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Abstract

Hydraulic systems have been widely utilized for heavy duty industries for their competi-

tive advantages of high power density, low cost, and flexible circuit design. However, the

efficiency of hydraulic systems typically is not very competitive due to high throttling

losses, which limits their applications. On/off valve based control of a hydraulic system

is an approach that can potentially increase the hydraulic system’s efficiency signifi-

cantly. This approach combines the strengths of throttling valve control and variable

displacement unit control. The former has the advantage of high control bandwidth and

precision, but the disadvantage of low efficiency due to throttling loss; the latter has the

advantage of high efficiency, but the disadvantage of being bulky, heavy, costly, and the

control bandwidth is low when compared to valve control. To create a potentially high

efficiency with relatively low cost solution, a fixed displacement pump, an accumulator,

and a high speed on/off valve are combined to create a virtually variable displacement

pump (VVDP). By pulse width modulating (PWM) the flow from the supply to the load

via the on/off valve, the average output flow can be varied by adjusting the PWM duty

ratio. The key technology to this hydraulic configuration is the pulse width modulated

on/off valve. A novel rotary high speed on/off valve concept has been proposed. This

concept can enable different digital hydraulic configurations, such as VVDP, VVDPM

(pump/motor), and virtually variable displacement transformer. Research conducted in

this dissertation supports the design, modeling, and control of the rotary on/off valve.

A 3-way, high-speed, rotary, self-spinning on/off valve was developed for the VVDP con-

figuration. The valve has two degrees of freedom. The spool’s rotary motion realizes the

high-speed switching required for the PWM function. This motion can be self-driven by

capturing the fluid’s angular momentum via a unique valve spool turbine design. The

spool’s axial motion determines the valve PWM duty ratio, and this motion is driven

externally.

Firstly, to understand the flow inside the valve, and to quantify the valve pressure

drop with the key valve parameters, a computational fluid dynamics (CFD) analysis is

conducted in chapter 2. Analytical and semi-empirical formulas to model the pressure
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drop across the valve spool as a function of flow rate and key valve geometrical pa-

rameters are developed. The torque generated by the valve turbines are also analyzed

using CFD to validate the analytical models which calculate the torque as a function

of flow rate and key valve geometrical parameters. These equations are utilized in an

optimization analysis to optimize the valve geometry, targeted at reducing the valve’s

power loss. CFD is also utilized to optimize the valve’s interior flow path to reduce the

fluid volume inside the valve while maintaining a low pressure drop, so that both the

compressible loss and the throttling loss of the valve are reduced. The CFD analysis

enabled reducing the throttling loss pf a prototype valve design by 62.5% and reducing

the compressible loss by 66%.

Secondly, the sensing and estimation of the valve spool’s rotary position and velocity

are addressed in chapter 5. Given the limitation on sensing distance and the requirement

of a simple sealing structure, a coarse, non-contacting, optical sensor is proposed to

measure the spool’s angular position. Measurement events in the form of encoder count

changes are obtained at irregular times and infrequently. An event-based Kalman filter

is developed to improve the resolution and to provide continuous estimates of the spool’s

angular position and velocity.

Thirdly, the spool’s axial motion actuation, sensing, and control development are

addressed. The on/off valve’s duty ratio is regulated by controlling the valve spool’s

axial position. In chapter 4, a driving mechanism to work with the self-spinning valve’s

feature and the corresponding sensing and control methods are developed to manipulate

the spool’s axial position. In the first generation’s driving system, a geroter pump is

hydro-statically connected to both ends of the spool chamber to move the spool axially.

This design simplifies the sealing structure in order to achieve self-spinning. An optical

sensor is utilized as a non-contact approach to measuring the spool’s axial displacement.

The measurement is corrupted by a structured noise caused by the spool’s rotary motion.

A periodic time varying model is proposed to model the structured noise, which can

capture the main dynamics with a low order system. An analysis of the observability

of the augmented system (plant plus structured noise) is conducted. A state observer

can be built to distinguish between the axial spool position and the structured noise,

and the estimated position can then be used in the control law. The sleeve chamber

pressure dynamics are ignored, and a linear feed-forward with a Proportional-Integral

iv



controller is developed for spool axial positioning. The self-spinning function ties the

spool rotary speed with the valve flow. The controller was experimentally implemented,

and achieved good spool regulation results.

In order to investigate the PWM frequency and the flow rate properties indepen-

dently, an external driving mechanism is developed in chapter 5. A new passivity based

nonlinear controller has been proposed which considers the pressure dynamics inside the

sleeve chamber. This controller can provide more robust axial position control. From

theoretical analysis’ point of view, a passivity framework for hydraulic actuators is de-

veloped by considering the compressibility energy function for a fluid with a pressure

dependent bulk modulus. It is shown that the typical actuator’s mechanical and pres-

sure dynamics model can be obtained from the Euler-Lagrange equations for this energy

function and that the actuator is passive with respect to a hydraulic supply rate. The

hydraulic supply rate contains the flow work (PQ) and the compressibility energy, where

as the latter one has typically been ignored. A storage function for the pressure error

is then proposed and the pressure error dynamics are shown to be a passive two port

subsystem. Trajectory tracking control laws are then derived using the storage function.

Since some of the states utilized in the passive controllers are from an estimator instead

of being directly measured, the chapter also provides the analysis on the convergence of

both tracking errors and the estimation errors to zero. This passivity-based nonlinear

controller implemented with a high gain observer is applied experimentally on the valve.

Experimental results validate the effectiveness of this new control system.

Lastly, the VVDP is implemented as the variable displacement pump in a direct

displacement control open circuit, as presented in chapter 6. A variable flow source

(VVDP), a directional valve, and a proportional valve are coordinated to manipulate

the motion of the hydraulic actuator in an energy efficient way. The passivity-based

nonlinear controller as discussed in chapter 5 is proposed to realize accurate actua-

tor trajectory tracking. A nominal method to optimally distribute the control efforts

between the control valve and the variable flow pump is proposed. This method can

accommodate different control bandwidths from the valve and the pump, so that the

valve has a large nominal opening to reduce the throttling loss. Experimental results

validate the effectiveness of the control strategy.
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Chapter 1

Introduction

A novel high-speed rotary 3-way on/off valve has been developed as an enabling tech-

nology for digital hydraulics. Research conducted in this dissertation focuses on the

modeling, sensing, actuation and control of the valve spool motion, and investigating

its implementation in a virtually variable displacement pump (VVDP) configuration.

The successful development of the rotary 3-way valve and the VVDP can potentially

make hydraulic actuator motion control more robust, accurate and energy efficient.

In section 1.1 of this chapter, an introduction to the operating principles of this ro-

tary valve will be presented. The background material on how to improve the hydraulic

system performance from both the component development (i.e. new valve technol-

ogy) perspective and control technique improvement perspective will be discussed in

section 1.2. Section 1.3 will give an overview of the research scope. This chapter will

conclude with an outline of the rest of the dissertation structure.

1.1 Background

Hydraulic systems have been widely used due to their high power density, durability,

and installation flexibility. Currently, two approaches are frequently utilized to achieve

hydraulic motion control in fluid power systems. One approach is to manipulate the

pressure or flow via a control valve. This approach has a significant advantage in

control bandwidth and precision due to the small inertia being moved inside a valve.

In addition, the hydraulic circuit is flexible, and the overall system can be compact.

1
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The disadvantage of this approach is the low system efficiency due to throttling losses

across the control valves. The other approach is to directly control the displacement

of a variable displacement pump or motor. Ideally, energy is produced to do useful

work only, and no excess energy is consumed by throttling the flow. Therefore, this

approach can lead to a high system efficiency. However, variable displacement pumps

and/or motors are typically more expensive, heavier, and bulkier compared with fixed

displacement machines with the same flow capability. Moreover, the control bandwidth

and the cost to achieve the control bandwidth for variable displacement machines are

less desirable than for valve control [1].

One additional approach which partially reduces the system throttling losses is a

load sensing system. In this approach, the flow source can be changed from a fixed

displacement pump to a variable displacement pump with its output pressure adapted

to the load pressure. The load sensing concept has been introduced to fluid power

systems for off-highway vehicles to reduce the system energy consumption. In this

hydraulic configuration, a variable displacement pump is typically used. The supply

pressure is regulated on-line to match with the maximum working pressure [2]. This

approach can improve the system efficiency significantly if only one load is being driven.

However, if multiple loads are sharing the same power source, the throttling loss can

be minimized only for the valve which requires the highest pressure. Valves associated

with additional actuators may still lead to high throttling losses.

To combine the strengths of the “valve” approach and of the “pump” approach,

a virtually variable displacement pump (VVDP) concept has been developed, which

enables the throttle-less flow/pressure control of a fixed displacement pump using an

on/off valve. This approach has the advantage of operating the throttling valve in its

most efficient state most of the time, because the valve is either fully open to load,

connecting the full pump flow from high pressure to the load; or fully open to tank,

routing the full pump flow back to a tank. The VVDP does not have a physical device

to vary displacement; variable flow to load is achieved “virtually” by manipulating an

on/off valve that shifts the output of the pump between load and tank. The work-

ing principle of a VVDP is illustrated in Fig. 1.1. By a using pulse width modulated

(PWM) on/off valve and a fixed displacement pump, the average output flow of the

VVDP can be controlled by the on/off valve PWM duty ratio. The VVDP system has
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the potential to be smaller in size and lighter than a variable displacement machine

while maintaining the energy efficiency of the existing variable displacement machines.

The new pump concept can be extended to the development of virtually variable dis-

placement motors, virtually variable displacement pump-motors, and virtually variable

displacement hydraulic transformers.

High speed 

rotary 3-way 

on/off valve

Figure 1.1: Virtually variable displacement pump circuit

The key component of the VVDP as shown in Fig. 1.1 is the high speed on/off valve.

The overall efficiency of the VVDP is heavily affected by the on/off valve efficiency. An

ideal on/off valve will have the following properties simultaneously: low fully open

pressure drop across the valve, fast transitions between the efficient states, high PWM

frequency, and low actuation power. The valve openings between different flow paths

are typically realized via a valve spool’s linear motion or rotary motion. Compared

with linear on/off valves, rotary on/off valves have the potential to approach all four

specifications of an ideal on/off valve simultaneously. The main reason is that, to achieve

the same PWM frequency, the actuation power required for rotary valve is proportional

to PWM frequency squared; whereas the actuator power required for linear valve is

proportional to PWM frequency cubed.

A novel high-speed rotary 3-way on/off valve has been developed to be implemented

in the VVDP configuration, as shown in Fig. 1.2 [3]. The valve consists of a stationary

sleeve and a rotating spool. The sleeve is mounted directly onto a fixed displacement



4

vane pump through a customized pump housing to minimize the fluid volume in between

the pump and the valve. Inlet nozzles tangential to the bore are cast inside the sleeve.

The spool can rotate and translate axially inside the sleeve.

�������� ����

Figure 1.2: Schematic of the high speed rotary 3-way on/off valve

The valve spool consists of three sections: a center PWM section and two outlet

turbines, as shown in Fig. 1.3. The helical barriers wrapped around the valve spool

partition the spool into two parts. The upper triangle is connected with the upper

turbine via an axial path in the center of the spool. The lower triangle is connected

to the lower turbine. When the valve spool spins inside the sleeve, depending on the

region of the spool that is connected to the inlet nozzle, the inlet flow is directed either

to the load branch or to the tank branch, which achieves the pulse width modulation

(PWM) of the source pump flow. When the spool spins inside the sleeve, the inlet

flow is directed to the load branch and then the tank branch in an alternate manner to

achieve pulse width modulation of pump flow. The duty ratio is defined as the fraction

of time when the valve in its “on” position (inlet flow connected to the load branch)

over one PWM period. The spool’s axial position varies the landing of the nozzle on the

spool center section. This varies the amount of flow directed to the load branch over

one spool revolution, and therefore the spool axial position controls the valve PWM
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duty ratio.

Figure 1.3: Valve spool of the high speed rotary 3-way on/off valve

The design of the valve flow path can significantly affect the valve characteristics,

and the accuracy of the rotary valve spool motion can affect the operation of the valve,

further affecting the performance of the VVDP. The issues of flow path modeling, valve

spool motion sensing, actuation, and control problems will be addressed in this disser-

tation.

1.2 Literature Review

This section will provide a literature review of the work conducted by other researchers

in hydraulic component and system design and control algorithms. We will first review

several digital hydraulics configurations in section 1.2.1. Since the enabling component

to different digital hydraulic configurations is the digital valve, digital hydraulic config-

urations and the current state of the art for high-speed on/off valve technologies will

be reviewed in section 1.2.2. We use a Computational Fluid Dynamics (CFD) tool to

facilitate the design and optimization of the flow path. A summary of CFD as a tool



6

to aid the design and optimization of hydraulic valves will be reviewed in section 1.2.3.

Non-contact sensors have been selected as the main sensing mechanism for both the

spool’s rotary and axial positions. Existing non-contact sensing methods will be com-

pared in section 1.2.4. A literature review of different control strategies for manipulating

a hydraulic actuator will be discussed in section 1.2.5. Finally, different hydraulic con-

figurations to realize direct displacement control will be considered in section 1.2.6.

1.2.1 Digital hydraulics

An efficient method for controlling a hydraulic actuator is to combine throttling valve

control with variable displacement control. A digital hydraulic valve can be used in

conjunction with a fixed displacement pump/motor to create a variable displacement

device for this approach.

One research direction is to develop a parallel-connected on/off valve, proposed by

Linjama et al. [4][5]. In this approach, N 2-way on/off valves are connected in parallel

to replace one proportional valve. Each on/off valve can be controlled independently,

and the valve set can produce 2N discrete opening areas. Since each valve is an on/off

valve with low cost and high robustness, using the valve set to control a linear or rotary

hydraulic actuator lead to high system efficiency, high reliability, and low cost. However,

expensive and complicated control strategies are required for controlling actuators using

this valve. The complexity of the system drastically increases the difficulty of the

controller design, which limits its application.

Another research direction is switched-mode hydraulics. In 1988, Brown et al. [6]

proposed a hydraulic rotary switched inertance servo transformer, where a novel rotary

valve was developed to enable the “switch-mode” feature. Tomlinson and Burrows [7]

proposed a circuit to achieve a variable flow supply by controlling the unloading of a

fixed displacement pump via an on/off unloading valve.

The switch-mode power supply from power electronics has been adapted to a hy-

draulic system. Gu et al. [8] proposed both boost and buck circuits via the combination

of a high-speed switch valve, a check valve, and a hydraulic inductor (hydraulic motor

with a flywheel), as shown in Fig. 1.4. In the switch mode hydraulic pressure boost

circuit, the supply flow being operated at pressure P1 is either connected to load (after

the check valve), or is routed back to Pb, and the average load flow can be regulated
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Figure 1.4: Switch mode hydraulic circuits [8] (a) pressure boost circuit, (b) pressure
buck circuit

from the high-speed switch valve duty ratio. Similarly, in the buck circuit, the flow to

load is either being provided from P1 or being pulled out from Pb, depending on the

state of the high-speed switch valve, and the average flow to load is controlled by the

high-speed valve duty ratio. Similarly, Li et al. [1][9] proposed a VVDP by combining a

fixed displacement pump, a PWM on/off valve and an accumulator (see Fig. 1.5), which

is also the hydro-mechanical analog of the DC-DC boost converter.

Figure 1.5: Electrical DC-DC boost converter and its hydraulic analog [9]

All the hydraulic circuits discussed here rely on the on/off valves to function effi-

ciently. Ideally, hydraulic circuits using on/off valves should be efficient, because either

the valve is fully open, with minimal pressure drop across the valve, or it is fully closed,

with no flow consumed. However, when on/off valves are operated in between the on

and the off states, they will still be partially open, and therefore there is still some
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throttling loss associated with the on/off operations. Another problem associated with

the digital hydraulic system is the pressure and flow ripples caused by the valve on/off

motions. The ripple size is heavily affected by the valve PWM frequency [9]. Keeping

other components the same, the faster the PWM frequency is, the smaller the ripple

is. The problem to address is how to create an on/off valve that meets the following

requirements at the same time, 1) large orifice to allow flow to pass through with a small

pressure drop, 2) fast transition to reduce the time when the valve is partially open, 3)

ability to operate at high PWM frequency to reduce the flow and pressure ripples, 4)

low actuation power.

1.2.2 On/off Valves

The research on high speed on/off valves started in the late 1970s. Besides drastically

reducing the throttling loss, on/off valves are also less susceptible to contamination

compared with high speed servo valves. Current on/off valves can be categorized by the

motion of the valve spools into two types : linear on/off valves and rotary on/off valves.

Linear on/off valves

Solenoid spool and poppet type valves have been widely investigated as candidates for

high speed on/off valves in fuel injection applications. The valve operation frequency

can be increased using three methods: increase the electro-magnetic force, reduce the

resisting force, and reduce the mass of the moving part [10]. Different layouts of the

poles and the scheduling of the pole energizing have been investigated to improve the

response time [11][12]. Such valves typically achieve the fast response time with high

actuation power consumption. For example, in 1994, Kajima et al. [13] developed a

high-speed 4-way spool-type solenoid valve, with a flow rate capability of 60lpm, a

pressure drop of 6MPa, and a switching time of 1ms. The voltage required to actuate

the valve is around 300V , and the maximum current can be up to 30A. To reduce the

actuation power, a valve with two or more stages is required: the main stage is driven

hydraulically, and the pilot stage is driven electrically. For example, Park et al. [14]

proposed a hydraulic high-speed solenoid valve with a two-stage mechanism, which is

capable of a 2ms switching time, a flow rate of 9lpm, and a maximum pressure of

14MPa.
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The displacement of the pilot stage valve in a multiple-stage valve is typically small,

and high speed operation is required. Piezoelectric (PZT) materials are good at produc-

ing small displacements at high speed and therefore have been investigated as the valve

poppet actuator. Yokota and Akutu [15] developed a high-speed poppet-type on/off

valve driven by multi-layered PZT elements with a switching time less than 100µs.

Experimentally, the valve was validated to follow a 2kHz rectangular wave. Neither

the flow capability nor the driving power was reported. Because the valve was recom-

mended as a pilot stage for a servo valve, the flow capability should be small. Lu et

al. [16] reported a high-speed 3-way valve driven by a PZT component, which achieved

an opening time of 1.2ms, and a closing time of 1.7ms. The flow rate is small (8lpm),

and the pressure drop is large (10MPa). A similar high speed on/off valve with a max-

imum flow rate of 0.23lpm, and a transition time around 1.5ms was implemented to

precisely drive a hydraulic cylinder by Tsuchiya, et al. [17]. One valve that has a large

flow rate (100lpm) and a fast switching time (1ms) was developed by Winker [18]. The

high flow rate is achieved via an innovative spool stroke amplifier mechanism, which

transforms a pilot armature’s moving distance of 0.6mm into the spool stroke of 1.5mm

via a lever gear. The actuation power is high due to large actuation force (≈ 100N).

In summary, the present state-of-the-art linear valves cannot have a small pressure

drop across the spool for large flow rates, a short response time, and a low actuation

power at the same time. This trend can also be found in the currently available commer-

cial valves (e.g. Eaton DG4V3-2A, Parker A4D02-51, Sun DMDA, Rexroth RE22-045).

One reason they cannot meet these requirements is that operating linear valves at high

frequency requires the acceleration and deceleration of the spool or poppet during ev-

ery on/off motion. To overcome the inertial force of the spool, an actuation power

proportional to the PWM frequency cubed is required.

Rotary on/off valves

As a comparison to linear valves, rotary valves require much less power to operate at

the same switching frequency, because the actuation power is only needed to overcome

viscous friction, which is proportional to on/off frequency squared. In 1988, Brown et al.

[6] proposed an externally driven rotary switching valve, which achieved 500Hz PWM

frequency. The duty ratio is controlled by varying the angle between the control shaft
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and stator. Similar designs were proposed by Lu et al. [19] and Royston [20]. The latter

is a pneumatic valve. In 1990, Cui et al. [21] proposed a rotary based, single-stage,

fast response digital valve. The spool rotary motion generates a force imbalance, which

axially moves the spool between on and off positions. The valve achieved a response

time of 2ms, a flow rate of 18lpm, and a pressure drop less than 9MPa.

1.2.3 CFD analysis of valve design

CFD has been widely used in the design and optimization of hydraulic components,

especially for control valves. The flow field visualization feature of CFD is used for

identifying local flow phenomenon, which guides the valve flow path design process

[22][23] and aids the analysis of certain valve properties (pressure drop, flow force, etc.)

[24]. Given the computational cost constraint, control valve simulations are typically

approximated using an axisymmetrical model [25] if possible. 3D simulations are re-

quired when the 3D turbulence induced by the intricate valve flow cannot be captured

with an axisymmetric model [26][27]. However from accuracy’s point of view, full 3D

simulations can only predict the main flow dynamics and flow field distribution [28][29],

because the detailed flow field prediction does not generally match with the experimen-

tal results well [27]. Good correlation of the CFD model to the detailed experimental

measurements requires a significant amount of parameter tuning, and the simulation

requires a large amount of cells and computational time. In addition, if the valve tran-

sient behavior is of interest, the computational cost increases. Such a comprehensive

numerical model is not useful for quantitatively guiding the valve design or generating

a quantified model for the hydraulic component optimization. If the design objective

focuses on the general dynamics, a reduced order model is preferred [30], which can ana-

lytically model the valve flow pressure drop and flow forces as functions of the key valve

parameters. Here reduced order refers to the reduced number of critical dimensional

and material parameters. In our analysis, we also focus on developing a reduced order

model, which can further be framed into solving for the valve geometry optimization

problem.
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1.2.4 Non-contact sensing methods

Currently, five types of non-contacting sensors are widely used, including LVDT, induc-

tive sensors, ultrasonic sensors, magnetic sensors, and optical sensors.

A linear variable differential transformer (LVDT) is a type of electrical

transformer used for measuring linear displacement. It consists of three solenoid coils

placed end-to-end around a tube. The center coil is the primary, and the two outer

coils are the secondary. An alternating current is driven through the primary, inducing

a voltage in each secondary proportional to its mutual inductance with the primary. As

the core moves, the mutual inductance changes, which changes the inducing voltage in

the secondaries. The amplitude of the voltage is proportional to the displacement of

the core. In our situation, to achieve the desired sensing range, the LVDT required will

be long, which can potentially cause balancing issues with the valve spool.

An inductive sensor is an electronic proximity sensor, which detects a metallic

object. An oscillator generates a fluctuating magnetic field around the winding of the

coil that is located on the sensing face. When a metallic object is in the sensor’s

range of detection, the eddy current built up in the metallic object will interfere with

the sensor’s own oscillation field, reducing the strength of the oscillator. In this way,

the distance between the sensor and the object will be monotonically mapped to the

oscillator strength. In our situation, the spool is manufactured from steel, which meets

the metallic object requirement. However, to achieve the long sensing range, the spool

needs to have a diameter of 10cm or more to fit the sensor, which is not realistic.1

An ultrasonic sensor works on a principle similar to radar or sonar. It generates

high-frequency sound waves and evaluates the echo which is received by the sensor. The

distance is calculated via the time between sending the sound and receiving the echo.

It is ideal for sensing uneven surfaces and clear objects. However, it is not applicable

for the sensing range we are investigating. The desired sensing range is between 3cm

and 6cm, and the ultrasonic sensing range typically starts from 10cm.2

A magnetic position sensor using Anisotropic Magneto-Resistive (AMR) sensors

1 For example, BAW MKV-020.19-S4 Inductive Distance Sensor from Balluff Corporation has a
range of 0− 6cm, which meets our requirement. However, the sensor size is 8cm× 4.5cm× 2cm, which
is too large for our application.

2 For example: for SU Series Ultrasonic Proximity Sensors, the shortest range is 10cm− 60cm, and
it is one magnitude of order longer than the range utilized for our application.



12

is becoming a popular non-contact method to locate the objects in motion. By affixing

a magnet or sensor element to an angular or linear moving object with a complementary

sensor or stationary magnet, the relative direction of the resulting magnetic field can

be quantified electronically. By utilizing multiple sensors or magnets, the capability of

extended angular or linear position measurements can be enhanced. In our case, this

approach is potentially feasible. However, this sensor requires special materials for the

spool and sleeve, which may increase the manufacturing difficulty and cost.

An optical sensor refers to a sensor set including an optical emitter and a photodi-

ode detector, which provides quantitative information about the position of an incident

light beam or spot image. The structure of the sensor is relatively simple compared

with the previous sensors, and the restriction on the valve material is low. Considering

the sensing range, installation space constraint, and cost, we selected optical sensors for

both angular and axial position measurement.

1.2.5 Hydraulic actuator position control

Electronically controlled hydraulic systems have been widely investigated due to the

high power density from the hydraulic side and the flexibility in control from the electric

side. However, the inherent dynamics of hydraulic systems exhibit high nonlinearity and

uncertainties, which impose significant challenges on controller design.

Early research work focuses on converting the nonlinear systems into linear ones

via linearization around certain operating points [31][32][33], or feedback linearization

[34][35]. The corresponding linear systems can be manipulated using numerous well de-

veloped linear control techniques. However, linearization works well only within a small

range around the operating points. Feedback linearization works well only when the

nonlinear dynamics can be sufficiently modeled, accurately measured, and completely

canceled. Therefore, these approaches typically trade control robustness and perfor-

mance for computational cost. Local performance may be acceptable, but the lack of

global stability may cause concerns.

In comparison, nonlinear controllers can typically achieve better performance with

more robustly but computationally expensive control laws. Sliding mode controllers and

backstepping controllers based on Lyapunov analysis have been broadly investigated in

the application of hydraulic actuator control.
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In a sliding mode (SM) control approach, a high order non-linear system can be

converted into a first-order system, and then various control techniques can be applied,

which typically lead to a very robust controller. Sliding mode control is implemented

under the matching conditions, which means that the uncertainty shows up in the same

state equation as the control input [36]. In a sliding mode controller, the trajectories

are brought to a manifold in a finite time, and stay on the manifold once reaching it.

Typically, the order of the controller is low, which is good for maintaining a low com-

putational cost. However, the robustness of the controller is good only when dealing

with the uncertainty that shows up in the same order as the control actions. To deal

with the uncertainties that show up in higher order than the control action’s order,

other Lyapunov re-design techniques such as introducing nonlinear damping terms can

be applied to increase the controller robustness. Another potential issue lies in the

fact that sliding mode control is a variable structure control method, which means it

is a discontinuous controller. When the system states are close to the trajectory (on

the manifold), chattering may happen due to the finite sampling time. Approaches of

introducing a smooth boundary layer can eliminate the chattering phenomenon [37].

Different versions of sliding mode controllers have been applied to hydraulic actuators

for force tracking [38] and position tracking [39][40]. Sindery and Bone [41] used two

position on/off valves to control one cylinder in a PWM manner. A feed-forward with

position-velocity-acceleration feedback controller based on the system model was pro-

posed and achieved good position tracking performance. By adding a sliding mode

controller to increase the robustness of velocity error converging to zero, the control

bandwidth was increased from 62.5Hz to 1000Hz. To increase the robustness, integral

control [42] and H-infinity controls [43] are added. In addition, a robust state observer

in conjunction with the SM controller is proved to increase the robustness. The design

of the observer and the controller is separated, and some unmatched uncertainties can

be dealt with as well [44][45].

In comparison, a backstepping controller allows some model uncertainties in each

order for a high order system, which inherently guarantees a more robust tracking

performance. Backstepping is a recursive method for stabilizing the origin of a system

in a strict-feedback form [36]. In each step, the next stage’s state is treated as a “virtual”

input, and the un-matching effect between the “virtual” and “true” inputs are passed to
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the next stage to cope with. The procedure is repeated until the true control effort shows

up, so that no more “virtual” input is used. Non-matched disturbances are allowed, and

can be treated by the “virtual” input in each stage. To implement this approach on

hydraulic actuator control, the first step is to design a desired hydraulic force (based

on the passivity approach), and use this “virtual” input to stabilize the position (and

velocity) tracking error. The second step is to stabilize the hydraulic force tracking error

[46, 47]. In these approaches, a quadratic term of the hydraulic force tracking errors

is used in the Lyapunov function, and the nonlinearities are canceled out to preserve

stability. The physical energy associated with the actuator pressure dynamics is not

considered. Since hydraulic systems exhibit parameter uncertainties and un-modeled

dynamics, canceling the nonlinearities perfectly from the quadratic term is challenging.

