemented and experimented. However, due to the complex

maintenance procedure required for edge updates, its runtime was prohibitively high

and will not be discussed further.

4.2.1 Linked-List (LL)

The first data structure, referred to as Linked-List (LL), is based on the standard singly-

linked list representation of a sparse graph adjacency list. In LL, each vertex is an object

which has a linked-lists of nodes. Each node in the linked-list contains the vertex of a

single adjacent vertex. The memory required for this data structures is Θ(|V | + 2|E|)
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and the cost to update an edge is ∆, since the adjacency list needs to be maintained in

sorted order [58].

4.2.2 Batch Compressed Sparse Row (BCSR)

There are two main drawbacks with LL. The first is that inserting into a linked-list while

maintaining some ordering gets more expensive as the size of the data structure grows.

Second, due to the pointer-based nature of linked-lists, the memory access patterns

of linked-lists tend not to be cache friendly, making access to consecutive nodes of a

linked-list more costly than access to consecutive elements of an array.

In BCSR the graph is represented as a combination of two data structures: a static

CSR and a LL. Each time that a new edge is added, it is added directly into the LL.

Again, the linked-list for vertex u and v are updated for edge (u, v). When the LL has

grown significantly large, so that it is no longer memory or access efficient, it is folded

into the static CSR. This means that the static CSR is appropriately resized to hold

all edges from the graph. Then the static CSR is rebuilt to include the edges which

it contained previously, as well as the edges from the LL. As edges are included in the

static CSR, they are removed from the LL. Upon completion of a fold routine, the static

CSR contains all edges currently in the graph and the LL is empty.

This type of batch processing approach has two benefits. First, by periodically

reducing the size of the linked-list, the insertion time will be reduced. Second, the

majority of the graph is stored in a data structure which has better properties for data

access than the linked-list. Since BCSR is built upon both a static CSR representation as

well as a LL, the memory requirement will be Ω(|V |+ |E|) and O(|V |+2|E|), depending

on the interval at which the LL is folded into the static CSR. The trade-off in this type

of approach is determining the appropriate time to fold the LL into the static CSR.

Many policies can be designed to govern this decision, including, but not limited to,

simple schemes such as folding after a constant number of updates have occurred, to

more complex schemes based on timing data structure operations and folding when it

becomes more expensive to operate on the unfolded data structure than to fold it and

then operate.

Like the memory requirements for BCSR, the cost of updating an edge will depend on

the interval at which the data structure is folded and will be Ω(1) and O(∆). However,
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Figure 4.1: Adjacency array information for a subset of vertices from an example graph.

Vertex Degree Adjacency array

. . . . . . . . .

13 8 1, 2, 3, 8, 9, 10, 11, 14

14 4 13, 15, 17, 42

15 5 14, 32, 33, 34, 35

. . . . . . . . .

32 8 2, 3, 4, 5, 10, 11, 12, 15

33 6 1, 2, 3, 5, 15, 23

34 5 1, 2, 3, 5, 6, 8

. . . . . . . . .

along with the cost of edge updates comes the cost of incorporating the LL into the

static CSR. This requires iterating all edges currently in the graph. As long as the size

of the static CSR is expanded by some constant proportion, it can be shown that the

amortized cost of folding the LL into the static CSR carries a cost of O(|V |+ |E|) over

all folds [58].

4.2.3 Dynamic Adjacency Array (DAA)

Implementing a data structure based on a linked-list means that there will always be a

2x memory overhead, since each linked-list node must store a value as well as a pointer

to the next node. In the third implementation, called Dynamic Adjacency Array (DAA),

this memory overhead is eliminated by assigning to each vertex a dynamically allocated

array in which to stores the ids of adjacent vertices. The size of this dynamically al-

located array is equal to exactly the current degree of the vertex. In order to iterate

or search the adjacency array of a particular vertex it is necessary to know its current

degree. Thus, this value is also stored and maintained across updates as part of the

vertex object, along with the adjacency array. The storage of degree along with adja-

cency arrays in each vertex object make the memory requirement of this data structure

Θ(|V |+ |E|).
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Figure 4.2: Intervalized adjacency array for example graph from Figure 4.1.

Vertex Degree Intervals Residuals

. . . . . . . . . . . .

13 8 [1, 3], [8, 4] 14,

14 4 13, 15, 17, 42

15 5 [32, 4] 14

. . . . . . . . . . . .

32 8 [2, 4], [10, 3] 15

33 6 [1, 3] 5, 15, 23

34 6 [1, 3], [5, 2] 8

. . . . . . . . . . . .

When a new edge (u, v) is added to the graph, the adjacency arrays for vertices u

and v are updated as before. To do this, each of their adjacency arrays must be resized

to accommodate the new adjacent vertex id. After resizing the array, the index where

the new id belongs is identified and all ids following the index are shifted to the next

index, at which point, the new vertex id is inserted. Finally, the degree of the vertex

is incremented by one to reflect the addition of the new edge. Each edge addition will

require the dynamic adjacency array to be reallocated to a larger size array, which in

the worst case, requires copying the entire array from the old memory location to the

new. For that reason, similar to the previous data structures, the cost of edge updates

in DAA is O(∆).

4.2.4 Dynamic Intervalized Adjacency Array (DIAA)

DAA addresses many of the issues of the previous data structures. However, at best,

that data structure will require no less memory than storing a static snapshot of the

entire graph. As the size of graphs continues to rise, it is often desirable to use a

structure whose memory requirements are less than Θ(|V | + |E|) in practice. It is for

exactly this case that we explore two final data structures, the first of which we refer

to as Dynamic Intervalized Adjacency Array (DIAA). This data structure is a subtle

variation of DAA, which provides a significant reduction in memory requirements for
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certain classes of graphs.

The DIAA data structure is similar to DAA in that each vertex is stored as an

object with a degree and an adjacency list representation. However, whereas in DAA,

the adjacency list was represented explicitly using an adjacency array, in DIAA it is

represented using an array of intervals and residual ids, see Appendix A. This simple

optimization has the potential to reduce the memory requirements and improve the

performance for a dynamic graph. If a graph exhibits locality, intervals will exist in

vertex adjacency lists, and thus, memory requirements will be reduced.

The DIAA format can be specified as follows:

δ
[
i
[
E1L1 · · ·EiLi

]
i>0

[
R1 · · ·Rk

]
k>0

]
δ>0

where subscripted brackets denote the condition required for the enclosed portion of the

format to be present, i is the number of intervals, and k = δ −
∑i

j=1 Lj , is the number

of residuals.

Furthermore, by intervalizing the adjacency arrays, update and query operations

can also be made more efficient. For example, when an edge is inserted into a DAA,

the correct index for the new vertex id is identified and all elements subsequent to the

index are shifted by one array index to make room for the new id. Contrast this with

insertion into a DIAA. In a DIAA data structure the insertion of a new vertex id into a

vertex object will have one of the following effects: 1) create a new interval, 2) extend

an existing interval, or 3) become a residual. Examples of creating a new interval and

extending an interval can be seen in Figures 4.3 and 4.4. There are three types of

interval extensions, each of which is illustrated in Figure 4.4. The first type, int-new,

happens when a new vertex id is added which is equal to one more or less then the

highest or lowest id in an interval. In this case, the interval cannot be further extended

by any of the residuals, which is exactly the second type, called int-new-res. The final

type, called int-int, occurs when the new vertex id is exactly one less than the lowest id

of one interval and exactly one more than the highest id of another interval.

Since an intervalized adjacency array can require at most O(1) more space than its

explicit counterpart, for storing the number of intervals in its vertex object, memory

requirements for DIAA are expressed as O(|V | + |E|). This also means that scanning

and shifting of an intervalized adjacency array, which require at most the same number
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Figure 4.3: Adding edge (13,15), which creates a new interval in each vertex object,

shown in bold.

Vertex Degree Intervals Residuals

13 9 [1, 3], [8, 4], [14, 2]

15 6 [32, 4], [13, 2]

Figure 4.4: Adding three edges, (4, 33), (4, 34), and (15, 31), to illustrate the three

different interval extensions possible, changes denoted by bold text.

Vertex Degree Intervals Residuals Type

15 6 [31, 5] 14 int-new

33 7 [1, 5] 15, 23 int-new-res

34 7 [1, 6] 8 int-int

Figure 4.5: Compressed adjacency array, before integer coding, for example graph from

Figure 4.1.

Vertex Degree Intervals Residuals

. . . . . . . . . . . .

13 8 [1, 3], [8, 4] 2

14 4 1, 4, 4, 50

15 5 [32, 4] 1

. . . . . . . . . . . .

32 8 [2, 4], [10, 3] 33

33 6 [1, 3] 55, 10, 8

34 6 [1, 3], [5, 2] 43

. . . . . . . . . . . .

of memory operations as the explicit counterpart, incur a cost of O(∆).
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4.2.5 Dynamic Compressed Adjacency Array (DCAA)

It was shown in [36] that web graphs and even online social network graphs exhibit

two particular properties which can be exploited to achieve compact representations.

Namely, similarity and locality. Similarity states that given an appropriate ordering of

the vertices of the graph, vertices which have ids that are close together in number,

will have similar adjacency lists. Locality means that given the same ordering, the

vertex ids in a given vertex’ adjacency list should be close to the id of the vertex

itself. Leveraging these two properties, the authors of [36] developed the WebGraph

Framework for compression of web graphs.

In the case of web graphs, a lexicographic ordering of the vertices based on their

corresponding URL produces an ordering that satisfies the similarity and locality prop-

erties. This is because most links contained in a web page are of navigational nature,

i.e., they point to other pages within the same domain. This means that most links

will exhibit locality, since the ordering of the pages lexicographically means that pages

within the same domain will appear close in the ordering. Furthermore, since most

navigational link structures are shared among several pages within a domain, the links

associated with a group of pages sharing navigational structure will exhibit similarity.

In practice, web graphs are typically ordered lexicographically for another more prag-

matic reason, it allows for easy compression of the URLs, since URLs from the same

domain appear close together when sorted lexicographically.

It is possible that the dynamic graph being represented does not exhibit the lo-

cality required to exploit an intervalized representation. It is also possible that the

memory reduction achieved by intervalization alone is insufficient. In these cases, in-

tervalization may not provide a satisfactory reduction in memory requirements, and an

additional layer of compression applied on top of the intervalized representation may

be attractive. To this end a final data structure is investigated. Referred to as Dy-

namic Compressed Adjacency Array (DCAA), this data structure leverages ideas from

the WebGraph framework described in Appendix A to achieve an even more compact

representation than DIAA. While DCAA benefits from the locality required for a suc-

cessful memory reduction in DIAA, it also has potential to reduce memory requirements

for all classes of dynamic graphs, as it is based on differential encoding and a compact
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representation of integer values.

In this representation, each vertex object stores the ids of adjacent vertices in a

modified WebGraph compressed array. When a new edge (u, v) is added to a DCAA,

the initial behavior is much like that of the DIAA, i.e., two adjacency arrays are up-

dated to reflect the addition of the new edge. However, in the case of DCAA, simply

resizing and insertion is insufficient. Since the DCAA stores each adjacency array in

compressed intervalized form, and the modified WebGraph compression does not allow

for modification in compressed form, it is necessary to first decompress the intervalized

adjacency array being updated. At this point, the new vertex id can be inserted fol-

lowing exactly the same procedure as DIAA. After insertion, the intervalized adjacency

array is compressed again and the insertion is complete. The memory accesses required

for the decompression, insertion, compression cycle is at worst, three scans over the en-

tire adjacency array (case with no intervals), making the cost for edge update in DCAA

to be O(3∆).

4.2.6 Vertex Updates

The previous discussion addressed only the circumstances related to the dynamic update

of the edges of a graph. In many cases, the range of vertex ids will not be known a

priori. In these cases, the graph data structure must also support vertex updates. For

LL, BCSR, and DAA, these operations are straight-forward to implement, since the

same ideas which were used to support edge updates can easily be extended to vertex

updates. The same is true of DIAA and DCAA, with one single, but important caveat.

The caveat being that the memory and access efficiency of the DIAA and DCAA data

structures depend highly on the ordering of the vertices. Under dynamic vertex updates,

maintaining the optimal vertex ordering for these two data structures is a hard problem.

Since typical web and social graphs have significantly more edges than they do ver-

tices, |V | � |E|, the number of edge updates will usually be at least an order of magni-

tude higher than the number of vertex updates. Therefore, it may be computationally

feasible to periodically reorder the graph, assuming the existence of an efficient graph

reordering technique designed to expose intervalization. The BFS reordering of [59] and

the Grey code reordering of [37] both take linear time on the number of vertex and

edges, and thus meet the requirements for the vertex update scheme. A slightly more
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Table 4.2: Datasets used for experimental evaluation.

Dataset |V | |E| Type

in-2004 1382908 27182946 web

eu-2005 862664 32276936 web

lj-2008 5363260 39511571 social

com-orkut 3072441 234370166 social

computationally expensive approach, which has been shown to result in a more favor-

able vertex ordering for WebGraph based schemes is the Layered Label Propagation

reordering of [38]. This method however, requires several iterations of a linear time

reordering algorithm to achieve good results, thus should be reserved for the scenario

when the maximum amount of compression is needed, regardless of the cost. Between

reorderings, vertices can be assigned ids based on their chronological appearance. This

introduces a trade-off between how often to reorder and the effectiveness of the interval-

ization mechanisms of DIAA and DCAA. Since vertex updates are infrequent compared

with edge updates, a conservative approach with a smaller interval between reorderings

can be employed to ensure intervalization effectiveness.

4.3 Experimental Design

Datasets We evaluated our algorithms using five real world datasets obtained from the

Laboratory for Web Algorithmics, http://law.di.unimi.it. The first two datasets

are examples of web graphs, while the latter two are online social graphs. Their char-

acteristics are shown in Table 4.2. As can be seen, in all datasets, the number of edges

is greater than the number of vertices by at least an order of magnitude.

Implementation All data structures and algorithms were implemented in C. The

experiments were run with a single thread on an Intel (R) Xeon (C) 2.80GHz CPU. The

test applications were compiled on Ubuntu 10.04 with GCC version 4.5.2. Timing was

performed using the gettimeofday() POSIX.1-2001 function.

http://law.di.unimi.it
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Through experimental evaluation, it was determined that the malloc() implemen-

tation shipped with the standard C library on Ubuntu 10.04 was unsuitable for the

dynamic nature of many of the data structures described in this work. This is espe-

cially true for DAA, DIAA, and DCAA, whose memory cannot be bulk allocated like

that which can be done when allocating nodes for a linked-list or the single allocation

required to resize a static CSR structure. For this reason, we implemented our own mal-

loc() library that is specifically designed for the way that memory is allocated for DAA,

DIAA, and DCAA. Recall that the graphs which are being focused on here, namely

web and online social graphs, tend to exhibit scale-free behavior. This means that the

majority of vertices in the graph have a small degree. Since each adjacency list in DAA,

DIAA, and DCAA requires a separate allocation, malloc() from the standard C library,

incurs a great deal of bookkeeping overhead. This overhead was eliminated in the al-

ternative malloc implementation by using the well known fixed-size block allocation

technique instead of the linked-list management technique of many malloc implementa-

tions. By eliminating this memory overhead, the amount of virtual address consumed

by an application utilizing dynamic data structures like those described here can be

greatly reduced.

