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Phase-driven optomechanics in exotic photonic media 
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Supervisor: Zheng Wang 

 

Integrated photonics provide unique advantages in tailoring and enhancing optical 

forces. Recent advancements in integrated photonics have introduced many novel 

phenomena and exotic photonic media, such as photonic topological insulator, negative 

index material, photonic crystals, 2D material, and strongly-modulated time-dynamic 

systems. In my dissertation, I theoretically and numerically explore the novel properties 

and applications of optical forces in these systems.  

We propose guided-wave photonic pulling forces in photonic crystal waveguides. 

Photonic crystal waveguides offer great capability to define the mode properties, and can 

incorporate complex trajectories, leading to unprecedented flexibility and robustness 

compared to previous works in free space or in longitudinally uniform waveguides. With 

response theory, a virtual work approach on optical forces, we establish general rules to 

tailor optical forces in periodic structures involved with photonic crystals: pulling forces 

arise from negative gradients in the phase responses of the outgoing modes, which 

corresponds to forward scattering on the Bloch band diagram with unit cell function 

corrections. We devise robust forward scattering, first, using topologically protected 

nonreciprocal chiral edge states, second, using backward (i.e. negative index) waves in a 

reciprocal system. The structures are tailored to accommodate only the necessary modes, 

which largely benefits the robustness. With these, we numerically demonstrate long range 
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pulling forces on arbitrary particles through sharp corners. Our work paves the way towards 

sophisticated optical manipulation with single laser beam.  

We next explore the implication and applicability of momentum conservation in 

periodic media, which has been unclear due to the inhomogeneity and strong near field. 

We first quantify the linear momentum flux of Bloch modes under discrete translational 

symmetry, which is further understood from their plane wave composition. We then 

demonstrate through varies examples that the change in momentum flux predicts a total 

force distributed to both the scatterer and the media. However, one still need response 

theory to predict the forces on individual objects.  

Using response theory, we can predict more general forms of optical forces. We 

numerically demonstrate optical motoring effect due to singularity in the phase responses, 

and strong optical forces between graphene sheets due to large gradients in the phase 

responses. In particular, by combining the strong forces in graphene guided-wave system 

and the exceptional elastic properties of graphene, we can get an SBS gain that is four 

orders of magnitude stronger than in a silicon step-index waveguide, which may lead to 

smaller devices for RF signal processing.  
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Chapter 1:  Introduction 

Optical forces have been widely studied for its broad range of applications in 

biophysics[1]–[4], atomic physics[5] and integrated photonics[6]–[9]. In particular, 

integrated photonics offer unique degrees of freedom to tailor and enhance the optical field 

and light-matter interactions. For example, one can design waveguides or resonators to 

generate large optical forces that can create deformation or displacement, in order to 

dynamically tune the optical properties of the system[6], [7]. More recently, optical forces 

are used to produce high-frequency mechanical waves, via a process known as Stimulated 

Brillouin scattering. This process can provide gain for GHz phonons[10], [11], cascaded 

Stokes photons[12], and can coherently transduce signals between light and sound 

waves[13].  

Over the past few decades, advancements of integrated photonics have incorporated 

many novel ingredients such as subwavelength scale structural features [14]–[16], photonic 

crystals[14], magneto-optical materials[17], 2D materials[18]–[20], strongly time-

modulated dynamics [21], [22], etc., leading to exotic photonic properties. For instance, 

using photonic crystals or metamaterials, one can realize novel dispersion relations such as 

negative index[23]–[26] and slow light[27], [28]. Using magneto-optical materials[17], 

[29], [30] or temporal modulation[21], [31], [32], one can break the time reversal 

symmetry, which leads to non-reciprocal propagation of light. By carefully designing the 

nontrivial band structure and Bloch modes, people have realized the photonic analog of 

topological insulators, which leads to topologically protected light propagation[17], [29], 

[32]–[34]. Using 2D materials that interact strongly with photons, one can enhance the 

optical field by orders of magnitude[35], [36]. However, for most of these systems, only 

their optical properties were well studied, whereas their potential applications to optical 
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forces are yet to be explored. Furthermore, the optical forces in these novel systems may 

behave quite differently compared with those in conventional systems. Here, we list a few 

examples as follows: 

(1) Topological photonics have been applied to protect the propagation of light[17], 

[29], [32]–[34], while their potentials to protect optical forces have not yet been explored. 

We envision having unidirectional forces guided through arbitrary waveguide trajectories 

in these systems. In particular, the robustness of the rare photonic pulling forces[37] that 

are directed opposite to the incident light may be improved under topological protection, 

which would greatly improve the flexibility of optical manipulation with a single laser 

beam. Because conventionally the optical manipulation are limited to gradient forces and 

positive radiation pressure[1].  

(2) Negative index (also referred to as backward-waves) has been proposed to 

generate optical pulling forces in longitudinally uniform structures [24], [25]. However, 

the definition of negative index becomes problematic when generalized to Bloch modes 

for periodic systems. Because the periodic band structure of Bloch modes leads to 

ambiguity as one tries to determine the sign of the wave-vector in the periodic system[38], 

which in turn results in ambiguity in the direction of optical forces.  

(3) How to apply momentum conservation in periodic structure is not as 

straightforward as in free space[39]–[41]. A scattering particle immersed inside the 

periodic medium can generate substantial near field, which distributes the scattering forces 

to the periodic medium itself. It is unclear what quantity governs the total force, and how 

the total force is distributed to the particle and the periodic medium.  

(4) For optical manipulation of objects inside those aforementioned 

inhomogeneous photonic media, it would be desirable to have a general theory that can 

tailor optical forces purely based on the intrinsic properties of the eigen modes supported 
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by the media, such as band structure and field profile, rather than being distracted by the 

chaotic instantaneous near fields at presence of the manipulated objects. The analysis on 

optical forces can also extend to optical torques, for realizing photonic motors in integrated 

system.  

(5) It is also worth investigating whether and how the field enhancement by novel 

2D materials[35], [36] translates to significantly stronger optical forces and photon-phonon 

couplings.  

In my PhD work, I conduct theoretical and numerical studies to address these 

unexplored aspects about the optical forces in novel photonic systems, and to unlock new 

possibilities for optical manipulation.  

A main line that underlies our optical forces analysis is response theory[42], [43]. 

Conventionally, the strong near field in inhomogeneous photonic media largely limited the 

understanding of optical forces to first-principle calculations, such as the Maxwell stress 

tensors (MST)[44]. While the MST method is reliable, it offers little intuition for the design 

of a system to achieve a desired optical force profile, as a small displacement may 

drastically change the near field. Fortunately, integrated photonic systems can often be 

abstracted into a handful of ports[45], [46], and there exist rigorous analytical connection 

between the responses of the ports caused by the motion of an object and the optical forces 

experienced by the object, known as the response theory of optical forces (RTOF)[42], 

[43]. In particular, the phase responses contain the richest design insights towards the 

optical forces. For example, negative gradients in the phase responses indicate optical 

pulling forces which are directed oppositely to the incident light (Chapter 3, 4). 

Singularities in the phase responses indicate non-conservative forces (Chapter 6). Large 

gradients in the phase responses indicate enhancement of optical forces (Chapter 2, 7). 

More intriguingly, the responses offer an universal design guidance, which is somewhat 
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independent of the underlying implementation[42]. For example, we have synthesized 

negative gradients in the phase responses using two completely different photonic crystals, 

and they both realized robust photonic pulling forces (Chapter 3, 4). However, given the 

elegance of response theory, there still exist challenges that we need to address. First, the 

prediction of the responses requires good understandings about the system, including the 

eigen properties of the ports (and resonators if applicable) and how they exchange energy 

spatially and temporally (Chapter 2-4, 6). This also leads to the development of our theories 

that use band structures and eigen mode profiles to tailor optical forces inside the photonic 

media (Chapter 3-4, 6). Second, eliminating unwanted ports may require special design 

efforts. For example, to get robust photonic pulling forces, we have resorted to topological 

protection (Chapter 3), dispersion engineering (Chapter 4, 8), and optimization techniques 

(Chapter 8) to eliminate unwanted ports.  

The arrangement of this dissertation is as follows: In Chapter 2 we review the 

numerical methods that we have used in characterizing the optical properties and optical 

forces. We use frequency domain studies and finite element method to solve the Maxwell’s 

equations in the highly inhomogeneous medium that we use[47], [48]. On optical forces, 

we address several different numerical realizations for the calculation of MST forces[44]; 

we demonstrate the agreement between the RTOF calculated forces [42] and the MST 

calculated forces; and we highlight the intuitions provided by RTOF. RTOF requires 

accurate characterization of the ports and their responses (i.e. scattering matrix). Ports are 

usually attributed to propagating eigen modes, which are identified using eigen value 

studies. The responses are numerically found from full-wave study and are often 

predictable from intuitive understating about the system. We demonstrate these procedures 

with an example.  
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In Chapter 3 we generalize the topological protection of light propagation to 

topologically protected photonic pulling forces in guided-wave system, with a highlight on 

the unprecedented robustness of the puling forces to support arbitrary particle properties, 

multiple particles, complex trajectories and long operational length, compared with the 

pulling forces proposed in previous works [24], [25], [37], [49]–[62]. The topological 

protection origins from the reflection-free property of the chiral edge states (CES)[29], a 

photonic analog of the surface states on topological insulators whose conductivity is 

invariant to imperfections[63]. We devise forward scattering between these CESs that have 

different wavenumbers to generate the pulling forces. The understanding of forward 

scattering in photonic crystals which are required for the CESs, however, is different from 

the conventional momentum conservation picture. Instead, we use RTOF to establish 

rigorous correspondence between the forward scattering on the Bloch band diagram 

incorporating the mode profiles, and the negative gradients in the phase responses, which 

all point towards pulling forces. Along the way, we analyze special symmetries in the 

responses that greatly simplifies the RTOF analysis. In addition to multi-mode scattering, 

we demonstrate that absorption on the manipulated particle can also be devised into 

forward scattering which generates photonic pulling forces.  

In Chapter 4 we switch gears to use backward waves (i.e. negative index waves) to 

implement the pulling forces in an all silicon single-mode waveguide, which is highly chip-

compatible. Backward waves have been proposed as a general approach to generate optical 

pulling forces in complex media, such as photonic crystals[23] and metamaterials[24], 

[25]. Although this approach applies to a broad range of scatterers, the general coexistence 

of forward waves in these systems allows optical pushing forces to be unintentionally 

introduced, especially when multiple scattering events occur. In this context, we explore 

the generation of robust optical pulling forces from backward waves in a single-mode 
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waveguide synthesized by dispersion engineering in a photonic crystal line defect. We also 

formulate the general criterion that distinguishes genuine backward waves that produce 

pulling forces from “aliased” backward waves that produce pushing forces, which is a 

unique problem encountered in periodic structures such as photonic crystals. We 

numerically demonstrate our results using first-principle simulations, in excellent 

agreement with analysis from the response theory of optical forces. A single-mode 

waveguide supporting genuine backward waves paves the way towards nanomanipulation 

in optical circuits with topologies that match the complexity found in state-of-art 

microfluidics. 

In Chapter 5 we investigate the concept of momentum conservation for Bloch 

modes in periodic systems, which is not yet fully understood[41]. First, we identify that 

the linear momentum flux is a conservative quantity and an intrinsic property for a Bloch 

mode, thanks to the discrete translational symmetry. We visualized the momentum flux 

into spectra which exhibit great distinctions from the conventional band structures in both 

the magnitude and signs. We analyze the momentum flux by decomposing it into 

contributions from the underlying plane wave components. Next, to address the momentum 

conservation in periodic structures, we notice that a change in the momentum flux transfers 

to a total force that is distributed to all the dielectrics in the near field, including both the 

defect/scatterer and the surrounding structure. As an application of this concept, 

compressive/expansion forces can be predicted from the change of the momentum flux at 

interfaces of different periodic structures supporting different Bloch modes. On the other 

hand, by revisiting the setup in Chapter 3, where a particle experiences pulling forces inside 

a photonic crystal waveguide that is barely correlated with the total forces accompanied by 

momentum conservation, we recognize that the response theory is still the best suitable 
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approach to predict forces on an individual object being manipulated inside a periodic 

structure.  

In Chapter 6 we propose an optical motor around a phase singularity in a photonic 

crystal cavity. By taking analogy with a free space experiment where a lossy test particle 

is driven into cyclic motion by a helical beam in 3D[64], [65], we implement the photonic 

motor into a 2D integrated photonic system, where the field profile that leads to the 

motoring effect is entirely shaped by the photonic crystal structure. Unlike in free-space, 

here the motoring effect is confirmed only when there exists a port that perceives the phase 

singularity of the electromagnetic field into its phase response, according to RTOF[43]. 

We find that a manipulated lossy particle can be devised into such a port. We also give a 

theoretical upper limit of the torque, assuming the cavity is excited by side-coupling to a 

single port, operating on resonance and at critical coupling.  

In Chapter 7 we study the optomechanics in the integrated graphene photonic 

system. We extend the extraordinary wavelength reduction of the guided quasi-TEM mode 

between parallel graphene sheets at THz[35] to generate strong optical forces. At a 30nm 

gap size, the forces are 40 times stronger than in a silicon step-index waveguide[66]. Using 

RTOF analysis, we explain an interesting observation about the quasi-TEM mode, which 

always generates attractive forces irrespective of dispersion tuning. Combining the strong 

optical forces and the exceptional mechanical properties of graphene, we find that a doubly 

clamped parallel graphene waveguide can support an SBS gain of 4e8/W/m, which is 4 

orders of magnitude stronger than in a Silicon step-index waveguide[10]. Graphene 

optomechanics may lead to smaller devices for RF signal processing.  

In Chapter 8, we incorporated gradient based topology optimization[67]–[69] to 

replace human effort in the dispersion engineering task encountered in Chapter 4. In this 

optimization method, the design parameters are the dielectric properties on each pixel (i.e. 
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discretized mesh elements) in a defined volume in the device. The target function and 

constraints are specified with respect to the dispersion relations. The gradients of the target 

function and constraints versus the design parameters are constructed through the finite 

element method[47], [70]. The optimization opens up a 2.2% frequency range for the single 

mode operation of the backward-wave.  
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Chapter 2:  Electromagnetic Simulation and Characterization of 

Optical Forces 

This chapter reviews the numerical methods that we use in characterizing the 

optical property and optical forces in integrated photonic systems.  

The mechanical motions involved in our works are orders of magnitude slower than 

the harmonics in the photonic waves. Therefore it is sufficient to use the electromagnetic 

fields from steady state solution of Maxwell’s equation to calculate the optical forces. 

Using frequency domain method (Section 2.1.1), we can find the steady state solutions, 

including the frequency and field distribution from an eigen value study, and the field 

distribution from a full wave study. We use the Finite Element Method[47](Section 2.1.2) 

to solve the Maxwell’s equation, because it provides accurate representation of complex 

geometry and is good at capturing local effects.  

In free space, people often calculate optical forces using gradient forces and 

scattering forces[1]. Gradient forces are based on the gradients of field intensity, which is 

assumed be un-perturbed by the object (i.e. beads, particles). Scattering forces are based 

on the changes in photon momentum before and after scattering. However, optical forces 

are very different in integrated photonics systems. Gradient forces do not work because 

displacements often introduce drastic changes to the field profile. Scattering forces are 

chaotic in sub-wavelength scale inhomogeneous media, and can only be redefined under 

discrete translational symmetry (Chapter 3-5). Nevertheless, the first principle calculation 

from Maxwell Stress Tensor are still reliable [44] (Section 2.2.1), although it does not 

provide much intuition as the field distribution would change in response to the 

displacements. Response theory provides an alternative and more intuitive way to calculate 

optical forces[42], [43] (Section 2.2.2). It abstracts the integrated system into ports and 

relates the optical forces to the power and phase responses of the ports with respect to the 
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displacements, where we often theoretically come up with a predictable profile for the 

responses.  

In Section 2.3 we walk through an example to characterize the optical properties 

and optical forces in an integrated system consisting of photonic crystal waveguide and 

cavity, with a highlight on the insights provided by response theory in predicting optical 

forces. Meanwhile, checking the agreement between Maxwell stress tensor and response 

theory calculated optical forces guarantees numerical accuracy.  

2.1 ELECTROMAGNETIC SIMULATION 

2.1.1 Solving Maxwell’s Equations in Frequency-Domain 

The macroscopic electromagnetic waves are governed by Maxwell’s equations[44]:  

∇ ⋅ 𝑩 = 0                             (2.1) 

∇ ⋅ 𝑫 = 𝜌                             (2.2)  

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
                           (2.3) 

∇ × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡
                          (2.4) 

where 𝑬  and 𝑯  are macroscopic electric and magnetic fields, 𝑫  and 𝑩  are 

displacement and magnetic induction fields, 𝜌  and 𝑱  are free charge and current 

densities. 𝑫 to 𝑬 and 𝑩 to 𝑯 are related by constitutive relations. For most dielectric 

materials, we can neglect the nonlinear terms in the constitutive relations, which yield 

𝑫(𝒓) = 𝜖(𝒓)𝑬(𝒓)  and 𝑩(𝒓) = 𝜇(𝒓)𝑯(𝒓) , where 𝜖  and 𝜇  are the permittivity and 

permeability, 𝒓 is the spatial coordinate.  

 Frequency-domain method separates the time dependence from the spatial 

dependence by expanding the fields into a set of harmonic modes.  

𝑬(𝒓, 𝑡) = 𝑬(𝒓)𝑒−𝑖𝜔𝑡,  𝑯(𝒓, 𝑡) = 𝑯(𝒓)𝑒−𝑖𝜔𝑡             (2.5) 
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Substituting Eq.2.5 and the constitutive relations into Eq.2.1 -2.4, we obtain the Master’s 

equations 

∇ × (𝜇−1∇ × 𝑬) − 𝜔2𝜖𝑬 = 𝑖𝜔𝑱                     (2.6) 

∇ × (𝜖−1∇ × 𝑯) − 𝜔2𝜇𝑯 = ∇ × (𝜖−1𝑱)                  (2.7) 

It is evident that the solutions of Eq.2.6 also satisfies Eq.2.1, and the solutions of Eq.2.7 

also satisfies Eq.2.2 [14], [47].  

In frequency domain, we use two kinds of numerical study: Eigen value study and 

full-wave study[14]. Eigen value study is associated with source-free problems such as 

wave-propagation in waveguide and resonances in cavities. It finds the dispersion relation 

and the field profile of Eigen modes. Full-wave study is usually associated with scattering, 

radiation, and other problems where there exists a source or excitation. It finds the field 

distribution in realistic setups, e.g. optical manipulation of objects inside waveguides or 

cavities.  

2.1.1.1 Eigen value study 

 In Eigen value study, since there is no sources, we can set 𝑱 = 0. Eq.2.6 and Eq.2.7 

becomes 

∇ × (𝜇−1∇ × 𝑬) = 𝜔2𝜖𝑬                      (2.8) 

∇ × (𝜖−1∇ × 𝑯) = 𝜔2𝜇𝑯                      (2.9) 

As the structure is specified, 𝜖(𝒓) and 𝜇(𝒓) are known. One can solve Eq.2.8 to find the 

Eigen frequency 𝜔 and the Eigen field 𝑬, then use curl relation to find Eigen field 𝑯. Or 

we can solve Eq.2.9 to find the Eigen frequency 𝜔 and the Eigen field 𝑯, then use curl 

relation to find the Eigen field 𝑬. For a structure that is uniform in one direction (e.g. z-

direction), TM and TE polarization can be decoupled. One can solve Eq.2.8 to get 𝐸𝑧 for 
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the TM polarization, and solve Eq.2.9 to get 𝐻𝑧 for the TE polarization, then use the curl 

relation to find the other field components.  

 For photonic crystals, due to the periodicity, one can solve the Eigen frequency and 

Eigen fields for a unit cell, then apply discrete translational symmetry to the entire 

structure. Waves propagating in periodic systems are known as Bloch waves. Taking the 

𝑬 field as example, the Bloch wave function can be written as  

𝑬(𝒓) = 𝒖𝒌(𝒓)𝑒𝑖𝒌⋅𝒓                        (2.10) 

where 𝒖𝒌(𝒓) is the unit cell function, 𝒌 is the Bloch wave vector. Eq.2.8 becomes 

[(𝑖𝒌 + ∇) × 𝜇−1(𝑖𝒌 + ∇)] × 𝒖𝒌(𝒓) = 𝜔2𝜖 𝒖𝒌(𝒓)            (2.11) 

Periodic boundary condition 𝒖𝒌(𝒓) = 𝒖𝒌(𝒓 + 𝑹)  is applied, where 𝑹  is the lattice 

vector. Solving Eq.2.11 for each 𝒌 in the Brillouin Zone, we get the dispersion relation 

𝜔(𝒌) and the corresponding Bloch wave functions.  

The Eigen value study can be done using either MPB[71] or COMSOL 

Multiphysics[48]. MPB is a package that calculates the photonic bands for periodic system 

based on Fourier transform. MPB is usually used for fast parameter sweeping under a 

coarse structural resolution. COMSOL is based on finite element method, which is used 

for accurate characterization of the Eigen frequencies, especially when the mesh need to 

be matched between the Eigen value study and the full-wave study.  

2.1.1.2 Full-wave study 

 After identifying the Eigen modes, we can implement full-wave study to emulate a 

realistic optical manipulation setup. The full-wave study is driven by current source 𝑱. For 

Eq.2.6 and Eq.2.7, the frequency 𝜔 is chosen according to the dispersion relation of the 

Eigen modes, and the configuration of the current source 𝑱  is chosen according the 

symmetry/field distribution of the Eigen modes that one wants to excite.  
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 The regular simulation domain is terminated by Perfect Matching Layers (PML) 

that are impedance matched, while gradually introducing loss into the depth[72]. As the 

PML is designed to absorb the field, the field is not supposed to approach the outmost 

boundary. Therefore the outmost boundary can be simply set as PEC (�̂� × 𝐸 = 0) for 

Eq.2.6 or PMC (�̂� × 𝐻 = 0) for Eq.2.7. These are either Dirichlet or Neumann boundary 

conditions for different field components. The PML is configured such that reflection into 

the regular simulation domain is suppressed below -60dB.  

 With the field distribution solved from full-wave study, one can calculate optical 

forces on objects that is placed inside the system, as well as the amplitudes and phases of 

scattering between the Eigen modes, in preparation for further analysis.  

We use COMSOL Multiphysics[48] for the full-wave study.  

2.1.2 The Finite Element Method 

The finite element method is a numerical technique for obtaining approximate 

solutions to boundary-value problems of PDEs in engineering and mathematical 

physics[47], [73]. The principle of the method is to replace an entire continuous domain by 

a number of subdomains in which the unknown function is represented by simple 

interpolation functions with unknown coefficients to be solved. Thus the original 

boundary-value problem with an infinite number of degrees of freedom is converted into a 

problem with a finite number of degrees of freedom, or in other words, the solution of the 

entire system is approximated by a finite number of unknown coefficients. Then a system 

of algebraic equations is obtained by applying the Ritz variational or Galerkin procedure. 

Finally, solution of the boundary-value problem is achieved by solving the system of 

equations. Generally, a finite element analysis include the following steps: (1) 
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Discretization; (2) Selection of the interpolation functions; (3) Formulation of the system 

of equations; (4) Solution of the system of equations.  

2.1.2.1 Discretization 

 The benefit of finite element method lies in the capability to discretize the entire 

domain into sub-domains (i.e. elements) that are adaptive to the structure. The mesh 

elements are flexible in both the shapes and sizes. The elements can take the shape of line 

segments in 1D, triangle or rectangles in 2D, tetrahedra, triangular prisms, or rectangular 

bricks in 3D. In particular, triangle and tetrahedra are best suited for irregularly-shaped 

domains. Smaller mesh elements are required for regions of high fineness or high index, 

while larger elements can be used for uniform regions with lower index. The element sizes 

can change gradually inside a domain.  

 The global function to be solved is mapped onto interpolation functions on 

individual elements. The interpolation functions (also known as shape functions) are 

expressed in terms of unknown coefficients, where the coefficients are the values of the 

approximated global function on the nodes associated with the element. For first order 

shape function, the nodes are simply taken as the vortices of the elements. For higher order 

shape functions, more coefficients are needed, therefore additional nodes are identified at 

interpolation points on the element. A complete description of a node contains its 

coordinate values, local index inside the element, and global index. The local index of a 

node indicates its position in the element, whereas the global index specifies its position in 

the entire system. The independent nodes consist of total degree of freedoms to be solved 

later in the system of equations.  
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2.1.2.2 Selection of interpolation functions 

 By discretization, the finite element method sacrifices the continuity in higher order 

derivatives of the solution at the element boundaries. Using linear/quadratic/cubic 

interpolation functions, the solution belongs to the 𝐶0/𝐶1/𝐶2 class1 respectively[74]. By 

default, COMSOL first solves for the 𝑬 field based on the Master’s equation (Eq.2.6), 

and then calculates the 𝑯 field based on the curl relation. The continuity in both 𝑬 and 

𝑯 are necessary for the accuracy in optical forces characterization, which requires 𝐶1 

continuity in the 𝑬 field. Therefore we choose the quadratic interpolation functions in 

COMSOL. Using cubic interpolation function provides better accuracy but at a higher 

computational cost. Nonlinear optics simulation often requires cubic interpolation.  

 Once the order of the interpolation function is selected, we can formulate an 

expression for the unknown solution in an element, say element 𝑒, in the following form: 

𝜑𝑒 = ∑ 𝜙𝑖
𝑒𝑣𝑖

𝑒𝑛
𝑖=1 = {𝜙𝑒}𝑇{𝑣𝑒}                  (2.12) 

where n is the number of nodes in the element, 𝜙𝑖
𝑒 is the element interpolation function 

which takes value of 1 at node 𝑖 and takes value of 0 at other nodes of the element, 𝑣𝑖
𝑒 is 

the value of the approximated solution 𝜑 of the global function at node 𝑖 of the element. 

{⋅} denotes a column vector.  

2.1.2.3 Formulation of the system of equations 

 Let’s consider the boundary value problem of a differential equation in a domain 

Ω 

ℒ𝜓 = 𝑓                            (2.13) 

where ℒ is a differential operator, 𝜓 is the global function to be solved, 𝑓 is the source 

term. In electromagnetics, Eq.2.13 can represent Poisson equations of the electric potential, 

                                                 
1 The function f is said to be of (differentiability) class 𝐶𝑘 if the derivatives 𝑓′, 𝑓′′, ..., 𝑓(𝑘) exist and 

are continuous.  

https://en.wikipedia.org/wiki/Continuous_function


 16 

or wave equations like Eq.2.6. The boundary conditions can be periodic, Dirichlet, 

Neumann, impedance or radiation conditions, or even higher order conditions.  

There are two classical methods to solve Eq.2.13. One is the Ritz variational 

method, the other is Galerkin’s method. The Ritz method formulates a functional whose 

minimum corresponds to the differential equation under the given boundary conditions. 

The Galerkin’s method seeks the solution by weighting the residual of the differential 

equation. The two methods yield the identical linear algebra under finite element method 

when the operator ℒ  is self-adjoint 2  (e.g. lossless system). Here we illustrate the 

procedure with Galerkin’s method.  

Assume that 𝜑  is an approximate solution to Eq.2.13, it results in a nonzero 

residual  

𝑟 = ℒ𝜑 − 𝑓 ≠ 0                         (2.14) 

The best 𝜑 will be the one that minimizes the residual 𝑟 at all points of Ω. In this vein, 

weighted residual methods enforce the condition 

𝑅 = ∫ 𝑤 𝑟 𝑑Ω
Ω

= 0                       (2.15) 

where 𝑅 denote weighted residual integral and 𝑤 is the weight. In Galerkin’s method, 

the weight 𝑤 is selected to be the complex conjugate of 𝜑. 𝑤 is also known as the test 

function in COMSOL. 𝜑 and 𝑤 can be expended as 

𝜑 = ∑ 𝜙𝑗𝑣𝑗
𝑁
𝑗=1 = {𝜙}𝑇{𝑣}                     (2.16) 

𝑤 = ∑ 𝜙𝑗𝑣𝑗
∗𝑁

𝑗=1 = {𝜙}𝑇{𝑣∗}                    (2.17) 

where 𝜙𝑗 are the global expansion functions defined over the entire domain and 𝑣𝑗  are 

coefficients to be determined. Substituting Eq.2.16 and Eq.2.17 into Eq.2.15 

𝑅 = {𝑣∗}𝑇 ∫ ({𝜙}ℒ{𝜙}𝑇 {𝑣} − {𝜙}𝑓) 𝑑Ω
Ω

= 0           (2.18) 

                                                 
2Self-adjoint operator ℒ satisfies 〈ℒ𝜙, 𝜓〉 = 〈𝜙, ℒ𝜓〉, where 〈𝜙, 𝜓〉 = ∫ 𝜙𝜓∗𝑑Ω

Ω
. 
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Eq.2.18 should hold for arbitrary coefficients in the test function, which leads to a linear 

algebra problem 

[𝐾]{𝑣} = {𝑏}                          (2.19) 

where 

[𝐾] = ∫ {𝜙}ℒ{𝜙}𝑇  𝑑Ω
Ω

                     (2.20) 

{𝑏} = ∫ {𝜙}𝑓 𝑑Ω
Ω

                        (2.21) 

The matrix [𝐾] is not necessarily symmetric unless the operator ℒ is self-adjoint.  

As the domain is discretized into elements, the residual 𝑅 can be decomposed into 

contributions from individual elements 

𝑅 = ∑ 𝑅𝑒̅̅̅̅𝑁𝑒
𝑒=1 = ∑ {𝑣𝑒∗̅̅ ̅̅̅}

𝑇
([𝐾𝑒̅̅ ̅̅ ]{𝑣𝑒̅̅ ̅} − {𝑏𝑒̅̅ ̅})

𝑁𝑒
𝑒=1 = 0          (2.22) 

where 𝑁𝑒 is the total number of elements. [𝐾𝑒̅̅ ̅̅ ] is an 𝑁 × 𝑁 matrix augmented from an 

𝑛 × 𝑛 matrix [𝐾𝑒], where  

𝐾𝑒 = ∫ {𝜙𝑒}ℒ{𝜙𝑒}𝑇  𝑑Ω
Ωe                      (2.23) 

{𝑣𝑒̅̅ ̅} and {𝑏𝑒̅̅ ̅} are 𝑁 × 1 column vectors augmented from 𝑛 × 1 column vectors {𝑣𝑒} 

and {𝑏𝑒}, where  

{𝑏𝑒} = ∫ {𝜙𝑒}𝑓 𝑑Ω
Ωe                        (2.24) 

Augmenting the deterministic quantities [𝐾𝑒] and {𝑏𝑒} into [𝐾𝑒̅̅ ̅̅ ] and {𝑏𝑒̅̅ ̅} involves 

padding 0s. While 𝑣𝑒 is the unknown, the augmented version 𝑣𝑒̅̅ ̅ is just {𝑣}, the global 

coefficients. Now, based on the correspondence of a node in the global system and its 

belonging to one or multiple elements, the global expansion functions 𝜙𝑗  should be 

specified as the sum of element interpolation functions 𝜙𝑖
𝑒 that take the value of 1 at the 

global node 𝑗, where 𝜙𝑖
𝑒 may come from multiple elements that share the same node 𝑗. 

It follows that [𝐾] and {𝑏} are assembled by summing up the nonzeros from individual 

elements 

[𝐾] = ∑ [𝐾𝑒̅̅ ̅̅ ]𝑁𝑒
𝑒=1                          (2.25) 
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{𝑏} = ∑ {𝑏𝑒̅̅ ̅}
𝑁𝑒
𝑒=1                          (2.26) 

 Before the system of equations Eq.2.19 are ready for solving, we need to apply the 

boundary conditions. For example, periodic boundary condition reduces some degree of 

freedom by specifying the dependence between nodes at periodic boundaries. Dirichlet 

boundary condition reduces some degree of freedom by specifying their value explicitly. 