The residual part can degrade the overall control performance or even cause instability.

This motivates the pursuit of a more robust Lyapunov function.

A passivity-based controller may be a more robust controller, because it utilizes the

physical system’s energy property to maintain the system’s stability. Passivity prop-

erty has been exploited in many nonlinear physical domains to derive robust control

laws. One of the earliest domains was for electro-mechanical manipulators. Using

the mechanical systems’ physical energy functions and their modifications as Lyapunov

functions, a passivity property (with mechanical power input being the supply rate)

can be derived, and from which a whole class of fixed and adaptive control laws with

rigorous analysis can be obtained (for example [48], [49]). This “energetic” passivity

property of mechanical systems is a consequence of its Euler-Lagrange (or Hamiltonian)

structure. Thus, with the success in the mechanical domain, controls that exploit the

Euler-Lagrange or Hamiltonian structures have been developed for other domains as

well (for example [50], [51]). In passivity-based controllers utilized in hydraulic sys-

tems, the passivity of the hydraulic valves have been considered in [52][53]. However,

what determines the hydraulic force tracking error term in the Lyapunov function is

the passivity of hydraulic actuators. Grabmair and Schlacher [54] proposed an energy

based controller for a double ended hydraulic actuator actuated via a 4-way proportional

valve. The port-Hamiltonian structure related to pressure dynamics is maintained via

a special coordinate transformation. The corresponding invariants defined after coor-

dinate transformation turned out to be the Casimir functions of the Port Hamiltonian
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(PH) structure. A control strategy with different Casimir functions are exploited in

[55]. Similar control logic is investigated in [56]. The similarities among these research

projects can be summarized into two aspects. First, a constant bulk modulus model

was assumed, whereas bulk modulus varies with pressure significantly, especially in low

pressure operating ranges. Secondly, the derivation of the passivity is based on a spe-

cial coordinate transformation, which mathematically provides the “hydraulic energy

term” to define the Hamiltonian. However, the equation is not physically linked to

the hydraulic energy stored in the fluid at a certain pressure. Li [57][58] specifies the

compressible energy in the fluid at certain pressure and uses this energy term to define

the Hamiltonian. This approach releases the constant bulk modulus constraint, and the

only assumption is that the bulk modulus is a function of fluid pressure.

Model based advanced nonlinear controllers can be designed to guarantee certain

robustness in the presence of uncertain, bounded dynamics. In hydraulic actuator sys-

tems, not all the constant parameters can be easily identified off-line. Some parameters

vary slowly in real time as well. One solution to precisely capture the uncertainties is

to introduce parameter adaptation with the control law. Both direct adaptive [47][59]

and indirect adaptive nonlinear controllers [60] have been investigated rigorously. In a

direct adaptive controller, all the parameter estimation update laws rely on the track-

ing errors. Due to the lack of a guaranteed persistent excitation (PE) condition, the

parameters may not converge to the true values. In comparison, the indirect adaptive

controllers can return a better parameter estimation. However, since the design of the

controllers and the parameter update laws are separated, the only way to guarantee

the effectiveness of the controller is to improve the parameter estimation, which again

poses strict requirement of PE condition. If the unknown parameter appears in a non-

linear function, e.g. chamber volume in modeling the pressure dynamics, the parameter

update law, and the controller will become even more complex [61].

One thing to notice is that nonlinear controllers typically require the feedback of

all states. Directly feeding back the measurement may lead to a degradation in control

performance due to noise. For example, if velocity or even acceleration are required for

the control law, taking the direct derivative of the position measurement can introduce

noise and phase lag. Therefore, we would like to build an observer and to implement

the control law using the estimated states. In a linear time invariant (LTI) system,
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where the separation principal applies[62], the design of the controller and the observer

can be separated, and the controller can be implemented using the estimated states

[62]. However, there is no such theorem for nonlinear systems. Although there is no

general form as neat as the forms for linear systems, different versions of the nonlinear

“separation principles” have been developed for different nonlinear systems. In general,

the system consists of a nonlinear controller relying on full states feedback, and a high-

gain observer [63][64][65].

In our system, to regulate the valve PWM duty ratio, we need to control the valve

spool’s axial position. Since the spool motion in the axial direction is actuated hy-

draulically, the pressure dynamics exhibits certain nonlinearities. To produce a robust

spool axial position controller, a passivity based nonlinear controller was developed (in

chapter 5). The spool axial position and velocity were estimated via a Kalman filter,

and the states were utilized in feedback.

1.2.6 Displacement control configuration

Throttling losses across valves can drastically degrade the system efficiency, especially

in the case where one power source drives multiple actuators operated at different load

levels. As mentioned in section 1.1, one partial solution is to use a load sensing (LS)

pump. However, there are two drawbacks with this approach. One drawback is that

the throttling loss is only significantly reduced on the branch where the load pressure

requires the highest pressure from the power source. Another drawback is the challenge

to maintain the stability of an LS system [66].

In comparison, an approach that can ideally eliminate the throttling loss involves

changing the way that flow is provided. Instead of throttling down the supply flow, we

vary the supply flow. There are two principally different hydraulic circuit configurations

to implement direct displacement control. One is an open circuit, in which the pump

inlet and the actuator return line are connected to the hydraulic tank separately. The

other one is a closed circuit, in which the actuator return line is connected to the inlet

of the pump. In both open and closed circuits, the circuit and the control strategies

should guarantee the following two performance criteria: i) actuator trajectory tracking;

ii) the hydraulic circuit does not cavitate.

Typical hydraulic actuators are asymmetric (e.g. the piston rod is included on one
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side of the actuator cylinder, but not the other). When using closed circuits, the unequal

fluid volume needs to be compensated. Hewett [66] developed a closed circuit including a

charge pump, an accumulator, and a 3-way 2-position shuttle valve, as shown in Fig. 1.6.

The valve is actively controlled to connect a charge line to the low-pressure side when

volume compensation is required. In this way, the charge pump and the accumulator

guarantee that the pressure in the return line does not cavitate. For example, if the

head side of the cylinder is the meter in chamber and the cylinder is extending under

an over-running load, the shuttle valve will be operated in the position as shown in

Fig. 1.6. The accumulator will supply fluid to the head chamber through the upper

check valve. Both the pump and the accumulator will contribute to the meter in flow.

If the cylinder is extending under a passive load, the shuttle valve will be shifted to its

lower position. The meter out flow from the cylinder rod chamber will be combined

with the accumulator flow through the lower check valve and the shuttle valve to feed

to the inlet of the pump.

Figure 1.6: Displacement control closed circuit using a 3way shuttle valve [66]

Rahmfeld and Ivantysynova [67] proposed a different closed circuit where the charg-

ing line and the low-pressure side are connected via two pilot-operated check valves to

compensate for the unequal volumes, as shown in Fig. 1.7. In closed circuits, extra

components besides the variable flow source are required to compensate the unequal

flow volume, which makes the circuit complex.

In contrast, open circuits yield a simpler configuration. Heybroek [68] proposed an
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Figure 1.7: Displacement control closed circuit using pilot check valves [67]

open circuit, which includes a variable displacement pump/motor and four 2-way valves

connected as a hydraulic H-bridge, as shown in Fig. 1.8. The circuit can realize four-

quadrant operation. Since the pump can be operated as a motor, energy regeneration

can be achieved.
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Figure 1.8: Simplified circuit diagram of the open circuit solution implemented on two
drives [68]

All the circuits presented above require several components besides the variable dis-

placement pump (motor) to achieve displacement control. Comparing between closed
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and open circuit designs, the open circuit has an advantage of faster response time. We

proposed an open circuit, which utilizes fewer and simpler components to achieve the

similar function, as shown in Fig. 1.9. The circuit consists of a variable displacement

pump, a 4-way directional valve, and a one-way proportional valve. The variable dis-

placement pump is a virtually variable displacement pump (VVDP), which does not go

over-center, so only positive displacement is provided. The 4-way valve is operated in

an open-loop manner, so no valve position feedback is required. The proportional valve

is coordinated with the pump to provide the control authority.

Figure 1.9: Direct displacement control open circuit using a VVDP

After the development of direct displacement control circuits, different control strate-

gies have been investigated to manipulate the hydraulic actuators by implementing the

circuit. Using the direct displacement closed circuits, Williamson and Ivantysynova de-

veloped linear controllers based on the linearized system [69][70]. Two operating modes

are defined depending on if the load force is greater than the opposing forced on the

piston or not. The analysis shows that there exists the potential of instability when

the actuator switches operating modes, and the proposed solution is to increase system

damping. Using the direct displacement open circuits, as proposed by Heybroek [68],

the circuit (shown in Fig. 1.8) provides the authority to independently control the pres-

sure in the meter-in and meter-out chambers, and to realize energy regeneration, which
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achieves the actuator trajectory tracking performance, and prevents chamber cavitation

in an energy efficient way.

1.3 Research scope

The dissertation focuses on 1) the loss analysis of the high-speed rotary 3-way on/off

valve using CFD, 2) sensing, position estimation, and motion control development for

the rotary valve spool motions, and 3) the implementation of the virtually variable

displacement pump (VVDP) in a direct displacement control hydraulic circuit.

1.3.1 Scope 1

Since the efficiency of the rotary 3-way on/off valve directly affects the efficiency of

the VVDP system, an optimal valve should be designed. The design method involves

characterizing the operational losses as functions of valve geometries and operating

conditions (flow rate, pressure, etc), and framing the valve design problem into an

optimization problem to minimize the losses. Four valve losses are considered: fully

open throttling loss, transition loss, compressible loss, and leakage loss [71]. Given

the complicated flow path inside the valve, existing analytical formulas cannot fully

characterize the valve losses. The flow inside the valve will be modeled using CFD.

One purpose of the CFD analysis is to develop an analytical modeling of the 3-way

valve losses. The other purpose is to design flow paths inside the valve that minimize

throttling and compressible losses.

1.3.2 Scope 2

The valve spool can spin and translate axially inside the valve sleeve. The spool an-

gular position is sensed using a set of non-contact optical sensors to simplify the valve

sealing structure. The sensing range is relatively long (≈ 2.54cm), and the resolution

of the sensor is low. The position measurement is detected at irregular time intervals.

In this dissertation, we propose an event based Kalman filter, which can provide a

continuous time estimate of the spool’s angular position and velocity from event based

measurements.
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The valve spool’s axial position is also measured using a set of optical sensors. The

spool rotary motion corrupts the spool axial position measurement with structure noise.

If the spool rotates at a constant speed, the structured noise is a periodic signal. The

position feedback control relying on the corrupted spool position measurement degrades

the spool position control precision. This dissertation proposes a periodic time varying

model to capture the dynamics of the noise, so that the true spool position can be

distinguished from the noise, and can be further used in the position feedback control.

After estimating the correct spool axial position, a simple linear controller can be derived

for spool position stabilization.

To improve the robustness of the spool axial position control performance, a passiv-

ity based nonlinear controller is developed that uses a novel pressure dependent fluid

compressibility model to define the energy storage function. An energy function that

quantifies the “energy” stored in the pressure error is proposed for pressure error regu-

lation. The control law is to regulate the storage function to zero, and correspondingly

bring the pressure error to zero. The new controller leads to robust control performance

for the spool’s axial position.

1.3.3 Scope 3

The last section of this research focuses on the system level control of a single hydraulic

actuator. This research utilizes the VVDP described in Fig. 1.1 as a variable displace-

ment pump (VDP) in a direct displacement control circuit, which is shown in Fig. 1.9. A

passivity based nonlinear controller is developed to accurately control the position and

chamber pressures of the actuator. A novel approach to distribute the control effort be-

tween the control devices (including the VVDP, a proportional valve, and a directional

valve) is proposed. The approach distributes the control effort optimally between the

VVDP and the proportional valve according to their control bandwidths. As a result,

the valve is operated with a large mean opening area to reduce throttling loss, while

the VVDP is operated following a slow varying profile.

1.4 Dissertation Structure

The rest of the dissertation is arranged as follows:
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Chapter 2 presents the CFD analysis of the valve flow. Main results include the

validation of the orifice equations in predicting the valve pressure drop; a semi-empirical

formula developed based on the CFD results to predict the valve center PWM section

pressure drop; and the local flow path modification.

Chapter 3 covers the valve spool rotary sensing and estimation. An event based

Kalman filter will be presented to estimate the spool angular position and velocity.

Chapter 4 presents the first generation spool axial position sensing, actuation, and

control system. The modeling of the structure-based measurement noise is described.

The observability of the plant system augmented with the structured noise model is

analyzed. In this generation, the valve spool self-spins, and the spool axial position is

actuated hydro-statically using a small gerotor pump.

To improve the spool’s axial position performance and to enable the investment

of the effect of actuation strategy on valve efficiency, Chapter 5 describes the second

generation of the spool driving system, which allows the spool rotary motion to be

driven externally. Optimization results show that when the input flow rate through the

valve varies, rotating the valve with an external actuator can produce higher efficiency

than relying on self-spinning[72]. In the axial direction, the spool is treated as a single

chamber actuated cylinder with a pre-loaded return spring. By manipulating the spool

axial chamber pressure, we can vary the spool axial position. A passivity based nonlinear

controller is developed for this new driving mechanism, which produces a robust and

accurate spool position tracking performance.

Chapter 6 describes a direct displacement control, using a VVDP, to manipulate an

open circuit double-ended hydraulic cylinder. The control efforts include the VVDP,

supply flow to the cylinder supply chamber, a directional valve, and a proportional

valve connecting the cylinder return chamber to the tank. A multi-mode controller is

designed to enable the piston to track a reference trajectory. The multiple modes are

defined based on the cylinder chamber pressures. The controller can guarantee a precise

cylinder position tracking performance, and the cylinder pressures can stay bounded.

Finally in Chapter 7, the conclusion and the contributions of this research work are

presented. The future research direction is discussed as well.



Chapter 2

CFD Analysis of a Rotary PWM

Valve

2.1 Introduction

This chapter presents the CFD analysis to aid the design optimization of a rotary

on/off valve. As discussed in chapter 1, the 3 way rotary on/off valve in the VVDP has

four primary types of power loss: full-open loss, compressibility loss, leakage loss, and

transition loss [71]. To facilitate the valve design, the loss metrics need to be linked to the

design parameters analytically. In this way, the valve’s key geometrical parameters and

operating conditions can be framed as an optimization problem targeted at minimizing

the overall valve losses. Given the complex flow path inside the valve, the pressure drop

across the valve, which determines the valve throttling loss, cannot be fully modeled by

orifice equations. Therefore, the semi-empirical relationship between the pressure drop,

the flow rate, and the key valve geometry parameters is established based on the CFD

analysis. The CFD tool is also utilized to facilitate the design of a smooth flow path

inside the rotary valve.

To reduce computational cost, the fluid domain inside the valve when the inlet is

connected to the load branch (or the tank branch) is divided into three parts, and each

part is simulated independently. The valve spool uses turbines to gain angular momen-

tum when the flow goes through it to spin the valve spool. The operating principle of

the valve and the flow path inside it will be introduced in section 2.2, and the CFD

23
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simulation set up will be described in section 2.3. The valve’s pressure drop, flowrate,

and geometrical parameter relationship will be investigated in section 2.4. The turbine

torque analysis will be presented in section 2.5. The effective outlet turbine exit area

will be identified from the CFD results. The CFD analysis validates the effectiveness

of the analytical formula to model the pressure drop across the spool and to model the

torque generated by the impulse and the reaction turbines. These equations are utilized

for valve parameter optimization, which is discussed in section 2.6. Methods for improv-

ing the valve’s interior flow path design based on the CFD analysis will be discussed in

section 2.7. The modified design can minimize the compressible fluid volume within the

valve without increasing its pressure drop. Compared with the prototype design, the

valve’s full-open throttling loss can be reduced by 62.5% and the compressible loss can

be reduced by 66%. Finally, some concluding remarks will be summarized in section 2.8.

2.2 Rotary high speed on/off valve

The key geometrical parameters of the valve prototype are shown in Fig. 2.1. This

section will first introduce the fluid domain inside the valve when the pump inlet flow is

connected to the tank branch. Then, the experimental set-up of the high-speed rotary

valve implemented in a virtually variable displacement pump (VVDP) circuit will be

presented in sec. 2.2.2.

2.2.1 Fluid Domain Inside The Valve When it is Fully Open

The valve can be fully open from high pressure to load or from high pressure to tank.

The fluid domain inside the valve at one instant, as shown in Fig. 2.2, corresponds to a

spool position when the nozzle is connected to the tank branch. A similar domain can

be illustrated with the nozzle connected to the load branch. The fluid inside the 3-way

valve can be divided into three sections: the inlet toroidal pressure rail with nozzles,

the center PWM section, and the outlet turbine with a toroidal pressure rail, as shown

in Fig. 2.2. The detailed flow path is explained step by step.

First, flow supplied from the pump enters the toroidal pressure rail, which is shown

in Fig. 2.3. This pressure rail is integrated into the valve sleeve to minimize the dead

volume between the pump outlet and the valve spool. The rail splits the flow into three
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Figure 2.1: 3-way rotary valve prototype key geometry

inlet toroidal pressure rail 

with nozzles

center PWM sectionoutlet turbine with 

a toroidal pressure rail

Figure 2.2: 3-way valve fluid domain (sleeve + half spool) when the inlet flow is con-
nected to the tank branch
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portions, and directs them into the center section of the valve spool tangentially via the

three nozzles. Since the nozzles are tapered, the flows are accelerated before entering

the spool’s center section.

Velocity inlet

pressure outlet

Figure 2.3: Inlet torus pressure rail with nozzles fluid domain

Second, as shown in Fig. 2.4, the flow that enters the center PWM section tangen-

tially will be re-directed to travel axially before it exits the valve spool center PWM

section. The difference in the angular momentum of the fluid between entering and

leaving the spool center section imparts a torque on the valve spool, which causes the

valve to spin.

Finally, as shown in Fig. 2.5, the flow enters the outlet turbine section axially, and

leaves the turbine radially and tangentially. The outlet section is designed as a reaction

turbine. The turbine blade guides the flow from traveling axially to tangentially, and a

reaction torque is applied to the spool, which further aids the spool’s self-spinning. As

the flow approaches the outer edge of the turbine blade, the flow cross-sectional area

expands. A toroidal pressure rail gathers the flow and guides it to the valve outlet.

2.2.2 Experimental apparatus

A prototype of the high-speed rotary valve described above has been designed and

manufactured. This apparatus provides us with the experimental measurements to
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Inlet nozzle

nozzle center 

PWM section 

interface

Inlet port

outlet port

Cartoon of the flow path

Figure 2.4: Center PWM section fluid domain
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Figure 2.5: Outlet turbines with flow rail fluid domain
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verify the CFD modeling and is shown in Fig. 2.6. The rotary valve is connected directly

to the outlet of a fixed displacement vane pump via a customized pump housing. The

vane pump has a fixed displacement of 22.8cc, and is driven by a 5.6kW AC motor

operated at 1800rpm. A pressure sensor to measure the valve inlet pressure is mounted

on the manifold between the pump and the valve. A load pressure sensor is mounted

directly on the valve sleeve, which is at the outlet of the valve load branch. The pump

provides a maximum flow of 40lpm. The valve spool can be removed, so that the

pressure drop across the valve sleeve can be measured. The flow rate into the valve can

be adjusted by varying the AC motor rotary speed via varying the Variable Frequency

Drive (VFD) driving frequency, and a flow meter is installed on the load branch. The

flow passing through the load, which is an orifice, can be directly measured. Therefore,

some operating points from the following CFD analysis can be compared with the

experimental data. A relief valve is added in the circuit to provide protection during

valve transition.

2.3 CFD simulation set up

Each section of the 3-way valve was created in a CAD modeler and was imported to

the GAMBIT [73] pre-processor for geometry clean-up to remove unwanted geometric

configurations such as short edges, cracks, and holes from the model. The fluid do-

main volume meshing and the boundary condition specification were also conducted in

GAMBIT. Given the complex flow path, the tetrahedral element was selected as the

main mesh element. The domain was simulated in FLUENT [74] on an IBM SP su-

percomputer. In this section, the governing equations used to model the flow inside

the valve will be introduced first. Next, the boundary conditions for each sub-domain

will be defined in section 2.3.1. Section 2.3.2 will summarize all the running cases we

will investigate. The solution methods will be introduced in section 2.3.3, and the grid

refinement procedure will be discussed in section 2.3.4.
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Figure 2.6: Experimental apparatus
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2.3.1 Governing equations and boundary conditions

The governing equations describing the flow inside the valve when it is fully open are

the incompressible Navier-stokes equations without body forces[75]:

ρ
∂~v

∂t
+ ρ~v · ∇~v = −∆P + µ∇2~v (2.1)

and the continuity equation:

∇ · ~v = 0 (2.2)

where ρ is the fluid density, ~v is the fluid velocity vector, P is the fluid pressure and

µ is the fluid dynamic viscosity. The fluid properties correspond to Mobile DTE 25, a

common hydraulic oil that is used in the experiments. The density is ρ = 876kg/m3, and

the dynamic viscosity is µ = 0.0387kg/m/sec, which corresponds to the temperature

of 40◦C. The turbulent energy is modeled using the Reynolds-averaged Navier-Stokes

(RANS) equations [74] method. The RANS equations are the time-average equations of

the motion for fluid flow, which can be used with approximations based on knowledge

of the properties of flow turbulence to provide approximate time-average solutions to

the Navier-Stokes equations.

Each valve sub-section as described in Section 2.2 is simulated separately. For each

sub-section, a constant pressure boundary condition is imposed at the domain outlet

to provide a reference pressure. Pressures at the inlet are computed with respect to

the specific outlet pressure. The inlet boundary condition is specified as a constant (in

time) flow input. The flow is uniformly distributed on the inlet surface with a direction

normal to the inlet surface. The no slip shear condition is imposed on all wall surfaces.

2.3.2 Simulated operating conditions

CFD was run for the prototype valve geometry with different input flow rates to estimate

the pressure drop across the valve. Since the experimental measurement of the pressure

drop across the prototype valve was conducted by holding the valve spool stationary, a

stationary frame solver was used. To estimate the pressure drop across different sized

valves, the prototype design was scaled radially while maintaining the spool length

constant for the center PWM section. Different flow rates have been simulated for each
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valve geometry to obtain the pressure drop across the center PWM section when the

valve is fully open.

For the valve turbine torque analysis, the walls are stationary so that the fluid inside

the three nozzles is not rotating around the valve spool’s axial axis. In comparison,

the fluid inside the spool center section is spinning around the spool’s axial axis. A

multi-rotating frame (MRF) model is utilized to capture the spool rotation effect. The

resulting flow field from the MRF model is a representative snapshot of the transient

flow field where the rotating parts are moving. The MRF model is a reliable tool to

analyze rotating flows when the interaction between the rotating part and the stationary

part is not significant.

2.3.3 Solution methods

Sharp edges and corners that exist in the flow path can lead to turbulent flow. A

standard κ− ε viscosity model was utilized to capture this effect [28][30]. Density and

velocity terms were discretized using the 1st order upwind method. The spatial gra-

dient terms were solved using the least squares cell based method. The Semi-Implicit

Method for Pressure Linked Equations (SIMPLE) was used for pressure-velocity cou-

pling. These selections are well documented numerical methods for solving valve flow

problems [74][28][29].

2.3.4 Grid refinement

In this section, we conduct the grid refinement analysis to identify the proper grid

density at which the simulation results are independent of the grid density. The grid

refinement simulations were based on a constant flow of 40lpm, which was the maximum

flow utilized in the experimental apparatus. The pressure drops across the three sub-

sections described in Fig. 2.3 through Fig. 2.5 were simulated. The grid was refined

using two methods. Since unstructured grids were used to mesh the fluid domain, the

primary approach to refine the grid was to reduce the maximum allowable grid size. In

addition, the grid density was increased at the locations where the pressure gradient

was large. For each sub-section, the grid was refined until the pressure drop across the

sub-section was independent on the grid density, as shown in Fig. 2.7 through Fig. 2.9.
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Figure 2.7 shows the grid refinement analysis on the inlet toroidal rail and the inlet

nozzles section described in Fig. 2.3. Figure 2.8 shows the grid refinement analysis on

the spool center PWM section with inlet nozzles as shown in Fig. 2.4. Figure 2.9 shows

the grid refinement analysis on the outlet turbine with the toroidal rail section described

in Fig. 2.5. To balance the simulation precision and the computational cost, we refined

the domain mesh locally. A pressure gradient based local grid refinement procedure was

utilized. More mesh grids were introduced at the location where the pressure gradient

was high.

�������������

Figure 2.7: Grid independence analysis for the inlet toroidal rail and the inlet nozzles
(as shown in Fig. 2.3) for a flow rate of 40lpm

Based on this analysis, the grid for the inlet toroidal pressure rail with nozzles

domain contained 995983 cells. The nozzle with PWM domain contained 1018093 cells.

The outlet turbine with toroidal pressure rail domain contained 1772910 cells. The

refined domains were used in the following simulations.



34

�������������

Figure 2.8: Grid independence analysis for the center PWM section with inlet nozzles
(as shown in Fig. 2.4) for a flow rate of 40lpm

�������������

Figure 2.9: Grid independence analysis for the outlet turbine with the toroidal rail (as
shown in Fig. 2.5) for a flow rate of 40lpm
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2.4 Full open pressure drop

In this section, we present the full open pressure drop CFD results across each sub-

section of the domain shown in Fig. 2.2. Full open pressure drop refers to the configura-

tion when the nozzle is not partially blocked by the spool helical barriers. For the inlet

toroidal rail with nozzle section (Fig. 2.3) and the outlet turbine with toroidal pressure

rail section (Fig. 2.5), CFD was run for the base geometry at different flow rates, and

the pressure drop across the section was obtained. For the center PWM section, the

prototype spool is scaled only in the radial direction to generate different geometries,

as shown in Fig. 2.10. The candidate geometries had the same height but different

spool diameters. For each geometry, flow rates from 10lpm to 80lpm were simulated

to obtain the pressure drop across the center PWM section. The pressure drops across

the prototype valve at different flow rates were measured experimentally, and the CFD

results were compared with the experimental measurements.

Figure 2.10: The valve spool’s PWM section is scaled in radial direction to generate
prototypes of different geometry for CFD analysis

The pressure drop across the three sections of the rotary valve from both the CFD

analysis and the experimental results are presented in Fig. 2.11. The first figure shows

that for the pressure drop modeled across the whole valve (including sleeve and spool),

the pressure drop predicted by the CFD model matches with the experimental data

very well. However, the correlation between the CFD prediction and the measurement

for each separate section is not as good. In the second figure, it is shown that CFD
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Figure 2.11: Comparison of valve pressure drop between experimental and CFD results.
Top: pressure drop across the valve, including both the sleeve and the spool, as shown
in Fig. 2.2. Middle: pressure drop across the inlet toroidal rails with the 3 nozzles, as
shown in Fig. 2.3. Bottom: pressure drop across the spool and the outlet toroidal rail,
as shown in Fig. 2.5.
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predicts a 0.1bar lower pressure drop than the experimental data for the inlet toroidal

rail with nozzles section. Ideally, we would like to compare the CFD results with the

measurement at different positions within the flow path. However, since the pressure

sensor cannot be located arbitrarily within the valve, we cannot measure the pressure

at the inlet and the outlet surface for each sub-section. We can measure the pressure

drop across the whole valve, which refers to the fluid domain shown in Fig. 2.2 The

pressure drop across the inlet toroidal rail with nozzles section can be approximated by

removing the spool from the valve. In this case, the pressure sensor is located on the

sleeve, rather than at the nozzles’ exits. Therefore, some extra pressure drop caused

by the sleeve bore is included in the pressure drop measurement of the inlet toroidal

rail with nozzles from experimental measurement, and the CFD prediction for the inlet

toroidal rail with nozzles section is lower than the experimental measurement. The good

match between the CFD simulation results and the experimental measurements shows

the effectiveness of the CFD model. This enables us to analyze the valve pressure drop

section by section via the CFD simulation instead of direct measurements. Next, we will

use CFD to facilitate the development of analytical equations to predict the pressure

drop across each sub-section defined in section 2.2 given a flow rate.