With regards to BCSR, we employ a policy for folding such that the LL gets in-

corporated into the static CSR only when a query algorithm is to be executed on the

data structure. The advantage of this is that due to the good access characteristics

of the static CSR, algorithms executed on the data structure after folding will be very

efficient. The drawback of this approach is that the LL can grow quite large between

algorithm executions. However, if algorithms are executed with sufficiently small inter-

vals between, then the memory requirements of this approach will not grow undesirably

high.

Finally, for the procedure of vertex reodering, we chose two strategies based on the

class of graph under consideration. For web graphs, the lexicographic ordering of vertex

URLs was used to impose an ordering on the vertices. This was shown in [33] to lead

to a very compression friendly ordering, and is extremely efficient in implementation.

For social graphs, an ordering based on the BFS ordering of [59] was used.
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Performance Assessment Metrics For the experiments, each dataset was processed

independently. Edges were chosen at random from each edge set E to be added to the

data structure being tested. Each edge was added exactly one time and edges were

added in the same order across all data structures.

We measured the performance of the various approaches along three dimensions:

(i) memory usage, (ii) update time, and (iii) access time. Memory usage was reported

using two different metrics. The first was the amount of memory which each data

structure occupied at any given time. This measure closely resembles the theoretical

memory requirements, as it reports only the exact number of bytes needed to store

each data structure. The second measure is virtual address space usage. This measure

reflects the amount of memory obtained from the OS by the benchmark application to

persist and operate on each data structure and is directly affected by the OS and malloc

implementation’s treatment of allocated memory.

The amount of time to update the graph data structures was measured as a function

of the number of edges in the graph. The update execution time is reported as the

aggregate number of milliseconds spent on edge addition since the last query operation.

Benchmark Applications To measure execution times for graph access, the following

policy was used. The graph structures were queried after every |V |/α edge additions.

For the results presented in Section 4.4, α was set to be 200. Each |V |/α interval will be

furthermore referred to as a snapshot. Three kernel benchmarks were used to measure

the graph access time. Each of the kernels was chosen to stress different graph access

patterns. We believe that these three benchmarks are representative sample of graph

kernels, which can be used as building blocks for more complex analysis.

The first kernel is the breadth-first traversal (BFT). BFT is an edge traversal which

uses a queue to maintain the order in which to visit vertices. At each iteration, the

edges of the current vertex are expanded and any vertices which have not already been

enqueued, are added to the queue. The next iteration commences by popping the next

vertex from the queue. If the queue is empty, but not all vertices have been visited, a

random vertex is chosen which has not been visited. This is repeated until all vertices

have been visited.

The second kernel is a neighbor query. The purpose of this query is to identify the set
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of vertices which two vertices have in common and is implemented as a set intersection

in practice. Typically, a set intersection requires iterating all the elements of each of

the sets under consideration and testing for equality. If the sets are sorted, this can

be done in a single pass over the two sets and only requires as many comparisons as

there are elements is the smaller of the two sets. There are more complex algorithms for

intersection of arrays, as opposed to linked-lists, which can be made extremely fast in

practice, such as [60]. This operation can be further optimized for interval aware data

structures like DIAA and DCAA, where instead of iterating over all adjacent edges of

the two query vertices, processing proceeds as follows. Given two intervalized arrays,

find the smallest element in each of the lists. This element can exist within the bounds

of the first unprocessed interval or as the first unprocessed residual. Then, given the

smallest element of each array, a comparison is made exactly as it would be for a

standard set intersection. However, instead of iterating through each array comparing

every element, when the elements of the two arrays are not equal, it is possible to skip

entire intervals while only performing a comparison of their start id and end id, thus

potentially saving a significant number of comparisons. Furthermore, two intervals can

be intersected directly without iterating either of their ranges in its entirety.

The final kernel is the adjacency query. This is a simple check whether or not an

adjacency list contains a specified vertex id. The standard approach is a linear search for

linked-list and a binary search for arrays. However, like the neighbor query, adjacency

queries can also be optimized for interval aware data structures. The idea is the same,

instead of performing a binary search over every vertex id in an adjacency array, a

modified binary search should be employed which makes a distinction between intervals

and residuals and has the ability to treat intervals as singular elements.

In our experiments, the set of query vertices was kept consistent within each kernel

benchmark. For example, in the BFT kernel, the same set of vertices was uses as the

root of the BFT regardless of the data structure being tested. The same is true of the

neighbor and adjacency queries.
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Table 4.3: Number of intervalized edges in each graph dataset.

Dataset Intervalized Edges % of Total Edges

in-2004 21386085 78.67

eu-2005 22623251 70.09

lj-2008 11288594 14.29

com-orkut 11083262 4.73

4.4 Results

4.4.1 Memory Requirements

Figures 4.6 and 4.7 show the memory requirements for each of the five dynamic graph

data structures per dataset. From Figure 4.6, we see that the memory required by

each data structure, follows the same pattern as the theoretical bounds for memory

requirements for each data structure. As expected, intervalization and integer coding

reduces the memory required in all cases. However, the scale of the reduction is much

higher in the case of web graphs, where adjacency lists are typically well intervalized,

as shown in Table 4.3.

Also interesting is the virtual memory required by each of the data structures, as

can be seen in Figure 4.7. In the case of virtual memory, the footprint of each data

structure follows the same pattern as requested memory, except for BCSR, which has

the highest virtual memory requirements by nearly 20%. This can be attributed to the

extra memory required to fold the linked-list portion of the graph into the static CSR,

which is an important consideration if memory consumption during execution must be

limited.

4.4.2 Update Time

The second measure used to evaluate the data structures was update time. Figure 4.8

shows the execution time for the addition of edges for each snapshot. Note that the

execution time for a snapshot includes only those edges which were added during a
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Table 4.4: Mean length (standard deviation) of linked-list being updated for each dataset

under LL and BCSR data structures.

Dataset LL BCSR

in-2004 555.76 (1527.16) 2.78 (7.81)

eu-2005 1288.62 (4806.19) 6.44 (24.16)

lj-2008 53.33 ( 102.99) 0.23 (1.16)

com-orkut 194.67 ( 900.50) 0.97 (4.61)

particular snapshot. As expected BCSR has the lowest edge addition time, when con-

sidered without the cost of folding. This is based on its reliance on linked-lists, which

are very efficient for short lists. Since, BCSR offloads edges from its linked-lists into a

static CSR occasionally, the linked-lists which it requires tend to be of shorter length,

which can be seen in Table 4.4. However, when folding is considered, BCSR w/ fold,

DIAA actually surpasses BCSR for sufficiently large and intervalized graphs, as would

be expected based on the discussion in Section 4.2.4.

One might expect that DCAA would have the slowest edge addition time for all

datasets, since the overhead of decompression and compression will have a negative

impact on addition time. However, as Figure 4.8 shows, DCAA is actually faster than

LL at later snapshots. As mentioned in Section 4.2.4 and supported by Figure 4.8

(DAA vs. DIAA), adding an edge into an intervalized adjacency array is at least as

efficient as inserting into an explicit adjacency array. Since ordered insertion into a

linked-list is slower than insertion into an array (LL vs. DAA) and the web graphs are

highly intervalized, the efficiency introduced by intervalization allows the DCAA data

structure to support edge additions at a higher rate than LL. The same is true for the

social graphs, but to a lesser degree. However, even for intervalized datasets, DCAA

still requires more time for edge addition than the rest of the data structures.

4.4.3 Performance of Benchmark Applications

The results for the three kernel benchmarks discussed in Section 4.3 are shown in Fig-

ures 4.9 to 4.11, respectively.
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Figure 4.9 shows the results of the BFT kernel benchmark, where it can be seen

that BCSR exhibits the fastest overall execution time, with DAA and DIAA close be-

hind. This is exactly as we would expect, since the representation of the graph during

operation in the BCSR data structure is in static CSR format. Even with folding time

considered, BCSR is still fastest, which is a consequence of the nature of the query,

namely, a traversal of the entire graph. Since graph traversal in BCSR has the same

complexity as edge folding, but a less friendly memory access pattern, we would expect

that the graph traversal cost will outweigh the cost of edge folding.

The DAA data structure stores the graph in conceptually the same way as BCSR,

but because each of the adjacency lists in DAA is allocated dynamically, the data

locality that can be exploited in BCSR is not present to the same degree in DAA. The

same is true of DIAA, with the addition of a slight overhead due to the bookkeeping of

the intervalized adjacency lists and DCAA with a further overhead of integer coding.

DCAA executes between 3.5 and 4.5 times slower than BCSR, which can be attributed

to the overhead of decompression of the adjacency lists before operation. Finally, LL

consistently reports the slowest execution times for BFT.

In the case of the neighbors query, a set intersection is performed between two ran-

domly chosen vertices. As Figure 4.10 shows, the results of performing a set intersection

are similar for LL, BCSR, and DAA, but quite different when compared with the results

for BFT for the other two data structures. As alluded to above, this is due to optimiza-

tions which can be exploited by the interval aware data structures. In any of the first

three data structures, a basic set intersection requires iterating all the edges of at least

one of the participating vertices. In the case that the vertex degrees of the two vertices

being intersected are different, only the adjacency list of the smaller degree vertex need

be fully iterated. However, in the final two data structures, namely DIAA and DCAA,

adjacency lists are stored as intervals and residuals. In these cases, rather than iterating

entire adjacency lists, it is only necessary to iterate the intervals and residuals. If the

adjacency lists are well intervalized, then the number of intervals and residuals will be

much less than the degree of the vertex, meaning a set intersection can be performed

with many fewer comparisons.

For web graphs, which are well intervalized, this results in in DIAA having the fastest

execution time for neighbor queries. Further, the access time of DCAA also comes very
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close to surpassing that of the non-intervalized data structures. This illustrates an

important characteristic of the two classes of data structures. Namely, that those data

structures which are not interval aware will have access times which are non-decreasing

as a function of the number of edges in the graph, while interval aware data structures

will exhibit decreasing access times as the number of edges grows and the intervals

become more dense, assuming an interval friendly ordering of the vertices.

The final query type tested was the adjacency query. At first glance, an adjacency

query is similar to a neighbors query, since both require the scanning of particular

adjacency lists. However, just as neighbors queries can be optimized to leverage an

intervalized data structure, so too can adjacency queries. This is especially true in

the case of the DCAA data structure. Instead of decompressing the entire array then

performing a binary search, which costs O(n+ log n), each element of the array can be

checked as it is decompressed and the search can return as soon as the desired element

is found, without decompressing the rest of the array. The cost of the optimized search

is O(n), which is slightly better than decompressing and performing a binary search.

As Figure 4.11 shows, this type of optimizations means that the DCAA data structure

is very competitive in terms of adjacency query execution time. It is approximately 3x

slower at worst, and less than 2x slower in most cases.

4.4.4 Selection of α for BCSR

There is an inherent trade-off to be made if an α based policy is chosen for edge folding in

BCSR. Fold too often and the cost of the edge folding operation outweighs the benefits

it gives in terms of graph update and access times. Figure 4.12 shows that there is a

sweet-spot in terms of α. For the web graph dataset, eu-2005, the best α value in terms

of total benchmark suite execution time is 50. For the social graph dataset, com-orkut,

this value is 10. The most likely explanation for the effectiveness of small α for social

graphs is due to their relatively small linked-list lengths, as shown in Table 4.4. Since

the linked-lists are short, relative to those of the web graphs, the advantages of frequent

folding are reduced, since one of the main goals of edge folding is to reduce the lengths

of the linked lists.
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4.4.5 Results on All Graphs

In our experiments, eu-2005 and com-orkut were representative of web graphs and social

graphs respectively. For this reason and due to space limitations, detailed plots for the

remaining three datasets have been omitted. However, Figure 4.13 shows a summary

of benchmark suite execution time for each dataset. This figure supports conclusions

drawn from the previously presented results in all cases except one, namely that BCSR

is inferior to DIAA in terms of access time and query time. Figure 4.13 shows that

the total execution time for the benchmark suite is smaller for BCSR than DAA. This

is due to the fact that Figure 4.13 shows the total execution time for the benchmark

suite and does not illustrate the following fact in the context of web graphs. In early

snapshots, DIAA is slower, due to bookkeeping overhead, but in later snapshots, the

intervalized structure of the web graphs, allows the update and access time to decrease

in DIAA versus, a non-decreasing update and access time for BCSR, recall Figures 4.8

to 4.11.
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Figure 4.6: Required memory for each data structure.
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Figure 4.7: Virtual memory usage during benchmark application.
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Figure 4.8: Edge addition times.
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Figure 4.9: Breadth-first traversal results.
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Figure 4.10: Neighbor query results.
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Figure 4.11: Adjacency query results.
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Figure 4.12: Benchmark suite execution time under variations of α.
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Figure 4.13: Execution time required for benchmark suite for each data structure.
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Chapter 5

Preliminaries

5.1 Background

5.1.1 Virtual Memory

Most modern operating systems (OSs) use virtual memory (VM) to give the illusion to

developers that a given process has a contiguous memory address space not shared by

any other process, and that the size of said address space is not necessarily limited by

the amount of physical memory (DRAM) present in the system. In this context, process

simply refers to the independent entity that an OS assigns to instance of an application

being executed. To accomplish this, the OS provides each process in the system with

a private and unique address space, known as a virtual address space. The locations

of each process’ virtual address space in use at a particular point in time are mapped

to the physical address space, which is the address space that belongs to the physical

memory and is shared by all processes in the system. It is the responsibility of the OS,

in coordination with some hardware capabilities, to maintain the correct translations of

virtual memory addresses to their corresponding physical addresses. Since the virtual

address space of each process is not limited to the available physical memory, it is also

the responsibility of the OS to manage the over-subscription of physical memory.

This functionality is achieved using a technique known as paging. In an OS that

supports paging, memory addresses are accessed at a granularity of a page, hence the

name paging. Each time a process requests access to a virtual memory address, the

56
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virtual address is translated to a physical address. If one such address exists, then

the page that it belongs to is considered resident and the access proceeds. When the

physical memory of the system has been over-subscribed, it is possible that no such

physical address exists. This occurs when the physical memory that was mapped to

a virtual address has been re-allocated to another virtual address. In this case, the

former virtual address has been evicted. To preserve the data contained in a page

of memory when its virtual address gets evicted, the OS stores it to some secondary

storage medium, known as the swap space, before eviction. If an access is requested

for a virtual address that has been evicted, then a page-fault occurs and the OS must

map the requested virtual address to some physical address and populate the physical

memory with the data previously stored to the swap space. If all physical memory has

been mapped to a virtual address, then the OS must choose a resident virtual address

and evict it. The choice of which resident virtual address to evict is known as a page

replacement policy.

While paging allows for the processes running on a system to over-subscribe the

physical memory, it comes at a cost. Each time that a page-fault occurs, the OS must

read from and write to whatever storage medium has been designated as the swap

space. Since the swap space allows for over-subscription of physical memory (DRAM),

it is traditionally a device which has a much higher capacity than DRAM, often a hard

disk drive or a solid-state drive. The consequence of this secondary storage access is a

dramatic increase in memory access times, since these devices are known to have much

higher access times than DRAM.

5.1.2 Multitasking

Arguably, one of the most important evolutions of computer operating systems was the

notion of multitasking. A successor to early multiprogramming systems, multitasking

OSs are able to coordinate the execution of several programs (tasks) “at the same

time”. Often, the programs, which are said to be executing concurrently, must share

the hardware resources available in the system, most notably CPU cycles. Sharing of

such resources has traditionally been achieved in one of two ways.

In the first and older of the two approaches, known as cooperative multitasking, the

programs running concurrently, voluntarily yield access to hardware resources. The
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voluntary nature of this approach makes it unsuitable for general purpose OSs, since

a single program, who does not with to yield resources, can halt progress for all other

programs running on the system.

