THE ASTROPHYSICAL JOURNAL, 678:1032–1041, 2008 May 10 © 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE c2d SPITZER SPECTROSCOPIC SURVEY OF ICES AROUND LOW-MASS YOUNG STELLAR OBJECTS. III. CH_4

KARIN I. ÖBERG,¹ A. C. ADWIN BOOGERT,² KLAUS M. PONTOPPIDAN,³ GEOFFREY A. BLAKE,³ NEAL J. EVANS,⁴ FRED LAHUIS,⁵ AND EWINE F. VAN DISHOECK¹

Received 2007 October 15; accepted 2008 January 7

eceived 2007 October 15, accepted 2008 January 7

ABSTRACT

CH₄ is proposed to be the starting point of a rich organic chemistry. Solid CH₄ abundances have previously been determined mostly toward high-mass star-forming regions. *Spitzer* IRS now provides a unique opportunity to probe solid CH₄ toward low-mass star-forming regions as well. Infrared spectra from the *Spitzer Space Telescope* are presented to determine the solid CH₄ abundance toward a large sample of low-mass young stellar objects. A total of 25 out of 52 ice sources in the "Cores to Disks" (c2d) Legacy program have an absorption feature at 7.7 μ m, attributed to the bending mode of solid CH₄. The solid CH₄/H₂O abundances are 2%–8%, except for three sources with abundances as high as 11%–13%. The latter sources have relatively large uncertainties due to small total ice column densities. Toward sources with H₂O column densities above 2 × 10¹⁸ cm⁻², the CH₄ abundances (20 out of 25) are nearly constant at 4.7% ± 1.6%. Correlation plots with solid H₂O, CH₃OH, CO₂, and CO column densities and abundances relative to H₂O reveal a closer relationship of solid CH₄ with CO₂ and H₂O than with solid CO and CH₃OH. The inferred solid CH₄ abundances are consistent with models where CH₄ is formed through sequential hydrogenation of C on grain surfaces. Finally, the equal or higher abundances toward low-mass young stellar objects compared with high-mass objects and the correlation studies support this formation pathway as well, but not the two competing theories: formation from CH₃OH and formation in gas phase with subsequent freezeout.

Subject headings: astrochemistry ---- infrared: ISM ---- ISM: abundances ---- ISM: molecules ---- stars: formation

1. INTRODUCTION

The presence and origin of complex organic molecules in protostellar regions and their possible incorporation into protoplanetary disks are active topics of research. CH_4 is proposed to be a starting point of a rich chemistry, especially when UV photons are present (Dartois et al. 2005). In particular, CH_4 is believed to play a key role in the formation process of prebiotic molecules (Markwick et al. 2000).

CH4 is less well studied in interstellar and circumstellar media compared to other small organic molecules because CH4 has no permanent dipole moment and therefore cannot be observed by pure rotational transitions at radio wavelengths. Solid CH₄ was first detected through its bending mode at 7.67 μ m from the ground by Lacy et al. (1991) and with the Infrared Space Observatory Short Wavelength Spectrometer (ISO SWS) by Boogert et al. (1996) toward a few high-mass sources. Tentative claims have been made toward some other objects, including low-mass protostars, but are inconclusive because of the low signal-to-noise ratio (S/N) of these data (Cernicharo et al. 2000; Gürtler et al. 2002; Alexander et al. 2003). Solid CH₄ has also been detected from the ground through its stretching mode at 3.3 μ m, but only toward the brightest high-mass sources due to problems in removing the many atmospheric lines in this spectral region (Boogert et al. 2004a).

Models predict CH_4 to form rapidly on cool grains through successive hydrogenation of atomic C; similarly, H_2O is formed

³ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.

⁴ Department of Astronomy, University of Texas at Austin, Austin, TX 78712-0259.

⁵ SRON, NL 9700 AV Groningen, Netherlands.

through hydrogenation of atomic O (van de Hulst 1946; Allen & Robinson 1977; Tielens & Hagen 1982; Brown et al. 1988; Hasegawa et al. 1992; Aikawa et al. 2005). Observations of CH₄ hence provide insight into the basic principles of grain surface chemistry. Compared to H2O, the observed gas- and solid-state CH₄ abundances are low; reported CH₄ abundances are typically a few percent with respect to H₂O (Lacy et al. 1991; Boogert et al. 1998). This points to relatively low atomic C abundances at the time of CH₄ formation, with most C already locked up in CO as H readily reacts with C on surfaces (Hiraoka et al. 1998). This is in agreement with the high CH₃OH abundances in several lines of sight, formed by hydrogenation of CO (Dartois et al. 1999; Pontoppidan et al. 2003), and large CO₂ abundances, formed through oxidation of CO or hydrogenated CO. That these molecules are all formed through a similar process is corroborated by the profiles of solid CO₂ absorption bands, which usually show an intimate mixture of CO₂, CH₃OH, and H₂O in interstellar ices (Gerakines et al. 1999; Boogert et al. 2000; Knez et al. 2005).

If CH₄ is formed efficiently through grain surface reactions as well, CH₄ should be similarly mixed with H₂O. Observations of solid CH₄ toward a few high-mass young stellar objects (YSOs) show that the CH₄ absorption band profiles are broad and agree better with CH₄ in a hydrogen-bonding ice, H₂O or CH₃OH, than with a pure CH₄ ice or CH₄ mixed with CO (Boogert et al. 1997). This profile analysis does not, however, exclude CH₄ formation from photoprocessing of CH₃OH (Allamandola et al. 1988; Gerakines et al. 1996). In addition, because of the small sample in previous studies, it is unclear if these broad profiles are a universal feature. Hence, it cannot be excluded that CH₄ in some environments may form in the gas phase and subsequently freeze out.

Because formation pathway efficiency depends on environment, another method for testing formation routes is through exploring the distribution of CH₄ toward a large sample of objects of different ages, luminosities, and ice column densities. In

¹ Leiden Observatory, Leiden University, NL 2300 RA Leiden, Netherlands; oberg@strw.leidenuniv.nl.

² IPAC, NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125.

SPITZER SURVEY OF INTERSTELLAR ICES. III.