2.4.1 Pressure drop across the inlet toroidal rail with nozzles

The pressure drop across the inlet toroidal rail with nozzles is obtained via CFD for

various flow rates, and the results are shown in Fig. 2.12.
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Figure 2.12: Pressure drop across the inlet toroidal rail with nozzles
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From the CFD results, we observe that the pressure drop vs. flow relationship ex-

hibits a parabolic curve trend. This means that the orifices are effectively modeled using

the standard orifice equation:

∆Pnozzle =
ρ

2

(
Qin

Cd,inArhombus

)2

(2.3)

By treating the three nozzles as one cumulative orifice, the total orifice area is

Arhombus = 36.5mm2. The discharge coefficient Cd,in = 0.61 was calculated through a

least square fit of the CFD predictions. A discharge coefficient Cd ∈ [0.6, 0.7] is typically

assumed for orifices [76], since the results show good agreement with expectations.

2.4.2 Pressure drop across the center PWM section

This section will present a model of a modified orifice equation to analytically predict the

pressure drop across the valve center PWM section. Given other geometry constraints,

the length of the spool cannot be varied much. Therefore, we impose an assumption that

the equivalent flow path area depends on the spool diameter only. The baseline geometry

(shown in Fig. 2.4) was scaled radially. In this way, the depth of the fluid pocket increases

proportionally with the spool radius and the helix angle changes. Different flow rates

were simulated for each scaled valve to obtain the pressure drop across the center PWM

section, and the results are shown in Fig. 2.13.

The pressure drop across the prototype design was used as a pressure reference;

the pressure drop across the various geometries (varying D) with different flow rates

(varying Q) was modeled using a modified orifice equation. Since the flow path includes

both a pipe portion and an orifice portion, a modified orifice equation is proposed to

quantify the relationship between the pressure drop across the valve:

∆P =
Qmin

kcenterDn
(2.4)

where kcenter is a constant parameter. The boundaries of m and n are determined from

a pure pipe flow equation, and a pure orifice equation: m ∈ (1, 2), and n ∈ (2, 4).

For each spool candidate, the pressure drop across the domain was simulated for a

range of flow rates. The results are shown in Fig. 2.13. A plane was fit to the simulation

data using the least squares fitting method to determine k, m, and n, as shown in the



39

−0.2
0

0.2
0.4

−4
−3.5

−3
−2.5

2

4

6

8

 

Log(Q[m3/sec])Log(Scale)
 

∆ 
P

 [b
ar

]

−0.2
0

0.2
0.4

−4
−3.5

−3
−2.5

−0.05

0

0.05

Log(Q[m3/sec])Log(Scale)

P
er

ro
r [b

ar
]

Fit Plane
CFD

Figure 2.13: Pressure drop vs. flow rate and spool geometry scaling for center PWM
section (top); pressure drop estimation error (bottom)
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upper figure of Fig. 2.13. The parameters are estimated to be m = 1.91, n = 3.22,

kcenter = 1.45× 10−6. m = 1 corresponds to a pipe flow model and m = 2 corresponds

to an orifice flow model. Since m is close to 2, it means that the flow across the center

PWM section has the attributes of an orifice. The fitting errors are shown in the lower

plot of Fig. 2.13, and the maximum fitting error is less than 0.05bar, which shows

the effectiveness of the analytical model in predicting the spool center PWM section

pressure drop.

2.4.3 Outlet turbine with the toroidal pressure rail

The pressure drop across the outlet turbine with toroidal pressure rail section (as shown

in Fig. 2.5) was simulated for flows from Qin = 0lpm to Qin = 60lpm for the baseline

geometry. This domain is analyzed in two parts. One part is the pressure drop across

the outlet turbine. The other part is the pressure drop across the toroidal pressure rail.
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Figure 2.14: Pressure drop across the spool outlet turbine

The pressure drops at different flows across the outlet turbine are shown in Fig. 2.14.

We observed that the pressure drop vs. flow curve exhibited a quadratic shape, and

therefore the pressure drop across the outlet turbine with the toroidal pressure rail

section was assumed to follow the orifice equation:

∆Pturbine,out =
ρ

2

(
Qin

Cd,outAout

)2

(2.5)
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The outlet turbine’s exit area (Aout = 46.8mm2, as shown in Fig. 2.1) is identified as the

orifice for this domain, and the assumption is that when flow exits the outlet turbine

of the spool, flow directions are perpendicular to the exit cross area. The discharge

coefficient in the orifice equation was calculated by the least square fit to the CFD data,

and Cd,out = 0.677.

The pressure drops across the toroidal pressure rail at different flow rates by CFD

are shown in Fig. 2.15. The pressure drop vs. flow relationship across this part does

not need to be modeled analytically. The purpose of the analytical model is to be used

in a valve parameter optimization framework to determine the optimal balance between

the throttling loss and the compressible loss. Fluid inside this part is not compressed

at the PWM frequency, so only throttling loss (pressure drop) needs to be considered

for this section. Therefore, enlarging the flow path to reduce the throttling loss does

not result in the penalty of an increased compressible volume. To reduce the throttling

loss, the flow path can be designed to be as large as possible, subject to the geometric

and the manufacturability constraints.

Figure 2.15: Pressure drop across the outlet toroidal pressure rail
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2.5 Torque and speed

The rotary valve spool is designed to self-spin without an external driving mechanism.

When the valve spool spins, the only resisting torque comes from the viscous friction

force, which is proportional to the spool rotary speed. The spool’s rotary motion is

driven by the torque generated by the impulse and reaction turbines that correspond

respectively to the inlet and outlet sections of the valve. When the turbine torque

balances the friction torque, the spool will rotate at an equilibrium angular velocity,

which determines the PWM frequency. Analytical formulas for predicting the turbine

torques using a control volume method were developed in [77], and are reviewed below.

CFD can be used to assess the accuracy of the analytical equations, and determine any

modifications to the formulas which are required.

Figure 2.16: Impulse turbine and reaction turbine [77]

The control volumes for both turbines are shown in Fig. 2.16. For the inlet turbine

(the center PWM section), the flow enters the valve spool tangentially, and leaves the

control volume axially. The change in angular momentum of the fluid results in a torque

being applied to the turbine. The mean velocity of the fluid as it enters the spool is

denoted by vin, and the mass flow rate is denoted by ṁ. The inlet turbine torque is



43

modeled as:

τin =
N∑
1

(Rinvin)ṁin =
ρRin
AinN

Q2
in (2.6)

where ρ is the density of the hydraulic oil, and Rin is the constant distance offset from

the axis of rotation when the fluid enters the control volume. Qin is the volumetric flow

rate at the inlet of the control volume. N = 3 corresponds to the three inlet nozzles to

the control volume.

For the outlet reaction turbine, the flow enters the turbine axially, and leaves the

spool tangentially. The flow area when the fluid leaves the blade is assumed to be a

constant distance Rout offset from the axis of rotation (Fig. 2.16), and the turbine torque

is modeled as:

τout =

N∑
1

Rout · (vout − vCV ) · ṁout

=
ρRout
Aout

Q2
in −R2

outρωQin (2.7)

where Aout is one effective flow exit area near one turbine blade. vCV = Routω is the

velocity of the flow at the tip of the blade where the fluid exits the control volume.

These torque prediction formulas are compared with CFD. In this analysis, the

multi-rotating-frame model was used instead of the stationary model to capture the

effect of a constant turbine rotational velocity. This analysis was done for the scenario

in which the valve was fully open, not in transition. In the CFD model, the turbine

torque about the rotation axis was computed by summing the moment of the pressure

force vector ~FP and viscous force vector ~Fv for each mesh cell, with its moment arm ~r.

The vector ~r is pointing from the rotation axis to the force origin of the evaluated mesh

cell:

τCFD =
∑

mesh cell

~r × ~FP + ~r × ~Fv (2.8)

Figure 2.17 shows the torque analysis results. For the inlet turbine, the CFD sim-

ulation results match the predictions from Eqn. (2.6) very well, indicating that it can

effectively be used to model the torque generated by the impulse turbine.

For the outlet turbine, the effective area Aout was calculated via least square fitting

of the CFD simulation results, which produced Aout = 61.8mm2. Since flow at the exit
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Figure 2.17: Torque predicted from CFD and analytical formula

was not a uniformly distributed flow normal to the exit area (Aout = 46.8mm2) shown

in Fig. 2.1, the effective exit area should be larger than the one read from Fig. 2.1.

Next, we will evaluate the valve spool speed. The spool self-spins at the angular

speed at which the turbine torque equals the viscous friction torque. The friction torque

is modeled with an analytical equation following Petroff’s law[78]. The assumption here

is that the fluid is Newtonian. The friction torque is modeled as:

τfriction = Asurf
µ

c
R2ω (2.9)

where Asurf is the effective bearing surface area of the spool. This effective bearing area

accounts for both the bearing surface area and an equivalent “bearing area” to model

the viscous drag of the fluid inside the enclosed pocket, as shown in 2.18. The detailed

modeling of the bearing surface is presented in [79], section 2.3.4. µ is the oil dynamic

viscosity at 40 degC, ω is the spool angular velocity, and c is the clearance. Since the

valve radial clearance is one thousandth of the spool radius, the friction force moment

arm is approximated by R, which is the radius of the valve spool.
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Figure 2.18: Valve bearing surface and pocket fluid, account for equivalent bearing
surface

Figure 2.17 shows that the total torque generated from the turbines and the friction

torque intersect at 72Hz PWM frequency, which corresponds to 24Hz spool rotational

frequency based on the analytical formula with the parameters of Aout identified from

CFD analysis. The experimental data measured the valve to operate at a PWM fre-

quency between 70.4Hz and 82Hz depending on the oil temperature. In conclusion,

analytical equations are valid to predict the torques generated by both the impulse and

the reaction turbines of the valve.

2.6 Optimization of the valve design

The formulas presented in Eqn. (2.3), Eqn. (2.4), Eqn. (2.6), and Eqn. (2.7) are utilized

in optimizing the 3-way valve [71]. The orifice equations Eqn. (2.3) and Eqn. (2.4)

model the throttling losses of the valve, which are used in the cost function of the valve

optimization. The objective of the optimization is to minimize the valve operational

losses. The torque formula Eqn. (2.6) and Eqn. (2.7) are used to establish the rotary

valve speed constraint in the valve optimization. The optimization variables include the

spool radius R, the valve inlet nozzle area Ain, the valve outlet turbine exit’s area Aout,

and the valve spool/sleeve radial clearance c. The optimization results predict that for
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the same flow capability (40lpm), the full open pressure drop across the optimized valve

using the designed equations would be 2.48bar. Compared with the current prototype,

which has a full open pressure drop of 6.61bar, a reduction of 62.5% on pressure drop

can be achieved. Equivalently, the throttling power loss of the valve can be reduced by

62.5%.

2.7 Guidance to the inlet toroidal rail design improvement

Since the valve operates at high PWM frequency, in addition to the throttling loss, the

compressibility loss also contributes to a significant portion of the valve’s operational

loss. During every PWM period, energy is required to compress the fluid to a high pres-

sure, Phigh, in the inlet volume, Vcomp. This energy is lost when the high-pressure flow

is connected to the tank, and the loss Lcompress is proportional to the valve compressible

volume (Vcomp) [71]:

Lcompress = Vcomp
P 2
high

2βeq
N
ωpwm

2π
(2.10)

Where ωpwm = 3ω refers to the valve’s operational PWM frequency. The fluid bulk

modulus, βeq, is typically several thousand bar. The compression happens very fast,

and the energy cannot cause any noticeable temperature change to the oil. In other

words, no significant heat exchange happens in the oil due to this pressure change.

Therefore, the energy equation is not used in CFD. Although “compressible volume”

is used to refer to the volume, this volume mainly affects the dynamics of the VVDP

during transition when the pressure inside this volume is compressed from low pressure

to high pressure or vice versa. Here, to analyze the pressure drop across this volume

when the fluid is passing the volume at its steady state, we still use an incompressible

solver.

It would be ideal to keep the compressible volume as small as possible. However,

making the flow path too small increases the pressure drop across the corresponding

domain, which increases the valve throttling loss. How to balance between the reduction

in fluid volume and the reduction in pressure drop is investigated using CFD tools. The

fluid volume considered in this section includes the inlet toroidal pressure rail and the

three nozzles, as shown in Fig. 2.3. Given the orifice area as a constraint, the objectives

of the CFD modeling are to reduce the fluid volume, maintain or reduce the pressure
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drop, and maintain the uniform flow distribution among the three nozzles compared

with the prototype design.

(a) 

vol: 12.68cc

dP: 4.2bar 

(b) 

Vol: 8.63cc

dP: 4.79bar 

(c) 

vol: 7.02cc

dP: 4.92bar 

(d) 

vol: 4.46cc

dP: 4.77bar 

1

2

3

1

2

3

1

2

3
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2

3

Figure 2.19: Examples of the inlet pressure rail improvement (a) prototype design; (b)
inlet port moved to the center; (c) shorten the nozzle length so that the toroidal rail
diameter is reduced by 16% ; (d) shrink the toroidal cross section diameter by 30%

We identified three changes which can potentially decrease the valve compressible

volume: 1) moving the inlet port to the middle of the channel that supplies flow to

the three orifices; 2) reducing the cross-sectional area of the toroidal flow channel; 3)

shortening the nozzle length to reduce the toroidal diameter. Figure 2.19 shows the

effects of each design change. Figure 2.19a shows the prototype design. In Fig. 2.19c,

the nozzle length is shortened so that the toroidal rail diameter is reduced by 16%.

In Fig. 2.19d, the cross-sectional diameter of the toroidal flow channel is reduced by

30% compared with the prototype. The fluid volume inside the toroidal rail of the

prototype is 12.7cc (shown in Fig. 2.19a). The smallest potential design can reduce the

fluid volume inside the toroidal rail to 4.2cc (shown in Fig. 2.19d). This corresponds to

a 67% reduction on the compressible loss. In comparison, the pressure drop (or the full-

open throttling loss) is increased by 13.6%. Since each change results in some reduction
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of the compressible fluid volume, we created an optimized design by combining the three

changes.

vol: 3.7cc

dP: 4.73bar 

1

2

3

Figure 2.20: An optimized toroidal rail design

(a) (b) (c) (d) final

1 35.5% 32.8% 38.6% 34.1% 31%
2 32.3% 35.0% 30.5% 32.1% 38.6%
3 32.2% 32.2% 30.9% 33.8% 30.4%

Table 2.1: Flow distribution among nozzles. Cases (a)(b)(c)(d) are defined in Fig. 2.19.
“final” refers to the design shown in Fig. 2.20

Compared with the prototype, the new design shown in Fig. 2.20 has a shorter

nozzle, an inlet that is moved to the center of the toroidal rail, and a smaller rail cross-

sectional diameter. The new rail has a fluid volume of 3.7cc, while the pressure drop for

a 40lpm flow is 4.73bar. This is comparable to the pressure drop of the prototype, which

is 4.17bar. The volume reduction is equivalent to a 66% reduction of the compressible

loss.

The flow distribution results among the three nozzles are presented in Table 2.1. The

final design does not produce as even a flow distribution as design(b) or design (d). In the

final design, the pressure rail guides more flow to nozzle 2, because nozzle 2 is located

closer to the inlet compared with nozzle 1 and nozzle 3. While the unbalanced flow
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distribution among the three nozzles can potentially create an unbalanced radial force on

the spool, the magnitude of the flow mismatch (8%) leads only to a negligible imbalance

radial force on the spool. For example, when a 40lpm flow is passing through the valve

spool, at its steady state, the unbalanced radial force is 0.93N . Since the fluid between

the valve spool and the valve sleeve functions as a journal bearing, this unbalanced

radial force can be handled by the bearing. Therefore, although the flow distribution

of the optimized design is not as uniform as the prototype, it is still acceptable. CFD

has successfully enabled reducing the compressible volume while maintaining a similar

pressure drop across this domain and a uniform flow distribution.

2.8 Summary

In this chapter, the flow inside a novel high-speed rotary on/off valve has been analyzed

using CFD. CFD validated and aided the development of analytical equations which

predict the valve pressure drop and the valve turbine torque as a function of geomet-

rical design parameters. The analytical equations can be further utilized in the valve

parameter optimization. Compared with the current prototype valve, the optimized

valve can reduce the fully open loss by 62.5%. An improved optimized design of the

inlet pressure rail with nozzles was established via CFD. The fluid volume inside the

valve inlet pressure rail and the nozzles was reduced by 66%, while the pressure drop

was only slightly larger (6.7%). The analysis can be extended to the design of any

high-speed digital valves, where compressible loss counts for a large portion of the valve

operational losses, and the balancing between compressible loss and throttling loss is

important. The approach of developing a semi-empirical formula to predict the pressure

drop for the center PWM section of the valve spool can also be extended to the analysis

of similar valves in developing a reduced order model to predict the valve pressure drop

analytically.



Chapter 3

Event based Kalman filter for

valve spool rotary states

estimation

3.1 Introduction

In this chapter, the valve spool angular states (angular position and velocity) sensing

and estimation problem will be addressed. The self-spinning feature of the rotary valve

prefers non-contact sensing to measure the valve spool rotary position. Non-contact

sensors can simplify the valve sealing structure, and they can avoid the interference

between the sensor and the valve spool motion (in both rotary and axial directions).

The valve spool angular position is measured using a non-contact optical sensor, which

consists of a laser module, a photodiode and a rotary encoder, as shown in Fig. 3.1.

The light emitted from the laser is reflected from a code wheel attached to the spool

end. The photodiode outputs a high-low alternating signal, depending on whether the

laser light is reflected off of a black or reflective (metal) sector on the code wheel.

Changes in the photodiode response are used to sense the spool angular position. Due

to the small spool diameter (25.4mm) and the relatively large laser beam spot size

(5mm in diameter), the encoder resolution is relatively poor (8 sectors per revolution).

Improving the quality of the laser source can permit the usage of a high resolution code

50
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wheel, therefore improving the sensing resolution. However, it is expensive to realize

this improvement.

Photodiode
Laser 

module

Code wheel

Figure 3.1: PWM valve rotary sensing mechanism

Two approaches have been frequently used to estimate the angular velocity from

encoder measurements, depending on whether the angular velocity is high or low: finite

difference method [80] and inverse-time method [81][82]. If the angular velocity is high,

the finite difference method is preferred, where the angular velocity is calculated by

counting the number of pulses within a fixed time interval, converting the counts to

angle, and dividing the angle by the time interval. If the angular velocity is low, the

inverse-time method is preferred, where the angular velocity is calculated by dividing

the sector angle by the time between successive pulses.

If the sampling frequency is relatively slow, and the encoder resolution is low, the

measurement of pulses will be obtained at irregular time instants. Both approaches

will produce noisy estimations of the angular states. The performance of both finite

difference estimators and inverse-time estimators can be improved by adding additional

low pass filters to either pre-process the position signal (integration of the encoder),

or to further filter the estimated velocity. Depending on the assumption of the noise

model that is corrupting the position measurement, optimal estimators can be achieved
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to estimate the velocity from the position measurement. Glad and Ljung [83] presented

a Kalman filter to estimate the angular velocity, and the measurements of the angular

positions are obtained at irregular time instants. The measurement, as presented in

[83], can be obtained from light response changes when holes on a disc mounted on the

axis pass through light source. The uncertainty of the occurrence time was converted to

measurement noise, and a linear time-invariant (LTI) system with a zero mean measure-

ment noise is derived. The corresponding estimator design can follow a typical Kalman

filter design procedure. Simulation results show that the Kalman filter approach is

superior to both the finite difference method and the inverse-time method.

In our problem, because the encoder resolution is very low, it is beneficial to also

estimate the angular position and velocity between transitions of the encoder counts.

Since the measurement of black-white transition events can occur at irregular times, we

propose an event based Kalman filter observer for this purpose. When the sampling

intervals are large, the uncertainty in when the transition occurs becomes more uncer-

tain. The transition events are subject to uncertainty due to finite sampling interval,

the fact that the optical signal changes gradually and the threshold for distinguishing a

white or black sector is uncertain. Continuous time, time-varying Kalman filter theory

is adopted to accommodate the uncertain event based measurements. The resulting al-

gorithm is such that between events, the Kalman filter operates in an open loop manner;

when a transition is detected, both the Kalman filter gain and the state estimate are

updated discretely. Compared with Glad and Ljung’s work in [83], our work provides

the additional data estimation in between the sampling times.

In the next section, the rotary sensing working principle will be introduced. In

section 3.3, the two sources of noise which corrupt the encoder measurement on event

detection time will be described. The system modeling will be presented, focusing on

formulating the time uncertainty to a measurement noise on position. This formulation

is important to derive an LTI system model. The proposed event based Kalman filter

will be introduced in section 3.4 to estimate the states of the LTI system. Finally, the

simulation validation and the experimental validation of the event based Kalman filter

will be presented in section 3.5 and section 3.6.
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3.2 Optical rotary sensing

The sensing mechanism for the rotating spool is shown in Fig. 3.1. The rotary optical

sensor consists of a laser diode light source module, a photodiode and a code wheel with

black sectors printed on a piece of transparent media. The code wheel is attached to

one end of the spool. A low power laser module and a photodiode are mounted next

to each other on one end of the sleeve. The code wheel is designed to include a small

number of sectors and an index sector. As the spool rotates, the laser beam reflects off

of either a black or a white (metal) sector, causing a measurable alternating signal from

the photodiode. In our case, the spool has a small diameter (2.5cm), and the distance

between the laser beam and the encoder is about 2.54cm, which is much larger than

a typical distance between a light emitter and its receiver (< 3mm). As a result, the

laser spot on the encoder is quite large. Under such circumstances, a low resolution

code wheel (8 sectors per revolution) is required to ensure that the laser spot (≈ 5mm

in diameter) lies completely within in one code sector (≈ 8mm).

light spot

code wheel

Figure 3.2: Ideal measurement detection

We define the situation when the center of the laser light spot overlaps with the code

wheel sector boundary as a “transition event”. The time when this “transition event”

happens is defined as the occurrence time of the “transition event”. When the light spot

crosses the code wheel edge (as shown in Fig. 3.2), the output of the light receiver will

change. Ideally, the photodiode outputs a discrete binary signal, as shown in Fig. 3.3, so

that when a “transition event” is detected, a measurement of the spool angular position

is received. In reality, a real photodiode output does not produce a perfect square wave

signal with sharp edges. Instead, the sensor output will be discretized by comparing
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)( jx discrete threshold crossing location

Figure 3.3: Ideal rotary encoder output

its value to a threshold value to generate the signal with sharp edges. Moreover, the

acquisition system of the sensor measurement is run in a discrete time manner, so

that the “transition event” cannot be detected until the next sampling time after the

“transition event” occurs. Both the discretization of the analog photodiode output and

the discrete time nature of the data acquisition introduce noise on the measurement of

the “transition event” occurrence time.

First, we describe the “transition event” occurrence time noise caused by the pho-

todiode signal discretization. The analog measurement from a realistic photodiode ex-

hibits a pattern similar to the upper figure from Fig. 3.4. The raw signal is discretized

by comparing its value to a threshold value. If the raw signal is greater than the thresh-

old level, a high signal (1) is output; if the raw signal is lower than the threshold, a low

signal (0) is output. The sharp edges of the discretized sensor measurement represents

the occurrence of the event that the center of the light spot crosses the code wheel edge.

The event that the center of the light spot crosses the code wheel edge is defined as

a “transition event”. The instant when a “transition event” occurs is defined as the

“occurrence time” of a “transition event”. A “transition event” will be captured by the

sensor’s output, when the discretized sensor measurement alternates. The instant when

the sensor output alternates is defined as the “switching time” of the “transition event”.

This switching will be acquired when the sampling occurs, and the sampling time after

the discretized sensor measurement alternates is defined as the “detection time” of the

“transition event”.

The discretization of the analog optical sensor measurement relies on the threshold

value. The “switching time” of a transition event will differ from the “occurrence time”
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Figure 3.4: Raw (top) and discretized (bottom) signal from the photodiode.

of the transition event, if the threshold is not set correctly. Figure 3.5 shows how the

setting of the threshold value affects the discretization of the photodiode output, and

further affects the “switching time” of the “transition event”. If the threshold value is

set to be lower than the true value the transition event detection time will be delayed

from the transition event occurrence time, but if the threshold value is set too high, the

detection time will be advanced compared with the occurrence time.

The other measurement noise of the “transition event” occurrence time comes from

the discrete time nature of the data acquisition. Since the sensor output is received at a

finite sampling frequency, all the sensor information is communicated with the controller

or the data acquisition system at one sampling instant. Therefore a “transition event”

will be detected at the next sampling time after its occurrence. A low sampling frequency

can cause a large error on the timing between the the occurrence time of the “transition

event” and its measurement.

In the next section, the uncertainties of timing on the measurement of the “tran-

sition event” occurrence time will be modeled mathematically by converting the time
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value. Bottom: discretized sensor measurements correspond to the three thresholds
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measurement noise into a spool angular position measurement noise.

3.3 System modeling

As introduced in chapter 1, by utilizing the spool impulse turbine to capture, and the

reaction turbine to convert the fluid flow moment into spool angular momentum, the

turbine torque varies monotonically with the valve flowrate. On the other hand, the

viscous friction torque is proportional to the square of the spool’s angular velocity.

Therefore, given a constant valve flowrate, the spool will rotate at a constant angular

velocity at which the turbine torque is balanced by the viscous friction torque. Since

in our prototype set up, the rotary valve is connected to a fixed displacement pump

operated at a fixed speed, the flow through the valve is constant (40lpm), and therefore,

the spool can be modeled as a cylinder rotating at a constant angular velocity. Any

acceleration effect is modeled as a process noise d. d is assumed to be a zero mean,

normally distributed noise. The spool angular position is denoted as θ, and the angular

velocity is denoted by ω. The system is modeled as:

d

dt

(
θ

ω

)
=

(
0 1

0 0

)(
θ

ω

)
+

(
0

1

)
· d(t) (3.1)

The measurement of the spool angular position is denoted by y. The measurement

is obtained from the detection of the “transition event”. Since the edge between the

black and white sectors on the code wheel is indexed, y refers to the measurement of

the sharp edge when the “transition event” occurs.

The continuous time model is discretized at a sampling frequency of 1
∆T , where ∆T

is the sampling period. Let the uniform sampling time be tk = k · ∆ T, k = 0, 1, 2, · · · .
Fig. 3.6 illustrates the definitions of the sampling time, the transition event occurrence

time, and the transition event detection time. We denote the sampling period as ∆T .

The occurrence time of a transition event is denoted by τ∗j . The “detection time” of a

transition event is denoted by tk. For the case shown on Fig. 3.6, the jth “transition

event” is detected at sampling time tk. The j − 1 th “transition event” occurs at time

τ∗j−1, and it is detect at sampling time tk−m. Let the transition counter output at time

tk be count(tk). A change in the counter value signifies that a transition event has
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light spot

Figure 3.6: Event based Kalman filter time denotations. τ∗j denotes the “occurrence
time” of a “transition event”, τj denotes the estimate of the “occurrence time” of a
“transition event”, and tk denotes the sampling time.

occurred between the current sampling instant and the previous one. We define that a

transition event is detected at tk if:

count(tk)− count(tk−1) ≥ 1 (3.2)

The code wheel has a limited number of sectors (8 sectors), for the range of angular

velocities (20 − 40Hz) under consideration. Operated at the highest angular velocity,

the time when the light spot stays on one sector is 2.9ms. Therefore, a sampling rate

of 1000Hz or above is sufficiently fast to guarantee only one transition edge can occur

between two consecutive samples. Here we have assumed that counter overflow has been

properly adjusted.

As explained in section 3.2, the measurement noise induced by the uncertainty on the

transition event occurrence time is denoted by n1, and the measurement noise induced

by the bias on the threshold value is denoted by n2. These two noises are assumed to

be independent.

Taking the jth “transition event” as an example, when a measurement is detected,

the only information available is that a transition event has happened in between the
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two sampling times tk−1 and tk. When the sampling rate is not high, this event’s

detection time uncertainty becomes significant. The occurrence time of the transition

event τ∗j ∈ (tk−1, tk] is assumed to be uniformly distributed on (tk−1, tk]. We define a

new variable τj to denote the estimate of the “transition event” occurrence time τ∗j . We

estimate the transition event to happen at this estimated instant τj := (tk + tk−1)/2,

and we assume that during this short period of time tk−tk−1, the spool angular velocity

remains constant. In this way the uncertainty on transition event occurrence time is

converted to a zero mean uniformly distributed measurement noise on the spool angular

position at time τj . We denote this noise by n1.

