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Abstract

Schizophrenia is a chronic mental illness. The exact cause if schizophrenia is not yet
known. Extensive research has been done to identify robust biomarkers for the disease
using non-invasive brain imaging techniques. A robust biomarker can be informative
about pathophysiology of the disease and can guide clinicians into developing more
effective interventions. The aim of this dissertation is two folds. First, we seek to identify
robust biomarkers using resting state fMRI activity from a cohort of schizophrenic and
healthy subjects in a purely data driven approach. We will calculate multivariate network
measures and use them as features for classification of the subjects into healthy and
diseased. The network measures will be calculated using nodes defined by the AAL
anatomical atlas as well as a functional atlas constructed from the fMRI activity. Network
measures with high classification rate may be used as potential biomarkers. We will
employ double cross-validation to estimate generalizability of our results to a new
population of subjects that were not used in biomarker identification. Second, we seek to
identify biomarkers using electroretinogram (ERG). We will use a data driven approach
to classify individuals based on the pattern of retinal activity they exhibit in response to
visual stimulation. Characteristics of the ERG result in high classification rate are

presented as potential biomarkers of schizophrenia.
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Chapter 1: Introduction

Schizophrenia is a chronic debilitating mental disease that affects 1.1% of adult US
population (“Schizophrenia” 2016a) and more than 21 million people worldwide
(“Schizophrenia” 2016b). Typical onset age of schizophrenia is between the ages of 15
and 25 years. Schizophrenia is characterized by hallucination, delusion, as well as
abnormalities in attention, working memory, and social and emotional behavior. The
main risk factor for development of schizophrenia is genetic (Cardno et al. 1999),
although several environmental factors have also been reported (McDonald and Murray
2000).

Systematically, symptoms of schizophrenia are grouped into three categories: positive

symptoms, negative symptoms, and cognitive symptoms.

Positive symptoms are feelings or behaviors that are typically not present in healthy

individuals and include four symptom groups (Andreasen et al. 1995):

1. Hallucinations in any sensory modality, e.g. hearing voices or smelling odors that
are not present.

2. Delusions, which includes a broad range of beliefs, such as the delusion that
patient’s thoughts are broadcasted to everybody or that other people are
inserting thoughts into patient’s mind.

3. Bizarre behavior, which captures abnormal behavioral traits such as unusual
appearance or aggressive behavior.

4. Positive formal thought disorder, which characterizes disorganized thinking as

manifested in incoherent speech.

Negative symptoms are typical feelings and behaviors that are present in healthy
individuals but absent in schizophrenic patients. Negative symptoms consist of five

groups (Andreasen et al. 1995).

1. Affect flattening or blunting and refers to a lack of expression of emotions, e.g.
absence of changes in facial expression.

2. Alogia, or poverty of speech, which refers to lack of content in produced speech.



3. Avolition-apathy, refers to lack of motivation or emotion which manifests itself in
behaviors such as lack of hygiene or lack of persistence at work.

4. Anhedonia-asociality and is lack of interest in recreational or social activities.

5. Attention which characterizes social attentiveness and attention during a mental

status task.

Positive and negative symptoms are quantified using two rating scales: Scale for the
Assessment of Positive Symptoms (SAPS) (N. Andreasen 1984) and Scale for the
Assessment of Negative Symptoms (SANS) (N. Andreasen 1983) which measure

severity of positive and negative symptoms respectively.

Cognitive symptoms of schizophrenia encompass a wide range of cognitive inabilities in
schizophrenic patients such as disruption in working memory (Goldman-Rakic 1994),
declarative memory (Cirillo and Seidman 2003), attention (Cohen and Servan-Schreiber
1992), language deficits (Cohen and Servan-Schreiber 1992), and context processing
(Cohen and Servan-Schreiber 1992; MacDonald 2008).

The most common treatment for schizophrenia currently is antipsychotic medication
(Chien and Yip 2013). In recent years psychosocial intervention and therapy based
methods have gained popularity (Chien et al. 2013). In cases with severe symptoms,

surgical lobotomy might also be performed (Soares et al. 2013).

Exact pathophysiology of schizophrenia is not yet known, but has been explored using
several imaging modalities. Several studies have compared morphology and size of
anatomical areas in schizophrenic patients with that of healthy control individuals using
Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) and changes
in volume and morphology have been reported (Shenton et al. 2001). Structure of white
matter fiber tracts, visualized using an imaging technique called Diffusion Tensor
Imaging (DTI), has also been reported to be affected by schizophrenia (Foong et al.
2000; Minami et al. 2003; Ardekani et al. 2003; Davis et al. 2003; Camchong et al.
2011). Patterns of functional activity, measured with Blood Oxygen Level Dependent
(BOLD) signal using Functional Magnetic Resonance Imaging (fMRI), have also been
reported to be different in schizophrenic patients (Skudlarski et al. 2010). Collectively,
studies using DTl and fMRI support the dysconnectivity hypothesis (Friston 1998) of

schizophrenia. This hypothesis posits that symptoms of schizophrenia are caused by



failure of functional integration across the brain. More specifically, healthy pattern of
interaction between different functional modules of the brain is disrupted in the disease

population.

The mechanism by which these connectivity patterns are disrupted is not yet clear.
Historically, the dominant hypothesis was that abnormal activation pattern of
dopaminergic pathways in the brain is the cause of schizophrenia (Howes and Kapur
2009). This hypothesis, known as the dopamine hypothesis, was mainly based on the
observation that antipsychotic drugs such as chlorpromazine were dopamine
antagonists. However, limited progress in development of effective therapeutic
interventions based on the dopamine hypothesis, led to development of the alternative
N-methyl-D-aspartate receptor (NMDA receptor) hypofunction hypothesis (Snyder and
Gao 2013). The NMDA receptor is a glutamatergic receptor playing a crucial rule in
synaptic plasticity during early neurodevelopmental stages. The NMDA hypofunction
hypothesis attributes schizophrenia to dysfunction of the NMDA receptors. Interestingly,
activity of dopaminergic neurons are also regulated by NMDA receptors, which can
explain abnormality in activity of dopaminergic neurons in schizophrenia. Given NMDA
receptors’ role in synaptic plasticity, the NMDA hypothesis is in agreement with the
dysconnectivity hypothesis. More specifically, failure in integration of information across
different functional modules in the brain can be explained by disruption in formation of

neural circuitry caused by dysfunction of NMDA receptors.

Diagnosis of schizophrenia is currently done in a clinical setting and based on behavioral
symptoms reported by patients, and not based on any measurable biomarkers.
Identification of robust biomarkers, i.e. biomarkers with high replication rate across
studies and subject populations, is important for several reasons. The first reason is that
robust biomarkers can shed light on the physiological mechanism of the psychosis.
Second, robust biomarkers can be used to develop novel more effective therapeutic
interventions for schizophrenia. Moreover, robust biomarkers can potentially be used to
identify the disease in its prodromal state for early intervention in the population with a
genetic predisposition to develop schizophrenia. Third, robust biomarkers may be used
to predict responsiveness of patients to interventions, which can be further utilized to

develop more individualized treatment regimens for each patient.



Currently, there is no generally accepted biomarker for schizophrenia. Extensive
attempts to identify patterns of disrupted connectivity using fMRI datasets have been
made (Pettersson-Yeo et al. 2011; Orru et al. 2012). However, different studies have
implicated different areas of the brain. The general framework in fMRI biomarker
identification studies is to use regions delineated by an anatomical atlas as functional
modules. Activity of single regions, or pairwise similarity between activity of these
regions are then compared across schizophrenic and healthy individuals. The premise is
that disruption in integration of functional activity will result in abnormal activation or
coactivation pattern between these regions. Anatomical atlases divide the brain into its
major gyri based on anatomical landmarks and might not align with functional divisions
of the brain. Therefore, using anatomical atlases to define functional modules might
result in a reduction in discriminative power of resultant biomarkers. Furthermore,
disrupted connectivity patterns might follow complex motifs that are not picked up by

examining activity of single regions or pairwise coactivation patterns between them.

This dissertation is broken into three chapters that aims to identify more robust

biomarkers for schizophrenia using a data driven machine learning approach.

Chapter 2 focuses on the need to identify functional divisions of the brain more
accurately. In this chapter a parcellation of the brain that is based on functional activity of
voxels is constructed and evaluated. A data driven method will be used to group voxels
based on their activation pattern captured by fMRI. We hypothesize that a functional
parcellation captures functional divisions of the brain more precisely than an

anatomical atlas.

Chapter 3 will focus on identifying biomarkers using fMRI. The functional parcellation as
well as an anatomical atlas will be used to generate connectivity maps from which
network features will be extracted. Graph theoretic network measures were calculated to
generate features characterizing the connectivity patterns. Using these measure,
subjects were classified as healthy or schizophrenic in a data driven framework using
machine learning techniques. Our hypothesis is that graph theoretic measures,
calculated using a functional parcellation of the brain, will result in more robust

biomarkers.



Chapter 4 focuses on the dysfunctionality of NMDA receptors in schizophrenic patients
and whether it can be used to identify biomarkers. NMDA receptors are expressed in
retinal cells and disruption in their functionality affects activation pattern of retinal cells.
Retinal activity from a group of healthy and schizophrenic patients was used to classify
each individual using machine learning techniques. We hypothesize that differences in
activity of retinal cells in healthy and schizophrenic individuals can be used as a

robust biomarker for schizophrenia.



Chapter 2: Construction and Evaluation of
Parcellation Methods of the Brain from fMRI
data

Introduction

Brain atlases are a ubiquitous tool used for analysis of functional magnetic resonance
imaging (fMRI) datasets. Atlases group all the voxels into several dozens of contiguous
regions. One of the main advantages of using atlases in analysis of fMRI datasets is that
average of time series of voxels within each region are calculated and used instead of
time series of each single voxel. This approach increases signal to noise ratio and

reduces dimensionality of the dataset from thousand of voxels to dozens of regions.

Historically, anatomical atlases have been used for analysis of fMRI datasets.
Anatomical atlases divide the brain into its major gyri using anatomical landmarks
identified manually. Several anatomical atlases such the Automated Anatomical Labeling
atlas (AAL) (Tzourio-Mazoyer et al. 2002), Desikan-Killiany atlas (Desikan et al. 2006),
and Destrieux atlas (Fischl et al. 2004; Destrieux et al. 2010) have been produced and

are commonly used.

However, anatomical divisions of the brain may not reflect its functional organization
confounding two neighboring areas that have different functional purposes into a single
area. Network analysis of functional activity may not be as accurate or as sensitive as
analysis performed on functional atlases. Therefore, in recent years several attempts
have been made to produce parcellations of the brain that are based on functional
activity of voxels, rather than their spatial location (e.g. (Cohen et al. 2008; Power et al.
2011; Yeo et al. 2011; Craddock et al. 2012; X. Shen et al. 2013; Thirion et al. 2014;
Honnorat et al. 2015)). These studies use data driven unsupervised methods, known as
clustering, to group voxels with similar functional activity to form regions. Functional
activity is typically collected in resting state, when subjects are asked to relax in the
scanner and are not required to perform any tasks, although one study has used task
evoked activity for parcellation (Thirion et al. 2014). The resultant parcellation, known as

a functional brain atlas, can be used in place of anatomical atlases.



Functional parcellation methods have several limitations. Some methods do not produce
contiguous regions (e.g. (Power et al. 2011; Yeo et al. 2011; X. Shen et al. 2013; Thirion
et al. 2014) resulting in brain regions that are scattered across the brain which
complicates interpretation of any results obtained from the atlas. Some methods, such
as the K-means or spectral clustering algorithms, are biased towards regions of equal
size (e.g. (Craddock et al. 2012; Thirion et al. 2014; Honnorat et al. 2015)). Some
methods only parcelate the cortical surface neglecting subcortical structures (Cohen et
al. 2008).

A test of a parcellation is to measure the similarity of activity from voxels within the same
region to similarity between voxels from different regions. Similarity between voxels is
typically calculated as the pairwise cross correlation between the BOLD signal of the
voxels (Craddock et al. 2012; X. Shen et al. 2013; Thirion et al. 2014; Honnorat et al.
2015). However, the presence of strong autocorrelations within each time series can
cause spuriously high correlation values (Christova et al. 2011). Removal of
autocorrelation, a process known as prewhitening, may therefore change parcellation

results.

To address these gaps, we used the hierarchical clustering algorithm to parcellate the
brain into contiguous regions, using 6 minute resting state fMRI scans. Hierarchical
clustering is not biased towards regions of equal size and can accommodate
heterogeneity in size of the regions. We added a spatial constraint to enforce region
contiguity. To explore the role of prewhitening, we constructed two functional atlases,
one using raw time series, and another using pre-whitened time series. We evaluated
the resultant atlases in terms of homogeneity of the regions, separation between
regions, and reproducibility of results. We explored effect of scan duration on
parcellation results. We also compared functional atlases constructed using combined

datasets from our group of subjects to atlases constructed individual datasets.



Methods

Participants

A group of 88 (27 female, age: M = 33.4, SD = 11.9) subjects with no neurological
disorders participated in this study. All participants gave informed consent and were
compensated for their participation. All procedures were done in accordance with a

University of Minnesota IRB approved protocol.

Image Acquisition

Each subject underwent a six minute resting state fMRI image acquisition, during which
subjects were instructed to stay still and awake and keep their eyes closed for about 6
minutes. Images were acquired using a Siemens Trio 3T scanner (Erlangen, Germany)
with the following sequence parameters: gradient-echo echo-planar imaging (EPI) 180
volumes, repetition time (TR) 2 seconds, echo time (TE) 30ms, flip angle 90°, 34
contiguous AC-PC aligned axial slices, voxel size 3.4 x 3.4 x4.0 mm, matrix 64 x 64 x 34
totalling 139,264 voxels.

In addition to functional activity, a T1-weighted anatomical image was acquired using a
magnetization prepared rapid gradient-echo sequence. A field map was also acquired
and used to correct for geometric distortions introduced by field inhomogeneities: TR =
300ms, TE = 1.91 ms/4.37 ms, flip angle = 55°, voxels size = 3.4 x 3.4 x 4.0 mm
(Camchong et al. 2011; Atluri et al. 2015).

The raw fMRI data was preprocessed using FEAT and MELODIC from the FSL software
package as follows. The first three volumes were removed from each subject scan to
account for magnetization stabilization. This resulted in a 5.9 minute time series per
voxel (177 time points). Each scan was motion corrected, B0 field map unwarped, and
corrected for slice scan time. Non-brain portions of the images were removed and a
spatial smoothing kernel was applied to the dataset (6mm full-width half-maximum). The
images were then grand mean and intensity normalized and temporally filtered between
0.01 and 0.08Hz. All images were then registered to the MNI152 space. Using
probabilistic independent component analysis (PICA), noise introduced by head motion,

respiration, cardiac pulsation, and scanner artifacts was removed. Spatial and temporal



characteristics of noise components are described in MELODIC manual
(https://fsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdf). The dataset was then resampled

to 3 x 3 x 3mm, resulting in 47640 voxels.
Prewhitening

Prewhitening refers to removal of autocorrelation from a given time series so that similar
to white noise, the resultant time series are decorrelated. Presence of autocorrelation in
BOLD time series can lead to spurious high cross correlation values between different
voxels (P. Christova et al. 2011). We prewhitened the time series from voxel i, x,(t) by
calculating its Fourier transform X,(f) and dividing it by its power spectrum 'Xl.(/’)) , to
result in a flat power spectrum, similar to white noise. The resultant signal XlW(f) was

then inverse Fourier transformed into the time domain xl-W(’) (Equation 2.1).

xi(t) ‘_’Xi(f)
X0 =X0) |0 Equation (2.1)
Wy o X

Parcellation

To parcellate the brain using fMRI data, voxels with similar time series are grouped
together to form regions. This is typically done using data-driven clustering algorithms,
where each cluster constitutes one region (e.g. (Craddock et al. 2012; Thirion et al.
2014; Honnorat et al. 2015)).