Neumann boundary condition, which requires the normal derivative to vanish at the 

boundary, is usually satisfied implicitly and automatically in the solution process.  

2.1.2.4 Solution of the system of equations 

The assembled system of equations take one of the two forms: 

[𝐾]{𝑣} = {𝑏}                          (2.27) 

or 

[𝐴]{𝑣} = 𝜆[𝐵]{𝑣}                        (2.28) 

Eq.2.27 corresponds to the full-wave study that has a source term {𝑏}. Eq.2.28 corresponds 

to the source-free Eigen value study. In this case, the matrix [𝐾] can be written as [𝐴] −

𝜆[𝐵], where 𝜆 is the Eigen value. Once we find {𝑣}, we can use Eq.2.16 to construct the 

field distribution.  

2.2 OPTICAL FORCES CALCULATION 

2.2.1 Maxwell Stress Tensor 

Optical forces can be calculated by integrating the Maxwell Stress Tensor (MST) 

over a surface enclosing the object.  

𝑭 = −∫ 𝑇 ⋅ 𝒏 𝑑𝑠
𝑆

                         (2.29) 

𝑇𝑖𝑗 = 𝜖𝐸𝑖𝐸𝑗 −
1

2
𝛿𝑖𝑗𝐸

2 +
1

𝜇
(𝐵𝑖𝐵𝑗 −

1

2
𝛿𝑖𝑗𝐵

2)             (2.30) 

𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧} 

where 𝒏 is an inward normal vector, 𝑇 is the Maxwell Stress Tensor.  
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There are several variations in the force calculation derived from MST. Here we 

verify the agreements between the variations and choose the one that is the most accurate 

for a given computational budget. We limit our discussion to dielectric/metallic, 

lossless/lossy objects that have the permeability 𝜇 = 𝜇0, which cover the needs of Chapter 

2-6.  

Integrating MST over an additional surface enclosing the object requires fine mesh 

on the surface. One can instead integrate a pressure over the object’s surface. Consider the 

pressure on the surface from the outside (domain 1) to the inside (domain 2) of the object. 

The normal vector 𝒏 points from domain 1 to domain 2. The surface pressure is expressed 

as3 

𝒑 = (𝑇2 − 𝑇1) ⋅ 𝒏                        (2.31) 

As we have taken 𝜇1 = 𝜇2 = 𝜇0, the magnetic part in 𝑇 do not contribute to 𝒑 due to 

the continuity. We only need to consider the 𝑬 component 

𝑇𝑖𝑗𝑛𝑗 = 𝜖𝐸𝑛𝐸𝑖 −
1

2
𝜖𝐸2𝑛𝑖 

𝑇 ⋅ 𝒏 = 𝜖𝐸𝑛𝑬 −
1

2
𝜖𝐸2𝒏 = 𝜖(𝐸𝑛

2𝒏 + 𝐸𝑛𝐸𝑡𝒕) −
1

2
𝜖(𝐸𝑛

2 + 𝐸𝑡
2)𝒏 

=
1

2
𝜖𝐸𝑛

2𝒏 −
1

2
𝜖𝐸𝑡

2𝒏 + 𝜖𝐸𝑛𝐸𝑡𝒕 

Using the following relations  

𝐸1𝑡 = 𝐸2𝑡 = 𝐸𝑡,    𝜖1𝐸1𝑛 = 𝜖2𝐸2𝑛 = 𝐷𝑛 

The surface pressure becomes 

𝒑 =
1

2
(𝜖2𝐸2𝑛

2 − 𝜖1𝐸1𝑛
2 )𝒏 −

1

2
(𝜖2𝐸𝑡

2 − 𝜖1𝐸𝑡
2)𝒏 =

1

2
𝐷𝑛

2 (
1

𝜖2
−

1

𝜖1
)𝒏 −

1

2
𝐸𝑡

2(𝜖2 − 𝜖1)𝒏 

(2.32) 

The total force on the object is calculated as 

                                                 
3 𝑇1 and 𝑇2are evaluated at the same boundary in the finite element mesh system. At material boundary, 

finite element method maintains separate quantities for the two sides. 
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𝑭 = ∫ 𝒑 𝑑𝑠
𝑆

                          (2.33) 

For a 2D system (uniform in the z-direction) with TM polarization, the forces on a 

uniform object in air can be further transformed into the volume integration of Lorentz 

force on the polarization current 𝑱𝑝.  

𝑭 = (𝜖2 − 𝜖1)∫
1

2
𝐸𝑧

2(−𝒏)𝑑𝑠

𝑆

= (𝜖𝑜𝑏𝑗 − 𝜖𝑎𝑖𝑟) ∫
1

2
∇(𝐸𝑧

2
)𝑑𝑎

𝑉

 

= (𝜖𝑜𝑏𝑗 − 𝜖𝑎𝑖𝑟) ∫
1

2
∇(𝑬 ⋅ 𝑬)𝑑𝑎

𝑉

= (𝜖𝑜𝑏𝑗 − 𝜖𝑎𝑖𝑟) ∫ 𝑬 × (∇ × 𝑬)𝑑𝑎

𝑉

 

= −(𝜖𝑜𝑏𝑗 − 𝜖𝑎𝑖𝑟) ∫ 𝑬 ×
𝜕𝑩

𝜕𝑡
𝑑𝑎

𝑉

= ∫ 𝑖𝜔(𝜖𝑜𝑏𝑗 − 𝜖𝑎𝑖𝑟)𝑬 × 𝑩𝑑𝑎

𝑉

= ∫ 𝑱
𝑝
× 𝑩𝑑𝑎

𝑉

 

(2.34) 

 To verify the agreements between the different approaches of calculating optical 

forces (Eq.2.29, Eq.2.33 and Eq.2.34), we setup a simple test case (Fig.2.1). The test case 

is in 2D, which covers the scenarios encountered from Chapter2 to Chapter 6. A cylindrical 

particle is placed inside a PEC box. The surrounding media is air. There is a current source 

that can excite TE or TM polarization. The theoretical value of the optical forces on the 

particle is of less concern here, as the goal is to verify the agreement between different 

approaches. We test 3 cases: TE polarization with a lossless particle (𝜖𝑟 = 3.9); TM 

polarization with a lossless particle (𝜖𝑟 = 3.9); TM polarization with a lossy particle (𝜖𝑟 =

3.9 + 1𝑖 ). In all cases 𝜇𝑟 = 1 . The numerical agreement on the forces between the 

different approaches is to the 4th significant digit (Table 2.1) using the mesh shown in 

Fig.2.1 and is improved to the 5th significant digit (Table2.2) as we reduce the mesh size 

by 3x from Fig.2.1. Without loss of generality, these approaches to calculate the optical 

forces also apply to metallic particles (𝑅𝑒{𝜖𝑟}<0).  
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Figure 2.1: Schematics to test the optical forces calculation from varies approaches 

derived from the Maxwell Stress Tensor. A cylinder (grey disk, 𝜖𝑟 = 3.9 or 

3.9+1i, 𝜇𝑟 = 1) is placed inside a PEC box. Two virtual surfaces (blue 

colored) enclosing the cylinder are finely meshed for testing the MST 

integration. The line current source can excite TE or TM field.  

 TE 𝜖𝑟 = 3.9 TM 𝜖𝑟 = 3.9 TM 𝜖𝑟 = 3.9 + 1𝑖 
 Fx (N/m) Fy (N/m) Fx (N/m) Fy (N/m) Fx (N/m) Fy (N/m) 

Lorentz NA NA 2.73139e-8 -7.97213e-10 2.69458e-8 9.14726e-10 

Surf_p 9.78706e-7 1.09553e-7 2.73139e-8 -7.97214e-10 NA NA 

MST c1 9.78726e-7 1.09557e-7 2.73135e-8 -7.97263e-10 2.69455e-8 9.14655e-10 

MST b1 9.78721e-7 1.09537e-7 2.73138e-8 -7.97208e-10 2.69457e-8 9.14727e-10 

Table 2.1: Optical forces on the cylinder in Fig.2.1 for varies setups and from varies 

approaches. Lorentz: integrating the Lorentz force over the volume of the 

cylinder based on Eq.2.34. Surf_p: integrating the surface pressure over the 

surface of the cylinder based on Eq.2.33. MST c1/b1: integrating the MST 

over circle 1 / box 1 denoted in Fig.2.1 based on Eq.2.29. The mesh is 

shown in Fig.2.1.  

 TE 𝜖𝑟 = 3.9 TM 𝜖𝑟 = 3.9 TM 𝜖𝑟 = 3.9 + 1𝑖 
 Fx (N/m) Fy (N/m) Fx (N/m) Fy (N/m) Fx (N/m) Fy (N/m) 

Lorentz NA NA 2.73138e-8 -7.97214e-10 2.69458e-8 9.14725e-10 

Surf_p 9.78721e-7 1.09536e-7 2.73139e-8 -7.97215e-10 NA NA 

MST c1 9.78722e-7 1.09536e-7 2.73138e-8 -7.97214e-10 2.69458e-8 9.14723e-10 

MST b1 9.78722e-7 1.09535e-7 2.73138e-8 -7.97214e-10 2.69458e-8 9.14725e-10 

Table 2.2: Optical forces on the cylinder in Fig.2.1 for varies setups and from varies 

approaches. The setup is identical to Table 2.1 but the mesh size is 

decreased by 3x.   

Integrating over a volume provides better numerical stability for given 

computational budget, because it involves more degrees of freedom than integrating over 

a surface. Comparing Table 2.1 with Table 2.2, the Lorentz forces, which is integrated over 
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the volume, yields the most stable results for two different mesh qualities. MST integrated 

over the outer box is the second most stable, however it complicates the meshing. When 

situations permit, our first choice is to integrate the Lorentz force over the volume. In the 

rest of the dissertation, we use MST to refer to all the variations being tested in this section, 

as they are all derived from MST.  

2.2.2 Response Theory of Optical Forces 

Response theory of optical forces (RTOF) establishes a new approach of deriving 

optical forces in mechanically variable photonic systems consisting of linear media [42]. 

Through energy and photon-number conservation, it was shown that the power and phase 

responses of the system versus the mechanical coordinate of interest are sufficient to 

compute the optical forces. Optical forces can be designed purely based on the responses, 

while independent of the construction of the underlying device or its field distribution.  

RTOF is derived from virtual work principle in the adiabatic limit4[42]. Suppose 

the object makes a displacement, introducing an exchange of energy with the optical field. 

The exiting photons accumulate shifts in their phases, as their frequencies were altered by 

the energy exchange (i.e. Doppler effect). The power of the exiting photons also have a 

response to the displacement, but its derivative versus the displacement is of higher order 

contribution to the energy exchange compared to the phase response term. As a simplest 

example, for a mirror displaced by 𝛿𝑞 (Fig.2.2), under steady state approximation, the 

work being done to the mirror is  

𝐹𝑜𝑝𝑡 ⋅ 𝛿𝑞 ≈ −∫ ℏ𝛷𝛿𝜔𝑑𝑡
𝑡𝑓
𝑡𝑖

≈ ℏ𝛷(𝜓𝑓 − 𝜓𝑖)            (2.35) 

                                                 
4 The mechanical motion involves a time-scale that is much longer than the photon life time. 
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where ℏ is the Planck constant, 𝛷  is the phonon number flux, 𝛿𝜔 is the change in 

photon frequency due to the virtual work. Rearranging Eq.2.35, it is found that the force 

on the mirror is 

𝑭𝑜𝑝𝑡 =
𝐼

𝜔

𝑑𝜓

𝑑𝒙
                          (2.36) 

where 𝐼 is the power, 𝜔 is the angular frequency.  

 

 

Figure 2.2: Response in the phase of reflected photons due to the displacement of a 

mirror 

 A mode leaving the system is referred to as a ‘port’. The example in Fig.2.2 only 

have one port, the reflected plane wave. Integrated photonic system usually involves 

multiple ports, where RTOF can be generalized by simply summing up the contributions 

from each port 

𝑭𝑜𝑝𝑡 = Σ𝑖
𝐼𝑖

𝜔𝑖
∇𝜓𝑖                         (2.37) 

It should be noticed that the transmission and reflection of the same mode are counted as 

2 ports. Also, a port is identified with a single frequency. To treat a broadband source, a 

continuous integral over the frequency is needed.  

 Response theory provide rich insights into tailoring the optical forces. A one-port 

system have conservative optical forces, because the gradient of a scalar 𝜓 is cur-less. 

Integrated photonic systems are usually multi-port, which indicates non-conservative[43] 

optical forces. In some special cases, one can decompose the forces into conservative and 

non-conservative components and enhance the conservative part using resonances (Section 
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2.3). One can also exploit the non-conservativeness to design optical motors around phase 

singularity (Chapter 6). On the other hand, one can use RTOF to predict properties of 

longitudinal forces (Chapter 3, 4) or the transverse forces (Chapter7) in waveguides, based 

on the dispersion relation and other properties of the Eigen modes.  

2.3 EXAMPLE WORKFLOW TO CHARACTERIZE OPTICAL FORCES IN PHOTONIC 

CRYSTAL 

In this section we demonstrate the workflow from electromagnetic simulation to 

optical forces characterization, with an example model. We study a system that consists of 

a cavity side-coupled to a single-mode photonic crystal defect waveguide (Fig.2.3), with a 

particle inside the cavity experiencing optical forces. Experimental works had 

demonstrated optical trapping in such a system [75]. This system is more interesting 

theoretically because the forces can be decomposed into conservative and non-conservative 

components, where only the conservative component can be enhanced by resonance. One 

can further adjust the shape of the optical potential by tuning the operating frequency.  

In order to apply response theory to predict optical forces, one should be able to 

predict the responses in the first place. It had been demonstrated that such an optical 

resonance system can be modeled by temporal coupled-mode theory [45], [76], [77], which 

provides a full description of the responses in terms of a few system parameters. As a result, 

we can apply response theory to predict the force fields.  

This section is arranged as follows: We first introduce the theoretical model 

description using coupled-mode theory (Section 2.3.1). We then show necessary steps in 

setting up the frequency domain simulation (Section 2.3.2). Finally, we show optical forces 

analysis using response theory. The response theory is accurate even when the forces are 

enhanced by orders of magnitudes (Section 2.3.3).  
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Figure 2.3: A single-mode cavity side coupled to a single-mode waveguide. A particle 

(blue disk) inside the cavity can move around and experience optical forces.  

2.3.1 Model Description 

Fig.2.3 illustrates a lossless system with two ports and a side-coupled resonator. 

𝑠1
+ and 𝑠2

+ are the amplitudes of the incoming waves from the two ports. 𝑠1
− and 𝑠2

− are 

the amplitudes of the outgoing waves. Temporal coupled-mode theory[45], [76], [77] 

describes the system as 

𝑑𝐴

𝑑𝑡
= (−𝑗𝜔0 − 1/𝜏1 − 1/𝜏2)𝐴 + [𝜅1 𝜅2] [

𝑠1
+

𝑠2
+]            (2.38) 

[
𝑠1

−

𝑠2
−] = 𝐶 [

𝑠1
+

𝑠2
+] + [

𝑑1

𝑑2
] 𝐴                       (2.39) 

where 𝐴 is the amplitude of the resonance-mode, with 𝑒−𝑗𝜔𝑡  dependency5, 𝜅1,2, 𝑑1,2 

are the coupling rates between ports and the cavity. 𝐶 is the scattering matrix for the direct 

transport process, which takes the form[45] 

𝐶 = 𝑒𝑗𝜙 [
−𝑗𝑟
𝑡

   
𝑡

−𝑗𝑟]                        (2.40) 

where 𝑟, 𝑡, 𝜙 ∈ ℝ and 𝑟2 + 𝑡2 = 1. By choosing the location of reference planes, we can 

set 𝜙 = 0. The total scattering matrix 𝑆 is defined as 

[
𝑠1

−

𝑠2
−] = 𝑆 [

𝑠1
+

𝑠2
+]                           (2.41) 

                                                 
5 References [45], [76], [77] used the 𝑒𝑗𝜔𝑡 convention. Here to be consistent with the rest of the 

dissertation, we use the 𝑒−𝑗𝜔𝑡 convention.  
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𝑆 = 𝐶 +
|𝑑⟩⟨𝜅|∗

𝑗(𝜔0−𝜔)+
1

𝜏1
+

1

𝜏2

                       (2.42) 

It had been demonstrated [45], [76] that under time reversal symmetry  

𝐶|𝑑⟩∗ = −|𝑑⟩                           (2.43) 

Under energy conservation and time reversal symmetry 

|𝜅⟩ = |𝑑⟩                             (2.44) 

Energy conservation also indicates 
2

𝜏
=

2

𝜏1
+

2

𝜏2
= 𝑑1

∗𝑑1 + 𝑑2
∗𝑑2                     (2.45) 

Separating Eq.2.45 into individual contributions of the 2 ports, we have 
2

𝜏1
= 𝑑1

∗𝑑1, 
2

𝜏2
= 𝑑2

∗𝑑2                       (2.46) 

Without loss of generality 

𝜅1 = 𝑑1 = √
2

𝜏1
𝑒𝑖𝜙1, 𝜅2 = 𝑑2 = √

2

𝜏2
𝑒𝑖𝜙2              (2.47) 

In our system, we have 𝑟 → 0, 𝑡 → 1, together with Eq.2.43 and Eq.2.45 we can get 

𝜏1 = 𝜏2 = 2𝜏                           (2.48) 

𝜙1 + 𝜙2 = (2𝑁 + 1)𝜋                      (2.49) 

Eq.2.48 agrees with the bounds 
1−𝑟

1+𝑟
≤

𝜏1

𝜏2
≤

1+𝑟

1−𝑟
 proved by reference [77]. In Eq.2.49 we 

can set 𝑁 = 0 without loss of generality. Putting together Eq.2.40-2.49 and making the 

substitution 2𝜙1 − 𝜋 = −𝜙11, we find  

𝑆11 =
−

1

𝜏
𝑒−𝑖𝜙11

𝑗(𝜔0−ω)+
1

𝜏

                          (2.50) 

𝑆21 =
𝑗(𝜔0−ω)

𝑗(𝜔0−ω)+
1

𝜏

                          (2.51) 

Assume the incident light comes in from the left hand side (port 1). Using RTOF, the 

optical forces on the particle is given by 

𝑭 = ∑
𝐼𝑖

𝜔
𝛻𝜓𝑖𝑖 =

𝐼𝑖𝑛

𝜔
|𝑆11|

2𝛻(∠𝑆11) +
𝐼𝑖𝑛

𝜔
|𝑆21|

2𝛻(∠𝑆21)          (2.52) 
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where the gradient 𝛻  is taken versus the particle’s coordinate. 𝜔0 , 𝜏 , 𝜙11  are 

determined by the particle’s coordinate. Once we find 𝜔0, 𝜏, 𝜙11 from simulation, the 

force fields can be fully described.  

2.3.2 Frequency Domain Studies 

In order to find the proper configuration and operating frequency, we need to 

individually characterize the Eigen frequencies of the cavity and the waveguide. There are 

several requirements to be fulfilled through adjusting the configurations. For the cavity, 

it’s desirable that it has a single resonance mode in the middle of the bulk bandgap, which 

leads to a large quality factor. The waveguide should have a single mode around the 

resonance frequency of the cavity, in order to excite the cavity mode, and be consistent 

with the 2-port model derived above. It’s desirable that the waveguide mode has a large 

group velocity, which requires thinner PML layer.  

We choose to use the TM polarization, as it provides a complete bandgap between 

the first and 2nd bulk band[14]. The dielectric property of the rods is given (𝜖𝑟 = 11.56). 

The first step is to adjust the radius of the rods until the resonance is in the middle of the 

bandgap. It should noticed that the particle (𝜖𝑟 = 3.9, 𝑟 = 0.1𝑎) is part of the cavity 

(Fig.2.4a), its displacement introduces changes to the resonance frequency (Fig.2.4b). The 

proper cavity mode is found when the rods have radius 𝑟 = 0.169𝑎. Now the property of 

the bulk photonic crystal is fixed. Next we adjust the width of the line defect waveguide. 

A proper dispersion relation (Fig.2.4d) of the waveguide mode is found when the distance 

between the 2 rows of rods is enlarged by 0.9𝑎 (Fig.2.4c).  

For Eigen value study, periodic boundary condition is applied on the dashed lines 

shown in Fig.2.4(a)(c).  
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Figure 2.4: Eigen value studies to characterize the Eigen frequencies of the photonic 

crystal point defect cavity and line defect waveguide. The photonic crystal is 

made of dielectric rods (𝜖𝑟 = 11.56, 𝑟 = 0.169𝑎), where 𝑎 is the lattice 

constant. (a) A cavity is created by removing one rod from the photonic 

crystal. A dielectric particle (𝜖𝑟 = 3.9, 𝑟 = 0.1𝑎) is placed inside the 

cavity. (b) Resonance frequency of the cavity (TM polarization) versus the 

particle’s location (blue curve). The black curves indicate the band-edge of 

the upper and lower bulk bands. (c) A line defect waveguide is created by 

enlarging the distance between two rows of rods. The defect size is 𝑑 =
1.9𝑎 by measuring the center-to-center distance between the rows of rods 

that are nearest to the defect. (d) Dispersion relation (TM polarization) of 

the waveguide mode (blue curve) in the bulk bandgap (white area). 𝑘𝑥 is 

the Bloch k.  

 Full-wave study is conducted to find the field distribution when the cavity is 

coupled to the waveguide, which allows us to find the parameters needed by the coupled 

mode theory, and to predict / verify the optical forces experienced by the particle. The light 

comes in from the left hand side (port 1), driven by a current source. To verify the 

agreement between the Eigen value study and the full-wave study, we operate at 𝑓 =

0.38𝑐/𝑎 and move the particle along the line 𝑥 = 𝑦. The cavity becomes on resonance 

when the particle is at 𝑥 = 𝑦 = 0.15 and off resonance elsewhere (Fig.2.5), which is 

consistent with the trend of resonance frequencies versus location from the Eigen value 

study (red line in Fig.2.4).  
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Figure 2.5: The cavity being off/on/off resonance for the particle located at 𝑥 = 𝑦 = 0; 

𝑥 = 𝑦 = 0.15𝑎 and 𝑥 = 𝑦 = 0.5𝑎. 𝜔 = 0.38 ⋅ 2𝜋𝑐/𝑎 

2.3.3 Optical Forces Analysis 

In order to use response theory (RTOF) combined with coupled mode theory 

(CMT) (Eq.2.50-2.52) to characterize the optical forces, we need to find the system 

parameters 𝜔0, 𝜏, 𝜙11 from the full-wave simulation. We sweep the particle over spatial 

grid points. At each grid point, 𝜔0, 𝜏, 𝜙11 are found (Fig.2.6) from curve fitting 𝑆11, 

𝑆21 versus the operating frequency. 𝑆11 and 𝑆21 are found from curve fitting sinusoidal 

waves to the 𝐸𝑧 field along the black dashed lines shown in Fig.2.3. The sampling of 𝐸𝑧 

field is taken from points separated by the lattice constant 𝑎 , in order to avoid the 

oscillations caused by the unit cell function.  

𝜔0, 𝜏, 𝜙11 are obtained with spatial resolution of 0.06𝑎 for the off-resonance 

case (Fig.2.7a) and with spatial resolution of 0.005𝑎 for the on-resonance case (Fig.2.7b). 

These parameters are interpolated into spatial resolution of 0.00001𝑎 to compute the 

gradients required by Eq.2.52. The forces predicted from RTOF&CMT agrees well with 

the MST calculated forces, for both the off-resonance case (Fig.2.7a) and the on-resonance 

case (Fig.2.7b).  
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Figure 2.6: System parameters versus the location of the particle.  

 

Figure 2.7: Forces calculated from response theory combined with coupled mode theory 

agrees well with the forces calculated from Maxwell Stress Tensor. The 

forces are normalized to 1W of incidence power. 

As we have demonstrated that the theoretically predicted forces from RTOF&CMT 

are numerically accurate, we can further analyze the properties of the force fields from 

theoretical approach.  
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 The total forces can be decomposed into the conservative and non-conservative 

components, which have different scaling versus the photon lifetime. Consider the phases 

in the 2 ports without constants 

∠𝑆11 = −𝜙11 − atan[𝜏(𝜔0 − ω)]                 (2.53) 

∠𝑆21 = −atan[𝜏(𝜔0 − ω)]                    (2.54) 

The phases share a common part 

𝜓 = −atan[𝜏(𝜔0 − ω)]                      (2.55) 

Therefore the total forces can be decomposed (Fig.2.8) into a conservative component (𝛁 ×

𝑭𝐶 = 𝟎) associated with the common phase 𝜓, and a non-conservative component (𝛁 ×

𝑭𝑁𝐶 ≠ 𝟎) associated with the difference in the phases, 𝜙11.  

 𝑭 = 𝑭𝐶 + 𝑭𝑁𝐶                            (2.56) 

𝑭𝐶 =
𝐼𝑖𝑛

𝜔
𝛻𝜓                             (2.57) 

𝑭𝑁𝐶 =
𝐼𝑖𝑛

𝜔

𝛻(−𝜙11)

1+𝜏2(𝜔−𝜔0)2
                         (2.58) 

From Fig.2.8 we find the maximum of conservative forces is 500x stronger than the 

maximum of the non-conservative forces. A brief analysis is as follows. The maximum of 

both |𝑭𝐶| and |𝑭𝑁𝐶| are reached when the particle is positioned at 𝜔0(𝒙) = 𝜔. The 

ratio between the maximum is  
max|𝑭𝐶|

max|𝑭𝑁𝐶|
= 𝜏

|∇𝜔0|

|𝛻𝜙11|
                           (2.59) 

Eq. 2.59 indicates at a given frequency, the conservative forces scale up with photon 

lifetime 𝜏 , while the non-conservative forces do not. Therefore by enhancing the 

resonances (i.e. increasing the quality factor), only the conservative force is enhanced, 

which leads to applications such as particle trapping[78].  
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Figure 2.8: Decomposed conservative and non-conservative components of optical 

forces, based on RTOF. The operational frequency is 𝜔 = 0.38 ⋅ 2𝜋𝑐/𝑎. 

The forces are normalized to 1W of incidence power.  

The conservative component in the optical forces is associated with an optical 

potential Φ, where 𝑭𝐶 =
𝐼𝑖𝑛

𝜔
∇𝜓 = −∇Φ, which leads to Φ = −𝜓

𝜔

𝐼𝑖𝑛
. The shape of the 

potential can be adjusted by tuning the operating frequency (Fig.2.9). The wall of the 

potential well is located at 𝜔0(𝒙) = 𝜔. Reducing the operating frequency 𝜔 shrinks the 

area of the potential well without reducing the depth. Only when 𝜔 < min𝜔0 , the 

potential well disappears.  
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Figure 2.9: Based on RTOF, the conservative component of the optical forces is governed 

by an optical potential, which is determined by the common phase response 

𝜓 of the two ports (Eq.2.55). The shape of the optical potential differs for 

different operating frequencies 𝜔. When the particle is located at the 𝜋 

phase jump in 𝜓, the cavity is on resonance, satisfying 𝜔0(𝑥, 𝑦) = 𝜔.  

 As a summary, we have demonstrated a reliable workflow from electromagnetic 

simulation to optical forces characterization. In particular, Response Theory of Optical 

Forces[42] provides intuition in predicting the optical forces, and stays accurate even when 

the forces are enhanced by orders of magnitude on resonance. RTOF will be applied to 

various systems in the following chapters.  
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Chapter 3:  Topologically Protected Photonic Pulling Forces 

3.1 INTRODUCTION 

Photonic pulling force is an unusual phenomenon where a light source attracts 

illuminated objects over a distance significantly greater than a few wavelengths[37]. It is 

unique because none of the well-understood optical forces can be pulling through the entire 

beam: The gradient forces attract dielectric particles to and repel metallic particles away 

from the intensity maxima. The radiation pressure typically pushes objects away from the 

light source. In ordinary optical tweezers, the transportation of particles in arbitrary 

directions requires spatial modulation that tunes the locations of gradient traps[1], where 

the gradient forces have to dominate over the positive radiation pressure for the stability of 

manipulation. However, if we can devise continuous and stable pulling forces over the 

entire range of a gradientless beam, it would allow stable forward and backward 

transportation using a single light source without instantaneous spatial modulation. 

Moreover, if complex trajectories can be configured for the pulling forces, it would further 

improve the flexibility of optical manipulation at micro- and nano- scales.  

Obtaining photonic pulling forces is a challenge from the momentum conservation 

perspective. According to Maxwell’s electromagnetic theory, propagating light carries 

momentum flow in the direction of Poynting vector[44]. When light impinges on a particle, 

reciprocity governs that reflections naturally occur, which leads to positive momentum 

transfer and pushing forces on the particle. In addition, absorption also leads to positive 

momentum transfer and pushing forces. Generally speaking, pulling forces can only be 

achieved by introducing forward scattering (Fig.3.1) that increases the projected photon 

momentum along the axial direction[37], [49]–[60]. Forward scattering is a rare 

phenomenon because it requires special profile of the incident light and special form of 

light-matter interaction.  
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Figure 3.1: (adopted from [49]) Forward scattering that increases the axial photon 

momentum and generates optical pulling forces.   

Early works to realize forward scattering and pulling force are typically limited to 

free space. These includes using large angle incidence such as multiple oblique Gaussian 

beams[50], [51] or a Bessel beam[52]–[60], using interface aided diffraction[79]–[81], and 

using negative radiation pressure localized to part of the cross section in a globally forward 

propagating field[82]. Special particles have also been used to aid the forward scattering, 

such as those with chirality[59], [60], [83] or gain media[84], [85]. Lastly, photophoretic 

effects[86]–[88] can also be applied to generate pulling forces. However, free space pulling 

forces are generally inefficient to launch. Gaussian beams have low efficiency of intensity 

focus. The Bessel beam requires a large source facet and is still subject to diffraction over 

long distance. Forward scattering in free space usually requires the particle to support 

dipole, quadrupole and even higher order interactions in the Mie regime[50]–[57], [59], 

[83], [84]. Despite the complicate setups, the trajectories of the realized pulling force are 

still simple, i.e. straight lines or curves prescribed by an Airy beam[89].  

Unlike in free space, realizing optical pulling force in guided-wave systems offers 

significant benefits: light fields can be tightly confined in the transverse direction to a sub-

wavelength scale to enhance field intensity and to reduce footprint; photonic waveguides 

can be constructed along complex trajectories to facilitate large scale integration, and can 

form beam splitters and interferometer for additional functionalities such as sorting and 

assembly; guided wave systems typically operates in the single-mode or few-mode regime, 
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eliminating the need and cost to synthesize exquisite light fields necessary for pulling 

forces to occur; guided-wave optical pulling forces could have promising applications in 

integrated photonics[90], such as microfluidic channels[91].  

There are several works that have achieved long range pulling forces in guided 

wave systems. For example, people have proposed to use a ring resonator side-coupled to 

a dielectric waveguide [61]. The ring resonator minimizes the reflection, and can scatter a 

mode of smaller momentum into another mode of larger momentum. Momentum 

conservation indicates that the ring-resonator experiences a pulling force. However, this 

approach doesn’t apply to arbitrary particles. Meanwhile, people have proposed to use 

negative index waveguides[24], [25] to get unconventional negative radiation pressure on 

arbitrary particles. For negative index modes, the reflection of photon corresponds to 

forward scattering in k space (Chapter 4.1), which agrees with the negative radiation 

pressure. However, these negative index modes coexist with positive index modes at the 

same frequency. The positive index modes have overlaps in the lateral field distribution 

with the negative index modes and are hard to be removed by dispersion engineering, 

which hinders experimental excitation of the pure negative index mode. In addition, none 

of these guided-wave approaches are compatible with complex trajectory. Can we get more 

robust forward scattering and photonic pulling forces that incorporate both arbitrary 

particles and complex trajectories? 