The other measurement noise is induced by the photodiode output discretization

threshold bias, and is denoted as n2. Since the laser light spot is large, when the

spot crosses the sector boundary, the photodiode response is not an ideal square wave.

A threshold is required to discretize the analog photodiode response. A bias on the

threshold value can cause an error on the estimate of the transition event occurrence

time, as shown in Fig. 3.7.

We assume that when the photodiode output switches from high to low (or low to

high), between two successive sampling instants, the spool angular velocity is constant.

The error on the estimate of the transition event occurrence time is converted to a

measurement noise of the spool angular position at the estimate of the transition event

occurrence time.

The measurement is available only when a transition event is detected, and the

measurement information refers to the instant τj . The measurement is modeled as

following:

y(t) =


(

1 0
)
·

θ
ω

+ n1 + n2 if t = τj

not available if t 6= τj

(3.3)

If the noises n1 and n2 are treated directly from a detection time point of view, and

the system is modeled in the angle domain, the system will be modeled as a time varying

system. However, by assuming a constant angular velocity between sampling instants,

the transition event detection time error is converted to a spool angular position error,

and a linear continuous time time invariant system with event based measurement is

obtained instead. The noises will have the following characteristics:
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Figure 3.7: Measurement noise caused by the threshold error: the blue curve is the raw
measurement; the green curve is the discretization of the raw signal with the correct
threshold valve; the red curve and the sky blue curve are the discretization with biased
threshold values.
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• noise n1 is assumed to be zero mean, uniformly distributed, and it is bounded by

|n1| ≤ 0.5ω∆T ; the variance of this variable is (0.5ω∆T )2/3. This measurement

noise is scaled with the sampling time ∆T .

• noise n2 is assumed to be zero mean, normally distributed with its probability

density function as a symmetric triangle function across the period. The noise’s

variance is ((0.5ω∆T )/2)2. Since the sampling time is selected to guarantee that

one transition event can happen within one sampling period ∆T , the longest time

for the light receiver output signal to switch from high to low (or vice versa) is

∆T .

Here, we will summarize the system model:

d

dt

(
θ

ω

)
=

(
0 1

0 0

)
︸ ︷︷ ︸

F

(
θ

ω

)
+

(
0

1

)
· d(t)

y(t) =


(

1 0
)
·

θ
ω

+ n1 + n2 if t = τj

not available if t 6= τj

E[n1(t)n
′
1(t)] = R1(t)δ(t− τ), E[n1(t)] = 0

R1(t) =
1

3
(0.5ω∆T )2

E[n2(t)n
′
2(t)] = R2(t)δ(t− τ), E[n2(t)] = 0,

R2(t) =
1

4
(0.5ω∆)2

E[d(t)d
′
(t)] = qδ(t− τ), E[d(t)] = 0 (3.4)

where θ is the spool angular position, ω is the spool angular velocity, y is the angular

position measurement. R1 and R2 denote the covariance of the measurement noise, and

q denotes the covariance of the process noise.

3.4 Event based Kalman filter observer

As described earlier, the spool angular position measurement is not always available, and

when it is available, the measurement is corrupted by noise. If the position measurement
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is continuously available but noisy, the problem would be trivial, and the continuous

time Kalman filter technique can be applied to estimate the spool angular position and

velocity from the corrupted position measurement. However, this “event” based spool

position measurement poses the difficulty in developing the estimator. Our solution is

to adopt the continuous time time varying Kalman filter theory [84] to accommodate

the uncertain event based measurements. The resulting algorithm is that: between

each transition detection, the Kalman filter operates in an open loop manner without

measurement feedback, and the states are updated based on the dynamic model only.

When a transition event is detected, both the Kalman filter gain and the state estimate

are updated discretely. The Kalman filter operates in the open loop manner again until

the next event is detected.
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Figure 3.8: Event-based Kalman filter time line

The time flow of the proposed approach is shown in Fig. 3.8. τj , i = 1, 2, · · · are the

instants when transition events occur. In Fig. 3.8, the transition event that happens

at τj is detected at tk. The algorithm is explained along the time line. A(1) denotes

the section where the spool angular position and velocity are estimated in an open loop

manner based on the plant model. The initial condition of the open loop estimation

is defined based on the measurement of the transition event at τj−1. After the j − th
transition event is detected at tk, the estimation of the spool angular position and

velocity at tk will be separated into two steps. The first step is to use the measurement

information to update the spool states estimation at the time instant τj = 1
2(tk−1 + tk),

which is denoted by B. In the second step, the estimator again operates in an open
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loop manner from t = τj to t = tk to provide the spool state estimation at tk, and the

algorithm is explained in detail below.

In section A(1), no measurement is detected. The estimates of the spool angular

position and velocity are calculated based on the knowledge of the system model in an

open loop manner. The estimates of the states are denoted by X̂ := (θ̂ ω̂)T. Recalling

the matrix F defined in Eqn. (3.4) and the time line presented in Fig. 3.8, the estimator

is modeled as:

d

dt
X̂(t|j − 1) = FX̂(t|j − 1), for tk−m < t < tk−1 (3.5)

where X(t|j − 1) denotes the estimate of state given that the j − 1 th event has been

detected but the j th even has not been detected.

Since no measurement is available in this period of time, a continuous-time Kalman

filter is adapted to update the covariance of the estimation error only with the knowledge

of the system model. Under this condition, P (t|j − 1), which denotes the covariance

of the estimation error given that the j − 1 th event has been detected is calculated

following the Riccati equation[62]:

d

dt
P (t|j − 1) = P (t|j − 1)F T + FP (t|j − 1) +Qw, for tk−m < t < tk−1

Qw =

[
0 0

0 q

]
(3.6)

Qw represents the covariance of the process noise d(t) from Eqn. (3.4). P (t|j − 1) has

the form of P (t|j − 1) =

(
P11(t|j − 1) P12(t|j − 1)

P21(t|j − 1) P22(t|j − 1)

)
. When no measurement is

implemented, an analytical solution can be developed to solve for P (t|j − 1), with the
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initial condition:

P (tk−m|j − 1) =

(
P110 P120

P210 P220

)
=

(
p 0

0 p

)
for tk−m <t < tk−1

P22(t|j − 1) =q · (t− tk−m) + P220

P12(t|j − 1) =
1

2
· q · (t− tk−m)2 + P220 · (t− tk−m) + P120

P21(t|j − 1) =
1

2
· q · (t− tk−m)2 + P220 · (t− tk−m) + P210

P11(t|j − 1) =
1

3
· q · (t− tk−m)3 + P220 · (t− tk−m)2

+ P120 · (t− tk−m) + P210 · (t− tk−m) + P110 (3.7)

The open loop estimation continues until a measurement is detected at t = tk.

The information we have is that an event happens between [tk−1, tk], but the exact

event occurrence time is unknown. Since the event can happen at any instant between

[tk−1, tk] with the same probability, the transition event is estimated to happen at

τj = 1
2(tk−1 + tk) to create an estimate without bias. The measurement detected at

t = tk is used to update the estimate of the states and the covariance of the estimation

error at t = τj . The a priori state estimate at τj , denoted by X̂(τj |j − 1), is calculated

in section A(1). This is the estimate of the spool angular position and velocity before

processing the measurement. The a posteriori state estimate denoted as X̂(τj |j) is the

estimation of the spool states after processing the measurement. This action is denoted

by B on the time line in Fig. 3.8.

X̂(τj |j) = X̂(τj |j − 1) +K(τj)
[
y(τj)−HT X̂(τj |j − 1)

]
H = ( 1 0 )T

K(τj) = P (τj |j − 1)H (3.8)

Similarly for the estimation error covariance matrix at this instant, we denote the

a priori estimate by P (τj |j − 1) and the a posteriori estimate by P (τj |j). They are

computed as:

P (τj |j) = [(P (τj |j − 1))−1 +HT (τj)R
−1H]−1 (3.9)
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After the discrete update, open loop estimation is used again in section A(2) to esti-

mate the spool states and estimation error covariance at t = tk. With this information,

the a posteriori estimates of the states and the error covariance matrix can be calculated

with the measurement detected at tk:

d

dt
X̂(t|j) = FX̂(t|j)

d

dt
P (t|j) = P (t|j)F T + FP (t|j) +Qw(t) (3.10)

From tk, the open loop estimation is activated until the next measurement is ob-

tained, and the the above process is repeated.

3.5 Simulation Results

The system described in section 3.3 was simulated using Simulink with the parameters

selected based on the experimental setup. The angular velocity of the spool was assumed

to be 25Hz, or ω = 157.1rad/s. The encoder is assumed to have a resolution of

0.785rad. The covariance of the estimation error at t = 0 is initialized by setting p to

1000. Assume the black-white transition time is smaller than 1.5ms, set the covariance

of the measurement noise as R = 5.53 × 10−3rad2, and the covariance of the process

noise modeled in Qw in Eqn. (3.6) is set as as q = 0.25rad2/s4. Initial conditions for

the states are selected to be [θ0 ω0]T = [0 50]T .

The sampling time was selected to be 1ms. As shown in Fig. 3.9 and Fig. 3.10,

the estimation error of angular position takes less than 0.1sec to converge to less than

0.06rad; and the estimation error of angular velocity takes the same amount of time

to converge to less than 0.3rad/sec. Compared with the measurement noise bound of

0.36rad, the event based Kalman filter significantly improves the estimation precision.

A zoom-in look at the spool angular velocity estimation on the period circled in Fig. 3.10

is shown in Fig. 3.11. The estimation of the angular velocity does not change between

transition events, and it changes only when a transition event is detected. Initially, the

estimation relies only on model dynamics and the initial condition of the current open

loop period. This explains the large estimation error on the rotary position for the first

0.1sec, because the estimate of the angular velocity is initialized at 50rad/sec.
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Figure 3.9: Angular position estimation error when ∆t = 1ms
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Figure 3.10: Angular velocity estimation error when ∆t = 1ms
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Figure 3.11: Angular velocity estimation when ∆t = 1ms

3.6 Experimental Results

The event based Kalman filter was implemented experimentally to estimate the spool

angular position and speed. The experimental apparatus is shown in Fig. 3.12. The

rotary valve is connected to a fixed displacement vane pump via a customized pump

housing. The vane pump has a displacement of 22.8cc, and the pump is driven by

a 5.6kW AC motor. The speed of the AC motor can be varied through a variable

frequency drive (VFD), so that the pump output flow can be varied. The maximum

flow the system can provide is 40lpm. The valve’s self-spinning spool is driven by the

flow moment passing across it.

The sampling time was 1ms. Initially the VFD frequency was set at 40Hz, and

a constant flow of 26.7lpm was passing across the valve. No additional sensors were

available to directly measure the spool angular position. Therefore, the effectiveness

of the proposed Kalman filter approach cannot be validated directly. However, the

spool angular position is directly related to the valve inlet pressure, because the inlet

flow (pressure) is pulse width modulated. Three PWM sections are wrapped around

the valve spool, and the inlet pressure exhibits a repeated pattern with respect to the
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Figure 3.12: Experimental Apparatus of the VVDP

spool angular position for a fixed duty ratio (fixed axial position of the valve spool). If

the Kalman filter estimates the spool angular position accurately, the pressure profile

should be nearly periodically synchronous with the estimated spool angular position.

In Fig. 3.13, the VVDP valve inlet pressure is plotted with respect to time, and the

estimated spool angular position. During one revolution, the pressure shows three repet-

itive patterns. The strong correlation between the pressure profile and the estimated

position shows the effectiveness of the event based Kalman filter.

Next, we study the dynamic response of the Kalman filter. A step change was

applied to the spool angular velocity by applying a step change on the VFD frequency

from 40Hz to 60Hz. Varying the VFD frequency causes the pump output flow to change

from 26.7lpm to 40lpm, which correspondingly changes the turbine torque of the valve

spool, and brings the spool angular velocity to a different equilibrium point. Figure 3.14

shows the Kalman filter’s response to a spool angular velocity change. Since the driving

torque is not modeled explicitly in the system model (Eqn. (3.1)), the Kalman filter

responds to the position measurement only, and the transition time is less than 0.1sec.
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Figure 3.13: Event based Kalman filter experimental results for a case where the valve
spool rotates 11 cycles. Top: VVDP inlet pressure with respect to time, bottom: inlet
pressure with respect to spool angular position
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The response time of the Kalman filter can potentially be improved by incorporating

the driving torque of the turbine and the friction torque of the spool into the design of

the Kalman filter.
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Figure 3.14: Transition response to a step change in angular velocity

3.7 Summary

The sensor constraint of our valve set up motivated the development of an event based

Kalman filter, which can accurately estimate the valve rotary position and velocity using

a coarse measurement received at an irregular time interval. With several simplifying

assumptions, the original time-varying system is transformed into an LTI system. In the

event based Kalman filter, continuous time varying Kalman filter theory [84] is adopted

to accommodate the uncertain event based measurements. The resulting algorithm is:

between events, since no measurement is available, the Kalman filter operates in an

open loop manner, and the states are updated based on the dynamic model only; when

a transition occurs, this measurement is used to update the dynamic model based state

estimation following a standard Kalman filter. Both the simulation results and the

experimental results validate the effectiveness of the event based Kalman filter.

This event based Kalman filter is applicable to situations where precise estimation

of the system states is required, but the measurement is coarse and irregularly available.



Chapter 4

Spool axial position controller in

the presence of periodic

measurement noise

4.1 Introduction

This chapter will focus on the sensing, actuation and controller design for the valve

spool axial position, which correspondingly controls the PWM valve’s duty ratio.

As shown in Fig. 4.1, the spool axial motion is actuated hydro-statically using an

electro-hydraulic gerotor pump. The pump is hydraulically connected to both ends of

the valve sleeve. By pumping fluid from one end of the sleeve to the other end, the

spool axial position is varied. The differential pressure required to actuate the spool is

less than 2.76bar (40psi), and the actuation power is small (< 200watt).

The self-spinning feature of the valve spool prefers a non-contact sensor to measure

the spool axial position, so that the sealing structure is simplified. The spool axial posi-

tion is measured using an optical sensor, which consists of two LEDs and a photodiode.

Light emitted from the LEDs reflects off of the polished spool end and is received by

the photodiode. The LED light intensity varies monotonically with the light’s traveling

distance, and the relationship can be calibrated. A static mapping is obtained between

the photodiode response to the light intensity and the spool axial position.

71
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Figure 4.1: Valve spool axial actuation and sensing

Since the spool end cannot be polished to be perfectly uniform, and the rotary motion

disturbs the oil inside the axial chamber, which serves as the transparent medium for the

LED light to travel through, the spool rotary motion introduces a periodic measurement

noise on the spool’s axial position measurement, as shown in Fig. 4.2. The pattern of

the noise is collected experimentally. In this experiment, the spool spins while being

pushed against a hard stop to fix its axial position. The DC component of the optical

sensor’s output is removed, and the residual part of the sensor’s output represents the

measurement noise. Distinguishing between the exact spool position and this additive

periodic measurement noise is important. Otherwise, via close loop control, the actuator

will respond to the corrupted measurement, and the spool will oscillate axially. Given

such a structured noise at a certain frequency (spool rotary frequency), a low pass filter

is not sufficient to eliminate the effect of noise.

The question we will address in this chapter is how to distinguish the spool position

from the structured noise, and to achieve a precise spool axial position control. The

key part of the solution is to develop a dynamic model of the structured noise, so that

both the spool position state and the structured noise states can be estimated from

the corrupted measurement and their dynamics model via a proper estimator. The
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Figure 4.2: Optical sensor’s output when the spool spins at a fixed axial position

structured measurement noise is caused by the spool rotary motion. As discussed in

the chapter 3, if a constant flow is fed through the valve, the valve spool will rotate at

a constant angular velocity. In our case, a constant flow of 40lpm is provided to the

rotary valve, and the spool operates at a constant angular velocity of 13Hz. Although

the measurement noise is periodic with respect to the spool angular position instead of

time, since the spool spins at a constant angular velocity, this noise becomes periodic

in time. Two approaches will be introduced in this chapter to model this periodic

measurement noise. One is a discrete time linear time invariant signal generator, and

the other is a periodic continuous time varying model using weighted basis functions.

The rest of this chapter is organized as follows. In section 4.2 the spool dynamics of

its axial motion and two dynamic models describing the periodic structured noise will

be presented. The spool axial dynamics will be augmented with the noise model, and

the observability of the corresponding augmented system will be analyzed. A Kalman

filter will be designed to estimate the states of the spool axial position and the periodic

measurement noise. Afterwards, a feed-forward with PI controller will be developed

for the spool position reference tracking. The procedure for designing a Kalman filter

and a PI with feed-forward controller will be presented in section 4.3 and section 4.4

respectively. Experimental validation and simulation discussions will be presented in

section 4.5. Finally, some concluding remarks will be presented in section 4.6.
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4.2 System modeling

A model representing the dynamics of the axial position of the spool is defined in

section 4.2.1. Dynamic models for the periodic measurement noise and the augmented

system are derived in section 4.2.2.

4.2.1 Spool dynamics modeling

The valve spool’s axial position sensing and actuation system is shown in Fig. 4.1. The

actuator is a fixed displacement gerotor pump powered by a DC motor. The direction

of the motor speed is controlled using an electrical H-bridge. The speed of the motor is

controlled by pulse-width modulating the enabling signal of the H-bridge. Varying the

duty ratio of the PWM enabling signal, the motor speed is varied, and therefore, the

pump flow rate is controlled. The pump dynamics exhibit dead-band, saturation, and

asymmetry, which are modeled as spool dynamics’ process noise.

The fluid inside the valve axial chambers is treated as incompressible media, and

the pressure dynamics are ignored. The spool axial dynamics are modeled as:

ẋ =
Q(u)

As
+ w(t) (4.1)

where x(t) is the spool axial position, Q(u) is the flow fed into the axial chamber, As

is the spool end area, and w(t) represents the un-modeled spool dynamics. The static

relationship between the input u and the flow Q(u) is calibrated experimentally. The

same experimental data is utilized to map from u to Q and from Q to u, and the results

are shown in Fig. 4.3. The inaccuracy of the flow map is incorporated in the spool

dynamics uncertainty w(t).

The measurement of the spool axial position y(t) is corrupted by a T-periodic noise

d(t) = d(t+T ) and an unstructured noise n(t). At a fixed axial position, when the spool

is spinning, the average response from the axial sensor is treated as the calibration of the

axial position measurement at the given location. In this way, the noise d(t) becomes a

repetitive signal with zero mean. n(t) is assumed to be a white noise with zero mean.

With these assumptions, the spool’s axial position dynamics and the periodic noise are

modeled as:

y(t) = x(t) + d(t) + n(t) (4.2)
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Figure 4.3: Mapping between the control input and the gerotor pump flow rate

∫ t+T

t
d(τ) · dτ = 0

4.2.2 Periodic measurement noise dynamics and the augmented sys-

tem dynamics

A dynamic model is defined for the periodic measurement noise d(t), and this model will

further be augmented with the spool position dynamics. In this section, we will intro-

duce two methods to model the dynamics of d(t): a linear discrete time time-invariant

model, and a period time varying model. The corresponding augmented system dynam-

ics will be defined respectively.

Discrete Time Time-invariant Model

Firstly, we propose a discrete linear time invariant (LTI) system to model the dynamics

of d(t). d(k) = d(k + N) is the discretized version of d(t) with a sampling time of Ts

and a period of T . The discrete time period is N ≈ T/Ts, where N is an integer. The

mean value of the noise d(t) over one period is zero. We can formulate a disturbance
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generating exo-system to represent this periodic signal:

xd(k + 1) = Adxd(k)

d(k) = Cdxd(k) (4.3)

with

Ad =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 · · · 0 1

−1 −1 · · · −1 −1


∈ R(N−1)×(N−1)

Cd =
(

1 0 · · · 0
)
∈ R1×(N−1)

Correspondingly, we develop a discrete time linear time invariant model for the spool’s

axial motion dynamics. Equation. (4.1) is discretized as:

x(k + 1) = x(k) + Ts
Q(u(k))

As
+ w(k) (4.4)

Together with the dynamics of the periodic measurement noise d(t) defined in Eqn. (4.3),

an augmented system is defined as:(
x(k + 1)

xd(k + 1)

)
︸ ︷︷ ︸

xaug1

=

(
1 0

0 Ad

)
︸ ︷︷ ︸

Aaug1

(
x(k)

xd(k)

)
+

(
Ts
As

0

)
︸ ︷︷ ︸
Baug1

Q(u(k)) + w(k)

y(k) =
(

1 Cd

)
︸ ︷︷ ︸
Caug1

(
x(k)

xd(k)

)
+ n(k) (4.5)

where xaug1 ∈ RN×1, Aaug1 ∈ RN×N, Caug1 ∈ R1×N, w(k) ∈ RN×1. n(k) represents the

un-structured measurement noise as modeled in Eqn. (4.2).

In this approach, the dimension of xd heavily relies on the selection of the sampling

time. For example, for a periodic signal of 10Hz, if Ts = 2ms, 50 states are required

to represent the noise dynamics, and if Ts = 1ms, then N = 100. The dimension of

the estimator increases as the sampling time decreases. A high dimension estimator

increases the computational cost, and weakens the estimator robustness.
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The observability of this augmented system modeled in Eqn. (4.5) is determined by

the rank of the observability matrix. The augmented system described by Eqn. (4.5) is

observable if the corresponding observability matrix is of full rank[85]. The observability

matrix of system Eqn. (4.5) is defined as O ∈ RN×N :

O =


Caug1

Caug1Aaug1

· · ·
Caug1A

N
aug1

 =



1 1 0 · · · 0

1 0 1 0 · · ·

· · · · · · · · · . . . · · ·
1 0 0 · · · 1

1 −1 −1 −1 · · · −1


And the determinant of O is calculated as:

det(O) = (−1)N+1N 6= 0 (4.6)

Since the determinant of the observability matrix is non-zero, the observability matrix

O is of full rank, and the pair (Aaug1, Caug1) is observable. Both the spool axial position

state and the periodic measurement noise states can be observed via a proper estimator.

Continuous time periodic time-varying model

Although the discrete time LTI noise model can produce an augmented system that

is observable, the high order will drastically degrade the robustness of the estimator,

which makes it infeasible to be implemented experimentally. To take advantage of the

“periodic” property, we propose a periodic time-varying model to represent the noise.

In this approach, the periodic signal is represented by a linear combination of a set

of periodic basis functions fi(t) = fi(t+ T ):

d(t) =
∑
i

xdifi(t) =
(
f1(t) f2(t) · · · fn(t)

)
︸ ︷︷ ︸

Cd2(t)


xd1

...

xdn


︸ ︷︷ ︸
Xd2

(4.7)

where xdi is the weight. This approach has the flexibility of selecting different types of

basis functions, tailored to the structure of the periodical noise.
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Figure 4.4 shows the curve fitting to the periodic noise with two different basis

functions. One approach is to use a Fourier basis function, and the basis functions are

defined as:

f1(t) = cosωt, f2(t) = sinωt, · · · , f2i−1 = cos iωt, f2i = sin iωt (4.8)

where ω is the fundamental frequency. In our case, ω is the frequency of the periodic

noise. The other approach is to use a set of Gaussian basis functions, and the basis

function is defined as:

fi(t) = e
−
(
x−bi
ci

)2

, with x = mod(t,
2π

ω
) (4.9)

where bi is the centroid (location) and ci is related to the peak width.

4.58 4.6 4.62 4.64 4.66 4.68 4.7 4.72
5.74

5.76

5.78

5.8

5.82

5.84

5.86

5.88

5.9

5.92

time [sec]

op
tic

al
 s

en
so

r 
m

ea
su

re
m

en
t [

vo
lt]

 

 

measurement
Gaussian fit
Fourier fit

Figure 4.4: A periodic signal represented using different basis functions

In Fourier model, we use 6 basis functions, with their frequencies calculated at

the fundamental frequency and up to its three times’ the fundamental frequency. The

fundamental frequency is the same as the spool rotary frequency. In the Gaussian model,

we also use 6 basis functions. The basis functions are shown in Fig. 4.5. The Gaussian

model produces a slightly better fitting result, but the calculation load is heavier than

using the Fourier model. Therefore, for the rest of the analysis in this chapter, we will

adopt the Fourier basis functions.
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Figure 4.5: Fourier and Gaussian basis functions

Next, we will investigate the sensitivity of the model prediction error to the number

of the basis functions. For a given model, the more basis functions we use, the more

accurately we can approximate the periodic noise signal, with a penalty on increasing

the computational cost. The photodiode measurement shown in Fig. 4.4 was collected

by using an externally controlled spool. The spool was held at a fixed axial position

while rotating at a constant angular velocity. We detrended the DC component from the

photodiode output to obtain the zero-mean measurement noise. Utilizing the Fourier

model, with the same fundamental frequency, we selected 10, 20, and 40 basis functions

respectively to evaluate the estimation of the periodic measurement noise. The model

with 40 basis functions produces the least estimation error, while 10 and 20 basis func-

tions models do not exhibit a significant difference. Considering the balance between

estimation accuracy and computational load, the model with 10 basis functions can

effectively capture the dynamics of the photodiode measurement noise, and the Fourier

model with 10 basis functions will be adopted to the analysis for the rest in this chapter.

With the Fourier functions structured noise model, we will investigate the observ-

ability of the augmented system. The periodic measurement noise model is augmented

with the spool dynamics represented by Eqn. (4.1), and the dynamics of the augmented
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system are defined as:

d

dt



x

xd1

xd2

...

xdn


︸ ︷︷ ︸

xaug2∈R(Nd+1)×1

=



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


︸ ︷︷ ︸
Aaug2∈R(Nd+1)×(Nd+1)



x

xd1

xd2

...

xdn


+



1

0

0

0

0


︸︷︷︸

Baug2∈RNd×1

Q

As
+



w

wd1

wd2

...

wdn


︸ ︷︷ ︸

w

y =
[
1 cosωt sinωt · · · cos n2ωt sin n

2ωt
]

︸ ︷︷ ︸
Caug2(t)∈R1×Nd



x

xd1

xd2

...

xdn


+ n (4.10)

Since the augmented system is periodic in time, the observability of the augmented sys-

tem is determined by checking the rank of the observability grammian matrix M(T, 0)

over one period T . If M(T, 0) is invertible, the observability grammian matrix is of



81

full rank, and the augmented system is observable [85]. Since Aaug2 = 0(nd+1)×(nd+1),

its transition matrix ΦT(t, 0) and the observability grammian matrix M(T, 0) of the

augmented system described by Eqn. (4.10) are calculated as:

ΦT(t, 0) = Ind+1×nd+1

M(T, 0) =

∫ T

0
ΦT(t, 0)CT

aug2(t)Caug2(t)Φ(t, 0)dt

=

∫ T

0
Caug2(t)TCaug2(t)dt

=



1 M1,2 M1,3 · · · M1,
nd
2
−1 M1,

nd
2

M2,1 M2,2 M2,3 · · · M2,
nd
2
−1 M2,

nd
2

...
...

...
. . .

...
...

Mnd
2
−1,1 Mnd

2
−1,2 Mnd

2
−1,3 · · · Mn

2
−1,

nd
2
−1 Mnd

2
−1,

nd
2

Mnd
2
,1 Mnd

2
,2 Mnd

2
,3 · · · Mnd

2
,
nd
2
−1 Mnd

2
,
nd
2


with Mi,j =

∫ T

0
Caug2(i) ∗ Caug2(j)dt (4.11)

Note that for integers i, j, with i 6= j, the determinant of the observability grammian

matrix M(0, T ) is calculated as:∫ T

0
cos iωt sin jωt = 0,

∫ T

0
cos2 iωt =

T

2
,

∫ T

0
sin2 iωt =

T

2

M(0, T ) =



1 0 0 · · · 0

0 T
2 0 · · · 0

0 0
. . . 0

...
...

... 0
. . . 0

0 0 · · · 0 T
2


det(M(0, T )) =

(
T

2

)n
6= 0 (4.12)

Since the determinant of the observability grammian matrix is non-zero, the observ-

ability grammian matrixM(T, 0) is non-singular, and the augmented system described

in Eqn. 4.10 is observable. All the states can be uniquely estimated via a proper esti-

mator.
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4.3 State estimator for the augmented system

After modeling the dynamics of the periodic measurement noise d(t), and the dynamics

of the corresponding augmented system (Eqn. (4.5) and Eqn. (4.10)), we will develop

estimators for the augmented system. Previous analysis showed that using both the

discrete LTI model (Eqn. 4.5) and the periodic time varying model (Eqn. 4.10) to

capture the photodiode measurement noise, the augmented system is observable. In

this section we will develop a Kalman filter respectively to estimate the states of the

augmented system. We assume that both the process noise w from the un-modeled

dynamics and the un-modeled measurement noise n are white noise with zero mean.