The modern alternative to cooperative multitasking is preemptive multitasking, where

programs are interrupted according to some scheduling policy and required to yield sys-

tem resources so that other programs may receive access. This allows for much more

predictable system behavior, since every programming running concurrently is guaran-

teed some amount of access to system resources. For this reason, it is much better suited

for general purpose operating systems and in fact is the standard for most mainstream

OSs like Windows, Linux, and MacOS.

If the programs that are executing do not require access to shared resources, as may

be the case in a multi-core CPU or a distributed system, then the programs are said to

be executing in parallel. There is an important semantic distinction to be made between

concurrency and parallelism. Namely, concurrency does not imply that the programs

execution is simultaneous, as in the same instant in time, only that their execution is

overlapped, while parallelism does. This has implications for later discussions because

the Linux kernel, as do most contemporary OSs, uses preemptive multitasking to control

access to shared resources.

5.1.3 MPI: Message-Passing Interface

The Message-Passing Interface (MPI) standard is a standard for a parallel programming

model known as message-passing [61]. The message-passing model targets machines that

consist of processing elements that have distinct address spaces, and thus must rely on

sending message to communicate with each other. This closely relates to distributed-

memory architectures, where such a programming model is a natural choice, but it is

not limited to only such systems.

Th MPI standard defines two simple operations upon which nearly every other

operation relies, namely send and receive. If one processing element would like to

access data stored in the address space of another processing element, the processing

elements must send / receive messages to / from each other to copy the desired data

from one address space to the other. Because the task of explicitly moving data can

be tedious and experience has taught us they there are some communication patterns
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that reappear in many parallel algorithms, the MPI standard also defines a large set of

common communications operations, some of which are included in Table B.1.

Programs written using the functionalities specified in the MPI standard are of-

ten of asynchronous nature. By this we mean that during execution, the processing

elements only synchronize when some sort of interaction must take place. This could

be to exchange data or as to indicate that a processing element has reached a certain

point in its execution. Between interactions, processing elements compute completely

independently of each other, without the need for any communication. The reason for

this is that communication itself has no computational value, i.e., it alone does not con-

tribute to the solution of the problem being solved. As such, MPI programs are typically

engineered to minimize communication while maximizing the amount of independent

computation. This is a common characteristic of a another parallel programming model

known as the Bulk Synchronous Parallel model [62], which explicitly takes into consid-

eration the cost of communication and synchronization. There are many high quality

implementations of the MPI standard available both freely and commercially [63–66].

5.1.4 OpenMP: Open Multi-Processing

Open Multi-Processing (OpenMP) is a parallel programming model that targets shared

memory multi-processing computer architectures [67]. The most significant contribution

of OpenMP over other shared memory programming models is that it is cross-platform

by design. OpenMP is not a particular implementation or library, rather, it is an ap-

plication programming interface (API) specification that defines a simple programming

model and an accompanying interface that programmers can use to develop parallel

programs. In practice, OpenMP manifests as a set of compiler directives or pragmas.

In the C language, this takes the following form

#pragma omp directive [clause],

which indicates to the compiler that the code block following the directive should be

compiling according to the language extensions defined in the OpenMP specification.

Some possible directives are listed in Table C.1 and some possible clauses in Table C.2.

An example OpenMP function to compute the dot-product of two vectors is shown
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in Listing D.1.

The basic execution model of OpenMP is the fork/join model. In this model, the

program begins with a single thread of execution, called the master. A thread of ex-

ecution is commonly referred to simply as a thread, although this does not imply a

dependence or relationship to the OS concept of a thread. When the master thread

reaches a parallel region, identified by the PARALLEL directive, new threads of execution

are forked and computation progresses until reaching the end of the code block enclosed

by the directive. At this point, the independent threads are joined again into a single

thread of execution. Again, the choice of terminology used by OpenMP, namely fork and

join, imply no dependence on the OS functionalities fork() and join() present in most

modern OSs. Within a parallel directive, it is often desirable for the threads to perform

work independently of each other. This is easily expressed in OpenMP using any of the

worksharing clauses, like FOR or SECTION. The FOR directive distributes the iterations of

a for-loop to the threads according to the argument specified to the SCHEDULE clause.

The SECTION directives identifies a block of code that can be executed in parallel with

other blocks designated with the SECTION directive within the same SECTIONS block.

It is possible to combine the PARALLEL and FOR directives into a single PARALLEL FOR

directive in the case that the parallel region contains a single for-loop. Finally, within

a parallel region, the program developer might want the threads to synchronize in some

way, but not cease to exist. In this case, directives such as BARRIER or ATOMIC are useful.

The basic memory model of OpenMP is the shared memory model. This means that

when there are multiple threads of execution, they all have the same view of the memory

space. As a consequence, the threads can manipulate the data stored and accessed by

other threads. This provides a very efficient means by which independent threads can

communicate and is one of the advantages of the shared memory model.

5.2 Literature Reviews

5.2.1 Out-of-Core Computation

There are a variety of research efforts related to efficient memory management strategies

for data intensive out-of-core applications. Most of the previous work can be broadly
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categorized as follows: (1) OS memory management policies, (2) problem specific out-

of-core solutions, or (3) efficient general purpose data intensive solutions.

Many page replacement policy studies have been performed under various condi-

tions and for various workloads. Some examples are Lee et al. [10], Park et al. [14], and

Qureshi et al. [15]. In each of their respective papers, the authors demonstrated different

circumstances that application performance can be improved using page replacement

policies designed for the characteristics of the application. Other works, like that of

Engler et al. [7], focus on the design and implementation of a general purpose virtual

memory subsystem at the application level. The authors argue the efficacy of an appli-

cation level VMM and included micro-benchmarks to show its feasibility. Our approach

introduced in Chapter 6 falls into this broad category of application level VMM.

More recently, there has been an emergence of interest in memory management sys-

tems catered toward out-of-core applications. A large amount of this work has been

focused on problem specific out-of-core solutions. Typically, this means that a memory

management strategy is tailored for the specific characteristics of the problem. While

this level of customization generally yields the best results, the engineering cost is pro-

hibitively high for most applications. Thus, this type of research has been focused

mainly on those problems where performance is critical. For example linear algebra

kernels [16] and data management systems [6].

There has also been a number of projects related to optimized general purpose virtual

memory management systems. Most relevant to our work are three projects. The first is

by Brown et al. [5], who looked at an entirely compiler-based solution for prefetching and

releasing memory in out-of-core applications. The compiler used analysis of the source

code to identify potentials points in the execution where data could be safely loaded and

unloaded so as to reduce memory access latency. The complete solution also included

a runtime layer which intercepted the compilers prefetch and release instructions and

decided if they were still appropriate to execute based on the current state of the system

at the time of interception. Using this approach I/O stall time could be reduced by more

than 50% for many large scientific applications [5]. The second is the DI-MMAP system

of Van Essen et al. [8,17], a kernel module which replaces the existing Linux memory map

runtime with a custom runtime. For the metagenomics application used in the paper,

the DI-MMAP system achieved a 4.88× performance improvement over the Linux kernel
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memory map runtime. Like SBMA, DI-MMAP is also built as a drop in replacement

for memory acquisition, however DI-MMAP is built as a kernel module and is seen as

an extension to the kernel rather than an application level VMM. In contrast to the

Linux kernel VMM, which is optimized for shared libraries, DI-MMAP is optimized

specifically for data-intensive out-of-core applications, including optimizations like bulk

flushing of the page table and transition-look-aside buffers. Compared with SBMA and

OpenOOC, the DI-MMAP system is much lower-level and thus, has no notion of the

cooperative multi-tasking nature of BDMPI or OpenMP. Lastly is the work of Meswani

et al. [13], which addresses this problem for future Exascale machines. The authors

argue that a programmer-driven approach to memory management is the quickest way

to reach the bandwidth targets of the Exascale machines. Their results show that while

programmer-driven methods are an improvement over automated systems, their is still

more research to be done before the bandwidth targets of the Exascale machines are

reached.

Orthogonal to the previously mentioned works, but still within the category of gen-

eral purpose solutions for out-of-core computations is a collection of projects focused on

the development of frameworks for expressing computations in a way that can be easily

executed out-of-core in distributed systems. Some of the most significant outcomes of

this work have been the functional programming model used by the MapReduce [68]

and associated frameworks (e.g. Hadoop [9] and Spark [12]) and the vertex centric

model used by various graph-based distributed processing frameworks (e.g. Pregel [11],

Hama [69], GraphLab [70], and Giraph [71]).



Chapter 6

Distributed Memory Architecture

6.1 Methods

6.1.1 BDMPI: BigData MPI

BigData MPI (BDMPI) is a solution to efficient and transparent out-of-core execu-

tion for distributed memory systems, introduced by Lasalle et al. [72]. The key idea

behind BDMPI is that the programmer needs only to develop a memory-scalable par-

allel MPI program by assuming that the underlying computational system has enough

computational nodes to allow for the in-memory execution of the computations. In a

memory constrained system, this program is then over-decomposed into a sufficiently

large number of processes so that the per-process memory fits within the physical mem-

ory available on the underlying computational node(s). BDMPI maps one or more of

these processes to the computational nodes and relies on the OS’s VMM to accommo-

date the aggregate amount of memory required by them. BDMPI prevents memory

thrashing by coordinating the execution of these processes using node-level cooperative

multi-tasking, which limits the number of processes that can be running at any given

time. This ensures that the currently running process(es) can establish and retain mem-

ory residency and thus achieve efficient execution. BDMPI exploits the natural blocking

points that exist in MPI programs to transparently schedule the cooperative execution

of the different processes.

BDMPI is implemented as a layer between an MPI program and any of the existing
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implementations of MPI. From the application’s perspective, BDMPI is just another

implementation of a subset of the MPI 3 specification. Programmers familiar with MPI

can use it right away and any programs using the subset of MPI functions that have

been currently implemented in BDMPI can be linked against it unmodified.

Master and Slave Processes The execution of a BDMPI program creates two sets of

processes. The first is the MPI processes associated with the program being executed,

which within BDMPI, are referred to as the slave processes. The second is a set of

processes, one on each compute node, that are referred to as the master processes.

The master processes are at the heart of BDMPI’s execution as they spawn the slaves,

coordinate their execution, service communication requests, perform synchronization,

and manage communicators.

Node-level Cooperative Multi-Tasking The master maintains information about

the state of the various slaves, which they can be in one of the following states: currently

running, blocked due to an MPI receive operation, blocked due to an MPI collective

operation), scheduled for execution if resources when resources become available, and

finalized.

The blocking/resumption of the slaves is done jointly by the implementation of the

MPI functions in the slave library and the master processes. If a slave calls an MPI

function that cannot be satisfied immediately, it notifies its master and then blocks by

waiting for a message from the master process. The master updates the state of the

slave to blocked and proceeds to select another runnable slave to resume its execution by

sending a message to it. When a slave receives a message from the master, it proceeds

to complete the MPI function that resulted in its blocking and returns execution to

the user’s program. If more than one slave is at a runnable state, the master selects

for resumption the slave that has the highest fraction of its virtual memory already

mapped on the physical memory. This is done to minimize the cost of establishing

memory residency of the resumed slave.

Since all communication/synchronization paths between the slaves go via their mas-

ters, each master knows when the conditions that led to the blocking of one of its slaves

may have changed and modify their state from blocked to runnable.
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6.1.2 SBMA: Storage Backed Memory Allocation

Even though BDMPI’s execution model is designed to maximize the amount of work

that can be done with the data that was fetched from disk, the experiments in [72]

showed that further performance improvements can be obtained by explicitly control-

ling how resident memory is transferred to and from disk. These optimizations require

an in-depth understanding of the execution and memory models of the BDMPI runtime.

Thus, it would be desirable to have a runtime system that can leverage the coopera-

tive multi-tasking execution model of BDMPI to perform many of these optimizations

automatically.

Motivated by the observation that optimized resident memory exchange can be

implemented without any burden to application developers, we created a new VMM

subsystem for the BDMPI runtime which incorporates knowledge of the system’s exe-

cution and memory models. We call the new VMM subsystem Storage-Backed Memory

Allocation (SBMA), for its use of file backed memory mappings to persist data between

exchanges of resident memory.

SBMA is implemented as an application layer VMM and is relied on by the BDMPI

runtime in place of the OS VMM. Therefore, it is the responsibility of SBMA to co-

ordinate the transfer of data between physical memory and disk whenever necessary.

Furthermore, since SBMA is intended to be used as a drop-in replacement for the OS

VMM, this must be done in such a way that the application’s memory mappings re-

main unchanged regardless of the mappings’ residency in physical memory. By being

cognizant of the BDMPI execution and memory models, SBMA is able to facilitate the

exchange of resident memory in a manner that reduces interaction with the disk beyond

the capabilities of the OS VMM.

Targeted Memory Access Patterns To guide the design decisions of the SBMA

architecture, we identified four memory access patterns that characterize a wide range

of programs and simultaneously satisfy the assumptions of the BDMPI execution model.

Figure 6.1 illustrates each of these memory access patterns. The figures assume that the

size of physical memory is roughly equal to the aggregate amount of memory allocations

from the first execution phase shown.

The first (Figure 6.1a) of these access patterns, hereafter referred to as all-access,
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Figure 6.1: Four common memory access patterns. Each sub-figure shows a selection

of a single slave process’ execution phases (communication followed by computation).

Within a computation phase, memory allocations are represented by separate blocks

and accesses to an allocation are indicated by a filled block or section.
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results from an application that accesses all of its memory allocations in their entirety

during each of its execution phases. An access pattern like this can benefit from bulk

loading and unloading of its entire virtual memory space, since it will all be required

for each execution phase. A similar access pattern, shown in Figure 6.1b and referred

to as sub-access, is an application that only accesses a subset of its allocations, but still
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accesses them in their entirety during a given execution phase. In this case, aggressively

loading/unloading all of the virtual memory associated with a process, may lead to

excessive disk interaction. Rather, it would be preferable to bulk load/unload entire

allocations instead of a process’ entire memory space. The first two access patterns

are static in terms of the size of allocations across execution phases and only change in

how these allocations are accessed. In many cases, the memory footprint of a process

is not fixed throughout the entire application. The memory access pattern, known as

mod-access and shown in Figure 6.1c is representative of such an application. Here,

the size of the allocations being accessed during successive execution phases changes.

In the figure, the allocations are shrinking, but they could also be growing instead.

For such a memory access pattern, it is not always necessary to load/unload resident

memory between every execution phases. During execution phases that access a set of

sufficiently small allocations, it may be possible for allocations to remain resident in

physical memory between blocking points. The final (Figure 6.1d) and most general,

called part-access of the memory access patterns is the case where allocations are not

necessarily accessed in their entirety. Consider as an example, an application which has a

brief exchange of point-to-point communications which update only a small part of some

number of allocations. For such an access pattern, it is not desirable to bulk load/unload

allocations, since this will almost certainly lead to unnecessary disk interaction for one

case or both. Instead chunks of the allocations should be loaded/unloaded on demand

to reduce the amount of data read to/written from disk.

6.1.3 SBMA Architecture

To provide these functionalities, SBMA operates in the following way. Each time that

a slave process allocates memory, the request is handled by SBMA, which obtains the

memory from the OS on behalf of the slave process. Internally, SBMA keeps track of

which parts of the allocation are currently resident in physical memory and which have

been modified by the application. This way, just before the physical memory becomes

over-subscribed, SBMA exploits the cooperative multi-tasking nature of the BDMPI

runtime and evicts the memory of blocked slave processes at an allocation granularity.