Recently it had been demonstrated that the propagation of light can be topologically 

protected against back-scattering in photonic crystal systems, even when large structural 

disorders are present along the path [92]–[94]. The topology is associated with quantized 

behavior of the wave functions of bulk photonic crystals on its entire dispersion band, and 

is invariant under continuous deformations [92]. The topology determines the robustness 

of certain edge states on the surface of the bulk crystal, which is inherently invariant under 
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deformations and disorders. One class of such topologically protected light is called 

photonic Chiral Edge States (CESs), also known as photonic one-way modes [17], 

[29](Section 3.1.1). The CES propagates unidirectionally along the edge of a photonic 

crystal that exhibits non-trivial topological phase under broken time reversal symmetry. 

The CES is highly non-reciprocal, because modes along the opposite direction do not exist 

(Fig.3.3a). In particular, the fields can continuously navigate around obstacles (Fig.3.3b) 

and through sharp corners (Fig.3.12), which easily extends to complex trajectories.  

Our work extends the topological protection of light propagation to topological 

protection of photonic forces for the first time. In particular, we exploit the topological 

protection to generate robust photonic pulling forces in guided-wave systems. Because 

CESs (i.e. one-way modes) are protected against reflection, the incident photons in a state 

of smaller wavenumber k must scatter forward into a state of larger k, provided that the 

state of larger k exists, regardless of the properties of the scattering particle, and regardless 

of the trajectories defined by the waveguide. The forward scattering leads to topologically 

protected photonic pulling forces. Based on this idea, we demonstrate pulling forces in a 

one-way waveguide supporting two one-way modes that have different wavenumbers 

(Section 3.2). The pulling forces exhibit robustness against particles with arbitrary shapes, 

sizes, permittivity, clusters of particles and sharp corners, and is scalable for different 

wavelengths (Section 3.4).  

One need to be careful when predicting the scattering forces in periodic system, 

such as the photonic crystal that we use for realizing CESs. In free space, the relation 

between forward scattering and pulling forces were based on linear momentum 

conservation. However, in photonic crystal waveguides, the definition of linear momentum 

is more complicated due to the periodic nature of the wave function and the momentum 

conservation only predicts the sum of forces on the scatterer and forces distributed to the 
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near field (e.g. the photonic crystal rods), but not the individual force on each object 

(Chapter 5). Moreover, a periodic system processes a periodic Bloch band diagram, which 

posts ambiguity on the direction of scattering. To address these challenges, we use response 

theory (RTOF)[42] to isolate the forces on the scatterer from the forces distributed to the 

near field. We also combine RTOF with the perturbation method to establish consistency 

between pulling forces on a particle inside the photonic crystal waveguide and forward 

scattering on the Bloch band diagram, for the first time in a periodic system which is 

required to support CESs (Section 3.3). More specifically, responses theory indicates that 

pulling forces arise from negative gradient in the phase response (Section 3.3.1), where we 

find that the responses are uniquely determined by the Bloch k and the unit cell function 

(Section 3.3.2). Combining the Bloch k and unit cell function, we provide an unambiguous 

identification of Bloch modes in the k space on the periodic Bloch band diagram, where 

forward scattering agrees with the negative gradient in the phase response and pulling 

forces (Section 3.3.2). We also studied the spatial symmetry of the responses, which largely 

simplified the analysis of forces (Section 3.3.3).  

In addition, we propose another scheme where we use the absorption on a lossy 

particle to generate pulling forces in a single-mode one-way waveguide, which is also 

based on the forward scattering in k space and is supported by the response theory analysis 

(Section 3.6).  

Part of this work has been published at the Conference on Lasers and Electro-

Optics[95].  

3.1.1 Topologically Protected Light Propagation 

Topological photonics have been extensively studied over the past decade [92], 

[94], inspired by topological insulators that were first discovered in electron systems. A 
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topological insulator is insulating in the bulk, while conductive on the edge, with robust 

conductivity that is insensitive to a broad range of impurities or disorders[96]. The 

robustness of the edge states arise from the robustness of the topological invariants of the 

bulk, which stay constant under continuous deformations and can only change abruptly 

when the bulk frequency gaps close and reopen[97], [98]. Since deformation of the edge 

does not modify the properties of the bulk, the properties of edge states are preserved.   

In photonics crystals, by establishing nontrivial topological orders in the bulk band 

structures, topologically protected robust transport of edge states have been realized. For 

example, by introducing Quantum Hall (QH) phase that is characterized by non-zero Chern 

numbers of the bulk bands, one can realize unidirectional transport of chiral edge states 

(CES) [17], [29]. On the other hand, by introducing Quantum Spin Hall (QSH) phase 

characterized by non-zero Z2 indices of the bulk bands, one can realize unidirectional 

transport spin-polarized edge states[34], [99]. However, the QSH system does not protect 

against backscattering on special defects that flips the spin. Therefore we choose to use the 

QH system with CES.  

The CES is predicted by an analogy between a time-reversal symmetry breaking 

photonic crystal and an electronic system exhibiting the integer quantum Hall effect [17], 

[29]. In this analogy, the electromagnetic fields play the part of the electronic current, the 

variations of permittivity and permeability within the photonic crystal play the part of the 

periodic potential and the gradients of the gyrotropic components of the permeability tensor 

play the part of the external DC magnetic field that breaks the time-reversal symmetry. The 

direction of the external DC magnetic field determines the CES’s direction of propagation.  

There is a bulk-edge correspondence that determines the existence and propagation 

direction of the CES[97]. Each bulk band is associated with a topological invariant, called 
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the Chern number, which characterizes the winding number of the phase of the Bloch wave 

functions around the first Brillouin Zone. The Chern number of the nth photonic band is  

𝐶𝑛 =
1

2𝜋𝑖
∫ 𝑑2𝑘 (

𝜕𝒜𝑦
𝑛𝑛

𝜕𝑘𝑥
−

𝜕𝒜𝑥
𝑛𝑛

𝜕𝑘𝑦
)

𝐵𝑍
                  (3.1) 

𝓐𝑛𝑛′
(𝑘) ≡ 〈𝑬𝑛𝑘|∇𝑘|𝑬𝑛′𝑘〉                     (3.2) 

where BZ refers to the 1st Brillouin zone, 〈⋅〉 denotes an integral over the unit cell in the 

format of 〈𝑬1|𝑬2〉 = ∫𝑑2𝑟𝝐(𝒓)𝑬1
∗ ⋅ 𝑬2 . The Chern numbers are very robust against 

structural perturbations[100], but can be exchanged in integer numbers between the bulk 

bands by closing and reopening bulk frequency gaps [97]. The value and sign of Chern 

number being exchanged between the neighboring bulk bands correspond to the number 

and direction of CES that would emerge in the bulk bandgap.  

CES have been demonstrated in both theoretical work[29] and microwave 

experiment[17]. In reference[17], [29] , the bulk photonic crystal is composed of magneto-

optical material (yttrium iron garnet (YIG)), arranged in 2D square lattice (insets in 

Fig.3.2). Without external magnetic field, the material has diagonal permittivity and 

permeability tensor. All the TM bulk bands in Fig.3.2a have zero Chern numbers. When a 

DC magnetic field is applied in the +z (out-of-plane) direction, the permeability becomes 

an asymmetric tensor with 𝜇12 = −𝜇21 ∈ 𝕀 , which lifts the degeneracies (Fig.3.2a) 

between the 2nd, 3rd, and 4th bulk bands, resulting in a band structure as shown in Fig.3.2b. 

Upon the abrupt change (i.e. lifting of the degeneracies), Chern numbers are exchanged 

between the bulk bands: The 2nd and 3rd bands exchange a Chern number of -1, the 3rd and 

4th bands exchange a Chern number of 1. The resultant Chern numbers are 1, -2, 1 for the 

2nd, 3rd, and 4th bulk bands respectively. According to the bulk-edge correspondence[97], 

along the edge of the photonic crystal, there exist one CES propagating in the clockwise 

direction in the bandgap of the 2nd and 3rd bulk band, and one CES propagating in the 
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counter-clockwise direction in the bandgap of the 3rd and 4th bulk band. The dispersion 

relation of the CES in the bandgap between the 2nd and 3rd bulk band is shown in Fig.3.3a, 

and the field profile of its unidirectional propagation is shown in Fig.3.3b. The CES 

navigates around a PEC obstacle inserted perpendicular to its path, demonstrating the 

robustness of topological protection.  

The direction of DC magnetic field determines the direction of propagation for the 

CES. If the DC magnetic field is applied in –z direction, the exchanged Chern numbers 

would take opposite sign, the resultant Chern numbers would be -1, 2, -1 for the 2nd, 3rd, 

and 4th bulk bands respectively. The CES in the bandgap between the 2nd and 3rd bulk band 

would propagate in counter-clockwise direction.  

 

 

Figure 3.2: (adopted from [29]). Construction of a MO photonic crystal supporting one-

way edge modes. The crystal consists of a square lattice of YIG rods (inset 

in (b), with 𝜖 = 15𝜖0 and 𝑟 = 0.11𝑎) in air. (a) Band diagram with zero 

dc magnetic field (𝝁 = 𝑑𝑖𝑎𝑔([1 1 1]𝜇0)). The relevant quadratic 

degeneracy point is indicated. (b) Band diagram with a 1600 Gauss +z dc 

magnetic field (𝝁 = [
14 12.4𝑖 0

−12.4𝑖 14 0
0 0 1

] 𝜇0). The degeneracies are lifted, 

resulting in the given nonzero Chern numbers (red numbers).  
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Figure 3.3: Topologically protected chiral edge state (CES) (reproduced from [17]) (a) 

Dispersion relation of the CES (orange curve) between the 2nd and 3rd bulk 

band (grey belts). (b) Field distribution illustrating how the CES wraps 

around a large obstacle made of PEC wall. The photonic crystal consists of a 

square lattice of rods made of magneto-optical materials, with 𝜖 = 15𝜖0 

and 𝑟 = 0.11𝑎 in air. A DC magnetic field is applied in the z direction, 

leading to the permeability 𝝁 = [
14 12.4𝑖 0

−12.4𝑖 14 0
0 0 1

] 𝜇0. 

3.2 PULLING FORCES FROM MULTI-MODE SCATTERING 

We demonstrate topologically protected pulling forces from forward scattering 

between two chiral edge states. One CES propagating clock-wise had been realized in the 

2nd TM band-gap, along the edge of the photonic crystal composed of magneto-optical 

(yttrium iron garnet (YIG)) rods in 2D square lattice, under external +z DC magnetic field 

[17], [101] (Section 3.1.1). We interface two such photonic crystals with opposite DC 

magnetic field to create a line defect (domain wall) with two chiral edge states traveling 

along the same direction, according to the bulk-edge correspondence [97], [100]. The size 

of the defect is 1.5𝑎, which measures the center-to-center distance between the rows of 

rods at the interface. Incidentally, the opposite magnetization also sets up a mirror 

symmetry along the center line of the waveguide[102], and the two chiral edge states can 

be classified into an even mode and an odd mode (Fig.3.4b). Both modes flow 
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unidirectionally from the left to the right, with distinct Bloch k throughout the bandgap 

(Fig.3.4c).  

At frequency 𝑓 = 0.54𝑐/𝑎, the odd mode has the smaller Bloch k, and is used for 

excitation6. The incident odd mode (Mode1) is scattered by a round particle (𝑟 = 0.15𝑎, 

𝜖𝑟 = 13), partially into the even mode (Mode2). The spatial beating between the odd and 

the even modes are evident downstream from the particle (Fig.3.4b). Photonic forces on 

the particle (Fig.3.4d) calculated from integrating the Maxwell stress tensor (MST) in first-

principle finite-element simulations exhibit negative axial components over the entire 

waveguide cross-section. Two thin polytetrafluoroethylene barriers ( 𝜖𝑟 = 2.1 , 

width=0.05𝑎) adjacent to the crystals define the range of motion for the particle, which is 

slightly narrower than the width of the waveguide because of the finite radius of the 

particle. Considering the longitudinal translational symmetry of the crystal, the negative 

photonic forces seen in Fig.3.4d can be mapped to the entire length of the waveguide, 

suggesting such topologically protected one-way waveguides can sustain photonic pulling 

forces over long distances. 

 

                                                 
6 See the reason of this choice in Section 3.3. 
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Figure 3.4: Photonic pulling forces in a waveguide with two one-way chiral edge states. 

(a) Schematic of a particle scattering the incident light (in Mode 1) partly 

into Mode 2, and experiencing an optical force (black arrow). The power 

and momentum of Mode 1 (orange) and Mode 2 (blue) are represented by 

the width and length of the arrows. (b) Calculated field distribution (Ez) of a 

particle (𝑟 = 0.15𝑎, 𝜖𝑟 = 13) in a one-way waveguide formed between two 

gyrotropic photonic crystals. The upper crystal and the lower crystal are 

magnetized along -z and +z directions respectively. The defect size is 

d=1.5𝑎 by measuring the center to center distance between the rods at the 

interface. A current source (black line) excites the odd mode at frequency 

𝑓 = 0.54𝑐/𝑎. (c) Projected band diagram of the propagating even (blue) and 

odd (orange) chiral edge states. Black dots indicate the operational 

frequency used in b. (d) Calculated photonic forces experienced by the 

particle in the waveguide with respect to the center of the particle. The axial 

components of the forces consistently points towards the left. All possible 

center locations of the particle is shown as the dashed rectangle in b. 

3.3 RESPONSE THEORY ANALYSIS 

3.3.1 Relating the Responses to Pulling Forces 

Robust photonic pulling forces in topological one-way waveguide can be 

conceptually understood from the conservation of linear momentum: for a waveguide with 
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two and only two distinct (non-degenerate) propagating modes, both unidirectional in the 

same direction, a particle scattering light from the mode with the smaller linear momentum 

to the mode with the greater linear momentum should experience a pulling force (Fig.1A). 

Since backward propagating modes do not exist, back-scattering and the associated 

pushing forces are completely suppressed. Neglecting the absorption loss of the particle 

for simplicity, the magnitude of the pulling force is determined by the difference in the 

linear momentum of the two modes, and the power being scattered between the two. To 

maintain a pulling force on the particle, the waveguide simply needs to be excited in a way 

to ensure the particle is illuminate mostly by the mode with the smaller momentum. 

However, topologically protected one-way modes exist only in periodic media, 

which leads to two main difficulties in the analysis above. Firstly, the linear momentum of 

a Bloch mode in periodic media is not conserved, varying in value at different observation 

planes[38], [39]. In other words, for a Bloch mode 𝒖(𝒓) ⋅ 𝑒𝑖𝒌⋅𝒓, the Bloch wavevector k 

alone does not completely determine the linear momentum of the mode, since the unit cell 

function 𝒖(𝒓)  can vary rapidly in space and contribute significantly to the linear 

momentum. Secondly, a scattering particle can generate substantial near fields in a periodic 

medium, which distribute the scattering force from the change in photon momentum to the 

periodic medium itself. For example, in a photonic crystal waveguide, rods adjacent to a 

scatterer also experience large photonic forces (Fig.3.5), and the forces on the particle can 

be smaller or even in the opposite direction.  
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Figure 3.5: Numerically calculated photonic forces on the rods and the particle, at 𝑓 =
0.54𝑐/𝑎. Regions with large positive and negative Ez fields (instantaneous 

distribution) is shown as the red and blue shaded areas. 

These challenges can be resolved elegantly using the response theory of optical 

forces (RTOF)[42], [43], an energetic treatment for lossless systems under adiabatic 

changes, to find the conditions for photonic pulling forces in periodic media. Rather than 

relying on linear momentum, RTOF relates photonic forces to the optical powers and the 

change in phases of the scattered waves, allowing us to use band diagrams to predict the 

direction and amplitude of the optical forces on the particle itself. Later we will 

demonstrate agreement between the forward scattering in k space and the pulling forces 

(Section 3.3.2). For now, we just show how RTOF predicts the forces, using the responses 

measured from the full wave studies.  

In the waveguide supporting two one-way modes, the force on the particle 

(scatterer) can be calculated by summing the product between the power and the phase 

gradient with respect to the displacement of the particle for each mode,  

𝐹𝑥(𝑥, 𝑦) =
𝐼1(𝑥,𝑦)

𝜔

𝜕𝜙1(𝑥,𝑦)

𝜕𝑥
+

𝐼2(𝑥,𝑦)

𝜔

𝜕𝜙2(𝑥,𝑦)

𝜕𝑥
                  (3.3) 

Here, 𝜔 is the angular frequency of the incident light. 𝐼𝑛 and 𝜙𝑛 are the power and the 

phase responses of the 𝑛-th outgoing mode respectively. Both 𝐼𝑛 and 𝜙𝑛 are functions 

of the particle’s location (𝑥, 𝑦). Assuming the incoming light is from Mode 1, the first 

term represents the forces related to the optical power that remains in Mode 1, while the 

second term represents the contribution from the scattering into Mode 2. Consider the 
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contribution from the responses in Mode 1. The translational symmetry of the Bloch modes 

requires that 𝜙1 restore its value after a displacement of the lattice constant 𝑎. As a result, 

𝜕𝜙1(𝑥,𝑦)

𝜕𝑥
, as well as the associated forces oscillate between positive and negative. The 

contribution from the response in Mode 2 determines the overall direction of forces. The 

averaged force over an axial downstream displacement of lattice constant a is determined 

by the change in 𝜙2 

Δ𝜙2(Δ𝑥 = 𝑎) = (𝑘1 − 𝑘2)𝑎 + 𝑚 ⋅ 2𝜋                  (3.4) 

where (𝑘1 − 𝑘2)𝑎 accounts for the change in phase associated with the Bloch k, 𝑚 ⋅ 2𝜋 

is determined by the unit cell functions, and vanishes when the unit cell functions have a 

constant phase in the axial direction (see Section 3.3.2). In the event of a positive 𝑚 

emerge from a unit cell function with large phase gradient, the sign of Δ𝜙2(Δ𝑥 = 𝑎) can 

become positive, which leads to a pushing force. However, the optical pulling forces can 

be restored by using Mode 2 for excitation, reversing the role of Mode 1 and 2.  

In order to calculate the optical forces from response theory, we extract the 

complex-valued amplitudes of the two output modes (𝑎𝑒 and 𝑎𝑜) from an overlap integral 

between the eigenmode and the output fields over a longitudinal unit cell including the 

cladding. For example, the amplitude of the odd mode is  

𝑎𝑜 = 𝑣𝑔𝑜/2 ⋅ ∫ 𝜖 ⋅ 𝐸𝑧
(o)∗ ⋅ 𝐸𝑧 𝑑𝑆                    (3.5) 

where 𝐸𝑧
(𝑜)

 is the electric fields of the odd eigenmode calculated from an eigen-solver; 

𝐸𝑧 is electric fields from the full-wave study, taken from a unit cell at a fixed location 

downstream from the particle (the output reference plane). Normalized by the incident 

power, the power response of the output odd mode is  

𝐼𝑜𝑑𝑑 =
|𝑎𝑜|2

|𝑎𝑜|2+|𝑎𝑒|2
                          (3.6) 

and the phase response is  

𝜙𝑜𝑑𝑑 = ∠𝑎𝑜                            (3.7) 
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The forces calculated using RTOF is identical to the forces calculated from 

Maxwell stress tensors, in both the axial and transverse direction (Figs.3.6a, 3.6b). Along 

an axial path (green line in Fig.3.4d), the axial component of the force 𝐹𝑥 (Fig.3.6a) is 

negative, which is due to the consistent negative slope of the phase response 𝜙2 (Fig.3.6e) 

accompanied by large power 𝐼2  (Fig.3.6c) of the even mode. 𝜙2  is the sum of three 

terms: (1) the phase delay from the source to the particle in Mode 1, (2) the phase delay 

from the particle to the output plane in Mode 2, (3) and the phase delay associated the near 

fields around the particle. For the displacement of a lattice constant 𝑎, term (3) has no 

contribution due to the periodicity, the contribution from term (1) and (2) corresponds to 

Eq.3.4. In this case, we find Δ𝜙2(Δ𝑥 = 𝑎) = (𝑘1 − 𝑘2)𝑎 and 𝑚 = 0, which indicate the 

unit cell function did not modify the direction of scattering. Δ𝜙2(Δ𝑥 = 𝑎) determines the 

base-line negative force from forward scattering. With 𝑚 = 0, a large difference between 

𝑘1 and 𝑘2 is conductive to set up a large negative slope for the phase response, which 

serves as a large base-line negative force. Now let’s consider term (3) for displacements in 

the range of (0, 𝑎). For small particles, near-field contribution to the phase is generally not 

large enough to change the overall phase response of the even mode (Fig.3.6e).  

Now let’s revisit the contribution from the responses in Mode 1. In this setup, due 

to the spatial symmetry (Section 3.3.3), both 𝐼1 and 𝜙1 are symmetric with respect to 

𝑥 = 0. Therefore Mode 1 contribute to 0 axial forces on average. However, the periodic 

fluctuation in 𝜙1  from the near fields does call for a large base-line negative force 

provided by Mode 2 to maintain an overall pulling force. In this case, the remaining power 

in the odd mode is kept at minimum, particularly near the regions where 𝜕𝜙1/𝜕𝑥 is large 

and positive, e.g. near 𝑥 = −0.24𝑎 in Fig.3.6c, 3.6e, thereby keeping the direction of the 

total force unaffected.  
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As seen in Fig.3.4b, the transverse forces 𝐹𝑦  point towards the center of the 

waveguide. RTOF analysis (Fig.3.6d, 3.6f) suggests that the direction of 𝐹𝑦 is largely a 

result of the phase peak near the plane 𝑦 = 0 for both even and odd modes. Note that the 

RTOF analysis above for a single unit cell applies to the entire waveguide, thanks to the 

translational symmetry of the waveguide.  

 

 

Figure 3.6: Photonic pulling forces analyzed by the response theory. (a) Calculated axial 

component 𝐹𝑥 and (b) transverse component 𝐹𝑦 of photonic forces on the 

particle in the waveguide described in Fig.3.4. Results from the Maxwell 

stress tensor (red curves) agree very well with the prediction from the 

response theory (black dots). 𝐹𝑥 is evaluated along an axial segment 

(y=0.2a, shown as a green line in Fig.3.4d), and 𝐹𝑦 is evaluated along a 

transverse segment (x=0.3𝑎, the cyan line in Fig.3.4d). Light enters the 

waveguide entirely in the odd mode, and is partially scattered into the even 

mode, with (c,d) normalized power and (e,f) phase responses as functions of 

the particle displacement.  
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3.3.2 Responses in Periodic Guided Wave System 

For the periodic media being used here, we need to consider the contribution of the 

unit cell function (𝑚 ⋅ 2𝜋 in Eq.3.4) to the phase responses. For a Bloch mode, the Bloch 

k alone does not completely determine the wavenumber of the mode, since the unit cell 

function can vary rapidly in space and contribute significantly to the wavenumber. This 

raises the ambiguity of whether the scattering follows 𝑘1 → 𝑘2, or 𝑘1 → 𝑘2 − 2𝜋/𝑎, or 

𝑘1 +
2𝜋

𝑎
→ 𝑘2, etc. Perturbation theory allows us to identify the authentic wavenumbers of 

Bloch modes in extended Brillouin Zone. As a result, forward scattering can be determined 

unambiguously by identifying the Bloch modes in k space, and will be consistent with the 

negative gradient in the phase response.  

 We use perturbation theory to explain the underlying mechanism of the responses 

in the power and phase responses. This way, the contributions from the Bloch k and unit 

cell functions will be uncovered. In the perturbative regime, the amplitude of scattering 

from Mode 1 to Mode 2 follows an overlap integral 𝑆21 = ⟨𝑓(𝑀𝑜𝑑𝑒2)|𝛥𝜖|𝑓(𝑀𝑜𝑑𝑒1)⟩ [103],  

where 𝑓 is the wave function of the eigen mode, 𝛥𝜖 is the perturbation introduced by the 

scatterer. The physical picture is: Mode 1 (the input) introduces a current density on the 

scatterer, which in turn excites Mode 2. Because the perturbation is localized on the 

particle, the integration only needs to be taken over the volume of the scatterer (i.e. the 

particle). As the particle moves, we can find the power response 𝐼2(𝑥, 𝑦) = |𝑆21|
2 as well 

as the phase response 𝜙2(𝑥, 𝑦) = ∠𝑆21.  

Here’s a demonstration of the perturbation treatment in prediction of the responses 

using a small particle of radius r = 0.05a , and permittivity 𝜖𝑟 = 13 . With TM 

polarization, the Eigen wave function is reduced to the scalar out-of-plane electric field 𝐸𝑧 

(Fig.3.7a,b). Let Mode 1 (the input) be the odd mode, Mode 2 be the even mode. The phase 

response of the even mode becomes 𝜙𝑒𝑣𝑒𝑛 = ∠⟨𝐸𝑧
(𝑒𝑣𝑒𝑛)

|𝛥𝜖|𝐸𝑧
(𝑜𝑑𝑑)

⟩ . Assuming the 
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particle (located at (𝑥, 𝑦)) is small enough, the overlap integral over the volume of the 

particle reduces to an integration over a delta function at (𝑥, 𝑦). Thus 𝜙𝑒𝑣𝑒𝑛 simplifies to 

∠𝐸𝑧
(𝑜𝑑𝑑)(𝑥, 𝑦) − ∠𝐸𝑧

(𝑒𝑣𝑒𝑛)
(𝑥, 𝑦) . Tracing along the axial direction (dashed lines in 

Fig.3.7a,b), 𝜙𝑒𝑣𝑒𝑛  has a negative slope (Fig.3.7d), being consistent with the negative 

slope in ∠𝐸𝑧
(𝑜𝑑𝑑)

 and the positive slope in ∠𝐸𝑧
(𝑒𝑣𝑒𝑛)

. The prediction of 𝜙𝑒𝑣𝑒𝑛  from 

perturbation theory agrees well with first principle calculation (Fig.3.7d). The slight 

discrepancy is due to ignoring the higher order perturbations and the near field. Particularly 

for the displacement of 𝑎 , the phase shift Δ𝜙even  is exactly (𝑘odd − 𝑘even)𝑎  (with 

𝑚 = 0 ). Similarly, the power responses follow 𝐼𝑒𝑣𝑒𝑛(𝑥) = |𝑆21|
2 ∝ |𝐸𝑧

(𝑜𝑑𝑑)
|
2

⋅

|𝐸𝑧
(𝑒𝑣𝑒𝑛)

|
2

. In this case, |𝐸𝑧
(𝑜𝑑𝑑)

| is relatively uniform along the axial direction (Fig.3.7a), 

so larger |𝐸𝑧
(𝑒𝑣𝑒𝑛)

| (Fig.3.7a) corresponds to larger 𝐼𝑒𝑣𝑒𝑛 (Fig.3.7c). 

 

 

Figure 3.7: Prediction of responses from mode profiles. (a) Amplitude |Ez| of the eigen 

modes. (b) Phase angle ∠𝐸𝑧 of the eigen modes. (c) Power responses of the 

outgoing modes versus the particle’s axial location from first principle 

calculation at y=0.35a (dashed lines in a,b). (d) Phase responses of the 

outgoing modes versus the particle’s axial location from first principle 

calculation (solid line) and from perturbation theory (dashed line) at 

y=0.35a. The defect size is d=1.3a, frequency f=0.545c/a. 
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As the field distributions of the eigen modes are employed to determine the power 

and phase responses, the break down to the contributions from the Bloch k and the unit cell 

functions becomes clear. According to Bloch theory, the 𝐸𝑧 field of the eigen mode is 

expressed as 𝐸𝑧(𝑥, 𝑦) = 𝑒𝑖⋅𝑘𝑥⋅𝑥𝑢(𝑥, 𝑦), where 𝑢(𝑥, 𝑦) is the unit cell function, which 

may carry a multiple of 2𝜋/𝑎 wavenumbers in addition to the Bloch k (upper right panel 

in Fig.3.8a). Among the many Fourier components embedded in the unit cell function, the 

dominating component determines its contribution to the authentic wavenumber, where the 

authentic wavenumber ultimately determines the scattering pathway and is reflected in the 

overall phase responses. The authentic wavenumber including the contribution from the 

unit cell function can be written as 𝑘𝑥 + 𝑛 ⋅
2𝜋

𝑎
, where 𝑘𝑥 ∈ [−

𝜋

𝑎
,
𝜋

𝑎
] is the Block k. 𝑛 is 

the index of the major Fourier component in the unit cell function. After examining the 

unit cell functions of the entire waveguide band, we find the even mode has 𝑛 = 1 for 

𝑘𝑥 < 0, and 𝑛 = 0 for 𝑘𝑥 > 0; while the odd mode has 𝑛 = 0 for the entire band. The 

authentic wavenumbers are identified along the orange and blue curves in Fig.3.8b. This 

fact is verified as well for the wilder waveguide (𝑑 = 1.5𝑎) used in Fig.3.4. Therefore the 

odd mode is located on the left for the entire bandgap, incidence of the odd mode 

guarantees forward scattering and pulling forces. In particular, at the operational frequency 

𝑓 = 0.54𝑐/𝑎 in Fig.3.4, the contributions from both the unit cell functions are 0, which 

agrees with the phase responses in Fig.3.7e.  

It’s worth noting that the scattering pathway is completely determined by the 

locations of authentic wavenumbers, rather than choosing the closest pair in the 𝑘 space 

from the periodic band diagram. This point is demonstrated as in Fig.3.8 we have reduced 

the width of waveguide by 0.2𝑎 from the one used in Fig.3.4, so that the distance between 

the authentic wavenumbers of the two modes exceed 𝜋/𝑎 (half size of a Brillouin zone) 

for a broader range of frequencies (Fig.3.8b). The incident odd mode is still scattered to 
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the authentic wavenumber of the even mode on the right (blue line) rather than to the closer 

brunch on the left (grey line).  

 

 

Figure 3.8: Scattering in k-space as determined by unit cell functions. (a) Phase angle of 

the unit cell functions ∠𝑢, for the odd and even modes at two frequencies: 

0.545𝑐/𝑎 and 0.575𝑐/𝑎. Sharp transition in phase from 𝜋 to −𝜋 (from 

yellow to blue) along an axial path is physically continuous. The integer 

multiple 𝑛 of 2π increment in ∠𝑢 over one lattice constant in the center 

waveguide region reveals the multiple of 2𝜋/𝑎 that need to be added to the 

Bloch k in the 1st BZ to get the authentic wavenumbers. It’s found that n=1 

for the even mode with 𝑘 < 0 (e.g. at f=0.575𝑐/𝑎) and 𝑛 = 0 otherwise. 

(b) Projected band diagram in extended Brillouin zones. Orange and blue 

curves represent where the authentic wavenumbers are identified. The four 

black circles correspond to modes illustrated in (a). Arrows indicate the 

scattering pathway. The defect size is 𝑑 = 1.3𝑎. 

3.3.3 Symmetries in the Responses 

For a round particle, the power and phase responses of Mode1 (the input) as a 

function of the particle’s displacement are symmetric with respect to the mirror plane at 

the center of a unit cell (purple line at 𝑥 = 0 in Fig.3.9a). As a result, Mode 1 contributes 

a zero axial force, when averaged over one unit cell. Thus the average axial force on the 

particle is entirely determined by the responses of Mode 2. This symmetry is not incidental, 
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and can be rigorously proven from a two-step symmetry operation, with the complex 

amplitude of the transmitted waves unchanged in each step. Here we show that the 

transmitted power 𝐼1 and phase 𝜙1 of Mode 1 are identical in two systems (Fig.3.9c and 

3.9e) where a round particle is situated at same distance from the mirror plane (purple line). 