4.3.1 State Estimator for the Discrete Time Augmented System

Utilizing the discrete time LTI model presented in Eqn. (4.5), the augmented system

is also established as a discrete time LTI model. Following the typical procedure of

designing a discrete time LTI Kalman filter, we have:

x̂−aug1(k) = Aaug1x̂aug1(k − 1) +Baug1Q(u)(k − 1)

x̂+
aug1(k) = x̂−aug1(k) + L(k)

[
y(k)− Caug1(k)x̂−aug1(k)

]
(4.13)

where x̂−aug1(k) is the a priori estimate of the augmented system states, and x̂+
aug1(k) is

the a posteriori estimate of the augmented system states. The estimator gain L(k) is

computed by solving a discrete time Riccati equation [84]:

P (k)− = Aaug1P (k − 1)+AT
aug1 +Q1

L(k) = P (k)−CT
aug1(k)

[
Caug1(k)P (k)−Caug1(k)T +R1

]−1

P (k)+ = [I− L(k)Caug1(k)]P (k)− [I− L(k)Caug1(k)]T + L(k)R1L(k)T

P (k = 0)+ = P01

Q1 = diag
[
q1 · · · qi · · · qn+1

]
,E(wkw

T
j ) = Q1δk−j

E(nkn
T
j ) = R1δk−j

with P (k)− denoting the covariance of the estimation error of x̂(k)−, and P (k)+ denoting

the covariance of the estimation error of x̂(k)+. Q1 and R1 quantify the variances of

the process noise and measurement noise respectively.



83

Since the dimension of the estimator increases linearly as the sampling time de-

creases, the resulting Kalman filter can have a high computational cost and the robust-

ness of the estimator can degrade. This causes difficulty in experimental implementa-

tion.

4.3.2 State Estimator for the Continuous Time Time-varying Aug-

mented System

Utilizing the continuous time periodic time-varying model presented in Eqn. (4.10),

the augmented system also becomes a continuous time periodic time varying system.

Therefore, we follow the typical procedure to derive a continuous time time varying

Kalman filter:
d

dt
x̂aug2 = Baug2Q(u) + L(t)(y − Caug2(t)x̂aug2) (4.14)

where x̂aug2 is the estimate of the augmented system states. The injection gain L(t) is

computed based on a continuous time periodic Riccati equation:

L(t) = P2(t)CT
aug2(t)R−1

2

Ṗ2(t) = −P2(t)CT
aug2(t)R−1

2 Caug2(t)P2(t) +Q2

Q2 = E(wwT), R2 = E(nnT), P2(t = 0) = P0 (4.15)

with P2(t) representing the estimation error covariance for the augmented system states,

and it is a periodic signal with a period of T : P2(t + T ) = P2(t). T = 1
2πwn

, and wn

is the fundamental frequency of the Fourier transform of the periodic signal d(t). Here,

both the measurement noise n and the process noise w are assumed to be zero mean

white noise.

Compared with the discrete time LTI model, this model has an advantage in reducing

the system dimension. By selecting the proper type of basis function (i.e. Fourier

model in our case), the dimension of xd and the accuracy of the model in capturing the

measurement noise profile can be balanced. The dimension of the noise model is not a

function of the sampling time. Therefore, a small sampling time can be selected without

drastically increasing the computational load, which is more robust to be implemented

experimentally.
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4.4 Controller design

The spool dynamics are modeled as a linear system in sec 4.2, and through the ob-

servability analysis in sec 4.3, we learned that both the discrete time time-invariant

model presented in Eqn. (4.5) and the continuous time time-varying model presented

in Eqn. (4.10) are observable. In this section, we will design a feedforward with PI

(proportional integral) controller to regulate the spool position. The control objective

is to regulate the spool axial position to track a reference position trajectory, and the

duty ratio of the rotary valve can be manipulated.

The desired trajectory for spool axial position r(t) is a periodic signal with period

of 5sec:

r(t) =



0.8 if mod(t, 5) < 1

0.8 + 0.8(mod(t, 1)− 1) if 1 ≤ mod(t, 5) ≤ 2

1.6 if 2 < mod(t, 5) < 4

1.6− 0.8(mod(t, 1)− 4) if 4 ≤ mod(t, 5) ≤ 5

(4.16)

In this trajectory, the spool can travel its full stroke of 0.8inch within 1sec. We define

the valve spool position tracking error as e(t) := r(t)− x(t), and its integral is defined

as ei(t) =
∫
e(t)dt. Recalling the spool dynamics defined in (4.1), we can define the

tracking errors’ dynamics as:

d

dt
ei = e

d

dt
e = ṙ(t)− ẋ(t) = ṙ(t)− Q(u)

As
− w(t) (4.17)

The control effort is composed of two parts: Q(u) = Qd+Qm. Qd is the feed-forward

control effort, which compensates only for the trajectory: Qd = Asṙ(t). The feedback

control effort is designed as Qm = Kiei +Kpe, which is a typical Proportional Integral

controller. With this definition, the error dynamics become:

d

dt

[
ei

e

]
=

[
0 1

0 0

][
ei

e

]
+

[
1

− 1
As

]
Qm −

[
0

1

]
w(t)

=

[
0 1

−Ki
As
−Kp
As

]
︸ ︷︷ ︸

Adyn

[
ei

e

]
−

[
0

1

]
w(t) (4.18)
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with Ki > 0 and Kp > 0. Ki and Kp are computed via the pole-placement technique

by making matrix Adyn negative definite.

The control law defines the actuator’s flow Q(u). The control input “u” is obtained

through an inverted mapping from Q(u) to u, which is calibrated experimentally (as

shown in Fig. 4.3). In practice, the mapping from the voltage to the actuator’s flow

cannot be perfectly inverted, and the dead-band is not known precisely either. The

modeling errors are captured by the process noise.

The feedback part of the control law will be implemented with the estimated spool

position, which is updated on-line using the Kalman filter (Eqns (4.13) and (4.14)).

The stability of the tracking error dynamics and the estimation error dynamics will be

investigated for both the discrete LTI model and the periodic time varying model.

Discrete time linear time invariant model

With the discrete time LTI model, the Separation principle has been well established

[62]. The state feedback controller and the observer can be designed separately, and the

set of the eigenvalues of the complete system is the union of the eigenvalues of the state

feedback system and the eigenvalues of the observer system. In practice, the poles of

the observer system are selected to be faster than the state feedback system.

Periodic time time varying model

On using the periodic time time varying model, the Separation principle cannot be

directly applied as used for LTI systems. Therefore, we will investigate the convergence

of the tracking error and estimation error to zero with a Lyapunov function.

We first design a state estimator for the augmented system defined in Eqn. 4.10. We

define the estimation of the spool axial position as x̂(t), and its integration is defined

as
∫
x̂(t)dt = x̂i. We define the estimation of the states representing the periodic

measurement noise as x̂d ∈ RNdx1. We select a continuous time periodic time-varying

Kalman filter to estimate the augmented system’s states. The Kalman filter is calculated
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as:

d

dt


x̂i

x̂

x̂d

 =


0 1

0 0
0

0Nd×Nd 0Nd×Nd


︸ ︷︷ ︸

Aaug,kalman


x̂i

x̂

x̂d

+


0

1

0Nd×Nd


︸ ︷︷ ︸
Baug,kalman

Q

As
+Lkalman(t)(y−

[
0 1 Cd

]
︸ ︷︷ ︸
Caug,kalman


x̂i

x̂

x̂d

)

(4.19)

with

Lkalman(t) = Perr(t)
[
0 1 Cd

]T
R−1
err

where Perr(t) denotes the state estimation error covariance matrix. We use Rerr to

denote the covariance of the measurement noise n(t), and we use Qerr to denote the co-

variance of the process noise of the augmented system. The dynamics of state estimation

error covariance Perr(t) are updated as:

Ṗerr = Aaug,kalmanPerr + PerrA
T
aug,kalman +BT

aug,kalmanQerrBaug,kalman

− Perr(t)CT
aug,kalman(t)R−1

errCaug,kalman(t)Perr(t) (4.20)

Define the estimation error on the spool axial position as ẽ(t) = x−x̂, and its integration

as ẽi(t) =
∫
ẽ(t)dt, and use ẽd = xd − x̂d to denote the estimation error from the states

representing the periodic measurement noise d(t).

The control law will be implemented with the estimated states. Define a Lyapunov

function which is quadratic in the state tracking errors and the estimation errors:

Vaug =
[
ei e

]T
Pdyn

[
ei

e

]
+
[
ẽi ẽ ẽd

]T
P−1
err


ẽi

ẽ

ẽd

 (4.21)

where Pdyn is defined from the solution to the following Lyapunov equation:

AT
dynPdyn + PdynAdyn = −I

Define etrack =
[
ei e

]T
, and eest =

[
ẽi ẽ ẽd

]T
. The time derivative of Vaug becomes:

d

dt
Vaug =− e2

i − e2 + 2
(
BTPdynetrack

)
ẽ

− eT
est

[
P−1
errBaug,kalmanQerrB

T
aug,kalmanP

−1
err + CT

aug,kalmanR
−1
errCaug,kalman

]︸ ︷︷ ︸
Γerr

eest

(4.22)
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where B = [0 1]T, and Γerr > 0. Notice that for some constants αi and αe, we can

compute the following expression:

2
(
BTPdynetrack

)
ẽ = αieiẽ+ αeeẽ,

and the time derivative of Vaug becomes:

d

dt
Vaug = −

[
etrack eest

]T



1 0

0 1

αi/2 0 0

0 αe/2 0

αi/2 0

0 αe/2

0 0
Γerr


︸ ︷︷ ︸

Λaug

[
etrack

eest

]
(4.23)

By properly designing Γerr, Λaug will be positive definite, and therefore both the tracking

errors and the state estimation errors can converge to zero exponentially. This analysis

shows that with the periodic noise model, we can also design the estimator and the

controller separately, and utilize the estimated spool position in feedback control.

4.5 Simulation and experimental results

The computation cost and the robustness of the discrete approach is constrained by

the sampling time, and this approach is not quite practical to be implemented exper-

imentally. Therefore, estimators and controllers derived using the discrete time LTI

approach is validated in simulation, and the periodic time varying approach is imple-

mented experimentally.

4.5.1 Simulation Results

A block diagram summarizing the state estimation and the control strategy for spool

axial position reference tracking is shown in Fig. 4.7.

The reference spool axial position trajectory described in Eqn. (4.16) is shown in

the upper sub-figure of Fig. 4.8, and the periodic noise signal is shown in the upper

figure of Fig. 4.9. The periodic measurement noise has a frequency of 25 Hz. Selecting

a sampling time of 2ms, we used 20 states to model the periodic measurement noise’s

dynamics.
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Figure 4.7: System Block Diagram

0 1 2 3 4 5 6
0.8

1
1.2
1.4
1.6

re
fe

re
nc

e
 (

in
ch

)

0 1 2 3 4 5 6

−2

0

2
x 10

−3

po
si

tio
n 

tr
ac

ki
ng

 
er

ro
r 

(ih
ch

) 
   

0 1 2 3 4 5 6

−2

0

2

co
nt

ro
l 

in
pu

t (
v)

Figure 4.8: Trapezoid reference signal, tracking error, and the control command
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Figure 4.9: Repetitive noise and its estimation error

Using the discrete time time invariant model, the state estimations are calculated

following (4.13). The spool position can be distinguished from the periodic measurement

noise, and the trajectory tracking performance is satisfactory. If the sampling time is

selected to be 1ms, and the repetitive noise is of 10Hz frequency, we would need 100

states to represent this noise.

To investigate the importance of modeling the dynamics of the periodic measure-

ment noise and excluding it from the control effort, a control law without modeling

the periodic noise is derived. In this approach, the measurement noise is lumped into

one term nt without considering its temporal structure. Since the system model is a

first-order LTI system, a continuous time LTI Kalman filter is selected as the spool’s

position estimator.

ẋ =
Q(u)

As
, y = x+ nt

˙̂x =
Q(u)

As
+ L(y − x̂) (4.24)

The same feedforward with PI controller is implemented with the spool position esti-

mated from (4.24), and the spool position tracking performance is compared with the
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case when the periodic measurement noise’s dynamics are modeled.
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Figure 4.10: Spool tracking error comparison: state estimated from lumped model
Kalman filter is fed back in the first 10 sec, and after 10 sec, the state estimated from
the basis function Kalman filter is fed back

Figure 4.10 shows the simulation comparison between the lumped estimation model

(shown in Eqn. (4.24)) and the periodic basis function model (modeled in Eqn. (4.10)).

The lumped model Kalman filter in Eqn. (4.24) is used in the first 10 sec, and the

feedback state is switched to the estimated state from the periodic basis function Kalman

filter at t = 10sec. With the lumped model Kalman filter, the repetitive noise corrupts

the estimate of the true spool state, and the actuator responds to the repetitive noise

(as shown in Fig. 4.11). This leads to spool oscillations. In contrast, with the periodic

basis function Kalman filter, Fig. 4.10 shows that the spool position is regulated to

the desired value in the presence of the periodic noise, and the control input does not

respond to the periodic noise (Fig. 4.11).

4.5.2 Experimental Results

Since using the continuous time periodic time-varying model (4.7) for the periodic mea-

surement noise can lead to a low dimension system, we implemented this controller and

the estimator based on this model experimentally. The periodic measurement noise

was modeled using 10 Fourier series basis functions. The reference trajectory in this
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Figure 4.11: Control input comparison between feeding back state from lumped model
Kalman filter and feeding back state from basis function Kalman filter

experiment is a constant.

d(t) =
5∑

k=1

[xd2k−1cos(kωt) + xd2ksin(kωt)] (4.25)

The tracking performance is also compared to that with the lumped noise model

presented in Eqn. (4.24), which combines the periodic noise and the unstructured noise

into one term, nt.

The position tracking performance and the control effort by using the lumped noise

model are shown in Fig. 4.12. In Fig. 4.12(a), the yellow line shows the reference signal,

which corresponds to a valve duty ratio of 50%. The green curve is the raw position

measurement, and the red curve is the estimation of the spool axial position based on

the lumped noise model (Eqn. (4.24)). Since the system model does not capture the

dynamics of the periodic measurement noise, the estimation of the spool position cannot

converge to the spool position state. As a result, we can observe an oscillation in the

spool position’s estimation. The control reacts to this estimated spool position and

exhibits an oscillating profile, as shown in Fig. 4.12(b). Control input has a frequency

twice the spool angular frequency.

In comparison, by implementing the estimator and control law with modeling the

periodic measurement noise’s dynamics, this oscillation has been reduced considerably.

As shown in Fig. 4.13(a), the estimation of the spool position does not have a periodic

component. The position tracking error is reduced from 2% using the lumped noise
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Figure 4.12: Tracking performance with the controller and the estimator derived from
the lumped noise model: (a) Spool position tracking (b) control input
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Figure 4.13: Tracking performance with the controller and the estimator derived from
the periodic time time-varying model: (a) Spool position tracking (b) control input
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model to less than 0.7% using the new model, which is within the actuator’s control

deadzone. Comparing the control input in this case with the previous one, as shown in

Fig. 4.13 (b), the control input in this case mainly oscillates within the deadzone, and

little physical energy is provided to the actuator to move the spool. This means the

magnitude of the control input is very small because of the small tracking error.

A power spectrum analysis on the control input of both state feedback cases is shown

in Fig. 4.14. We can see that when feeding back the state estimated from the lumped

Kalman filter, the control input has a significant frequency component at a harmonic

of the spool frequency (∼ 19.53Hz).
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Figure 4.14: FFT analysis on control input

As shown in the experimental results, there is a discrepancy between the estimate of

the spool frequency of 10.5Hz and the true frequency analyzed using FFT of 9.766Hz.

In practice, the angular velocity of the spool is not measured directly, and it can vary

as the oil operating conditions varies. The sensitivity of the periodic noise estimate to

the bias of the fundamental frequency is investigated in simulation.

A 0.5Hz bias on the fundamental frequency is imposed onto the basis function, while

the repetitive noise has a frequency of 10Hz. As shown in Fig. 4.15, this induces an

estimation error on both the repetitive noise and the spool position. This is similar to

the problem when using a lumped model Kalman filter. The difference is that estimation

error of the spool state is smaller compared with the error using a lumped model Kalman



95

0 1 2 3 4 5 6 7 8 9 10

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

time (sec)

re
pe

tit
iv

e 
no

is
e 

d(
 in

ch
)

 

 

d
estimate of d

Figure 4.15: Noise estimate with a fundamental frequency bias
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filter. In simulation, the actuator can respond to the state tracking error (shown in

Fig. 4.16) fast enough, and the spool can oscillate. In practice, the error may be so

small that the actuator input falls into the dead-band, and cannot cause oscillation.

4.6 Summary

Periodic measurement noise can be estimated using state estimators that incorporate

models for the periodic noise. In this chapter, we proposed a periodic time varying

model for the measurement noise. Compared with the traditional way of treating peri-

odic measurement noise with a time-invariant model, the periodic time varying model

leads to a low dimensional system, which is feasible and robust when implemented

experimentally.

Sensitivity of the noise model to the dimension of the noise dynamics and the ac-

curacy of the fundamental frequency were investigated in simulation. We can see that

knowing the period of the signal is critical in eliminating the effect of the noise.

The focus of this chapter is the modeling of the periodic noise. The spool axial

dynamics and the controller are simplified, and robust against modeling errors. The

spool axial chamber pressure dynamics will be considered in the next chapter, and this

motivates the development of an advanced passivity based controller to guarantee a

better and more robust tracking performance.



Chapter 5

Passivity based spool axial

position controller in the presence

of periodic measurement noise

5.1 Introduction

Chapter 4 focuses on the modeling of the periodic spool axial position measurement

noise, so that by utilizing a proper estimator, the true position can be distinguished from

the periodic noise and a precise spool position can be obtained for feedback control use.

However, two performance drawbacks are observed with the approach in chapter 4. One

is that the control bandwidth is slow due to the large gerotor pump inertia. The other is

that the controller was designed without considering the fluid pressure dynamics inside

the valve sleeve axial chambers. Ignoring the pressure dynamics makes the controller

less robust, and the feedback gains are difficult to tune. In addition, the self-spinning

feature of our rotary valve ties the PWM frequency with the flow rate crossing the valve,

which prevents us from investigating the PWM frequency and the flow rate properties

independently. These factors motivate us to pursue an alternate actuation mechanism,

which enables the spool rotary speed to be controlled externally. In addition, a more

robust spool axial controller is preferred for the externally controlled actuation system.

In this chapter, controls will be developed for an externally driving mechanism for

97
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the rotary spool, instead of for the self-spinning spool. With this new actuation system,

the valve spool’s rotary motion and the axial motion can be manipulated independently,

regardless of the flow passing across it. A similar optical sensing approach will be used

to measure the spool axial position. The motivation is to simplify the sealing structure

with the installed sensor. A drawback is that periodic noise on the spool axial position

is introduced by the spool angular motion. In order to develop an axial positioning

(i.e. duty ratio control) controller for the spool, the spool’s dynamic model is required.

Compared with the model presented in Chapter 4, where only the spool dynamics

are considered, the pressure dynamics in the spool axial control chamber will also be

considered. With pressure dynamics, the system under control becomes a nonlinear

system. Instead of using a typical backstepping control technique to stabilize the spool

motion in the axial direction, we incorporate a passivity framework into the backstepping

technique so that the natural physical property of this hydraulic system is exploited.

The advantage is improved robustness and ease of control design. The control objective

is for the actuator position to accurately track a reference trajectory in the presence of

a periodic measurement noise.

The rest of this chapter is organized as follows. Section 5.2 will present the external

driving mechanism and the corresponding valve spool dynamics. Since the passivity

property from the hydraulic system is incorporated into the design of the spool con-

troller, a pressure dependent fluid compressible energy will be discussed in section 5.3.

This energy function defines the Lyapunov function associated with the pressure error.

With this novel pressure error Lyapunov function term, a passivity based nonlinear

controller stabilizing the spool axial position can be derived, and will be presented in

section 5.4. As a comparison, a basic backstepping controller will also be derived in sec-

tion 5.4. Since the measurement of the spool axial position is corrupted by the periodic

noise, building an estimator to extract the true plant states from the measurement is

important, and this will be discussed in section 5.5. The passivity based controller de-

rived in section 5.4 will then be modified to use the estimated states instead of measured

states in section 5.6. Finally, the experimental validation of the new controller will be

presented in section 5.7. This chapter will end with a summary and some concluding

remarks in section 5.8.
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5.2 External driving mechanism

The two degree of freedom (DOF) driving mechanism which can drive the valve spool’s

rotary and axial motion externally is shown in Fig. 5.1[79][86]. The defining feature

of this mechanism is the decoupling of axial and rotary sealing, so that standard O-

ring sealing can be applied in both directions. The proposed sealing concept utilizes a

translating piston and an intermediate shaft to decouple the rotary and the translational

sealing functions. A standard O-ring is used to seal around the rotating shaft, and this

seal does not experience any translating motion. The translational sealing function is

accomplished using a standard reciprocating piston O-ring seal.

Figure 5.1: Valve spool external driving mechanism

The spool’s rotary motion is driven via an electric motor. A flexible shaft coupling

is used to connect the motor’s shaft to a splined shaft that rotates. The splined shaft

allows relative translational motion between the spline and a linear bearing while simul-

taneously transmitting torque to the bearing. A slotted key is used to transmit torque

between the linear bearing and the intermediate shaft, which is connected to the spool

via a double u-joint. The double u-joint is required to compensate for the angular and
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parallel misalignment between the spool and the intermediate shaft. The hydraulic fluid

around the periphery of the spool acts as a journal bearing between the spool and the

sleeve. The intermediate shaft is supported by two ball bearings inside of the translating

piston.

The axial motion of the spool is driven hydraulically by controlling the pressure

in a single chamber. This is accomplished by maintaining an area difference between

the spool and the translating piston. As shown in Fig. 5.1, the diameter of the spool is

larger than the diameter of the piston. When the axial chamber of the valve is connected

with a charge pressure, a net pressure force will be applied to push the spool to the

left. The spool pulls on the intermediate shaft with the U-joint, which in turn pulls

to the left. The translating piston which in turn compresses the return spring. When

the axial chamber is connected with a tank pressure, the return spring will push the

translating piston to move to the right. The intermediate shaft then pulls the spool

to the right. The design assures that the intermediate shaft, containing the u-joint, is

always in tension, so the shaft will not buckle. By controlling the pressure in the valve

axial chamber, we can change the spool axial position, and correspondingly change the

valve duty ratio. Hard stops are incorporated into the drive mechanism to insure that

the spool remains in a specific range of travel. The spool is maintained at the zero

duty ratio position via the return spring when the axial control chamber is connected

to tank.

Photodiode

LED

Sensor plate
polycarbonate plate

spool

sleeve

Figure 5.2: Optical sensing configuration
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A variety of non-contact as well as contacting sensing approaches have been explored

to sense the spool’s axial position, which is required for closed-loop control of the valve’s

duty ratio. Due to its simplicity, as well as former implementation in the self-spinning

rotary valve prototype, a non-contact optical sensor described in Chapter 4 is used to

sense the valve spool’s axial position. A schematic of the sensor is presented in Fig. 5.2.

The sensor consists of an LED and a photodiode that are mounted on a sensor plate

behind a transparent polycarbonate plate. The polycarbonate plate is used to isolate

the sensor from the hydraulic fluid. Light emitted from the LED is reflected off of the

spool’s end, and is detected by the photodiode. The output of the photodiode exhibits

a monotonic relationship with the distance.

In this single chamber hydraulic linear actuator system, the spool and the chamber

pressure have the dynamics:

Mẍ = AP −K(x+ x0) + Fload

Ṗ =
β(P )

V0 +Ax
(Q−Aẋ) (5.1)

where M ≈ 0.5kg is the hydraulic cylinder mass, A = 1.74cm2 is the equivalent piston

area (which is the area difference between the spool side and the driving shaft side piston

areas), K ≈ 2594N/m is the spring constant, Kx0 ≈ 211.5N is the spring pre-load, and

V0 ≈ 60cc is the chamber dead volume. Q(t) is the flow entering and exiting the axial

chamber, determined by the chamber pressure and the opening of the throttling valve,

following the orifice equation:

Q(u) =


Cd

√
2
ρAmaxu

√
Ps − P u ≥ 0

Cd

√
2
ρAmaxu

√
P − Pt u < 0

(5.2)

where Cd = 0.62 is the coefficient of discharge for the proportional valve, and Amax is

the maximum valve opening area. The magnitude of u models the fraction of the valve

opening area, and the sign of u indicates the flow direction across the orifice. u > 0

means the flow going from the supply to the work port, and u < 0 means to the flow

going from the work port back to return. Ps denotes the supplied pressure, and Pt

denotes the tank pressure.
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5.3 Fluid compressibility, density, energy and passivity

We will exploit a passivity based approach to design the spool axial position controller.

In a passivity approach, the storage function associated with the pressure error is mod-

eled based on the fluid compressible energy. This section will define the energy stored

in a volume of compressed fluid. Finally, the storage and passivity will be defined for

the pressure error.

5.3.1 Compressibility and density function

Assumption 1 (Bulk Modulus): The constitutive relationship of the fluid is defined by

its (absolute) pressure-dependent bulk modulus, β : [0,∞)→ R+, as follows [76]:

dρ

ρ
= −dV

V
=

dP

β(P )
(5.3)

where V and P are the volume and pressure of a fixed fluid mass m and ρ(P ) := m
V is

the fluid density. We assume that for all P ∈ [0,∞),

β(P ) ≥ β > 0 (5.4)

Given β(P ), define the function g(P2, P1) as the integral of Eqn (5.4) over the pres-

sure limits P1 and P2

g(P2, P1) := ln

[
ρ(P2)

ρ(P1)

]
=

∫ P2

P1

dP
′

β(P ′)
(5.5)

where ρ(P ) is the fluid density at pressure P .

The function g(P2, P1) satisfies the group and inverse properties under condition:

∀P1, P2, P3 ≥ 0,

g(P3, P2) + g(P2, P1) = g(P3, P1) (5.6)

g(P1, P2) = g(P2, P1) (5.7)

Using these properties and the definition (5.5), we have the following results:

Theorem 5.3.1. Let the pressure-dependent liquid bulk modulus be β(P ) > 0, where

P ∈ [0, inf). Then the pressure-dependent densities ρ(·) at any pressures P , P1 ≥ 0

satisfy

ρ(P ) = ρ(P1) · eg(P,P1) (5.8)
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Since g(P, P ) = 0 and g(P2, P1) > 0 for all P2 > P1, ρ : P → ρP is a monotonic

function. Hence, the inverse function ρ−1(·) exists on the achievable density range.

Proof. Equation (5.8) is obtained by taking the exponential of both sides of Eqn. (5.5).

Monotonicity is a consequence of β(·) > 0 in the integral expression in Eqn. (5.5).

5.3.2 Compressibility energy

Consider a fluid of mass m in an ambient pressure P0, its volume V and pressure P are

related by:

V · ρ(P ) = V0 · ρ0 = m (5.9)

where ρ0 and V0 are the density and volume of the fluid at the datum pressure P0.

Excluding the work done by the ambient pressure, the extra work required to compress

the fluid from (P0, V0) to (P, V ) is

W (m,P ) = −
∫ V

V0

(P
′ − P0)dV =

∫ m/V

ρ=ρ0

(P
′ − P0)V

ρ
dρ = m

∫ m/V

ρ=ρ0

(P
′ − P0)

ρ2
dρ

(5.10)

= m

∫ P

P0

(P
′ − P0)

β(P ′)ρ(P ′)
dP
′

(5.11)

where m/ρ(P ) with ρ(·) defined in Eqn. (5.8), ρ(P )dV = −V dρ (since m is fixed), and

the bulk modulus in Eqn. (5.3) was used in the last two equalities. P
′

is the integration

dummy variable. Note that with P = ρ−1(m/V ), the work input in (5.11) can be

expressed in terms of V as well.