1033

TABLE 1								
SOURCE	SAMPLE	of 25	Low-Mass	S TARS	OBSERVED	WITH	Spitzer	IRS

Source	Alias	R.A. (J2000.0)	Decl. (J2000.0)	Cloud	Туре	ObsID
IRAS 03235+3004		03 26 37.5	+30 15 27.9	Perseus	Low	9835520
IRAS 03245+3002		03 27 39.0	+30 12 59.3	Perseus	Low	6368000
L1455 SMM 1		03 27 43.3	+30 12 28.8	Perseus	Low	15917056
IRAS 03254+3050		03 28 34.2	+31 00 51.2	Perseus	Low	11827200
B1-c		03 33 17.9	+31 09 31.0	Perseus	Low	13460480
B1-b		03 33 20.3	+31 07 21.4	Perseus	Low	1596544
L1489 IRS	IRAS 04016+2610	04 04 43.1	+26 18 56.4	Taurus	Low	3528960
IRAS 08242-5050	HH 46 IRS	08 25 43.8	-51 00 35.6	HH 46	Low	5638912
IRAS 12553-7651		12 59 06.6	$-77 \ 07 \ 40.0$	Cha	Low	9830912
IRAS 15398-3359		15 43 02.3	-34 09 06.7	B228	Low	5828864
GSS 30 IRS 1		16 26 21.4	-24 23 04.1	Ophiuchus	Low	12699392
IRS 42		16 27 21.5	-24 41 43.1	Ophiuchus	Low	12699648
IRS 43		16 27 27.0	$-24 \ 40 \ 52.0$	Ophiuchus	Low	12699648
IRS 44		16 27 28.1	-24 39 35.0	Ophiuchus	Low	12699648
IRS 63		16 31 35.7	-24 01 29.5	Ophiuchus	Low	12676608
VSSG 17	IRS 47	16 27 30.2	-24 27 43.4	Ophiuchus	Low	12698624
RNO 91	IRAS 16316-1540	16 34 29.3	-15 47 01.4	L43	Low	5650432
B59 YSO 5		17 11 22.2	$-27\ 26\ 02.3$	B59	Low	14894336
2MASS J17112317-2724315		17 11 23.1	-27 24 32.6	B59	Low	14894592
SVS 4-5	EC 88	18 29 57.6	+01 13 00.6	Serpens	Low	9407232
EC 92	SVS 4-10	18 29 57.9	+0.1 12 51.6	Serpens	Low	9407232
CrA IRS 5		19 01 48.0	-36 57 21.6	Corona Australis	Low	9835264
CrA IRS 7B		19 01 56.4	$-36\ 57\ 28.0$	Corona Australis	Low	9835008
CrA IRAS 32		19 02 58.7	-37 07 34.5	Corona Australis	Low	9832192
L1014 IRS		21 24 07.5	+49 59 09.0	L1014	Low	12116736
W33A		18 14 39.4	$-17\ 52\ 01.3$		High	32900920
NGC 7538 IRS 9		23 14 01.6	+61 27 20.2		High	09801532
GL 989		06 41 10.1	+0.9 29 35.8		High	71602619
GL 7009S		18 34 20.9	-05 59 42.2		High	15201140

NOTES.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds. In addition, four high-mass stars with previously published *ISO* spectra and CH₄ detections are included for comparison.

addition, correlations, or lack thereof, with other ice constituents may provide important clues to how the molecule is formed. If CH₄ is formed through hydrogenation on grain surfaces in quiescent clouds, the CH₄ abundance with respect to H₂O should be fairly source independent since this mechanism mainly depends on the initial conditions of the cloud before the star forms, which seem to vary little between different star-forming regions. Because of the generality of this mechanism, the CH₄ and H₂O, and possibly CO2, column densities should correlate over a large range of different environments. This is also the prediction of several models where the solid CH₄/H₂O and CH₄/CO₂ ratios in dark clouds vary little as a function of both time (Hasegawa et al. 1992) and distance into a cloud that has collapsed (Aikawa et al. 2005). In contrast, CO, which is formed in the gas phase and subsequently frozen out, is predicted to only correlate with CH₄ during certain time intervals. If CH₄ instead forms in the gas phase, solid CH₄ should be better correlated with solid CO than with solid H₂O and CO₂, since pure CH₄ freezes out and desorbs at similar temperatures to CO (Collings et al. 2004). Finally, if CH₄ forms by UV photoprocessing of CH₃OH, more CH₄ would also be expected to form toward sources with stronger UV fields, i.e., higher mass objects.

The objective of this study is to determine the CH_4 abundances and distribution pattern toward a sample of low-mass YSOs, varying in evolutionary stage and total ice column density. The distribution pattern and correlations with other ice constituents within the sample, as well as comparison with high-mass YSOs, will be used to constrain the CH_4 formation mechanism. This study is based on spectra acquired with the *Spitzer* Infrared Spectrometer (IRS) as part of our legacy program "From Molecular Cores to Protoplanetary Disks" (c2d), which provides a large sample (41 sources) of infrared spectra of low-mass star formation regions (Evans et al. 2003). In addition, 11 sources are added from the GTO program 2 for which ground-based $3-5 \mu$ m observations already exist (Pontoppidan et al. 2003). Overviews of the H₂O, CO₂, CH₃OH, and other ice species in these data are found in Boogert et al. (2008, hereafter Paper I) and Pontoppidan et al. (2008, hereafter Paper II). The detection of solid CH₄ toward one of the sources, HH 46 IRS, was published by Boogert et al. (2004b). We have detected an absorption feature, which is attributed to solid CH₄, toward 25 out of 52 low-mass ice sources found in this c2d sample.

2. SOURCE SAMPLE SELECTION, OBSERVATIONS, AND DATA REDUCTION

The source sample consists of a combination of known lowmass protostars and new protostars discovered by their *Spitzer* IRAC and MIPS broadband spectral energy distributions. *Spitzer* IRS spectra were obtained as part of the c2d Legacy program (PIDs 172 and 179), as well as a dedicated open time program (PID 20604) and a few archival spectra observed as a part of the GTO programs (PID 2). Among the targets observed with the IRS Short-Long (SL) module, 41 ice sources were identified from their spectra in the c2d sample (Paper I). The GTO sources are all associated with the Ophiuchus cloud and were selected based on previous ice observations at $3-5 \mu$ m (Pontoppidan et al. 2003). The source sample of 25 low-mass protostars presented

Fig. 1.—*Spitzer* IRS spectra (*solid line*) of the CH₄ sources between 7.0 and 8.2 μ m, plotted together with the chosen spline continua (*dotted line*). The tick bar in the upper left corner indicates the noise level derived within the c2d pipeline.

here was selected from the 41 c2d and 11 GTO ice sources based solely on the existence of an absorption feature at 7.7 μ m, identified with solid CH₄ (Table 1). Due to the high sensitivity of the *Spitzer* IRS, a large range of star formation stages are represented in the sample from very young YSOs at the interface of the Class 0/I stages (e.g., B1-c) to objects like RNO 91, identified as an inclined disk with a remnant envelope. It also includes very low luminosity objects (VELLOs) such as L1014 IRS (Young et al. 2004). More information about the evolutionary stages of the objects is reported in Paper I.