We chose the agglomerative hierarchical clustering algorithm with Ward’s minimum
variance as linkage criterion (Ward 1963; Tan, Steinbach, and Kumar 2006). Hierarchical
clustering algorithm is not biased towards clusters of equal size like the K-means or
spectral clustering algorithms (Tan, Steinbach, and Kumar 2006) and results in more
reproducible parcellations (Thirion et al. 2014). The agglomerative hierarchical clustering
algorithm starts with each datapoint (voxel) as a single cluster. It then merges the cluster
pair that minimizes Ward'’s criterion to form a new cluster. Ward'’s criterion calculates

total within-cluster variance resulting from merging each pair of clusters. The merging



process is iterated until all clusters are merged to form a single cluster containing all data
points. Information about membership of each datapoint to each cluster at each stage of
merging is stored in a structure called a dendrogram. Different parcellation scales, i.e.
number of regions the brain is parcellated into, are constructed by cutting the
dendrogram at the stage that contain the desired number of clusters. The resultant
parcellations are then used as functional brain atlases. To obtain atlases with contiguous
regions, we applied a spatial constraint so that only spatially adjacent clusters can be

merged.

A clustering algorithm requires a distance measure between voxel pairs. We used the
correlation distance for parcellation. Correlation distance between voxels i and j, d,.’j , IS

equalto d;; = 1 —r;; where r, ;is the zero-lag crosscorrelation between the two voxels.

We constructed two types of functional atlas: i) atlas constructed using the original time

series, referred to as original functional atlas in this manuscript; ii) atlas constructed

using prewhitened time series, referred to as white functional atlas in this manuscript.

We constructed functional atlases at two different levels: i) Group level, where time
series from the entire group of subjects were combined to construct a group dataset,
which was then used for construction of the functional atlas. To combine individual
datasets, for each voxel, time series from all subjects were concatenated to construct a
single time series. ii)Individual level, where the functional atlas was constructed for each
individual dataset. In this manuscript, unless stated otherwise, functional atlas refers to a

group level functional atlas.

Evaluation

To evaluate the resultant functional atlases we employed three approaches: i)
calculating homogeneity of the regions, which measures how similar voxels within a
single region are to each other; ii) calculating separation between regions, which
measures how dissimilar voxels in different regions are with respect to voxels within
regions; iii) calculating reproducibility of parcellation results, which quantifies how
reproducible the results are if a different group of subjects, ot different datasets from the

same subject were used for parcellation. Each approach is explained here in detail.

10



Homogeneity

Several measures of homogeneity have been used to evaluate parcellation methods.

We used the following 5 measures to quantify homogeneity of the resultant atlases:

1. Average pairwise correlation coefficient between voxels within each region
(Craddock et al. 2012; Honnorat et al. 2015), referred to as rt in this manuscript.

2. Average pairwise correlation coefficient between functional connectivity maps
between voxels within each region (Craddock et al. 2012), referred to as rs in this
manuscript.

3. Percentage of variance explained by the first principal component (Bishop 2006)
of time series of voxels within each region (Gordon et al. 2014), referred to as
pcat in this manuscript.

4. Percentage of variance explained by the first principal component of functional
connectivity maps of voxels within each region, referred to as pcs in this
manuscript.

5. Kendall’s coefficient of concordance (Kendall Maurice; Gibbons 1990) between

voxels within each region (Shi et al. 2007), referred to as KCC in this manuscript.

Due to the spatial autocorrelation present in fMRI datasets, a contiguous random
grouping of voxels is bound to result in regions with a certain degree of homogeneity.
Therefore, to test our null hypothesis we compared distribution of homogeneity of the
functional atlases to homogeneity of randomly constructed atlases with contiguous
regions and similar size distributions. Homogeneity depends on size of regions. Smaller
regions contain fewer voxels which results in less diversity among the voxels. The
extreme case is a region that consists of a single voxel, which is perfectly homogeneous.
Therefore, the random atlases must match the functional atlases in distribution of region
sizes. We constructed random atlases that consisted of spatially contiguous regions with
similar region size distribution to functional atlases, but assignment of voxels to regions
was performed randomly. To construct a random atlas with M regions, we randomly
picked M initial voxels as seeds, with each seed constituting a single region. Pairwise
Euclidean distance between each of the voxels and the seed voxels was calculated and
each voxel was assigned to the region with the closest seed. Since this algorithm does

not guarantee the distribution of region sizes to match that of our atlases, 1000 random

11



atlases were generated and the mismatch of their size distribution to the functional
atlases was calculated. Then the 10 random atlases with lowest mismatch were used as

the final random atlases. Average mismatch for the 10 chosen atlases was less than 5%.
Cluster Separation

To quantify separation between regions, we used the Silhouette coefficient (Rousseeuw
1987) which has been used in several studies to evaluate parcellation algorithms (Kelly
et al. 2010; Yeo et al. 2011; Craddock et al. 2012; Long et al. 2014; Parisot et al. 2016).
The silhouette coefficient measures how similar each voxel is to voxels within its region
compared to voxels in other regions. To calculate Silhouette coefficient for voxel i, first,
average correlation distance, a,, between voxel i and all other voxels assigned to the
same region. Then, the lowest average correlation distance between that voxel and all
other regions, b, is calculated, where average distance between the voxel and each
region is average distance between that voxel and all the voxel belonging to that region.
The silhouette coefficient for voxel i is then calculated as S; = (b; — a;)/max(b;, a;) .
Silhouette coefficient takes up values between 1 and -1, where a value of 1 indicates

that the region the voxel belongs to is well separated from other regions.

Similar to homogeneity values, Silhouette coefficient values from the functional atlases

were compared to values from randomly constructed atlases.

Reproducibility

To calculate how reproducible the results of functional parcellation are across different
groups, we divided our subjects into two groups, and constructed separate functional
atlases from each group’s raw dataset. We then compared the agreement between the
two atlases. This comparison was done at four different parcellation scales, 90, 500,
1000, and 4000 regions. We quantified the agreement using the Adjusted Rand Index
(ARI), a measure of comparing different groupings of the same dataset (Rand 1971;
Vinh, Epps, and Bailey 2010). Rand index (RI) is a normalized measure that calculates
agreement between two parcellations (Equation 2.2). ARl is a corrected form of Rl that

subtracts expected RI values that are to be observed due to chance. ARI can take up

12



values between 1 (total agreement between the two parcellations) and -1 (total

disagreement between the two parcellations).

a : Total number of voxels pairs that are assigned to the same region in both

parcellations

b: Total number of voxels pairs that are assigned to different regions in both

parcellations

c: Total number of voxels pairs that are assigned to the same region in parcellation 1

and to different regions in parcellation 2

d: Total number of voxels pairs that are assigned to different regions in parcellation 1

and to the same region in parcellation 2

+
RI = % Equation 2.2

Scan duration

To evaluate effect of scan duration on homogeneity and reproducibility of the functional
atlas, we constructed functional atlases using a range of scan durations. A subset of our
subjects (N=24), were scanned for a second and third time in six and nine months after
the first scan. Each scan session lasted 5.9 minutes. Raw time series for each voxel
were concatenated for each subject to construct a 17.7 minutes long time series per

voxel.

To examine reproducibility of parcellation results as a function of scan duration, we
divided the long time series into two halves. 360s and 600s from each half were taken

and used to construct functional atlases with 90, 500, and 2000 regions.

To quantify the effect of scan duration on regional homogeneity, the 17.7 minute long
time series were truncated at different time points, and truncated time series were used
separately to construct functional brain atlases at two different scales, 90 and 500
regions. Time series were truncated after the first 360s (6 minutes), 600s (10 minutes),
840s (14 minutes) and 1062s (17.7 minutes). Homogeneity of the regions of each

functional atlas was then calculated.

13



Level of Analysis

We constructed individual level functional atlases from raw time series of 7 of our
subjects by parcellating each dataset separately. We quantified degree of agreement
between each individual level atlas and our group level atlas using ARI at three different
parcellation scales, 90, 500 and 2000 regions. We also calculated ARI between each

pair of individual level atlases at those parcellation scales.

Results

We constructed two functional atlases using the agglomerative hierarchical clustering
with the linkage method for merging criterion. The first functional atlas, referred to as the
original functional atlas, was constructed using raw time series. The second functional
atlas, referred to as the white functional atlas, was constructed using pre-whitened time
series. Pre-whitening removes autocorrelation from each time series, resulting in
elimination of spurious cross correlation between voxels (Christova et al. 2011). We
observed that average pairwise cross correlation between all voxels was reduced after

pre-whitening (Supplementary Figure 2.1).

To compare properties of the functional atlases against anatomical atlas, we constructed
each functional atlas with 90 regions to compare it to a commonly used anatomical atlas,
known as the AAL, which also consists of 90 regions. Schematics of the resultant
functional atlases along with the AAL anatomical atlas (Tzourio-Mazoyer et al. 2002) are
shown in Figure (2.1A, 2.1B, and 2.1C). We also tested other linkage criteria. However,
the other linkage criteria resulted in atlases with several regions that constituted of single
voxels and regions that were extremely large, encompassing entire lobes. Distribution of
region sizes was most comparable to that of an anatomical atlas only when the linkage

criterion was used (Supplementary Figure 2.2).

Figure 2.1D shows distribution of region sizes for the three atlases. As can be seen in
Figure 2.1D left, the two functional atlases have similar size distributions compared to
the AAL atlas. However the AAL atlas seems to have several regions with smaller sizes
than the functional atlases. We also constructed ten random parcellations that matched

each functional atlas in size distribution. Properties of random atlases were compared to

14



that of the functional atlases. As can be seen in Figure 2.1D, middle and right, these

random parcellations match the functional atlases very closely.

We then calculated homogeneity of regions for each of the three atlases. Homogeneity is
a measure of similarity between voxels within each region. Homogeneity was calculated
as average pairwise cross correlation between voxels of each region (rf). To compare
the original functional atlas with the AAL atlas, both atlases were applied to raw time
series to calculate homogeneity. The two distributions were significantly different (two
sample Kolmogorov-Smirnov test, p<0.001). To compare the white functional atlas with
the AAL atlas, both atlases were applied to prewhitened time series to calculate
homogeneity. The two distributions were significantly different (two sample
Kolmogorov-Smirnov test, p<0.001). The resultant distributions are shown in Figure
2.1E, left. Due to presence of spatial autocorrelation in fMRI datasets, adjacent voxels
are bound to have a certain degree of correlation. Therefore, even in random groupings
of parcellations a certain degree of homogeneity will be observed. To confirm that our
functional parcellation algorithm is having a superior performance to random
parcellations, we compared distribution of homogeneity values for each functional atlas
with that of ten random parcellations that matched the functional atlases in size
distribution. The resultant distributions for the original functional atlas, and the white
functional atlas are shown in Figure 2.1E, middle and Figure 2.1E, right. We found that
the homogeneity distribution of each functional atlas with each of the ten random
parcellations was significantly different (Kolmogorov-Smirnov test, Corrected for multiple
comparisons, p<0.001). Therefore functional atlases result in more homogenous regions
than the anatomical atlas and random parcellations. We also calculated homogeneity
using several other homogeneity measures (see methods). Distribution of the
homogeneity values for each measure is shown in Supplementary Figure 2.3. We
observed that functional atlases compared to both AAL and random parcellations
produce significantly more homogenous regions when rs and pcat (see methods) are
used as measures of homogeneity. However, when pcas was used, we did not observe
a significant difference between functional atlases and the anatomical atlas or random
parcellations. When KCC was used as the measure of homogeneity, we observed a
significant different between the functional atlases and the anatomical atlas, but no

significant difference between the functional atlases and random parcellations.
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Next, we looked at separation between regions. Separation between regions quantifies

how dissimilar voxels in separate regions are compared to voxels within the same
region. We quantified separation between regions using the Silhouette coefficient.
Distribution of Silhouette values for both functional atlases, as well as the AAL atlas
applied to both raw and pre-whitened time series is shown in Figure 2.1F, left. We
observed no significant difference between values of the AAL atlas applied to raw time
series compared to the original functional atlas (Kolmogorov-Smirnov test, p = 0.78).
Similarly, no significant difference between values of the AAL atlas applied to

pre-whitened time series and the white functional atlas was observed

(Kolmogorov-Smirnov test, p = 0.08). When Silhouette values were compared across the

original functional atlas and each random parcellation (Figure 2.1F, middle), only two out

of ten distributions were significantly different (Kolmogorov-Smirnov test, corrected for
multiple comparisons, p<0.005). Similarly, only five out of ten distributions were
significantly different when comparing white atlas to each random parcellation

(Kolmogorov-Smirnov test, corrected for multiple comparisons, p<0.005, Figure 2.1F,

right).

Subsequently, we examined the degree of agreement between each pair of atlases

using the adjusted rand Index (ARI) (see methods). The results are shown in Table 2.1.

As can be seen, the functional atlases calculated on raw and pre-whitened data are in

89% agreement between each other. However, the AAL atlas and each of the functional

atlases are in much lower agreement (about 25%).

Pair of Atlases ARI
Original- vs. white functional atlas | 0.89
AAL vs. original functional atlas 0.25
AAL. vs. white functional atlas 0.26

Table 2.1. Degree of Agreement between each pair of Atlases. Degree of agreement

between each pair of atlases is quantified using the adjusted rand index (ARI).
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Figure 2.1. Parcellation Properties

(A) A schematic of the anatomical AAL atlas, from left to right: coronal, sagittal and

horizontal views

(B) A schematic of the original functional atlas, constructed using raw time series,

from left to right: coronal, sagittal and horizontal views.

(C) A schematic of the white functional atlas, constructed using prewhitened time

series, from left to right: coronal, sagittal and horizontal views.

(D)  size distributions. Regions were rank ordered based on their size. X-axis:

Rank of each region, Y-axis: Number of voxels within the region in log
scale.Left: Distribution of size of regions for the AAL, original functional, and
white functional atlases. Middle: Distribution of size of regions for the original
functional atlas constructed using raw time series as well as ten size matched
random parcellations. Right: Distribution of size of regions for the white
functional atlas constructed using prewhitened time series as well as ten size

matched random parcellations.

(E) Distribution of homogeneity values for each atlas. Homogeneity was measured

as average pairwise correlation coefficients between voxels in each region (rt)
across all regions and all subjects. Left: Distribution of homogeneity values for
the AAL atlas applied to both raw and prewhitened time series, as well as the
original functional atlas constructed using raw time series applied to raw time
series and white functional atlas constructed using prewhitened time series to
prewhitened time series. Middle: Distribution of homogeneity values for the
original functional atlas constructed using raw time series and ten size
matched random parcellations. Right: Distribution of homogeneity values for
the white functional atlas constructed using prewhitened time series and ten

size matched random parcellations.

(F) Distribution of Silhouette Coefficients for each atlas across subjects. For each
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subject, silhouette values across all regions were averaged. Left: Distribution of
Silhouette values for the AAL atlas applied to both raw and prewhitened time
series, as well as the original functional atlas constructed using raw time series
applied to raw time series and white functional atlas constructed using
prewhitened time series to prewhitened time series. Middle: Distribution of
Silhouette values for original functional atlas constructed using raw time series
and ten size matched random parcellations. Right: Distribution of Silhouette
values for the white functional atlas constructed using prewhitened time series

and ten size matched random parcellations.

We also examined reproducibility of our results across subjects by dividing our subject
set into two groups of equal size and constructed a functional atlas using the raw time
series from each group separately. We then calculated degree of agreement between
the two resultant atlases at several parcellation scales, using ARI. The results are shown
in Figure 2.2. As can be seen the degree of agreement between the two atlases is
maximum at 90 regions and minimum at 1000 regions and then increases as parcellate
into 4000 regions. However, the range in ARl is only 3% (from 33% at 90 regions to 30%
at 500 regions) and these differences are probably negligible. Our conclusion from these
findings is that reproducibility is not dependent on parcellation scale and that functional
parcellation only moderately generalizes to new subjects.

We then examined how reproducibility changes as a function of scan duration. For a
subset of our subjects, we had a second and third set of fMRI scans taken 6 and 9
months after the first scan, respectively. Each scan lasted 5.9 minutes. We constructed
longer time series for each voxel by concatenating the time series from each scan,
resulting in 1062s (17.7 minutes) of data. We then divided the long time series into two
equal halves. We constructed several functional atlases by taking epochs of different
durations from each half. Degree of agreement between the functional atlases
constructed using different halves was quantified using ARI. The results are shown in
Figure 2.3. As can be seen, increasing scan duration, increases reproducibility of results
across datasets. This increase is more drastic at a parcellation scale of 90 regions (7%

increase) compared to 500 and 2000 regions (~2% increase).
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Figure 2.2. Reproducibility of the Functional Parcellation across Subjects

Agreement between two group level functional atlases at different parcellation scales.
Functional atlases were constructed using the raw time series. X-axis shows scale of
parcellation, i.e. number of regions. Y-axis is level of agreement between the two

atlases quantified using ARI.
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Figure 2.3. Effect of Scan Duration on Reproducibility

Agreement between functional atlases constructed using different datasets of equal

duration, at different durations and parcellation scales.