Define Wv(Pg, P0) and Wm(Pg, P0) as the volumetric energy density and the gravi-

metric energy density respectively, at gauge pressure Pg := P − P0, relative to ambient

reference pressure P0 by

Wv(Pg, P0) =
W (m,P )

V
(5.12)

Wm(Pg, P0) =
W (m,P )

m

Theorem 5.3.2. Relative to ambient pressure P0, the volumetric energy density Wv(Pg, P0)

and the gravimetric energy density Wm(Pg, P0) are given by

Wv(Pg, P0) =

∫ P

P0

(P
′ − P0)ρ(P )

β(P ′ρ(P ′)
dP
′

=

∫ P

P0

[
eg(P,P

′
) − 1

]
dP
′

(5.13)
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Wm(Pg, P0) =

∫ P

P0

(P
′ − P0)

β(P ′ρ(P ′)
dP
′

=
1

ρ(P )

∫ P

P0

[
eg(P,P

′
) − 1

]
dP
′

(5.14)

Proof. Since Wv(Pg, P0) = W (m,P )/V and Wm(Pg, P0) = W (m,P )/m, the first equal-

ities in (5.13) and (5.14) are immediate from (5.11). For the second equality, it is

obtained by the substitution

ρ(P )

β(P ′ρ(P ′)
=
eg(P,P

′
)

βP ′
= −de

g(P,σ)

dσ

∣∣∣∣
σ=P ′

and by integrating by parts

Wv(Pg, P0) = −
∫ P

P0

(P
′ − P0)

d

dσ
eg(P,σ)

∣∣∣∣
σ=P ′

dP
′

= −(P
′ − P0)eg(P,P

′
)

∣∣∣∣P
P0

+

∫ P

P0

eg(P,P
′
)dP

′

= −Pg +

∫ P

P0

eg(P,P
′
)dP

′
(5.15)

The second equality in (5.14) is obtained by Wm(Pg, P0) = ρ(P )WV (Pg, P0)). Both

Wv(Pg, P0) and Wm(Pg, P0) are fluid properties that are only dependent on pressures.

Remarks:

1. WV (Pg, P0) and Wm(Pg, P0) are proper energy functions in that WV (Pg, P0) ≥ 0

andWm(Pg, P0) ≥ 0 for all P = Pg+P0 ≥ 0, and they are zero when at the ambient

pressure: WV (Pg, P0) and Wm(Pg, P0), and are positive definite with respect to

the gauge pressure Pg.

2. When the bulk modulus β is a constant, the gravimetric energy density, and the

volumetric energy density (relative to P0) are

ρ(P ) = ρ0e
(P−P0)/β (5.16)

Wv(Pg, P0) = β

[
e
Pg
β −

(
1 +

Pg
β

)]
(5.17)
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Wm(Pg, P0) =
β

ρ(P )

[
e
Pg
β −

(
1 +

Pg
β

)]
(5.18)

where ρ0 is the fluid density at the ambient pressure P0. These expressions are

compatible with the internal energy function in [87].

3. From the Taylor expansion of Eqn. (5.17) for |Pg| � β, we see that WV (Pg, P0) ≈
P 2
g

2β is essentially a quadratic function of Pg when β is constant. When β(P ) is

pressure dependent, we can define the pressure-dependent mean bulk modulus,

β̄(P, P0) to express the energy density quadratically with Pg:

β̄(P, P0) :=
(P − P0)2

2WV (Pg, P0)
(5.19)

so that WV (Pg, P0) = P 2
g /(2β̄(P, P0)).

If β(·) is positive and bounded over [0, P ], then so is β̄(·, P0). The point and the

mean bulk moduli β(P ) and β̄(P, P0) are plotted in Fig. 5.3, which shows that

β̄(P, P0) is much smaller than β(P ), especially when the level of air entrainment

is high.

4. Figure 5.3 also illustrates that typically the point and the mean bulk moduli are

non-decreasing functions of pressure. This property can be used to derive some

bounds for the mean bulk modulus.

5.3.3 Storage and passivity for the pressure error

After defining the energy stored in a volume of compressed fluid, we will propose a

storage function for the pressure error. This will be used for controlling pressure and

correspondingly, the cylinder velocity according to some desired reference trajectories.

Let Pd and r(t) denote the reference pressure and the reference velocity. Let the

pressure error and the velocity error be defined as:

P̃ (t) = P (t)− pd(t) (5.20)

ev(t) = ẋ(t)− r(t) (5.21)



106

Figure 5.3: Bulk modulus β(P ) (solid line) and the mean bulk modulus, β̄(P, P0) (dotted
lines, defined in (5.19) with P0 = 0.1MPa) at 1%, 10%, and 30% air entrainment. Here,
the bulk modulus model based on [88] is used to illustrate the general trend. Other bulk
modulus models can also be used.

We define the pressure error storage density WV (P̃ , Pd) similarly as (5.13) except that

the reference pressure Pd(t) is used instead of the ambient pressure:

WV (P̃ , Pd) :=

∫ P

Pd

ρ(P )(P
′ − Pd)

ρ(P ′)β(P ′)
dP
′

=

∫ P

Pd

[
eg(P,P

′
) − 1

]
dP
′

(5.22)

Similar to WV (Pg, P0), WV (P̃ , Pd) is positive definite with respect to P̃ , and can be

expressed as a quadratic function in P̃ . Hence, following (5.19), we can define the mean

bulk modulus over the range [Pd, P ] as

β̄(P, Pd) :=
(P − Pd)2

2WV (P̃ , Pd)
(5.23)

The following proposition establishes the bounds on β̄(P, Pd).

Proposition 1: The mean bulk modulus over the range [Pd, P ] satisfies

β̄(P, Pd) ≤ max
σ∈[Pd, P ]

β(σ)e−g(P,Pd)

β̄(P, Pd) ≥ min
σ∈[Pd, P ]

β(σ)e−g(P,Pd)
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If β(·) is monotonically increasing, the above inequalities reduce to:

β̄(P, Pd) ≤ max(β(P ), β(Pd)e
−g(P,Pd))

β̄(P, Pd) ≥ min(β(P ), β(Pd)e
−g(P,Pd))

which is equivalent to

β(P ) ≥ β̄(P, Pd) ≥ β(Pd)e
−g(P,Pd), if P ≥ Pd

β(Pd)e
−g(P,Pd) ≥ β̄(P, Pd) ≥ β(P ), if Pd ≥ P

Proof. Using the expression for WV (P̃ , Pd):

WV (P̃ , Pd) =

∫ P

pd

eg(P,P
′
)

β(P ′)
(P
′ − Pd)dP

′

WV (P̃ , Pd) ≤ max
σ∈[Pd,P ]

[
eg(P,σ)

β(σ)

]
P̃ 2

2

WV (P̃ , Pd) ≥ min
σ∈[Pd,P ]

[
eg(P,σ)

β(σ)

]
P̃ 2

2

Therefore,

β̄(P, Pd) =
P̃ 2/2

WV (P̃ , Pd)
≥ min

σ∈[Pd,P ]

[
β(σ)

eg(P,σ)

]
β̄(P, Pd) ≤ max

σ∈[Pd,P ]

[
β(σ)

eg(P,σ)

]

It shows particularly that β̄(P, Pd) is bounded from zero if β(·) is, and is close to

β(Pd) as P → Pd.

Now define the pressure error storage function for a single pressure chamber as:

WP (x, P̃ , Pd) = V (x)WV (P̃ , Pd) (5.24)

For an actuator chamber with volume V (x), cylinder position x, volume pressure P ,

and the in-flow rate Q(t), recall the pressure dynamics defined in (5.1):

Ṗ =
βp

V (x)
[Q−A(x)ẋ]
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where A(x) = dV
dx is the effective cylinder piston area. This equation (5.1) can be used

to derive the dynamics of the pressure error storage function:

d

dt
WP (x, P̃ , Pd) =

[
P̃ +WV (P̃ , Pd)

]
︸ ︷︷ ︸

Ψ(P̃ ,Pd)

Q− P̃A(x)ẋ− V (x)
[
eg(P,Pd) − 1

]
Ṗd (5.25)

Note that P̃Ψ(P̃ , Pd) ≥ 0 for all P̃ if

WV (P̃ , Pd)

P̃
=

P̃

2β̄(P, Pd)
> −1
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Figure 5.4: WV (P̃ ,Pd)

P̃
versus P = Pd + P̃ for various Pd and the entrained air content is

30%

This is indeed the case as established by the following proposition.

Proposition 2: For all P, Pd ∈ [0, ∞),

P̃

2β̄(P, Pd)
≥ min

[
e−g(Pd,P ) − 1, 0

]
> −1

it approaches −1 when Pd →∞ and P = 0. Also,

P̃

2β̄(P, Pd)
≤ max

[
eg(P,Pd) − 1, 0

]
≤ eg(P,0) − 1
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Proof.

For the lower bound,

P̃

2β̄(P, Pd)
=
WV (P̃ , Pd)

P̃
=

∫ P
Pd

[
eg(P,σ) − 1

]
dσ

(P − Pd)

≥ min
σ∈[Pd,P ]

[
eg(P,σ)

]
− 1 = min[eg(P,P ), eg(P,Pd)]− 1 = min[0,−(1− eg(Pd,P ))]

We have used the fact that g(P, σ) is monotonically decreasing in σ. The final expression

is minimized when P = 0 and Pd → ∞ as desired. The upper bound is derived in a

similar way:

P̃

2β̄(P, Pd)
≤ max

σ∈[Pd,P ]

[
eg(P,σ)

]
− 1 ≤ max(0, [eg(P,σ) − 1])

This is maximized when Pd = 0 and P →∞.

Figure. 5.4 illustrates (with the bulk modulus model in [88]) the function P 7→
WV (P̃ , Pd)/P̃ , when the entrained air content is 30% (an extreme case). Note that

WV (P̃ , Pd)/P̃ → 0 as P̃ → 0. Moreover, WV (P̃ , Pd)/P̃ < 0 for P̃ < 0. As indicated in

Proposition 2, WV (P̃ , Pd)/P̃ approaches its smallest value when Pd is large and P = 0.

Even so, this is always greater than −1. Fig. 5.4 shows that over the entire range

P, Pd ∈ [1, 350] bar, WV (P̃ , Pd)/P̃ ∈ [−0.5, 1]. The range is smaller for smaller P̃ or for

lower air entrainment.

For a trajectory tracking problem, the reference actuator velocity r and the reference

pressure Pd can be determined using a backstepping procedure. The following theorem

shows that the function WV (P̃ , Pd) is indeed an appropriate storage function for showing

that the pressure error dynamics is a passive 2 port system. It also provides the required

control to accommodate the reference velocity and desired pressures.

Theorem 5.3.3. Using the input flow control law,

Q := A(x)r +
V (x)

β(P )
Ṗd︸ ︷︷ ︸

Qd

−γP P̃ + Q̃ (5.26)

where A(x) = dV (x)
dx is the cylinder area, with a sufficiently large pressure feedback gain

γP > 0, the error storage function given in (5.24):

WP (x, P̃ , Pd) = V (x)WV ( ˜P, Pd)
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satisfies the error passivity property

d

dt
WP (x, P̃ , Pd) ≤

[
P̃ +WV (P̃ , Pd)

]
︸ ︷︷ ︸

Ψ(P̃ ,Pd)

Q̃− P̃A(x)ev (5.27)

where ev is the velocity error in (5.21), so that∫ t

t0

[
Ψ(P̃ , Pd)Q̃− P̃A(x)ev

]
dτ ≥ −WP (x(t0), P (t0), Pd(t0))

Furthermore, the output function Ψ(P̃ , Pd) is a positive function of P̃ in that Ψ(0, Pd) =

0 and

P̃Ψ(P̃ , Pd) ≥ 0

Proof.

Qd in (5.26) is designed from (5.25) by assuming that the pressure error output

Ψ(P̃ , Pd) ≈ P̃ , and the Ṗd feedforward gain term
[
eg(P,Pd) − 1

]
≈ 1

β(Pd) . Any discrepan-

cies are then handled by the pressure feedback γP P̃ .

To wit, consider the latter approximation. Observe that the Ṗd feedforward gain

term in (5.25) can be written, using the mean value theorem, as

[
eg(P,Pd) − 1

]
=

[
eg(P,Pd)

β(σ)

]
P̃ ≈ P̃

β(Pd)

where σ ∈ [Pd, P ]. The approximation is obtained by evaluating σ at Pd. The approx-

imation error increases continuously from 0 as σ goes from Pd to P . Therefore, there

exists µ(P, Pd) ≥ 0 such that∣∣∣∣∣
[
eg(σ,Pd)

β(σ)

]
− 1

β(Pd)

∣∣∣∣∣ ≤ µ(P, Pd)|P̃ |∣∣∣∣∣[eg(P,Pd) − 1
]
− P̃

β(Pd)

∣∣∣∣∣ ≤ µ(P, Pd)P̃
2

Let W̃V denote WV (P̃ , Pd). Using ẋ = r + ev, and the control law (5.26), the error
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storage dynamics in (5.25) becomes

Ẇp ≤ P̃
[
Qd −

dV

dx
r − V (x)

β(Pd)
Ṗd

]
− P̃ dV

dx
ev + (µ(P, Pd)|V Ṗd|)P̃ 2

+ W̃VQd + (P̃ +WV )(Q̃− γP P̃ )

≤ −P̃A(x)ev + (P̃ + W̃V )Q̃−

[
γP

(
1 +

W̃V

P̃

)
− (µ(P, Pd)V Ṗd)−Qd

W̃V

P̃ 2

]
P̃ 2

Since W̃V

P̃ 2
= 1

(2β̄(P,Pd))
is finite and W̃V

P̃
> −1, we can choose γP sufficiently large

such that the last term is negative.

Remarks:

1. Theorem 5.3.3 shows that the pressure error dynamics is a passive two-port sub-

system with the mechanical port power being −AP̃ev, where AP̃ is the force

error and ev is the reference velocity error; and the hydraulic port power being

Ψ(P̃ , Pd)Q̃.

���������

��	
��


������
������

���������

����	���

�����������

�����	

������
������

�� ���

����	�
 ���

Figure 5.5: Interconnections of compatible passive blocks within the actuator control
system

2. If the mechanical system is passive with respect to a compatible supply rate

−AP̃ev, then a cascade of the pressure error with the mechanical system results

in a passive system and the P̃Aev term in (5.27) is canceled out by a similar term

in the mechanical system supply rate. This interconnection of passive blocks is

illustrated in the pressure error dynamics block in Fig. 5.5, and can be stabilized

simply by the introduction of damping.

3. The control term in (5.26) consists of three parts: a) a feedforward term; b) a

damping term to passify the feedforward term; and c) an additional input. The

feedforward term in turn consists of components for r and Ṗd. Note that the

velocity ẋ feedback is NOT needed.
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4. Since Ψ(P̃ , Pd) is a positive function, Q̃ defined to be a negative function of P̃ ,

will result in further stabilization.

5.4 Valve spool axial position controller

With the development of the compressed fluid energy and the pressure error passivity

properties above, we are ready to design a passive control law to manipulate the valve

spool axial position, and hence the PWM valve duty ratio. A Desired Compensation

Control Law (DCCL) controller[89], which is frequently used in passivity based mechan-

ical robot motion control, was derived to achieve the actuator trajectory tracking, and

to define the chamber desired pressure Pd(t).

Assume a trajectory xd(t) and up to its third time derivative are available, the

position tracking error e, the reference velocity r and the reference velocity error ev are

defined as:

e : = x− xd

r : = ẋd − λpe

ev : = ẋ− r = ė+ λpe (5.28)

with λp > 0.

Applying the desired compensation control law (DCCL) [89] to this problem, the

desired pressure is obtained as:

Pd =
1

A
[M(ẍd − λpė)− Fload +K(xd + x0)−Kpe−Kvev] (5.29)

with Kp > 0 and Kv > 0.

Applying this desired pressure to the actuator dynamics defined in Eqn. (5.1), we

have the following reference velocity error dynamics:

Mėv = −(K +Kp)e−Kvev +AP̃ (5.30)

where P̃ = P − Pd. Here we define the Lyapunov function related to the mechanical

energy part:

Wmech : =
1

2
Me2

v +
1

2
(K +Kp)e

2

dWmech

dt
= −Kve

2
v − λp(K +Kp)e

2 + P̃Aev
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and the mechanical system is passive with respect to the supply rate P̃Aev.

By successively applying Eqn. (5.1) and Eqn. (5.30), we will have:

Ṗd =
1

A

[
M(

...
x d − λpë)− Ḟload +Kẋd −Kpė−Kv ėv

]
=

1

A

[
M

...
x d − Ḟload +Kẋd

]
︸ ︷︷ ︸

Ṗd1

+f(e, ev, P̃ ) (5.31)

where f(e, ev, P̃ ) = αee+ αevev + αP P̃ for some αe, αev, and αP .

Next, we will take into consideration the pressure dynamics. We will use the pro-

posed passivity approach, discussed in section 5.3. In comparison, we will also derive

a controller using the traditional backstepping approach, where the pressure error is

treated as a quadratic term.

5.4.1 Passivity approach

Define an augmented Lyapunov function using the proposed pressure error storage func-

tion defined in Eqn. (5.24):

Wpassive =
1

2
Me2

v +
1

2
(K +Kp)e

2 + (V0 +Ax)WV (P, Pd) (5.32)

The time derivative of the augmented Lyapunov function becomes:

d

dt
Wpassive = −Kve

2
v − λp(K +Kp)e

2 + P̃Aev + P̃Q− P̃Aẋ

+WV (P, Pd)Q− V (x)
[
eg(P,Pd) − 1

]
Ṗd

= −Kve
2
v − λp(K +Kp)e

2 + P̃

[
Qd −Ar −

V (x)

B(P, Pd)
Ṗd

]
+WV (P, Pd)Qd + P̃ [1 +

WV (P, Pd)

P̃
]Q̃ (5.33)

The control effort Q is defined with two parts: Q = Qd + Q̃, with the desired flow

Qd compensating the terms only related to the reference trajectory defined as:

Qd = Ar +
V (x)

β(Pd)
Ṗd1 (5.34)
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where r(t) defined in Eqn. (5.28) is the reference velocity and Ṗd1 defined in Eqn. (5.31)

is the desired chamber pressure. The time derivative of Wpassive becomes

d

dt
Wpassive ≤−Kve

2
v − λp(K +Kp)e

2 − P̃ V (x)

β(Pd)
f(e, ev, P̃ ) + P̃ (1 +

WV (P̃ , Pd)

P̃
)Q̃

+ (µ(P, Pd)V (x)Ṗd + ε(P, Pd)|Qd|)︸ ︷︷ ︸
κ

P̃ 2 (5.35)

where µ(P, Pd) > 0, ε(P, Pd) > 0 are defined from:[
eg(P,Pd) − 1

]
=

1

B(P, Pd)
P̃

µ(P, Pd)|P̃ | ≥ |
1

B(P, Pd)
− 1

β(Pd)
|

ε(P, Pd)P̃
2 ≥WV (P, Pd)/P̃

2 = 1/(2β̄(P, Pd)). (5.36)

Note that the term P̃Arv from the mechanical system has been canceled out by the

term from the pressure error dynamics by using this passivity based approach.

Next, we design Q̃ = −λ3P̃ , λ3 > 0, and the overall control law becomes:

Q = Ar +
V (x)

β(Pd)
Ṗd1 − λ3P̃ (5.37)

And the corresponding time derivative of the Lyapunov function becomes:

Ẇpassive ≤ −
[
e ev P̃

]
λp(K +Kp) 0 αeV (x)

2β(Pd)

0 Kv
αevV (x)
2β(Pd)

αeV (x)
2β(Pd)

αevV (x)
2β(Pd) λ̄3 − κ+ αPV (x)

β(Pd)


︸ ︷︷ ︸

Λpassive


e

ev

P̃

 (5.38)

with λ̄3 = λ3

(
1 + W̃

P̃

)
. Hence, selecting λ3 to be sufficiently large, matrix Λpassive is

positive definite, and the tracking errors
[
e ev P̃

]
converge to

[
0 0 0

]
exponen-

tially. This implies that the system would be input-to-state stable, and hence robust in

the presence of disturbance [36]. Although the control law seems to require Ṗd1 and the

pressure dependent bulk modulus β(Pd), ignorance or inaccuracies in the estimation of

these terms can be treated as disturbances, which will have small but bounded effects.
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5.4.2 Traditional backstepping approach

In a traditional backstepping approach [46][47][60], a quadratic term is utilized to model

the pressure error, so that the Lyapunov function is defined to be:

Wbkstp :=
1

2
Me2

v +
1

2
(K +Kp)e

2 +
λ2

2
P̃ 2

dWbkstp

dt
=−Kve

2
v − λp(k +Kp)e

2 + P̃Aev + λ2P̃

[
β(P )

V (x)
(Q−Aẋ)− Ṗd

]
(5.39)

Design the input flow as:

Q = Aẋ− V (x)

β(P )

[
Aev
λ2
− Ṗd1

]
− λ3(t)P̃ (5.40)

Again, correspondingly the time derivative of the Lyapunov function becomes:

Ẇbkstp ≤ −
[
e ev P̃

]
λp(K +Kp) 0 αeλ2

2

0 Kv
αevλ2

2
αeλ2

2
αevλ2

2 λ̄3(t) + αPλ2


︸ ︷︷ ︸

Λbkstp


e

ev

P̃

 (5.41)

where

λ̄3(t) =
βPλ2

V0 +Ax
λ3(t)

Selecting λ3 to be sufficiently large, matrix Λbkstp will become positive define, and

the tracking errors converge to zero exponentially.

The basic backstepping control in (5.40) differs from the passivity-based control in

(5.37) in the following ways, which establishes the advantages of the passivity-based

approach.

1. Actuator volume and the bulk modulus are needed only for the feedforward term

for the passivity-based control (5.37), but are needed for both the feedback and

feedforward terms for the basic backstepping control (5.40). The former may have

some advantage for adaptation in the presence of measurement noise.

2. The treatment of the piston velocity is different. In the passivity-based approach,

only the reference velocity r is used; whereas in the traditional backstepping ap-

proach, the actual piston velocity ẋ is actively canceled, and the velocity error ev

is fed back. Intuitively, the ẋ term has a positive feedback effect as ẋ has a positive
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effect on input flow Q which in turn has a positive effect on piston velocity. The

negative feedback of ev has the purpose of stabilizing this effect.

3. Equation (5.40) provides an additional gain λ2 for tuning. It will be equivalent to

(5.37) if λ2 ≈ (V0+Ax)
β(P ) and similar λ3(t) are chosen for both. However, this requires

knowledge of the system parameters. Moreover, since λ2 must be a constant in

(5.40), this equivalence can only be approximated. In the later section, sec 5.7,

experimental results indicate that λ2 chosen as V
βP results in the smallest tracking

error.

5.5 Estimation of the augmented system states

If the spool axial position can be directly measured, the passive control provided in (5.37)

from the previous section can be implemented directly with the measurement. However,

when the spool is spinning and traveling axially simultaneously, the measurements of

spool axial position and velocity are corrupted by a periodic noise, and a similar problem

has been illustrated in chapter 4. In this section, we will focus on developing an estimator

to estimate the spool position and velocity from a noisy position measurement, which

will be used in the passive controller.

We will use the periodic time varying model to model the measurement noise, and

these dynamics will be augmented with the spool dynamics defined in sec 5.5.1. The

observability of the augmented system will be discussed in sec 5.5.2. Finally, a periodic

time varying Kalman filter will be presented to estimate the states of the augmented

system in sec 5.5.3.

5.5.1 Augmented system dynamics

Consider the dynamics of the spool’s axial position:

Mẍ = AP −K(x+ x0) + Fload
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The two states defined here are the spool axial position x1 and the spool axial velocity

x2:

d

dt

[
x1

x2

]
︸ ︷︷ ︸
xs

=

[
0 1

−K
M 0

]
︸ ︷︷ ︸

As

[
x1

x2

]
+

[
0

1

]
︸︷︷︸
Bs

Ap−Kx0 + Fload
M︸ ︷︷ ︸
u

(5.42)

Due to the rotary motion of the valve spool, the axial position measurement is corrupted

by a periodic noise xn: y = x1 +xn. Here we model the periodic noise using the periodic

time varying model:

xn =Cd(t) · xd

Cd(t) =
[
cosωt sinωt cos 2ωt sin 2ωt · · · cos kωt sin kωt

]
xd =

[
xn1 xn2 xn3 xn4 · · · xn(k−1) xnk

]
(5.43)

Augmenting the cylinder mass dynamics with the periodic noise, we have:

d

dt

[
xs

xd

]
︸ ︷︷ ︸
xaug

=

[
As 02×2k

02k×2 02k×2k

]
︸ ︷︷ ︸

Aaug

[
xs

xd

]
+

[
Bs

02k×1

]
︸ ︷︷ ︸
Baug

u

y =
[
1 0 Cd(t)

]
︸ ︷︷ ︸

Caug(t)

xaug (5.44)

Caug(t) is a periodic time varying vector; therefore the augmented system is a periodic

time varying system. The question we pose next is whether this augmented system is

observable.

5.5.2 Augmented System Observability

The observability of the augmented system defined in Eqn. (5.44) is evaluated via the

determinant of the observability grammian. A linear system is observable on [t0, tf ]

if and only if the observability grammian is invertible [85], which is equivalent to the

observability grammian matrix being of full rank. Given a periodic system, the observ-

ability is checked for one period [85].

Without loss of generality, we set t0 = 0, define T = 2π
ω as the period, and the time
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interval as [0, T ]. The observability grammian is calculated as:

M(0, T ) =

∫ T

0
m(0, t)dt =

∫ T

0
ΦT(t)CT

aug(t)Caug(t)Φ(t)dt (5.45)

M(0, T ) =

[
Ψ L

LT T
2 I2k×2k

]
,Ψ ∈ R2×2, L ∈ R2×2k (5.46)

Ψ =

[
Ψ11 Ψ12

Ψ12 Ψ22

]
, with Ψ11, Ψ12, and Ψ22 calculated as:

Ψ11 =
T

2
+

sin 2γT

4γ

Ψ12 =
1− cos 2γT

4γ2

Ψ22 =
1

γ2

(
T

2
+
sin2γT

4γ

)
(5.47)

The detailed calculation of the observability grammian is presented in Appendix A.1.

Manipulating the block matrix to reduce the order of the matrix being calculated,

the following relationship holds:

rank(M(0, t)) = rank

([
Ψ L

LT T
2 I

])
= rank

([
T
2 I LT

L Ψ

])
(5.48)

Whether the augmented system is observable is equivalent to the question of whether

the new matrix

[
T
2 I LT

L Ψ

]
is full rank, and this is equivalent to checking whether the

matrix is non-singular:

det

[
T
2 I LT

L Ψ

]
= det

(
T

2
I

)
· det

(
Ψ− 2

T
LLT

)
(5.49)

Now we are ready to define the conditions which determine the augmented system

observability.
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Theorem 5.5.1. The augmented system defined in Eqn. (5.44) is observable iff 2
T is

NOT an eigenvalue of the matrix pencil1 Ψ− λLLT, with λ ∈ C.

Proof. If the augmented system in Eqn. (5.44) is observable, the observability grammian

M(0, T ) is invertible, and det(M(0, T )) 6= 0:

det(M(0, T )) = det

[
T
2 I LT

L Ψ

]
= det

(
T

2
I

)
· det

(
Ψ− 2

T
LLT

)
6= 0

→ 2

T
is not an eigenvalue of the matrix pencil Ψ− λLLT (5.50)

det

(
Ψ− 2

T
LLT

)
6= 0→ det

(
T

2
I

)
· det

(
Ψ− 2

T
LLT

)
6= 0→ det

[
T
2 I LT

L Ψ

]
6= 0

augmented system (5.44) is observable (5.51)

If the conditions are met, the augmented system is observable, and all the system

states can be uniquely determined using a proper estimator.

5.5.3 Augmented system state estimator

A periodic time varying Kalman filter is developed to estimate the states of the aug-

mented system (Eqn. (5.44)):

˙̂xaug = Aaugx̂aug +Baugu+ Laug(t) [y − Caug(t)x̂aug] (5.52)

with the estimator output injection gain Laug(t) computed based on a continuous time

periodic Riccati equation:

Laug(t) = PErrC
T
aug(t)R

−1
c

ṖErr = −PErrCT
aug(t)R

−1
c Caug(t)PErr +AaugPErr + PErrA

T
aug +Qc (5.53)

1 Let A and B be two n-by-n matrices. The set of all matrices of the form A − λB with λ ∈ C is
said to be a pencil. The eigenvalues of the pencil are elements of the set λ(A,B) defined by λ(A,B) =
{z ∈ C : det(A− zB) = 0}. If λ ∈ λ(A,B) and Ax = λBx x 6= 0, then x is referred to as an eigenvector
of A− λB.[90](section 7.7)
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where PErr(t) denotes the estimation error covariance matrix, Rc ∈ R1×1 quantifies the

variance of the unstructured measurement noise, and Qc ∈ R(k+2)×(k+2) quantifies the

variance of the unstructured process noise. Both Rc and Qc are positive definite.