In all systems, Mode 1 denotes the odd mode (the input).  

The first step relates System 1 (Fig.3.9c) to System 2 (Fig.3.9d) with an operation 

usually used in the proof of the reciprocity theorem: swapping the source and monitor 

points. The reversal of DC magnetic field, i.e. transposing the permeability tensor, recovers 

the conclusion of the Lorentz reciprocity theorem between the two systems: 
 𝐽𝑧

(1)

𝐸𝑧
(1) =

𝐽𝑧
(2)

𝐸𝑧
(2). In 

system 1, the current source 𝐽𝑧
(1)

 is located at point A, and the electric field 𝐸𝑧
(1)

 is 

detected at Point B. While in System 2 the current source 𝐽𝑧
(2)

 is located at point B, and 

the electric field 𝐸𝑧
(2)

 is detected at Point A. Point A and B are on nodal planes of the even 

mode (stars in Fig.3.9a,b), so that only the odd mode is excited and detected. The output 

amplitudes of the odd mode are identical for system 1 and 2, which translate to 𝐼1
(1)

= 𝐼1
(2)

 

and 𝜙1
(1)

= 𝜙1
(2)

.  

The second step is a reflection operation with respect to the mirror plane at x=0 that 

relates System 2 (Fig.3.9d) to System 3(Fig.3.9e). The operation again reverses the sign of 

the DC magnetic field 𝐵𝑧  and transposes the permeability tensor. The operation also 

reverses the sign of the x-coordinate, and the signs of the field components 𝐸𝑥, 𝐻𝑦, 𝐻𝑧. 

In particular we have 𝐽𝑧
(2)(𝑥, 𝑦) = 𝐽𝑧

(3)
(−𝑥, 𝑦)  and 𝐸𝑧

(2)(𝑥, 𝑦) = 𝐸𝑧
(3)

(−𝑥, 𝑦) . The 

symmetry leads to  
 𝐽𝑧

(2)

𝐸𝑧
(2) =

𝐽𝑧
(3)

𝐸𝑧
(3), with the current source 𝐽𝑧

(2)
 located at Point B, the electric 

field 𝐸𝑧
(2)

 detected at Point A in system 2, and vice versa for System 3. Therefore the 

output amplitudes are identical for system 2 and 3, which translate to 𝐼1
(2)

= 𝐼1
(3)

 and 

𝜙1
(2)

= 𝜙1
(3)

.  
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Combining the two steps, we find that the transmitted power as well as the phase 

in System 1 and System 3 for Mode 1 are identical.  

 

 

Figure 3.9: Symmetry operations that relate the amplitudes of the scattered light for two 

mirror-symmetric locations of the particle. (a) Schematics of the structure 

with the particle at its original location (black disk) and the mirror-reflected 

location (gray dashed circle) with respect to 𝑥 = 0. (b) Log scale |𝐸𝑧|
2 

distribution of the even and odd eigenmodes to identify their nodal planes. A 

point source (star next to A) and 𝐸𝑧 monitor point (star next to B) are 

placed on the nodal planes of the even mode, to excite and detect only the 

odd mode. The operations are conducted in two steps, from (c) the original 

system to (d) its reciprocal pair, and subsequently to (e) the system after a 

mirror operation. The gray disk represents the particle, and the yellow disks 

represent the gyromagnetic rods forming the waveguide. “+” and “-“ signs 

indicate the direction of the DC magnetization along z direction.  

3.4 ROBUSTNESS OF THE PULLING FORCES 

3.4.1 Pulling a Particle of Arbitrary Size and Permittivity 

Since the conditions leading to negative photonic forces in chiral edge states are 

topologically protected, a wide range of particles (including metallic particles) can be 

accommodated beyond the small particle limit discussed above, as shown in Fig.3.10. For 

a subwavelength particle, its scattering cross-section and in turn the magnitude of the 
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negative photonic forces, depend more on its dielectric constant and size, and less on its 

shape. Therefore, under the same incident power, larger particles with large dielectric 

constants generally experience stronger pulling forces than smaller particles. In all 

combinations of 𝑟  and 𝜖𝑟  covered in Fig.3.10, waveguide regions with negative 

photonic forces are always contiguous. Small pockets of positive photonic force start to 

appear near the edge of a waveguide, when the particle is large enough to form Mie 

resonances with the ferrite rod in the crystal. However, these pockets are not contiguous 

for the parameter space shown in Fig.3.10. In addition, scatterers with dielectric constants 

smaller than that of the waveguide, e.g. an air bubble in a high-index liquid, could also 

produce negative photonic forces, since the forward scattering condition is independent of 

the properties of the scatterer.  

 

 

Figure 3.10: Average axial photonic forces 𝐹𝑥 for a variety of particle sizes and 

dielectric compositions. 𝐹𝑥 is averaged over all areas inside the waveguide, 

for a circular dielectric/metallic (𝜇𝑟 = 1) particle with various combination 

of relative permittivity 𝜖𝑟 and radius 𝑟.  

3.4.2 Pulling a Cluster of Particles 

The topological protection is robust against any defect that preserves the photonic 

crystal cladding, which translates to an even wider range of targets for photonic pulling 
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forces. For example, a cluster of three free particles (𝜖𝑟 = 13, 𝑟 = 0.05𝑎) initially placed 

within one lattice constant is shown through numerical simulation to be simultaneously 

pulled in the one-way waveguide (Fig.3.11). As the particles depart from their initial 

position, they rearrange into a stable formation that allows them to be pulled towards the 

source in tandem at roughly the same velocity. The stable axial distance between the 

particles is consistent with the spatial beating frequency between the two modes. Note that 

the last particle is pushed downstream initially due to near-field interactions, but reverts its 

course to be pulled upstream shortly after when the particles become separated at the stable 

formation. Although downstream particles are no longer illuminated by the pure odd mode, 

the total photonic forces experienced by all three particles as a whole is similar to that of a 

single particle, that scatters the incident odd mode into the even mode. The total forces 

move the center of mass of the particle cluster to the left, and eventually the entire cluster 

will settle at the most upstream location, given enough time.  

The trajectories of the three particles are simulated from the equations of motion, 

using the finite difference method (2nd order central-difference time stepping). At each time 

step, EM fields and photonic forces are solved using the current locations of the particles.  
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Figure 3.11: Three identical particles (r=0.05a, ϵr=13) being pulled together towards the 

light source in an air-filled waveguide. (a) |𝐸𝑧|
2 distribution after the 

particles have reached a stable formation, 744 seconds post-release. (b) 

Time evolution of the x position of the three particles. Dashed line indicates 

the time (744s) at which (a) is captured. The input field is the odd mode at 

f=0.54c/a. input power 101.3W/m. lattice constant 𝑎=40mm.  

For a given terminal velocity of the particle, we determine the commensurate input 

power levels by recognizing that a steady state is reached when the photonic pulling force 

is balanced by the viscous drag force of the surrounding medium. An input power 𝑃𝑏 

generates an average photonic pulling force 𝐹𝑏 = 𝑡 ⋅ 𝑃𝑏 ⋅ 𝐹𝑥(𝑟, 𝜖) , where the system 

thickness7 𝑡 along the z direction is taken as 0.1a. The power-normalized average axial 

photonic force 𝐹𝑥  (𝑟, 𝜖𝑟) is a function of particle radius 𝑟 and relative permittivity 𝜖𝑟, 

as shown in Fig.2.8. For small particles with low Reynold’s numbers [104], the drag force 

is determined by the Stokes law 𝐹𝑑 = −𝑡 ⋅ 3𝜋𝜇 ⋅ 𝑣, where 𝑣 is the terminal velocity8. The 

corresponding input power is 𝑃𝑏 = 3𝜇𝜋𝑣/𝐹𝑥(𝑟, 𝜖𝑟).  

For a single particle (r=0.05a, 𝜖𝑟=13), it experiences an average axial photonic 

force 𝐹𝑥 of ─0.16nN/W (Fig.3.10). The lattice constant 𝑎 is taken as 40mm9. In an air-

                                                 
7 An effective 2D system can be formed between conductive metals[17].  
8 In 3D, the stokes drag forces is 𝐹𝑑,3𝐷 = −𝑐𝑑𝑟𝑎𝑔−3𝐷 ⋅ 𝑣, where 𝑐𝑑𝑟𝑎𝑔−3𝐷 =

18𝜇

𝜌𝑝𝑑𝑝
2 𝑚𝑝 = 6𝜇𝜋𝑟𝑝. Here in 

the 2D system, we are using a coefficient that is normalized by the size of the 3D particle in the 3rd 

dimension 𝑐𝑑𝑟𝑎𝑔−2𝐷 = 𝑐𝑑𝑟𝑎𝑔−3𝐷
1[𝑚]

2𝑟𝑝
= 3𝜇𝜋, therefore 𝐹𝑑,2𝐷 = −𝑡 ⋅ 𝑐𝑑𝑟𝑎𝑔−2𝐷 ⋅ 𝑣.  

9 This setting is inherent from the first experimental demonstration of the chiral edge states[17], operated 

with microwave. Later in Section 3.4.4 we will perform a scaling analysis versus the dimension and 
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filled waveguide, with a dynamic viscosity 𝜇  of 1.837 × 10−5Pa∙s at 20°C, a single 

particle can reach the terminal velocity of 0.0046a⋅s-1, at an input power of  𝑃𝑏 = 202.5 

[W/m]. For the three-particle complex, however, the near field interaction between the 

three and the final lateral positioning turn out requiring less input power. As they travel, 

the three particles form a stable complex and are individually settled near the edge of the 

waveguide, where the axial photonic forces (Fig.3.4d) are roughly twice the value of the 

overall average forces shown in Fig.3.10. As a result, the actual power used in simulation 

to reach the terminal velocity of 0.0046a⋅s-1 is reduced to 𝑃𝑏=101.3W/m. 

3.4.3 Pulling a Particle Through a Waveguide Bend 

Waveguides have the advantage over free-space optics as being compatible with 

low-loss and wavelength-scale bends and junctions[105], [106] that enable complex circuit 

topology, allowing the pulling forces to be routed in nontrivial configurations. For 

example, a right-angle bend for the dual-mode one-way waveguide completely preserves 

the incident mode profile, when the radius of a ferrite rod (pointed by an arrow in Fig.3.12a) 

is reduced from 0.11𝑎 to 0.071𝑎. Preserving the incident odd mode is crucial to maintain 

the pulling forces on the particle before it enters and after it exits the bend (Fig.3.12b). The 

open structure of the bend introduces no resonance, and thus no trapping forces, as shown 

in Fig.3.12b, preventing the particle from being stuck. The calculated forces take into 

account that the electromagnetic fields are significantly modified by the particle 

displacement. The passage of the particle through the bend, irrespective of its initial 

transverse location, is numerically confirmed over a broad bandwidth of 0.1(𝑐/𝑎).  

We simulated the trajectories of a single particle (𝑟 = 0.15𝑎, 𝜖 = 13𝜖0) being 

pulled through the waveguide bend, from many different initial positions (Fig.3.13). First, 

                                                 
viscosity, to accommodate the operation at optical frequency and in a microfluidic system.  
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a series of electromagnetic full-wave simulations were performed to map out the 

distribution of optical forces as a function of all possible particle locations in the waveguide 

bend. Then, we solve the equations of motion10 to obtain the trajectories of particles 

starting from different initial positions. As seen in Fig.3.13, irrespective of the initial 

position, all trajectories reach the upper left end of the waveguide, indicating that the 

particle passes through the bend. The color of the trajectories represents the magnitude of 

velocity. For a terminal velocity of 0.0014𝑎/𝑠 and a lattice constant of 40mm, the input 

power calculated from 𝑃𝑏 = 𝐹𝑑/(𝐹𝑥(𝑟, 𝜖) ⋅ 𝑡) is 16.2W/m. Here the averaged axial force 

𝐹𝑥(𝑟, 𝜖) is found to be ─1.4nN/W from Fig.3.10, and Schiller and Naumann viscous force 

model is used[104] to take into account the larger particle size and the larger Reynold's 

number. Although the particle’s trajectory varies with respect to the input power, we have 

numerically verified that a ±20% change in the input power does not change the conclusion.  

 

                                                 
10 COMSOL Particle Tracing Module is used here. The force field is solved beforehand using COMSOL 

RF Module and imported into the Particle Tracing Module. 
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Figure 3.12: Photonic pulling force through a waveguide bend. (a) Calculated Ez field 

pattern of an odd mode passing through a 90º bend at frequency 𝑓 =
0.54𝑐/𝑎. The size of a ferrite rod (indicated by the black arrow) is reduced 

to 𝑟 = 0.071𝑎, to keep the odd mode throughout the bend. (b) Calculated 

photonic forces on a circular particle (𝑟 = 0.15𝑎, 𝜖 = 13) over the region 

indicated by the gray dashed rectangle in a.  
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Figure 3.13: Single particle (r=0.15a, ϵ=13) being pulled through a waveguide bend from 

various initial locations (air filled). (a) Calculated 𝐸𝑧 field distribution in 

the absence of the particle. The input field is the odd mode at frequency 

f=0.54𝑐/𝑎. (b) Calculated particle trajectories from various initial locations 

at the lower right corner with the same initial velocity of 0.0014𝑎/𝑠. Colors 

indicate the magnitude of the velocity |v|. 

3.4.4 Scaling Analysis for Optical Manipulation  

The dynamics in Section 3.4.2 and Section 3.4.3 are simulated for the operational 

frequency of 4GHz, corresponding to a lattice constant of 40mm, following the first 

experimental work that observes the chiral edge state[17]. Because the magnitude of optical 

forces are proportional to the input power, but not to the wavelength, we need a large power 

to get the large absolute velocity to match the large system size. Even at the power level of 

100W/m, the particle’s relative velocities with respect to the lattice constant are still small 

(Fig.3.11, Fig.3.13). However, at optical frequencies, our system would allow a 

significantly larger relative velocity with a much smaller absolute power.  

We include a brief scaling analysis on the particle’s velocity and input power, for 

the lattice constant and the viscosity typically found in microfluidic systems. To keep the 

trajectories unchanged, we maintain the same relative velocity (in the unit of 𝑎/𝑠), such 
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that the three particles still travel in that the same stable formation (Fig.3.11) and the single 

particle still passes through the bend smoothly (Fig.3.13).  

A reduction of the lattice constant 𝑎 by a factor of 10 while keeping the relative 

velocity the same causes the absolute velocity to be reduced by a factor of 10, which in 

turn reduces the drag force 𝐹𝑑 by a factor of 10. Therefore only 1/10 of the input power 

per unit thickness 𝑃𝑏 (in the unit of W/m) is needed to overcome the drag force at the 

terminal velocity. Taking into account that the thickness 𝑡 of the system will also be 

reduced by a factor of 10, the resultant absolute input power is reduced by a factor of 100.  

On the other hand, if the viscosity is reduced from 𝜇 to 𝜇′, we need to increase 

the time to 𝑡′ = 𝜇/𝜇′ ⋅ 𝑡, reduce the velocity to 𝑑𝑟/𝑑𝑡′, and reduce the optical force to 

𝐹𝑏′ = (𝜇′/𝜇)2 ⋅ 𝐹𝑏 , in order to keep the equation of motion 𝑚 ⋅ 𝑑2𝑟/𝑑𝑡2 = 𝐹𝑏 − 𝐶𝜇 ⋅

𝑑𝑟/𝑑𝑡 unchanged. For example, with a reduction in 𝜇 by a factor of 10, maintaining the 

original trajectory requires us to reduce the absolute velocity by a factor of 10, and reduce 

the drag force, the photonic force and the input power by a factor of 100.  

Combining the two scaling relations, we can estimate the terminal velocity and 

input power for pulling the cluster of three particles (Fig.3.11) at optical frequency in a 

microfluidic system. Keeping the equation of motion unchanged, replacing the viscous 

medium of air (𝜇 = 1.8 × 10−5Pa⋅s at 20°C) with water (𝜇 = 10−3Pa⋅s at 20°C) requires 

increasing the terminal velocity to 0.25 𝑎/𝑠  and increasing the input power to 3 ×

105W/m. However, this increase is offset by the reduction associated with the smaller 

lattice constant at optical frequency. For example, for the operational wavelength of 

633nm, the lattice constant would be reduced from 40mm to 342nm to keep the relative 

velocity at 0.25𝑎/𝑠, accordingly the input power would be reduced to 0.09𝜇𝑊 (assuming 

the thickness in the z direction is 0.1𝑎 ). We note that, strong non-reciprocity for 
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topological protections at optical frequency may be achieved using novel magneto-optical 

materials or spatial-temporal index modulations[107].  

3.5 DISCUSSION 

In a lossless setup, the forward scattering from a mode with smaller wavenumber 

to a mode with larger wavenumber requires at least two one-way modes. Structures 

supporting multiple one-way modes can similarly exhibit photonic pulling forces, as long 

as we choose the mode with the smallest wavenumber as input. Examples include 

gyromagnetic photonic crystals with large Chern number[108], and multi-mode 

nonreciprocal surface plasmons situated between a photonic crystal and a metal under a 

static magnetic field[109].  

Large structural disorders upstream from the particle may reduce the photonic 

pulling forces, because disorders can scatter light into modes with large Bloch k before 

reaching the particle. Though this problem can be compensated in principle by an 

excitation field with both eigenmodes components and deliberately-chosen phase lag such 

that the scattering from the disorder results in a pure low-k mode.  

Our demonstrations so far was based on a lossless assumption. However, 

substantial absorption loss is usually associated with such systems, and must be taken into 

account. Absorption from the waveguide mainly attenuates the power of the propagating 

modes, with little impact on the scattering process, particularly when the loss is small. 

Absorption from the particle generally reduces the magnitude of pulling force, as the power 

being scattered into the mode of larger k is substituted by absorption on the particle. 

However, the absorption on the particle can as well contribute to pulling forces as long as 

the incident mode has a negative wavenumber. In Section 3.6 we will demonstrate pulling 

forces in a single-mode one-way waveguide, on a lossy particle.  
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In the response theory analysis, both the intensity and phase of mode 1 (𝐼1, 𝜙1) 

exhibit mirror symmetry with respect to 𝑥 = 0, which renders zero contribution from 

Mode 1 to the average axial forces. Here we note that such symmetry stems from the mirror 

symmetry of the circular particle (Section 2.5). For particles with less symmetry, 𝐼1(𝑥) 

and 𝜙1(𝑥) can be asymmetric, which may render nonzero, possibly positive contribution 

to the average axial force. However, as long as the system is resonance free, 𝐼1 and 𝜙1 

should still be periodic, therefore the net contribution from Mode 1 will not dominate over 

Mode 2, particularly when the particle is a small perturbation to the waveguide. Our system 

also has a mirror symmetry with respect to the plane y=0. However, such y-symmetry is 

not required for a system to have two one-way modes with very different propagation 

constants. A waveguide without y-symmetry can still generate pulling forces, for example, 

waveguide bend does not have y-symmetry.  

The structures discussed here can be scaled down proportionally in dimension to 

operate at optical wavelengths[110]. In practice, visible light is commonly used to 

manipulate submicron objects, which have a favorable force to mass ratio[111], [112]. To 

operate at 633nm, the lattice constant needs to be reduced to 342nm, and one needs strong 

magneto-optical material[109], [113], or time reversal engineering. Through scaling we 

can apply the general principle of pulling force to sub-micron scale. For a given power, 

density, fluidic environment, and electromagnetic properties, the terminal velocity is 

inversely proportional to the square of the lattice constant 𝑎. Therefore in the visible light 

regime (e.g. 633nm wavelength), significant pulling velocity of 0.25𝑎/𝑠 requires only 

0.09μW of optical power (from section 3.4.4).  



 66 

3.6 PULLING FORCES FROM ABSORPTION 

In Section 3.2-3.4 we have demonstrated optical pulling force from forward 

scattering between 2 one-way modes of different propagation constants. Here we show that 

with a single one-way mode, pulling forces are still realizable, as long as we can introduce 

a port with negative slope in the phase responses. With a single one-way mode, topological 

protection guarantees the transmitted light do not contribute to net axial forces. The port 

with negative slope in the phase responses must be something else. Lossy particle serves 

as an extra port, which processes negative slope in the phase responses, when the incident 

wave has negative propagation constant. In other words, the lossy particle brings the 

propagation constant of the absorbed photon to zero, which is equivalent to forward 

scattering in k space when the incoming light has negative k. Therefore, the lossy particle 

experiences a pulling force.  

We still use RTOF for the analysis of forces. RTOF was originally developed for 

lossless system. To apply RTOF on our lossy system, we treat the loss as effective ports 

coupled to an energy reservoir, so we effectively have a larger lossless system. Similar 

approaches are well known in a quantum system with loss, where its non-Hermitian 

Hamiltonian and the associated non-orthogonal bases can be turned into a Hermitian 

Hamiltonian and orthogonal bases, when one incorporates the hidden degrees of freedoms 

associated with the loss. For particles far smaller enough for electrostatic approximation, 

it is sufficient to describe the absorption on the particle as a single effective port, because 

the phase and amplitude of the electric field in the volume of the particle is a constant under 

first order perturbation. Therefore, in a single mode one-way waveguide, when the 

absorption on the particle is taken into account, two output ports contribute to the overall 

optical forces (Fig.3.14a),  

𝐹𝑥 =
𝐼𝑡𝑟

𝜔

𝜕𝜙(𝑡𝑟)

𝜕𝑥
+

𝐼𝑎𝑏

𝜔

𝜕𝜙(𝑒𝑖𝑔𝑒𝑛)

𝜕𝑥
                       (3.8) 
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The first term represent the conventional output port (transmission) of the one-way mode, 

and the second term describe the force from the power absorbed by the particle. We note 

that due to the translation symmetry of the crystal and the zero phase gradient of unit cell 

function, the transmission do not contribute to the axial force on average. The absorption, 

however, produces a net axial force. First-order perturbation theory yields the power and 

the phase responses of the absorption port  

𝐼𝑎𝑏(𝑥𝑝) =
1

2
∫ 𝐼𝑚(𝜖𝑝)|𝐸𝑧|

2𝑑𝑥′𝑑𝑦′
𝑠𝑝

                   (3.9) 

𝜙(𝑒𝑖𝑔𝑒𝑛)(𝑥𝑝) = ∠𝐸𝑧(𝑥𝑝) = ∠𝑢(𝑥𝑝) + 𝑘𝑥 ⋅ 𝑥𝑝              (3.10) 

where 𝑥𝑝 is the axial location of the particle, the integration in Eq.3.9 is taken over the 

volume of the particle in 2D, 𝐸𝑧 is the electric field, 𝑢 is the unit cell function, 𝑘𝑥 is the 

Block k in the axial direction. If the unit cell function has negligible phase gradient and if 

the phase response in the transmission port 𝜙(𝑡𝑟𝑎𝑛𝑠) also has negligible gradient (in the 

weakly-scattering regime), the axial force will be dominated by 
𝐼𝑎𝑏

𝜔
⋅ 𝑘𝑥  according to 

Eq.3.8&Eq.3.10. The direction of forces will be dictated by the sign of the Bloch k.  

Same as in Section 3.2-3.4, the photonic crystal is formed by a square lattice of 

ferrite rods polarized by a DC magnetic field (Fig.3.14b) (𝜖11 = 𝜖22 = 𝜖33 = 15.0𝜖0 , 

𝜇11 = 𝜇22 = 𝜇33 = 14.0𝜇0, 𝜇12 = −𝜇21 = −12.4𝑖 ⋅ 𝜇0). The chiral edge state we use is 

located in the 2nd TM bandgap (Fig.3.14c). Being a non-reciprocal single mode in the 

entire bandgap, the mode is robust to scattering of defects, particles or waveguide bends. 

A PEC wall is placed close to the domain wall to confine the mode profile. The dispersion 

relation of the edge mode can be tuned by changing the width of the waveguide, so that 

negative Bloch k dominates the frequencies in the bandgap. Here we choose a width of 

0.7a from the PEC wall to the center of the closest row of rods. We get negative Bloch k 

from 0.525c/a to 0.555c/a, while positive Bloch k from 0.555c/a to 0.575c/a. The 

waveguide is designed such that the unit cell function has a vanishing phase gradient along 
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the axial direction in the waveguide-core region (Fig.3.14d). As we use a weakly-scattering 

particle (𝜖 = 2 + 0.5𝑖), the force is largely determined by the absorption port 
𝐼𝑎𝑏

𝜔
⋅ 𝑘𝑥 . 

Negative Block k yields optical pulling forces and vice versa.  

 

 

Figure 3.14: (a) Conceptual illustration of optical ports. (b) Electric field of the one-way 

chiral edge state at f=0.555c/a. A particle (gray dot) is placed inside the 

waveguide. (c) Dispersion relation of the one-way mode (orange curve). 

Black dots indicate frequencies of 0.53c/a, 0.555 c/a and 0.57 c/a. (d) Phase 

distribution of the unit cell function of 𝐸𝑧 at f=0.53c/a and f=0.57c/a 

At frequencies associated with negative 𝑘𝑥, the negative optical forces are clearly 

seen in Fig.3.15a. Although only one period is shown, negative forces extends over the 

entire length of the waveguide, thanks to the translational symmetry of the crystal. The 

amplitude of axial optical forces vary in space, but remains negative near the core region 

(y<0.5a) in Fig.3.15a, as the contribution from the 2nd term (absorption) in Eq.3.8 

dominates over the 1st term (transmission). When 𝑘𝑥 is close to 0, half of the waveguide 

area exhibit positive force as seen in Fig.3.15b. When 𝑘𝑥 becomes positive, optical forces 

in most area of the waveguides become positive (Fig.3.15c).  
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The amplitude of the absorption-induced pulling forces is proportional to the power 

of absorption 𝐼𝑎𝑏  according to Eq.3.8, which is a linear function of 𝜖𝑖  according to 

Eq.3.9(Fig.3.15d). For Fig.3.15d we have chosen a point on a symmetry plane (x=0.5a) of 

the unit cell, where the contribution from the 1st term (transmission) vanishes. Strong 

absorption is favored to get a large pulling force.  

 

 

Figure 3.15: (a-c) Vector force fields for a particle (𝑟=0.05a, 𝜖=2+0.5i) in the waveguide 

(corresponding to the gray dashed rectangle in Fig.3.14a), at (a) f=0.53c/a, 

(b) f=0.555c/a and (c) f=0.57c/a. (d) Force amplitude versus 𝜖𝑖 at a fixed 

point (x=0.5a, y=0.41a) marked by the yellow disk in (a), at f=0.53c/a.  

Using RTOF, we numerically separate the contributions to the optical force from 

the transmission port and the absorption port, by evaluating their power and phase 

responses respectively. The responses of the transmission port is calculated from the 

overlap integral between the electric fields at the output and the Eigen electric field over 

an unit cell. The responses of the absorption port is calculated from the overlap integral 

between the polarization current and the Eigen electric field over the volume of the particle. 
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The forces associated with the transmission port average to zero. As shown by the 

solid light colored lines in Fig.3.16a (0.53c/a) and Fig.3.16b (0.57c/a), the force is anti-

symmetric with respect to mirror planes at x=Na and x=(N+1/2)a. Such anti-symmetry in 

the force follows from the symmetry in the power and phase responses, which is a result 

of the symmetry in the shape of the photonic crystal and the particle (Section 2.5).  

The forces associated with the absorption port is nonzero on average (dashed lines 

in Fig.3.16ab). The direction of the average of this force is determined by the sign of 𝑘𝑥. 

The magnitude of the average of this force is determined by the magnitude of 𝑘𝑥. As can 

be seen in Fig.3.16b, from f=0.530c/a to 0.555c/a, 𝑘𝑥 is negative, and the average force 

is found to be negative (dashed lines from red to purple in Fig.3.16a). The greatest force 

amplitude coincide with the largest value of |𝑘𝑥| at f=0.53c/a. When 𝑘𝑥 is positive for 

frequencies from 0.555c/a to 0.570c/a (Fig.3.16b), the average force is positive (dashed 

lines from purple to blue in Fig.3.16b). The positive average force is not very large as |𝑘𝑥| 

is not very large. In part of the unit cell, pushing forces from the transmission port are 

inevitable, suggesting that it is important to operate with large negative 𝑘𝑥 to produce a 

sufficiently large negative force from the absorption port, resulting in an overall negative 

force. We find excellent agreement between the response theory and the Maxwell stress 

tensor method (Fig.3.16).    

The competition between the pushing forces from the transmission and the pulling 

forces from the absorption indicates that optical pulling forces are difficult to realize for 

strongly-scattering particles. For example, a metallic particle ( 𝜖 = -10+0.5i) scatters 

strongly, as illustrated by the near-fields expelled from the particle (Fig.3.16c, right inset). 

The strong scattering causes large oscillation in the forces. Thus pockets of positive force 

persists even for large negative 𝑘𝑥 at 0.53c/a (line with gray dots in Fig.3.16c). Similarly, 

pockets of negative forces persist even for positive 𝑘𝑥 at 0.57c/a (line with gray dots in 
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Fig.3.16d). On the other hand, for dielectric particles with strong absorption and little 

scattering (𝜖 = 2+0.5i) (Fig.3.16c, middle inset), large negative forces dominates when 

𝑘𝑥  is large and negative (line with black dots in Fig.3.16c). An intermediate case is a 

dielectric particle with less absorption and slightly more scattering ( 𝜖 = 10+0.5i) 

(Fig.3.16c, left inset), the pulling force dominates over oscillation but is not very large, due 

to the low absorption (line with white dots in Fig.3.16c). Thus, strong absorption is 

beneficial to maintain an overall negative force, especially for strong scatterers.  

 

 

Figure 3.16: Axial optical force as a particle (𝑟=0.05a) is traveling along the line at 

y=0.4a, calculated using both MST (dots) and RTOF (curves). (a,b) 

Separate contributions from the transmission port (light colored solid curve) 

and the absorption port (light colored dashed curve) to the axial forces, at 

frequencies of (a) f=0.53c/a, (b) f=0.57c/a. The dashed lines in (b) represent 

the contribution from the absorption port for 5 interpolated frequencies from 

0.53(red) to 0.57(blue). The particle has permittivity of 10+0.5i. (c,d) Axial 

optical force at frequencies of (c) f=0.53c/a and (d) f=0.57c/a for particles 

of permittivity 10 + 0.5𝑖 (black dots), 2 + 0.5𝑖 (white dots) and −10 +
0.5𝑖 (gray dots). Inset shows the electrical fields attracted (left), barely 

perturbed (middle), and repulsed (right) by the particle of permittivity 

10+0.5i, 2+0.5i and -10+0.5i respectively. Agreements between RTOF 

(curves) and MST (dots) method are shown.  
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The single-mode chiral edge state is topologically protected against scattering loss 

when it encounters particles, defects, or waveguide bends. Therefore complex routes of 

pulling force can be configured with such guided wave. However, the width of the 

waveguide should be carefully chosen, as the dispersion relation is determined by the width 

of the waveguide. It is beneficial to maintain a range of frequency with large negative 𝑘𝑥.  

Although strong absorption produces large negative force given a negative 𝑘𝑥 , 

optical power is reduced after the absorption. Therefore forces in a cascaded setup will 

decrease for particles downstream. However since the absorption on a single particle is not 

very significant compared to the input (<5% for the particle with parameter r=0.05a, 

𝜖 =10+0.5i), pulling force on multiple particles is still applicable.  

As a summary to this section, we have shown pulling forces can be realized 

completely using optical absorption on the particle itself, when the particle is immersed in 

a modal field with negative wavenumber. A mode of negative wavenumber can be created 

at the edge of a topological non-trivial photonic crystal, i.e. as a chiral edge state. The mode 

is topologically protected against scattering in single-mode regime, so any momentum 

transfer due to scattering is suppressed. Large negative wavenumber, strong absorption and 

weak scattering are beneficial for large overall pulling forces. The pulling forces extend 

throughout the entire length of the waveguide due to translation symmetry.  