In addition, we examined homogeneity of parcellation results as a function of scan
duration used for construction of the parcellation atlas. The results are shown in Figure
2.4. We are showing the results when average pairwise correlation between voxels
within each region (rf) is used as the measure of homogeneity. A similar pattern was
observed with other measures (data not shown). As can be seen in this Figure, scan
duration does not affect homogeneity of the regions. However, parcellation at a finer
scale (500 regions) results in more homogeneous regions than coarser scale (90

regions).

21



0.35 L ] 1 1
$# 90 regions
§ 500 regions
0.3F 4
! L ] > 3
0.25F -
0.2F o
4 4
3 3
0.15 p -
0-1 1 L 1 1
360 600 840 1062
Duration

Figure 2.4. Effect of Scan Duration on Homogeneity

Average and standard deviation of homogeneity across across all regions vs. scan

duration (second) used for construction of the atlas.

Lastly, we constructed individual level atlases of 7 of our subjects, using raw time series.
To probe how much individual atlases differ from the group level, and how much they
differ from each other, we calculated ARI between each individual atlas and the group
level atlas, as well as degree of agreement between each pair of individual level atlases.
Results are shown in Figure 2.5. As can be seen degree of agreement between the
individual and group level atlases are slightly higher than that of any individual level atlas

to other individual level atlases.
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Figure 2.5. Individual vs. Group Level Atlases

Top: Degree of agreement between the seven individual level atlases and the group

level atlas at different parcellation scales

Bottom: Degree of agreement between each pair of the seven individual atlases (21

pairs total) at different parcellation scales.

Discussion

We constructed and evaluated group level functional atlases using both raw and

pre-whitened time series, using the hierarchical clustering algorithm. We compared the
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resultant atlases with anatomical atlases. We also evaluated the resultant atlases by
quantifying their homogeneity, separation between between regions, and reproducibility.
Lastly, we characterized effect of scan duration on homogeneity and reproducibility, and

compared group and individual level atlases.

Our functional atlases, resembled the anatomical atlas in terms of distribution of size of
the regions. However compared to the anatomical atlas, or random parcellations, both
functional atlases resulted in significantly more homogeneous regions. This
demonstrates the effectiveness of the functional atlas to group voxels with similar
functional activity together. This significant difference was observed using three out of
the five homogeneity measures we used. These measures capture different aspects of
the dataset. Since these measures capture different aspects of degree of homogeneity
between regions, these results demonstrate that studies evaluating their results using
different measures, might not necessarily be comparable, as one measure might show

significance, while others would not.

Separation between the regions, quantified using the Silhouette coefficient, showed no
difference between the functional atlases and the anatomical atlas or random
parcellations. Although we observed that the difference between distribution of
Silhouette values between the white functional atlas and the AAL atlas was close to

significance (p=0.08).

We observed that pre-whitening results in regions with lower homogeneity and
Silhouette coefficient values. This is expected, since pre-whitening removes spuriously
high correlations. However, the white functional atlas was in high agreement with the
original functional atlas (89%). This shows that even though pre-whitening shifts
distribution of pairwise correlations between voxels to the left, overall it does not affect
pattern of pairwise cross correlations among voxels. Degree of agreement between the
two functional atlases and the anatomical atlas was drastically lower (~25%),
demonstrating that regions delineated by functional activity do not align very well with

anatomically marked regions.

Reproducibility of the results across different subjects was moderate, as degree of
agreement between functional atlases constructed using different groups of subjects

was slightly above 30%. Reproducibility did not depend on parcellation scale. The
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reason is interindividual differences in where the functional borders between regions are.
A group level atlas reflects the commonalities between all the individuals in the group,
which is presumably very similar to that of a different group of subjects, provided that
these groups are large enough. Our results show that larger groups (at least larger than
22 subjects) are required to construct group level functional atlases that are highly

reproducible across groups.

Reproducibility of the functional atlases across datasets was calculated as degree of
agreement between functional atlases constructed from different datasets of the same
subjects, and was comparable to reproducibility across subjects. Although reproducibility
across datasets showed improvement as scan duration increased. This trend is
expected, as longer scan durations result in more robust estimates of the cross
correlation between different voxels. A recent study has shown that reproducibility
across datasets increase as scan duration increases and approaches maximum value at

about 30 minutes of data (Laumann et al. 2015).

Duration of scan used for construction of the functional atlas, resulted in higher

reproducibility across datasets, but did not affect homogeneity of the regions. Although
counterintuitive, it is possible that improvements to homogeneity will happen at longer
durations. In other words, even our longest duration (17.7 minutes), is not long enough

to produce any changes in homogeneity of the regions.

We observed that individual level atlases have a higher degree of agreement with the
group level functional atlas compared to agreement with other individual level atlases. As
pointed out before, individual level atlases capture the unique functional organization of
each individual, when a group level atlas captures commonalities among the individuals

it contains. So the group level atlas can be thought of an “average” functional atlas.

Overall, spatially constrained hierarchical clustering algorithm seems to be a promising
method for construction of the functional atlases. However, it seems that to evaluate the
method more rigorously, datasets with longer scan duration and lower repetition time

(TR) are required.
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Supplementary Material
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Supplementary Figure 2.1. Distribution of Pairwise Cross Correlations

Distribution of pairwise cross correlation between voxels for raw and pre-whitened

time series. Vertical dash line marks significance threshold at p<0.05.

26




Number of Regions: 90 Number of Regions: 500

5 5
— ward —ward

o4 —single 24 —single
X complete x complete
g —average g —average
<3 — AAL %3
2 R S
€2 £2 \\*\R_Wg
2 2 — e ——
@1 D, ——hﬁ‘\xm\_\_\_‘_‘
& <)

0 0

0 20 40 60 80 100 0 100 200 300 400 500
Region Number Region Number
. Number of Regions: 1000 s Number of Regions: 4000
—ward [—ward
“3 4 —single ns 4 —single
X complete x complete
2 —average 2 |—average
53 53
) =)
] \\ @
g2k 2
= \\-\?“M__g;___\ 5
= e ey I S
=31 \x\—‘_\j—‘ ]
& \_L\_\—‘ 2 \H—T:'%H_‘\
0 0
0 200 800

400 600 1000 0 500 1000 1500 2000 2500 3000 3500 4000
Region Number Region Number

Supplementary Figure 2.2. Distribution of Region Sizes for Different Linkage
Methods

Distribution of size of regions for functional atlases constructed using different linkage
criteria at different scales. Size of the regions are sorted from highest to lowest.
X-axis: rank of the region, Y-axis: number of voxels in the region in log scale. Size
distribution of the AAL anatomical atlas is also shown at a scale of 90 regions. Original

time series were used for construction of these atlases.
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Supplementary Figure 2.3. Distribution of Different Homogeneity Measures

across Different Atlases

A) Distribution of pairwise correlation between functional connectivity maps of voxels
within each region (rs). left: Distribution of values for the two functional atlases, as well
as the AAL anatomical atlas applied to raw and pre-whitened time series. Distribution
of values was significantly different between the original functional atlas and AAL atlas
applied to raw data (Kolmogorov-Smirnov test, p<0.01). Distribution of values was
significantly different between the white functional atlas and AAL atlas applied to
prewhitened data (Kolmogorov-Smirnov test, p<0.01). Middle: Distribution of
homogeneity values for the original functional atlas and ten size matched random
parcellations. Distribution of the values was significantly different between the
functional atlas and each fo the ten random parcellations (Kolmogorov-Smirnov test,
Corrected for multiple comparisons, p<0.001). Right: Distribution of homogeneity
values for the white functional atlas and ten size matched random parcellations.
Distribution of the values was significantly different between the functional atlas and
each fo the ten random parcellations (Kolmogorov-Smirnov test, Corrected for multiple

comparisons, p<0.001).

B) Distribution of percent of variance explained by the first principal component of the

time series of voxels within each region (pcat). Arrangement is the same as A.
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Distribution of values was significantly different between the original functional atlas
and AAL atlas applied to raw data (Kolmogorov-Smirnov test, p<0.01). Distribution of
values was significantly different between the white functional atlas and AAL atlas
applied to prewhitened data (Kolmogorov-Smirnov test, p<0.01). Distribution of values
was significantly different between each functional atlas and each of the ten random

parcellations (Kolmogorov-Smirnov test, Corrected for multiple comparisons, p<0.001).

C) Distribution of percent of variance explained by the first principal component of the
functional connectivity map of voxels within each region (pcas). Arrangement is the
same as A. Distribution of values was not significantly different between the original
functional atlas and AAL atlas applied to raw data (Kolmogorov-Smirnov test, p=17).
However, distribution of values was significantly different between the white functional
atlas and AAL atlas applied to prewhitened data (Kolmogorov-Smirnov test, p<0.01).
When the original functional atlas was compared to each of the ten random
parcellations, only four out of ten distributions were significantly different
(Kolmogorov-Smirnov test, Corrected for multiple comparisons, p<0.001). When the
white functional atlas was compared to each of the ten random parcellations, only five
out of ten distributions were significantly different (Kolmogorov-Smirnov test,

Corrected for multiple comparisons, p<0.001).

D) Distribution of Kendall’'s coefficient of concordance (KCC). Arrangement is the
same as A. Distribution of values was significantly different between the original
functional atlas and AAL atlas applied to raw data (Kolmogorov-Smirnov test, p<0.01).
Distribution of values was significantly different between the white functional atlas and
AAL atlas applied to prewhitened data (Kolmogorov-Smirnov test, p<0.01). When the
original functional atlas was compared to each of the ten random parcellations, only
five out of ten distributions were significantly different (Kolmogorov-Smirnov test,
Corrected for multiple comparisons, p<0.001). When the white functional atlas was
compared to each of the ten random parcellations, only five out of ten distributions
were significantly different (Kolmogorov-Smirnov test, Corrected for multiple

comparisons, p<0.001).
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Chapter 3: Classification of Schizophrenia
Patients using Network Measures: A Data
Driven Approach

Introduction

Schizophrenia is a debilitating disease that affects about 1.1% of the adult US population
according National Institute of Mental Health . One hypothesis about cause of
schizophrenia, known as the “disconnectivity hypothesis” (Friston 1998) posits that
normal pattern of functional connectivity between distinct regions of the brain is
disrupted. This hypothesis has been studied extensively over the past decade using
Functional Magnetic Resonance Imaging (fMRI). FMRI provides a unique means to
study schizophrenia because it is non-invasive, can be used to identify prodromal state
of schizophrenia, and unlike Electroencephalography (EEG) can image deep brain
structures, such as thalamus. Many studies have searched for a common neural
biomarker of the disease. A reliable biomarker could help clinicians with diagnosis.
Biomarkers may also provide insight into the mechanism of the disease and could guide

researchers to developing novel therapeutic interventions.

Finding biomarkers that are replicable across different studies and patient populations
has been challenging (Pettersson-Yeo et al. 2011). Different studies have found
abnormal patterns of connectivity in different regions of the brain. For example, the
thalamus is often implicated, but in some studies they find a hyperconnectivity (Wolf et
al. 2009; Skudlarski et al. 2010; Zhang et al. 2012; Atluri et al. 2015) of the thalamus and
other studies hypoconnectivity (Andreasen et al. 1996; Zhou et al. 2007; Tu et al. 2010).

There are many approaches to identifying biomarkers using fMRI: 1) Univariate
approach, which quantifies characteristics of each brain region separately and compares
that across the patient and healthy groups (Shi et al. 2007; Bassett et al. 2012). 2)
Bivariate approach, which quantifies interaction between each pair of regions in the brain
and searches for region pairs that are discriminative across patient and healthy groups
(Lynall et al. 2010; Bassett et al. 2012; Tang et al. 2012; Su et al. 2013; Guo et al. 2013;
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Kim et al. 2016; Arbabshirani, Castro, and Calhoun 2014). 3) Multivariate approach,
which quantifies more complex interactions between all regions, typically using graph
theoretic measures (Lynall et al. 2010; Bassett et al. 2012; van den Heuvel et al. 2010,
2013; Fekete et al. 2013; Anderson and Cohen 2013; Singh and Bagler 2016). Recent
studies have demonstrated that the multivariate approach has more discriminating power
(Venkataraman et al. 2010; Atluri et al. 2013).

Discriminative power of calculated measures is quantified either using statistical tests
(e.g. (Lynall et al. 2010; van den Heuvel et al. 2010, 2013)) or classifiers such as support
vector machines (SVM) (e.g. (Castro et al. 2011; Bassett et al. 2012; Anderson and
Cohen 2013; Arbabshirani et al. 2013; Singh and Bagler 2016)). Statistical tests
compare the means and depend on number of subjects. On the other hand,
classification performance of a measure is useful because the measure indicates how
the accuracy of the classifier if it were to be used in clinical setting. To be more specific,
significant statistical difference between two groups does not automatically translate into
high classification performance. For example, if the class distributions have different
means, but high standard deviation and therefore overlap, significant statistical

difference could occur with low classification performance.

Diversity of results on schizophrenia biomarkers is attributable to multiple factors. First,
typical sample size are low (average 38 subjects based on sample sizes reported in
(Pettersson-Yeo et al. 2011)). Second, different studies use different pre-processing
steps. Third, tests that identify biomarkers that are statistically significantly different vs.
those that use classification performance put different values on the performance of the
features. Fourth, how biomarkers are validated in the studies are very different and some

methods may result in more robust generalization than others.

In this study we examined predictive power of several multivariate biomarkers, but also
explored how such predictive power can be affected by pre-processing steps and the
biomarker discovery method. This work extends previous work in four important ways.
First, we used a large sample (170 subjects). Second, we used a purely data driven
approach to finding biomarkers. We used a comprehensive set of graph theoretic
measures and used data driven measures to find which ones have more discriminative

power. Third, we used an alternative pre-processing pipeline where functional activity
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was pre-whitened to remove spurious cross correlation between voxels. Moreover,
definition of brain regions was extracted based on functional activity of the subjects
themselves, as opposed to using a conventional anatomical atlas. And fourth, we used a
rigorous double cross-validation method to discover biomarkers and report their
prediction accuracies that we expect will be more robust across different patient

populations.

In this study, we used 6 minute resting state fMRI data from patients with schizophrenia
and healthy control subjects. All time series were first pre-whitened, then used to
construct a functional atlas. Regions of the functional atlas were used to construct
unweighted graphs for each subject, and several multivariate graph theoretic measures
were calculated. The measures were then used to classify patients from healthy controls
using support vector machines. Most informative features were identified and used to
report classification performance in a double cross-validation scheme where separate

sets of subjects were used for feature selection and classification respectively.

Methods

Participants

A total of 170 subjects participated in this study: 52 chronic (17 female, age: M = 37.0,
SD = 10.8) and 30 first episode (8 female, age: M = 25.7, SD = 7.1) schizophrenic
patients as well as two groups of healthy control subjects matched to each patient group
in demography: 55 control subjects (18 female, age: M = 38.0, SD = 11.9) to match the
chronic group and 33 control subjects (9 female, age: M = 25.5, SD = 6.9) to match the
first episode group (see Table 3.1 for detailed information on participants). All
participants gave informed consent and were compensated for their participation.
Schizophrenia patients were assessed for negative and positive symptoms using the
Scale for Assessment of Negative Symptoms (SANS) and Scale for Assessment of
Positive Symptoms (SAPS) (Andreasen and Olsen 1982). All procedures were done in

accordance with a University of Minnesota IRB approved protocol.
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Age SANS SAPS Medication
Chronic Schizophrenia 33.0(14.3) | 23.5(17.3) | 1 Typical
Patients (N =52) 37.0(10.8) 38 Atypical
5 Both
4 No mdes
4 N/A
Chronic Healthy Controls | 38.0(11.9) | N/A N/A N/A
(N = 55)
First Episode 25.7(7.1) |30.1(17.4) | 25.3(16.9) | O Typical
Schizophrenia Patients 21 Atypical
(N =30) 0 Both
3 No mdes
6 N/A
First Episode Healthy 25.5(6.9) | N/A N/A N/A
Controls (N = 33)

Table 3.1. Summary of Characteristics of Study Participants. Mean (and SD)
Demographic and Diagnostic Characteristics of participants. Note: SANS, Scale for
Assessment of Negative Symptoms; SAPS, Scale for Assessment of Positive

Symptoms.