The estimator injection gain Laug(t) is designed following a standard periodic time

varying Kalman filter[91], and the following analysis establishes the effectiveness of the

Kalman filter:

Theorem 5.5.2. Given a system defined in Eqn. (5.44), and an estimator defined in

Eqn. (5.52), define x̃aug = x−x̂aug as the state estimation error, and the error dynamics

are:

˙̃x = (Aaug − LaugCaug)x̃ (5.54)

x̃ = 0 is Lyapunov stable. The stability can be proved using a Lyapunov function:

V (x̃) = x̃TPErr(t)
−1x̃ (5.55)

with PErr(t) being the estimation error covariance matrix.

Proof. Take the time derivative of the Lyapunov function defined in Eqn. (5.55):

V̇ (x̃) = ˙̃xTPErr(t)
−1x̃+ x̃TPErr(t)

−1 ˙̃x− x̃TP−1
ErrṖErrP

−1
Errx̃ (5.56)

Substitute in the relationship defined in Eqn. (5.53) and Eqn. (5.54):

V̇ (x̃) = x̃T

[
(Aaug − LaugCaug)TP−1

Err + P−1
Err(Aaug − LaugCaug)− P

−1
ErrAaug −A

TP−1
Err

+ P−1
ErrQcP

−1
Err + CT

augR
−1Caug

]
x̃

= −x̃T
[
P−1
ErrQcP

−1
Err + CT

augR
−1Caug

]︸ ︷︷ ︸
Λx̃

x̃ (5.57)

Λx̃ is positive definite in x̃, and therefore V̇ (x̃) < 0 when x̃ 6= 0, and V̇ = 0 only when

x̃ = 0. We can conclude that x̃ = 0 is a global asymptotically stable point.

5.6 Passive controller implemented with estimated states

In this section, we will exploit the stability of the passive control defined in Eqn. (5.37)

when it is implemented with the spool estimation of the spool axial position and velocity

instead of the direct measurements.
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Recall the definition from the previous section. To make the derivation easier to

follow, we define the cylinder position estimation error as e1, and the cylinder velocity

estimation error as e2, which corresponds to the first two elements from (5.54). We

will re-define the position tracking error en, the reference velocity rn, and the reference

velocity error evn using the estimated cylinder position xest.

en := xest − xd; rn := ẋd − λpen; evn := ẋest − rn = en + λpen (5.58)

with λp > 0. These variables are related to the tracking error variables defined in (5.28)

as follows:

e = en + e1; r = rn − λpe1; ev = evn + (e2 + λpe1) (5.59)

With the new tracking errors which are defined with the reference signals and the

estimates of the spool position and velocity, we will redefine the desired pressure and

the Lyapunov function for the mechanical part. Firstly, the desired pressure defined in

Eqn. (5.29) becomes:

Pdn =
1

A
[M(ẍd − λpėn)− Fload +K(xd + x0)−Kpen −Kvevn]

With this desired pressure, the velocity error dynamics defined in Eqn. (5.30) becomes:

Mėvn = −(K +Kp)en −Kvevn +AP̃n −Mė2 −Ke1 (5.60)

with P̃n = P − Pdn.

We re-define the Lyapunov function related to the mechanical energy part as:

Wmech,n : =
1

2
Me2

vn +
1

2
(K +Kp)e

2
n

dWmech,n

dt
= −Kve

2
vn − λp(K +Kp)e

2
n + P̃nAevn − ė2Mevn − e1Kevn

(5.61)

The dynamics of the desired pressure is obtained as:

Ṗdn =
1

A

[
M(

...
x d − λpën)− Ḟload +Kẋd −Kpėn −Kv ėvn

]
=

1

A

[
M

...
x d − Ḟload +Kẋd

]
︸ ︷︷ ︸

Ṗd1

+f(en, evn, P̃n) (5.62)
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where

f(en, evn, P̃n) = αeen + αevevn + αP P̃n

for some αe, αev, αP , α1, and α2.

Now augment the Lyapunov function with the proposed pressure error energy density

function:

Wpassive,n =
1

2
Me2

vn +
1

2
(K +Kp)e

2
n + (V0 +Axest)WV (P, Pd) (5.63)

Designing the control effort Q = Qdn + Q̃n, we will have:

d

dt
Wpassive,n = −Kve

2
vn − λp(K +Kp)e

2
n + P̃nAevn − ė2Mevn − e1Kevn

+ P̃nQ− P̃nAẋest +WV (P, Pdn)Q− V (xest)
[
eg(P,Pdn) − 1

]
Ṗdn

= −Kve
2
vn − λp(K +Kp)e

2
n − ė2Mevn − e1Kevn

+ P̃n

[
Qdn −Arn −

V (xest)

B(P, Pdn)
Ṗdn

]
+WV (P, Pdn)Qdn

+ P̃n[1 +
WV (P, Pdn)

P̃n
]Q̃n (5.64)

with B(P, Pdn) = P̃n/[e
g(P,Pdn) − 1].

Again design the desired flow Qdn to compensate the term related to the reference

trajectory with variables defined using the estimated states:

Qdn = Arn +
V (xest)

β(Pdn)
Ṗd1 (5.65)

and the derivative of Wpassive,n becomes:

d

dt
Wpassive,n ≤−Kve

2
vn − λp(K +Kp)e

2
n − P̃n

V (xest)

β(Pdn)
f(en, evn, P̃n)

+ P̃n(1 +
WV (P, Pdn)

P̃n
)Q̃n

+ (µ(P, Pdn)V (xn)Ṗdn + ε(P, Pdn)|Qdn|)︸ ︷︷ ︸
κn

P̃ 2
n −ė2Mevn − e1Kevn︸ ︷︷ ︸

g(e1,e2)·evn

(5.66)

where g(e1, e2) = α1e1 + α2e2 for some α1, α2, and µ(P, Pdn) > 0, ε(P, Pdn > 0 are

defined from

µ(P, Pdn)|P̃n| ≥ |
1

B(P, Pdn)
− 1

β(Pdn)
|

ε(P, Pdn)P̃ 2
n ≥WV (P̃n, Pdn) =

1

2β̄(P, Pdn)
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Finally design Q̃n = −λ3P̃n, and the overall control law is:

Q = Arn +
V (xest)

β(Pdn)
Ṗd1 − λ3P̃n (5.67)

Augment the Lyapunov function so far (Wpassive,n) with the estimation error part

to define the total Lyapunov function, and recall the estimation errors x̃ defined in 5.5.2

i.e.
[
e1 e2 · · · en

]
:

Wtotal,n =
1

2
Me2

vn +
1

2
(K +Kp)e

2
n + (V0 +Axest)WV (P, Pd) + x̃P−1

Errx̃ (5.68)

where PErr(t) > 0 is the estimation covariance matrix. Denoting Vβ = V(xest)/2β(Pdn),

the time derivative of Wtotal,n becomes:

Ẇtotal,n

≤ −
[
en evn P̃n e1 e2 · · · en

]



Λpass,n

0 0 · · · 0
α1
2

α2
2 0 · · ·

0 0 · · · 0

0 α1
2 0

0 α2
2 0

... 0
...

0
... 0

Λerr


︸ ︷︷ ︸

Λtotal



en

evn

P̃n

e1

e2

...

en



(5.69)

with

Λpass,n =


λp(K +Kp) 0 αeVβ

0 Kv αevVβ

αeVβ αevVβ λ̄3 − κn + 2αpVβ


Selecting λ3 to be sufficiently large, the matrix previously mentioned Λtotal is positive

definite and (en, evn, P̃n) converge to (0, 0, 0) exponentially. The states estimation errors

will converge to zero exponentially as well. Therefore, the cylinder’s tracking errors will

converge to zero exponentially.
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5.7 Experimental implementation

In this section, the approaches derived previously will be implemented experimentally.

We will first look at the spool axial control problem when it does not spin. In this case,

no estimator is implemented. Both passive and traditional backstepping controllers are

implemented in this case. In the next step, we implement the passive controller when

the valve spool is spinning, and then use the VVDP to drive an orifice load.

5.7.1 Axial motion only

Both the basic backstepping controller Eqn. (5.40) and the passive backstepping con-

troller Eqn. (5.37) were experimentally implemented on the linear positioning of the

valve spool, while the spool is not spinning. The bulk modulus was estimated us-

ing Yu’s model [88] assuming a 10% air entrainment. The supply pressure was set at

190Psi.
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Figure 5.6: Trajectory tracking performances using the two controllers on a filtered
trapezoidal trajectory corresponding to a full range duty variation in 50ms

First, the two controllers are compared on tracking a filtered trapezoidal trajectory

as shown in Fig. 5.6. Each controller was tuned to the best of our effort. While the

best tuned control performances are similar, the basic backstepping controller requires

significantly higher gains than the passivity based control as shown in Table 5.1, and it
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is more sensitive to measurement noise.

Table 5.1: Feedback gains using two approaches

λp Kp Kv λ2 λ3

Basic bkstp 50 550 45 3× 10−12 4× 10−10

Passivity 50 55 4 n/a 4× 10−10

Next, we investigate the benefits of the extra control gain λ2 available in the basic

backstepping controller in Eqn. (5.40) when the velocity measurement is corrupted. To

wit, a 1Hz first order low pass filter is applied to the velocity measurement and a

5Hz sinusoidal trajectory is being tracked. Control gains similar to those in Table 5.1

are applied to both controllers, and a range of λ2 is applied to the basic backstepping

controller.
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Figure 5.7: Effect of λ2 on the trajectory tracking performance in the presence of
corrupted velocity measurement

Figure 5.7 shows that the tracking error for the basic backstepping controller is

minimized when λ2 ≈ 3 × 10−12 and is slightly worse than that of the passivity based

control. This is expected since in Eqn. (5.40), velocity measurement error would corrupt

the first term ẋ when λ2 is too large, and the second term ev when λ2 is too small.

It is insensitive to the velocity measurement noise as λ2 ≈ V0+Ax
βP , because the basic

backstepping controller approximates the passivity based controller.
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5.7.2 Axial positioning using estimation

The external driving mechanism and the passivity based controller for stabilizing the

valve spool axial position are implemented experimentally. The spool is driven to rotate

at a constant angular velocity of 22.5Hz. The spool axial position is measured by a set

of optical sensors, and the measurement is corrupted by a periodic noise. The VVDP

drives a constant orifice load of 400psi in this experiment.

Feeding back the correct spool axial position stabilizes the spool at a fixed axial

position as shown in Fig. 5.8. This can be further reflected from the valve pressure

profile, as shown in Fig. 5.9. Since the load is an orifice, the valve load pressure varies

with the load flow, following the orifice equation. If the valve spool oscillates in the

axial direction, the duty ratio and the load flow will vary, and correspondingly the valve

load pressure will vary. A stabilized load pressure at 400Psi shows that the valve spool

axial position is stabilized.
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Figure 5.8: Stabilization of spool axial position in the presence of periodic measurement
noise
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Figure 5.9: Valve inlet and load pressure

5.8 Summary

In this chapter, a different valve spool axial positioning system was proposed. Consid-

ering the actuation chamber pressure dynamics, a passivity based nonlinear controller

was proposed to achieve the spool trajectory tracking. The controller storage function

regarding pressure tracking was obtained from the compressibility energy of the fluid in

the actuator. Compared with the traditional basic backstepping controller, the passive

one maintains the essential nonlinearities associated with the varying chamber volume

and the possibly uncertain bulk modulus for the stabilizing term, thus, resulting in a

more robust and better tracking performance controller. This passivity based control

strategy can be applied to the positioning of other hydraulic actuators.

Another contribution of this work is the observability investigation of the positioning

system augmented with the structured noise. This analysis can be extended to the

system with periodic measurement noise. We set up the condition to determine the

observability of the augmented system, and built an estimator for the true spool axial

position and velocity.
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In a linear system where the estimator and the controller can be designed separately,

it is safe to feed back the estimation. Both the estimation error and the tracking error

can converge to zero. However, this nice property does not apply to nonlinear systems.

The effectiveness of implementing the passive controller with estimation is considered

via an augmented Lyapunov function. By properly designing the estimator, so that

the estimator error converges fast, the trajectory tracking error can converge to zero

exponentially.



Chapter 6

Direct displacement control of

hydraulic actuators using a

multi-mode nonlinear controller

6.1 Introduction

In this chapter, the VVDP will be utilized as a variable flow source in a displacement

control circuit to drive the motion of a hydraulic actuator. While the rotary on/off valve

concept can be extended to achieve a virtually variable pump/motor (VVDPM)[79][92],

here we consider only the VVDP which can only function as a pump. It is because

the VVDP cannot go “over-center” to provide negative displacements, like a swash-

plate pump. In order to provide the control authority for four quadrant operation of

an actuator, a proportional valve and a directional valve are utilized together with the

VVDP in the circuit.

The proposed direct displacement control open circuit is shown in Fig. 6.1. The

circuit consists of a variable displacement pump, a 4-way directional valve, and a pro-

portional valve. The 4-way directional valve is operated in an open-loop manner, so no

valve position feedback is required. This valve is utilized to switch the flow direction,

and it remains fully open during operation to reduce throttling loss. In this circuit,

no charge pump or accumulator is required on the return line to maintain the return

129
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chamber pressure; instead, a one-way proportional valve is introduced on the return line

to provide the back pressure via throttling flow control.

Figure 6.1: Direct displacement control open circuit

Comparing valve control with pump displacement control, throttling valves are typ-

ically faster but much less efficient, while variable displacement pumps are slower but

more efficient. In our circuit, a key feature is that control effort is distributed optimally

between the VVDP and the throttling valve. This enables the circuit to provide both

good control performance and low throttling loss operations. To reduce the throttling

loss, the ideal operation of the throttling valve’s is to have a large mean opening area

superimposed by a small varying area to provide high control bandwidth. The VVDP

provides the rest of the control effort, and its temporal flow trajectory should be of low

frequency. In order to achieve a balanced control distribution between the VVDP and

the valve, a novel model is proposed to account for the control effort’s dynamics, so that

a routine estimation approach can be applied to determine the optimal control efforts

of the VVDP and the throttling valve in real time. This novel model approximates the

dynamics of the VVDP as a first order system with process noise to accommodate its

slow dynamics. The combined control effort is treated as a “measurement” signal with a

measurement noise, and the measurement noise accounts for the control effort provided

from the proportional valve. With this novel first order model, a typical deterministic

Kalman filter can be constructed to estimate the state - “pump control effort” from the

noisy measurement “total control effort” in real time.

Since the VVDP and the throttling valve can be operated independently, in addition
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to achieving accurate actuator position tracking, this hydraulic circuit can also prevent

cavitation and over pressure in the actuator chambers. Depending on the chambers’

pressure, different control modes are defined, and the control objectives of the VVDP

and the throttling valve vary accordingly.

For the rest of this chapter, both the actuator’s dynamics and the pressure dynamics

when the directional valve is commanded to different positions will be presented in

section 6.2. In section 6.3, a passivity based nonlinear controller will be developed

to define the total control effort, which is targeted at driving the hydraulic actuator to

accurately track a pre-defined trajectory. The novel model to capture the control efforts’

bandwidth, and the estimator to determine the distribution of the control effort between

the VVDP and the throttling valve will be discussed in section 6.4. Experimental

validation of the proposed hydraulic circuit and the control approach will be presented

in section 6.5. Finally, some concluding remarks and the future work will be covered in

section 6.6.

6.2 System dynamics

For modeling purposes in this work, the inertial dynamics of the actuator, and the

pressure dynamics inside the actuator chambers are considered. The dynamics of the

proportional throttling valve are ignored, and the high frequency dynamics of the di-

rectional valve is accounted for in the process noise.

The hydraulic actuator and the load are modeled as a mass acted upon by the

pressure forces from the two actuator chambers, the linear viscous friction force, and

the load force:

mẍ = P1A1 − P2A2 − bẋ+ FL + d (6.1)

where m is the mass of the cylinder rod, and x is the position of the cylinder rod and

the load inertia. A1 and A2 are the areas of the cylinder cap end and the rod end,

b is the viscous friction coefficient, FL is the carrying load force, and d represents the

unknown disturbance force.

As shown in Fig. 6.2, the circuit has two configurations, depending on the operation

of the directional valve. The VVDP either provides flow into the head chamber of the

cylinder or in the rod chamber. Q denotes the flow rate entering the meter-in chamber.
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Figure 6.2: Hydraulic configurations for different directional valve operations: (a) is the
circuit when the head side of the actuator is connected to the VVDP; (b) is the circuit
when the rod side of the actuator is connected to the VVDP.
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V1 denotes the dead volume inside the cylinder on the head chamber when the actuator

position is x = 0 and the volume inside the hose between the VVDP and the head

chamber. V2 denotes the dead volume on the rod side and the hose volume between

the rod chamber and the the throttling valve when the actuator stays at the same

position x = 0. The throttling valve on the return line is modeled as an orifice. The

orifice coefficient is defined as Kv = CdAmax
√

2
ρ , with Amax being the maximum valve

opening area, and u ∈ [0, 1] being the normalized throttling valve command. ρ is the

fluid density, and Cd = 0.6 is the coefficient of discharge. The two positions of the

directional valve are denoted by ud = {−1, 1}, and the respective circuits are shown

in Fig. 6.2(a) and Fig. 6.2(b). The flow crossing the throttling valve follows an orifice

equation:

when ud = 1 (Fig. 6.2(a)):

Qvalve = uKv

√
(|P2 − Pt|)sign(P2 − Pt)

when ud = −1 (Fig. 6.2(b)):

Qvalve = uKv

√
(|P1 − Pt|)sign(P1 − Pt) (6.2)

With Pt denoting the tank pressure, the chamber pressure dynamics are modeled as:

when ud = 1 (Fig. 6.2(a)):

Ṗ1 =
β

V1 +A1x
(Q−A1ẋ) (6.3a)

Ṗ2 =
β

V2 −A2x
(A2ẋ− uKv

√
|P2 − Pt|sign(P2 − Pt))

(6.3b)

when ud = −1 (Fig. 6.2(b)):

Ṗ1 =
β

V1 +A1x
(−A1ẋ− uKv

√
|P1 − Pt|sign(P1 − Pt))

(6.3c)

Ṗ2 =
β

V2 −A2x
(A2ẋ+Q) (6.3d)

In this modeling, the fluid bulk modulus β is assumed to be constant. The control

inputs include the directional valve input ud ∈ [−1, 1], which is a discrete binary when

being powered, the proportional valve input u, which has a fast control bandwidth, and

the variable flow Q, which has a slow control bandwidth.
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6.3 Passivity based controller

The motion control objective is for the actuator’s position x(t) to track a reference

trajectory xd(t). Introducing one variable as FH = P1A1−P2A2 to model the hydraulic

force acting on the actuator, the cylinder dynamics become:

mẍ =FH − bẋ+ FL + d

ḞH =Utotal − β
(

A2
1

V1 +A1x
+

A2
2

V2 −A2x

)
︸ ︷︷ ︸

L(x)

ẋ (6.4)

with Utotal = H(x, ud) ·Q+G(x, ud)Ψ(P1, P2, ud) · u

H(x, ud) =


βA1

V1+A1x
ud = 1

−βA2

V2−A2x
ud = −1

G(x, ud) =


βA2

V2−A2x
ud = 1

−βA1

V1+A1x
ud = −1

Ψ(P1, P2, ud) =

Kv

√
|P2 − Pt|sign(P2 − Pt) ud = 1

Kv

√
|P1 − Pt|sign(P1 − Pt) ud = −1

(6.5)

This section focuses on designing a Utotal (Eqn. (6.4)) to achieve cylinder trajectory

tracking. First, a desired compensation control law (DCCL) [89] is developed for cylin-

der trajectory tracking from the mechanical side in sec 6.3.1. Secondly, an h(·) function

is proposed to support the design of a pressure (hydraulic force) tracking error based

compressible energy storage function in sec 6.3.2 to account for the pressure tracking

error. Finally, both effects are considered together to develop Utotal in sec 6.3.3.

6.3.1 Trajectory tracking using a DCCL controller

Assuming xd(t), ẋd(t), ẍd(t), and
...
x d(t) are available and smooth, then following the

typical mechanical robot motion controller design procedure, a DCCL controller was

developed to accomplish cylinder position tracking. Let e = x − xd, and define the

following reference velocity r, and the reference velocity error ev:

r = ẋd − λe; ev = ẋ− r = ė+ λe (6.6)
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with λ > 0, the dynamics of ev become:

mėv = −m(ẍd − λė)− b(ė+ ẋd) + FH + FL + d (6.7)

The Lyapunov function considering the position and velocity tracking errors is de-

fined as:

Wmech =
1

2
me2

v +
1

2
Kpe

2 (6.8)

An ideal hydraulic force Fv is proposed as:

Fv = m(ẍd − λė) + b(ė+ ẋd)− FL −Kvev −Kpe (6.9)

With this hydraulic force, the time derivative of Wmech becomes:

Ẇmech = −Kve
2
v − λKpe

2 − evd+ evF̃ (6.10)

where F̃ = FH − Fv. Kv and Kp are positive constants.

6.3.2 Pressure error storage function

The Lyapunov function defined in Eqn. (6.8) needs to be augmented with the pressure

error (or hydraulic force error). This will be used for controlling the pressure and the

actuator velocity according to some desired reference trajectories. For a single ended

double acting hydraulic actuator, a storage function is proposed in terms of pressure

error (or hydraulic force error) instead of for the individual pressures. The storage

function is formulated via a proposed monotonic function h(·) : R 7→ R[93][57][58]1 .

h(σ) := A1 ln(V1 +A1σ) +A2 ln(V2 −A2σ) (6.11)

Let FH = A1P1 − A2P2, x be the current actuator force and position, and Fv be the

desired actuator force. Define xfd and x̄ from:

h(x) = h(x̄)− FH
β
, h(xfd) = h(x̄)− Fv

β
(6.12)

1 The logic of defining h(·) is based on the course notes from a course at the University of Minnesota
ME8287[94]. Topics in Control: Passivity and Control of Interactive Mechanical and Fluid Powered
Systems
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Consider the pressure error storage function:

WF = β

∫ x

xfd

[h(σ)− h(xfd)] dσ (6.13)

which is derived considering the fluid compressible energy in both chambers. Recall the

definitions in Eqn. (6.7) and Eqn. (6.9), ẆF becomes

d

dt
WF =β [h(x)− h(xfd)] ẋ− β

∫ x

xfd

ḣ(xfd)dσ

=− F̃ ẋ−
(
Utotal − Ḟv

)
(x− xfd) (6.14)

Notice that h(·) is continuous and monotonic, from the mean value theorem:

h(x)− h(xfd) = L(α)(x− xfd), for α ∈ (xfd, x) (6.15)

where L(·) is defined in Eqn. (6.4). Substituting this relationship into Eqn. (6.14), ẆF

is manipulated into:

ẆF = −F̃ ẋ+
F̃

βL(α)

(
Utotal − Ḟv

)
(6.16)

6.3.3 Passive control law

Now augment Wmech defined in Eqn. (6.8) with WF defined in Eqn. (6.13) to define the

total energy storage function:

Wtotal =
1

2
me2

v +
1

2
Kpe

2 + β

∫ x

xfd

[h(σ)− h(xfd)] dσ (6.17)

The time derivative Ẇtotal becomes:

Ẇtotal = −Kve
2
v − λKpe

2 − evd− rF̃ +
F̃

βL(α)

(
Utotal − Ḟv

)
(6.18)

Propose a control law U∗total as:

U∗total = βL(x)r + Ḟv − λ3βF̃ + urobβ (6.19)

Ẇtotal becomes:

Ẇtotal = −Kve
2
v − λKpe

2 − evd−
λ3

L(α)
F̃ 2 +

F̃ (L̃r + urob)

L(α)
(6.20)
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where L̃ = L(x) − L(α). Analysis in Ref [95] has shown that L̃ is bounded by F̃ as:

|L̃| ≤ γF |F̃ |, for some finite positive γF . Therefore, by selecting urob = −KrobβF̃ , with

a large feedback gain Krob > γF , Ẇtotal becomes:

Ẇtotal ≤ −Kve
2
v − λKpe

2 − evd− λnF̃ 2

with λn =
λ3

L(α)
+ (Krob − γF ) > 0 (6.21)

The Lyapunov function Wtotal is positive definite in e, ev, and P̃ . When d = 0,

the time derivative of the Lyapunov function Ẇtotal is negative definite in e, ev, and P̃ .

Therefore, the tracking errors e, ev, and P̃ will converge to zero exponentially. When d

is bounded, by selecting Kv to be large enough, all the tracking errors can converge to

an arbitrarily small value, as long as the control efforts do not saturate [95].

6.4 Control effort distribution

The previous section has defined the desired total control effort U∗total in Eqn. (6.19).

This section will discuss how to distribute the three control inputs Q, u, and ud to

achieve several objectives:

1. The trajectory tracking performance is guaranteed:

U∗total(t) :=H(x, ud) ·Q+G(x, ud)Ψ(P1, P2, ud) · u

(6.22)

2. The pressure in both actuator chambers stays bounded, with the upper bound

denoted by P i, the lower bound denoted by P i, and the tank pressure denoted by

Pt:

P i ≥ Pi(t) ≥ P i > Pt, i ∈ 1, 2 (6.23)

3. The usage of the the proportional valve u is minimized to reduce the throttling

loss.

4. In Eqn. (6.22), the control effort U∗total is achieved in the following manner:

G(x, ud)Ψ(P1, P2, ud)· u is used to track the high frequency component of U∗total(t),

and H(x, ud) ·Q is used to track the low frequency component of U∗total.
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Recalling the pressure dynamics defined in Eqn. 6.3a-6.3d, these can be re-written

as:

when ud = 1 :

Ṗ1 =
β

V1 +A1x
(Q−A1ẋ) (6.24a)

Ṗ2 =
β

V2 −A2x
(A2ẋ−Ψ(P1, P2, ud)u) (6.24b)

when ud = −1 :

Ṗ1 =
β

V1 +A1x
(−A1ẋ−Ψ(P1, P2, ud)u) (6.24c)

Ṗ2 =
β

V2 −A2x
(A2ẋ+Q) (6.24d)

6.4.1 Directional valve

As defined in Eqn. (6.5), the signs of H(x, ud) and G(x, ud) are consistent with the sign

of ud. If the pressures in both chambers stay above atmospheric pressure, Ψ(P1, P2, ud)

is positive. Therefore, ud is determined by the sign of U∗total:

ud(t) =

1 when U∗total ≥ 0

−1 when U∗total < 0
(6.25)

6.4.2 Flow Q vs. throttling valve u

To distribute the total control efforts between Q and u after determining the directional

valve position, two factors are considered. First, to minimize the throttling loss, the

usage of the proportional valve u should be minimized. In other words, it is preferred to

make u as close to 1 as possible. Second, Q and u have different control bandwidths, and

it is desired to track the high frequency component of U∗total(t) using u, and to track the

low frequency component of U∗total using Q. To achieve this control effort distribution,

the following method is proposed.

Assume the dynamics of the desired pump flow Qdes follows:

Q̇des = −λQQdes + λQ(w + Q̄des)

U∗total = H ·Qdes +GΨ · ūdes +GΨ · ũdes (6.26)
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where Q̄des and ūest are some pre-defined nominal values of Qdes and udes. Here, it

is desired to make ūdes as close to 1 as possible, but ū is constrained by the variation

of ũdes, because 0 ≤ udes = ûdes + ũdes ≤ 1. A similar argument can be applied to

Qdes. Since the flow from the variable displacement pump is always greater than 0, a

positive nominal flow Q̄des is introduced to account for this effect so that the process

noise w of the desired pump flow dynamics can be modeled as zero-mean white noise.

λQ is the time constant of the desired pump flow dynamics, which quantifies the control

bandwidth of the desired pump flow.