Like a traditional VMM, SBMA uses a file on disk to persist the contents of evicted

memory. In addition, by tracking the parts of each allocation that have been modified
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by the application, only those parts which have been modified since last being written

to disk need to be written upon eviction. Likewise, when an allocation is re-admitted

into physical memory, only those parts which exist in the file on disk need to be read.

To ensure that memory mappings remain valid from acquisition to release, despite being

evicted and re-admitted into physical memory, SBMA relies on a core set of memory-

related functionalities provided by the Linux OS, discussed in detail in Section 6.1.4.

To reduce unnecessary data transfer between physical memory and disk, SBMA

exploits the semantics of certain MPI functions. When a slave process blocks on a

MPI operation that requires it to transfer data (e.g., point-to-point communication or

collective operations), it is within the semantics of such an operation to discard the

contents of any output buffers before receiving data. This means that the BDMPI

runtime may forgo writing to file any memory regions marked as modified which are

present in the output buffers of such MPI routines.

Within this framework, we developed three different strategies for managing the

exchange of resident memory, the details of which are provided in the rest of this section.

Aggressive Read / Aggressive Write (ARAW) The first strategy is directly re-

lated to the explicit file I/O optimization described in [72]. This strategy is designed for

applications with an all-access or part-access memory access pattern like those shown in

Figures 6.1a and 6.1b. In this approach, when a process enters a blocking state, it writes

any modified parts of its allocations to the appropriate file on disk and then releases

the associated physical memory resources, a procedure which we call unloading. Upon

exit of the blocking state, the first access to each allocation causes physical memory to

be acquired for it and any parts of the allocation which exist in its associated file to be

read, a procedure that we refer to as loading. Note that only those allocations that a

slave process accesses during an execution phase are actually loaded, see Figure 6.1b.

Furthermore, ARAW requires no communication between the master process and the

slave processes in order to coordinate the exchange of resident memory.
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Aggressive Read / Lazy Write (ARLW) The are many applications that access

their allocations in their entirety, but do not access a sufficient number of their allo-

cations to over-subscribe physical memory during every execution phase. Such appli-

cations may have sub-access (Figure 6.1b) or mod-access (Figure 6.1c) memory access

patterns.

Motivated by this, the Aggressive Read / Lazy Write (ARLW) approach allows

memory to remain resident until memory becomes over-subscribed. By unloading allo-

cations only when required, interaction with disk during these types of execution phases

can be significantly reduced and in some cases, completely avoided. To accomplish this,

the master process must coordinate the loading and unloading of slave memory. Thus,

whenever a slave process loads memory, it first notifies the master process. The master

checks to make sure that the pending load can complete safely, meaning that it will not

over-subscribe the physical memory. If it cannot, the master directs blocked slaves to

unload memory until the pending load will complete safely or no blocked slaves have

any loaded allocations.

Lazy Read / Lazy Write (LRLW) For applications that exhibit part-access memory

access patterns (Figure 6.1d), the previous behavior is not ideal. Under either ARAW

or ARLW, each update will cause an entire allocation to be loaded, even if only a small

fraction of the allocation is being updated. A better approach in this case would be to

only load those parts of each allocation that are actually accessed.

The lazy read / lazy write (LRLW) strategy addresses this issue by unloading allo-

cations using the same procedure as ARLW, but loading them at a chunk granularity

rather than whole allocations. Here chunk is implementation defined, the details of

which are discussed in Section 6.1.4. An ancillary advantage of a lazy read approach

is that it facilitates asynchronous data transfer from disk. In aggressive reading, load-

ing a memory allocation requires the slave process to block until all relevant parts of

the allocation have been read from disk. In contrast, lazy reading performs loads at

smaller granularity. This means after loading a chunk, a fast operation compared with

loading an allocation, the slave process can resume execution. Meanwhile, instructed

by readahead policies, the OS will continue to fetch data from the relevant file in the

background. When an allocation is accessed in roughly sequential order, this translates
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Figure 6.2: The state transition graph for sbpages. +ONDISK indicates that the ONDISK

flag will be given to the sbpage, −ONDISK that it will be removed, and ±ONDISK it will

continue to be present or absent, whichever it currently is.
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to reduced time spent blocked on data transfer, since most of the data will be prefetched

by the OS before it is accessed by the application.

6.1.4 SBMA Implementation

Memory Acquisition and Representation SBMA uses interposition to intercept

calls to libc’s standard malloc library. That is, a call to malloc() in a BDMPI program

will be performed by SBMA. Our implementation of SBMA includes a parameter called

the SBMA threshold which controls the minimum sized allocation to be managed by

SBMA. Any allocation less than the SBMA threshold will be passed directly to the

appropriate libc function, bypassing SBMA management. SBMA uses the mmap() and

munmap() functions to acquire/release memory to/from the OS. When an application

requests memory, SBMA is invoked and calls mmap() to obtain a virtual address from

the OS pointing to a region of memory that contains the requested amount of memory.

Then, a file is created on disk where the memory region will be persisted whenever

it is unloaded. The memory region returned by mmap() is segmented conceptually

into consecutive equal sized blocks, each containing a fixed number of system memory

pages, referred to as sbpages. Each sbpage is associated with an sbpage state. Valid

sbpage states are unmodified (INSYNC), modified (DIRTY), and not accessible (NONE).

Furthermore, the INSYNC and NONE states can be modified with a stored on-disk (ONDISK)

flag. The precise meanings of these states are described in subsequent sections and
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Figure 6.2 provides a summary of the valid state transitions and their effect on the

ONDISK flag of an sbpage. SBMA also provides the functionality to discard an allocation.

This operation removes any ONDISK flags from the associated sbpages and transitions

all sbpages to the NONE state. During this, no sbpages which are in the DIRTY state

are written to the associated file, the allocation is simply treated as if it were newly

allocated.

Access Control and Data Persistence In order for SBMA to perform the various

read/write optimizations, it needs to know which parts of the allocations are being ac-

cessed by the application and if these accesses are read and/or write. To achieve that,

SBMA uses the functionalities provided by memory protection via the Linux kernel.

Each of the three states, INSYNC, DIRTY, and NONE, imply a specific set of access per-

missions, set using the system call mprotect(). Based on these access permissions the

OS will generate the signal SIGSEGV whenever the application attempts an access that

is not permitted according to the state of the corresponding sbpage. Trapping these

SIGSEGV signals is one of the means by which the SBMA system transitions sbpages

from one state to another; the other being an explicit discard of an allocation. To trap

the SIGSEGV signal, SBMA installs its own SIGSEGV handler at the time that MPI Init

is called.

When an sbpage is in the INSYNC state, it means that its corresponding file is

synchronized with its contents and implies that the application has read access to the

memory corresponding to the sbpage. An sbpage in the DIRTY state indicates that

the application has modified the sbpage since the last time that its file was loaded

and implies read and write access permissions for the application. Both the INSYNC

and DIRTY signify that the sbpage is resident in physical memory. On the other hand,

the NONE state means that the sbpage is not resident in physical memory and as such,

implies that there are no access permissions for the sbpage.

Initially every sbpage of a new allocation is put in the INSYNC state. When the

application attempts a write access to any of these sbpages, a SIGSEGV is generated

by the OS and trapped by SBMA, which transitions the sbpage to the DIRTY state

and changes the access permissions to read/write. When a slave process unloads an

allocation, it scans the states of its sbpages and writes to the allocation’s associated
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file only those sbpages which are in the DIRTY state. All sbpages in the allocation

are then transitioned to the NONE state and any sbpages written to disk are given the

ONDISK flag. Once an sbpage is given the ONDISK flag, it retains the flag until it is

either freed or discarded. As part of unloading an allocation, the slave releases any

associated physical memory resources, via the system call madvise(), invoked with

the flag MADV DONTNEED, which notifies the operating system that the specified memory

resources are no longer needed. In addition, SBMA sets the permissions of the allocation

to NONE, so any future access will be intercepted by SBMA and handled appropriately.

Aggressive Read / Aggressive Write Details In the ARAW approach, when a

slave process reaches an MPI synchronization point, but before entering the blocked

state, it unloads all of its memory allocations. This means that for each of its allocations,

it scans for sbpages in the DIRTY state, writes them to their appropriate location in

the allocation’s corresponding file and updates their state to include the ONDISK flag.

Afterwards, all of the allocation’s sbpages are transitioned to the NONE state and the

access permissions for the allocation memory are set to none. Lastly, the physical

memory resources are released by the process with a call to madvise().

In an aggressive read approach, when a slave process receives a SIGSEGV, the allo-

cation to which the offending memory location belongs is identified. Once found, the

slave initiates an allocation load by reading into memory the sbpages that have the

ONDISK flag, transitioning all of the sbpages to the INSYNC state and setting the access

permissions to read.

Lazy Read Details In a lazy read approach, when a slave process receives a SIGSEGV

associated with a read access, the allocation to which the offending memory location

belongs is identified. Once found, the slave initiates an sbpage load on the appropriate

sbpage by reading it into memory only if it has the ONDISK flag, transitioning it to the

INSYNC state and setting its access permissions to read.

Lazy Write Memory Tracking Protocol The lazy write approach requires that the

master process maintains an accurate count of the amount occupied physical memory,

so that writes can be delayed. To accomplish this, messages are exchanged between the

master process and relevant slave processes each time memory is loaded or unloaded.
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Four different message types are relied on to provide this functionality: load, unload,

release, and proceed.

When a slave process wants to load memory, it sends a load message to the master

containing the size of the memory region to be loaded and then waits to receive a proceed

message in response. Upon receiving a load message, the master process verifies that

the requested amount of memory can be safely loaded. If not, then the master process

repeatedly chooses a blocked slave process and commands it to unload all of its memory

allocations via a release message. This is repeated until no slaves have any loaded

allocations or the requested amount of memory can be loaded safely, at which point the

master sends a proceed message to the slave who initiated the request. Whenever a slave

successfully unloads its memory allocations due to the reception of a release message,

it notifies the master with an unloaded message containing the aggregate amount of

memory unloaded. It is not sufficient to exchange load messages and unload messages

only when memory is loaded and unloaded. It is also necessary to send unloaded / load

messages whenever memory is freed / allocated, since these have the same effect on the

total occupied memory as unloading / loading.

When lazy writing is coupled with lazy reading, an extra consideration must be

made. Rather than sending a load message each time that an sbpage is loaded, which

would be prohibitively expensive for applications with large allocations, the LRLW

approach sends exactly one load message for each allocation. The message is sent when

the first access is made to any of the allocation’s sbpages.

Dynamically Choosing the Number of Running Processes For some problems,

the memory footprint of the slaves is not fixed throughout the lifetime of the application

or cannot be easily / accurately estimated a priori. In these cases, it is desirable to have

the SBMA runtime monitor available system memory and choose the number of running

slaves dynamically based on the slaves’ memory requirements. Choosing which slaves

to allow to execute simultaneously is a hard problem due to the fact that the SBMA

runtime does not know the future memory requirements of the slaves.

To address this problem, we have implemented an extension to the original SBMA

runtime that allows the slaves to compete for residency, with certain constraints to

ensure that the system makes progress. The basic idea is that the SBMA runtime will
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allow a previously blocked slave to begin execution as long as there is enough physical

memory available to satisfy its next memory request. If at any point, the memory

becomes over-committed, then an ordering is imposed on the running slaves and the

last slave in the order is required to evict its memory and enter the blocked state. In our

implementation, the ordering is based on the amount of resident memory belonging to

each slave, so that the slave with the least resident memory is subject to eviction. This

simple constraint ensures that at least one slave process will always be able to make

progress.

In an approach like this, there is a trade-off between the granularity at which slave

processes reserve / acquire physical memory and the utilization of the available physical

memory. Here physical memory utilization refers to the amount of physical memory

populated by data that has been or will be accessed before a slave process reaches a

pre-specified blocking point. Depending on which approach is used, either the AR or

LR from Sections 6.1.4 and 6.1.4, the contention for physical memory and potential

utilization will change.

In an AR scheme, the first access to an allocation will cause a slave process to

reserve enough physical memory to load the entire allocation from secondary storage.

Assuming that the number of allocations is relatively small, due to application design

or a memory allocator which aggregates small allocations into larger ones, then the

likelihood that a process will be asked to evict its memory and block before it reaches

a pre-specified blocking point decreases. However, if a slave process does not access a

significant portion of a particular allocation between successive blocking points, then

the utilization of physical memory will be low. In this case, some other slave process

may be prevented from running, due to memory constraints, despite the running slaves

only actually requiring a small fraction of the memory they reserved.

In an LR approach, the first access to a memory location requires that the slave

process reserve physical memory at a granularity of an sbpage. This approach allows

more slave processes to run simultaneously and increases memory utilization when only

parts of allocations are accessed between successive blocking points. However, this

approach also increases the probability that a slave process will be asked to evict its

memory and block before reaching a pre-specified blocking point. The reason for this

is that with more slaves running simultaneously, the physical memory available to each



75

slave decreases.

Multi-threaded Environments The previous discussion addresses the needs of many

distributed out-of-core applications which rely solely on MPI. However, there do exist

applications which embrace the MPI+X paradigm. This is especially true of MPI+OpenMP

and MPI+Pthreads. To thoroughly address the issues of SBMA in a multi-threaded en-

vironment is outside the scope of this work. However, the major challenge involved in

doing so, is the race condition that occurs when one thread is loading an sbpage at

the same time that another thread is writing to an sbpage. Since loading an sbpage

requires that the destination buffer have write permissions for the duration of the load,

the thread loading the sbpage does so. However, if another thread tries to write to

the same sbpage during this time, two things could happen: (1) the write could be

overwritten by the load or (2) the write could succeed, but SBMA would have no idea

since a signal was never generated due to the write protection of the buffer. In either

case, the data can be lost. This problem, known as the atomic page update problem,

has been studied in other contexts, most notably with relation to distributed shared

memory systems [73]. Some of the techniques described in [73] can be directly imple-

mented within the context of SBMA and thus allow it to work for applications which

rely on multi-threading within a computation node.

6.2 Experimental Design

Synthetic Benchmark The synthetic benchmark was designed to quantify the over-

head associated with a memory management subsystem built on top of the Linux kernel

signaling mechanisms. The benchmark allocates a single chunk of memory large enough

to fill the RAM of the host machine, which in our case was slightly less than 4GB to

avoid interference by the OS VMM. The synthetic benchmark is comprised of three

micro-benchmarks, each executing a single type of memory access operation from the

following: read (==), write (=), or read/write (+=). Each micro-benchmark consists of a

for loop which iterates over the entire allocation performing the appropriate memory

access operation on each byte. To increase the stability of the timings, before each micro-

benchmark is executed, the system’s page cache is cleared via a call to posix fadvise()
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and the CPU caches are cleared using unoptimized code to populate a sufficiently large

segment of memory which is immediately released.

Each micro-benchmark was executed using the four possible combinations of the

following memory placement policies: in-memory (I) and read (R) and memory protec-

tion policies: aggressive (A) and lazy (L). The I memory placement policy means that

during the entire execution of the micro-benchmark the allocation is stored in memory,

this is in contrast to the R policy where memory is stored on disk and must be read

before being accessed. For a write (=) access, reading from disk is unnecessary and

thus, the data is not loaded before writing. The A memory protection policy dictates

that the first time that a read protection fault is raised for the allocation, the memory

protection for the entire allocation is updated to read protected. The opposite of this

is the L policy where each read protection fault raised causes only the corresponding

sbpage’s memory protection to be updated to read protected. Note that this is not

true for write faults, since SBMA always grants write permission exactly one sbpage at

time.