3.7 CONCLUDING REMARKS 

In conclusion, we have theoretically proposed and numerically verified the 

topologically protected photonic pulling forces using chiral edge states. We found the key 

to pulling forces is forward scattering in the space of wavenumber k, which can be realized 

either using multi-mode scattering on a lossless particle or using absorption on a lossy 

particle (Fig.3.17). Based on response theory of optical forces and perturbation treatment, 
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we found the forces are determined by the Bloch wave vectors and unit cell functions of 

the chiral edge states. The pulling forces are robust to the particle’s dielectric property, 

shape, and size. We have also demonstrated the photonic pulling forces over an assembly 

of particles, and through a waveguide bend.  

 

 

Figure 3.17: Schematics of topologically protected forward scattering in a multi-mode 

waveguide on a lossless particle (upper panel) and in a single-mode 

waveguide on a lossy particle (lower panel) 

The aforementioned versatilities are unique only to certain topologically protected 

structures. In particular, we have chosen to use a topologically protected edge state that 

emulates the Integer Quantum Hall effect[109]. The breaking of time reversal symmetry 

ensures no mode is available for reflection. Therefore an arbitrary defect (arbitrary particle) 

is allowed. On the other hand, there exist topologically protect edge states that emulate 

Quantum Spin Hall Effect (QSHE). The spin degree of freedom can be synthesized by 

linear combination of TE and TM modes with ±90°  relative phases [33], [34]. The 

propagation of opposite spin state is topologically protected in the opposite direction. In 

the QSHE system, arbitrary particles may flip the spin of the incoming light, which leads 

to topologically protected reflection. Therefore the QSHE system does not protect against 

reflection on arbitrary particles and is not suitable for realizing photonic pulling forces.  
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Chapter 4:  Optical Pulling Forces Using Single-mode Backward 

Waves 

4.1 INTRODUCTION 

In Chapter 3, we demonstrated photonic pulling forces in one-way waveguides 

using the topologically protected forward scattering. The pulling forces are long range, 

being robust to arbitrary particles, defects, and are compatible with complex routes. We 

note that the realization of one-way modes requires strong non-reciprocity (i.e. breaking 

the time reversal symmetry). In Chapter 3, we have used magneto-optical materials for this 

purpose. However, magneto-optical materials have far weaker responses at optical 

frequencies than their counterpart in microwave regime[114]. To be compatible with 

integrated photonics [90] and microfluidic channels[91] that typically have feature sizes 

comparable with optical wavelength, we need to seek for strong non-reciprocity at optical 

frequencies. One may use spatial-temporal index modulation to introduce strong non-

reciprocity [107] and in turn create topologically protected one-way modes[32] in 

integrated photonics at optical frequency. However, the modulation also introduces extra 

complexity to the device. It would be a great simplification if one can realize the pulling 

forces in reciprocal system, i.e., using two-way modes.  

People have proposed to use backward waves (i.e. negative index waves)[23]–[25] 

to obtain optical pulling forces in reciprocal systems. Backward-wave is a special photonic 

mode which has its propagation constant opposite to its group velocity (𝑘 < 0 for 𝑣𝑔 >

0 ). Using backward waves, reflection becomes a good feature which corresponds to 

forward scattering in k space (Fig.4.1) and can generate robust pulling forces.  
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Figure 4.1: Schematics of forward scattering in a backward-wave waveguide on a lossless 

particle  

In fact, we have already encountered a backward-wave in Section3.6, namely, the 

one-way mode with negative wavenumber k, but it is operated at microwave frequency. At 

optical frequencies, guided backward-wave pulling forces have been proposed in reciprocal 

systems such as dielectric waveguide arrays [24] and birefringence waveguides [25]. 

However, in both references [24], [25] the backward wave coexist with many forward 

waves at the same frequency. Such multi-mode systems post challenges for experimental 

realizations: (1) In order to excite the backward wave alone, the light source/current source 

need to have a spatial configuration that is orthogonal to all the forward waves. (2) 

Disorders due to imperfect fabrication can scatter the excited backward wave into forward 

waves along the propagation. Whereas single mode backward wave offers great benefits: 

(1) The excited wave would be a pure backward wave irrespective of the configuration of 

the source. (2) The backward waves could be reflected by disorders due to reciprocity, but 

those propagating forward are not contaminated.  

Photonic crystals provide rich degrees of freedom to tune the dispersion relations 

to achieve backward waves [23], [41], [115], meanwhile having low absorption loss. 

However, the backward waves reported in references [23], [41], [115] were found in bulk 

photonic crystals, which lacks lateral confinements and cannot be guided through complex 

routes. Moreover, backward-wave modes in bulk photonic crystals coexist with other 

modes on one or more equal-frequency contours in the band structure[110], which are 

inherently not single-mode.  
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We seek to find single-mode backwards waves in reciprocal system, operating at 

optical frequencies, and also having the flexibility to be guided through complex routes. 

Photonic crystal defect waveguide is the ideal choice because defect waveguide mode can 

be engineered into a single mode in the bandgap of the bulk modes. In the meantime, we 

can exploit the periodic spatial modulation of a photonic crystal to construct backward 

waves.  

In this chapter, we propose the first realization of single-mode backward waves 

using the photonic crystal defect waveguide (Section 4.2), to generate optical pulling forces 

in a reciprocal system. Reflection of backward waves corresponds to forward scattering in 

k-space and pulling forces (Section 4.3), which is confirmed by both MST and response 

theory (Section 4.3.1). Particles inside the waveguide can be traced towards the light source 

through a stable trajectory, using a small optical power (Section 4.3.2). Similar to Chapter 

3, the periodic system introduces Bloch modes that need to be carefully identified in the k 

space with the information of both Bloch k and unit cell function. We give an example of 

aliased backward wave with similar dispersion relation but is essentially a forward wave 

that only generates pushing forces (Section 4.4).  

This work has been published at the Conference on Lasers and Electro-Optics[116].  

4.2 SINGLE-MODE BACKWARD WAVES IN PHOTONIC CRYSTAL DEFECT WAVEGUIDE 

We use a 2D photonic crystal defect waveguide with modified rods (Fig. 4.2a,d) to 

create the single-mode backward-wave (Fig.4.2b). The backward-wave has its Bloch k 

opposite to the group velocity. For this structure, the unit cell function did not contribute 

to modify the wavenumber k (detailed in Section 4.3.1).  

Two rows of rods in the photonic crystal defect waveguide (Fig. 4.2a) are modified 

to ensure single-mode operation. A backward-wave defect mode is found in the 2nd TM 
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bandgap of the bulk photonic crystal, using a defect of width 𝑑 = 1.5𝑎  (Fig.4.2a). 

However, the simple defect waveguide structure also introduces a forward wave which 

covers the entire frequency range of the backward wave. In other words, the dispersion 

relation of the defect mode fails to maintain a negative slope throughout the positive half 

of the Brillouin zone: positive slope appears for the region of 𝑘𝑥 > 0.35(2𝜋/𝑎), and 

eventually the dispersion relation of the defect mode rises into the upper bulk band of the 

cladding (Fig.4.2b). The coexistence of the forward-wave mode raises possibility for 

pushing forces to be unintentionally introduced as described in the introduction. To avoid 

this issue, a modified structure is designed to pull down the frequencies of the defect mode 

in the region of  𝑘𝑥 > 0.35(2𝜋/𝑎) to a much lower value such that the defect mode is 

forced into the lower bulk band near the Brillouin zone boundary (Fig.4.2b). In the 

meantime, we make sure that no additional defect modes are pulled from the upper bulk 

band. Therefore we can obtain a single-mode backward wave.  

It is well known in perturbation theory that adding high-index dielectrics to regions 

of high electric fields of an eigen mode lowers its frequency[14], while adding dielectrics 

to nodal planes of electric fields does not change the mode frequency. Following this 

principle, we noticed the significant difference in the field patterns of the defect modes and 

the modes in the upper bulk band of the cladding in regions near the second row of rods 

(Fig.4.2c). By adding a narrow elliptical tail (0.05x0.2𝑎 ) of dielectric to these rods 

(Fig.4.2d), we achieved the aforementioned modification to the dispersion relation.  
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Figure 4.2: Tailoring the dispersion relation of a photonic crystal line defect for single-

mode operation of backward waves. (a) Line defect created by enlarging the 

distance between two rows of dielectric rods in a 2D photonic crystal. The 

width of the defect is 𝑑 = 1.5𝑎 (b) Calculated dispersion relation of the 

line defect mode corresponding to the structure in panel a (light blue) and 

that of a modified line defect in Fig.4.3a (dark blue). The unmodified line 

defect supports a backward-wave mode for |𝑘𝑥| < 0.35(2𝜋/𝑎) but it is not 

a single-mode. Gray areas represent the projected band diagrams of the bulk 

modes. (c) Calculated electric field distributions of the defect mode and the 

lowest-frequency cladding mode above the bandgap at two k-points: 𝑘𝑥 of 

0.4(2𝜋/𝑎) and 0.45(2𝜋/𝑎) (red dots in panel b), in the region outlined by 

the dashed rectangle in panel a. (d) Detailed structure of the rods in the 

second row (blue circles in panel a) of the modified line defect. A “tail” 

structure is added to generate the dispersion relation shown by the thin blue 

curve in panel b. 

 

4.3 PULLING FORCES FROM REFLECTION OF BACKWARD WAVES 

A silicon particle inside the waveguide (Fig.4.3a) introduces reflection, i.e. the 

incoming backward-wave at negative k point is forward scattered into the positive k point 

(Fig.4.3b). Consequently the particle experiences pulling forces (quiver plot in Fig.4.3h). 

The pulling forces follow the discrete translational symmetry of the periodic system and 

exist over its entire length. The pulling force is valid over 1% bandwidth around the 

operating frequency.  
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Figure 4.3: Backward-wave generating long-range pulling forces. (a) Schematic of the 

waveguide: line defect with a width 𝑑 = 1.5𝑎 along the Γ-X direction in a 

2D square lattice photonic crystal of silicon rods (𝑟 = 0.15𝑎, 𝜖𝑟 = 12.25). 

Curly arrow indicates the incident light. The 2nd row of rods from the center 

are modified with a small ‘appendix’ to ensure single mode operation. (b) 

Dispersion relation (TM-polarization) of the backward-wave mode (blue). 

Gray regions are projected band diagrams of the bulk modes. Arrow 

indicates the scattering pathway. The waveguide is excited with a backward-

wave at 𝑘𝑥 = −0.28 ⋅ 2𝜋/𝑎 and 𝜔 = 0.595 ⋅ 2𝜋𝑐/𝑎. (c) Phase 

distribution of the unit cell function ∠𝑢(𝑥, 𝑦). (d-g) Intensity and phase 

response of the reflection (𝐼11, 𝜙11) and transmission (𝐼21, 𝜙21) with a 

silicon particle (𝑟 = 0.05𝑎, 𝜖𝑟 = 12.25) moving along the dashed lines in 

(c). (h) Vector force field for the particle in the dashed gray box in (a) and 

particle trajectory released from various initial locations (black circles). 

Only one particle is present at any given time. (i) Axial optical forces on the 

particle moving along the dashed lines in (c) 

4.3.1 Response Theory Analysis 

To obtain the power and phase responses of the reflected and transmitted Bloch 

waves from first-principle calculations, we sampled the calculated fields (𝐸𝑧 fields for the 

2D TM mode considered here) at a fixed interval of 𝑎 along the waveguide axial direction. 

The fields are taken sufficiently away from the particle, where the near fields of the particle 

are negligible. The fields are also taken at a finite offset from the waveguide center (𝑦 =

0), which is a nodal plane for the backward-wave mode. The purpose of the periodic 
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sampling is to remove the influence of the unit cell function 𝑢(𝑥, 𝑦), which is periodic in 

x. In the case of the single-mode backward-wave waveguide, sampled fields in the region 

upstream from the particle were fitted to the expression 𝐴0𝑒
𝑖𝑘𝑥⋅𝑥 + 𝐴𝑅𝑒−𝑖𝑘𝑥⋅𝑥, and those 

from the region downstream to the expression 𝐴𝑇𝑒𝑖𝑘𝑥⋅𝑥, which allowed us to extract the 

complex-valued amplitudes of the incoming wave 𝐴0, the reflected wave 𝐴𝑅 , and the 

transmitted wave 𝐴𝑇 . The power responses of the reflected and transmitted waves are 

normalized to that of the incident wave, as 𝐼11 ≡ |𝐴𝑅/𝐴0|
2, 𝐼21 ≡ |𝐴𝑇/𝐴0|

2. The phase 

responses are calculated at fixed reference planes.  

The negative axial forces are verified by the power and phase responses according 

to RTOF (Fig.4.3d,e,f,g,i). The axial optical force is expressed in terms of phase responses 

of the outgoing waves versus the particle’s axial displacement, 𝐹x = 𝐼11(𝑥)/𝜔 ⋅

𝜕𝜙11(𝑥)/ ∂x + 𝐼21(𝑥)/𝜔 ⋅ 𝜕𝜙21(𝑥)/ ∂x, where 𝜔 is the frequency, 𝐼 is the power, 𝜙 

is the phase. Subscript 11 stands for the reflected wave and 21 stands for the transmitted 

wave. The transmitted wave introduces 0 contribution to the average axial force due to the 

symmetry in both 𝐼21 and 𝜙21 (Fig.4.3e,g). The reflected wave plays the key role to 

determine the direction of axial force. The negative slope in 𝜙11 versus displacement 𝑥 

confirmed that the axial force is negative (Fig.4.3f).  

As mentioned in Chapter 3.3, for periodic waveguides, the phase response of a 

Bloch mode is determined by not only the Bloch k but also the unit cell function. Treating 

the particle as a perturbation to the waveguide, we find 𝜙11(𝑥, 𝑦) = 2𝑘𝑥 ⋅ 𝑥 + 2∠𝑢(𝑥, 𝑦), 

where (𝑥, 𝑦) is the location of the particle, 𝑘𝑥 is the Bloch k in the first Brillouin Zone, 

𝑢 = 𝐸𝑧/𝑒
𝑖𝑘𝑥𝑥 is the unit cell function and in this case of TM polarization it is based on the 

out-of-plane electric field 𝐸𝑧. Bloch theorem indicates the phase of the unit cell function 

satisfies ∠𝑢(𝑥 + 𝑎, 𝑦) − ∠𝑢(𝑥, 𝑦) = 2𝜋𝑁, where 𝑁 is an integer. 
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For the backward-wave in Fig.4.3, we find 𝑁 = 0 in the line defect (Fig.4.3c), thus 

∠𝑢 is not modifying the overall negative slope (2𝑘𝑥 = −1.12𝜋/𝑎) in 𝜙11 but only brings 

some spatial variations to the slope (Fig.4.3f). As the particle moves by one lattice constant, 

the change in 𝜙11  amounts to 2𝑘𝑥𝑎 = −1.12𝜋 . Therefore the pulling force from 

backward wave is concrete.  

4.3.2 Lateral Stability and Optical Power for the Pulling Forces 

To allow a particle to be pulled continuously throughout the waveguide, especially 

in the photonic crystal structure with open cladding, it is necessary for the optical force 

field to provide lateral stability. The force field (Fig.4.3h) in the pulling-force-generating 

waveguide exhibits excellent lateral stability, as confirmed by particle tracing calculations 

(Fig.4.3h) for a particle being released from varies initial positions. A finite-difference 

time-domain solver is used to solve the equation of motion for the particle under both the 

optical forces and the viscous forces in a 3D system extrapolated from the 2D simulation. 

Such extrapolation is experimentally realizable by truncating a 2D photonic crystal in the 

3rd dimension with conductive surfaces[29], [117]. In the extrapolated 3D system with an 

out-of-plane thickness 𝑡 (typically 0.1𝑎), for a given input optical power I (in the unit of 

W/m), the optical force is 𝑡 ⋅ 𝐼 ⋅ 𝑭, where 𝑭 is the power-normalized optical force from 

the 2D finite element calculations in the unit of N/W. The viscous force for a particle with 

velocity 𝒗 under the Stokes’ law[104] is first normalized using the diameter of the particle 

in the out-of-plane direction to yield −3𝜋𝜇𝒗, then multiplied by the thickness 𝑡. Here the 

viscosity 𝜇 is taken as 1.837 × 10−5Pa∙s for air at 20°𝐶. Remarkably, all trajectories 

converge to a common path within one lattice constant from the initial release, as long as 

the initial velocity is not too large (< 1𝑎/𝑠). The stable trajectory has a lateral (y) offset 

from the waveguide center and is confined between y=0.17𝑎 and y=0.42𝑎, with a mirror 
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image in the lower half of the waveguide, as the mode satisfies an odd symmetry laterally 

(Fig.4.3c). The quick convergence suggests that a steady state is rapidly reached, in which 

the optical force is balanced by the viscous force: 𝑡 ⋅ 𝐼 ⋅ 𝑭 = 3𝜋𝜇𝑡𝒗 , allowing us to 

translate the optical force field into a steady-state velocity field of (𝐼/3𝜋𝜇)𝑭 for the 

particle, independent of the initial location of release. Notice that the thickness 𝑡  is 

cancelled when balancing the extrapolated optical forces and viscous forces, and it does 

not change the required power (in unit of W/m) for a steady-state velocity. Operating at the 

wavelength of 1550nm, the required frequency 0.595(c/a) in the band diagram determines 

the lattice constant 𝑎 to be 922nm. With a steady-state velocity around −0.4𝑎 ⋅ 𝑠−1�̂�, the 

required input optical power is 78.6mW/m. Assuming a thickness of 𝑡 = 0.1𝑎 for the 

extrapolated 3D system, the power needed is 0.00725𝜇W.  

4.4 DISTINGUISHING ALIASED BACKWARD WAVES IN PERIODIC STRUCTURE 

There are many occasions when a Bloch mode has a negative Bloch k, while its 

unit cell function carries nonzero phase shifts over one lattice constant. We have already 

encountered such an occasion in the one-way waveguide (Fig.3.8), for the evan mode at 

the frequency of 0.575𝑐/𝑎. In Fig.3.8, the unit cell function of the even mode equivalently 

carries an additional wavenumber of 2𝜋/𝑎 . The total propagation constant becomes 

positive at 𝑘𝑥 + 2𝜋/𝑎 , although the Bloch k 𝑘𝑥  is negative. We call this an aliased 

backward wave.  

Here we show an example of aliased backward wave in two-way waveguide. Not 

surprisingly, it produces pushing force upon reflection. The mode is found in a photonic 

crystal defect waveguide between 45 degree tilted squared lattice of Silicon (Fig.4.4a). The 

dispersion relation follows the blue curve in Fig.4.4b. For clarity of explanation, we have 

plotted two Brillouin Zones. The unit cell function of this mode (Fig.4.4c) has a 2𝜋 phase 
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shift over one lattice constant. Therefore, moving the particle by a lattice constant traces a 

full 2𝜋 shift in the phase of the unit cell function, thus 𝜙11 has an overall change of 

2𝑘𝑥 ⋅ 𝑥 + 4π = 2.6𝜋 , with positive slopes in between (Fig.4.4d). Consequently the 

average axial force is positive (Fig.4.4e).  

As the unit cell function modifies the propagation constant from 𝑘𝑥  to 𝑘𝑥 +

2𝜋/𝑎, the scattering pathway follows the black arrow in Fig.4.4b instead of the gray arrow. 

This scattering pathway is no difference from the reflection of a plane wave, which 

generates pushing forces.  

In other structures, there could be a combination of positive Bloch K and negative 

contribution from the unit cell function, resulting in a backward wave as well[23].  

 

 

Figure 4.4: Aliased backward-wave generating pushing forces. (a) Schematic of the 

waveguide: line defect with a width 𝑑 = (√2 + 1)𝑎/2 along the Γ-M 

direction in a 2D square lattice photonic crystal of silicon rods (𝑟 =
0.0849𝑎, 𝜖𝑟 = 12.25). Curly arrow indicates the incident light. (b) 

Dispersion relation (TM-polarization) of the aliased backward wave (blue) 

for the first 2 Brillouin Zones. Gray arrow: the wrong scattering pathway, 

Black arrow: the correct scattering pathway. The waveguide is excited with 

an aliased backward-wave at 𝑘𝑥 = −0.35 ⋅ 2𝜋/𝑎 and 𝜔 = 0.332 ⋅ 2𝜋𝑐/𝑎. 

(c) Phase distribution of the unit cell function 𝑢(𝑥, 𝑦). (d) Phase response of 

the reflection with a silicon particle (𝑟 = 0.05𝑎, 𝜖𝑟 = 12.25) moving along 

the dashed lines in (c). (i) Axial optical forces on the particle moving along 

the dashed lines in (c) 
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4.5 CONCLUDING REMARKS 

We demonstrated long-range optical pulling forces using backward-waves in 

photonic crystal defect waveguides. The force field supports a stable trajectory irrespective 

of the initial position. Photonic crystal structure has the advantage to allow the tuning of 

dispersion relation to achieve single mode operation, which can largely reduce scattering 

loss and facilitate simple experimental implementations. It also paves the way towards the 

integration of optical pulling forces with microfluidic systems, and potential incorporation 

of complex routing topology such as beam splitters and T-junctions[118]. Moreover, this 

reciprocal system is readily realizable in pure silicon structure, at optical frequencies.  

As pointed in Section 4.4, for periodic systems, negative Bloch k do not guarantee 

a backward-wave. The unit cell function is crucial in distinguishing the aliased backward-

waves. This point is corroborated by an example of aliased backward wave, which only 

generates optical pushing forces.  

It is also useful to point out the limitation of perturbation theory in predicting 

consistent pulling forces in photonic crystals. So far, we have derived the optical forces 

from phase response which relies on the validity of perturbation theory. However, when 

the particles are large enough to cause strong near-field interaction with the photonic 

crystal[119], the perturbation theory is no longer accurate. Instead, deep potential wells 

associated with resonances (sharp phase shifts) may emerge. In this paper, we use silicon 

particles with radii smaller than 0.06𝑎 to stay away from resonances. Alternatively, lower 

index allows larger particles to be tolerated.  
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Chapter 5:  Linear Momentum Flux and Optical Forces in Periodic 

Structure 

5.1 INTRODUCTION 

For predicting the photonic pulling forces on a particle placed inside periodic 

structures (Chapter 3, Chapter 4), we have been using response theory[42], a virtual work 

approach, because we do not know the proper form of linear momentum in periodic system, 

and its relation with photonic forces. In this chapter we explore the way to apply 

momentum conservation in periodic structures, which breaks down to the following 

questions: For the Bloch modes in periodic media, can we define an intrinsic quantity 

relevant to linear momentum and optical forces, and visualize it as a function of frequency, 

just like the photonic band structure which is well known? How does the defined quantity 

relate to the propagation constant in magnitude and sign? Can we use band structure to 

tailor optical forces, e.g. to enhance optical forces at photonic band edge with the near-zero 

group velocity? How to account for the forces distributed over the periodic medium, 

defects, interfaces and reflectors, to arrive at agreement with momentum conservation?  

 Propagating waves carry linear momentum. The conservation of linear momentum 

governs the force/tensor incurred as light encounters an interface of different medium, 

either dielectric or metamaterial, either homogeneous or periodic, either impedance 

matched or mismatched. This topic has been studied in both theoretical [40], [80] and 

experimental [120] works. Mathematically, the law of momentum conservation is 

expressed as[44] 

−∫ 𝒇𝑑Ω
𝑉

+ ∫ 𝑇 ⋅ 𝑑𝑆
𝑆

=
𝑑

𝑑𝑡
∫ 𝒈𝑑Ω
𝑉

                  (5.1) 

where 𝒇  is the force density, being integrated over a defined volume 𝑉 , 𝑇  is the 

electromagnetic stress tensor, being integrated over a surface 𝑆 enclosing the volume (the 

surface normal points outwards), 𝒈 is the density of linear momentum in the volume. 



 86 

There had been a long debate about the correct form for the linear momentum and the 

corresponding electromagnetic stress tensor in photonic media, which is known as the 

Abraham-Minkowski controversy, and is only recently resolved [121], [122]. However, if 

we focus on the steady state solution of the electromagnetic field, which is sufficient to 

treat the optical forces of our interest, Eq.5.1 reduces to  

∫ 𝑇 ⋅ 𝑑𝑆
𝑆

= ∫ 𝒇𝑑Ω
𝑉

                         (5.2) 

Therefore, rather than the linear momentum density 𝒈, the flux of linear momentum 

associated with the propagation of the Bloch mode (𝑇 ⋅ 𝑑𝑆) [44] is more relevant to the 

optical forces in steady state. Momentum flux is a concept closely related to fluid 

mechanics[104] and draws similarities with electromagnetics. It represents how much 

momentum is carried by the fluid or optical field flowing over a unit surface per unit of 

time, in the form of the product of a stress tensor and a surface norm. However, quantifying 

momentum flux and understanding how it behaves upon scattering and reflection in 

periodic structures are quite different from that in homogeneous media. Because the 

periodic structure have inhomogeneous permittivity and permeability, the electromagnetic 

stress tensor, which is expressed in terms of the permittivity and permeability, is also non-

uniform. Whereas a conserved quantity is preferred to describe the property of the medium 

and to facilitate the recognition of momentum conservation. Only in the long wavelength 

limit, one can use effective medium theory to model the effective permittivity and 

permeability and arrive at a uniform momentum flux for the periodic structure[39], [40]. 

However, momentum flux is not yet explored over a broader spectrum in periodic 

structures.  

Our work analyze the linear momentum flux of the Bloch modes in the periodic 

structure, including its underlying composition, spectra, and implications on optical forces. 

We start with defining the momentum flux in terms of a conserved quantity under 
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translational symmetry (Section 5.2). Then, we recognize that the momentum flux can be 

decomposed into contributions from the underlying plane wave components: the 

propagating and evanescent plane waves (Section 5.3), whose contributions are quite 

different. The propagating plane waves always contribute to positive momentum flux in 

the direction of power flow, while the evanescent plane waves can lead to a momentum 

flux negative to the power flow (Section 5.4). By visualizing the momentum flux into 

spectra, we find it exhibits great difference from the spectra of Bloch k (i.e. the dispersion 

relation), in both the magnitude and sign, and it can also diverge near the band edges 

(Section 5.4). At the last, we show how to apply the conservation of momentum flux and 

how the optical forces are distributed in the periodic structure. We also revisit the 

momentum conservation in the setup (see Chapter 3) used to obtain photonic pulling forces 

(Section 5.5).  

5.2 LINEAR MOMENTUM FLUX IN PERIODIC STRUCTURE 

We start by deriving the liner momentum flux carried by Bloch modes in periodic 

media with contiguous areas of free space. For example, in a 2D square lattice of dielectric 

rods, the existence of cross sections of the photonic crystal that are entirely in the free space 

(e.g. the dash line in Fig.5.1a) allows us to define the momentum flux unambiguously from 

the Maxwell Stress Tensor (MST), since in free space the linear momentum is entirely 

carried by the electromagnetic field and the definition of momentum density is not 

controversy[44]. Thanks to the translational symmetry, the evaluated momentum flux is 

invariant for each cross sections placed at integer multiples of the lattice constant apart. 

According to Eq.5.2, momentum flux carried by a mode propagating in the +x direction 

through an x-normal cross section equals to the optical forces applied towards the right 

hand side of the cross section per unit area. Without influencing the field profile or the 
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momentum flux on the left hand side, we can replace the right hand side of the cross section 

with a perfect absorber 11  (Fig.5.1b). Therefore, the definition of momentum flux 

corresponds to the forces applied on a perfect absorber per unit area. Integrating over the 

x-normal cross section, the x-component of the forces and the momentum flux is 

𝐹𝑥 = ∫ 𝑇 ⋅ 𝑑𝑆
𝑆 𝑥

= ∫−𝑇𝑥𝑥 𝑑𝑦𝑑𝑧                   (5.3) 

where 𝑇𝑥𝑥 is the (x,x) element of the Maxwell stress tensor. Normalizing by the power 

𝐼𝑥 , we arrive at a power-normalized linear momentum flux 𝑝𝑥 , which is an intrinsic 

property of a Bloch mode.  

𝑝𝑥 = 𝐹𝑥/𝐼𝑥                            (5.4) 

Notice that the Maxwell stress tensor also indicates the existence of shear forces 

∫−𝑇𝑦𝑥𝑑𝑦𝑑𝑧, ∫−𝑇𝑧𝑥𝑑𝑦𝑑𝑧 that are normal to the 𝑥 direction. The shear terms are out of 

the scope of this work.  

 

 

Figure 5.1: Momentum flux in a periodic medium. (a) Schematic of a 2D photonic crystal 

made of a square lattice of dielectric rods (𝜖𝑟 = 13) in air. The momentum 

flux across a plane entirely in air (dashed line along the y-z direction) is 

determined unambiguously. Red and blue regions represents strong positive 

and negative electric fields 𝐸𝑧 of a TM mode propagating along the x 

direction. (b) The momentum flux across the interface (blue) equals to the 

average radiation pressure experienced by a perfect absorber.  

                                                 
11 Numerically, the perfect absorber can be implemented in the form of a perfect matching layer with 

gradually increasing absorption along the propagation direction, similar to the ramped absorption in 

perfectly-matched layers [72].  
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Taking example of a z-polarized plane wave in free space, expressed as 𝐸𝑧(x, y) =

𝐸0𝑒
𝑖𝑘𝑥𝑥+𝑖𝑘𝑦𝑦−𝑖𝜔𝑡, the power-normalized momentum flux across a y-z plane is  

𝑝𝑥 =

∫
𝜖0

2
𝑘𝑥

2

𝑘0
2 |𝐸𝑧|

2𝑑𝑦𝑑𝑧

∫
1

2𝜇0𝑐
𝑘𝑥

𝑘0
|𝐸𝑧|2𝑑𝑦𝑑𝑧

=
𝑘𝑥

𝑘0
⋅
1

𝑐
 

(5.5) 

where 𝑘𝑥  is the propagation constant in the axial direction, 𝑘0  is the propagation 

constant of plane wave in free space, 𝑐 is the speed of light. For normal incidence, the 

momentum flux of a plane wave reduces to 1/𝑐.  

5.3 PLANE-WAVE DECOMPOSITION 

For a plane wave, we can easily determine its momentum flux from the 

wavenumber (Eq.5.5). A Bloch mode is composed of many plane waves, where each plane 

wave have its own contribution to the momentum flux. Thus, plane wave composition 

uniquely determines the momentum flux of a Bloch mode. We will explore several 

different Bloch modes with their unique plane wave compositions and the associated 

momentum flux in Section 5.4. Here we explain the method for plane wave decomposition, 

to express the momentum flux in terms of the plane wave coefficients.  

Let’s consider the 2D photonic crystal structure as shown in Fig.5.1, but with 

oblique incidence ( 𝐸𝑧  field pattern shown in Fig.5.2a). The TM Bloch mode is 

unambiguously specified by its out-of-plane electrical field distribution 𝐸𝑧. We perform 

the expansion over a cross section at 𝑥 = 𝑥0 in the contiguous air region (could take any 

dashed lines shown in Fig. 5.2a). Bloch theorem provides a hint about the basis for the 

expansion: A Bloch mode with the Bloch k (𝑘𝑥,𝑘𝑦) can be decomposed into a Fourier 

series, represented by a series of 𝑘𝑦,𝑛 separated by the reciprocal lattice constant 
2𝜋

𝑎
.  