Imaging Data Acquisition and Preprocessing

Resting state fMRI scan for a duration of six minutes was collected from each participant
as detailed in (Camchong et al. 2011; Atluri et al. 2015). Participants were instructed to
remain as still as possible, stay awake and keep their eyes closed. Images were
acquired using a Siemens Trio 3T scanner (Erlangen, Germany). Sequence parameters
used in this study are as follows: gradient-echo echo-planar imaging (EPI) 180 volumes,
repetition time (TR) 2 seconds, echo time (TE) 30ms, flip angle 90°, 34 contiguous
AC-PC aligned axial slices, voxel size 3.4 x 3.4 x4.0 mm, matrix 64 x 64 x 34 totalling
139,264 voxels.

Participants were asked at the end of the scan whether or not they stayed awake during

the scan and for the one patient that fell asleep during the scan the scan was repeated
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under awake conditions. Also, a T1-weighted anatomical image was acquired using a
magnetization prepared rapid gradient-echo sequence. In addition, a field map was
acquired and used to correct for geometric distortions introduced by field
inhomogeneities: TR = 300ms, TE = 1.91 ms/4.37 ms, flip angle = 55°, voxels size = 3.4
x 3.4 x4.0 mm.

To remove recording artifacts and noise, register the data and downsample to a
manageable size, the raw fMRI data was preprocessed using FEAT and MELODIC from
the FSL software package as follows. First, the first three volumes were excluded from
each subject scan to account for magnetization stabilization. The subsequent scans
were then motion corrected, BO field map unwarped, and corrected for slice scan time.
Non-brain portions of the images were removed and a spatial smoothing kernel was
applied to the dataset (6mm full-width half-maximum). The images were then grand
mean and intensity normalized and temporally filtered between 0.01 and 0.08Hz. All
images were then registered to the MNI152 space. To remove noise introduced by head
motion, respiration, cardiac pulsation, and scanner artifacts, probabilistic independent
component analysis (PICA) was used. Spatial and temporal characteristics of noise
components are described in MELODIC manual
(https:/ffsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdf). The dataset was then resampled

to 3 x 3 x 3mm, resulting in 47640 voxels.

Functional parcellation

Functional parcellation is the process of grouping voxels with similar functional activity
together to form regions using data-driven algorithms. Functional parcellation uses
cross-correlation between the voxel time series to identify voxels with similar functional
activity. Ideally, cross-correlation is calculated on time series that are stationary and
have no auto-correlation, characteristics of white noise. However, BOLD time series are
typically non-stationary and are highly autocorrelated leading to spuriously high
cross-correlations (Christova et al. 2011). For accurate functional maps it is important
to remove these factors that lead to spuriously high correlation values. One approach to
removing non-stationary and autocorrelated trends from the time series has been coined
“pre-whitening” (Christova et al. 2011). This approach has previously been used to find

biomarkers for Post Traumatic Stress Disorder (PTSD) and shown to enhance
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classification performance of the biomarkers (Peka Christova et al. 2015). Therefore, all
time series were prewhitened prior to constructing the functional atlas.To prewhiten the
time series from voxel i x,(7), the Fourier transform of the time series, X,(f), was
calculated and divided by the absolute value of the spectrum (Equation 3.1), so that
similar to white noise, the amount of power in each frequency band was equal, and the

autocorrelation of the time series became an impulse.

x() < X(f)

X' = XN/ p(,.(f)] o x7(1) Equation (3.1)

The resultant spectrum, Xl.W(f), was then transformed back into the time domain sz(t) to
make a prewhitened data set. While this approach uses an a-causal approach to
pre-whitening, unlike like fitting an ARMA model, it is highly efficient and if only the zero
time lag correlation is used, then this approach can be used for undirected similarity

measures.

The functional atlases was constructed at group level by combining scans from the
control subjects. To combine individual scans, we concatenated time series from all the
subjects, to obtain a single time series per voxel (Figure 3.1A). We then calculated the
correlation adjacency matrix between the voxels C = (diag(Z))fé.Z.diag(Z))fé where

¥ = X,,.X,, is the covariance matrix and X, is matrix, where each column corresponds
to one time series. For a dataset consisting of N voxels, the correlation adjacency matrix
is an NxN symmetric matrix where value of the /" row and j column is the Pearson
correlation coefficient (Altman 2006) between time series of voxels j and j (Figure 3.1B).
Pairwise correlation values were then used to calculate pairwise correlation distance
between voxels, which is equal to 1 minus the correlation coefficient between the pair,

and ranges from 0 to 2.

To construct the atlas, we used the agglomerative hierarchical clustering algorithm, with
Ward’s minimum variance method as the linkage criterion (Ward 1963; Tan, Steinbach,

and Kumar 2006). Using this algorithm, first each voxel is treated as a single region or
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cluster. Then, the pair of clusters with minimum distance variance among all the pairs
are grouped together to form a single cluster. This process is repeated until all the voxels
are merged into a single cluster. The algorithm keeps track of which voxels belong to
which cluster in every step. This information is stored in a structure called a dendrogram
(Figure 3.1C). The final cluster assignments for each data point is then obtained by
‘cutting’ the dendrogram at the desired scale. For example to construct a functional atlas
with 90 regions, information about voxel memberships is extracted from the dendrogram
at the level where voxels are clustered into 90 groups. To obtain contiguous regions, a
spatial constraint was enforced when constructing the dendrogram that allowed two
clusters to be merged only if they contained spatially neighboring voxels, and therefore
their merger would result in a contiguous region. Our choice of the ward’s linkage
method was based on an exploratory analysis of different parcellation methods

described in detail in [Chapter 2].
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Figure 3.1. Construction of the Group Functional Atlas

(A)

(B)

(C)

(D)

Combine Datasets. In order to combine datasets from individual subjects, time

series from all control subjects were concatenated for each voxel. Each

individual dataset consisted of 47640 voxels and 177 time points.
Adjacency Matrix. Pairwise correlation coefficient between the combined time

series was calculated and used to construct the correlation adjacency matrix.
For our dataset, this was a 47640 x 47640 symmetrix matrix which was used to

calculate pairwise correlation distance between voxels.
Dendrogram. A dendrogram contains all the information about membership of

each datapoint at each stage of hierarchical clustering. At the bottom of the
dendrogram, each single data point constitutes a single cluster. At each stage
of the hierarchy, the pair of clusters that are most similar as evaluated by the
linkage criterion are merged to form bigger clusters. Eventually, at the top of

the hierarchy all data points are merged to form a single cluster.
After cutting the dendrogram at the proper scale, i.e. the desired number of

clusters or regions, a parcellation of the brain is produced based on which
voxel belongs to which cluster, which is used as the atlas for the rest of our

analyses.

To compare classification accuracy of the with an anatomical atlas, we constructed a

functional group atlas with 90 regions to compare to the commonly used Automated

Anatomical Labeling (AAL) atlas, which also has 90 regions excluding cerebellum

(Tzourio-Mazoyer et al. 2002).

Network Model

After constructing the functional atlas, a graph model of the brain was constructed for

each subject by first applying the atlas to the individual datasets. Time series of all
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voxels within a single region were averaged to obtain a single time series per region.
Pairwise Pearson correlation coefficient between the regions was then calculated and
used to construct a weighted undirected graph, where each region constituted one node
and the links were weighted by the correlation coefficient value between nodes (Figure
3.2). Calculation of the network measures requires all the weights to be non-negative, so
negative weights were set to zero. There is currently no general consensus over the
cause of negative correlation coefficients (Chen et al. 2011). We observed that only
213% of all cross correlations were negative. Several measures are specific to binary
graphs (Supplementary Table 3.1). In order to construct a binary graph, weights that
were below a threshold were set to zero and weights above the threshold were set to
one. The threshold was chosen to obtain a binary graph with 30% connection density
where 30 percent of all links were set to have a weight of one (Lynall et al. 2010). In
addition, some measures required the graph to be divided into communities
(Supplementary Table 3.1) and the information about the community membership was
required for their calculation. To divide the graph into communities, the Louvain method
for community detection (Reichardt and Bornholdt 2006; Ronhovde and Nussinov 2009)
was used. After constructing the weighted and binary graphs, several graph theoretic
measures (Bullmore and Sporns 2009; Rubinov and Sporns 2010b) were calculated (see
Figure 3.2 and Supplementary Table 3.1 for a list of the measures), using the Brain
Connectivity Toolbox (Rubinov and Sporns 2010b, [a] 2010). Some measures that

required specification of extra parameters, as summarised in Supplementary Table 3.1.

Graph theoretic measures typically capture characteristics of each node (producing one
value per node), each pair of nodes (producing one value per node-pair), or the entire
network as a whole (producing one value per network). In addition, for each measure, its
average and standard deviation across all regions were also used as separate
measures. For a graph with 90 regions therefore, 19000+ network measures total were

produced.
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Network Measures

Node Degree

Strength

Rich Club Curve

Assortativity

Transitivity

Reachability

Distance

Distance for Weighted Netwroks
Global Efficiency

Subject 2 —>|Local Efficiency

Characteristic Path length
Overlap Amongst Neighbors
Generalized Topological Overlap
Matching Index

Clustering Coefficient
Participation Coefficient

Within Module Degree Centrality
Eigenvector Centrality

Node Betweenness Centrality
Shannon Entropy Based Diversity
Radius of Graph

Eccentricity

Diameter of Graph

Number of Communities
Average Community Size

Figure 3.2. Network Level Model of the Brain

After applying the functional atlas to each individual dataset, time series of voxels
within each region were averaged resulting in a single time series per region. These
regions were used as nodes of the graph, where the link between each pair of nodes
was weighted by the correlation coefficient between the nodes. A set of measures that

capture network characteristics were then calculated for each subject.

Classification

To classify control subjects from schizophrenic patients we used support vector
machines (SVM) (Vapnik 1995; Bishop 2006). SVMs are robust to presence of noisy
data points, because they maximize the classification margin (Figure 3.3A). There are
two free parameters for an SVM that need to be set by the experimenter: box constraint

(C value) and kernel. We used a C value equal to 1, and a linear kernel.
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The19000+ graph theoretic measures were used as features for classification of 170
subjects into either control or schizophrenic. Using this feature set for classification of a
data set poses two challenges on classification. The first challenge is that feature set is
orders of magnitude larger than the number of subjects (a problem called ‘the curse of
dimensionality’) (Jain, Duin, and Mao 2000). This forces the classifier to pick up patterns
that are specific to the subjects that are used for its training and therefore are not
generalizable to other subjects, a phenomenon called ‘overfitting’ (Clarke et al. 2008).
The second challenge is that not all features are equally informative to the classifier
(Guyon and Elisseeff 2003). We need to know which features are contributing more to
the classification process in order to extract effective biomarkers. Therefore, we need to
reduce dimensionality of the data by selecting an optimal or sub-optimal subset of
features for classification. Here we used SVM for both feature selection and
classification, so to ensure the optimized feature set is generalizable across subjects, we
used a double cross validation scheme (Filzmoser, Liebmann, and Varmuza 2009;
Sundermann et al. 2014).

To perform double cross validation, the subject set was randomly partitioned into three
separate subsets: train, validation, and test subsets (illustrated in Figure 3.3B). The train
subset was used to train an SVM model. The model performance was then validated on
the validation subset. The training and validation subsets were used to iteratively
optimize feature selection and SVM parameters. This ensures that the final performance
is not influenced by the optimization, and reflects performance of the features more
robustly than a single cross validation scheme, which uses the optimal SVM model to

classify the validation subset itself.

The subject set (170 subjects) was divided into five randomly chosen subsets of equal
size (34 subject each) and used in a 5-fold cross validation (Efron and Gong 1983; Efron
1983). One fold was left out to be used as the test subset and the rest were used for the
SVM model optimization. For the feature selection, the training and validation folds were
shuffled 4 times and used iteratively to select features that performed best on the
validation set (Figure 3.3B). This performance is reported as the single cross validation
performance. Once the features were selected, the SVM was trained using both the train

and validation folds and then applied to the test fold to obtain the final classification
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TP +TN

accuracy ( —=

), where TP is number of true positives, i.e. patients classified
correctly, TN is number of true negatives, i.e. controls classified correctly, T is the total
number of subjects. This approach is similar to the leave one out cross validation
(LOOCV) scheme, except that instead of leaving out a single subject, we leave out a
single fold. In addition to classification accuracy, sensitivity (% ) and specificity ( %V)
(Fawcett 2006) were also reported (P is the total number of patients and N is the total

number of controls).

The random partitioning into the 5 folds was performed 10 times resulting in 50
optimized feature sets, of 30 features each, and 50 prediction accuracies. To determine
if inclusion of any feature in the feature set occurs more often than expected by chance,
we calculated the probability of each feature appearing n times out of 50. The probability
of each feature appearing once in each selected set is equal to the probability of drawing
30 random samples from a set of F items without replacement, which can be calculated
with the hypergeometric distribution p, ..., = A(1| F, S, P) where F' is the total number
of features used (F=1618), S is the number of samples (S=30), and P is the number with
the desired property (P=1). Given the probability of sampling each feature at random, we

can then calculate the number of times that feature is expected to appear with N,
independent draws using a binomial distribution Pr(n) = B(N 4, Pseiecr,s) - FEatUres that

appeared more frequently than what was predicted by chance were further analyzed.

With 10 random partitions (N ,.,,) , €ach subject is used in the test subset 10 times. We
calculated the proportion of times each subject was misclassified (M), a measure we

call “misclassification rate” in this manuscript (equation 2). Correlation between

misclassification rate (MR ) and severity of symptoms for the patient population was

calculated:
_ M
MR =

perm

In order to see if choice of classification algorithm affects the classification performance,
we compared performance of SVM to SVM with Adaboost (short for Adaptive Boosting)
(Freund and Schapire 1997; Yoav Freund 1999) with a linear SVM (C value equal to 1),

and 10 weak classifiers were trained.
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All analyses were implemented in MATLAB 2016b.

E Single Features| Feature Pairs | Feature Triplets
: A BIA| {B[E[A
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D > B | E
E
A
Train Set
Train SVM

B

Single Double
Apply trained SVM Cross Cross
Validation | validation

Evaluation Set Single Cross
Find Optimal ——» Validation
Feature Set Accuracy

l Apply Optimal SVM model

!!!Test Set » Final Classification
Accuracy

Figure 3.3. Classification

(A)

(B)

Support vector machines are a type of supervised classifier that maximizes the

margin between the separating hyperplane (continuous black line) and data
points. Data points closest to the hyperplane (red data points) are the support
vectors. In this toy example, the data consists of two features. Our dataset
consists of 38000+ features, i.e. classification happens in a 19000+
dimensional space. The hyperplane is characterized by a set of weights (W)

and constant (b) and projects the dataset onto a single dimensions.
Double cross validation procedure divided the subjects into three subsets. The

training and validation subsets were used for optimizing the feature set, and
the test subset is used for classification performance. Different subsets are
determined in a 5-fold cross validation division scheme, where the entire
dataset is divided into 5 equal size subsets and each subset is used once as

the test subset. In this toy example, subjects 9 and 10 are used as the test set,
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while the rest of the subjects are used for feature selection. For feature
selection a 4 fold cross validation scheme is used, where the subjects are
partitioned into 4 equal size groups and each group is used once as the
validation subset. 4 SVM models are trained for each train subset, and
performance of each set of features is averaged across the 4 classifiers.
Features that perform better on average are then chosen to be tested on the

test set.
(C) sequential Forward Selection algorithm is demonstrated in a toy example.