The AI and LI combinations allow for the quantification of the inherent overhead of

a memory subsystem based on the Linux kernel signaling mechanisms. The AR and LR

policy combinations correspond exactly to the SBMA schemes including each of these

policies. Thus, they allow us to measure the overhead which can be expected from the

SBMA system. A special case, denoted as no protection (np) was included, in which the

allocation is given read and write permission at the time of request and is not changed

during execution, thus incurring no overhead. In this case, the A and L policies will

only be applicable to the R memory placement policy where they dictate the resolution

at which data is read from the disk. In the case of the I policy, results will be identical

for A and L. This special case is representative of a BDMPI runtime without SBMA

and acts as a baseline to compare the other schemes against.

For each micro-benchmark we reported the average throughput, namely, the number

of system pages operated on per second. This is obtained by timing the entire for loop

of each micro-benchmark then dividing the total time by the number of system pages in

the allocation. Further, each time reported is the average throughput of ten executions

of the synthetic benchmark. Due to the precautions taken, the timings results were

extremely stable, < 0.5% error, thus no error statistics are reported.
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Real-world Applications The implementation of PageRank was the same as that

used in [72] and uses a one-dimensional row-wise decomposition of the sparse adjacency

matrix. Each MPI process gets a consecutive set of rows such that the number of

non-zeros of the sets of rows assigned to each process is balanced. Each iteration of

PageRank is performed in three steps using a push algorithm [74].

The ParMetis implementation is version 4.0.3 and was downloaded directly from

the author’s website [75]. ParMetis is a graph partitioner based on the multi-level

paradigm. In its initial phases of execution, the graph being partitioned is contracted

into successively smaller graphs until the size of the resulting graph is small enough

to directly compute a high-quality partitioning. This partitioning acts as an initial

partitioning for the later phases of execution, when the graph is un-contracted and

the partitioning refined. The original source code was modified for our experiments by

changing a single line to disable the use of its own workspace management and thus

allow SBMA to manage its memory allocations.

The SPLATT implementation is a version that was obtained directly from the author

of [76] and uses a three-dimensional decomposition of the sparse adjacency tensor. Each

MPI process gets a consecutive set of rows such that the number of non-zeros of the

sets of rows assigned to each process is balanced. For our experiments, we compute

16 factors. Each iteration updates the factorization using the alternating least squares

method and checks for convergence.

The KMeans [77] implementation uses a one-dimensional decomposition of the sparse

matrix, i.e., each MPI process gets an equal number of consecutive rows. During each

iteration of the algorithm, each processes assigns each of its rows to the cluster corre-

sponding to the centroid to which it is closest. At the end of each iteration, the centroids

are recomputed globally and the process is re-executed if sufficient change in centroids

is observed. For these experiments, we compute 150 clusters and use random centroids

for the first iteration.

The implementation of graph coloring uses the same one-dimensional row-wise as

PageRank. A coloring of the graph is then computed using the Jones-Plassman algo-

rithm [78]. During each iteration, an independent set of uncolored vertices is computed.

Then the vertices of this independent set are colored in parallel. This is repeated until

all vertices have been assigned a color.



78

Table 6.1: Dataset sizes for experiments.

Application Dataset Mem (GB)

PageRank uk-2007-05 35

ParMetis nlp-kkt240 13

SPLATT NELL-large 26

KMeans RCV1 48

Jones-Plassman NASA 29

Each row represents an application and includes the dataset used and a high-water mark for the aggregate amount

of memory required by all slaves.

For the five benchmarks, we gathered results by performing five executions of each

application. The times that we report correspond to the average time required to

perform each iteration, which was obtained by dividing the total time by the number

of iterations. As a result, the reported times include the costs associated with loading

and storing the input and output data. The number of running slaves was set to one

in all cases, and the total number of slaves was chosen as the smallest number of slaves

such that the required memory for each slave fit completely in physical memory.

Datasets For the PageRank experiments the undirected version of the uk-2007-05 [79]

web graph was used, with 105 million vertices and 3.3 billion edges. To ensure that the

performance of the PageRank algorithm was not affected by a favorable ordering of the

vertices, the vertices of the graph were renumbered randomly. For the ParMetis exper-

iments the undirected nlpkkt240 [80] graph was used, with 28 million vertices and 760

million edges. For the SPLATT experiments the NELL-large [81] dataset was used, with

2.9 million rows, 2.14 million columns, 25.5 million fibers, and a total of 143.6 million

non-zero elements. The dataset was randomly permuted to ensure the SPLATT algo-

rithms were not affected by favorable tensor ordering. For the KMeans experiments the

RCV1 dataset was used, containing over 800,000 newswire stories provided by Reuters,

Ltd. for research purposes, made available by Lewis et al. [82]. The dataset was dupli-

cated sufficiently many times to generate a dataset that would require over-subscription
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of memory given a fixed number of BDMPI processes. For the Jones-Plassman exper-

iments a tetrahedral three-dimensional mesh obtained from our colleagues at NASA

was used, with 200 million vertices and 1.5 billion edges. A high-water mark for the

aggregate amount of memory required by all slaves is shown in Table 6.1 for reference.

System Configuration The experiments were run on a dedicated cluster consisting of

four Dell Optilex 9010s. Each machine is equipped with a single four-core (eight-thread)

Intel Core i7-3770 @ 3.4GHz processor, 4GB of memory, and a Seagate Barracuda

7200RPM 1.0TB hard drive. Because of BDMPI’s dependence on the swap-file for data

storage when SBMA is disabled, the machines were set up with 300GB swap partitions.

The four machines run the Ubuntu 14.04.1 LTS distribution of the GNU/Linux oper-

ating system. The C compiler used was GNU GCC 4.8.2 and the MPI implementation

was MPICH.

6.3 Results

6.3.1 Synthetic Benchmark

Table 6.2 shows the throughput for the three different memory access operations: read,

write, and read/write. The most relevant results with respect to the BDMPI system

as a whole are the rows labeled AR and LR. When any of the columns representing

sbpage sizes are compared against the np column, the result is a quantification of the

overhead of the SBMA system. In this respect, Table 6.2 reveals two important results.

First, by comparing the throughput of the np scheme for a given memory operation

to the throughput for the corresponding SBMA operation for each of the sbpage sizes, we

derive an upper limit to the overhead associated with SBMA under the set of conditions

proposed in this benchmark. Thus, we see that any given memory operation is at most

2.4 times slower under SBMA than in a system which defers memory management to

the OS. For a sufficiently large sbpage size, the overhead introduced by the implicit

signal driven memory handling of SBMA can be greatly reduced. In some cases, it can

be reduced to achieve nearly the same performance as explicit memory handling. For

instance, for the read (==) operation for sbpage size 64 using the AI or LI policy,

the throughput for both policies is is less than 3% lower than the np case. Among
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Table 6.2: Throughput of memory operations on the micro-benchmark.

Operation sbpage size AI LI AR LR

Read (x == y)

np 1195 1195 28 30

1 1195 537 28 30

4 1194 927 28 30

16 1194 1134 28 30

64 1194 1134 28 30

Write (x = y)

np 514 514 514 514

1 288 208 288 208

4 373 325 373 325

16 405 379 405 379

64 414 395 414 395

Read/Write (x += y)

np 472 472 28 30

1 276 198 28 30

4 352 310 28 30

16 380 359 28 30

64 387 373 28 30

Throughput, in system pages/sec, for memory access operations under different memory management strate-

gies using a variety of sbpage sizes from 1 to 64, described as multiples of the system page size, so

1 = 1 × 4096B = 4KB in our configuration. The first row for each memory access operation is the np

scheme, where memory is obtained via a call to mmap() and no memory protection policies are applied to it. A is

aggressive, L is lazy, I is in-memory, and R is reading. The difference between AI and AR is that in the former,

data resides only in memory, while in the latter, the data is read from disk before each read access. The same is

true for LI and LR.

the experiments which do not require disk access, the average difference in throughput

compared to the special is approximately 1.46×.

A consequence of choosing a large sbpage size, not addressed by this micro-benchmark,

is that for applications which do not access all bytes of an allocation, memory protection

may be updated and bytes read from disk unnecessarily due to the resolution implied

by the sbpage size. Second, by comparing the results for all of the experiments involv-

ing disk I/O, we we see that the results for all experiments, including those of the np
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scheme are identical within a given policy. Thus, we conclude that the overhead related

to the signal handling mechanisms inherent to SBMA are overshadowed by the disk

I/O. Furthermore, since all of these results are nearly the same, even when comparing

the two policies, it suggests that the disk bandwidth is the limiting factor for operations

involving disk I/O.

The read (==) and read/write (+=) experiments of the AI and LI policies provide

information that can be used to further quantify the overhead associated with the signal

handling mechanism. By comparing the results of these experiments between A and L,

we see that the L policy introduces a 17.5% overhead on average. The magnitude of the

overhead for a given sbpage size is proportional to the sbpage size itself. This is as we

would expect, since the L policy dictates that the memory protection of each sbpage

must be updated independently versus the A policy which has the memory protection

of the entire allocation updated at once. This overhead holds for the write(=) operation

as well, since by definition, a write fault in SBMA must first generate a read fault.

6.3.2 Real-world Benchmarks

Each application was run on a single compute node as a serial execution, as an MPI ap-

plication with the number of processes equal to the number of slaves used in the BDMPI

experiments, and a standard BDMPI application, i.e., without SBMA. Although run-

ning MPI with a greater number of processes than physical processors is generally not

recommended, these results are included as a sanity-check, to demonstrate that the

BDMPI runtime is in fact improving performance over unaltered MPI. In the following

results, entries of the form > 300.00 indicate that after 300 minutes, the application

was still running and was terminated.

Performance of PageRank Table 6.3 shows the performance achieved by the differ-

ent SBMA strategies on the PageRank benchmark. This benchmark does not include

any results for variations of the SBMA threshold. The reason for this is that the code

requires a fixed set of allocations, all of which are larger than any reasonable SBMA

threshold. Thus, for PageRank, SBMA will necessarily manage all allocations.

Comparing the performance achieved by the SBMA strategies with the single node

non-SBMA parallel implementations (last two rows of Table 6.3), we see that all of the
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Table 6.3: PageRank runtime results (minutes).

#Nodes=1 #Nodes=4

4 16 64 64

ARAW 10.96 10.93 10.53 2.82

ARLW 13.75 13.81 12.55 3.37

LRLW 13.91 12.13 10.28 2.52

Serial 14.84

MPI > 300.00 10.25

BDMPI w/o SBMA 19.86 4.34

Runtime results, for PageRank run on the uk-2007-05 graph. PageRank was run on a single node with 12 slaves

and four nodes with three slaves per node. In both cases, the number of running slaves was one per node. The

single node experiments were run with three different sbpage sizes, described as multiples of the system page size

(4KB).

SBMA strategies lead to a decreased runtime. SBMA is 1.6×–1.8× and > 12× faster

than BDMPI without SBMA and MPI respectively. For the multi-node experiments in

the last column of Table 6.3, the performance improvements were similar to the single

node experiments. In these cases, SBMA was 1.51× and 3.58× faster on average than

BDMPI without SBMA and MPI respectively.

Surprisingly, the performance improvement over the serial application was more

modest. However, as was discussed in [72], the serial version, by its very nature has

a few advantages over a parallel implementation. First, since the graph is randomly

permuted, distributing it to the 12 slaves is a complex operation. Second, each iteration

of the computation requires an all-to-all communication. Both of these computations

introduce a non-trivial amount of work into the parallel execution.

For the PageRank experiments, the performance improvement achieved by the SBMA

strategies can be credited to the cooperative multi-tasking model of the BDMPI runtime.

In this type of application, where nearly all of the data is accessed between blocking

points, the main advantage of using a system like SBMA is that it automates the bulk

load and unload before and after each blocking operation. To demonstrate this, we refer

to the results from [72], where the authors performed the same PageRank experiment
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Table 6.4: Amount of disk I/O for ParMetis (GB).

Read Write

4 16 64 4 16 64

ARAW 116 117 118 52 56 62

ARLW 67 67 68 38 40 45

LRLW 25 28 32 38 40 45

Number of GB transferred to / from disk during the execution of ParMetis on a single node with four slaves for

the three SBMA strategies and three different sbpage sizes, described as multiples of the system page size (4KB).

using BDMPI without SBMA and a version of the PageRank application with explicit

read/write to disk before/after each MPI blocking operation. The per iteration runtime

for that experiment was 9.98 min for single node and 2.35 min for four node. Thus, the

best of the SBMA runs were < 5% slower on average than an application optimized by

hand.

Comparing only the performance of the various memory exchange strategies, we see

that ARAW performs the best whereas ARLW and LRLW perform worse, but roughly

the same, for all sbpage sizes. However, the performance difference between all three

strategies is within 10%. Since each iteration of the algorithm requires that the processes

access their memory allocations entirely, there is no obvious advantage of using an LR

based approach. Further, since the number of slaves is chosen such that the running

slave occupies most of the of available system memory, whenever a process is in the

blocked state, it will be required to unload its memory, nullifying any advantage of

an LW based approach. In fact the difference in runtimes between ARLW and LRLW

for corresponding sbpage sizes is inversely proportional to the discrepancy in write

operation throughput between AR and LR in Table 6.2 for the same sbpage sizes.

Performance of ParMetis Figure 6.3 shows the performance achieved by the dif-

ferent SBMA strategies on the ParMetis benchmark. The results for variations of the

SBMA threshold were included because at various points during its execution, ParMetis

allocates chunks of memory whose size is below the SBMA threshold. No multi-node

experiments were run with ParMetis due to the fact that its total memory requirements
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Figure 6.3: Runtime results, in minutes, for ParMetis run on the nlpkkt240 graph.
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ParMetis was run on a single node with four slaves for the three SBMA strategies. Each strategy was run with

three different sbpage sizes and three different SBMA threshold sizes, both described as multiples of the system

page size (4KB). Execution of ParMetis took > 300, > 300, and 255.67 min for serial, MPI, and BDMPI w/o

SBMA, respectively.

mean that it would nearly fit in the aggregate memory of the four-node system used in

our experiments.

The results for ParMetis for all SBMA strategies show a large performance improve-

ment over the non-SBMA implementations found in Figure 6.3. In this case, all three

of the SBMA strategies outperformed BDMPI without SBMA with speedup ranging

from 7× to 12×. The results compared with the serial execution, are even better, where

SBMA achieved speedup > 20×. The poor performance of serial ParMetis and non-

SBMA runs can be attributed to the reliance on the OS VMM swapping mechanism

and the random memory access patterns of ParMetis during the execution of its first

and last few stages. During these stages, the graph being contracted or un-contracted

is within a small factor of the size of the original graph, thus requiring more memory

than physically available.
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Comparing the performance achieved by the various memory exchange strategies,

we see that LRLW performs the best whereas ARAW performs the worst, with ARLW

in between. The runtimes of ARLW are 10% less than ARAW on average and those

of LRLW are 33% less than ARAW on average. This increased gap in performance

is expected for an application like ParMetis, which is an example of the multi-level

paradigm. In its initial phases of execution, the graph being partitioned is contracted

into successively smaller graphs, thus each successive phase requires a lesser amount of

memory be loaded than the previous phase. This explains the performance improvement

of ARLW over ARAW, since during the later phases of contraction, the memory of all

slave processes can fit in the available system memory. This fact makes the loading and

unloading of entire allocations, as in ARAW, unnecessary. Then, in the later phases

of execution, the graph is un-contracted and refined. In most cases, although the un-

contracted graph will grow from phase to phase, the amount of memory accessed will

remain small relative to the size of the un-contracted graph because only the information

associated with the interface vertices is accessed. Since only a relatively small amount of

memory is being loaded during each of the un-contraction phases, ARAW and ARLW

both suffer from excessive loading and unloading of memory, due to the transfer of

data to and from disk at the allocation resolution. Table 6.4 presents the number of

GB transferred to/from disk and shows that although LRLW writes roughly the same

amount of data as ARAW and ARLW, it reads 75% less data than ARAW and 57% less

than ARLW. The characteristics of these two phases, contraction and un-contraction,

make LRLW ideally suited for an application like ParMetis, which is supported by the

results.