𝐸𝑧(𝑦)|𝑥=𝑥0
= 𝑒𝑖𝑘𝑥⋅𝑥0 ⋅ 𝑒𝑖𝑘𝑦⋅𝑥0 ⋅ 𝑢(𝑥0, 𝑦) 
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= 𝑒𝑖𝑘𝑥⋅𝑥0 ⋅ 𝑒𝑖𝑘𝑦⋅𝑥0 ⋅ ∑𝑈𝑛(𝑥0)𝑒
𝑖
2𝜋𝑛
𝑎

𝑦

𝑛

= 𝑒𝑖𝑘𝑥⋅𝑥0 ∑𝑈𝑛(𝑥0)𝑒
𝑖𝑘𝑦,𝑛⋅𝑦

𝑛

 

𝑘𝑦,𝑛 = 𝑘𝑦 +
2𝜋𝑛

𝑎
                          (5.6) 

𝑛 ∈ 𝑁 

The plane wave expansion that we need to use here is slightly different from Eq.5.6. Notice 

that the components in Eq.5.6 are not plane waves, because 𝑘𝑥
2 + 𝑘𝑦,𝑛

2 ≠ 𝑘0
2, where 𝑘𝑥 is 

the x component of the Bloch k, 𝑘0 is the free space wavenumber. To obtain plane waves 

in the decomposition while taking advantage of the y-periodicity, we can keep the same 

series of 𝑘𝑦,𝑛, but use 𝑘𝑥,𝑛 = √𝑘0
2 − 𝑘𝑦,𝑛

2 . The plane wave expansion is written as 

𝐸𝑧(𝑦)|𝑥=𝑥0
= ∑ (𝐴𝑘𝑦,𝑛

+ 𝑒𝑖𝑘𝑥,𝑛⋅𝑥0 + 𝐴𝑘𝑦,𝑛

− 𝑒−𝑖𝑘𝑥,𝑛⋅𝑥0) 𝑒𝑖𝑘𝑦,𝑛⋅𝑦
𝑛        (5.7) 

where 𝐴𝑘𝑦,𝑛

+  and 𝐴𝑘𝑦,𝑛

−  are the amplitudes of the forward and backward plane wave 

components, following 𝑒𝑖𝑘𝑥,𝑛⋅𝑥0  and 𝑒−𝑖𝑘𝑥,𝑛⋅𝑥0  respectively. As an example, the plane 

wave coefficients 𝐴𝑘𝑦,𝑛

±  for the Bloch mode in Fig.5.2a is shown in Fig.5.2b. Here for the 

2D bulk mode, we have only one propagating plane wave component (𝑘𝑥,𝑛 ∈ ℝ, |𝑘𝑦,𝑛| <

𝑘0) inside the light cone (orange shaded region in Fig.5.2b) while many evanescent plane 

wave components (𝑘𝑥,𝑛 ∈ 𝕀, |𝑘𝑦,𝑛| > 𝑘0) outside of the light cone.  
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Figure 5.2: Plane wave expansion. (a) Field profile (Re{Ez}) in a 2D photonic crystal 

made of a square lattice of dielectric rods (𝜖𝑟 = 13) in air. The mode is 

taken along the 1st band, with a Bloch k of (0.4,0.1)2𝜋/𝑎. (b) Fourier 

coefficients from plane wave expansion at the dashed lines shown in (a).  

Propagating plane waves and evanescent plane waves bring different characters to 

the momentum flux, as we will see later in Section 5.4. Separating the contributions from 

propagating plane waves and those from evanescent plane waves, the integrated time-

averaged momentum flux and time-averaged optical power are expressed as:  

𝐹𝑥 = ∫ 〈−𝑇𝑥𝑥〉𝑑𝑦
𝐿

0

= ∫
1

4
𝜖0 (|𝐸𝑧|

2 − 𝑐2|𝐵𝑥|
2 + 𝑐2|𝐵𝑦|

2
)𝑑𝑦

𝐿

0

 

=
𝐿𝑎𝜖0

2𝑘0
2 [(𝑘0

2 − 𝑘𝑦,0
2 ) (|𝐴𝑘𝑦,0

+ |
2

+ |𝐴𝑘𝑦,0

− |
2

) + ∑(𝑘0
2 − 𝑘𝑦,𝑛

2 ) (𝐴𝑘𝑦,𝑛

−∗ 𝐴𝑘𝑦,𝑛

+ + 𝐴𝑘𝑦

+∗𝐴𝑘𝑦

− )

𝑛≠0

] 

(5.8) 

𝐼𝑥 = ∫
1

2
𝑅𝑒{𝑬 × 𝑯∗}𝑥𝑑𝑦

𝐿

0

 

=
𝐿𝑎

2𝜇0𝑐
[
𝑘𝑥,0

𝑘0
(|𝐴𝑘𝑦,0

+ |
2

− |𝐴𝑘𝑦,0

− |
2

) + ∑
𝑘𝑥,𝑛

𝑘0
(𝐴𝑘𝑦,𝑛

−∗ 𝐴𝑘𝑦,𝑛

+ − 𝐴𝑘𝑦,𝑛

+∗ 𝐴𝑘𝑦,𝑛

− )

𝑛≠0

] 

(5.9) 

𝐿 is the length of the cross section where the normalized momentum flux 𝑝𝑥 (Eq.5.4) is 

being evaluated. The integration along the 𝑧 direction is dropped for the 2D system.  
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5.4 SPECTRA OF NORMALIZED MOMENTUM FLUX 

In this section, we visualize the normalized momentum flux as a function of 

frequency, namely, as a spectrum. The momentum flux does not follow the magnitude or 

the direction of the Bloch k, because the expression for momentum flux (Eq.5.8) share little 

in common with the Bloch k. We go through the Bloch modes composed of purely 

propagating plane waves, purely evanescent plane waves and a mixture of both. The 

propagating and evanescent plane waves bring very different contributions to the 

momentum flux. 

5.4.1 Mode Composed of Purely Propagating Plane Waves 

Some Bloch modes consist of purely propagating plane waves. The normalized 

momentum flux 𝑝𝑥 of such modes is always positive in the direction of power flow.  

Let’s consider the Bloch modes in a 1D photonic crystal at normal incidence, i.e. 

𝑘𝑦 = 𝑘𝑧 = 0. The field distribution is uniform along the cross section, and is the linear 

superposition of two counter-propagating plane waves, contributing disproportionately to 

the numerator and denominator of the normalized momentum flux 𝑝𝑥 =
𝐹𝑥

𝐼𝑥
, 

𝐹𝑥 =
𝐿𝑎𝜖0

2
(|𝐴0

+|2 + |𝐴0
−|2)                     (5.10) 

𝐼𝑥 =
𝐿𝑎

2𝜇0𝑐
(|𝐴0

+|2 − |𝐴0
−|2)                     (5.11) 

The normalized momentum flux 𝑝𝑥 (Fig. 5.3c, f) range from 0 to infinity while the Bloch 

k (Fig.5.3b, e) take limited values within the Brillouin zone. For modes with positive group 

velocity, the normalized momentum flux is always positive while the Bloch k can take 

either sign. As the group velocity approaches zero, the power 𝐼𝑥  carried by the mode 

approaches zero (|𝐴0
+| ≈ |𝐴0

−|) while the integrated momentum flux 𝐹𝑥 remain the same 

order of magnitude. The momentum flux spectrum is sensitive to the change of dielectric 

properties even for the same structure. As the permittivity of the dielectric layer increases 

from 3𝜖0 (Fig.5.3a) to 13𝜖0 (Fig.5.3d), the dispersion relations are compressed in the 
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frequency axis (from Fig.5.3b to Fig.5.3e), leading to smaller group velocities and smaller 

𝐼𝑥 given a fixed 𝐹𝑥. As a result, the momentum flux of the higher index structure (Fig.5.3f) 

is larger than the lower index structure (Fig.5.3c). Despite the magnitudes, the normalized 

momentum flux is in the same direction of the power flow (i.e. 𝑝𝑥 > 0), because Eq.5.8 is 

always positive, while Eq.5.11 is positive in the propagation direction.  

 

 

Figure 5.3: Band diagrams and normalized momentum flux of two 1D photonic crystals. 

(a,b) Schematics of the photonic crystals made of alternating layers of high-

index and low-index (vacuum) materials. The high-index layer is 0.2a 

thick, with ϵr of 3 for (a) and 13 for (b). a is the lattice constant. (b,e) Band 

diagrams for Kx. Segments of the bands with positive group velocities are 

marked in blue. (c,f) Normalized momentum flux of the bands with positive 

group velocity.  

5.4.2 Mode Composed of Purely Evanescent Plane Waves 

Some Bloch modes consist of purely evanescent plane waves. The normalized 

momentum flux 𝑝𝑥 of such modes can be either parallel or opposite to the direction of 

power flow, depending on the evanescent plane wave composition.  
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Let’s consider the mode on the 3rd TM band along the 𝚪𝐗 direction of a 2D square 

lattice photonic crystal (Fig.5.4a,b). The calculated momentum flux spectrum (Fig.5.4c) is 

anti-symmetric with respect to the mid-frequency of the band 0.5343𝑐/𝑎, being negative 

for the lower half and positive for the upper half of the band.  

This mode can be described by tight binding model. The tight binding model 

predicts the complete dominance of evanescent plane waves as a result of nearest 

neighbor’s evanescent coupling for this particular mode. It also quantitatively explains the 

spectrum of normalized momentum flux 𝑝𝑥 (Fig.5.4c), by expressing it in terms of the 

frequency 𝑓. The reason that tight binding model is suitable for this mode is because the 

first-principle simulated dispersion relation (Fig.5.4b) can be perfectly fitted by 

𝑓 = 𝐵 − |𝐶| ⋅ cos(𝑘𝑥𝑎)                      (5.12) 

where 𝐵  is a constant representing the mid-frequency of the band, |𝐶| is a constant 

representing the coupling strength / the width of the band, 𝑘𝑥 is the Bloch k. A curve 

fitting (Fig.5.4b) demonstrate good match of Eq.5.12, implying evanescent coupling of 

fields that are tight bonded to the dielectric rods.  

To establish the relation between the normalized momentum flux 𝑝𝑥  and the 

frequency 𝑓, we need to find the relation between 𝑝𝑥 and 𝑘𝑥 and then combine with 

Eq.5.12. We already know that 𝑝𝑥 can be expressed in terms of plane wave components, 

which is determined by the wave function (𝐸𝑧  in this case), which can be explicitly 

modeled using tight bonding model for this particular mode. Suppose two neighboring 

columns of rods are located along 𝑥 = 0 and 𝑥 = 𝑎, the wave function (𝐸𝑧) between 𝑥 =

0 and 𝑥 = 𝑎 can be approximated by 

𝐸𝑧 = ∑ 𝑔𝑛 ⋅ 𝑒𝑖𝑘𝑦,𝑛⋅𝑦(𝑒−|𝑘𝑥,𝑛|⋅𝑥 + 𝑒𝑖⋅𝑘𝑥⋅𝑎𝑒|𝑘𝑥,𝑛|⋅(𝑥−𝑎))𝑛            (5.13) 
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while ignoring the fields localized around those rods further away. Here 𝑘𝑥,𝑛 =

√𝑘0
2 − 𝑘𝑦,𝑛

2 ∈ 𝕀. Eq.5.13 gives insights to understand both the momentum flux and power. 

Let’s suppose for each 𝑘𝑦,𝑛 , the forward and backward components 𝐴𝑘𝑦,𝑛

+  and 𝐴𝑘𝑦,𝑛

−  

have phases 𝜙𝑘𝑦,𝑛

+  and 𝜙𝑘𝑦,𝑛

−  respectively. We find the terms in momentum flux (Eq.5.8) 

and power (Eq.5.9) contributed from each 𝑘𝑦,𝑛 explicitly depends on the relative phase 

(𝜙𝑘𝑦,𝑛

+ − 𝜙𝑘𝑦,𝑛

− ) 

∫ −𝑇𝑥𝑥𝑑𝑦
𝐿

0

|
𝑘𝑦,𝑛

=
𝐿𝑎𝜖0

2

𝑘𝑥,𝑛
2

𝑘0
2 (𝐴𝑘𝑦,𝑛

−∗ 𝐴𝑘𝑦,𝑛

+ + 𝐴𝑘𝑦,𝑛

+∗ 𝐴𝑘𝑦,𝑛

− )

=
𝐿𝑎𝜖0

2

𝑘𝑥,𝑛
2

𝑘0
2 |𝐴𝑘𝑦,𝑛

+ | |𝐴𝑘𝑦,𝑛

− | 2 cos (𝜙𝑘𝑦,𝑛

+ − 𝜙𝑘𝑦,𝑛

− ) 

= −
𝐿𝑎𝜖0

2

|𝑘𝑥,𝑛|
2

𝑘0
2 |𝐴𝑘𝑦,𝑛

+ | |𝐴𝑘𝑦,𝑛

− | 2 cos (𝜙𝑘𝑦,𝑛

+ − 𝜙𝑘𝑦,𝑛

− )               (5.14) 

∫
1

2
𝑅𝑒{𝑬 × 𝑯∗}𝑥𝑑𝑦

𝐿

0

|
𝑘𝑦,𝑛

=
𝐿𝑎

2𝜇0𝑐

𝑘𝑥,𝑛

𝑘0
|𝐴𝑘𝑦,𝑛

+ | |𝐴𝑘𝑦,𝑛

− | 2𝑖 sin (𝜙𝑘𝑦,𝑛

+ − 𝜙𝑘𝑦,𝑛

− ) 

= −
𝐿𝑎

2𝜇0𝑐

|𝑘𝑥,𝑛|

𝑘0
|𝐴𝑘𝑦,𝑛

+ | |𝐴𝑘𝑦,𝑛

− | 2 sin (𝜙𝑘𝑦,𝑛

+ − 𝜙𝑘𝑦,𝑛

− )                (5.15) 

The '−' sign in Eq.5.14 is due to 𝑘𝑥,𝑛
2 = 𝑘0

2 − 𝑘𝑦,𝑛
2 < 0. The '−' sign in Eq.5.15 is due to 

𝑘𝑥,𝑛 ∈ 𝕀. Notice that in Eq.5.14, the evanescent components carry nonzero momentum flux 

through the interference of the evanescent tails 𝑒|𝑘𝑥,𝑛|⋅(𝑥−𝑎) and 𝑒−|𝑘𝑥,𝑛|⋅𝑥, although an 

isolated evanescent tail do not carry momentum flux. From a close examination on the 

decomposed terms, we find the relative phases between the forward and backward 

components (𝜙𝑘𝑦,𝑛

+ − 𝜙𝑘𝑦,𝑛

− ) for each 𝑘𝑦,𝑛 have similar dependence on the Bloch k 𝑘𝑥, 

although 𝜙𝑘𝑦,𝑛

±  can shift together by a phase 𝐶𝑘𝑦,𝑛
. As a consequence, (𝜙𝑘𝑦,𝑛

+ − 𝜙𝑘𝑦,𝑛

− ) 

for all 𝑘𝑦,𝑛 can be treated equally, simplified into the form of (𝜙+ − 𝜙−) = −𝑘𝑥𝑎. The 

normalized momentum flux 𝑝𝑥 thus reduces to a simple dependence on the Bloch k 𝑘𝑥. 
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~cot(𝜙+ − 𝜙−) = cot(−𝑘𝑥𝑎)                    (5.16) 

Curve fitting the normalized momentum flux 𝑝𝑥 versus the frequency 𝑓 using Eq.5.12 

&5.16 perfectly matches the momentum flux spectrum from first-principle simulation 

(Fig.5.4c). Due to the symmetry of trigonometric functions Eq.5.12&5.16, the spectrum of 

the momentum flux is anti-symmetric comparing the upper and lower half of the band 

(Fig.5.4c).  
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Figure 5.4: Band structures and momentum flux of Bloch mode in a 2D photonic crystal. 

(a) TM band diagram along the ΓX direction, with the 3rd TM band of 

interest highlighted in blue. Inset shows the Ez field and the structure of the 

2D crystal at = (0.25, 0) ⋅ 2𝜋/𝑎 . (b) Magnified band diagram of the 3rd 

TM band (blue curve), which agrees with the tight binding model (circles). 

(c) Normalized momentum flux of the 3rd TM band (black curve), which 

agrees with the tight binding model (circles). The propagating plane waves 

(red curve) have 0 contribution. (d) Normalized momentum flux (red dots in 

lower panel) in a photonic crystal truncated by a perfect electrical conductor 

(PEC). The momentum flux is calculated from the MST obtained from the 

field pattern (upper panel) integrated over a corresponding cross section 

(black dashed line). The incident wave is indicate by a grey dot in the band 

structure (c), with 𝑘𝑥 = 0.02 ⋅ 2𝜋/𝑎. (e) Forces on the PEC plate for 

different Bloch k. The yellow dots in (e) and (d) correspond to each other.  

Negative momentum flux indicates pulling forces on a perfect absorber. However, 

momentum flux is not additive. When multiple Bloch modes are present, the total 
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momentum flux is not simply the sum of the individual mode. One important example is 

that negative momentum flux does not result in a negative (pulling) force on a perfectly 

reflecting mirror that terminates the periodic medium (see proof in Section 5.7.1). Consider 

a bulk photonic crystal mode with negative momentum flux (𝑘𝑥 = 0.02 ⋅ 2𝜋/𝑎 gray dot 

in Fig.5.4c). We calculate the momentum flux normalized to 1W of incident wave at 

multiple coordinates (Fig.5.4d, each dot correspond to one evaluation along a dashed line). 

Each evaluation indicates the forces applied on the structure on the right hand side of the 

corresponding dashed line. The momentum flux oscillate with periodicity 
2𝜋

2𝑘𝑥
 due to the 

interference of the incident and reflected waves (see proof in Section 5.7.2). As the bulk 

photonic crystal encounters the PEC plate, the mode is entirely reflected and result in a 

positive force on the PEC plate (yellow dot in Fig.5.4d). Meanwhile, the net force is 

negative (red dashed line in Fig.5.4d) in order to balance out the change of momentum flux 

from the incident wave to the reflected wave. The value of the net force is 2x the normalized 

momentum flux of the incident wave (gray dashed line in Fig.5.4d). The net force includes 

negative force distributed over the rods in the near field of the mirror and the positive force 

on the PEC plate.  

The force on the PEC plate is always positive and increases from 0 to infinity for 

𝑘𝑥 from 0 to 0.5 ⋅ 2𝜋/𝑎 (Fig.5.4e). 

5.4.3 Mode Composed of Both Propagating and Evanescent Plane Waves 

A broader range of Bloch modes consist of a mixture of the propagating and the 

evanescent plane waves. For these modes, the direction of momentum flux is determined 

by which component dominates and whether the evanescent part makes a negative 

contribution.  
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Let’s consider the guided modes in photonic crystal line defect waveguides. Unlike 

the bulk modes, these defect modes do not have discrete translational symmetry in the y 

direction. Therefore the plane wave components take continuous values in 𝑘𝑦,𝑛, i.e., 𝑛 no 

longer take integer values, and 𝑘𝑦,𝑛  is no longer discrete. Here the momentum flux 

(Eq.5.8) and optical power (Eq.5.9) are instead expressed in the integration form 
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 (5.17) 
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(5.18) 

For a guided mode in a reciprocal photonic crystal defect waveguide (Fig.5.5a,b), 

the plane-wave expansion yields a continuum of 𝑘𝑦,𝑛. The defect waveguide is created by 

removing one row of rods from the photonic crystal, creating a defect with size of 𝑑 = 2𝑎 

from center to center of the rods facing the defect. We have separately plotted the 

propagating and evanescent plane waves’ contributions to the normalized momentum flux 

(Fig.5.5c). The sign and magnitude of the total normalized momentum flux 𝑝𝑥  is 
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determined by the dominating contribution among the propagating and evanescent waves. 

As indicated in Section 5.4.1, the contribution from the propagating plane waves (red line) 

is always positive. As indicated in Section 5.4.2, the contribution from the evanescent plane 

waves (green line) can take either sign. In a narrow range of frequency around 0.3c/𝑎 the 

total momentum flux is negative, as the negative contribution from the evanescent waves 

dominates over the positive contribution from the propagating waves (Fig.5.5c).  

 

 

Figure 5.5: Band diagram and normalized momentum flux of a defect waveguide mode. 

(a) 𝐸𝑧 field profile of the defect waveguide mode at frequency 0.36𝑐/𝑎, in 

the first bandgap. The bulk photonic crystal is made of a square lattice of 

rods with 𝜖𝑟 = 13 and radius 𝑟 = 0.2𝑎. The size of the line defect is 𝑑 =
2𝑎 from center to center (b) The defect waveguide band (blue line) and 

projected bulk bands (gray shaded area). (c) Normalized momentum flux of 

the waveguide mode. The partial sum of propagating plane waves (red line) 

is positive. The partial sum of evanescent plane waves (green line) can take 

either sign.  

In contrast to the reciprocal defect waveguide mode mentioned above, a one-way 

defect waveguide mode (chiral edge state from Chapter 3) can never have negative 

momentum flux (Fig.5.6b), due to the dominance of the contribution from the propagating 

plane waves. One-way chiral edge states are special guided modes that are topologically 

protected from being reflected by any non-magnetic defect. They exist at the edge of 

magneto-optical photonic crystals, or domain walls between regions with opposite 



 101 

magnetic biases. Here we use square lattices of yttrium iron garnet (YIG) ferrite rods[17]. 

The relative permittivity and permeability of YIG for the lower photonic crystal is 𝜖𝑟 =

15  and 𝜇𝑟 = [
14

−𝑖12.4
0

𝑖12.4
14
0

   0
   0
   1

]  using 0.2T of external DC magnetic field, around 

operating frequency of 0.45 GHz. The upper photonic crystal is applied with the opposite 

DC magnetic field, and the sign of off-diagonal elements in the 𝜇 tensor is reversed. A 

waveguide is formed from a line defect between the two crystals with a center-to-center 

distance of 1.5𝑎 between the rods facing the defect. On each side, the photonic crystal 

has Chern numbers of +1  and −1  respectively, therefore supporting two one-way 

modes at the interface. The two modes split into an odd mode (Fig.5.6a orange curve and 

Fig.5.6b inset) and an even mode (Fig.5.6a blue curve and Fig.5.6b inset) due to symmetry. 

Because the waveguide mode with negative group velocity do not exist (Fig.5.6a) for both 

of the one-way modes, the group velocity never reaches zero, requiring the propagating 

plane waves to dominate over the evanescent waves, which leads to an overall positive 

momentum flux (Fig.5.6b), although the evanescent wave can have negative contribution 

(Fig.5.6c). Similar to the bulk modes studied previously in 1D and 2D photonic crystals, 

here the normalized momentum flux of the defect waveguide modes also diverges as the 

group velocity infinitely approaches zero (Fig.5.6b) when the defect waveguide modes are 

merging into bulk bands (Fig.5.6a). Near the band-edge, the group velocity of the 

waveguide modes infinitely approaches zero due to the anti-crossing against the bulk 

modes, while never reaches zero due to the one-way nature.  
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Figure 5.6: Band diagram and normalized momentum flux of one-way edge modes. (a) 

Projected band diagram and (b) normalized momentum flux of the one-way 

edge mode at a domain wall separating two magneto-optical photonic 

crystals with opposite magnetization. Two distinct edge modes, an even 

mode (blue) and an odd mode (orange), propagate along the same direction. 

Inset shows the structure of the photonic crystal and calculated 𝐸𝑧 field 

patterns at frequency 0.54 𝑐/𝑎. Projected bulk bands and two-way defect 

modes are shown in grey. (c) Normalized momentum flux of the odd mode 

and its decomposition into the propagating and evanescent contributions.  

5.5 THE CONSERVATION OF MOMENTUM FLUX AND OPTICAL FORCES 

In this section we demonstrate the conservation of momentum flux and the resultant 

optical forces under scattering, mode conversion, reflection and transmission in periodic 

structures.  

The direction and magnitude of the optical forces are determined by the change in 

momentum flux. Consider a Bloch wave traveling from region 1 to region 2, where the two 

regions can be of the same material separated by a defect, or different materials separated 

by an interface, leading to scattering, reflection or mode conversions. As a result, region 1 

and region 2 would have different momentum flux 𝑀𝐹1 and 𝑀𝐹2. A total optical force 

of 𝑀𝐹1 − 𝑀𝐹2 would be distributed to the near field.  

First we show a simple example of momentum flux conservation involving no 

reflection but just mode conversion, under the topologically protected scattering between 

one-way modes. The system consists of a one way waveguide (as shown in Fig.5.7) and a 
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point defect, i.e. a particle inside the waveguide. The one-way waveguide supports two 

modes (odd and even) as shown in Fig.5.6. One of the modes is chosen as the input, which 

is partly scattered into the other mode by the particle while both modes keep propagating 

forward. The total force incurred due to scattering (circles in Fig.5.7b, calculated from 

MST) is distributed onto both the particle and the photonic crystal structures in the near 

field region (shaded in gray in Fig.5.7a), and is equal to the change in momentum flux. 

Quantitatively, as a fraction 𝑆 of the incident odd mode is scattered into the even mode, 

we have 𝑀𝐹1 = 𝑝𝑜𝑑𝑑, 𝑀𝐹2 = (1 − 𝑆) ⋅ 𝑝𝑜𝑑𝑑 + 𝑆 ⋅ 𝑝𝑒𝑣𝑒𝑛. The total optical force equals to 

the change in momentum flux 𝐹𝑡𝑜𝑡𝑎𝑙 = 𝑆 ⋅ (𝑝𝑜𝑑𝑑 − 𝑝𝑒𝑣𝑒𝑛)  (solid lines in Fig.5.7b, 

calculated from 𝑆, 𝑝𝑜𝑑𝑑 and 𝑝𝑒𝑣𝑒𝑛). It is vice versa for the case of even mode incidence. 

To be noticed, this is a special case where momentum flux is additive. Because the even 

and odd modes have opposite symmetry and their fields are orthogonal at each cross 

section. In consequence, unlike the oscillations observed in Fig.5.4d, the momentum flux 

is a constant when we measure it at a spacing of the lattice constant 𝑎, in the region where 

the odd and even modes coexist.  

There are two interesting observations. First, the forces on a particle (dotted lines 

in Fig.5.7b, calculated from MST) differ significantly from the total force (circles in 

Fig.5.7b). The total force is determined by momentum conservation whereas the force on 

the particle is largely determined by the Bloch k and the unit cell function (Chapter 3.3). 

Second, the spatial symmetry of the force on the particle and the total force are different. 

The force on the particle comparing using the odd or the even mode as the incidence is not 

simply opposite to each other, except for when the particle is placed on special symmetric 

planes (i.e., 𝑥 = 𝑁𝑎 and 𝑁𝑎 +
1

2
, 𝑁 ∈ ℕ). This is because the force on the particle is 

sensitive to the near field. However, the total force on the entire region is opposite with 

equal magnitudes comparing the odd and even incidence, no matter where the particle is 
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placed. This is because symmetry guarantees that the power scattered from the incident 

mode into the other mode stays the same for the two cases, leading to the same magnitude 

of change in momentum flux.  
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Figure 5.7: Momentum flux conservation in a one way waveguide with scattering and 

mode conversion due to a defect (the particle). (a) Schematic diagram of the 

scattering on top of the 𝐸𝑧 field with odd mode incidence at 𝑓 = 0.55𝑐/𝑎. 

The one-way mode (as described by Fig.5.6a) encounters a point defect, i.e., 

a dielectric particle (𝜖𝑟 = 13, radius 𝑟 = 0.1𝑎), which scatters an 𝑆 

fraction of power into the other mode, causing changes in the momentum 

flux. The momentum flux carried by each mode at each segment of the 

waveguide are marked next to the arrows representing the modes. The 

particle experiences a force 𝐹𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, which is distinguished from the total 

force 𝐹𝑛𝑒𝑡 experienced by the near field region (shaded in gray). (b) 

Momentum conservation and scattering forces using the odd (orange) and 

the even (blue) mode as incidence respectively. The axial total force 𝐹𝑡𝑜𝑡𝑎𝑙,𝑥 

(circles, calculated from MST) equals to the change in momentum flux 

(lines, calculated from the momentum flux spectra shown in Fig.5.6b). The 

particle experiences a significantly different force 𝐹𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑥 (dots, 

calculated from MST). 
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We next show the conservation of momentum flux at a waveguide connection with 

both reflection and mode conversion. Consider a junction between two photonic crystal 

waveguides with different widths ( 2𝑎  and 4𝑎  respectively) (Fig.5.8). To ensure 

significant power transmission, a pair of rods at the end of the narrower waveguide is 

enlarged. The two segments of waveguides support different modes of different dispersion 

relations (Fig.5.8a,b) and different normalized momentum flux (Fig.5.8c). At the junction, 

the incident mode experiences partial reflection into the upstream and mode conversion 

into the downstream region12, generating forces that are distributed over a few columns of 

rods near the waveguide junction (shaded in gray in Fig.5.8d, e). The total force equals to 

the momentum flux in the upstream region minus that in the downstream region. Suppose 

1[W] of mode 1 with normalized momentum flux 𝑝1 encounters R[W] of reflection and 

T[W] of conversion into mode 2, where mode 2 has normalized momentum flux 𝑝2. The 

momentum flux in the upstream and the downstream regions would be 𝑝1 ⋅ (1 + 𝑅) and 

𝑝2 ⋅ 𝑇  respectively (dashed lines, Fig.5.8d,e). The total optical force is 𝐹𝑡𝑜𝑡𝑎𝑙 = 𝑝1 ⋅

(1 + 𝑅) − 𝑝2 ⋅ 𝑇, equaling to the sum of the contributions from both reflection 𝑝1 ⋅ 2𝑅 

and mode conversion (𝑝1 − 𝑝2) ⋅ 𝑇. The momentum flux in the entire upstream region 

(dots, Fig.5.8d,e for 𝑥 < 30𝑎) oscillate with periodicity 
2𝜋

2𝑘𝑥
 due to the interference of the 

incident and reflected waves. Thus the rods in the entire upstream region experience 

periodic axial forces which average to 0 (bar graph, Fig.5.8d,e, for 𝑥 < 30𝑎). In the near 

field of the junction (gray shaded region, Fig.5.8d,e), the momentum flux can fluctuate. 

The local force can be significantly greater in magnitude than the total force, and can be 

opposite in signs (Fig.5.8d, for 𝑥 in 30~35𝑎). This brings significant degree of freedom 

in the engineering for local forces even in the simple interface. For example, at the 

                                                 
12 In the downstream region, only the waveguide mode colored in blue in Fig.5.8b is generated. Other 

waveguide modes (colored in grey in Fig.5.8b) are not generated due to either symmetry mismatch or 

frequency mismatch.  
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frequency of 0.36 ⋅ 𝑐/𝑎 (Fig.5.8d), the total force on the junction as a whole is tensile, 

but locally the forces rapidly flip sign near the end of the narrower waveguide. The force 

on the wider waveguide alone is repulsive but negligible. At the frequency of 0.3 ⋅ 𝑐/𝑎 

(Fig.5.8e), the total force on the junction as a whole is compressive and mostly distributed 

near the end of the narrower waveguide. The force on the wider waveguide along is 

attractive but negligible.  
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Figure 5.8: Momentum flux conservation at a waveguide junction (mode convertor). (a,b) 

Projected band diagrams of the waveguides before and after the junction. 