The Spitzer IRS spectra were reduced using the two-dimensional basic calibrated data (BCD) spectral images, produced by the Spitzer Science Center (SSC) pipeline version S13.2.0, as a starting point. The low-resolution modules, which are the relevant ones for the solid CH₄ feature, were reduced in a similar way to ground-based spectra. First, the spectral and spatial dimensions were orthogonalized, and then the two-dimensional images of the two nodding positions were subtracted in order to remove the extended emission. A fixed width extraction was performed and then the one-dimensional spectra were averaged. Subsequently, the spectra were divided by spectra of the standard star HR 2194, reduced in the same way, to correct for wavelength-dependent slit losses. Finally, the spectra were multiplied along the flux scale in order to match Spitzer IRAC photometry. One source, EC 92, was carefully extracted manually due to multiple other sources present in the slit. More details about the reduction and the complete midinfrared spectra of the c2d sources are presented in Paper I. The CH₄ 7.7 μ m absorption feature falls within the range of the IRS modules SL1 and SL2. At these wavelengths the resolving power

 $R = \lambda/\Delta\lambda$ of IRS is 65 or 0.12 μ m for SL1 and 125 or 0.06 μ m for SL2 (IRS Data Handbook). The plotted spectra are made up using data from the main orders of SL1 and SL2, while the SL1 bonus order was only used to confirm detections. SL2 stops around 7.6 μ m so the peak of the CH₄ absorption feature is always in SL1. The part of the spectra from the SL2 module is hence mainly used to determine the continuum and in some cases the shape of a low-wavelength wing. When comparing observations to laboratory spectra, the laboratory spectra are always convolved to the resolution of SL1 (0.12 μ m, sampled with 2 pixels per resolution element).

ISO SWS spectra of four high-mass YSOs are used for comparison between low- and high-mass protostars in this paper. The latest standard processed data (SPD) pipeline version 10.1 products were taken from the *ISO* archive, and the detector scans were cleaned from cosmic-ray hits and averaged. The final spectra do not show significant differences with respect to the data published in Keane et al. (2001).

3. RESULTS

3.1. CH₄ Column Densities

Figure 1 shows the flux-calibrated spectra of the 25 low-mass YSOs containing the CH₄ 7.7 μ m absorption feature. The spectra were converted to optical depth scale using a smooth spline continuum fitted to the 7–7.4 and 8.0–8.3 μ m regions as shown in Figure 1. A local continuum is necessary since the CH₄ feature lies on the edge of other broader features such as the 9.7 μ m feature. Fitting the continuum is complicated by the presence of

Fig. 2.—Optical depth spectra of the CH₄ sources plotted together with laboratory spectra (*dashed line*) of a CH₄: $H_2O = 1:3$ mixture (Leiden databases at http://www.strw.leidenuniv.nl/~lab/databases) convolved to at the same resolution and sampled in the same way as the observational data.

a weak H I recombination emission line at 7.5 μ m (Pf α) toward several of the sources, e.g., the CrA sources, IRAS 03235+3004, L1489 IRS, RNO 91, and SVS 4-5. Of these ground-based spectra, around 4 μ m exist for CrA IRS 5, CrA IRS 7B, IRAS 03235+3004, L1489 IRS, and SVS 4-5. In all of these spectra the 4.05 μ m H I Br α is clearly visible, corroborating the identification of the emission feature with hydrogen.

To estimate the uncertainties introduced by the choice of continuum, the spectra were also converted to optical depth scale by adopting a local, straight line continuum between 7.4 and 7.9 μ m. The differences in optical depth using the two different continua are less than 20% for most sources, but between 30% and 60% for a few cases: CrA IRS 7B, IRAS 03235+3004, IRAS 12553– 7651, and RNO 91. The resulting optical depth spectra using the smooth spline continuum subtraction are shown in Figure 2.

The peak position, FWHM, and peak optical depth of the 7.7 μ m absorption feature along each line of sight were calculated from the best Gaussian fit between 7.5 and 7.9 μ m (Table 2). The reported error estimates include uncertainties in the fit and choice of continuum. The typical peak position is 7.69 μ m, and the peak widths range from 0.07 to 0.27 μ m. The features hence range from unresolved to barely resolved as the resolution at the center peak position is 0.12 μ m. The large widths of the feature in the observed spectra, except for B1-b, suggest that CH₄ is generally in an H₂O- or CH₃OH-dominated mixture, where laboratory data show that the CH₄ feature has a width of up to 0.15 μ m (Boogert et al. 1997).

Figure 3 compares the source with the deepest absorption feature, B1-c, with different CH_4 containing laboratory ice spec-

tra, convolved to the resolution of IRS-SL1. In the three laboratory ice spectra used here—an H₂O-dominated ice, an ice mixture that contains equal parts of H₂O, CH₃OH, and CO₂, and pure CH₄, all at 10 K—the CH₄ absorption profile has both different widths and peak positions. Toward most sources, as for B1-c, H₂Odominated ice spectra provide the best fit. Hence, comparisons with an H₂O:CH₄ = 3:1 ice spectrum were used to determine the amount of CH₄ present in the observed spectra and also how much of the 7.7 μ m feature can be accounted for by solid CH₄ (Fig. 2). Table 2 shows that CH₄ can account for 45%–100% of the absorption.