Looking at just the effect of sbpage size on the three strategies we see that each is

affected differently. ARAW is affected adversely, ARLW neutral, and LRLW positively.

To understand this, we have to consider the implications of using different sbpage sizes.

Under all three strategies, the consequence of a larger sbpage size is that the number

of bytes included in DIRTY sbpages can be unnecessarily increased if the application is

not writing to all bytes within an sbpage. This is very likely to happen during later

contraction and un-contraction phases, when the memory access pattern becomes more

sparse. As Table 6.4 shows, in all cases, as sbpage size increases, so does disk I/O. Since

this is the only effect of sbpage size on ARAW we see that ARAW’s runtime increases
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Table 6.5: SPLATT runtime results (minutes).

#Nodes=1 #Nodes=4

4 16 64 64

ARAW 12.01 13.04 13.47 2.23

ARLW 11.46 12.28 11.72 2.13

LRLW 11.92 8.41 7.17 2.57

Serial 13.52

MPI > 300.00 5.38

BDMPI w/o SBMA 38.32 4.01

Runtime results, for SPLATT run on the NELL-large graph. SPLATT was run on a single node with eight slaves

and four nodes with two slaves per node. In both cases, the number of running slaves was one per node. The

single node experiments were run with three different sbpage sizes, described as multiples of the system page size

(4KB).

as the sbpage size increases. In ARLW, the increased disk I/O is offset by the nature

of lazy writing and its expression in ParMetis. Many of the ParMetis iterations which

are likely to cause unnecessary disk I/O, due to sparse memory accesses, are also likely

to be candidates to benefit from a lazy write strategy. Like ARLW, LRLW offsets the

effects of sparse memory accesses using lazy writing, but has one additional advantage.

As sbpage size increases, the memory protection overhead related to the lazy reading

strategy decreases. This effect of sbpage size was confirmed in Table 6.2. Thus, LRLW

realizes a new gain in performance as sbpage size increases as can be seen in Figure 6.3.

Performance of SPLATT Table 6.5 shows the performance achieved by SPLATT for

each of the three SBMA strategies. For the same reasons as the PageRank benchmark,

results for variations of the SBMA threshold were omitted.

For the single node experiments, the characteristics of the SPLATT experiments

were similar to those of the ParMetis experiments. Namely that the addition of SBMA

improved performance in all cases when compared with the serial version and BDMPI

without SBMA. Also, despite the additional overhead of lazy reading and writing, per-

formance can be improved by enabling these optimizations. Like the ParMetis results,
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Table 6.6: Amount of disk I/O for SPLATT (GB).

Read Write

4 16 64 4 16 64

ARAW 70 70 70 24 24 24

ARLW 51 51 51 20 20 20

LRLW 23 23 23 20 20 20

Number of GB transferred to / from disk during the execution of SPLATT on a single node with eight slaves

for the three SBMA strategies and three different sbpage sizes, described as multiples of the system page size

(4KB).

the performance improvement between the three schemes can be explained most easily

by referring to Table 6.6, which shows that the amount of disk I/O for SPLATT. Like

ParMetis, ARAW was the slowest and also had the highest amount of disk I/O and

LRLW was the fastest and had the lowest amount of disk I/O.

For the multi-node experiments, the results are generally as expected. Each of the

three strategies performed had runtimes 3×–6× faster than their single node counter-

part. As anticipated, ARLW was faster than ARAW. However, not as expected was the

performance of LRLW compared with the other strategies. As it turns out, the cumu-

lative memory on the four nodes was large enough to support a great deal of deferred

writes. Thus, the relatively low aggregate disk I/O, combined with the overhead of lazy

reading, actually had a negative impact in the LRLW scheme, causing its runtime to be

larger than both ARLW and ARAW. For reference, the amount of data written to disk

was 24GB, 14GB, and 20GB for ARAW, ARLW, and ARLW respectively.

Performance of KMeans Table 6.7 shows the performance achieved by KMeans for

each of the three SBMA strategies. For the same reasons as previous problems, these

results do not include any variations of the SBMA threshold.

For the single node experiments, SBMA resulted in runtimes that were 1.5×–1.8×
and > 4× faster than BDMPI without SBMA and MPI, respectively. The results com-

pared to the serial implementation were 2.3× faster on average. This improvement

over the serial implementation is due to the data locality benefits of decomposing the

problem, a step required for the parallel execution, since each process is responsible for
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Table 6.7: KMeans runtime results (in minutes).

#Nodes=1 #Nodes=4

4 16 64 64

ARAW 111.32 110.75 109.02 39.38

ARLW 98.09 97.64 97.10 36.01

LRLW 101.58 99.97 98.38 37.62

Serial 238.42

MPI > 300.00 94.87

BDMPI w/o SBMA 169.32 59.36

Runtime results, for KMeans run on the RCV1 dataset. KMeans was run on a single node with 16 slaves and four

nodes with four slaves per node. In both cases, the number of running slaves was one per node. The single node

experiments were run with three different sbpage sizes, described as multiples of the system page size (4KB).

computing only a subset of the rows of the matrix. In the serial implementation no

such decomposition is performed. Thus, each iteration requires multiple passes over the

dataset with no data reuse. For the multi-node experiments, the performance improve-

ments for SBMA were similar to those observed on a single node. Namely that the

addition of SBMA improved performance in all cases when compared with the results

of the baseline methods.

The results for the three SBMA strategies are similar to the those of PageRank,

with one notable difference. For KMeans, the ARAW was the worst performing SBMA

strategy instead of the best. This can be explained by the following characteristic of

the KMeans algorithm. In KMeans, the dataset is accessed multiple times during each

iteration and these accesses are separated by a global reduction of the centroid values.

Since the number of clusters being computed is small relative to the size of the matrix,

very little data is needed by each process to compute the reduction. Under a lazy write

strategy, this means that the last process to reach the reduction point can keep its

memory resident and begin executing after the reduction has completed without the

need to load any memory. The result of this is that ARAW reads a total of 227GB

of data from disk during its execution, compared with 221GB and 220GB for ARLW
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Table 6.8: Jones-Plassman runtime results (minutes).

#Nodes=1 #Nodes=4

4 16 64 64

ARAW 12.91 12.42 12.37 4.42

ARLW 12.78 12.45 12.42 4.07

LRLW 11.62 11.51 11.48 3.59

Serial 27.35

MPI > 300.00 8.10

BDMPI w/o SBMA 32.33 10.59

Runtime results, for Jones-Plassman run on the NASA dataset. Jones-Plassman was run on a single node with

eight slaves and four nodes with two slaves per node. In both cases, the number of running slaves was one per

node. The single node experiments were run with three different sbpage sizes, described as multiples of the sys-

tem page size (4KB).

and LRLW, respectively. This explains the more than 10% slower runtimes for ARAW

compared with both ARLW and LRLW. The slight improvement of ARLW compared

to LRLW can be contributed to the overhead associated with managing lazy reading

when the dataset is accessed in its entirety between blocking points.

Performance of Jones-Plassman Table 6.8 shows the performance achieved by

Jones-Plassman for each of the three SBMA strategies. For the same reasons as previous

problems, these results do not include any variations of the SBMA threshold.

For the single node experiments, the characteristics of the Jones-Plassman compared

to the baseline methods were similar to those of the ParMetis and KMeans experiments.

Again, the addition of SBMA improved performance in all cases when compared with

the serial version, MPI, and BDMPI without SBMA. The runtimes of Jones-Plassman

with SBMA were between 2× and 3× faster than the runtimes of the serial and non-

SBMA runs respectively and significantly faster compared with MPI. For the multi-

node experiments, the results are generally as expected. Each of the three strategies

performed had runtimes approximately 3× faster than their single node counterpart.

As anticipated, LRLW was the fastest method and ARAW the slowest, with ARLW in
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Table 6.9: Runtime results for dynamically choosing number of running slaves (minutes).

ParMetis SPLATT

# Running ARAW ARLW LRLW ARAW ARLW LRLW

1 25 20 22 11 11 10

∗ 23 19 11 6 6 6

Runtime results, for allowing the SBMA runtime to dynamically choose the number of running slaves for the

ParMetis and SPLATT benchmarks. Each problem was run with the three SBMA variations with one running

slave, indicated by the # Running 1 row, and with dynamically chosen number of running slaves, indicated by

the ∗ row.

between.

Comparing only the performance of the various memory exchange strategies, as

shown in Table 6.8, we see that LRLW performs the best whereas ARAW and ARLW

perform worse, but roughly the same, for all sbpage sizes. Like PageRank, the perfor-

mance difference between all three strategies is within 10%. From the results of ARAW

and ARLW, we can conclude that lazy writing has little impact on the performance of

Jones-Plassman. This make sense, since like PageRank, the algorithm makes a single

pass over the entire dataset each iteration and more importantly between each blocking

point. Thus, after reaching a blocking point, it is necessarily the case that a process will

evict its memory to make room for the next running process. However, unlike PageRank,

which traverses the graph and unconditionally updates the PageRank vector for each

vertex, in the Jones-Plassman algorithm, vertex data is not unconditionally updated.

Rather, during each iteration of the algorithm, vertex data is updated based on the

state of neighboring vertex data. This conditional updating of data gives an advantage

to LR based approaches, since they do not read entire allocations upon first access. A

consequence of this is the roughly 10% reduction in runtime that we see between LRLW

and the two alternative memory exchange strategies.

Impact of Dynamically Choosing the Number of Running Slaves Table 6.9

shows the performance achieved by the BDMPI runtime on the ParMetis and SPLATT

benchmarks. These two benchmarks were chosen because they represent applications

where the memory footprint of the BDMPI slaves changes throughout the lifetime of
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the application. In contrast to the previous experiments, which were all run using a

Seagate Barracuda 7200RPM 1.0TB, these experiments were run on a Samsung SSD

850 PRO 256GB. The reason for this is that the previous experiments were limited to

one running slave per node, so there was no contention for secondary storage. However,

for these experiments, the number of running slaves is necessarily greater than one. For

this reason, we chose to perform the experiments on an SSD for improved performance

when multiple slaves access secondary storage.

Comparing the performance of letting the runtime dynamically change the number

of running slaves and using a single running slave, we see that for the two benchmarks,

dynamically choosing the number of running slaves decreases runtime. Looking specif-

ically at ParMetis, we see that performance improvement is moderate for ARAW and

ARLW, but 2× better for LRLW. The marginal improvement in ARAW and ARLW

is due to their reliance on the AR approach. As mentioned in Section 6.3.2, during

un-contraction in ParMetis, only a relatively small portion of each allocation is actually

accessed by the slave processes for computation. In the ARAW and ARLW approaches,

this translates to a smaller number of slave processes which can be running simultane-

ously, since each running slave, despite requiring a small memory footprint, must reserve

a large amount of physical memory. This is in contrast to the LRLW approach which

only reserves the exact amount of memory needed, within a factor of an sbpage.

For the SPLATT benchmark, the performance results are quite different. As Ta-

ble 6.9 shows, the performance of all three SBMA variations with dynamically chosen

number of running slaves is roughly the same, and is approximately 2× better than

SBMA with a single running slave process. These two results are is explained by a few

observations related the memory access patterns of SPLATT. Like ParMetis, the mem-

ory footprint of slave processes in SPLATT varies throughout its execution. However,

unlike ParMetis, the variation is regular, i.e., during each iteration of the algorithm,

there is one step which requires a large memory allocation to be resident in memory,

then a step that requires only a small amount of memory to be resident. Recall that

the total number of slaves is chosen so that the high-water mark for memory residency

for any slave will be less than the available physical memory. Thus, the first step in

SPLATT, which requires large memory residency dictates the total number of slaves,

despite the fact that during the second step, it is conceivable that all slaves can be
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resident in memory and computing simultaneously. As a result, with one running slave,

the second step of SPLATT is unnecessarily serialized within a node. This explains

the improvement realized by dynamically choosing the number of running slaves. The

consistency of runtimes for the three SBMA variations is due to the fact that during the

second step of SPLATT, the allocations accessed are accessed in their entirety. Thus,

the choice of AR or LR has little impact, since the will need to be totally resident.

Since, the size of these allocations is small, the allocations required by multiple slaves

will safely fit in physical memory, meaning that the eviction policy, AW or LW, also has

little impact.

Finally, when Table 6.9 is compared with Figure 6.3 and Table 6.5, we see that for

a single running slave per node, the runtimes for HDDs are within a factor of two of

their SSD counterparts. This is a good improvement considering the bandwidth of the

HDDs used in the experiments was roughly a factor of five less than that of the SSDs.

This improvement can be attributed to the reduced contention on the secondary stor-

age facilitated by the node-level co-operative multi-tasking execution model of BDMPI

coupled with the bulk I/O performed by SBMA, especially when writing.



Chapter 7

Shared Memory Architecture

7.1 Methods

7.1.1 OpenOOC: Open Out-of-Core

Data-parallel problems [83] are an exemplary use case for shared-memory parallel pro-

gramming languages / language extensions. By their nature, shared memory data par-

allel problems often exhibit a large amount of concurrency. There has been a significant

amount of research, performed in a variety of contexts, related to exploiting this concur-

rency to hide latency. A few well-known examples of this in hardware are GPUs [84,85]

and the Tera computer system [86]. In software, Distributed Shared Memory (DSM)

systems exploit this concurrency to hide the latency of remote memory accesses [87–89].

In any of these systems, the basic premise is the same. When an execution context, be

that in hardware or software, encounters a long latency operation, the system switches

to a different execution context and performs useful computations there until that con-

text reaches a long latency operation or a pending operation completes. However, to the

best of our knowledge, there has been no work that applies this idea to shared memory

out-of-core computations. In many ways, this idea is very similar to the execution model

of SBMA. Recall that the SBMA runtime exploits additional concurrency provided by

an over-decomposition of the problem, to hide the latency associated with exchanging

data between physical memory and secondary storage. In the case of shared memory,

the additional concurrency required for hiding latency of out-of-core computation can

93
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be exposed through any of the data-parallel shared memory programming models.

In this chapter we investigate the extension of the memory control mechanisms

implemented in SBMA to a shared memory runtime. We use OpenMP [90] as the data-

parallel shared memory programming model to provide the runtime with the required

concurrency. This work does not extend the OpenMP standard or its runtime system.

Rather it uses OpenMP in a very limited capacity, and only as a way to express con-

currency. It does not currently consider OpenMP directives, i.e., FLUSH, that affect

that basic memory model of OpenMP [91]. The only directive considered in this work

is the PARALLEL FOR worksharing directive, although the following discussion is rele-

vant to any worksharing directives with similar semantics. The OpenMP standard [1]

specifies that the iterations of a for-loop adorned with the PARALLEL FOR directive can

be executed in parallel. Based on the discussion in Section 5.1.2, this implies that the

iterations can also be executed concurrently.