First, performance of every single feature is calculated by training a SVM using
that feature only on the train subset and applying the weights on the validation
subset. The single feature with the highest performance is picked (feature B in
this example, left column). Subsequently, performance of combination of
feature B with all the remaining features is calculated, by training an SVM
using each feature pair separately on the train subset and applying the weights
to the validation subset. Feature pair with the highest performance is then
selected (features (B, E) in this example, middle column). The selected feature
pair is then combined with all the remaining features to form feature ftriplets,
performance of each is then calculated through the same cross validation
procedure. The feature triplet with the highest performance is then picked

(features (B, E, A) in this example, right column).

Feature Selection

With 19000+ features, only a fraction are informative for classification and the others
dilute classification power by causing the classifier to overfit. Therefore, it is beneficial to

choose the subset of features that are the most informative.

These were determined using a data driven greedy search procedure, called sequential
forward selection (SFS) (Guyon and Elisseeff 2003) (Figure 3.3C). First, the
classification accuracy of each single feature alone was measured using SVM, cross
validating across the train and validation subsets. Only features with prediction accuracy

above 60% were used for the subsequent stages of the optimization. Then, the feature
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with the top performance was progressively combined with other features, selecting the
combinations with highest accuracies, until a set of 30 features were selected. This
method of feature selection is computationally expensive but it is more robust than
simply selecting 30 features that independently have the highest performance. Many of
the top features alone may have redundant information. This algorithm accounts for the
combinatory effect of features. Moreover, while a feature might have low classification
performance on its own, in combination with other features it can improve performance
(Guyon and Elisseeff 2003). The sequential forward selection algorithm is not
guaranteed to find the globally optimal set of features that would maximize classification

accuracy, but it is guaranteed to find a local optimum (Liu and Motoda 2007).

To see if our feature selection algorithm improves classification accuracy for our dataset,
we compared the accuracy achieved by the sequential forward selection algorithm to
that of the best 40 features and top 40 features selected using Fisher’s linear
discriminant analysis (LDA) (Fisher 1936; Bishop 2006). Fisher’s linear discriminant
analysis transforms the data into a space where the the separation between the two
classes is maximized. Calculation of weights for the linear transformation involves matrix
inversion, which is not possible if the within-class scatter matrix is singular, depending on
structure of the dataset. Therefore, Moore-Penrose pseudo-inverse of the matrix was
calculated (Campbell and Meyer 2008).

Results

Two atlases, the anatomical AAL atlas and a functional atlas constructed using time
series from the control group, were used as region definitions for construction of brain
networks. The functional activity in each region of the atlas was averaged and zero-lag
cross correlation between the regions were used to construct undirected weighted
graphs for each subject. Several graph theoretic measures were then calculated for each
network and used as features for classification. This resulted in 19,000 features. To
reduce the number of features, we selected features whose classification accuracy using
linear SVM achieved greater than 60% accuracy. These features were then used in
optimizing combinations of features. A distribution of the single feature classification
accuracy using the functional atlas and the AAL atlas is shown in Figure 3.4A. For both

the functional and the AAL atlas 1618 features on average reached the 60% cutoff.
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Using these top performing features, we then optimized for the combination of features
that provided the best classification. Classification accuracy was calculated for single
cross validation using features selected with the training and validation subsets. The final
reported calculated classification accuracy was calculated by double cross validation
where the optimized SVM model and features were then applied to a final test set not
used in the feature selection optimization. Comparison of the single cross validation and
the double cross validation performances for the functional atlas are shown in Figure
3.4B. The single cross validation results correlate with previously reported classification
rates with accuracy maximizing at 87% using 14 features, which is significantly above
chance level (p<0.001, two sample t-test). The double cross validation maximum
accuracy was significantly lower, dropping to 64% at 4 features, which is still
significantly above chance (p<0.001, two sample t-test), but about 20% lower than the
single cross validation performance. However, this is probably a more accurate rate
that would generalize to prospective studies. The high classification rate reported by the
single cross validation can be accounted for by the overfitting using the feature selection
optimization step. Results are also reported using the AAL atlas in Figure 3.4C. The
single cross validation performance was 85% using 18 features, similar to the functional
atlas. Double cross validation results however was 73% using a single feature. When we
used the Adaboost classifier instead of SVM, accuracy of the functional atlas did not
change (Table 3.2, Supplementary Figure 3.1). On the contrary performance of the AAL

atlas decreased by 10% compared to the SVM classifier.

We also looked at sensitivity and specificity of our classification algorithm (Table 3.2 and
Supplementary Figure 3.2). Sensitivity and specificity for the functional atlas were 65%.
These values were higher for the AAL atlas with average sensitivity equal to 77% and
specificity equal to 68%. Using Adaboost as the classifier increased specificity and
decrease sensitivity in both atlases. Maximum specificity obtained using the Adaboost

classifier was 85% and 80% for functional and AAL atlases respectively.

Next, we looked at different methods of dimensionality reduction (Supplementary Figure
3.3). We compared accuracy performance of the forward sequential selection (SFS)
algorithm with that of the Linear Discriminant Analysis (LDA) and choosing top features

with the highest performance when used independently. Choice of the dimensionality
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reduction method did not affect performance accuracy (Table 3.2). However, both LDA
and independent methods achieved the same performance at higher number of features

compared to the SFS algorithm.

We then looked at effect of prewhitening on performance accuracy (Table 3.2 and
Supplementary Figure 3.4). We constructed two functional atlases, one with prewhitened
time series, and another with raw time series. They were applied to prewhitened and raw
time series respectively to construct the graph and compare their respective
classification accuracies. We repeated the same procedure with the AAL atlas, when the
atlas was applied to prewhitened and raw time series to construct the graph used for
classification. We did not observe any difference between performance of the two
functional atlases. However, classification performance when the AAL atlas was applied

to prewhitened time series was 9% higher than that of raw time series.

Dataset Pre-whitened
Classifier SVM Adaboost
Dimensionality SFS LDA Independent SFS
Reduction
Functional Acc.=64% Acc.=65% Acc.=65% Acc.=63%
Sen.=65% Sen.=44%
Spe.=65% Spe.=85%
AAL Acc.=73% Acc.=67% Acc.=73% Acc.=62%
Sen.=77% Sen.=52%
Spe.=68% Spe.=80%
Dataset Raw
Classifier SVM Adaboost
Dimensionality SFS LDA Independent SFS
Reduction
Functional Acc.=64% Acc.=63% Acc.=63%
AAL Acc.=64% Acc.=65% Acc.=61%

Table 3.2. Performance Summary. Classification accuracy, sensitivity and specificity

for different datasets, classifiers, dimensionality reduction methods, and atlases. SFS:
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Sequential Forward Selection; LDA: Linear Discriminant Analysis; Independent:

Selecting top features based on their independent performance.
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Figure 3.4. Classification Performance

(A) Distribution of classification accuracy of single features, when used

independently for classification, for the functional and AAL atlases. Dashed
vertical lines mark the 60% accuracy threshold. Features with less than 60%

accuracy were not considered in the feature selection process.

(B) Classification performance as a function of number of features, using the
functional atlas to define nodes of the network.

(C) Cilassification performance as a function of number of features, using AAL atlas

to define nodes of the network.

Through the feature selection process we identified the top 40 most informative features,
which was repeated through n-fold cross validation 50 times. Therefore, each feature
could appear in the selected feature set from 0 to 50 times. To identify those features
that were selected more often than would be expected if selected randomly, we
calculated the probability of a feature being selected » times due to chance, with »
ranging from 1 to 50 times. The number of features that were selected » times, as well
as the expected number, for the functional atlas is shown in Figure 3.5A. The probability
of a feature appearing ten times or more due to chance is very small. Therefore, we
further analyzed all features that were selected 10 or more times resulting in four
features. Each of these features are listed in Table 3.3 with a description of the
anatomical regions of the nodes involved and the network measure. These functional
areas do not necessarily align with anatomical areas, therefore we report the names of
the areas from the AAL atlas that had the highest overlap and percentage of the region
overlap with that anatomical region. The single cross validation single feature
classification rate of each feature is also reported. The best single features achieved
about 70% classification accuracy, by combining them together the single cross
validation performance was enhanced to more than 80% (as seen in Figure 3.5B). We
then looked at frequency of each functional region showing up in the top 4 features.
These four features were comprised of five functional regions. The location of the five

nodes that had the highest frequency of appearing in the top four features are shown in
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Figure 3.5B. These anatomical regions (in order of highest frequency to lowest) were
located in the left temporal lobe, right occipital lobe, central portion of bilateral thalami,
and left frontal/parietal lobes. These four features included three networks measures:
distance, generalized topological overlap, and matching index. Distribution of values of

the most informative four features is shown in Supplementary Figure 3.5A.

Since the AAL atlas showed maximal accuracy with only a single feature, and adding
more features was detrimental to classification performance, we focused on that single
feature. This feature appeared in the top feature set 47 times out of 50 times, which was
significantly above chance. This top feature was the matching index between left
postcentral gyrus and left thalamus (Table 3.3). Location of these two regions is shown
in Figure 3.5C. Distribution of values for this features is shown in Supplementary Figure
3.5B.

49



800

Frequency
o] w £ v [=1] ~J
o © ©o o © o
S © o & © ©

—
(=)
=

>

20

15

| P 4

5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21

" : " " " . i
10 15 20 25 30 35 40 45
Number of Appearances in the Selected Feature Set

30

1 25

- 20

15

10

140

30

20

10

50



Figure 3.5. Most Informative Features

A) Number of features (y-axis) vs frequency of single features appearing in the 50
selected feature sets (x-axis). The internal figure is a zoomed in version that
shows how the most informative features were selected. For example, one
feature has appeared 21 times in the selected feature set.

B) Spatial maps showing where the most informative regions are for the functional
atlas. The + marks center of the region. Colormap shows number of
appearances of the region as a part of one the top 4 features. Left: Sagittal
view, Middle: Coronal view, Left: Horizontal view

C) Spatial maps showing where the most informative regions are for the most

informative feature of the AAL atlas. Format is the same as B.
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Rank | Frequency of Name of First Anatomical Second d’ Single
Appearance network Region with the Anatomical (p-value) feature
(out of 50) measure highest overlap (% Region with the classification
overlap) highest overlap
(% overlap)
Functional atlas
1 21 Distance Left Middle Temporal Right Inferior 0.87 69%
Gyrus(53), Left Occipital (<0.001)
Superior temporal Cortex(39), Right
Pole(19) Lingual Gyrus(17)
2 12 Generalized Left Middle Temporal Right Inferior -0.88 69%
Topological Gyrus(53), Left Occipital (<0.001)
Overlap Superior Temporal Cortex(39), Right
Pole(19) Lingual Gyrus(17)
3 10 Matching Right Inferior Left Thalamus(49), 0.74 67%
Index Temporal Gyrus(50), Right (<0.001)
Right Middle Thalamus(43)
Temporal Gyrus(48)
4 10 Matching Left Postcentral Left Thalamus(49), 0.72 68%
Index Gyrus(72), Left Right (<0.001)
Precentral Gyrus(10) Thalamus(43)
AAL
1 47 Matching Left Postcentral Left Thalamus 0.94 73%
Index Gyrus (<0.001)

Table 3.3. List of the most informative features. From left, column 1: Rank of the

feature in terms of frequency of appearing in the selected feature set; column 2: Number

of appearances in the selected feature set; column 3: Name of network measure, all

measures characterize relationship between pairs of nodes (regions); column 4: In order

to get an idea about where the most informative regions are, two anatomical regions

from the AAL atlas that had the highest overlap with the region are listed; column 5:

Same as column 2 for the second region; 6th column: Sensitivity index, also known as

d'(equation 3.2) and 2 sample t-test p-value comparing distribution of each feature

across the control and schizophrenic population. A positive d' value indicates that

feature values are higher for the patients compared to control subjects; column 7:

Performance of the feature on its own.

d = e
1\[(c3 o)

Equation 3.2

Where pgand p. are mean of the schizophrenic and control groups respectively, o
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and o are standard deviation of the schizophrenic and control groups.

We also looked at the pattern of misclassification across subjects. We calculated the
misclassification rate for each subject for both functional and AAL atlases (Figure 3.6A).
Misclassification rate for the functional atlas was fairly uniform. However,
misclassification rate of the subjects using AAL atlas was bimodal. Some subjects were
misclassified correctly more than 60% of the times, while others were misclassified less
than 20% of the time. To understand the characteristics of the classifiable and
unclassifiable group, we looked at percentage of control and schizophrenic subjects in
each group (Figure 3.6B). We further looked at percentage of chronic and first episode
schizophrenic patients in each group. We did not observe any trend in the classifiable

and unclassifiable subjects.

One possible reason for misclassification of the schizophrenic subjects as controls is the
mild severity of their symptoms, which causes their functional activity to resemble that of
healthy subjects. To investigate this possibility we plotted composite SANS and SAPS
score of the patients vs. misclassification rate (Supplementary Figure 3.6). Further, we
plotted each category of the SANS and SAPS scores vs. misclassification rate. We

observed no significant correlation between the scores and misclassification rates.
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Figure 3.6. Misclassification Rate

53



A) Distribution of misclassification rate across subjects for the AAL and functional
atlases

B) Percentage of subjects in each subject group with low and high
misclassification rate using the AAL atlas. atlas. X-axis: Subjects that are
highly classifiable (misclassification rate < 0.6) and unclassifiable
(misclassification rate > 0.6). Y-axis: Percentage of subjects in each subject

group.

One possible reason for the difference in performance of the single and double cross
validation performances is that the selected features do not generalize to another group
of subjects. However, another possibility is the stochastic nature of the functional activity
of the brain, and consequently the structure of the functional networks that are
constructed using the functional activity. To tease apart between these two possibilities,
we took 42 of our subjects (24 control, 14 schizophrenic) for which we had two scans,
taken six months apart. We used the dataset from the first scan for feature selection and
classifier training. We then used the resultant classifier and feature set to classify the
second dataset from the same subjects. This procedure performs the second cross
validation across datasets instead of across subjects. Performance of the double cross
validation across datasets is shown in Figure 3.7. The results show that stochasticity
present in the functional activity is causing the poor generalizability of our classification

process.
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Figure 3.7. Performance of the Classifier on Second Scans

Performance of the classifier when classifier optimization is optimized using the first
scan and tested on second scans for functional (top) and AAL (bottom) atlases.

Horizontal lines mark chance level.

Discussion

In this study we developed and tested a classification pipeline to discriminate

schizophrenic patients and healthy controls. We used pre-whitened BOLD time series to
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construct a network model of the brain, using both the AAL anatomical atlas and our
functional atlas to define nodes of the network. We extracted multivariate graph theoretic
measures and used them as features for classification of the subjects using linear SVM.
Measures that were most informative about state of the disease were identified as
biomarkers for schizophrenia. We adopted a double cross validation scheme to identify
the most informative features. The highest classification accuracy was 72% using the
AAL atlas with a single feature: the matching index between left postcentral gyrus.
Adding any other features decreased accuracy. Moreover, pre-whitening of the time
series significantly improves classification performance in double cross validation. A
subset of the subjects, including both healthy and schizophrenic subjects, were
misclassified more than 80% of the time. However, no significant correlation was found
between misclassification rate of the patients and the severity of their symptoms.
Classification accuracy did not improve using a functional atlas. Presumably, this is
because duration of resting state activity of was not long enough to robustly capture
functional structure of the brain [Chapter 2]. We also observed a significant decrease in
performance from single cross validation to double cross validation, except for the single
most informative feature from the AAL atlas. Even though we obtained a significantly
above chance accuracy, the fairly high false positive and false negative rates means this
method does not approach the necessary performance to be useful clinically, particularly

if the goal is to identify prodromal state in at risk patient population.

Using machine learning techniques for biomarker identification using fMRI datasets has
been extensively explored (see (Zarogianni, Moorhead, and Lawrie 2013; Sundermann
et al. 2014; Kambeitz et al. 2015)). A summary of previous work in this area is provided
in Supplementary Table 3.2. Our study builds upon existing work in the following

aspects: i) we used a large cohort of subjects, ii) we performed double cross validation,

iii) we pre-whitened the time series prior to construction of the network.

Machine learning techniques have also been used on other imaging modalities to
identify biomarkers for schizophrenia (see (Kambeitz et al. 2015; Zarogianni, Moorhead,
and Lawrie 2013) for a review). Several studies have used structural T1 weighted MR
images (e.g. (lwabuchi, Liddle, and Palaniyappan 2013), 77% accuracy, single cross

validation, (Nieuwenhuis et al. 2012), 70.4%, double cross validation) and Diffusion
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Tensor Imaging (DTI) (e.g. (Ingalhalikar et al. 2010) , 90.6% accuracy, using single cross

validation).