The CH₄ column densities were calculated from the integrated optical depths of the laboratory spectra, scaled to the peak optical depths of the observations, and the band strength for the bending mode of solid CH₄ in an H₂O rich ice, 4.7×10^{-18} cm molecule⁻¹ (Boogert et al. 1997). The uncertainty in CH₄ column densities stems from both the baseline subtraction and the uncertainty in ice mixture composition even after an H₂O-rich ice has been assumed. To obtain abundances with respect to solid H₂O, the CH₄ column densities were divided by the solid H₂O column densities from Paper I. Figure 4 shows the CH₄ abundances with respect to H₂O as a function of H₂O column density. The CH₄ abundances in the entire sample vary between 2% and 13%, and it is seen in the plot that the sample can be split into two parts: sources with H₂O column densities around 2×10^{18} cm⁻² and sources with H₂O column densities of $(3-40) \times 10^{18}$ cm⁻². In the former group the CH4 abundances with respect to H2O vary between 6% and 13%, and in the latter group all CH₄ abundances fall between 2% and 8%. Due to the low total column densities

	λ	FWHM		$\int \tau_{7.7}$	$\int \tau_{\rm CH_4}$	N(CH ₄)		
Source	(µm)	(µm)	$ au_{\mathrm{peak}}$	(cm^{-1})	(cm^{-1})	$(10^{17} \text{ cm}^{-2})$	$N(CH_4)/N(H_2O) \times 100$	$N(\mathrm{SO}_2)_{\mathrm{max}}/N(\mathrm{H}_2\mathrm{O}) \times 100$
IRAS 03235+3004	7.69 ± 0.03	0.16 ± 0.05	0.16 ± 0.07	4.6 ± 1.0	2.9 ± 0.8	6.2 ± 1.8	4.3 ± 1.4	0.35 ± 0.19
IRAS 03245+3002	7.59 ± 0.03	0.20 ± 0.08	0.17 ± 0.04	4.3 ± 0.1	3.2 ± 0.4	6.8 ± 0.8	1.7 ± 0.3	0.08 ± 0.01
L1455 SMM 1	7.66 ± 0.01	0.15 ± 0.02	0.24 ± 0.03	6.2 ± 0.3	4.9 ± 0.1	$10.\pm0.1$	5.8 ± 0.9	0.21 ± 0.03
IRAS 03254+3050	7.68 ± 0.01	0.20 ± 0.03	0.040 ± 0.008	1.4 ± 0.2	0.7 ± 0.1	1.6 ± 0.3	4.0 ± 0.9	0.45 ± 0.14
B1-c	7.68 ± 0.01	0.13 ± 0.01	0.40 ± 0.05	8.7 ± 1.3	7.6 ± 1.2	16 ± 3	5.4 ± 1.4	0.11 ± 0.03
B1-b	7.70 ± 0.01	0.10 ± 0.01	0.16 ± 0.01	2.7 ± 0.1	2.8 ± 0.1	5.9 ± 0.2	3.3 ± 0.6	0.00 ± 0.01
L1489 IRS	7.68 ± 0.01	0.13 ± 0.01	0.037 ± 0.006	0.93 ± 0.04	0.64 ± 0.04	1.4 ± 0.1	3.1 ± 0.2	0.14 ± 0.01
IRAS 08242-5050	7.68 ± 0.06	0.17 ± 0.16	0.098 ± 0.063	2.9 ± 1.8	1.9 ± 0.8	3.9 ± 1.8	5.0 ± 2.4	0.40 ± 0.68
IRAS 12553-7651	7.66 ± 0.02	0.18 ± 0.04	0.026 ± 0.005	0.6 ± 0.1	0.5 ± 0.1	1.1 ± 0.1	3.8 ± 0.9	0.13 ± 0.03
IRAS 15398-3359	7.68 ± 0.01	0.13 ± 0.01	0.22 ± 0.03	5.1 ± 0.6	4.2 ± 0.8	8.8 ± 1.7	6.0 ± 2.0	0.20 ± 0.06
IRS 42	7.72 ± 0.01	0.12 ± 0.03	0.041 ± 0.012	0.82 ± 0.11	0.62 ± 0.22	1.4 ± 0.4	7.7 ± 2.4	0.21 ± 0.06
IRS 43	7.70 ± 0.01	0.21 ± 0.04	0.050 ± 0.014	1.7 ± 0.6	0.94 ± 0.33	2.1 ± 0.6	6.6 ± 2.3	0.70 ± 0.36
IRS 44	7.71 ± 0.01	0.19 ± 0.01	0.053 ± 0.015	1.7 ± 0.4	0.9 ± 0.2	2.1 ± 0.4	6.1 ± 1.4	0.63 ± 0.23
IRS 63	7.70 ± 0.14	0.14 ± 0.13	0.042 ± 0.026	1.0 ± 0.4	0.72 ± 0.31	1.6 ± 0.7	7.9 ± 3.8	0.42 ± 0.59
GSS 30	7.72 ± 0.16	0.14 ± 0.13	0.045 ± 0.027	1.1 ± 0.8	0.7 ± 0.4	1.6 ± 0.9	11 ± 6.2	0.60 ± 0.9
VSSG 17	7.68 ± 0.01	0.26 ± 0.04	0.042 ± 0.006	1.8 ± 0.2	0.8 ± 0.1	1.8 ± 0.2	11 ± 2.2	1.5 ± 0.35
RNO 91	7.69 ± 0.03	0.27 ± 0.13	0.038 ± 0.009	1.6 ± 0.7	0.68 ± 0.17	1.6 ± 0.5	4.8 ± 1.6	0.76 ± 0.44
B59 YSO 5	7.70 ± 0.01	0.19 ± 0.06	0.096 ± 0.050	3.2 ± 3.4	1.8 ± 0.9	3.8 ± 2.0	2.7 ± 1.6	0.31 ± 0.37
2MASS J17112317	7.69 ± 0.01	0.17 ± 0.06	0.13 ± 0.052	3.9 ± 2.0	2.5 ± 1.0	5.4 ± 2.2	2.8 ± 1.2	0.20 ± 0.23
SVS 4-5	7.67 ± 0.01	0.16 ± 0.02	0.083 ± 0.010	2.2 ± 0.2	1.6 ± 0.3	3.5 ± 0.6	6.1 ± 1.7	0.29 ± 0.08
EC 92	7.71 ± 0.01	0.07 ± 0.10	0.066 ± 0.032	0.67 ± 0.21	0.88 ± 0.47	2.0 ± 1.2	13 ± 7.7	0.33 ± 0.23
CrA IRS 5	7.68 ± 0.01	0.19 ± 0.02	0.055 ± 0.011	1.7 ± 0.3	1.1 ± 0.1	2.3 ± 0.3	6.2 ± 1.0	0.50 ± 0.13
CrA IRS 7B	7.69 ± 0.02	0.16 ± 0.05	0.080 ± 0.019	2.2 ± 0.5	1.5 ± 0.5	3.1 ± 1.1	3.0 ± 1.2	0.19 ± 0.08
CrA IRAS 32	7.72 ± 0.04	0.09 ± 0.13	0.093 ± 0.018	1.4 ± 0.4	1.6 ± 0.2	3.5 ± 0.4	6.6 ± 2.5	0.12 ± 0.05
L1014 IRS	7.68 ± 0.01	0.19 ± 0.06	0.11 ± 0.022	3.7 ± 1.2	2.4 ± 0.7	5.1 ± 1.5	7.1 ± 2.3	0.53 ± 0.25
Average	7.69	0.16	0.10	2.7	1.5	4.1	5.8	0.34
Standard deviation	0.03	0.05	0.09	2.0	1.4	3.5	2.7	0.35