We call the new extension Open Out-of-Core (OpenOOC). OpenOOC is imple-

mented as an application layer execution scheduler and is intended to be used trans-

parently with those programs written in OpenMP that have the need to execute in

external memory. In this case, instead of having multiple OS processes available for

execution at a time, like in SBMA, the runtime will maintain multiple user space execu-

tion contexts. Whenever an exchange of data between physical memory and secondary

storage is required, the runtime can initiate an asynchronous exchange of the data and

switch execution contexts to continue performing useful computation while the exchange

completes. In some ways this is similar to what would happen if threads were over provi-

sioned in a standard OpenMP environment, where the OS could switch between threads

in such a situation. However, since the OS relies on preemptive scheduling, in the case

that threads are over provisioned, the system will likely suffer from resource contention.

Instead, OpenOOC leverages cooperative multitasking, as in SBMA, to effectively hide

the latency incurred by data exchange, so long as the rate that the runtime can switch

execution contexts is much higher than the time required for the exchange of data.

7.1.2 OpenOOC Architecture

To accomplish this, the OpenOOC runtime is situated alongside the OpenMP run-

time. Whenever program execution reaches an OpenMP PARALLEL FOR directive and
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the OpenMP runtime creates a group of threads, the OpenOOC runtime creates a cor-

responding group of user space execution contexts, henceforth called fibers, for each

OpenMP thread. Fibers are the mechanism by which a single thread concurrently ex-

ecutes its assigned loop iterations. This is achieved by treating a thread’s set of loop

iterations as a work queue for its corresponding fibers. In effect, the execution of a

thread’s loop iterations becomes a sequence of switching between fibers, until the work

queue has been exhausted. Although the threads themselves are preemptively sched-

uled by the OS, within a thread, fibers are cooperatively scheduled. In other words,

once a thread has begun executing a fiber, it runs the fiber until it encounters a non-

resident data access or until there are no more loop iterations available in the work

queue. If a fiber attempts to access data that is not resident in physical memory, then

the OpenOOC runtime issues an asynchronous swap of the data on behalf of the thread,

and the thread saves the fiber’s execution context and switches to another fiber, whose

data is resident in memory. If no such fiber exists, then the thread waits until one does,

i.e., an asynchronous swap completes. Once a thread has completed all of its iterations,

its control is returned to the OpenMP runtime so that it can be joined with the other

threads.

To better understand the mechanics of the OpenOOC architecture, it is helpful to

walk through a concrete example. For this, we will use a dense matrix multiplication

function written in C, seen in Listing 7.1. Not only will this example help illustrate

the fundamentals of the OpenOOC architecture, but it also serves as the computational

in Section 7.3. First, recall that if this example were compiled without OpenMP sup-

port, then it would behave exactly as if line 8 had been omitted, i.e., an unoptimized C

implementation of dense matrix multiplication. However, with OpenMP support, this

function is compiled so that when execution reaches the PARALLEL FOR directive (line

8), the OpenMP runtime creates a group of threads for parallel execution1. The exact

number of threads could have been specified using the NUM THREADS clause, set using an

environment variable, or via an OpenMP library call. Likewise, the distribution of iter-

ations amongst threads could have been specified by a SCHEDULE clause, an environment

variable, or as a runtime library call.

1 In some implementations, the OpenMP runtime maintains a pool of threads and allocates threads
from this pool to avoid the overhead of OS thread creation.
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Listing 7.1: An OpenMP implementation of dense matrix multiplication in C.

1 double matmult(

2 int m, int n, int p, // dimensions of the matrices

3 double ** A, // A is n × m

4 double ** B, // B is m × p

5 double ** C // C is n × p

6 )

7 {

8 #pragma omp parallel for

9 for (int i=0; i<n; ++i) {

10 for (int j=0; j<p; ++j) {

11 for (int k=0; k<m; ++k) {

12 C[i][j] += A[i][k] * B[k][j]

13 }

14 }

15 }

16 }

In this example, each iteration of the outermost for-loop (line 9) computes a single

vector dot-product of one row from matrix A and one column from matrix B, and stores

the result in a single entry of matrix C. There are no data dependencies between itera-

tions and thus, each can be computed concurrently with every other. Consider the case

in which the number of threads is specified to be four prior to the invocation of this

function. Then each of the threads is responsible for computing n/4 iterations of the

outermost for-loop. Assuming that there are at least four cores in the CPU and that

there is sufficient memory in the machine for all three matrices, A, B, and C, then the

calculation can be performed completely in parallel with no contention for resources.

Now consider the case when the amount of memory in the machine is insufficient.

For simplicity, assume the memory available is enough to hold four rows of A, the entire

matrix B, and four rows of C. In other words, there is enough memory for each thread

to perform a single iteration of the outermost for-loop, but no more. In this case,

after each thread completes its first iteration, every iteration thereafter will require

exchanging data between memory and disk. Namely, the data for the row from A and
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the row from C will need to be swapped into memory; all of the data from matrix B will

remain in memory for the lifetime of the computation. If data is exchanged with disk at

a granularity of β datums, then every iteration will require the thread to swap (m+p)/β

times. Each time that a swap is required, the thread will stop doing useful work and

wait while the data is moved. If the time it takes to move β datums is expressed as α,

then the total time spent not doing useful work by a single thread is nα(m+ p)/4β.

OpenOOC addresses this by having the thread switch to do other useful work while

the data is moved. The other useful work in this example is performing calculations for

another row of the matrices A and C. In this example, it is possible for a thread to work

on m/2β different rows concurrently, without exhausting the resources. Doing so will

not reduce the total number of swaps, only the time spent idle by a thread. If the time

that it takes to switch from computing one row to another is expressed by σ, then the

total time spent not doing useful work is nσ(m+ p)/4β. So, as long as σ � α, then the

computation will complete faster.

7.1.3 OpenOOC Implementation

OpenOOC leverages a functionality provided by the Linux kernel, known as user con-

texts, to implement the per thread fibers. A user context stores execution state, includ-

ing all registers and CPU flags, the instruction pointer, and the stack pointer, as well

as the stack itself. This provides the OS with all of the information needed to depart

from the standard fetch-decode-execute instruction cycle and execute code at arbitrary

locations in memory.

To operate alongside the OpenMP runtime, the OpenOOC system currently requires

some minor modifications to the usage of OpenMP described in the previous subsection.

Instead of using the shorthand PARALLEL FOR directive, it is necessary to separate the

directives into two embedded code blocks, i.e., a FOR block inside of a PARALLEL block.

The reason for this is that OpenOOC needs to perform setup and teardown before

and after the for-loop inside of the parallel region. It would be possible to use some

preprocessing to feign the transparency of this process, but since this is initially a work

of academic interest we opted for a simple, and more explicit approach.

To initialize the OpenOOC runtime and create the fibers belonging to each thread,

we introduced a library call, ooc set num fibers(), which must be the first statement
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in a code block adorned with a PARALLEL directive. To destroy the fibers when the par-

allel computation has finished, there is a corresponding library call, ooc finalize().

Initially, all of the fibers are considered to be in an idle state. When execution reaches

the FOR directive enclosed in the PARALLEL block, the first fiber is activated and begins

executing the first iteration of the for-loop assigned to its parent thread. The fiber ex-

ecutes, uninterrupted, until it attempts a non-resident memory access, see Non-resident

Memory Access below. When this happens, the fiber is put into a waiting state, and

program control returns to the parent thread, as if the iteration had completed. At that

point, the OpenOOC scheduler is invoked to schedule another fiber.

Fiber Scheduling In order to schedule the fibers, the body of the for-loop is encapsu-

lated in a function which is then passed to the fiber scheduling function, ooc schedule().

This loop function will receive any necessary variables as input parameters, see Listing

7.2, which is the OpenOOC equivalent of Listing 7.1.

Since each iteration of the OpenMP for-loop will be executed by a single fiber,

the scheduling function is responsible for determining which fiber to execute next. The

scheduling function is only invoked when the currently executing fiber reaches a non-

resident memory access or completes its work. Thus, the scheduling function must

decide between switching to a fiber waiting on a non-resident memory access, but whose

memory is now resident, and starting the execution of a new fiber, i.e., another iteration

of the OpenMP for-loop. In its current implementation, the scheduler will always prefer

to simply switch to an idle fiber if there is more work to do, even if there is an outstanding

fiber that is now ready to execute.

To switch from one fiber to another, the scheduling function stores the user context

for the currently executing fiber and switches to the user context for the desired fiber

to begin or resume execution. In Linux, this can be accomplished in a variety of ways,

using the setjmp() and longjmp() functions, the sigsetjmp() and siglongjmp()

functions, or the makecontext() and swapcontext() functions. The choice of which

pair of functions is best for switching contexts is dependent on the hardware and software

environment that the runtime will be executed in.
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Listing 7.2: An OpenOOC implementation of dense matrix multiplication in C.

1 void loop_kern(

2 int i, // the loop variable

3 int m, int p, // dimensions of the matrices

4 double ** A, // input matrix

5 double ** B, // input matrix

6 double ** C // output matrix

7 )

8 {

9 for (int j=0; j<p; ++j) {

10 for (int k=0; k<m; ++k) {

11 C[i][j] += A[i][k] * B[k][j]

12 }

13 }

14 }

15

16 double matmult(

17 int m, int n, int p, // dimensions of the matrices

18 double ** A, // A is n × m

19 double ** B, // B is m × p

20 double ** C // C is n × p

21 )

22 {

23 #pragma omp parallel

24 {

25 ooc_set_num_fibers(NUM_FIBERS);

26

27 #pragma omp for

28 for (int i=0; i<n; ++i) {

29 ooc_sched(loop_kern);

30 }

31

32 ooc_finalize ();

33 }

34 }
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Non-resident Memory Access In order to detect non-resident memory accesses,

OpenOOC relies on the same set of memory protection mechanisms as used by the

SBMA virtual memory subsystem, see Section 6.1.4. Namely, the mmap() and mprotect()

system calls are used to allocate and monitor access to memory. Like SBMA, memory

that is non-resident is given access permissions that will cause a SIGSEGV to be raised

should the process attempt to access the memory. After the data has been success-

fully swapped into memory, i.e., been made resident, the required access permissions

are granted, so that no further SIGSEGVs are raised, until a future time when the mem-

ory becomes non-resident. However, unlike SBMA, the OpenOOC system not only

detects and swaps data in response to non-resident memory accesses, it also switches

user contexts.

7.2 Experimental Design

Synthetic Benchmark The synthetic benchmark was designed to quantify the perfor-

mance cost associated with the OS memory management subsystem as well as switching

user contexts. The synthetic benchmark is suite of micro-benchmarks, each of which ex-

ercises a different capability of the host system. The first micro-benchmark is designed

to measure the latency of swapping a page of memory via the OS memory management

subsystem. To do this, the benchmark fills the RAM of the host machine. To ensure

that the benchmark program can control when a page of memory will be swapped into

RAM, it is necessary to manage the OS kernel functionality known as read-ahead. The

read-ahead functionality is the means by which the OS pro-actively fetches data on be-

half of a program. The aggressiveness of the OS’s prefetching mecahnism is controlled

by an OS kernel setting known as page-cluster. If a program requests a page that is

not in memory, the OS will swap the page in a cluster of 2page−cluster system pages.

Thus, in the benchmark program, the page-cluster setting is a tunable parameter. The

benchmark then allocates a block of memory and populates it with random data. A

for-loop is used to iterate and access some number of datums from the allocated block

of memory. To force a swap operation for each data access, the benchmark is designed

to choose data access that will not overlap memory pages of previously accessed data.

The second micro-benchmark measures the time for a SIGSEGV to be raised a memory
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access permission fault. This benchmark allocates a block of memory with no access

permission. Then, starting from the beginning of the block of memory, it visits con-

secutive pages. Each page that is accessed will cause a SIGSEGV to be raised. After

catching the signal, the user context is manipulated so that after returning from the

signal handler the next instruction to be executed will be to access the next page in

the block of memory. Manipulating the user context is just a matter of manipulating

the instruction pointer in the current context, which incurs almost no cost at all. The

time required to visit all pages is timed and then averaged over the number of pages in

the block of memory. The third benchmark is designed to measure the time required

to switch from one user context to another. The program consists of a single for-loop

that switches user context each iteration, using the swapcontext() system call.

For each micro-benchmark, we reported the average throughput, namely, the number

of operations, swaps, signals, or context switches, per second. This is obtained by timing

the entire for-loop of each micro-benchmark, then dividing the total time by the total

number of operations. Further, each time reported, is the average throughput of ten

executions of the synthetic benchmarks. Due to the precautions taken, the timing results

were extremely stable, < 0.5% error, thus no error statistics are reported.

Computational Benchmarks The computational benchmark is the matrix-multiplication

program described in Sections 7.1.2 and 7.1.3. This computational benchmark was cho-

sen because of its predictable memory access patterns. Because of this, it is possible to

study and characterize the performance of the OpenOOC system under different system

configurations. The only notable difference between the benchmark used in the follow-

ing section and that described in the previous sections is that the implementation used

for experiments employs tiling. The tiling algorithm implemented in the benchmark is

the matrix-multiplication tiling algorithm described in [16], which is also the optimal al-

gorithm for out-of-core matrix-multiplication in terms of I/O. In order to expose enough

concurrency to benefit from the OpenOOC approach, our implementation concurrently

computes the partial dot-products within a tile.

The size of the matrices was chosen such that the memory required for the com-

putation of a single tile fills the available memory. Thus, the fiber can execute con-

currently without exhausting resources, but each tile will require swapping memory.
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Table 7.1: Throughput of system operation on the micro-benchmarks.

page-cluster

0 1 2 3 4 5

Swap 22610 14406 8969 5336 2864 1791

SIGSEGV 1344086

swapcontext 4291845

Throughput, in swap operations per second, for memory access operations under different page-cluster

sizes, described as powers of two of the system page size (consistent with Linux kernel documentation), so

1 = 21 × 4096B = 8KB in our configuration. The second part of the table shows throughput in system

operations per second, for relevant system calls.

This is a realistic assumption, since the number of fibers could be adjusted to ensure

this in a real-world problem. In order to reduce the computational time of the matrix-

multiplication benchmark, we opted to make 3GB of the systems 4GB unavailable to

the benchmark application. The dimensions of a single tile was computed as a function

of the OS parameter known as page-cluster. The page-cluster parameter determines the

granularity at which the OS swaps pages between memory and disk. Thus, tile dimen-

sions were adjusted so that all computations associated with a tile could be carried out

concurrently without competing for resources.

System Configuration The experiments were run on a dedicated Dell Optilex 9010

system. The machine is equipped with a single four-core (eight-thread) Intel Core

i7-3770 @ 3.4GHz processor, 4GB of memory, and a Samsung SSD 850 PRO 256GB

hard drive. Because of OpenOOC’s dependence on the swap-file for data storage, the

machine was set up with 64GB swap partition. The machine runs the Ubuntu 14.04.1

LTS distribution of the GNU/Linux operating system. The C compiler used was GNU

GCC 4.8.2.
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7.3 Results

7.3.1 System Benchmark

Table 7.1 shows the throughput for system operations relevant to the OpenOOC system.

In the table, swap throughput is measured in operations per second rather than system

pages per second because the latter is only useful if the problem exhibits spatial locality.