Typical datasets used to identify schizophrenia biomarkers have used small populations
of several dozen subjects that are to be classified in a high dimensional space several
orders of magnitude higher than number of subjects. This phenomenon is called the
curse of dimensionality (Jain, Duin, and Mao 2000). In the high dimensional space, the
classifier picks up on subtle variations that are specific to the subject set used for training
the classifier, which generalizes poorly to unseen data. For robustness it is necessary to
reduce dimensionality of the dataset before classification. Two common approaches to
dimensionality reduction are commonly used. The first approach is to combine the
existing features to construct a smaller set of new features, such as with Principal
Component Analysis (PCA), and Linear Discriminant Analysis (LDA) (Bishop 2006).
These methods generate a set of linear weights to existing features to construct new
features. The second approach is to select a subset of features that carry more
information pertaining to classification. A common method in this category is to test the
performance of each feature independently and select the subset of feature whose
performance is best. The second approach is typically more time consuming than the
first approach, but the selected features are directly mapped onto the calculated
features, unlike the features made from linear combinations of all the features, as is
done with PCA and LDA.

Here we used the forward sequential selection algorithm (Guyon and Elisseeff 2003) to
reduce dimensionality of the dataset. We compared the results to two other
dimensionality reduction methods, LDA and selection of features with top classification
accuracy on their own (Supplementary Figure 3.3). Both methods underperformed with
respect to the forward sequential selection method. The forward sequential selection
algorithm is more computationally expensive than the other two methods, but its major
advantage is that it reduces the redundancy present in the dataset. More specifically, a
fair level of correlation has been observed with network level characteristics of the brain
(Lynall et al. 2010). Features that have correlation with each other, carry the same
information, and are bound to have similar performances when used independently. But

their combination does not result in higher performance because due to the correlation.
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Therefore, use of more complex feature selection methods, despite their computational

expense, is beneficial for classification studies.

The considerable degradation of performance from single to double cross validation
demonstrates the importance of testing the final performance with double cross
validation when feature selection is an important aspect of the optimization. Reported
results based on single cross validation are overly optimistic for out of sample data
(Sundermann et al. 2014). In fact, simulations have shown that that even when two
classes of data points are generated from the same distribution (i.e. there is no
meaningful difference between the two classes), single cross validation is biased
towards above chance classification accuracy (Simon et al. 2003). Double cross
validation prevents the classifier from overfitting to the dataset that is used for biomarker
discovery. Double cross validation has been employed in several studies for example
study of schizophrenia using fMRI (see Supplementary Table 3.2), schizophrenia using
T1 weighted structural images (Koutsouleris et al. 2015; Nieuwenhuis et al. 2012),
depressive disorder using fMRI (Rosa et al. 2015), and autism using fMRI (J. S.
Anderson et al. 2011). However, the majority of studies have not performed double cross
validation (Supplementary Table 3.2), presumably due to limited sample size
(Sundermann et al. 2014). Our results, directly comparing single and double
classification performances, supports our hypothesis that single cross validation reports
overly inflated accuracy rates. As previously suggested by others in brain imaging
(Sundermann et al. 2014) and genetic (Simon et al. 2003) biomarker identification fields,
we propose adoption of double cross validation as a standard paradigm for biomarker

discovery using brain imaging datasets.

We also performed double cross validation across datasets and not subjects, but did not
observe any significant improvement. This shows that inherent stochasticity in fMRI
datasets that can be caused by cognitive state of the subject during the scan poses a
serious challenge in generalizability of the results. An important remedy to this problem
is longer scan durations, scatter across several sessions. Typical scan duration for
classification studies of schizophrenia has been between 5 to 10 minutes

(Supplementary Table 3.2).
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We also explored the effect of the atlas used for defining nodes in the classification
performance by comparing the AAL anatomical atlas with a functional atlas constructed
from our dataset. The classification accuracy was higher using the AAL atlas. This
observation does not necessarily mean that functional anatomical atlases are superior to
functional atlases. Extensive evaluation of our functional parcellation algorithm [Chapter
2] concluded that our dataset was not long enough for construction of a robust functional
atlas. Previous studies have concluded that minimum duration of resting state activity
required for construction of a functional atlas that is replicable across different datasets
from the same group of subjects is approximately 27 minutes (Laumann et al. 2015),
which is more than four times the duration we used (6 minutes) for construction of the
functional atlas. While usage of anatomical atlases for classification studies remains the
norm, a few studies have used atlases constructed using data driven algorithms and DTI
datasets (Hu et al. 2013; Wang et al. 2016). While we observed 9% decrease in
maximum double cross validation accuracy when using a functional atlas instead of an
anatomical atlas, (Wang et al. 2016) observed a ~10% increase in single cross validation
accuracy when using their data driven atlas instead of an anatomical atlas. Several
studies have used Independent Component Analysis (ICA) to produce parcellations
(Supplementary Table 3.2). However, ICA does not produce contiguous regions, rather
functional networks, comprising of multiple regions. A parcellation with contiguous
regions is more straightforward to interpret. Moreover, a parcellation with contiguous
regions makes it easier to localize the biomarker to a brain region that is impacted by
schizophrenia. If a single region within a functional network is implicated in the disease,
the entire network will be implicated using a network based parcellation, which includes

regions that are not affected by the disease.

We used multivariate network level measures as classification features in this study,
including a mixture of global measures as well as measures that characterize single
regions or pairwise statistics. Type of features extracted from resting state fMRI datasets
and used for classification varies across studies. One of the most common features is
the pairwise correlation coefficient between average time series from different brain
regions (Shen et al. 2010; Venkataraman et al. 2012; Tang et al. 2012; Guo et al. 2013;
Yu et al. 2013; Su et al. 2013; Kim et al. 2016). This bivariate feature however fails to

pick up on more sophisticated motifs in the functional structure of the brain. Network
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measures, being multivariate, are capable of identifying more complex patterns in group
differences and have been used in several classification studies (Bassett et al. 2012;
Fekete et al. 2013; A. Anderson and Cohen 2013; Singh and Bagler 2016). However
these studies either use global networks measures (Bassett et al. 2012; Fekete et al.
2013; Anderson and Cohen 2013), or use average and standard deviation of local
measures (Singh and Bagler 2016), which eliminates spatial information about the most
discriminating regions. Our data driven greedy feature selection method preserves this

information.

We observed that a single feature produced maximum classification accuracy, using the
AAL atlas. As more features were used for classification, single cross validation
accuracy increased but double cross validation accuracy decreased. This indicates that
the added features did not generalize well across subjects. Their addition to the feature
set caused the classifier to put some weight on other features, diluting useful
information. Using the functional atlas, we found four features whose appearance in the
selected feature set was statistically meaningful. The reduction form a 19000+ feature
space to a few features, reveals the tremendous redundancy inherent to the dataset.
Similar to our results, (Fan et al. 2011) obtained a 85% double cross validation accuracy
using seven features. In another study, (Tang et al. 2012) got a 93.2% double cross

validation accuracy using 550 features.

We observed that prewhitening of the time series increased classification performance.
Similar observation was made when fMRI datasets were used to classify Post traumatic
Stress Disorder (PTSD) patients from controls (Peka Christova et al. 2015). In contrast
to our results, (Arbabshirani et al. 2014) did not observe any difference between
discriminability of prewhitened and raw time series in a cohort of healthy and
schizophrenic subjects. However, that study compared bivariate measures across the
groups, whereas we used multivariate measures, which are capable of picking up on

more complex differences between the groups.

Of the 25 different network measures used to generate features (Supplementary Table
3.1), all of the five most informative features came from three measures: distance,

generalized topological overlap, and matching index. All of the top five features were
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from pairwise network measures, none were from the entire network or nodal metrics.

Each measure and the observed trends associated with it are discussed more in detail.

The first feature selected by the functional atlas was the distance between two regions in
the left temporal and right occipital lobes. Distance between two nodes is the shortest
path between them in a binary graph (Rubinov and Sporns 2010b). As reported in Table
3.2 and Supplementary Figure 3.5, the distance between two regions in the right
occipital lobe and left temporal lobe is lower in the control group compared to
schizophrenic patients. Interestingly, the distance between these two nodes in majority
of control subjects is 1, meaning that the two regions are connected to each other
directly via a single link. Distance between these same two nodes is 2 between majority
of schizophrenic subjects, which means the direct link between the two nodes is absent
in patient group, showing a hypoconnectivity between these two regions. Changes in
volume of the left middle temporal gyrus in schizophrenic patients has previously been
reported (Onitsuka et al. 2004; M. Hu et al. 2013). Moreover, the middle temporal gyrus
has been implicated in other fMRI classification studies (Castro et al. 2011; Yang et al.
2010), albeit bilaterally. Disruption in functional activity of the right inferior occipital gyrus

has been reported in another study (Castro et al. 2011).

The second most informative feature generated using the functional atlas was the
generalized topological overlap between the same two regions (Table 3.2). Generalized
topological overlap quantifies the extent to which a pair of nodes have similar m-th step
neighbors in binary graphs (Rubinov and Sporns 2010b). The m-th step neighbors of a
node are all the nodes in the binary graph that are reachable through a maximum of m
steps. We observed that generalized topological overlap between regions in the right
occipital lobe and left temporal lobe is higher in the control group compared to patients
(Supplementary Figure 3.5). This shows that functional connectivity pattern between

these two regions diverges from each other in the patient group.

The third most informative feature using the functional atlas was the matching index
between two regions in the right temporal lobe and the thalamai (Table 3.2). Matching
index between two nodes quantifies the similarity between their functional connectivity
profiles based on the number of common neighbors between the two nodes and is

applicable to binary graphs (Rubinov and Sporns 2010b). We observed increased
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matching index between regions in the right temporal gyrus and bilateral thalamai in the
schizophrenic group compared to controls (Table 3.2 and Supplementary Figure 3.5).
The first region overlapped with the right inferior and middle temporal gyri. The other
region overlapped with the ventral portion of bilateral thalamai. As discussed before,
middle temporal gyrus has been implicated in schizophrenia in other classification
studies (Castro et al. 2011; Yang et al. 2010). Disruption of functional connectivity of
thalamus has also been found in several other studies (Skudlarski et al. 2010; Atluri et
al. 2015; Kim et al. 2016).

Increased matching index in the schizophrenic group was also observed between
another pair of regions, the fourth most informative measure using functional atlas (Table
3.2, Supplementary Figure 3.5). The first region overlapped with both postcentral and
precentral gyri, and the second region overlapped with the ventral portion of bilateral
thalamai. Postcentral gyrus has been implicated in schizophrenia in several other studies
(Yang et al. 2010; Castro et al. 2011; Rashid et al. 2016). Interestingly, another study
reported that functional connectivity between the left postcentral gyrus and right

thalamus was different across the healthy and schizophrenic group (Kim et al. 2016).

The single feature that produced maximum classification accuracy using the AAL atlas
also indicated an increase in matching index between the postcentral gyrus and left
thalamus (Table 3.2 and Supplementary Figure 3.5). Matching index between the left
thalamus and left postcentral gyrus was lower in the control group than the
Schizophrenic group, consistent with the fourth most informative feature using the

functional atlas.

Future Directions

Several improvements can be done to increase classification performance to approach
clinically useful values. First, acquiring longer durations of functional activity results in
more robust functional networks that can enhance performance, especially decreasing
the gap between single and double cross validation results. The second improvement
may be to use more robust brain atlases. Anatomical atlases are based on physical
landmarks of the brain, while our functional atlas was constructed using 6 minutes of

resting state activity, which might not be enough to capture functional organization of the
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brain. Recent effort to construct brain atlases using multi-modal datasets such as
combining fMRI with myelin maps (Glasser et al. 2016) are promising. Third, more robust
biomarkers can be developed by using of multi-modal feature sets, by combining feature
extracted from different modalities such as T1 weighted images, fMRI, and DTI (e.g.
(Silva et al. 2014)). The feature set can further be supplemented with non-brain related
datasets such as genetic biomarkers (e.g. (Yang et al. 2010)). Fourth, medication load
could be a confounding factor that we could not adequately account for. Unfortunately,
the study of unmedicated schizophrenic patients is not practical, except for patients that
are at the onset of the disease and are antipsychotic naive. More recordings from
schizophrenic patient population at the onset of their disease could provide valuable

insight biomarkers.

Conclusion

We used a relatively large fMRI dataset to classify schizophrenic patients from healthy
subjects using network measures as features fed into an SVM classifier, implementing
double cross validation to validate the classifier. We compared classification accuracy of
the results when a functional atlas and an anatomical atlas were used to calculate the
network measures. We observed that the AAL atlas had a higher performance than the
functional atlas, although both atlases produced above chance performance. We also
observed that prewhitening of the fMRI time series improves classification results. Yet
another important observation was the significant difference between result of single and

double cross validation.

63



Supplementary Material

Supplementary Tables

Measure Number Measure Name Graph type Measure type Extra Parameters
1 Number of Weighted Global We used the
Communities Louvain
community
detection
algorithm.
2 Average Weighted Global
Community Size
3 Transitivity Weighted Global
4 Assortativity Weighted Global
5 Rich Club Curve Binary Global
Calculated for a
range of degrees,
from 1 to the
average node
degree of the
network .
6 Characteristic Binary Global
Path Length
7 Global Efficiency Weighted Global
8 Radius of Graph Binary Global
9 Diameter of graph | Binary Global
10 Node Weighted Node
Betweenness
Centrality
11 Eigenvector Weighted Node
Centrality
12 Shannon Entropy | Weighted Node
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13 Within Module Weighted Node
Degree Centrality
14 Participation Weighted Node
Coefficient
15 Clustering Weighted Node
Coefficient
16 Node Degree Weighted Node
17 Strength Weighted Node
18 Eccentricity Binary Node
19 Local Efficiency Weighted Node
20 Reachability Binary Pair
21 Distance Binary Pair
22 Weighted Distance | Weighted Pair
23 Overlap Amongst | Weighted Pair
Neighbors
24 Generalized Binary Pair Calculated up to
Topological 3rd step
Overlap neighbors.
25 Matching Index Binary Pair

Supplementary Table 3.1. List of graph theoretic measures used for classification.