TABLE 2 GAUSSIAN PARAMETERS OF THE OBSERVED ABSORPTION FEATURES AND THE CH4 COLUMN DENSITIES AND ABUNDANCES RELATIVE TO SOLID H2O AND UPPER LIMITS OF SO2

FIG. 3.—Optical depth spectra of B1-c (*solid line*) plotted together with laboratory spectra of a CH₄:H₂O = 1:3 mixture (*dashed line*), an H₂O:CH₃OH: CO₂:CH₄ = 0.6:0.7:1:0.1 mixture (*dotted line*), and pure CH₄ ice (*dot-dashed line*). The derived column densities using the three different ice compositions are 1.7×10^{18} , 1.6×10^{18} , and 1.7×10^{18} cm⁻², respectively.

in the high-abundance group, the uncertainties there tend to be larger. Below 3×10^{18} cm⁻² there also seems to be some negative correlation between column density and CH₄ abundance. Figure 4 also shows the CH₃OH abundances and upper limits toward the sources in this sample (Paper I). CH₃OH abundances span a larger interval than CH₄ and show none of the column density dependencies visible for CH₄. The large variation for CH₃OH abundances is similar to what was found previously for a different sample by Pontoppidan et al. (2003).

The excess absorption (0%–55%) of the observed 7.7 μ m features in many of the astronomical objects is due to broader profiles than expected even for CH₄ in an H₂O-rich ice. It is possible that an additional molecule is contributing to the optical depth of the 7.7 μ m feature, e.g., solid SO₂. Solid SO₂ was suggested by Boogert et al. (1997) to explain the blue wing of the 7.7 μ m feature in W33A. In contrast, another high-mass source, NGC 7538 IRS 9, displays no such wing. A comparison between these two sources and low-mass sources from this sample shows that the same variation is present here (Fig. 5): approximately 25% of the sources in this study have a clear blue wing, perhaps attributable to solid SO₂. The maximum amounts of SO₂ present in the observed ices are estimated by assuming that all excess absorption is due to SO₂ and using its measured band strength of $3.4 \times$ 10^{-17} cm molecule⁻¹ (Sandford & Allamandola 1993) (Table 2). The solid SO₂ abundances then vary between 0.1% and 1.5%with respect to H_2O .

In cases where the excess is similar on both sides of the CH_4 absorption, another source of the large widths of the features may be the choice of continuum; the spline continuum was difficult to fit because the CH_4 feature is generally shallow and overlapping with other, larger features. It is possible that the wings toward several sources are not intrinsic, but a product of this fit. This is highlighted by a comparison between Figures 1 and 2, which shows that the sources with clear continua also have thinner absorption features than the average.

3.2. Upper Limits of Solid CH₄

Upper limits for solid CH_4 were determined for the 27 sources without CH_4 detections, in the sample of 52 low-mass ice sources originally probed for CH_4 , by estimating the maximum amount of an $H_2O: CH_4 = 3:1$ ice that could hide under the noise. The

Fig. 4.—CH₄ and CH₃OH abundances relative to H₂O plotted vs. the column densities of H₂O for *Spitzer* IRS (*black diamonds*) and *ISO* (*gray asterisks*) CH₄ sources. Two groupings are visible in the top panel: sources with H₂O column densities around 2×10^{18} cm⁻² with high CH₄ abundances, and sources with H₂O column densities of (3–40) $\times 10^{18}$ cm⁻² and a nearly constant CH₄ abundance around 4%–5%. CH₃OH abundances show no similar groupings and span a larger interval than CH₄. CH₄ and CH₃OH abundance upper limits below 30% are plotted in gray.

average 3 σ upper limit is 15% solid CH₄ with respect to solid H₂O, which is in the upper range of CH₄ abundances in the sources with solid CH₄ detections. All abundance upper limits below 30% are shown in Figure 4. Only one CH₄ upper limit, of ~3%, falls below the average abundance of 4.8%. The lack of detection in these 27 sources is hence probably due to the spectral quality and low fluxes of the objects rather than a lower amount of solid CH₄.

3.3. Molecular Correlations

The objects in this sample may vary significantly in temperature structure, as well as other environmental factors. Lack of correlations between molecular abundances may hence be due to either different formation pathways or differences in volatility. A lack of correlation between CH_4 and molecules of different volatility hence does not exclude that they formed in a similar manner. In pure form CH_4 has a similar volatility to CO (Collings et al. 2004). If CH_4 is mixed with H_2O , significant amounts can be trapped inside of the H_2O ice, however, and then CH_4 has an effective volatility closer to that of H_2O and CO_2 .

The column densities of solid H_2O (26 detections) and CH_3OH (10 detections) have been derived in Paper I and those of solid CO (13 ground-based observations) and CO_2 (25 detections) have been derived in Pontoppidan et al. (2003) and Paper II for many of the CH_4 sources. The column densities and abundances for these molecules are plotted versus CH_4 in Figures 6 and 7. Where the plots reveal a linear relationship between molecules, the best linear fit is also drawn. The Pearson product-moment correlation coefficient, R, was calculated to measure the strength of the correlation: R^2 directly gives the fraction of variance of the second molecule that is due to changes in CH_4 , assuming a linear relationship between the two molecules.