In this analysis, we are more interested in the general performance characteristics of

the system, rather than optimizations designed for particular access patterns. The

significance of this table is to quantify the overhead associated with the user space

system capabilities required by OpenOOC, and compare this overhead to the costs

associated with no intervention, i.e., allowing the OS to manage everything. In this

respect, Table 7.1 reveals an important result.

The result is that the overheads introduced by OpenOOC’s execution model, where

non-resident memory accesses cause the system to switch execution contexts, are small

relative to the cost of swapping a page of memory. If we look at the two system calls

required to detect a non-resident memory access individually, each of their throughputs

is significantly higher than the throughput of an OS swap operation. In fact, each of

them by themselves has an average throughput at least 60× greater than swapping a

single page of memory. This factor goes up as the page-cluster is increased. When

considered in a configuration that one would find in the OpenOOC runtime, a SIGSEGV

followed by a context switch to the scheduler followed by a context switch to the newly

executing fiber, we see that the throughput is still more than 30× greater. This does

not imply that the system overall will be 30× faster, since there is other logic required

to managed the OpenOOC runtime system which is not measure in this table. This

table is just a measurement of the performance of the individual system calls, relative

to the swap operation, which serves as a good upper-bound for performance.

7.3.2 Computational Benchmarks

Figure 7.1 shows the runtime for multiplying two matrices under a variety of values for

the OS page-cluster parameter. In this figure, the left-most bar for each page-cluster

group represents the baseline out-of-core matrix-multiplication algorithm. For each of
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Figure 7.1: Runtime results, in seconds, for tiled matrix-multiplication with and without

OpenOOC.
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the page-cluster values, the tile size was adjusted so as not to violate the requirement

that all memory necessary for the computation of a single tile should fit into memory.

From this figure, several conclusions can be drawn.

First, if an insufficient amount of concurrency is available, the OpenOOC runtime

consistently results in increased runtime. For this benchmark problem, the OpenOOC

system requires at least 64 fibers executing concurrently before the overhead introduced

by the system is overcome by the performance benefits. To understand this result, take

the bar in each page-cluster group for a single fiber. This bar quantifies the overhead

associated with the OpenOOC system as a whole. For this benchmark, the effect of

that overhead on runtime ranges from an 8–13%, with an average of 10%, increase

when compared to the baseline (zero fibers). This is expected, since without sufficient
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useful work to do, the system degrades to the baseline program, i.e., fibers waiting for

swap operations to complete, with the additional overhead of context switching.

Another interesting observation from this figure is that increasing the page-cluster

value only improves performance up to a certain point. This result is irrespective of

the presence or absence of OpenOOC for small numbers of fibers, and has to do with

the OS’ swapping algorithms and the selection of tile size for the benchmark. In the

Linux OS, the page-cluster value dictates how many consecutive pages are read from

the swapfile or how many pages are written to consecutive locations in the swapfile.

In the benchmark, the maximum length of a row within a tile is eight system pages,

which is a consequence of the rest of the experimental design. In that case, if the page-

cluster size is chosen to be greater than three, i.e., 23 = 8 system pages, then irrelevant

data that is consecutive in memory to the row being computed for, may be swapped

in unnecessarily. Here by irrelevant data, we mean data that is part of the matrix, but

not part of the tile. When the fiber count is small, OpenOOC is unable to overcome

the cost of reading unnecessary data, just as with the baseline version. However, as the

number of fibers is increased, the effect of the unnecessary data movement is lessened.

Finally, from Figure 7.1 we can analyze the absolute performance of the benchmark

run with and without the OpenOOC system. For a fixed page-cluster size, the best

configuration of the benchmark run with the OpenOOC system results in a 21% reduc-

tion in runtime on average when compared with the baseline application. This largest

reduction is when page-cluster is five and results in a 29% reduction and the smallest is

when page-cluster is three or four, which both result in a reduction of 15%. This makes

sense since when page-cluster is three, the baseline application is reading all data for

a partial dot-product in one swap and when it is equal to four it is likely reading the

data for the next partial dot-product. Since the baseline application is not concurrently

executing partial dot-products, the additional data being swapped, which will likely

contain data for the next partial dot-product, is actually a benefit. It also makes sense

that the largest improvement is when page-cluster equals five, since at this point, the

baseline application will suffer from swapping unneeded data. When this happens, the

OpenOOC system’s ability to concurrently execute partial dot-products is especially

important, since the largest page-cluster size means that the swap operation will take

a much longer time. This is supported by the throughput results from Table 7.1. If we
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look at the best performing configuration for the baseline application and the OpenOOC

enabled application, we see a reduction in runtime with OpenOOC of 16%. This occurs

for both applications when page-cluster is three. As discussed above, this is due to the

experimental design and the choice of the tile size.



Chapter 8

Conclusion

8.1 Thesis Summary

8.1.1 In-Memory Compression-Based Methods

Scientific Data Compression In Chapter 3, we presented a paradigm for lossy com-

pression of grid-based simulation data that achieves compression by modeling the grid

data via a graph and identifying vertex-sets which can be approximated by a constant

value within a user provided error constraint. Our comprehensive set of experiments

showed that for structured and unstructured grids, these algorithms achieve compres-

sion which results in storage requirements that on average, are up to 75% lower than

that other methods. Moreover, the near linear complexity of these algorithms makes

them ideally suited for performing in situ compression in future exascale-class parallel

systems.

Dynamic Graph Compression In Chapter 4, we presented five data structures for

maintaining dynamically updated graphs. Three of the data structures are well known

and treated as base line approaches. One of the data structures, DIAA, is optimized for

memory usage and update and access time for classes of graphs which exhibit locality.

The last data structure, DCAA, is an extension of DIAA, optimized entirely for reduced

memory requirements. Each data structure was evaluated theoretically and experimen-

tally using four real world datasets. The experimental analysis shows DIAA is superior

107
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for web graphs and nearly as good as the others for social graphs. Further, our results

show that, in all cases, DCAA is the most memory efficient data structure, at the cost

of a modest increase in update and access time.

8.1.2 External Memory-Based Methods

Distributed Memory Architecture In Chapter 6, we presented three novel methods

to automatically manage the virtual memory of parallel applications running on memory

constrained systems, namely Aggressive Read / Aggressive Write, Aggressive Read /

Lazy Write, and Lazy Read / Lazy Write. By leveraging the node-level cooperative

multi-tasking constraints of BDMPI, we were able to optimize resident memory exchange

to reduce data transfer to and from disk. For five different applications each exhibiting

different memory access patterns, our results showed that SBMA offers performance

gains between 2×–12× over applications executed using a BDMPI runtime that relies

on the OS VMM to manage resident memory.

In a co-operative multi-tasking execution model, such as that used in BDMPI, once

a process has been scheduled for execution, it runs, uninterrupted, until completion or

it explicitly yields control of system resources. BDMPI exploits this characteristic to

aggressively load / evict data to / from physical memory when processes transition from

running to blocked. However, under certain circumstances, this policy of uninterrupt-

able execution may result in idle processes due to pending inter-node communications.

For example, suppose that some node, i, has a long running slave process, and another

node, j, has slaves that are all waiting on communication from slaves on node i other

than the one running. In this case, all slaves on node j will be blocked until the long

running slave on node i completes and some other slaves are allowed to execute.

In future work we will investigate improvements to the current BDMPI intra-node

slave scheduler that address the issue of inter-node dependencies. One possibility is to

maintain statistics related to the number of outstanding inter-node communications for

each slave process and increase scheduling priority for those slaves with many outstand-

ing inter-node communications. This is a variation of a coscheduling problem [92, 93]

in concurrent systems. However, in our case, all of the slaves need not be scheduled

together, but should be scheduled within a small window to reduce idle time. Still, we

plan to leverage the work done in this area to guide any scheduling heuristics developed
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for the BDMPI runtime. To judge the quality of our scheduling policies, we plan to

characterize optimal or near-optimal orderings and compare them with the orderings

imposed by our scheduling decisions in terms of process idle time.

Shared Memory Architecture In Chapter 7, we presented a novel runtime system

to automatically switch user execution contexts in response to non-resident memory

access. The new system relies on OpenMP to identify sections of code that express

data-parallelism which is the ideal environment for using concurrency to hide long la-

tency memory access. By leveraging the available concurrency, we were able to effec-

tively reduce the amount of time that a program spends not doing useful work. A

suite of micro-benchmarks was presented to demonstrate that modern OSs, Linux in

particular, are capable of supporting fast enough context switches make a system like

this feasible. For the computational problem of matrix-multiplication, which serves as

a baseline because of its predictable memory access patterns, our results showed that

without any effort on the part of the application developer, runtime can be decreased by

21% compared with an environment depending only on the latency hiding mechanisms

common in modern OSs.

One challenge specific to automating out-of-core execution in a shared memory sys-

tem is the sharing of data between multiple execution contexts in the runtime. In the

distributed memory environment, i.e., BDMPI, execution contexts are OS processes.

Thus, when a process enters the blocked state, since it does not share its address space

with any other execution contexts, all of its data can be safely evicted from physical

memory. In the shared memory runtime that we presented, all execution contexts will

share a view of a single address space. Thus, the definition of what defines the data be-

longing to a particular execution context is not clear. In the future we plan to investigate

policies for moving data between physical memory and secondary storage that exploit

the constrained environment of our shared memory runtime for out-of-core computation

and thus improve over the general purpose memory exchange policies implemented in

modern OSs [94–99].
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Appendix A

WebGraph Compression

The WebGraph format [36] employs the following three techniques. First, reference

compression is used to leverage the similarity of adjacency information. This means

that instead of representing the adjacency list of a particular vertex u directly, they

represent it as a reference to another similar vertex v. This is done using a bit mask of

length |δ(v)|. A 1-bit at index i of the bit mask signifies that vertex u has a link to the

ith link in vertex v’s adjacency list, while a 0-bit signifies that vertex u has no such link.

This bit mask can then be run-length encoded as 1-blocks and 0-blocks, the details of

which can be found in [36].

After reference compression of Γ(u), an intervalization technique is applied. Any

vertex ids in Γ(u) which did not appear in Γ(v) are represented as a set of intervals

and a list of residual ids. An interval is a consecutive sequence of vertex ids, which are

common assuming locality of adjacency lists. Each interval is encoded as a start id and

a length, so the sequence of vertex ids 3, 4, 5, 6, 7, 8, would be encoded as (3, 6). Any

vertex ids of Γ(u) which did not appear in Γ(v) or any interval is encoded in the residual

list. The start ids of each interval is differentially encoded, i.e., stored as the difference

from the previous start id. Differential encoding is performed to decrease the range of

integer values, which is beneficial to the integer coding scheme described below.

Any vertex ids of Γ(u) which did not appear in Γ(v) or any interval is encoded in

the residual list. This is simply a list of vertex ids left over from the previous two

steps and is differentially encoded. Since the difference between vertex id and the first

interval start id or first residual may be negative, and the integer coding described below
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operates on non-negative integers only, a mapping v : Z → N is established according

to the following rule:

v(x) =

{
2x if x >= 0

2|x| − 1 if x < 0

To code the integers in the above scheme, the authors of [36] developed an instanta-

neous integer coding algorithm, suitable for storage of integers which exhibit power-law

distribution, which the authors showed was the case for encodings of this type. Their

integer code is called ζ-codes and is formally described in [35].

The above discussion leverages the ability to lexicographically sort the vertices of web

graphs based on their URLs to expose locality and similarity. However, in the case of

online social graphs, lexicographically sorting the vertices does not guarantee the ability

to expose locality and similarity. Thus, it is necessary to develop ordering schemes for

online social networks which are conducive to this type of compression. Many orderings

have been developed along these lines including BFS [59], Grey [37], Shingle [100],

SlashBurn [101], however it was shown in [38] that all are inferior to the authors own

algorithm called Layered Label Propagation (LLP). In their algorithm, the graph is

repeatedly clustered and each iteration, the vertices are reordered so that vertices within

a cluster are given consecutive ids. The clustering algorithm that is employed in LLP

allows for clustering to be performed at different ‘resolutions’, such that each iteration

of clustering will yield clusters which capture more or less specific characteristics of the

graph under consideration. This allows the LLP to increase resolution each iteration

and in this way, iteratively ‘refine’ the ordering of vertices in the graph.



Appendix B

Subset of MPI API

Table B.1: The subset of the MPI API implemented by BDMPI. [72]

MPI Init, MPI Finalize

MPI Comm size, MPI Comm rank, MPI Comm dup, MPI Comm free, MPI Comm split

MPI Send, MPI Isend, MPI Recv, MPI Irecv, MPI Sendrecv

MPI Probe, MPI Iprobe, MPI Test, MPI Wait, MPI Get count

MPI Barrier

MPI Bcast, MPI Reduce, MPI Allreduce, MPI Scan, MPI Gather[v],

MPI Scatter[v], MPI Allgather[v], MPI Alltoall[v]
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Appendix C

Subset of OpenMP API

Table C.1: A subset of the directives defined by OpenMP, along with a brief description

of their purpose. [1]

Directive Description

PARALLEL Defines a parallel region.

FOR Identifies an iterative worksharing construct in which the iterations

of the associated loop should be divided among threads in a team.

SECTIONS Identifies a non-iterative worksharing construct that specifies a set

of structured blocks that are to be divided among threads in a team.

SECTION Indicates that the associated structured block should be executed

in parallel as part of the enclosing sections construct.

SINGLE Identifies a construct that specifies that the associated structured

block is executed by only one thread in the team.

MASTER Identifies a construct that specifies a structured block that is exe-

cuted by only the master thread of the team.

CRITICAL Identifies a construct that restricts execution of the associated

structured block to a single thread at a time. Each thread waits

at the beginning of the critical construct until no other thread is

executing a critical construct with the same name argument.

continued on the next page
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Table C.1: A subset of the directives defined by OpenMP, along with a brief description

of their purpose. [1] (cont.)

Directive Description

BARRIER Synchronizes all the threads in a team. Each thread waits until all

of the other threads in that team have reached this point.

ATOMIC Ensures that a specific memory location is updated atomically,

rather than exposing it to the possibility of multiple, simultane-

ously writing threads.
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Table C.2: A subset of the clauses defined by OpenMP, along with a brief description

of their purpose. [1]

Clause Description

PRIVATE (list) Declares variables in list to be PRIVATE to each thread

in a team.

NOWAIT Specifies that threads need not wait at the end of work-

sharing constructs until they have completed execution.

The threads may proceed past the end of the worksharing

constructs as soon as there is no more work available for

them to execute.

SHARED (list) Shares variables in list among all the threads in a team.

IF (expr) The enclosed parallel region is executed in parallel only if

expr evaluates to TRUE, otherwise the parallel region is

serialized. The expression must be scalar logical.

NUM THREADS (expr) Requests the number of threads specified by expr for the

parallel region. The expressions must be scalar integers.

SCHEDULE (type) Specifies how iterations of the FOR construct are divided

among the threads of the team. Possible values for the

type argument are STATIC, DYNAMIC, GUIDED, and

RUNTIME.

REDUCTION

(reduction-id:list)

Specifies a reduction-id and one or more list items. The

reduction-id must match a previously declared reduction-

identifier of the same name and type for each of the list

items.



Appendix D

Example OpenMP function

Listing D.1: An OpenMP implementation of a vector dot-product.

1 double dot_product(int n, double * u, double * v)

2 {

3 double sum = 0.0;

4 #pragma omp parallel reduction (+:sum)

5 {

6 #pragma omp for

7 for (int i=0; i<n; ++i)

8 sum += u[i] * v[i];

9 }

10 return sum;

11 }
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