From left to right: column 1, measure number; 2, measure name (Bullmore and Sporns

2009; Rubinov and Sporns 2010b); column 3, type of graph used for calculating the

measure. Some measures are specific to binary graphs. To calculate these measures

the weighted graph was thresholded and converted to binary; column 4, type of

measure. For a graph with N nodes, global measures characterize the entire network
and produce one value. Measure that characterize nodes produce N values. Measure

that characterize measure pairs produce N.(N — 1)/2 values; column 5, Some measure

require extra parameters to be calculated. Value of the parameters are specified in this

column.
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Dataset Number of Features Dimensionality Classifier Double Accuracy Ref.
Subjects Reduction Cross
Method(s) Validation
fMRI, 68, Scz = Activation LDA + mRMR SVM No 88% (Juneja,
Oddball 34,H=34 Map Rana,
Auditory and
Task Agrawal
2014)
fMRI, 25, Scz = Activation PCA LDA No >80% (Ford et
Category 15,H=10 Map al.
Exemplar 2003)
Word Pair
Task
fMRI, 102, Scz = Behavioral None LDA No 58% (Yoon
AX-Contin 51,H=51 Performance et al.
uous 2012)
performan Activation 62%
ce test contrast
between A
and B cues in
DLPFC
Activation 59%
contrast
between A
and B cues in
the entire
brain
fMRI, 83, Scz = Regional PCA LDA No 80% (Shi et
resting 48,H =35 Homogeneity, al.
state, 6 regions 2007)
minutes defined
anatomically
Voxelwise 74%
homogeneity
fMRI, 52,Scz = Pairwise Kendall tau rank K-means No 87% (H.
Resting 32,H=20 Correlation correlation clustering Shen et
State, 6 Coefficient coefficient feature al.
minutes between selection + locally 2010)
anatomically linear embedding
defined manifold learning
regions
fMRI, 40, Scz = Genetic data, Forward SVM No 87% (Yang
Auditory 20,H =20 Activation Sequential feature etal.
Oddball map and ICA | selection method 2010)
task and map
Genetic
data
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fMRI, 104, Scz = Activation None SVM, No 92%, Scz (Costafr
verbal 32, H =40, map three way Vs eda et
fluency Bipolar = classificati non-Scz al.
task 32 on 2011)
fMRI, 58, Scz = Size of the None SVM No 75% (Basset
resting 29,H =29 largest tetal.
state, 6 connected 2012)
minutes component
fMRI, 68, Svz = Lattice None k-NN No ~83% (Chyzh
resting 40,H =28 Auto-Associat yk and
state ive Memories Grafa
2015)
fMRI, 36, Scz = Pairwise Decision tree Decision No 75% (Venkat
resting 18,H=18 regional feature selection tree araman
state, >10 functional etal.
minutes connectivity 2012)
between
anatomically
defined
regions
fMRI, 146, Scz = Voxel-wise Feature selection SVM and No 80% (Savio
resting 72,H=74 regional based on class random and
state, 6 homogeneity, | distance forests Grafia
minutes amplitude of 2015)
low
fluctuations,
and functional
homotopy
fMRI, 20, Scz = Fine Separability SVM No 77.5% (X. Hu
resting 10,H=10 Granularity threshold + PCA etal.
state, 10 Functional 2013)
minutes Interaction
between
subnetworks
Functional 77.5%
connectivity
Fine 95%
Granularity
Functional
Interaction
between
subnetworks
+ Functional
connectivity
fMRI, 71, Scz = Pairwise PCA SVM, 3 No 62% (Yu et
resting 24, H =22, Correlation way al.
state, 6 Healthy Coefficient classificati 2013)
minutes Siblings of between on
Scz anatomically between
subjects = defined schizophr
25 regions enic
patients,
their
healthy
siblings,
and
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healthy
controls

fMRI,
resting
state, >5
minutes

370, Scz =
195, H =
175

Pairwise
Correlation
Coefficient
between
networks
defined by
ICA

Auto
connectivity of
network time
series

Pairwise
Correlation
Coefficient
between
networks
defined by
ICA +auto
connectivity of
network time
series

mRMR

SVM

Yes

84%

80%

88%

(Arbabs
hirani,
Castro,
and
Calhou
n 2014)

fMRI, O-
and 2-back
memory
task

37,Scz =
17,H=20

Activation
Map

Searchlight Based
feature Extraction

SVM

Yes

91

(Bleich-
Cohen
etal.
2014)

fMRI,
resting
state, 6
minutes

64, Scz =
32,H=32

Pairwise
Pearson
Correlation
Coefficient
between
anatomically
defined
regions

Maximal
Information
Coefficient

Extended
Maximal
Information
Coefficient

Thresholded
Kendall-Tau
coefficient

SVM,
linear

No

81.2%

76.6%

82.8%

(Su et
al.
2013)

fMRI,
resting
state, 6
minutes

49, Scz =
24,H=25

Pairwise
Correlation
Coefficient
Over Time
between
Regions of
interest
determined by
Task Activity

Threshold based
on t-test

SVM,
Polynomi
al Kernel

SVM,
Linear

SVM,
Gaussian

Yes

81.3%

73.5%

79.6%

(H.
Shen et
al.
2014)

fMRI,
resting
state, 5

100, Scz =
50, H =50

Pairwise
Correlation
Coefficient

None

Deep
Neural
Network

Yes

85%

(Kim et
al.
2016)
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minutes between SVM, 77%
anatomically Linear
defined
Regions
fMRI, 18, Scz =8, | Network Level | Threshold based SVM, Yes 96% (Fekete
resting H=10 Measures on t-test + Block etal.
state, 10 using nodes Recursive Diagonal 2013)
minutes defined by the | Feature Optimizati
AAL atlas, Elimination on with
constructed Spherical
multiple Kernels
graphs
fMRI, 56, Scz = Z-map of T-test + PCA + Nearest No 93% (Du et
resting 28,H =28 spatial LDA Neighbors al.
state, 5 components 2012)
minutes identified
using ICA
fMRI, 98%
Auditory
Oddball
task
fMRI, 146, Scz = Network None SVM, No 65% (A.
resting 72,H=74 measures Radial Anders
state, 6 based on basis on and
minutes networks kernel Cohen
identified by 2013)
ICA
fMRI, 56, Scz = Functional None SVM, No 83% (Arbabs
resting 28,H =28 connectivity linear hirani et
state, 5 between al.
minutes networks 2013)
identified by SVM, 96%
ICA Radial
basis and
polynomia
| kernels
Decision 96%
trees
K nearest 96%
neighbor
classifier
fMRI, 159, Scz = Functional Double input Three-wa | Yes 59% (Rashid
resting 60, H =61, | connectivity symmetric y, SVM, etal.
state, >5 Bipolar = between relevance (DISR) | linear 2016)
minutes 38 networks
identified by
ICA
Functional 84%
connectivity
between
networks
identified by
ICA over time
Combination 89%
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of the above
feature sets

fMRI, 52,Scz = Gramian Recursive Multiple Yes 85% (Castro
Auditory 31, H=21 between Feature Kernel etal.
oddball regions Elimination Learning 2011)
task identified

using ICA,

using

magnitude

and phase

information

separately
fMRI, 98, Scz = Activation None SVM No 85% (Koch
Monetary 44, H =54 Map etal.
Incentive 2015)
Delay
Task
fMRI, 146, Scz = Binary and All possible SVM No 65% (Singh
resting 72,H=74 weighted single, pair, triads and
state, 6 network and tetrads of Bagler
minutes measures features 2016)

based on

regions

identified by

ICA
fMRI, 70, Scz = Activation ICA + PCA Projection | No 91% (Demirc
Auditory 34,H =36 map pursuit i, Clark,
odd ball algorithm and
task Calhou

n 2008)

fMRI, 62, Scz = Functional Sequential SVM Yes 85.5% (Fan et
resting 31, H=31 connectivity forward selection al.
state, 6 pattern feature selection 2011)
minutes identified by

ICA
fMRI, 44, Scz = Pairwise Kendall tau rank SVM Yes 93.2% (Tang
resting 22,H=22 correlation correlation etal.
state, 6 coefficient coefficient + PCA 2012)
minutes between

anatomically

defined

regions
fMRI, 274, Scz = Z-scored None SVM, No 73.4% (Guo et
resting 152, H = pairwise Radial al.
state, 6 122 correlation basis 2013)
minutes coefficient function

between kernel

specific

anatomically

delineated

regions

Supplementary Table 3.2. Summary of Previous Work. A summary of other

classification studies of schizophrenia using fMRI datasets. This list is not exhaustive,

but a limited survey of literature.
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Supplementary Figures
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Supplementary Figure 3.1. Performance of Different Classifiers

Performance as a function of number of features for the adaptive boost (Adaboost)
classifiers.

A) Performance of the Adaboost classifier when functional atlas was used to construct
the network and extract features.

B) Performance of the Adaboost classifier when the AAL atlas was used to construct

the network and extract features. Dotted line marks chance level.
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Supplementary Figure 3.2. Sensitivity and Specificity

Sensitivity and Specificity as a function of number of features for functional and AAL

atlases and different classifiers.
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Supplementary Figure 3.3. Feature Selection Method
Classification performance vs. number of features for different dimensional reduction

methods for both functional (top) and AAL (bottom) atlases.
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Supplementary Figure 3.4. Raw vs Prewhitened

Classification accuracy vs. number of features when raw and prewhitened time series

are used for construction of the network when the functional (top) and AAL (bottom)

atlases were used for node definition
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Distribution of the top features across different subject groups for A) functional and B)

AAL atlases.
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Supplementary Figure 3.6. Misclassification Rate vs. Symptom Severity

SANS and SAPS scores (y-axis) vs. Misclassification rate (x-axis) for the patient group

for both atlases.
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Chapter 4: Is Schizophrenia in the Eyes of the
Beholder?

Introduction

Schizophrenia is a debilitating chronic mental disorder. Schizophrenia is currently
diagnosed in based on interviews with the patients with no clinically approved biomarker
for the disease. Identification of non-invasive biomarkers for schizophrenia can be very
beneficial. Biomarkers can shed light on mechanisms behind the disease and guide
clinicians to develop more effective therapeutic interventions. Moreover, such
biomarkers can be used to identify prodromal state that could be used used for early

interventions before onset of the disease.

The exact cause of schizophrenia is not clear. It has previously been observed that
N-methyl-D-Aspartate (NMDA) glutamate antagonist drugs such as phencyclidine or
ketamine cause schizophrenia like symptoms in healthy subjects (Javitt and Zukin 1991;
Driesen et al. 2013). This has led to development of the NMDA hypofunction hypothesis
(also known as glutamate dysfunction hypothesis) of schizophrenia (Olney and Farber
1995; Coyle 1996; Moghaddam and Javitt 2012; Snyder and Gao 2013) which posits

that schizophrenia is caused by a disruption in function of NMDA receptors.

NMDA receptors are expressed abundantly by retinal cells (Y. Shen, Liu, and Yang
2006). Therefore, we hypothesize that NMDA dysfunction might manifest as distortions
in response of retinal cells to visual stimulation captured by electroretinograms (ERG).
ERG is a non-invasive low cost test that is used to test functionality of retina in clinical
settings and is typically used for detection of glaucoma (Colotto et al. 2000; Machida
2012). ERG waveform captures activity of rod and cone photoreceptors as well as
bipolar and possibly Muller cells in response to a flash of light (Frishman 2012). ERG
can also be measured after the subject has been light or dark adapted. Photopic
response is the ERG collected after subject has been light adapted and captures
response of the cones. Scotopic response reflects activity of the rods and is the ERG
response after the subject has been dark adapted. A variation of ERG, called the pattern

electroretinogram (pERG) is also used in clinical settings (Preiser et al. 2013). PERG is
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invoked activity by a flickering checkerboard or grating pattern and captures activity of

the retinal ganglion cells (Miura et al. 2009).

We collected ERG, Photopic, Scotopic, and pERG waveforms from a cohort of
schizophrenic individuals and a group of healthy controls (71 subject total). They were
used to identify abnormal patterns of activity in schizophrenic subjects that can
potentially be used as biomarkers. We employed a data driven approach, where these
waveforms were used to classify patients into schizophrenic or control. We analyzed
classification power of these waveforms both in time and frequency domains. This
resulted in a high dimensional dataset (several hundred dimensions) that was used to
classify 71 subjects. Therefore, we used principal component analysis (PCA) (Bishop
2006) in conjunction with the sequential forward selection (Guyon and Elisseeff 2003) to
reduce dimensionality of the dataset. The low dimensional dataset was then used for
classification using the support vector machine (SVM) classifier (Vapnik 1995; Bishop
2006), since SVM is robust to outliers. To test reliability of the resultant biomarkers, we
adopted a double cross validation scheme, where a subset of the subjects were used for
biomarker identification. The identified biomarkers were then used to classify the a
subset of subjects that did not participate in biomarker identification discovery.

Performance of our classification paradigm and the proposed biomarkers are discussed.

Methods

Data collection

A group of 35 healthy control (17 female, age:M = 40, SD = 13) and 36 schizophrenic
(17 female, age:M = 41, SD = 11) participants were recruited for this study. Six of these
subject were brought back for a second data collection section. The second dataset from
those subjects were treated as separate subjects. All participants gave informed consent
and were compensated for their participation. All procedures were done in accordance

with a University of Minnesota IRB approved protocol.

We used the Diagnosyslic, Boston, MA system to collect four types of signals at a
sampling frequency of 1.2Hz: Electroretinogram (ERG), Photopic, Scotopic, and pattern
Electroretinogram (pERG). ERG signal was collected using a full field Ganzfeld light

flash covering the entire retina at at three different light intensities listed in Table 4.1.
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Photopic response was collected after the subject was light adapted for ten minutes.
Scotopic response was collected in ten minute dark adapted condition. Two types of
pPpERG were collected, where the stimulus was a checkerboard. First set of pERG were
collected at a single stimulus intensity presented on a Crt monitor, referred to as pERG
Crt signal in this manuscript. For a subset of subjects, pERG was collected using a
checkerboard stimulus presented at a variety of intensities and contrasts on an LED
monitor, referred to as pERG LED signal in this manuscript. Since the type of monitor
and stimulus intensity and contrast are different for pERG Crt and pERG LED, they were
treated as two different signal types. A summary of the stimuli used for collection of each

signal is provided in Table 4.1.

The ERG, pERG Crt, and pERG LED were collected by presenting the stimulus 150
times. Scotopic and Photopic responses were collected only for single trials. Each signal
type was recorded for each eye separately. The waveforms from the two eyes were

concatenated to produce a single waveform per trial per subject (Figure 4.1).

Outlier Detection and Processing

Excluding photopic and scotopic responses that included a single trial), other datasets
contained a number of noisy trials with abnormal waveforms. We identified noisy
waveforms for each subject by calculating mean and standard deviation of the waveform
at each time point across all trials from that subject and excluded waveforms that
deviated more than one standard deviation from the mean in O% of data points (Figure
4.1). Choice of O depended on the signal type and was chosen based on trial and error,
where M was changed manually and the results were visually inspected until acceptable

results were obtained. Choice of M for different signals is summarised in Table 4.1.

If more than 50% of trials from a subject are excluded, that subject is excluded from the
study. Waveforms from the remaining subjects were then examined manually. Subject
with abnormal waveforms were excluded from further analysis. Number of subjects
included for each signal type are also reported in Table 4.1. All the acceptable trials from
each subject were averaged to produce a single mean time series per subject. Average

of baseline values were then subtracted from each waveform.
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Signal type | Number of | Stimulus O(%) | Number of
trials included
subjects
ERG 150 Step 1: Flash of light at 1 cd.s/m? intensity 50 62, Scz=33,
H=29
Step 2: Flash of light at 5 cd.s/m? intensity 60, Scz=30,
H=30
Step 3: Flash of light at 7 cd.s/m? intensity 58, Scz=29,
H=29
pERG Crt 150 Checkerboard pattern at 100 cd.s/m? intensity 40 71, Scz=36,
H=35
pERG LED 150 Step 1: Checkerboard pattern at 999 cd.s/m? 40 46, Scz=24,
intensity, 100% contrast H=22
Step 2: Checkerboard pattern at 470 cd.s/m? 46, Scz=24,
intensity, 100% contrast H=22
Step 3: Checkerboard pattern at 275 cd.s/m? 46, Scz=24,
intensity, 100% contrast H=22
Step 4: Checkerboard pattern at 999 cd.s/m? 41, Scz=22,
intensity, 100% contrast H=19
Step 5: Checkerboard pattern at 470 cd.s/m? 41, Scz=21,
intensity, 40% contrast H=20
Step 6: Checkerboard pattern at 275 cd.s/m? 40, Scz=22,
intensity, 30% contrast H=18
Step 7: Checkerboard pattern at 999 cd.s/m? 36, Scz=19,
intensity, 25% contrast H=17
Step 8: Checkerboard pattern at 470 cd.s/m? 35, Scz=20,
intensity, 20% contrast H=15
Step 9: Checkerboard pattern at 275 cd.s/m? 36, Scz=19,
intensity, 11% contrast H=17
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photopic 1 Flash of light at 1 cd.s/m? intensity 100 69, Scz=35,
H=34

Scotopic 1 Flash of light at 1 cd.s/m? intensity 100 58, Scz=30,
H=28

m 16, SCZ=7, H=g

Table 4.1. Summary of Dataset. Summary of signal types and corresponding methods
of collection and analysis. From left to right, column 1: Signal type; column 2: Number of
trials collected; column 3: visual stimulus; column 4: criteria for detection of outlier trials
for each signal type. A trial is excluded if it deviates from the average trace more than
one standard deviation in O% of time points; column 5: Number o f subjects included in
the study after outlier exclusion, Scz denotes subjects diagnosed with schizophrenia, H

denotes healthy control subjects.

Feature extraction

In order to classify subjects based on the shape of their retinal response waveforms,
distinguishing features must first be extracted. Such features can capture different
aspects of the waveform. For this analysis, we extracted features both in time and
frequency domain (Figure 4.1). Time domain features were simply amplitude of the
waveform at each time point. For the frequency domain analysis we calculated the short
time Fourier transform of each waveform in 30s windows with 50% overlap. Total power

and phase in each frequency and time bin, were used as features.