Figure 6 shows the correlations between the column densities of solid CH_4 and the four other ice components. Some correlation between column densities of ice species and total column density

FIG. 5.—The 7.7 μ m profile comparison between high-mass sources W33A and NGC 7538 IRS 9 (with their original SWS resolution and convolved to the resolution of IRS-SL1) and four low-mass sources. The two Gaussians plotted together with W33A fit the observed spectrum, but only the thin component centered at 7.7 μ m is explained by CH₄. Several of the low-mass sources have similar profiles to W33A with an additional component, attributed to SO₂, that makes up the blue wing of the 7.7 μ m feature. A few low-mass sources also show thin profiles similar to that of NGC 7538 IRS 9.

is always expected, but Figure 6 shows that the strength of this correlation is variable between CH₄ and the different molecules. CH₄ correlates strongly ($R^2 = 0.91$) with CO₂, which is believed to form on grain surfaces. The correlation with H₂O, another species formed on surfaces, is weaker ($R^2 = 0.64$), but this correlation coefficient is significantly increased if one outlier, IRAS

FIG. 6.—Column densities of four ice species, CH_3OH , H_2O , CO, and CO_2 , plotted vs. the column densities of solid CH_4 . Solid CH_4 is strongly correlated with solid CO_2 and H_2O . CH_4 is only weakly correlated with solid CO and CH_3OH , but this may be partly due to the fact that CO has only been observed and CH_3OH only detected toward much fewer targets. The outlier in the H_2O plot is IRAS 03245+3002.

03245+3002, is removed. R^2 is then 0.82 for the CH₄-H₂O correlation. IRAS 03245+3002 could have been identified previous to the correlation studies as an outlier since it is the only source with no CO₂ ice detection, putting an upper limit on its CO₂/H₂O of 15%, compared to 30% ± 9% for the entire sample. Even without removing the outlier, the correlations are significant at the 99% level with 23 and 24 degrees of freedom (dof), respectively.

Fig. 7.—Abundances of solid CH_3OH , CO, and CO_2 relative to H_2O plotted vs. those of solid CH_4 . There is no correlation between the relative amounts of solid CH_4 and CH_3OH or CO. In contrast, the CH_4 and solid CO_2 abundances are weakly correlated.

TABLE 3 Average CH_4 Abundance Relative to H_2O and Its Standard Deviation for Five of the Investigated Clouds and for the Entire Sample

Cloud	Number of Sources	Average	Standard Deviation
Perseus	6	0.040	0.014
Ophiuchus	6	0.083	0.019
B59	2	0.027	
CrA	3	0.052	0.019
Serpens	2	0.093	
All	25	0.058	0.027

CH₄ and CH₃OH and CO are barely significantly correlated ($R^2 = 0.48$ with 8 dof and 0.49 with 11 dof, respectively). The small number of CO abundances, which are only available for 11 of the targets in this study, complicates interpreting the low correlation plots between CO and CH₄. If only the sources for which CO measurements exist are used to calculate the CH₄-CO₂ and CH₄-H₂O correlations, these are reduced to $R^2 = 0.57$ and 0.59, respectively.

The stronger correlation between CH₄ and CO₂ compared to CH₄ and H₂O is curious, but may be an artifact of the fact that the CO₂ column densities are better known for this sample than the H₂O column densities. For most sources in this sample the H₂O column densities are determined by estimating the depth of the H₂O libration feature, which is difficult due to the overlap with the silicate feature at 9.7 μ m. The uncertainties in these H₂O column densities were estimated to ~30% in Paper I after comparison between derived abundances from the 3 μ m mode and the libration mode for the sources with 3 μ m spectra. Furthermore, the different amounts of CO₂ toward the different sources may introduce further error in the derived H₂O column densities as recently shown in Öberg et al. (2007).

Figure 7 shows the correlations between solid CH_4 and the other three ice species, with the abundances normalized to the solid H_2O column density, the main ice constituent (Fig. 7). When normalizing to H_2O , there is no significant correlation at a 95% level between CH_4 and CH_3OH and CO (R^2 below 0.1) and at best a weak correlation between CH_4 and CO_2 ($R^2 = 0.27$). There is also no correlation between CH_4 abundances and any of the three CO components as defined by Pontoppidan et al. (2003), with the different components corresponding to pure CO and CO in an H_2O - and CO_2 -rich ice, respectively.

3.4. Spatial Trends

The average CH₄ abundance relative to H₂O and its standard deviation are shown for all clouds with more than one detection and for the entire sample in Table 3. The averages for the individual clouds range from 2.8% to 9%, with Serpens and Ophiuchus at 9% and 8%, respectively. Whether the clouds are significantly different in their CH₄ abundances was evaluated using Analysis of Variance with the Statistics101 resampling software. Resampling is more robust than traditional statistical tests since there is no need to assume an underlying distribution, which is especially useful when the sample size is small. The test procedure starts with calculating the sum of the absolute deviations of the cloud averages from the sample average. The CH₄ abundances in the five clouds are then randomly resampled into five new groups with the same group size distribution as before, and the absolute deviations of the group averages from the sample average are recalculated. This is repeated 1000 times, and the number of times the resampled sum of deviations exceeds the sum of deviations of the cloud averages is counted. The null hypothesis that the difference between the clouds is due to chance could then be rejected with 95% confidence. If Ophiuchus is removed from the sample, there are no longer any significant differences between the clouds.

4. DISCUSSION

4.1. Low- versus High-Mass YSOs

For comparison the solid CH₄ abundances with respect to H₂O for several high-mass YSOs (Table 1) were rederived and plotted relative to H₂O abundances from Gibb et al. (2004) in Figure 4. These sources have been previously investigated for solid CH₄ by Boogert et al. (1996) and Gibb et al. (2004). The solid CH₄ abundances derived here are 30%-60% higher than those published by Gibb et al. (2004) mainly due to a difference in band strength (Gibb et al. 2004: 7.3×10^{-18} molecules cm⁻¹; this paper: 4.7×10^{-18} molecules cm⁻¹). The plot shows that the high-mass *ISO* CH₄ sources fit in seamlessly with the low-mass CH₄ sources with H₂O column densities above 2×10^{18} cm⁻². Figure 5 also shows that there is a similar variation in the 7.7 μ m feature profile between low- and high-mass objects. There is hence no reason to expect large systematic differences in CH₄ abundances YSOs.