The waveguides are line defects in the photonic crystal described in Fig.5.5, 

with different widths of 2a and 4a respectively. Blue curves indicate the 

waveguide modes involved. (c) Momentum flux spectra of the two 

fundamental modes. (d,e) Ez field patterns (upper panel), force on each 

column of rods(middle panel), average momentum flux (dashed line, lower 

panel) calculated from the momentum flux spectra in (c), and momentum 

flux (circles, lower panel) at various x locations calculated from the MST 

integrated over the waveguide cross section (an example shown as the black 

dashed line) at two excitation frequencies: (d) 0. 36 c/a and (e) 0.3c/a. The 

fundamental modes at these two frequencies are indicated as circles in 

panels (a-c).  
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Similarly, we can predict the forces at waveguide end facets (Fig.5.9) according to 

the conservation of momentum flux. The upstream waveguide in Fig.5.9 is identical to the 

narrower one in Fig.5.8, with normalized momentum flux illustrated in Fig.5.8c. The 

downstream is free space, with a normalized momentum flux less than 1/𝑐 due to the 

scattering of plane waves into multiple directions. Tensile net force occurs due to the 

change of momentum flux for the frequency at 0.36 ⋅ 𝑐/𝑎 (Fig.5.9a) while compressive 

net force occurs for the frequency at 0.36 ⋅ 𝑐/𝑎 (Fig.5.9b). The reflection causes the entire 

upstream region to experience periodic axial forces which average to 0 (bar graph, Fig.5.9, 

for 𝑥 < 33𝑎 ). The net force is majorly distributed in the near field of the end facet 

(Fig.5.9a,b, for 𝑥 in 33~35𝑎).  
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Figure 5.9: Momentum flux conservation at the end facet of a truncated waveguide. (a,b) 

𝐸𝑧 field patterns (upper panel), force on each column of rods(middle panel), 

average momentum flux (dashed line, lower panel) calculated from the 

momentum flux spectra given in Fig.5.8c, and momentum flux (circles, 

lower panel) at various x locations calculated from the MST integrated over 

the waveguide cross section (an example shown as the black dashed line) at 

two excitation frequencies: (a) 0.36c/𝑎 and (b) 0.3c/𝑎. The fundamental 

modes at these two frequencies are indicated by dots in Fig.5.8a.  

5.6 CONCLUDING REMARKS  

We studied the linear momentum flux for Bloch modes in periodic structure. 

Momentum flux is an intrinsic property of Bloch modes, representing its ability to apply 

optical forces on a perfect absorber. The spectra of momentum flux differ significantly 

from the spectra of the canonical momentum (i.e. the Bloch k), in both the magnitude and 

sign. Moreover, the momentum flux can diverge near band edge, which indicates enhanced 

forces on a perfect absorber. We analyzed the momentum flux by decomposing it into 

contributions from underlying plane wave components, including both the propagating and 
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the evanescent plane waves. Interestingly, negative momentum flux are found for Bloch 

modes in both bulk photonic crystal and defect waveguides, attributing to special 

formations of evanescent plane wave components. The conservation of momentum flux 

can be used to predict the total force in a variety of scenarios such as scattering, mode 

conversion, reflection and transmission, as the light encounters defects or interfaces. The 

total force equals to the change in momentum flux, and is distributed over all the objects 

in the near field. Negative total force arises from a decrease in momentum flux, while not 

necessarily from an incoming mode that carries negative momentum flux. 

Compressive/expansion forces can be predicted from the change of momentum flux at 

interfaces.  

By revisiting the Chapter 3 case of inter-mode scattering in a one-way waveguide, 

we find the momentum conservation approach is not a good choice for predicting the 

direction of forces on the particle inside the waveguide. Because the force predicted by the 

change in momentum flux is distributed over both the particle and the near field photonic 

crystal structures. While the individual force on each object can only be wisely predicted 

using RTOF[42], the virtual work approach.  

There are still some parallels between the momentum flux analysis in this chapter 

and the pulling/pushing forces analysis in Chapter 3&4. In both cases, the Fourier series of 

the unit cell function reveal important information. Here we perform a Fourier transform 

in the transverse direction, and the Fourier series coefficients determine the exact value of 

the momentum flux. In the pulling/pushing forces analysis, the Fourier transform is 

performed longitudinally, the strongest order of the Fourier series determines which 

Brillouin zone we use to identify the authentic wavenumbers.  
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5.7 APPENDIX 

5.7.1 Forces on PEC from Plane Wave Components 

Prove that the forces on PEC are always positive in the classical limit, irrespective 

of the plane wave composition of the incoming Bloch mode.  

The incident mode consist of purely evanescent waves, and carries the following 

momentum flux 
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where 𝐶1, 𝐶2 ∈ ℝ. Assuming  

𝐴𝑘𝑦,𝑛

+ = 𝑝+ + 𝑖𝑞+, 𝐴𝑘𝑦

− = 𝑝− + 𝑖𝑞−                  (5.21) 

where 𝑝, 𝑞 ∈ ℝ, we have  

𝑝−𝑝+ + 𝑞−𝑞+ = 𝐶1 , 𝑝−𝑞+ − 𝑝+𝑞− = 𝐶2               (5.22) 

Combining the incident wave with the reflected wave we get the following momentum 

flux 

∫ 〈−𝑇𝑥𝑥〉𝑑𝑦
𝐿

0

= 𝐿𝑎
𝜖0

2
{∑

𝑘𝑥,𝑛
2

𝑘0
2 [(𝐴𝑘𝑦,𝑛

−∗ + 𝐴𝑘𝑦,𝑛

+∗ ) (𝐴𝑘𝑦,𝑛

+ + 𝐴𝑘𝑦,𝑛

− )

𝑛≠0

+ (𝐴𝑘𝑦,𝑛

+∗ + 𝐴𝑘𝑦,𝑛

−∗ ) (𝐴𝑘𝑦,𝑛

− + 𝐴𝑘𝑦,𝑛

+ )]} 

= 𝐿𝑎𝜖0 ∑
𝑘𝑥

2

𝑘2 [𝐴𝑘𝑦,𝑛

−∗ 𝐴𝑘𝑦,𝑛

+ + 𝐴𝑘𝑦,𝑛

+∗ 𝐴𝑘𝑦,𝑛

− − |𝐴𝑘𝑦,𝑛

− |
2

− |𝐴𝑘𝑦,𝑛

+ |
2

]|𝑘𝑦|>𝑘      (5.23) 

Applying Eq.5.20-5.22 

|𝐴𝑘𝑦,𝑛

− |
2

+ |𝐴𝑘𝑦,𝑛

+ |
2

= 𝑝+2
+ 𝑞+2

+ 𝑝−2 + 𝑞−2 

𝐴𝑘𝑦,𝑛

−∗ 𝐴𝑘𝑦,𝑛

+ + 𝐴𝑘𝑦,𝑛

+∗ 𝐴𝑘𝑦,𝑛

− = 2𝐶1 = 2𝑝+𝑝− + 2𝑞+𝑞− 

𝑝+2
+ 𝑞+2

+ 𝑝−2 + 𝑞−2 ≥ 2𝑝+𝑝− + 2𝑞+𝑞− 

⇒ 𝐴𝑘𝑦,𝑛

−∗ 𝐴𝑘𝑦,𝑛

+ + 𝐴𝑘𝑦,𝑛

+∗ 𝐴𝑘𝑦,𝑛

− − |𝐴𝑘𝑦,𝑛

− |
2

− |𝐴𝑘𝑦,𝑛

+ |
2

≤ 0          (5.24) 
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Using 𝑘𝑥,𝑛
2 < 0  and Eq.5.24, we find Eq.5.23≥ 0 . So the forces on PEC are always 

positive in the classical limit, irrespective of the underlying plane wave composition and 

normalized momentum flux of the incoming Bloch mode.  

5.7.2 Interference Pattern of Momentum Flux upon Reflection 

Prove that when a Bloch mode is reflected, the momentum flux in the upstream 

region, measured at the spacing of lattice constant 𝑎, has a periodicity of 2𝜋/2𝑘𝑥 due to 

interference, where 𝑘𝑥 is the Bloch k.  

Without loss of generality, we use the TM polarized Bloch mode. According to the 

expression of Maxwell stress tensor 

⟨∫ −𝑇𝑥𝑥𝑑𝑦
𝐿

0

⟩ = ∫
1

4
𝜖0 (|𝐸𝑧|

2 − 𝑐2|𝐵𝑥|
2 + 𝑐2|𝐵𝑦|

2
)𝑑𝑦

𝐿

0

 

The periodicity of ⟨∫ −𝑇𝑥𝑥𝑑𝑦
𝐿

0
⟩ follows the periodicity of 𝐸𝑧 , 𝐵𝑥,  𝐵𝑦 . Since 𝐵𝑥,  𝐵𝑦 

have the same periodicity as 𝐸𝑧 . We only need to explore the periodicity of 𝐸𝑧 . 

Considering both the incoming Bloch mode (𝑘𝑥) and its reflection (−𝑘𝑥), the total electric 

field is a superposition 

𝐸𝑧
(𝑡𝑜𝑡𝑎𝑙)

= 𝑢𝑘𝑥
(𝑥, 𝑦) ⋅ 𝑒𝑖⋅𝑘𝑥⋅𝑥 + 𝑟 ⋅ 𝑢−𝑘𝑥

(𝑥, 𝑦) ⋅ 𝑒−𝑖⋅𝑘𝑥⋅𝑥 

where 𝑟  is the reflection coefficient, 𝑢𝑘𝑥
(𝑥, 𝑦)  is the unit cell function. Using the 

periodicity and reciprocity of the Bloch mode we have 

𝑢𝑘𝑥
(𝑥, 𝑦) = 𝑢𝑘𝑥

(𝑥 + 𝑎, 𝑦), 𝑢𝑘𝑥
(𝑥, 𝑦) = 𝑢−𝑘𝑥

∗ (𝑥, 𝑦) 

⇒ 𝐸𝑧
(𝑡𝑜𝑡𝑎𝑙)(𝑥, 𝑦) = 𝑢𝐾𝑥

(𝑥, 𝑦) ⋅ 𝑒𝑖⋅𝐾𝑥⋅𝑥 + 𝑟 ⋅ 𝑢𝐾𝑥

∗ (𝑥, 𝑦) ⋅ 𝑒−𝑖⋅𝐾𝑥⋅𝑥 

|𝐸𝑧
(𝑡𝑜𝑡𝑎𝑙)(𝑥, 𝑦)|

2

= |𝑢𝑘𝑥
|
2
+ |𝑟|2 ⋅ |𝑢𝑘𝑥

(𝑥, 𝑦)|
2
 

+𝑢𝑘𝑥

∗ (𝑥, 𝑦) ⋅ 𝑒−𝑖⋅𝑘𝑥⋅𝑥 ⋅ 𝑟 ⋅ 𝑢𝑘𝑥

∗ (𝑥, 𝑦) ⋅ 𝑒−𝑖⋅𝑘𝑥⋅𝑥 

+𝑢𝑘𝑥
(𝑥, 𝑦) ⋅ 𝑒𝑖⋅𝑘𝑥⋅𝑥 ⋅ 𝑟∗ ⋅ 𝑢𝑘𝑥

(𝑥, 𝑦) ⋅ 𝑒𝑖⋅𝑘𝑥⋅𝑥 
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Evaluating |𝐸𝑧
(𝑡𝑜𝑡𝑎𝑙)(𝑥, 𝑦)|

2

 at sampling points spaced by the lattice constant 𝑎, we can 

observe a wavenumber of 2𝑘𝑥, without seeing the influence from the unit cell function 

𝑢𝑘𝑥
. 

Therefore for the reciprocal Bloch modes in Fig.5.4,5.8,5.9, ⟨∫ −𝑇𝑥𝑥𝑑𝑦
𝐿

0
⟩ has a 

periodicity of 2𝜋/2𝑘𝑥 along the 𝑥 direction, evaluated at sampling points spaced by the 

lattice constant 𝑎.  
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Chapter 6:  Photonic Motor Around a Phase Singularity in Photonic 

Crystal Cavity 

6.1 INTRODUCTION 

Angular momentum can be exchanged between electromagnetic field and 

mechanical degrees of freedom [123], [124], leading to contact-free photonic motors or 

rotators. For example, the transfer of orbital angular momentum can drive Mie test particles 

into cyclic motion[64], [123], or drive windmill shaped particles into rotation [125] [126] 

[127] that can stir the surrounding liquid. The transfer of spin angular momentum can rotate 

chiral particles [128] or birefringent particles [129], which have been used to measure the 

rotational tensile properties of large molecules such as DNA[130].  

Recently, integrated photonics have brought new solutions to a variety of 

applications with the benefit of small footprint, low cost and high reliability[131]. In 

particular, photonic crystals offer great potentials in tailoring the electromagnetic 

field[110] and optomechanical interactions [95], [116]. For example, optical trapping have 

been experimentally demonstrated using resonance enhanced fields in a photonic crystal 

cavity[75]. Robust and long range pulling forces have been theoretically demonstrated 

using forward scattering in photonic crystal waveguides (Chapter 3,4 [95], [116]). Can we 

also transfer angular momentum to objects using the electromagnetic fields that are entirely 

defined by the photonic crystal structures?  

We propose a setup that can trap and apply torque on a lossy particle around a phase 

singularity in a photonic crystal cavity. The setup can be viewed as an analogy to a free 

space system, where a lossy probe particle is driven into cyclic motion by helical modes 

[64], [65]. The amplitude of the free-space helical mode has an angular dependence of 

𝑒𝑖𝑚𝜃 , where 𝑚  is known as a topological charge associated with the orbital angular 

momentum of light. For 𝑚 ≠ 0, a phase singularity exists at the center of the beam and 
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the light field carries an angular momentum flux of 
𝐼

𝜔
𝑚. Through absorption, the angular 

momentum flux of light partially transfers to the torque on the lossy particle, proportional 

to the power being absorbed (~25%) [64]. In the photonic crystal defect cavity, we can 

also find an Eigen mode (Fig.6.1a) whose electric field 𝐸𝑧 have the angular dependence 

of 𝑒𝑖𝑚𝜃 (TM polarization), with a phase singularity at the center of the cavity. The radial 

field distribution of the cavity mode is perfect for trapping a dielectric particle in a circular 

orbit (Fig.6.1a). However, predicting the torque on the particle in such photonic crystal 

system is quite different from that in free space. As we have discussed in Chapter 5, in 

photonic crystal waveguide, the change in momentum flux of the electromagnetic field is 

transferred to forces on both the particle and the photonic crustal structure. Here, the change 

in angular momentum flux of the electromagnetic field is also transferred to torques on 

both the particle and the photonic crystal structure. Therefore, we need to use RTOF to 

rigorously predict the torque on the particle. From RTOF, we know that singularity in the 

phase response of well-defined ports can lead to photonic motoring effect [43]. We will 

demonstrate the lossy particle becomes a port that perceives the singularity of the field into 

its phase response, which leads to a force field with curl, i.e. torque applied on the particle 

(Section 6.2). We also give a theoretical upper bound of the torque in our system, where 

the cavity mode is excited by a single port (Section 6.3).  
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Figure 6.1: Absolute value (a) and phase (b) of 𝐸𝑧 field of the Eigen mode in the 

photonic crystal point defect cavity (TM polarization, 𝑓 =0.516𝑐/𝑎). One 

rod is removed from the bulk photonic crystal to form the defect cavity. The 

photonic crystal consists of magneto-optical rods with same material as 

those used in Chapter 3 (𝜖11 = 𝜖22 = 𝜖33 = 15.0𝜖0, 𝜇11 = 𝜇22 = 𝜇33 =
14.0𝜇0, 𝜇12 = −𝜇21 = −12.4𝑖 ⋅ 𝜇0). The inner most 8 rods have radius 

𝑟 = 0.11𝑎, other rods have radius 𝑟 = 0.12𝑎. (Eigen value study) 

6.2 TORQUE INDUCED BY SINGULARITY IN THE PHASE RESPONSES 

Similar to Chapter 3.6, we apply RTOF to predict the forces on a small lossy 

particle. As the lossy particle is treated as a perturbation to the field, it serves as a lossy 

port that absorbs the light with a phase following the phase of the electromagnetic field at 

where it is situated. The power and phase responses of the lossy port (particle) versus the 

displacement of itself determines the photonic force on the particle, if other ports have no 

significant contribution. We use this property to design the photonic motor.  

When the lossy particle is trapped on a circular orbit of radius 𝑟𝑜𝑟𝑏𝑖𝑡, imagine it 

takes a positive angular displacement Δ𝜃, the lossy port that travels with the particle will 

experience a phase shift of Δ𝜙 = −Δ𝜃. According to RTOF, the response of the photons 

absorbed by the lossy port contributes to a force tangential to the orbit 

𝐹𝑡 = −
𝐼𝑎𝑏𝑠𝑜𝑟𝑏

𝜔
⋅

1

𝑟𝑜𝑟𝑏𝑖𝑡
                         (6.1) 
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At this stage, we have a lossy particle inside an isolated cavity and seemingly 

unidirectional tangential forces along any circular orbit (Eq.6.1). However, given the lossy 

particle is the only output port of the system, the force on the particle is in principle 

conservative [43], because  

∇ × 𝑭 = ∇ × [
𝐼𝑎𝑏𝑠𝑜𝑟𝑏(𝑥,𝑦)

𝜔
∇𝜙(𝑥, 𝑦)] =

1

𝜔
[∇𝐼𝑎𝑏𝑠𝑜𝑟𝑏(𝑥, 𝑦)] × [∇𝜙(𝑥, 𝑦)]    (6.2) 

∇𝐼𝑎𝑏𝑠𝑜𝑟𝑏(𝑥, 𝑦) = 𝟎                         (6.3) 

To reconcile the contradiction with Eq.6.1, we notice that if the lossy particle is the only 

port, it will absorb 100% of the power and therefore is no longer a perturbation to the 

cavity. So the phase response of Δ𝜙 =–Δθ corresponding to an angular displacement of 

Δ𝜃 would not hold.  

To get non-conservative forces, we need at least 2 ports[43]. To introduce the extra 

port, we side couple the cavity to a line defect waveguide. In this way we can also excite 

the cavity mode using the waveguide, rather than using a current source inside the cavity. 

We use rods of radius 𝑟 = 0.12𝑎 outside of the dashed box shown in Fig.6.2 and 𝑟 =

0.11𝑎 inside the dashed box, so that the resonance frequency of the cavity mode is near 

the center of the 2nd bandgap. The cavity without the particle has a resonance frequency 

of 𝑓 = 0.516𝑐/𝑎. A lossy dielectric particle placed inside the cavity lowers the resonance 

frequency by at most 0.08%, depending on where the particle is situated. Without loss of 

generality, we use the one-way mode similar to Chapter 3.6. With the one-way mode, we 

only have one port (the transmission) in addition to the lossy port. Notice that if we use 

two-way modes, we will have two additional ports (the transmission and reflection). As 

long as the extra ports do not yield opposite contribution to the lossy port, we can still get 

motoring effect.  
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Figure 6.2: Illustration of a point defect cavity side coupled to a one-way waveguide. The 

magneto optical rods inside the dashed box have radius of 0.11a, while 

outside the dashed box have radius of 0.12a.  

We conduct full-wave simulations with the lossy particle placed at different 

locations, while fixing the amplitude and phase of the incoming light. As the particle travels 

along an orbit of radius 0.4𝑎, the amplitude and phase distribution inside the cavity stay 

largely constant (Fig.6.3). Although a small change can be observed in the phase 

distribution, the absorbed light on the particle still experiences a full 2𝜋 phase shift as the 

particle completes a circular motion.  

Operating with several different frequencies around the resonance, we find the 

lossy particle experiences a force field with curl (Fig.6.4 upper panel). The torque over the 

entire space is largely unidirectional (negative). There exist small areas that have positive 

torque, but as indicated by the force field, the particle will be trapped on orbits that have 

contiguous negative torque. In contrast, when we use a lossless particle instead, the force 
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fields become conservative (Fig.6.4 lower panel). Positive torques and negative torques 

equally divide up the area. This verifies the absorption on the lossy particle is indeed the 

source of contiguous torque.  

 

 

Figure 6.3: The amplitude and phase of 𝐸𝑧 field with a lossy particle (𝜖𝑟 = 2 + 0.5𝑖, 
𝑟 = 0.05𝑎, black circle) traveling along an orbit of radius 0.4𝑎, at 𝑓 =
0.51586𝑐/𝑎. (Full-wave study. The cavity mode is excited using the 

schematics shown in Fig.6.2. The phase of the incident light is fixed. ) 
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Figure 6.4: Vector force field experienced by a lossy particle (𝜖𝑟 = 2 + 0.5𝑖, 𝑟 = 0.05𝑎, 

upper panel) and a lossless particle (𝜖𝑟 = 2, 𝑟 = 0.05𝑎, lower panel) placed 

inside the cavity. The color scale indicates the torque with respect to the 

center of the cavity.  

The vector force field (Fig.6.5a) can be decomposed into normal (Fig.6.5b) and 

tangential (Fig.6.5b) components. The capability to trap the particle along an orbit is 

verified by the normal component of forces. At inner loops, the normal force is outwards. 

While at outer loops, the normal force is inwards. From the normal force, the stable orbit 

for the particle is estimated to be within the circle of 0.6𝑎 radius, where the torque and 

tangential force is always negative (Fig.6.5c).  
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Figure 6.5: Photonic forces on a lossy particle with 𝜖𝑟 = 2 + 0.5𝑖 at frequency 𝑓 =
0.51586𝑐/𝑎 The vector force field (a) can be decomposed into (b) normal 

component 𝐹𝑛 and (c) angular component 𝐹𝑡.  

RTOF analysis confirmed that the absorption through the lossy port dominates the 

contribution to the net torque. RTOF expresses the torque as  

torque = 𝑟𝑜𝑟𝑏𝑖𝑡 × 𝐹𝑡 =
𝐼𝑡𝑟𝑎𝑛𝑠

𝜔

𝜕𝜙𝑡𝑟𝑎𝑛𝑠

𝜕𝜃
+

𝐼𝑎𝑏𝑠𝑜𝑟𝑏

𝜔

𝜕𝜙𝑎𝑏𝑠𝑜𝑟𝑏

𝜕𝜃
            (6.4) 

We observe good agreement between RTOF and MST calculated torques (Fig.6.6a). The 

phase response in the lossy port monotonically decreases, which contributes to net torque. 

While the power and phase response in the transmission port are symmetric with respect 

to the mirror plane at 𝜃 = 𝜋/2 and 𝜃 = 3𝜋/2, which renders zero contribution to the net 

torque averaged over each circular orbit. Moreover, although the transmission port takes a 

major amount of power (>65%) (Fig.6.6b,c), the slope in the phase responses of the 

transmission port is 10x smaller than the slopes in the lossy port. 
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Figure 6.6: RTOF analysis of the torque on a lossy particle with 𝜖𝑟 = 2 + 0.5𝑖 at 

frequency 𝑓 = 0.51586𝑐/𝑎. (a) RTOF agrees with MST calculated torques 

along orbits of various radius. (b)(c) Power response of the transmission and 

absorption ports. (d)(e) Phase response of the transmission and absorption 

ports. 

6.3 UPPER LIMIT OF THE TORQUE 

For a side-coupled cavity, the energy that can be trapped inside the cavity scales up 

with the quality factor. However, the torque on the lossy particle doesn’t scale up with the 

quality factor. The upper limit for the torque is 
𝐼

2𝜔
, where 𝐼 is the input power. The proof 

is as follows.  

The coupled mode equation for the cavity mode side coupled to a one-way 

waveguide is written as 

𝑑𝑎

𝑑𝑡
= (−𝑗𝜔0 − 𝛾𝑒 − 𝛾𝑜)𝑎 + 𝜅𝑆+                   (6.5) 

𝑆− = 𝑑 ⋅ 𝑎 + 𝐶 ⋅ 𝑆+                        (6.6) 

where 𝑎 is the amplitude of the cavity mode, 𝑆+/− is the amplitude of input/output one-

way mode. 𝜅, 𝑑, 𝐶 are coupling coefficients. 𝛾𝑜 is the intrinsic loss of the cavity, where 

the loss is due to the lossy particle in our case. 𝛾𝑒 is the external loss of the cavity, where 
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the loss is due to energy flow from the cavity to the ports. From energy conservation we 

have  

𝑑∗𝑑 = 𝜅∗𝜅 = 2𝛾𝑒                         (6.7) 

From Eq.6.5-6.7 we get  

𝑎 =
√𝛾𝑒

𝑗(𝜔0 − 𝜔) + 𝛾𝑒 + 𝛾𝑜
𝑆+ 

𝐼𝑎𝑏𝑠𝑜𝑟𝑏 = 2𝛾𝑜|𝑎|2 = 2𝛾𝑜 |
√𝛾𝑒

𝑗(𝜔0 − 𝜔) + 𝛾𝑒 + 𝛾𝑜
|

2

|𝑆+|2 ≤ 2𝛾𝑜 |
√𝛾𝑒

𝛾𝑒 + 𝛾𝑜
|

2

|𝑆+|2 

=
2𝛾𝑜𝛾𝑒

|𝛾𝑜 + 𝛾𝑒|2
|𝑆+|2 ≤

1

2
|𝑆+|2 =

1

2
𝐼 

For the first inequality, equal sign holds when the cavity is on resonance, i.e. 𝜔 = 𝜔0. For 

the second inequality, equal sign holds when critical coupling occurs, i.e. 𝛾𝑜 = 𝛾𝑒. As the 

average torque only attributes to the absorption port, and 
𝜕𝜙𝑎𝑏𝑠𝑜𝑟𝑏

𝜕𝜃
 is on the scale of 1, the 

torque is largely determined by the absorption power. Therefore, the upper limit of the 

magnitude of the torque is on the order of 
𝐼

2𝜔
. For a full circle of motion, the upper limit 

of the work done on the particle is 
𝐼𝜋

𝜔
.  

6.4 CONCLUDING REMARKS 

In conclusion, we have proposed a photonic motor allowing a lossy particle to 

conduct cyclic motion around a phase singularity in a photonic crystal defect cavity. The 

torques around the phase singularity are predicted and verified by RTOF. The force field 

in the cavity can trap the particle along a circular orbit where the torque is unidirectional. 

Based on coupled mode theory, the theoretical upper limit of the torque in our system is 

𝐼/2𝜔, when the cavity is operating on resonance and at critical coupling. The upper limit 

of the torque is irrelevant to the quality factor of the cavity, allowing low Q cavity and 

broad band operation.  
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Chapter 7:  Optomechanics in Graphene Guided-wave System 

7.1 INTRODUCTION 

Graphene is a promising material for optomechanical applications due to its 

exceptional optical and mechanical properties. Optically, graphene interacts strongly with 

the light polarized parallel to its surface, leading to strong confinement of light, which is 

favorable for enhancing optical forces. For example, resonance enhanced optical forces in 

the THz regime on a suspended graphene under normal incidence of light had been 

numerically demonstrated[18]. Although graphene is lossy in the plasmonic regime, the 

loss greatly reduces when operating in the THz regime[35], [36]. Mechanically, graphene 

has one of the highest stiffness in the in-plane direction, low bending modulus in the out 

of plane direction and low mass density as a single-layer material[132]. Graphene as a 

mechanical resonator had been widely studied for potential applications in MEMs and 

NEMs[132], [133]. Optomechanically, graphene elastic modes interact efficiently with 

electromagnetic waves. For example, it can couple to microwave cavities[134], undergo 

laser cooling[135], and be detected by evanescent field[136].  

Recent advancement in Radio Frequency (RF) signal processing have witnessed 

the usage of a strong nonlinear optomechanical interaction, known as Stimulated Brillouin 

Scattering (SBS), that can coherently transduce[12] and magnify[11] RF signals. Strong 

SBS interaction requires strong optical forces along guided waves. This had been realized 

in Silicon step-index waveguides[11]–[13], where the enhancement of optical forces arise 

from sub-micron confinement of light to the waveguide cross sections [10], [66]. The 

lateral confinement of light translates to wavelength reduction in the direction of 

propagation. Graphene guided-wave system exhibits extraordinary wavelength reduction 

[35], [36], being orders of magnitude stronger than existing guide-wave systems such as 

hybrid plasmonic waveguide [137] and silicon step-index waveguide[66], which should in 
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principle lead to strong optical forces along graphene waveguides. Moreover, graphene 

offers small mass density, large overlap between the optical force field and elastic 

displacement field, which are all preferred features for strong SBS generation. However, 

such potential has not yet been investigated.  

We study the enhancement of optical forces in graphene guided-wave system and 

its potential application to SBS generation. Our work[20] numerically demonstrate that 

quasi-TEM mode confined between parallel graphene sheets provides strong optical forces 

at terahertz due to orders of magnitude of wavelength reduction. At the same time, an 

independent work conducted by Lu et.al[138] arrived at similar conclusion about the strong 

optical forces between parallel graphene nanoribbons. Our work[20] further shows that the 

optical forces induced by a quasi-TEM mode remain attractive irrespective of the 

manipulations on the dispersion relations, and irrespective of forward or backward waves. 

Transmission line model [35] and response theory [42] are applied to provide a profound 

understanding about the magnitude and direction of forces (Section 7.2). Next, we combine 

the optical forces and mechanical properties of graphene to estimate the SBS gain in 

graphene guided-wave system, which turns out to be orders of magnitude stronger than that 

in a Silicon step-index waveguide (Section 7.3).  

Part of this work had been published at the Conference on Lasers and Electro-

Optics[20].  

7.2 OPTICAL FORCES 

7.2.1 Enhanced Optical Forces due to Extraordinary Wavelength Reduction 

The quasi-TEM mode (Fig.7.1b) between parallel graphene sheets (Fig.7.1a) 

separated by tens of nanometers has recently been shown to offer orders of magnitude of 

wavelength reduction [35], [36]. The extraordinary wavelength reduction is induced by the 
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large kinetic inductance of graphene in the THz regime, which makes graphene an 

excellent conductor to confine the quasi-TEM mode. The quasi-TEM mode and plasmonic 

mode are found along the same dispersion relation. While the plasmonic mode resides in 

the higher frequency range (~100THz) and is lossy because the field is mostly concentrated 

on the graphene sheets (Fig.7.1c). As a result, graphene optomechanics generally stay away 

from the plasmonic regime [18].  

 

 

Figure 7.1: (a) Schematic of a parallel graphene sheet waveguide. (b) Cross-sectional 

electric field distribution of a Quasi-TEM mode at 1THz. (c) Cross-sectional 

electric field distribution of a plasmonic mode at 100THz. Vectors indicate 

the electric field components in x-z plane.  

Transmission line model provides a profound understanding on the dispersion 

relations and wavelength reduction of the quasi-TEM mode between parallel graphene 

sheets[35]. According to transmission line model[114], the propagation constant is 

expressed as  

𝑘 = √(𝑅 + 𝑗𝜔𝐿)(𝑗𝜔𝐶)                        (7.1) 

where 𝑅 , 𝐿 , 𝐶  represent the resistance, inductance, and capacitance per unit length 

respectively. The graphene quasi-TEM mode resides in the LC regime (𝜔𝐿 > 𝑅), where 

the dispersion relation is largely linear. This is corroborated by the slowly changing 

effective index 𝑛𝑒𝑓𝑓 = 𝑘/𝑘0 in the THz range that corresponds to the quasi-TEM mode 
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(Fig.7.2a). As the capacitance 𝐶 scales with 𝑔−1, we have 𝑛𝑒𝑓𝑓 ∝ 𝑔−1/2, where 𝑔 is 

the gap size between the parallel graphene sheets. The effective index 𝑛𝑒𝑓𝑓 represents the 

factor for wavelength reduction, which achieves 40 at a 30nm gap size. The wavelength 

reduction becomes even stronger for smaller gap sizes. The scaling power of −1/2 

remains largely the same for a broad range of frequencies (Fig.7.2b). While for higher 

frequencies in the 100THz range, the quasi-TEM mode transforms into a plasmonic mode, 

which renders the transmission line model inapplicable, resulting in nonlinear dispersion 

relation (Fig.7.2a) and significantly different scaling power between 𝑛𝑒𝑓𝑓 and 𝑔 (purple 

line in Fig.7.2b).  