Each feature constitutes one dimension in the dataset. Total number of dimensions is
one order of magnitude higher than number of subject that are to be classified. To
reduce dimensionality of the dataset we performed Principal Component Analysis (PCA).
PCA applies a linear transformation to the dataset and transforms it into a lower
dimensional space where each dimension is aligned with direction of maximum variance
in the dataset (Figure 4.1). The principal components (PCs) extracted using PCA were

then used for classification of the subjects.
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Classification

We used a double cross validation algorithm to choose the most informative PCs and
use them for classification of the subjects into healthy and Schizophrenic. We randomly
divided the subjects into 3 subsets: training, validation, and testing using 5 fold cross
validation partitioning. The subject set was partitioned into 5 equal sized subsets or

folds. Three folds were used as training, one fold for validation, and one fold for testing.

Training and validation subsets were used for choosing the most informative PCs using
the sequential forward selection algorithm (Guyon and Elisseeff 2003) (Figure 4.1). First,
a linear support vector machine (SVM) classifier was trained on the training subset using
each PC independently. The trained SVM was then used to classify the validation subset
and classification accuracy was calculated. The PC with highest classification accuracy
was paired with all the remaining PCs. Classification accuracy of each pair was similarly
calculated by training a linear SVM on the training subset and using it to classify the
validation subset. Pair of PCs with the highest classification accuracy was then
combined with the remaining PCs to form triplets. This process was progressively

performed until a set of 40 PCs was selected.

After determining the most informative 40 PCs, they were used to train a linear SVM on
the combination of training and validation subsets. The resultant classifier was then used
to classify the testing subset and calculating classification accuracy. The box constraint

or C value used for training the SVM was equal to 10.

This process was repeated five times, so that each fold was once used once as the
testing set. The random partitioning was also performed 10 times. This resulted in 50

performance accuracies and 50 sets of 40 most informative PCs.

We repeated this process for each waveform separately. We also concatenated all the
waveforms to construct a combination waveform and used this long waveform for

classification.
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Figure 4.1. Classification Pipeline

Trials from left and right eyes are concatenated. For each subject, Trials that are not
within one standard deviation of the mean for a certain percentage of time points, are
excluded. Remaining trials are averaged for each subject. Time or frequency domain
features are extracted from the average. Principal component analysis (PCA) is then
performed to reduce dimensionality of the data. Entire subject set is then randomly
partitioned into three groups. Training and evaluation subsets are used to select the
most informative principal components (PCs), using the forward sequential selection
algorithm. Selected PCs are then used to classify the test subjects. Classification

performance is reported.
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Results

Four types of retinal response with varying visual stimuli were collected from a cohort of
schizophrenic and healthy subjects. Example traces of each signal type are shown in
Figure 4.2.

Two types of features were extracted from each signal type, time domain and frequency
domain. Each feature type was used for classification separately. We also combined all
the waveforms across different response types and used the combination for
classification. Classification results are reported in Table 4.2. Highest classification
accuracy was at 70% and was obtained using the pattern electroretinogram response
(PERG) collected using an LED monitor with a bar as visual stimulus (Table 4.1). Second
best accuracy was obtained using electroretinogram at the highest stimulus light
intensity, which resulted in an accuracy of 66%. Both performances were significantly
above chance level (one sample t-test, p<0.001) and were obtained using 21 and 23
PCs for the pERG and ERG responses respectively. With both responses, accuracy
increased initially as more PCs were used for classification (see Supplementary Figure
4.1). However, after reaching maximum performance, adding more PCs had a

detrimental effect on accuracy.

Classification performance of these two responses were further examined. Classification
using the pERG response resulted in more than 60% sensitivity and specificity values
(Figure 4.3). Sensitivity of the classification using ERG was also above 60%, but its

specificity was at 50% (Figure 4.3).

We then sought to look at the most informative PCs for each response type.
Performance peaked at 21 PCs with the pERG LED response. Out of the 50 selected
feature sets, we then calculated frequency of each PC appearing in the top 21 PCs.
frequency of appearance for each PC is shown in Supplementary Figure 4.2. The 22nd,
7th and 15th PCs appear in 92%, 88% and 84% of the selected PC sets. These three
PCs explain 0.2%, 1.8% and 0.5% of the variance respectively. Even though these PCs
are not the top PCs in terms of the amount of variance they capture, they seem to

contain more discriminative information than other PCs. Each PC is constructed by
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applying a set of linear weights to each feature, which in our case is a sample of the
ERG in time. In Figure 4.4A we plot the weights for these three PCs, which indicates the

phase of the response the PC extracts..

Performance using the ERG response peaked at 23 PCs. Four PCs had a high
frequency of appearing in the 50 sets of top 23 PCs (Supplementary Figure 4.2). These
were the 40th, 6th, 15th and 1st PCs which appear in the top 23 PC set 78%, 76%, 76%
and 72% times and explain 0.008%, 3.4%, 0.2% and 41.6% of the variance respectively.
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Figure 4.2. Example Waveforms. Example raw time series for each signal type. Each
traces has been normalized to zero mean and unit variance. Left column: Gray traces
are the average waveform for each subject. Black traces is the average waveform
across all subjects. Dashed vertical lines show onset of the stimulus. Continuous
vertical line separates left and right eyes. Right column: Average waveforms across all
healthy (black) and schizophrenic (red) subjects. Dashed vertical lines show onset of

the stimulus. Continuous vertical line separates left and right eyes.

Il Accuracy
IlSensitivity
| ISpecificity

pERG LED, Step 3 ERG, Step 3

Figure 4.3. Performance Details. Classification accuracy, sensitivity and specificity
for the two most informative responses.
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Response Accuracy, Time Domain | Accuracy, Frequency
Features Domain Features
ERG, Step 1 58 £ 2 57 +2
ERG, Step 2 62 +2 58 + 1
ERG, Step 3 66 £ 2 nan *
PERG Crt 46 + 2 59 +2
pPERG LED, Step 1 62 +2 59 +2
pPERG LED, Step 2 53+2 54 +2
pERG LED, Step 3 702 48 £ 2
PERG LED, Step 4 49+ 2 49+ 2
PERG LED, Step 5 53+2 58 £ 2
pPERG LED, Step 6 55+ 3 60 £ 2
PERG LED, Step 7 64 + 2 59+ 2
pPERG LED, Step 8 63 +2 55+ 2
pPERG LED, Step 9 53+3 54 +2
Photopic 592 522
Scotopic 5712 49+ 2
Combination 60 4 43 +4

Table 4.2: Performance Summary. Classification accuracy for each signal, using both

time and frequency domain features. Mean and standard error of classification accuracy

across all 50 permutations is reported.
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Figure 4.4. Most informative PCs

A) Raw waveform (top) and weight of the most informative PCs (bottom) for pERG
LED, step 3 response. PCs are ranked based on the number of times they
appeared in the 50 selected PC sets. PC 1 explains 0.2% of total variance and
appears in the selected PC set 92% of the time. PC 2 explains 1.8% of total
variance and appears in the selected PC set 88% of the time. PC 3 explains
0.5% of total variance and appears in the selected PC set 84% of the time.

B) Raw waveform (top) and weight of the most informative PCs (bottom) for ERG,
step 3 response. PCs are ranked based on the number of times they appeared
in the 50 selected PC sets. PC 1 explains 0.0.008% of total variance and
appears in the selected PC set 78% of the time. PC 2 explains 3.4% of total
variance and appears in the selected PC set 76% of the time. PC 3 explains
0.2% of total variance and appears in the selected PC set 76% of the time. PC
4 explains 41.6% of total variance and appears in the selected PC set 72% of

the time.

We compared performance of the double cross validation paradigm with single cross
validation. In the single cross validation paradigm, the set of selected PCs are used for
classification of the same subjects that were used for their selection. The results are
shown in Supplementary Figure 4.3. As can be seen, single cross validation accuracy is
higher than double cross validation for almost every response type. The difference
between classification accuracy between the two paradigms can be as high as ~30%.
These results demonstrate the bias of the single cross validation paradigm to

overestimate classification accuracy.
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Discussion

In this study we used different types of retinal response from a group of healthy and
schizophrenic patients to identify biomarkers for the disease. We used a data driven
approach to identify traits of the retinal response that were indicating of the state of the
disease. Both time and frequency domain features were tested for classification. We
used PCA and sequential forward selection algorithms to identify the most discriminative
traits. We then used SVM to classify the subjects into healthy and schizophrenic. Highest
classification accuracies we obtained were 70% and 66% using pERG and ERG activity
respectively. Moreover, classification accuracy was dependent on intensity of the visual
stimulus used to invoke the response. Highest classification accuracy was obtained
using time domain features. Frequency domain features resulted in lower classification
accuracy.

We observed that the type of visual stimulus used to activate retina might be an
important factor in the amount of discriminability power across the two groups. PERg
activity was recorded using both checkerboard and bar visual stimuli at different intensity
level and contrasts. We observed that the bar stimulus at the highest contrast and lowest
intensity levels invoked the most discriminative response with 70% accuracy. We also
observed that the ERG response was most discriminative at the highest light intensity

used.

We observed that combination of the signals together did not produce higher accuracies.
The reason is that addition of uninformative signals will dilute the amount of information
in the dataset, which reduces generalizability of the results. A similar trend was observed
in classification accuracy vs. number of PCs used for classification (Supplementary
Figure 4.1). Accuracy peaked at optimal number of PCs and started to decrease as more

and more PCs were added.
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Figure 4.5. Different components of pERG and ERG responses.

Left: Three components of the pERG response: N35, a negative component at 35ms;
P50: A positive component at 50ms; N95, a negative component at 95ms. Right:
Three components of the ERG response: a-wave, b-wave, and Photopic negative

response PhNR

Both pERG and ERG responses have three main components shown in Figure 4.5. The
three main components of the pERG are N35, P50, and N95. Variations in latency and
amplitude of the P50 and N95 are used for diagnosis of damage to retina (Holder 2001)
and can be indicative of a reduction in the population of retinal ganglion cells (Weinstein
et al. 1988). Invasive experiments in non-human primates have shown that the N95
components reflect activity of the retinal ganglion cells (Luo and Frishman 2011). The
three components of the ERG response are a-wave, b-wave and photopic negative
response (PhNR). The a-wave components has been shown to mainly reflect activity of
the cone photoreceptors. The b-wave is attributed to activity of bipolar cells (Miura et al.
2009). The PhNR component reflects the activity of retinal ganglion cells (Colotto et al.
2000; Miura et al. 2009; Luo and Frishman 2011; Machida 2012).

The three most discriminative PCs identified by our classification approach using the
pPERG response do not emphasize any specific part of the waveform. The first PC seems
to have peaks right before the a-wave and right after the b-wave. The second PC has
peaks at the a-wave components. The third PC does not seem to emphasize any

specific part of the waveform.
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The four most discriminative PCs identified for the ERG response reveal interesting
traits. The most discriminative PC has a distinct peak aligned with the b-wave
component. The second most discriminative PC puts higher weight on the portion of the
response between the a-wave and b-wave components. The third most informative PC
puts higher weight on the a-wave component as well as the slow transient portion of the
waveform following the PhNR component. Finally, the fourth puts higher weight on the

PhNR response and the transient activity following it.

Collectively, our results point to abnormal activity of the retinal ganglion cells as well as
cone photoreceptors and bipolar cells. Since retinal cells express NMDA receptors, our

findings support the NMDA hypofunction hypothesis.

Conclusion

This study showed that activity of retinal cells captured using non-invasive
measurements is different across healthy and schizophrenic groups. We used a data
driven machine learning approach to extract differential patterns of activation across the
two groups and observed that response of cones, bipolar cells, and retinal ganglion cells
have abnormal activity patterns in schizophrenia. These findings support the NMDA
hypofunction hypothesis. They also demonstrate potential of retinal response doe

identification of schizophrenia in prodromal state in the high risk population.
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Supplementary Figures
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Supplementary Figure 4.1. Performance vs. Number of PCs
Classification accuracy vs. number of PCs for the two most informative responses.

Black dashed line marks chance level.
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Frequency of each PC appearing in the 50 selected PC set for pERG LED, step 3
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Classification accuracy using double cross validation (y-axis) vs. single cross
validation (x-axis). Each dot is performance of one response type in the time or
frequency domain. Dotted black line is the identity line. Vertical and horizontal dashed

lines mark chance level.
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Chapter 5: Conclusion

In this thesis, we developed and used a machine learning classification paradigm for
biomarker identification for schizophrenia, using fMRI and retinal electrophysiology
datasets. Our approach was purely data driven and used a double cross validation
scheme to test robustness of the results. Therefore, our results provide a robust estimate

of classification power of the identified biomarkers.

Our fMRI dataset comprised of 6 minutes of resting state activity from 170 subjects,
including healthy and schizophrenic individuals. We employed a data driven algorithm to
construct an atlas of the brain using the fMRI data itself. We used our functional atlas
long with a commonly used anatomical atlas to construct network level models of the
brain for each subject. We extracted several graph theoretic measures from these
networks and used for classification of the subjects. We observed above chance
classification accuracy using both atlases. We also observed that our classification
performance was higher using the anatomical atlas. Another interesting finding was that
classification performance was higher when prewhitened time series were used for

construction of the networks.

Our retinal electrophysiology dataset consisted of several types of retinal activity invoked
by different visual stimuli, acquired from a cohort of healthy and schizophrenic subjects.
These responses were used for classification, using both time domain and frequency
domain features extracted from the dataset. We obtained a 70% classification accuracy
using pERG response at a low light intensity with high contrast. We also obtained a 66%
classification accuracy using the ERG response at a high light intensity. Both accuracies
were observed using time domain features. Frequency domain features of the same
signals resulted in lower classification accuracies. Responses to other visual stimuli did
not produce high classification accuracies. Our results support the NMDA hypofunction

hypothesis of schizophrenia.
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Future Directions

We did not observe an improvement in classification accuracy using our functional atlas.
However, the lack of evidence that functional atlases improve classification cannot be
used to conclude that functional atlases are not useful for biomarker identification. First,
our 6 minute resting state activity might not be long enough to capture intrinsic functional
connectivity of the brain, an observation supported by our results and others (Laumann
et al. 2015). Longer scans therefore might result in more robust parcellations of the
brain. Second, other data driven parcellation algorithms such as ICA could improve
classification accuracy. Another interesting direction would be to use multimodal atlases
developed in recent years (e.g. (Glasser et al. 2016)) for biomarker identification. These
atlases combine several data sets and are more robust in capturing the borders between

functional modules of the brain.

While we limited our feature set to common graph theoretic measures, other complex
network levels measures have been proposed which could reveal more complex
abnormal patterns in the diseased brain. One of such measures is controllability (Gu et
al. 2014). Controllability refers to ability to control global state of the brain networks by
manipulating relevant local interactions. It has been suggested that controllability of the

brain might be reduced in schizophrenic patients (Gu et al. 2014).

Our network measures were constructed using a static model of the brain, i.e. assuming
that network level organization of the brain remains constant during the 6 minutes scan
duration. This assumption might is certainly not valid, cognitive states change rapidly
and the cognitive state of the subject may affect the network measures we have used as
features. Using a dynamic model, where the entire scan is divided into shorter time
windows and separate network measures are extracted from each window
independently may result in higher classification accuracies. This approach has been

shown to boost classification accuracy using bivariate features (Rashid et al. 2016).

Classification accuracy could be improved by using different feature selection methods
or classifiers. Feature selection methods such as minimum redundancy maximum
relevance (mMRMR) (Peng, Long, and Ding 2005) or norm minimization methods (Nie et

al. 2010) could pick up on features that might not be picked up by our current feature
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selection method. Decisions Trees and Random Forests are powerful classification
algorithms that are capable of picking up on sophisticated decision boundaries that
might not be captured by parametric kernels used by SVM classifiers. Further

exploration using these classifiers could enhance classification.

Even though we observed above chance accuracy, a 70% classification accuracy is not
useful in clinical settings for identification of prodromal state of schizophrenia. Even
though using better analytic tools, more sophisticated features, and other classifiers
might improve classification accuracy, it is most likely that we are limited by the amount

of data we have available at this point.
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