4.2. Formation Scenarios

The similar or higher abundance of CH₄ with respect to H₂O toward the low-mass sources in this sample compared to what has been found previously toward high-mass YSOs suggests that the CH₄ formation rate is not dependent on stellar UV irradiation. Of the three formation scenarios for CH₄ suggested in the introduction, this study hence does not support a formation pathway connected to stellar UV processing of CH₃OH. Furthermore, in the sources with $(2-40) \times 10^{18}$ cm⁻² H₂O the CH₄ abundance is nearly constant. In comparison, the CH₃OH abundances vary by a factor of 10, and it seems unlikely that this would be the outcome if the main formation pathway of CH₄ is connected to CH₃OH, which is also present under quiescent conditions.

Of the two remaining scenarios, formation in the gas phase with subsequent freezeout and hydrogenation of C on grain surfaces, this study lends most support to the latter mechanism. First, under quiescent conditions, gas-phase models predict steady state total CH_4/H_2 abundances of only around 10^{-7} to 5×10^{-14} (Woodall et al. 2007; Bergin et al. 1995), compared with our inferred CH_4/H_2 abundances of $\sim (2-13) \times 10^{-6}$ (assuming a standard H_2O/H_2 ratio of 10^{-4}). In early times when C/CO > 1, the CH_4/H_2 can reach above 10^{-6} (Millar et al. 1991). Ices cannot form at extinctions lower than $\sim 2A_V$, however (Cuppen & Herbst 2007). At extinctions higher than $2A_V$, C/CO < 1 and hence freezeout of the high CH₄ abundances at early times cannot be used to explain the high ice abundances. In addition, pure CH₄ has a similar volatility to CO, within a few degrees (Collings et al. 2004), and if both are formed in the gas phase and subsequently frozen out, the two molecules should correlate, both in absolute column densities and in abundances relative to the much less volatile H₂O. This study clearly shows that this is not the case.

This weak correlation between CO and CH_4 can be contrasted with the stronger correlations between CH_4 and CO_2 and H_2O column densities. Furthermore, the lack of significant correlation with any species once the correlation with H_2O has been effectively divided out, by normalizing with the H_2O column densities, shows that CH_4 is not significantly better related to any other molecule than to H_2O . Together this suggests a formation scenario of CH_4 more related to H_2O and CO_2 formation, which both form on grains, rather than to CO. In theory the correlations could be single-handedly due to the fact that CH_4 has a higher desorption temperature than in its pure form due to mixing with H_2O . This, however, is only expected to occur if CH_4 is formed together with H_2O ; hence, CH_4 formation on grain surfaces is still the most plausible outcome of this study.

The hydrogenation scenario is also supported by the broad profiles of the features that have only been found in laboratory spectra when CH_4 is in a mixture with hydrogen-bonding molecules, which are believed to form on grain surfaces. These conclusions are in agreement with studies of the solid CH_4 profiles toward high-mass YSOs, which show that solid CH_4 is mixed with H_2O or possibly CH_3OH (Boogert et al. 1997) and also with the observed low gas/solid ratio of CH_4 compared to CO (Boogert et al. 2004a).

4.3. Differences between Clouds

Figure 4 and Table 3 show that the CH₄ abundances differ from cloud to cloud. In Figure 4, four of the five sources with high CH₄ abundances and H₂O column densities below $2 \times$ 10¹⁸ cm⁻² are Ophiuchus sources (the fifth is in Serpens). The two Ophiuchus sources that have higher H₂O ice abundances also have more "normal" CH4 abundances. This indicates that it is the low total column density toward four of the Ophiuchus sources, rather than initial conditions in Ophiuchus as a whole, that is responsible for the extreme CH₄ abundances found there. This may be due to the fact that toward sources with low total column densities the C/CO ratio may be larger, allowing for more CH₄ to form. The C/CO ratio is dependent on extinction for low extinctions, but not for high ones. This is consistent with our observation that CH4 abundances are only dependent on total column densities for low column densities. Sakai et al. (2008) have instead suggested that different CH4 abundances could be due to different collapse times. In clouds that collapse very fast, chemical equilibrium may not be reached, favoring a C-based rather than CO-based chemistry. This question can only be settled if gas-phase data for these sources become available.

4.4. Comparison with Models

Solid CH₄ abundances have been modeled previously for a variety of conditions (Hasegawa et al. 1992; Aikawa et al. 2005). The predicted CH₄ ice abundances with respect to H₂O usually vary between $\approx 1\%$ and 10%, with the main formation path being sequential hydrogenation of C atoms on grains at a time when a large fraction of the gas-phase C has already been converted to CO, i.e., C/CO < 1. The observed abundances in our sample fall mostly within this range and are hence in general agreement with the models.

Aikawa et al. (2005) model molecular abundances on grain surfaces and in the gas phase during the collapse of a spherical cloud. Regardless of initial conditions and the central density when the collapse is stopped, the CH_4/H_2O and CH_4/CO_2 ice ratios are fairly constant as a function of radius in the cloud. The value of CH_4/H_2O ratio varies with initial conditions between a few and 10%. In contrast, the CH_4/CO ratio is radius dependent. The model of Hasegawa et al. (1992) is more aimed at modeling interstellar clouds before collapse, but as they show the time evolution of the chemistry, it may still be useful to compare with our observations. As in the collapse model, CH_4 , CO_2 , and H_2O trace each other fairly well, while CO and CH_4 are only correlated during some time intervals, regardless of initial conditions. Both these models are consistent with Figure 6, where solid CH_4 is better correlated with H_2 O and CO_2 than with CO.

5. CONCLUSIONS

We present *Spitzer* IRS spectra of the solid CH₄ feature at 7.7 μ m toward a large sample of low-mass YSOs. Our conclusions are as follows:

1. A total of 25 out of 52 low-mass YSOs show a solid CH_4 feature at 7.7 μ m.

2. The solid CH_4 abundance with respect to H_2O is centered at 5.8% with a standard deviation of 2.7% in the sources with CH_4 detections. In the sources without detections the average upper limit is 15%, which is not significant compared with the detections.

3. The sources (two Ophiuchus and one Serpens) with more than 10% CH₄ all have H₂O column densities below 2×10^{18} cm⁻². Due to the low total column densities, two of these three sources have uncertainties larger than 50%. Above 2×10^{18} cm⁻² the sources (20 out of 25) have a fairly constant CH₄ abundance of 4.7% \pm 1.6%.