The second equation in Eqn. (6.26) is manipulated into:

U∗total −GΨūdes
GΨ︸ ︷︷ ︸
ν

=
H

GΨ
Qdes + ũdes (6.27)

where ν plays the role of a measurement, and ũdes plays the role of a measurement

noise. Here ũdes is modeled as zero-mean white noise.

Next, Qest is estimated by considering the pump flow dynamics in Eqn. (6.26) and

the “measurement” ν, while minimizing the variation of w and ũdes. The variance of

the process noise w is denoted by QJ , and the variance of the measurement noise ũdes

is denoted by RJ . We define the estimator as:

˙̂
Qdes = −λQQ̂des + Lest

(
ν − H

GΨ
Q̂est

)
(6.28)

where Lest is the estimator gain which is computed by minimizing the following objective

function:

J =
1

2

∫ tf

t0

(wQ−1
J w + ũdesR

−1
J ũdes) dτ (6.29)

This objective function is considered with respect to the plant dynamics and output

equation defined in Eqn. (6.26) and Eqn. (6.27):

Q̇des = −λQQdes + λQ(w + Q̄des)

ν =
H

GΨ
Qdes + ũdes (6.30)

With this objective function, the design of the estimator feedback gain Lest follows the
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design of a typical deterministic Kalman filter[62]:

Ṗe = −2λQPe + λ2
QqJ −

1

RJ

(
H

GΨ

)2

P 2
e

Lest =
Pe(t)H

GΨRJ
(6.31)

Q̂est(t) is the desired flow we would like the variable displacement pump output flow

Q to track. To re-produce U∗total, the desired proportional valve opening fraction is:

udes = ūdes + ũdes

=
U∗total −H · Q̂est

GΨ
(6.32)

Note that the pump flow Q̂est in Eqn. (6.28) and the throttling valve opening udes in

Eqn. (6.32) are feasible only when the pressure in both chambers stay bounded. If the

pressure is higher (or lower) than the pressure bound defined in Eqn. (6.23), Q̂est and

udes needs to be adjusted to account for the pressure compensation. Now the different

operational modes can be defined to deal with different pressure conditions.

The chamber that is connected to the variable displacement pump is denoted as

the supply chamber and the chamber that is connected to the proportional valve is

denoted as the return chamber. Depending on the chamber pressure conditions, the

corresponding operation modes can be defined as shown in Fig. 6.3. Besides position

tracking, the control logic can also prevent chamber pressure cavitation and the chamber

pressure being too high. Notice that the case where pressures in both chambers are lower

than the lower threshold or higher than the upper threshold is not feasible if the system

operates normally, so it will not be included in the modes.

Mode 1: both chamber pressures stay bounded.

This mode applies to the cases when no pressure constraint is active. U∗total is reproduced

from Eqn. (6.28) and Eqn. (6.32):

Q = Q̂des

u = udes (6.33)
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Figure 6.3: Control modes defined when P1 refers to the supply chamber pressure and
P2 refers to the return chamber pressure

Mode 2: the supply chamber pressure is lower than P i.

In this mode, the pressure in the supply chamber is low, and has the potential to

cavitate. From Eqn. (6.24a) and Eqn. (6.24c), the variable flow source Q will be used to

increase the pressure. From the definition of U∗total, setting Q > A1ẋ when U∗total > 0, or

setting Q < −A2ẋ when U∗total < 0 will increase the meter-in chamber pressure. After

determining the control effort of Q, based on Eqn. (6.22), the throttling valve u will be

used for trajectory tracking. The control laws are:

Q =

{
A1ẋ+ ξQ|A1ẋ|, If U∗total > 0

−A2ẋ+ ξQ|A2ẋ|, If U∗total < 0

u =
U∗total −H(x, ud)Q

G(x, ud)Ψ(P1, P2, ud)
(6.34)

with ξQ > 0. Notice that this imposes a lower bound on Q (or an upper bound on u).

If the upper bound on u is greater than 1, we can set u = 1, and recalculate Q.

Mode 2.5: the supply chamber pressure is between P i and P i + ∆Pi.

This mode provides a smooth transition between Mode 1 and Mode 2. The flow com-

mand is a weighted sum of the flow command from mode 1 and the flow command from
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mode 2. The weight is determined by the chamber pressure.

γ =

{
P1(t)−P 1

∆P1
, If U∗total > 0

P2(t)−P 2
∆P2

, If U∗total < 0

Q = γQ1 + (1− γ)Q2

u =
U∗total −H(x, ud)Q

G(x, ud)Ψ(P1, P2, ud)
(6.35)

with Q1 calculated from Eqn. (6.33), and Q2 calculated from Eqn. (6.34).

Mode 3: the return chamber pressure is lower than P i.

In this mode the pressure in the return chamber is low. To prevent cavitation from

this chamber, considering the pressure dynamics in Eqn. (6.24b) and Eqn. (6.24d),

the throttling valve will be used to increase the chamber pressure when it reaches the

threshold.

u =


A2ẋ−ξu|A2ẋ|
Ψ(P1,P2,ud) , If U∗total > 0
−A1ẋ−ξu|A1ẋ|

Ψ(P1,P2,ud) , If U∗total < 0

Q =
U∗total −G(x, ud)Ψ(P1, P2, ud)u

H(xp, ud)
(6.36)

with ξu > 0. Similar to Mode 2, this control law imposes a lower bound on Q. If the

bound is greater than Qmax, we can set Q = Qmax, and recalculate u.

Mode 3.5: the return chamber pressure is between P i and P i + ∆Pi.

This mode provides a smooth transition on the control effort between mode 1 and mode

3, and the control laws are defined as:

γ =

{
P2(t)−P 2

∆P2
, If U∗total > 0

P1(t)−P 1
∆P1

, If U∗total < 0

u = γu1 + (1− γ)u2

Q =
U∗total −G(x, ud)Ψ(P1, P2, ud)u

H(x, ud)
(6.37)

with u1 calculated from Eqn. (6.33), and u2 calculated from Eqn. (6.34).
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Mode 4: the supply chamber pressure is higher than P i

In this case, the pump would reduce the supply chamber pressure, and the control laws

are:

Q =

{
A1ẋ− ζQ|A1ẋ|, If U∗total > 0

−A2ẋ− ζQ|A2ẋ|, If U∗total < 0

u =
U∗total −H(x, ud)Q

G(x, ud)Ψ(P1, P2, ud)
(6.38)

with ζ > 0. This imposes an upper bound on Q. If the upper bound on Q is greater

than the maximum flow that the variable flow pump can provide, we will set Q = Qmax,

and recalculate u.

Mode 4.5: the supply chamber pressure is between P i and P i −∆Pi.

A transition mode is defined between mode 1 and mode 4 to smooth the transition.

γ =

{
P 1−P1(t))

∆P1
, If U∗total > 0

P 2−P2(t)
∆P2

, If U∗total < 0

Q = γQ1 + (1− γ)Q2

u =
U∗total −H(x, ud)Q

G(x, ud)Ψ(P1, P2, ud)
(6.39)

with Q1 calculated from Eqn. (6.33), and Q2 calculated from Eqn. (6.38).

Mode 5: the return chamber pressure is higher than P i.

In this mode the pressure in the return chamber is high, and the throttling valve is used

to reduce the chamber pressure.

u =


A2ẋ+ζu|A2ẋ|
Ψ(P1,P2,ud) , If U∗total > 0
−A1ẋ+ζu|A1ẋ|

Ψ(P1,P2,ud) , If U∗total < 0

Q =
U∗total −G(x, ud)Ψ(P1, P2, ud)u

H(x, ud)
(6.40)

with ζu > 1. This control law imposes an upper bound on u. If the bound is greater

than 1, u = 1 is implemented.
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Mode 5.5: the return chamber pressure is between P i and P i −∆Pi.

This mode provides a smooth transition on the control effort between mode 1 and mode

5, and the control laws are defined as:

γ =

{
P 2−P2(t)

∆P2
, If U∗total > 0

P 1−P1(t)
∆P1

, If U∗total < 0

u = γu1 + (1− γ)u2

Q =
U∗total −G(x, ud)Ψ(P1, P2, ud)u

H(x, ud)
(6.41)

with u1 calculated from Eqn. (6.33), and u2 calculated from Eqn. (6.40).

Continuity

In order to achieve trajectory tracking, and to regulate both chamber pressures operating

in the normal range without being too high or cavitating, only five control modes are

required (Mode 1,2,3,4,5). However, the control efforts Q and u defined in these five

modes are not continuous. This may cause chattering on the mode selection when the

pressures are near the bounds. The valves or the variable flow source needs to switch

between states fast, which makes the control strategy infeasible to implement in practice.

To overcome the discontinuity, four more modes were introduced: Mode 2.5, 3.5, 4.5

and 5.5. These modes provide transition margins, and the pressure weighted control

laws provide a smooth transition between mode 1 and the other four modes.

6.5 Experimental results

In the experimental set up, instead of implementing a variable displacement pump,

the virtually variable displacement pump (VVDP) accomplished using the rotary valve

was used as the variable flow source[3]. To briefly recap the operational principle of

the VVDP, figure 6.4 shows the hydraulic configuration of the VVDP. A constant flow

source (a fixed displacement pump) is pulse width modulated (PWMed) by a high speed

on/off valve, and the average flow feeding to load is smoothed out by an accumulator

(or the hoses and the connectors). By controlling the PWM duty ratio, the mean flow

going to the load branch can be adjusted. Since the on/off valve has low loss in either
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on or off states, this approach potentially can reduce throttling loss and increase the

system efficiency.

Figure 6.4: Software enabled VVDP circuit

The load being driven is a hydraulic cylinder. The cylinder has a cap area of

20.26cm2 and a rod area of 10.77cm2. The control objective is to regulate the cylinder

position to track a pre-defined trajectory. The reference trajectory is a triangle wave,

which corresponds to a stroke traveling of 21.6cm within 4sec.

The cylinder position tracking results are shown in Fig. 6.5 and Fig. 6.6. With the

proposed nonlinear controller, the actuator can achieve a good trajectory tracking, with

a tracking error less than 0.5cm. Both chamber pressures stay within bounds, and the

controller operates in mode 1, without activating any of the pressure regulation modes.

Next, the control efforts are investigated to achieve the above cylinder motion reg-

ulation results. The directional valve command, the proportional valve command, and

the supply flow command are shown in Fig. 6.7. The directional valve has a clear switch-

ing instead of chattering in between the two positions. The proportional valve input

has a high bandwidth, and the pump flow command has a low bandwidth. In this ex-

periment, the Kalman filter presented in sec 6.4.2 produces a “smooth” flow command

with low frequency component, and the high frequency component of U∗total is realized

via the proportional valve. ūdes is set to be 0.8, which means the nominal opening of
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Figure 6.5: Actuator position reference and the tracking error
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the proportional valve is 80%. This threshold is established based on a trial and error

exercise to meet the requirements that Q and u are not saturated. Except for the satu-

ration constraints, the proportional valve is controlled to be open as much as possible.

The distribution of U∗total between Q and u is shown in in Fig. 6.8. Since the VVDP

cannot function as a hydraulic motor, no negative flow can be provided, and therefore

the lowest bound of Q is 0lpm. When Q = 0lpm, all the control action is accomplished

via the throttling valve.
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Figure 6.7: Control efforts of the directional valve, the throttling valve, and the VVDP
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6.6 Summary

In this chapter, the VVDP accomplished using the rotary valve is utilized in a direct

displacement control circuit to drive the motion of a hydraulic cylinder. The VVDP

provides a variable flow together with a directional valve and a throttling valve to

regulate the cylinder motion in a cooperative manner.

A passivity based multi-mode controller is developed for cylinder motion control.

Compared with the passive controller presented in Chapter 5, which deals only with

a single chamber hydraulic actuator, this chapter focuses on a two chamber hydraulic

cylinder with the assumption of a constant bulk modulus instead of a pressure dependent

bulk modulus. The storage function presented in section 6.3.2 is formulated using the

hydraulic force. This unique storage function can be augmented with the passivity

based Lyapunov function derived for the mechanical part (cylinder position, velocity)

to derive a passive control law.

Another highlight of the control strategy is the novel way to distribute different con-

trol efforts that are operated at different bandwidths. The circuit provides three control

actuators, including a VVDP to provide a variable pump flow, a proportional valve to

provide a variable orifice opening area, and a directional valve to switch the flow direc-

tion. A novel control effort distribution method is developed, which can distribute the

total control effort between the VVDP and the proportional valve, so that the VVDP
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output flow follows a low frequency trajectory, and the throttling valve opening area

follows a high frequency trajectory with normally large opening. The approach compen-

sates for the difference in control bandwidths between the VVDP and the proportional

valve, while minimizing the valve throttling loss.

The proposed direct displacement circuit and the controller are implemented exper-

imentally. The experimental result proves the feasibility and the effectiveness of the

hydraulic circuit configuration and the control strategy.



Chapter 7

Conclusion and Future work

In this chapter, section 7.1 provides a summary of the thesis presented in the previous

chapters, followed by the contributions made in this research work in sec 7.2. This

chapter concludes with a proposal for future research paths.

7.1 Summary

High speed on/off valve enabled digital hydraulics have the potential to be competitive

to current hydraulic system architectures, because digital hydraulics combine the high

efficiency of variable displacement units and the good control bandwidth of the valve

controlled systems. A novel high speed 3-way rotary on/off valve has been proposed as

the enabling technology to build different digital hydraulic architectures. This thesis

supports the modeling, control, and implementation of the rotary valve.

First, the 3-way rotary on/off valve implemented in a VVDP circuit needs to be

optimized. The optimization objective is to find the valve geometric parameters and its

operating conditions, so that the main valve’s operation losses can be minimized. Given

the complex flow path inside the valve, existing analytical equations are not sufficient to

model the valve losses as explicit functions of the valve’s key geometric parameters and

the valve’s operating conditions (i.e. flow, on/off frequency, etc). CFD is utilized to aid

the valve loss modeling, and the models can further be fit into the valve optimization

framework. CFD is also utilized to guide the design of a smooth flow path inside the

valve.

150
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Second, the self-spinning feature of the rotary valve works best with a non-contact

sensor for measuring the spool’s angular position to maintain the simple sealing struc-

ture. The limitations on the sensor size and the sensing range lead to a low resolution

optical sensor, which produces an angular position signal at irregular time intervals. An

event based Kalman filter was developed, which can estimate the spool angular position

and velocity accurately from the irregular measurement events.

Third, the sensing approach of using a set of optical sensors was also applied to

measure the spool’s axial position. The spool’s rotary motion introduces a periodic

noise on the measurement of the spool’s axial position. A controller which directly feeds

back the noisy measurement will cause the spool’s position to oscillate. The key solution

to eliminating the oscillation is to distinguish the noise from the spool’s position. A

periodic time time-varying model is proposed to capture the structured noise’s dynamics.

This model can accurately reproduce the noise with a low order model. Augmenting

the noise model with the dynamic model of the spool’s axial position, a robust observer

can be developed to estimate both the spool’s axial position and the periodic noise.

Fourth, a passivity based nonlinear controller considering the spool chamber pressure

dynamics was developed for controlling the spool’s axial position. The observability of

the system states (including the spool’s axial position and velocity) from the corrupted

spool position measurement was investigated. A Kalman filter was selected as the high

gain observer to estimate the spool position and velocity. This information was fed back

to the passive nonlinear controller to regulate the spool axial position.

Last, the VVDP was utilized in a direct displacement control circuit. A multi-mode

nonlinear controller was developed to maneuver a double chamber single ended linear

hydraulic actuator in an open circuit. The flow fed into the actuator supply chamber

was directly regulated using the VVDP. A throttling valve was utilized between the

return chamber and the tank. The throttling valve was mainly used to increase the

control bandwidth, because the valve can respond faster than the VVDP. In addition,

the throttling valve was utilized to manipulate the return chamber pressure when it was

too low or too high. The throttling valve was controlled to be as open as possible to

minimize the throttling loss. The accurate position control of the hydraulic actuator

was achieved in an energy efficient manner.

Here is a list of my publications which are included in this thesis:
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7.2 Contributions

The contributions of the work described in this dissertation are the following:

• In the CFD based modeling of hydraulic valves, a semi-empirical formula to predict

the valve spool pressure drop was developed. This approach can be applied to

analyze similar types of valves.

• We developed an event based Kalman filter to accurately estimate the states of a

system given a measurement detected at irregular time instants, and successfully

implemented it experimentally. This Kalman filter estimator can be applied to

systems with slow sampling time and/or with low resolution sensors to increase

the estimation accuracy.
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• A low order model to cope with the system was proposed where the measurement

was corrupted with a periodic structured noise. An augmented system combining

the original system dynamics and the structured noise model was considered. The

condition for the augmented system to be observable was defined.

• A passivity based nonlinear controller was implemented experimentally to accu-

rately manipulate a linear hydraulic actuator. Some of the states utilized in the

controller come from a high gain observer. The combined observer-controller was

proved both theoretically and experimentally to be effective on regulating the

observation errors and the tracking errors to zero.

• A direct displacement control open circuit and a corresponding multi-mode non-

linear controller was proposed for the positioning of a single degree-of-freedom

hydraulic actuator. This hydraulic architecture can achieve good position track-

ing, while reducing the usage of throttling valves to improve system efficiency. The

control efforts and the system states were proved to be continuous and bounded.

7.3 Further work

The research conducted in this dissertation can be continued in the following areas.

Rotary sensor threshold adaptation

As presented in chapter 3, the spool rotary position is sensed via a set of low resolution

optical sensors. The analog spool rotary position measurement from the optical encoder

needs to be discretized to generate the codewheel sector transition event. A threshold is

required to discretize the analog position measurement signal. Chapter 3 has discussed

the event detection time error due to the bias on the threshold estimate. The threshold

estimate error was assumed to be of zero mean. If the estimation error is not zero mean,

the angular position measurement error will not be a zero mean noise. Instead, it will

have a certain repeated pattern. The threshold value needs to be adapted in real time.

Otherwise, the position error due to the threshold bias will not be zero mean, and the

estimation of the spool rotary position will have a bias.
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Figure 7.1: Angular position measurement error caused by the threshold bias

As shown in Fig. 7.1, we use ti to denote the time when the true code wheel edge

crossing event happens, and xi to denote the spool angular position at ti. We use

t̂i to denote the estimation of this event time with a bias threshold value, and x̂i to

denote the true spool angular position at t̂i. The detection time error is denoted as

ei = ti− t̂i. Due to the bias on the threshold value, the transition event which occurred

at ti was detected at t̂i. The true angular position at t̂i is x̂i, but the estimator treats

the measurement of the spool’s angular position of the spool as position is xi at t̂i. This

time error introduces a spool angular position measurement error. If the spool rotates

at a constant angular velocity, we can observe the following properties:

• the sum of the detection time error will add up to zero over one revolution,∑
ei = 0. This means that even if the threshold is biased, using the measure-

ment information over one revolution to estimate the spool angular velocity will

be unbiased.

• the detection time error switches signs for every measurement, i.e. e1 > 0, e2 < 0,

e3 > 0, and etc.
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One research topic we propose here is how to adapt the threshold in real time, so

that the estimate of the threshold converges to the true threshold. The framework as

shown in Fig. 7.2 is proposed. If the threshold value is a constant, or slowly varying,

and the spool angular velocity stays constant, or slowly varying, the average of the state

estimation can potentially be fed back to adjust the threshold. How to develop a robust

threshold update mechanism requires further research investigation.

������

���	
������ 
�	�����������
������

�	��������

����	���
�
�
���

����������

��������

��
�

Figure 7.2: Threshold Value Adaptation Framework

Sensor fusion

In the VVDP system, the inlet pressure is being pulse width modulated, and the inlet

pressure varies depending on whether the valve connects the inlet to load or to tank.

The inlet pressure exhibits a repeated pattern, and the pattern frequency is the same

as the valve PWM frequency. The PWM frequency is “N” times the spool angular

frequency, and “N” represents the PWM sections per valve spool rotation. In the

prototype VVDP system, N = 3. Therefore, the inlet pressure profile provides some

sensing information on the valve PWM frequency, which equivalently provides the valve

spool rotary frequency. In addition, the PWM valve duty ratio is originally defined based

on this valve feature, which is the time over one pulse width period when the inlet is

connected to the load branch. Therefore the duty ratio can be processed from the valve

inlet pressure. Due to the pressure dynamics, the duty ratio reflected from the inlet

pressure is slightly different from the “theoretical” duty ratio. Still, the inlet pressure

constitutes a secondary sensor to provide the duty ratio information, and equivalently

the valve spool axial position information. However, processing the duty ratio requires
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the collection of the valve inlet pressure over at least one PWM period, and therefore

this sensor signal is not a “continuous ” measurement signal. How to merge the pressure

and optical sensing information to increase the sensing precision is an interesting topic

for further research.

Introducing adaptive control to displacement control

The performance of the displacement controller discussed in chapter 6 can be improved

if the parameter adaptation approach is utilized to estimate the system parameters that

cannot be easily measured, or slowly vary on-line. In another research project [96], a

novel nonlinear function parameterization model was proposed for nonlinear adaptive

controller design. Applying this approach to the linear hydraulic actuator control prob-

lem, functions with unknown parameters appearing nonlinearly (for example, actuator

dead volume) can be re-parameterized linearly, which significantly simplifies the adap-

tive controller design. This approach has been successfully applied to the control of

a single linear hydraulic actuator powered by a constant pressure source [96]. How

to adopt it to the direct displacement control framework could be investigated in the

future.

Final words

On off valve based control of hydraulic systems has been studied and proved to be a

viable solution to realize both a low cost and a good control performance simultaneously.

The key enabling technology for this digital hydraulic architecture is a high speed on/off

valve. A novel high speed rotary 3-way on/off valve has been developed, and the research

work described in this script supports the development of the on/off valve itself, as well

as the development of utilizing the on/off valve in a virtually variable displacement

pump configuration. The actuation, sensing, and control algorithms developed here

can not only effectively facilitate the operation of the rotary valve, but they can also be

applied to the motion sensing and control of hydraulic actuators in broader applications.



References

[1] Perry Y Li, Cassie Y Li, and Thomas R Chase. Software enabled variable dis-

placement pumps. In ASME International Mechanical Engineering Congress and

Exposition, Orlando, FL, volume 12, pages 63–72, 2005.

[2] Petter Krus. On load sensing fluid power systems. Division of Fluid Power Control

Department of Mechanical Engineering, Linkoping University, Sweden, 1988.

[3] Haink C Tu, Michael B Rannow, Meng Wang, Perry Y Li, Thomas R Chase, and

James D Van de Ven. Design, modeling, and validation of a high-speed rotary

pulse-width-modulation on/off hydraulic valve. Journal of dynamic systems, mea-

surement, and control, 134(6), 2012. paper number: 061002.

[4] Matti Linjama, Mikko Huova, Pontus Boström, Arto Laamanen, Lauri Siivonen,
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Appendix A

Observability grammian

derivation

A.1 Observability grammian for system Eq.(A.1)

The augmented system defined in Eq.(A.1) is repeated here:

d

dt

[
xs

xd

]
︸ ︷︷ ︸
xaug

=

[
As 02×2k

02k×2 02k×2k

]
︸ ︷︷ ︸

Aaug

[
xs

xd

]
+

[
Bs

02k×1

]
︸ ︷︷ ︸
Baug

u

y =
[
1 0 Cd

]
︸ ︷︷ ︸

Caug

xaug (A.1)

With t0 = 0, define T = 2π
ω being the period, and the time interval being [0, T ], the

observability grammian is calculated as:

M(0, T ) =

∫ T

0
m(0, t)dt =

∫ T

0
ΦT(t)CT

aug(t)Caug(t)Φ(t)dt (A.2)
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with

m(0, t) =

φ2
11 φ11φ12 φ11 cosωt φ11 sinωt · · · φ11 cos kωt φ11 sin kωt

φ2
12 φ12 cosωt φ12 sinωt · · · φ12 cos kωt φ12 sin kωt

cos2 ωt cosωt sinωt cosωt cos 2ωt sinωt sin 2ωt · · ·
sin2 ωt sinωt cos 2ωt sinωt sin 2ωt · · ·

cos2 2ωt cos 2ωt sin 2ωt · · ·
sin2 2ωt · · ·

. . .


(A.3)

The upper left corner is determined by the plant dynamics only. Define γ =
√

K
m , the

elements are:

φ11 = cos γt; φ12 =
1

γ
sin γt; φ21 = −γ sin γt; φ22 = cos γt (A.4)

The calculation of M(0, T ) is the integration by element of m(0, t) from t = 0 to t = T .

Several observations from the lower right quadrant of the matrix m(0, t) include:

• given two distinct integers h ≥ 1, g ≥ 1,
∫ T

0 coshωt · cos gωtdt = 0,
∫ T

0 coshωt ·
sin gωtdt = 0,

∫ T
0 sinhωt · sin gωtdt = 0.

Proof. ∫ T

0
coshωt cos gωtdt =

∫ T

0

1

2
cos(h+ g)ωtdt+

∫ T

0

1

2
cos(h− g)ωtdt

=
1

2(h+ g)
sin(h+ g)ωt

∣∣∣∣T
0

+
1

2(h− g)
sin(h− g)ωt

∣∣∣∣T
0

= 0 (A.5)

Similar proofs apply to the other two cases.

• Given an integer h ≥ 1,
∫ T

0 cos2 hωtdt = T
2 , and

∫ T
0 sin2 hωtdt = T

2 .
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Proof.∫ T

0
cos2 hωtdt =

∫ T

0

1 + cos 2hωt

2
dt =

∫ T

0

1

2
dt+

1

2

∫ T

0
cos 2hωtdt =

T

2
(A.6)

∫ T

0
sin2 hωtdt =

∫ T

0

1− cos 2hωt

2
dt =

∫ T

0

1

2
dt− 1

2

∫ T

0
cos 2hωtdt =

T

2
(A.7)

Now we are ready to integrate m(0, t). Firstly, we consider the integration of the upper

left quadrant of m(0, t):

Ψ11 =

∫ T

0
φ2

11dt =

∫ T

0
cos2(γt)dt =

T

2
+

sin 2γT

4γ

Ψ12 =

∫ T

0
φ11φ12dt =

∫ T

0

cos(γt) sin(γt)

γ
dt =

1− cos 2γT

4γ2

Ψ22 =

∫ T

0
φ2

22dt =

∫ T

0

cos2(γt)

γ2
dt =

1

γ2

(
T

2
+
sin2γT

4γ

)
(A.8)

Next, we consider the lower right corner. This matrix integration turns out to be
T
2 I2k×2k.

Finally, we consider the off-diagonal elements integration, given an integer g, we

have:∫ T

0
φ11 cos gωtdt =

∫ T

0
cos γt cos gωtdt

=
1

2(γ + gω)
sin (γ + gω)t

∣∣∣∣T
0

+
1

2(γ − gω)
sin (γ − gω)t

∣∣∣∣T
0

=
γ sin γT

(γ + gω)(γ − gω)
(A.9)

∫ T

0
φ11 sin gωtdt =

∫ T

0
cos γt sin gωtdt

= − 1

2(γ + gω)
cos (γ + gω)t

∣∣∣∣T
0

+
1

2(γ − gω)
cos (γ − gω)t

∣∣∣∣T
0

=
gω(cos γT − 1)

(γ + gω)(γ − gω)

(A.10)

∫ T

0
φ12 cos gωtdt =

1

γ

∫ T

0
sin γt cos gωtdt

=
−1

2γ(γ + gω)
cos (γ + gω)t

∣∣∣∣T
0

+
−1

2γ(γ − gω)
cos (γ − gω)t

∣∣∣∣T
0

=
1− cos γT

(γ + gω)(γ − gω)

(A.11)
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0
φ12 sin gωtdt =

1

γ

∫ T

0
sin γt sin gωtdt

=
−1

2γ(γ + gω)
sin (γ + gω)t

∣∣∣∣T
0

+
1

2γ(γ − gω)
sin (γ − gω)t

∣∣∣∣T
0

=
gω sin γT

γ(γ + gω)(γ − gω)

(A.12)

With the definition above, the grammian M(0, t) will have the following form:

M(0, t) =

[
Ψ L

LT T
2 I2k×2k

]
,Ψ ∈ R2×2, L ∈ R2×2k (A.13)

with

Ψ11 =
T

2
+

sin 2γT

4γ

Ψ12 =
1− cos 2γT

4γ2

Ψ22 =
1

γ2

(
T

2
+
sin2γT

4γ

)
(A.14)
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