4. The 7.7 μ m feature profiles are significantly broader for all but one object than expected for pure solid CH₄ and toward most sources also broader than expected for CH₄ in H₂O-dominated ices. Approximately 30% of the features have a blue wing, seen previously toward high-mass YSOs and there attributed to solid SO₂.

5. The column densities of solid CH_4 and H_2O and CO_2 are clearly correlated, while CH_4 and CO and CH_3OH are only weakly correlated.

6. There is also no correlation between the CH_4 and CO abundances when both have been normalized to the H_2O abundance.

7. The Ophiuchus cloud has significantly higher CH_4 abundances compared to the rest of the sample, probably due to the low total column densities toward several of the sources. There are no significant differences between the remaining clouds.

8. The abundance variation is smaller for CH_4 compared to solid CH_3OH ; CH_4 seems to belong to the class of molecules, also including H_2O and CO_2 , that appear "quiescent," i.e., their abundances are more or less constant, in contrast to highly variable ices like CH_3OH and OCN^- . If the Ophiuchus sources are included, CH_4 is somewhere between the two classes.

9. Sample statistics and comparison with model predictions support CH_4 formation through hydrogenation of C on grain surfaces.

We thank Claudia Knez and the *Spitzer* c2d IRS team for useful comments on the manuscript. Funding for K. I. Ö. and E. F. v. D. was provided by NOVA, the Netherlands Research School for Astronomy, a grant from the European Early Stage Training Network (MEST-CT-2004-504604), and an NWO Spinoza grant. Support for K. M. P. was provided by NASA through Hubble Fellowship grant 1201.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555.

REFERENCES

- Aikawa, Y., Herbst, E., Roberts, H., & Caselli, P. 2005, ApJ, 620, 330
- Alexander, R. D., Casali, M. M., André, P., Persi, P., & Eiroa, C. 2003, A&A, 401 613
- Allamandola, L. J., Sandford, S. A., & Valero, G. J. 1988, Icarus, 76, 225
- Allen, M., & Robinson, G. W. 1977, ApJ, 212, 396
- Bergin, E. A., Langer, W. D., & Goldsmith, P. F. 1995, ApJ, 441, 222
- Boogert, A. C. A., Blake, G. A., & Öberg, K. 2004a, ApJ, 615, 344
- Boogert, A. C. A., Helmich, F. P., van Dishoeck, E. F., Schutte, W. A., Tielens, A. G. G. M., & Whittet, D. C. B. 1998, A&A, 336, 352
- Boogert, A. C. A., Schutte, W. A., Helmich, F. P., Tielens, A. G. G. M., & Wooden, D. H. 1997, A&A, 317, 929
- Boogert, A. C. A., Tielens, A. G. G. M., Ceccarelli, C., Boonman, A. M. S., van Dishoeck, E. F., Keane, J. V., Whittet, D. C. B., & de Graauw, T. 2000, A&A, 360, 683
- Boogert, A. C. A., et al. 1996, A&A, 315, L377
- _____. 2004b, ApJS, 154, 359
 - —. 2008, ApJ, 678, 985 (Paper I)
- Brown, P. D., Charnley, S. B., & Millar, T. J. 1988, MNRAS, 231, 409
- Cernicharo, J., Noriega-Crespo, A., Cesarsky, D., Lefloch, B., González-Alfonso, E., Najarro, F., Dartois, E., & Cabrit, S. 2000, Science, 288, 649
- Collings, M. P., Anderson, M. A., Chen, R., Dever, J. W., Viti, S., Williams, D. A., & McCoustra, M. R. S. 2004, MNRAS, 354, 1133
- Cuppen, H. M., & Herbst, E. 2007, ApJ, 668, 294
- Dartois, E., Muñoz Caro, G. M., Deboffle, D., Montagnac, G., & D'Hendecourt, L. 2005, A&A, 432, 895
- Dartois, E., Schutte, W., Geballe, T. R., Demyk, K., Ehrenfreund, P., & D'Hendecourt, L. 1999, A&A, 342, L32
- Evans, N. J., II, et al. 2003, PASP, 115, 965
- Gerakines, P. A., Schutte, W. A., & Ehrenfreund, P. 1996, A&A, 312, 289

- Gerakines, P. A., et al. 1999, ApJ, 522, 357
- Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens, A. G. G. M. 2004, ApJS, 151, 35
- Gürtler, J., Klaas, U., Henning, T., Ábrahám, P., Lemke, D., Schreyer, K., & Lehmann, K. 2002, A&A, 390, 1075
- Hasegawa, T. I., Herbst, E., & Leung, C. M. 1992, ApJS, 82, 167
- Hiraoka, K., Miyagoshi, T., Takayama, T., Yamamoto, K., & Kihara, Y. 1998, ApJ, 498, 710
- Keane, J. V., Tielens, A. G. G. M., Boogert, A. C. A., Schutte, W. A., & Whittet, D. C. B. 2001, A&A, 376, 254
- Knez, C., et al. 2005, ApJ, 635, L145
- Lacy, J. H., Carr, J. S., Evans, N. J., II, Baas, F., Achtermann, J. M., & Arens, J. F. 1991, ApJ, 376, 556
- Markwick, A. J., Millar, T. J., & Charnley, S. B. 2000, ApJ, 535, 256
- Millar, T. J., Bennett, A., Rawlings, J. M. C., Brown, P. D., & Charnley, S. B. 1991, A&AS, 87, 585
- Öberg, K. I., Fraser, H. J., Boogert, A. C. A., Bisschop, S. E., Fuchs, G. W., van Dishoeck, E. F., & Linnartz, H. 2007, A&A, 462, 1187
- Pontoppidan, K. M., Dartois, E., van Dishoeck, E. F., Thi, W.-F., & d'Hendecourt, L. 2003, A&A, 404, L17
- Pontoppidan, K. M., et al. 2008, ApJ, 678, 1005 (Paper II)
- Sakai, N., Sakai, T., Hirota, T., & Yamamoto, S. 2008, ApJ, 672, 371
- Sandford, S. A., & Allamandola, L. J. 1993, Icarus, 106, 478
- Tielens, A. G. G. M., & Hagen, W. 1982, A&A, 114, 245
- van de Hulst, H. C. 1946, Rech. Astron. Obs. Utrecht, 11, 2
- Woodall, J., Agúndez, M., Markwick-Kemper, A. J., & Millar, T. J. 2007, A&A, 466, 1197
- Young, C. H., et al. 2004, ApJS, 154, 396