Using response theory of optical forces (RTOF) [42], we can predict the scaling 

and enhancement of lateral optical forces. According to the response theory, the forces 

(Fig.7.2c) follow the relation  

𝐹𝑧 =
1

ω

𝑑𝑘

𝑑𝑔
                              (7.2) 

where 𝐹𝑧 is the force per unit propagation length, normalized by the guided optical power, 

𝜔 is the angular frequency, 𝑘 is the wavenumber. Eq.7.2 can be understood by thinking 

of the guided mode as a port that allows the photon to leave the system. The phase of the 

port is determined by 𝑘 ⋅ 𝐿, where 𝐿 is the length from the source to the reference plane 

where we measure the phase. As we enlarge the gap size 𝑔, response theory predicts a 

force of 
𝐼

𝜔

𝑑(𝑘𝐿)

𝑑𝑔
 in the direction of displacement, applied on the segment of waveguide 

with the length 𝐿. After normalizing the forces versus the length and power, we arrive at 

Eq.7.2. Next, using the relations 𝑘 = 𝑛𝑒𝑓𝑓𝑘0 and 𝑛𝑒𝑓𝑓 ∝ 𝑔−1/2 we find 𝐹𝑧 ∝ −𝑔−3/2. 

The negative sign origins from the negative slope in 𝑘 versus 𝑔, indicating attractive 

forces. At a 30nm gap size, the magnitude of the force between the graphene sheets is 40 

times stronger than the maximum radiation pressure on the surface of a Silicon step-index 

waveguide[66], for the same guided power.  
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Figure 7.2: (a) Dispersion relation of the quasi-TEM mode for a series of separations g. 

Dots: from transmission line model; Lines: from first principle simulation 

(using Drude model for the conductivity of graphene [35]) (b) Relation 

between the effective index 𝑛𝑒𝑓𝑓 and the separation g for a series of 

frequencies. (c) Relation between the attractive optical force −𝐹𝑧 and the 

separation g for a series of frequencies. Dots: from RTOF, Lines: from 

Maxwell Stress tensor13. The graphene sheets have infinite width in x 

direction.  

7.2.2 Direction of Optical Forces under Dispersion Tuning 

The strongly confined quasi-TEM mode allows the freedom to create a quasi-2D 

mode in the 3D structure [35]. Sandwiching a patterned dielectric slab between the 

graphene sheets, one can obtain a band structure that is identical to the TM modes in a 

purely 2D system, except for the frequencies are compressed proportional to √𝑔 [35] 14. 

Can we get strong repulsive forces instead of the attractive forces (see Section 7.2.1), by 

tuning the dispersion relation of the quasi-TEM mode? It is well-known that the optical 

forces in conventional waveguide change sign when the guided wave changes from a 

forward wave (𝑘 ⋅ 𝑣𝑔 > 0, 𝑣𝑔 : group velocity) to a backward wave (𝑘 ⋅ 𝑣𝑔 < 0 [23], 

[116]). However, our study demonstrates that the optical force induced by the quasi-TEM 

                                                 
13 Using 𝑭 = ∫ (𝑇2 − 𝑇1) ⋅ 𝒏1→2 𝑑𝑠

𝑆
 

14 As the gap size 𝑔 reduces, wavelength reduction enlarges the wavenumber, following 𝑘 ∝ 𝑛𝑒𝑓𝑓 ∝

𝑔−1/2. To find the original 𝑘 in the band structure, the corresponding frequency is reduced to 𝑓 ∝ 𝑔1/2. 
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mode remains attractive, irrespective of dispersion tuning, and irrespective of forward or 

backward waves.  

First we demonstrate attractive forces from a quasi-TEM mode which is engineered 

into a backward wave. A photonic crystal supporting backward wave is sandwiched 

between the graphene sheets (Fig.7.3a,b). The backward wave exists along the Γ − 𝑀 

direction of the 2nd bulk band (Fig.7.3c) for 𝑘𝑥, 𝑘𝑦 ∈ (0.3,0.38)2𝜋/𝑎 [23]. We calculate 

the forces from first principle simulation and find attractive forces (Fig.7.3d) for the entire 

2nd bulk band along the Γ − 𝑀 direction.  

Now we explain the reason for universal attractive forces associated with the quasi-

TEM mode. From RTOF[42]: the direction of forces follow the sign of 𝑑𝑘/𝑑𝑔. Although 

the periodicity complicates the identification of the wavenumber 𝑘  in the periodic 

Brillouin zone, the relation 𝑓 ∝ √𝑔  simplifies the picture: For a fixed 𝑘 , the eigen 

frequency increases as g increase (Fig.7.3c,e). So for a fixed frequency, a mode with 

positive group velocity always experiences a left-shift in 𝑘 following the red arrows in 

Fig.7.3e, no matter whether the mode is forward-wave or backward-wave. The rule to use 

RTOF here is we need to always use the segments with positive group velocity, because 

the forces perpendicular to the graphene do not distinguish between a pair of opposite 

waves that are parallel to the graphene. Therefore, 𝑑𝑘/𝑑𝑔 < 0 and attractive forces are 

always the case for quasi-TEM modes, irrespective of dispersion tuning.  

For the hybrid photonic crystal structure, the force from response theory is a total 

force on the hybrid interface including both the dielectric interface and the graphene. The 

hybrid interface is stable due to strong van der Waals force. For application as body force, 

one can fill the space between graphene with dielectric, meanwhile using photonic crystal 

to fine tune the dispersion relation. For application of forces on suspended graphene, one 
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can introduce an air defect in the photonic crystal slab[35], so that the optical force will be 

confined to the defect region.  

 

 

Figure 7.3: (a) Schematic of a unit cell of two single-layer graphene sheets sandwiching a 

square lattice (𝑎 = 450𝑛𝑚) of dielectric rods (𝜖𝑟 = 9, 𝑟 = 0.2𝑎). (b) Side 

and top view of the field distribution for a quasi-TEM mode. (c) Dispersion 

relation of the 2nd bulk band along Γ − 𝑀 direction, for different g. (d) 

Attractive forces for bands in (b). (d) Schematic of how the dispersion 

relation shift as g increase.  

7.3 STIMULATED BRILLOUIN SCATTERING USING GRAPHENE WAVEGUIDE 

In this section we estimate the SBS gain in the Graphene waveguide and compare 

it with the SBS gain in a Silicon step-index waveguide[12], [139].  

In a typical SBS process, the pump wave 𝑬𝑝 = 𝑒𝑖𝑘𝑝𝑥−𝑖𝜔𝑝𝑡 and Stokes wave 𝑬𝑠 =

𝑒𝑖𝑘𝑠𝑥−𝑖𝜔𝑠𝑡 generate an optical force field that have the phase-matched wavenumber 𝑞 =

𝑘𝑝 − 𝑘𝑠 at the beating frequency Ω = 𝜔𝑝 − 𝜔𝑠 ≪ 𝜔𝑝,𝑠. Mechanical vibrations driven by 

the optical forces enable parametric conversion between the pump and Stokes waves, 

following the relation [140] 

𝑑𝑃𝑠

𝑑𝑥
= 𝑔𝑃𝑝𝑃𝑠 − 𝛼𝑠𝑃𝑠                         (7.3) 
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where 𝑃𝑝 = 𝑣𝑔〈𝑬𝑝, 𝜖𝑬𝑝〉/2, 𝑃𝑠 = 𝑣𝑔〈𝑬𝑠, 𝜖𝑬𝑠〉/2 are the powers of the pump and Stokes 

waves, 𝑔 is the SBS gain, 𝛼𝑠 is the optical damping coefficient. The SBS gain of a single 

elastic mode is expressed as [139] 

𝑔𝑚(Ω) = 𝐺𝑚
(Γ𝑚/2)2

(Ω−Ω𝑚)2+(Γ𝑚/2)2
                   (7.4) 

𝐺𝑚 =
𝜔⋅𝑄𝑚

Ωm
2 2𝑃𝑝𝑃𝑠

⋅
|〈𝒇𝑚,𝒖𝑚〉|2

〈𝒖𝑚,𝜌𝒖𝑚〉
                      (7.5) 

where Ω𝑚 is the eigen frequency of the mechanical mode, Γ𝑚 is the elastic loss, 𝑄𝑚 =

Ω𝑚/Γ𝑚 is the quality factor of the mechanical vibration, 𝜔 is the optical frequency, 𝒇𝑚 

is the force density, 𝒖𝑚 is the displacement field of the eigen elastic mode, 𝜌 is the mass 

density. The SBS gain 𝑔𝑚 takes the maximum value 𝐺𝑚 when operating under phase 

matching and frequency matching condition.  

To facilitate RF signal processing, the mechanical frequency Ω𝑚 is usually chosen 

in the GHz range which matches with the RF signal. While other parameters can differ 

across systems. In order to enlarge the SBS gain, it is beneficial to have (1) high optical 

frequency 𝜔; (2) high mechanical quality factor 𝑄𝑚; (3) large forces under a given power 
𝑓𝑚

𝑃𝑝,𝑠
; (4) large overlap between the force field and the elastic mode 〈𝒇𝑚, 𝒖𝑚〉; and (5) small 

mass density 𝜌 . In the following we will see: although the graphene optomechanical 

system has smaller values in (1)&(2) compared to a Silicon step-index waveguide, it brings 

greater enhancements in (3)(4)(5) and overall a larger 𝐺𝑚.  

To support mechanical mode, the parallel graphene sheets are doubly clamped to a 

pair of slabs (Fig.7.4a), leaving a suspended region of width 𝑑 that can deflect and vibrate 

under optical forces. The clamping also allows pre-strain in the x direction, to achieve the 

desired mechanical frequency Ω𝑚. The mechanical eigen mode can be described as  

𝒖𝑚 = (0,0, 𝑤(𝑥, 𝑦, 𝑡))                        (7.6) 

which is governed by [141] 

�̈� + 𝑐�̇� − 𝜌−1 {
𝜕

𝜕𝑥
[
𝜕𝑤

𝜕𝑥
𝑇𝑥] +

𝜕

𝜕𝑦
[
𝜕𝑤

𝜕𝑦
𝑇𝑦]} = 0              (7.7) 
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𝑇𝑥 = (𝜆 + 2𝜇)𝛿𝑥 + 𝜆𝛿𝑦 + (
𝜆

2
+ 𝜇) [(

𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑦
)
2

]          (7.8) 

𝑇𝑦 = (𝜆 + 2𝜇)𝛿𝑦 + 𝜆𝛿𝑥 + (
𝜆

2
+ 𝜇) [(

𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑦
)
2

]          (7.9) 

where 𝑤(𝑥, 𝑦, 𝑡) is the deflection in the z direction, 𝑐 the damping coefficient, 𝑇𝑥 and 

𝑇𝑦 are tensions in the x and y direction induced by the stretching of graphene, 𝜆 and 𝜇 

are Lame parameters, 𝛿𝑥 and 𝛿𝑦 are constants representing the pre-strains in the x and y 

directions. Here we have 𝛿𝑥 ≠ 0 and 𝛿𝑦 = 0. Under small deflections, the nonlinear 

terms can be ignored[132], [141], Eq.7.7-7.9 reduce to  

�̈� + 𝑐�̇� − 𝜌−1 {(𝜆 + 2𝜇)𝛿𝑥
𝜕2𝑤

𝜕𝑥2 + 𝜆𝛿𝑥
𝜕2𝑤

𝜕𝑦2} = 0           (7.10) 

The mechanical mode on graphene follows the form of  

𝑤(𝑥, 𝑦, 𝑡) = 𝑤(𝑡) cos
𝜋𝑥

𝑑
𝑒𝑖⋅𝑞⋅𝑦                   (7.11) 

with an eigen frequency  

Ω𝑚 =
𝜋

𝑑
√

𝛿𝑥

𝜌
[𝜆 (1 + (

𝑞

𝜋/𝑑
)
2

) + 2𝜇]                 (7.12) 

Experimental works [132] have reported the mechanical quality factor 𝑄𝑚=300 for doubly 

clamped graphene strips at room temperature, where the mechanical damping is dominated 

by thermoelectric dissipation. At low temperatures (<100mK), the quality factor can 

increase to 105 , where the mechanical damping is dominated by clamping loss. 

Nevertheless, even at room temperature, the damping coefficient 𝑐 is much smaller than 

Ω𝑚 and can be ignored to arrive at Eq.7.12.  

For the quasi-TEM mode, the ratio between the optical forces and the guided power 

per unit width is invariant to the width (Fig.7.2). Exposing the clamped part of graphene to 

light causes inefficient usage of optical power because the clamped part cannot vibrate as 

the aforementioned elastic mode even though they also experience optical forces. So we 

use 1D photonic crystals instead of uniform slabs on the sides to concentrate the optical 

power to the suspended region. (Fig.7.4b). The 1D photonic crystals also help to shape the 
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y-directional forces into a lateral dependence that roughly follows cos
𝜋𝑥

𝑑
 (Fig.7.4c), 

which largely overlaps with the displacement field.  

 

 

Figure 7.4: (a) Schematic of doubly clamped parallel graphene sheets for SBS generation. 

(b) Distribution of electric field in the cross section at f=20THz. The slabs 

on the sides are patterned into 1D photonic crystals to provide lateral 

confinement and shape the force field. The 1D PhC consists of half low 

index material (𝜖𝑟 = 2.25) and half high index material (𝜖𝑟 = 11.67). The 

periodicity of the 1D PhC is 80nm. (c) Vector indicates the forces on the top 

layer graphene. The bottom layer graphene experiences opposite z-

directional forces, which is not shown here.  

Let’s consider the optical modes (pump and Stokes) operating at frequencies 𝑓𝑝 ≈

𝑓𝑠 = 20𝑇𝐻𝑧, to interact with a mechanical mode at frequency 𝑓𝑚 = 𝑓𝑝 − 𝑓𝑠 = 2.5𝐺𝐻𝑧. 

The gap size between the graphene sheets is chosen to be 𝑔 = 30𝑛𝑚 . The width of 

suspended graphene is chosen to be 𝑑 = 500𝑛𝑚. The optical frequency and gap size 

determines the effective index to be 𝑛𝑒𝑓𝑓 = 37.85 (Fig. 7.2a), which stays relatively a 

constant for a bandwidth of a few GHz. The phase-matching wavenumber for the 

mechanical mode in the propagation direction is 𝑞 = 𝑘𝑝 − 𝑘𝑠 =
2𝜋(𝑓𝑝−𝑓𝑠)

𝑐
⋅ 𝑛𝑒𝑓𝑓 =

1983𝑚−1. Notice that 𝑞 is orders of magnitude smaller than the lateral wavenumber 
𝜋

𝑑
=

6.283 × 106𝑚−1. Therefore Eq.7.12 reduces to  



 135 

Ω𝑚 =
𝜋

𝑑
√

𝛿𝑥

𝜌
(𝜆 + 2𝜇)                        (7.13) 

Given the Lame parameters 𝜆 + 2𝜇 = 340𝐽/𝑚2 and mass density 𝜌 = 7.6 × 10−7𝑘𝑔 ⋅

𝑚−2 [141], the required pre-strain 𝛿𝑥 is 1.4%, which is achievable in many experiments 

[133]. Notice that for a fixed mechanical frequency Ω𝑚 , 𝛿𝑥  is proportional to 𝑑2 . 

Therefore having a small width 𝑑 is beneficial for controlling the required pre-strain at a 

low level.  

 Using the parameters discussed above, the SBS gain in the setup shown in Fig.7.4 

is calculated to be 𝐺𝑚 = 4.02 × 108𝑚−1𝑊−1. This is over 104 times stronger than the 

maximum value in a Silicon step index waveguide. Large SBS gain translates to smaller 

pump power and shorter interaction length, to achieve the same level of parametric 

conversion.  

 Here’s a break-down comparison to illustrate why the SBS Gain in graphene 

waveguide is greater than that that in a silicon step-index waveguide. For the Graphene 

waveguide considered above, we have  
𝜔⋅𝑄𝑚

2Ωm
2 =

[2𝜋⋅20𝑇𝐻𝑧]⋅[300]

2[2𝜋⋅2.5𝐺𝐻𝑧]2
                        (7.14) 

|〈𝒇𝑚,𝒖𝑚〉|2

𝑃𝑝𝑃𝑠〈𝒖𝑚,𝜌𝒖𝑚〉
= 15

〈𝒇𝑚,𝒇𝑚〉

𝑃𝑝𝑃𝑠𝜌
=

∫ (2[𝑁⋅𝑚−2]⋅cos
𝜋𝑥

𝑑
)
2
𝑑𝑥

𝑑
2

−
𝑑
2

(1[𝑊⋅𝑚−1]⋅𝑑)2⋅𝜌
=

2[𝑁⋅𝑊−1𝑚−1]
2

𝑑⋅𝜌
     (7.15) 

The surface pressure of 2𝑁 ⋅ 𝑚−2 on graphene for 1𝑊 ⋅ 𝑚−1 power per unit width can 

be found from Fig.7.2c, at 30nm gap size. For a Silicon step-index waveguide with the 

cross section 𝑎1 × 𝑎2 and mass density 𝜌𝑆𝑖 = 2329𝑘𝑔 ⋅ 𝑚−3:  
𝜔⋅𝑄𝑚

2Ωm
2 =

[2𝜋⋅200𝑇𝐻𝑧]⋅[1500]

2[2𝜋⋅2.5𝐺𝐻𝑧]2
                      (7.16) 

The optical forces include the surface radiation pressure and the electrostrictive body force. 

Let’s first estimate the contribution from the surface radiation pressure: 

                                                 
15 Using the fact that 𝑓𝑚,𝑧 ∝ cos

𝜋

𝑑
𝑥 ⋅ 𝑒𝑖𝑞𝑦, 𝒖𝒎 = [0,0, cos

𝜋

𝑑
𝑥 ⋅ 𝑒𝑖𝑞𝑦] and integrating only along the 

graphene (x-direction).  
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|〈𝒇𝑚,𝒖𝑚〉|2

𝑃𝑝𝑃𝑠〈𝒖𝑚,𝜌𝑆𝑖𝒖𝑚〉
=

〈𝒇𝑚,𝒇𝑚〉

𝑃𝑝𝑃𝑠𝜌𝑆𝑖
𝐶 =

∫ 𝑑𝑥
𝑎1/2
−𝑎1/2 ∫ 𝑑𝑦

𝑎2/2
−𝑎2/2

105[𝑁⋅𝑚−2]

𝑎1

105[𝑁⋅𝑚−2]

𝑎2

[𝑊]2⋅𝜌𝑆𝑖
𝐶 =

(105[𝑁⋅𝑚−2])
2

[𝑊]2⋅𝜌𝑆𝑖
𝐶 (7.17) 

Where the factor 𝐶  accounts for the mismatch between the force field 𝑓𝑚  and 

displacement field 𝑢𝑚  in the silicon waveguide, typically taking the value of 0.1. In 

Eq.7.17, we have used the maximum surface radiation pressure on a silicon step-index 

waveguide, which was reported to be 105𝑁 ⋅ 𝑚−2  for 1𝑊  of guided power, after 

scanning over the cross-sectional side length [66]. We also used a trick to remove the 

dimensional dependence in the Silicon waveguide for the purpose of comparison, by 

distributing the surface pressure over the bulk to arrive at a force density 
105[𝑁⋅𝑚−2]

𝑎1,2
. 

Finally, we find the value of Eq.7.14 is 50 times smaller than that of Eq.7.16, while the 

value of Eq.7.15 is 1.2× 107 times greater than that of Eq.7.17, which indicates the SBS 

Gain in the graphene waveguide is 2.4× 105  times stronger than the surface radiation 

pressure induced SBS Gain in the Silicon step-index waveguide. Combing the contribution 

from electrostrictive force in Silicon step-index waveguide, one can boost the SBS Gain 

by a factor of 10 [139]. Overall, the SBS Gain in the graphene waveguide is still over 104 

times stronger than that in a Silicon step-index waveguide.  

7.4 CONCLUDING REMARKS 

In conclusion, we have demonstrated strong optical forces between parallel 

graphene sheets at terahertz due to extraordinary wavelength reduction of the guided quasi-

TEM mode, as well as its potential to generate strong SBS interaction. The wavelength 

reduction factor as well as the forces scale up as the gap size between the graphene sheets 

reduces. At a 30nm gap size, the forces are 40 times stronger than the maximum value 

achieved in a silicon step-index waveguide[66]. The force induced by a quasi-TEM mode 

remains attractive, irrespective of dispersion tuning, and irrespective of forward or 

backward waves. Combining the strong optical forces and the exceptional mechanical 
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property of graphene, a doubly clamped graphene waveguide can support an SBS gain of 

4e8/W/m, which is 4 orders of magnitude stronger than in a Silicon step-index 

waveguide[10].  
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Chapter 8:  Topology Optimization for Dispersion Engineering 

8.1 INTRODUCTION 

Topology optimization is a powerful technique for structural design in photonics 

[15], [16], [67], [68], [70], [139], [142]–[145] and mechanics [69]. It optimizes the material 

layout in a given design space, to improve the performance of the system. The design can 

attain any shape, which fully exploits the degrees of freedom available in a limited space. 

In topology optimization, the space is discretized into finite elements, where the material 

properties on each element are treated as design parameters. With recent advancements in 

computational power, topology optimization can handle millions of design parameters and 

a fine discretization[15].  

In photonics, topology optimization can be applied for a broad range of purposes, 

such as to enlarge a complete band-gap[70], to tailor a slow light [67], [68], to design a 

broadband mode converter [16], [143], [144], to enhance the resonance in a cavity [142], 

to enhance nonlinear interactions [15], [145], etc. Suitable mathematical formulations are 

chosen based on the design target. For example, to maximize a complete bandgap, people 

have developed semidefinite program[70]. To tailor the scattering coefficients over a 

spectrum, or the quality factor of resonators, or the strength of nonlinear interaction, it is 

usually formatted as maximizing/minimizing the overlap integral between the driven fields 

and a specified field profile, or between multiple driven fields [15], [16], [142]–[145]. To 

tune the dispersion relations for a specific mode, one may locally perturb the structure to 

modify the Eigen frequencies [68], [146]. The gradients of the target function versus the 

element-wise material properties can be constructed through finite difference[15] or finite 

element [70] methods.  

In this Chapter we apply topology optimization to one of our systems, to replace 

human effort with computational power, for future convenience in the optomechanics 
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structural design process. Based on our specific problem, we formulate the proper target 

functions and constraints, choose a suitable discretization approach and construct the 

gradients of the target and constraints versus the design parameters. Then using the 

globally-convergent method-of-moving-asymptotes (MMA) algorithm[147], we perform 

the optimization to tune the shape of the dielectric structures towards the design target.  

8.1.1 Description of the Dispersion Engineering Problem 

Recall that in Chapter 4.2, we encountered a dispersion engineering problem. We 

were searching for a single-mode backward-wave to realize long range and robust optical 

pulling forces in an all Silicon photonic crystal waveguide (Fig.8.1a). We have found a 

defect waveguide mode which is a backward-wave whose group velocity is opposite to its 

wavenumber (|𝑘𝑥| < 0.35 ⋅ 2𝜋/𝑎 on the blue curve in Fig.8.1b). However, the dispersion 

relation (blue curve in Fig.8.1b) begins to have a positive slope for |𝑘𝑥| > 0.35 ⋅ 2𝜋/𝑎, 

which becomes a forward-wave and coexists with the backward-wave at the same 

frequency. Single mode operation is desirable for experiments because it drastically 

simplifies the light source used to excite the backward-wave mode, and avoids mode 

mixing due to scattering. On the dispersion curve of the Bloch mode that we use, single 

mode means we can have only a single k value in the range of (0,𝜋/𝑎) at a given frequency, 

which is not the case for the curve shown in Fig.8.1b. In Chapter 4.2, we hand-tuned the 

structure to bring down the frequency of the defect waveguide mode for |𝑘𝑥| > 0.35 ⋅

2𝜋/𝑎, without deforming the rest of the band structure. Here instead of hand-tuning, we 

apply gradient based topology optimization for the same purpose. We format the 

optimization problem as follows: 

Minimize:  

𝑓 = max
𝑘∈[0.35⋅

2𝜋

𝑎
,0.5⋅

2𝜋

𝑎
]
𝜔𝑤𝑔,𝑘                       (8.1) 
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With constraints:  

𝑔1 =
𝜔𝑤𝑔,𝑘=0.2

𝑖𝑛𝑖𝑡𝑖𝑎𝑙

1+ 1
− 𝜔𝑤𝑔,𝑘=0.2 < 0                    (8.2) 

𝑔2 =
𝜔𝑢𝑝,𝑘=0.45

𝑖𝑛𝑖𝑡𝑖𝑎𝑙

1+ 2
− 𝜔𝑢𝑝,𝑘=0.45 < 0                   (8.3) 

𝜖𝑟
𝔻 ∈ [𝜖𝑟

𝑎𝑖𝑟 , 𝜖𝑟
𝑠𝑖𝑙𝑖𝑐𝑜𝑛] 

where 𝜔 = 2𝜋𝑓 , 𝜔𝑤𝑔  is the angular frequency of the waveguide mode, 𝜔𝑢𝑝  is the 

angular frequency of the upper bulk mode, 0 < 휀1,2 ≪ 1 is a slack variable that allows 

the frequency of each mode to be lowered for a limited percentage during optimization. 

𝜖𝑟
𝔻 is the relative permittivity in the design region. During optimization iterations we allow 

𝜖𝑟
𝔻  to take continuous values between 𝜖𝑟

𝑎𝑖𝑟 = 1 and 𝜖𝑟
𝑠𝑖𝑙𝑖𝑐𝑜𝑛 = 12.25. In the end we 

apply level set method[148] to convert 𝜖𝑟
𝔻 into binary values.  

Thanks to the periodicity, we only need to compute the eigenvalue problem for a 

unit cell. The unit cell is chosen to have 7 rods on both sides of the line defect (total size 

1𝑎 × 14.5𝑎). Periodic boundary condition is applied. To prevent the band structure and 

mode profile from changing drastically, and to prevent the added dielectrics from blocking 

the path for the particles in the center of the waveguide, we limit the design region to the 

orange shaded rectangular areas in Fig.8.1a. Notice that the design regions are periodically 

repeated along the x-axis. In the design regions, we can modify the dielectric properties of 

each mesh element. While outside of the design regions, the structure is fixed.  
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Figure 8.1: The dispersion engineering problem towards single mode operation. (a) 

Schematic of the waveguide: line defect with a width 𝑑 = 1.5𝑎 along the 

Γ-X direction in a 2D square lattice photonic crystal of silicon rods (𝑟 =
0.15𝑎, 𝜖𝑟 = 12.25). The design regions are repeated along the x-axis, for 

every lattice constant 𝑎. (b) Dispersion relation (TM-polarization) of the 

waveguide mode (blue) and bulk modes (other colors). The target of the 

dispersion engineering is to reduce the frequency of the waveguide mode for 

𝑘𝑥 ∈ [0.35,0.5]
2𝜋

𝑎
 as indicated by the black arrows. While enforcing 

constraints to limit the reduction in the frequencies denoted by the red dots. 

The calculated Eigen frequencies are slightly higher than that shown in 

Chapter 4.2 due to the lower finite element resolution being used here[73].  

8.2 IMPLEMENTATION 

Finite element method is employed to construct a linear algebra representation of 

the physics problem, from which we can extract the gradients of the Eigen frequencies 

versus the dielectric properties of each mesh element in the design region. The gradient 

based dispersion engineering turns out to be equivalent to a sequence of Eigen value 

perturbation. At each iteration, gradients are computed; updates are applied to the dielectric 

properties; and the Eigen value problem is recalculated. As the iteration goes on, the 

dispersion relations are tuned towards the design target.  

8.2.1 Finite Element Formulation 

As we have mentioned in Chapter2.1.1, the Eigen value study used to calculate the 

photonic crystal band structure is based on the Master’s equation of electromagnetic fields.  
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∇ × (
1

𝜇
∇ × 𝑬(𝒙)) − 𝜔2𝜖 (𝒙)𝑬(𝒙) = 0                     (8.4) 

where 𝑬 is the electric field; 𝒙 ∈ ℝ2, ℝ2 represents the coordinates in the unit cell; 𝜇 

is the permeability, equaling to the vacuum permeability 𝜇0; 𝜖  is the permittivity, which 

is to be tuned through optimization; 𝜔 is the angular frequency. As the mode of interest 

takes TM polarization, we can simply use 𝐸 to denote the out-of-plane electric field, 

Eq.8.4 becomes  

−∇ ⋅ (∇𝐸(𝒙)) − (
𝜔

𝑐
)
2

𝜖𝑟(𝒙)𝐸(𝒙) = 0                  (8.5) 

For Bloch modes 

𝐸(𝒙) = 𝑢𝑘(𝒙) ⋅ 𝑒𝑖𝒌⋅𝒙                         (8.6) 

where 𝑢𝑘 is the unit cell function, 𝒌 is the Bloch k, taking real values for lossless system. 

Finite element method converts the original PDE (Eq.8.5) into a weak form  

−∫ �̃�(𝒙) [∇ ⋅ (∇𝐸(𝒙)) − (
𝜔

𝑐
)
2

𝜖𝑟(𝒙)𝐸(𝒙)] 𝑑Ω
ℝ2 = 0           (8.7) 

where �̃� is the test function for 𝐸. The test function is free to take any value. Without loss of 

generality, we can use 

�̃�(𝒙) = �̃�𝑘(𝒙) ⋅ 𝑒−𝑖𝒌⋅𝒙                        (8.8) 

Combining Eq.8.6-8.8 and using integration by parts we get 

∫ ∇[�̃�𝑘 𝑒
−𝑖𝒌∙𝒙] ⋅ ∇[𝑢𝑘 𝑒

𝑖𝒌∙𝒙]𝑑Ω
ℝ2

− ∫ �̃�𝑘  𝑒−𝑖𝒌∙𝒙∇[𝑢𝑘 𝑒
𝑖𝒌∙𝒙]𝑑s

∂ℝ2

 

= ∫ (
𝜔

𝑐
)
2

𝜖𝑟(𝒓)  �̃�𝑘 𝑢𝑘  𝑑Ω
ℝ2                       (8.9) 

The boundaries between unit cells get contributions from the boundary terms in Eq.8.9 

from both the neighboring unit cells, which cancel out given that there is no electric current 

on the boundary. So we only need to deal with the domain terms:  

∫ ∇�̃�𝑘 ⋅ ∇𝑢𝑘𝑑Ω
ℝ2

− 𝑖𝒌 ⋅ ∫ [�̃�𝑘∇𝑢𝑘 − 𝑢𝑘∇�̃�𝑘]𝑑Ω
ℝ2

+ ∫ 𝒌 ⋅ 𝒌 �̃�𝑘 𝑢𝑘𝑑Ω
ℝ2

 

= ∫ (
𝜔

𝑐
)
2

𝜖𝑟(𝒙)�̃�𝑘 𝑢𝑘𝑑Ω
ℝ2                       (8.10) 
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For discretization, because the unit cell is rectangular and can be divided uniformly 

into squares, we use square shaped elements. For areas outside of the design region, we use 

quad-tree mesh [70] to reduce the computational cost. The quad-tree mesh element 

recursively refines itself if it is crossing a dielectric boundary, until the minimum size is 

reached (Fig.8.2). For regions far from the dielectric boundaries, the mesh elements take 

larger sizes, reducing the number of degrees of freedom efficiently. A 2:1 rule is enforced 

to ensure gradual transition in the mesh size. Inside the design region, all the elements take 

the minimum size, which allows full potential of the element-wise design.  

After discretization, we need to approximate the unknown functions 𝑢𝑘(𝒙) within 

each element. With finite element method, each square shaped elements are mapped to a 

local coordinate (𝜉, 𝜂) as shown in Fig.8.2. Functions inside the element are interpolated 

from the values of the approximated 𝑢𝑘(𝒙) on its four vortices. We use first order shape 

function, because for a given computational power, we prefer to divide the elements in the 

design region as fine as possible, so that the dielectric properties are specified to the finest 

resolution. The first order shape functions include four independent functions, each taking 

value 1 on one of the vortices and 0 on other vortices.  

𝜙1
𝑒 = (1 − 𝜉)(1 − 𝜂)/4 

𝜙2
𝑒 = (1 + 𝜉)(1 − 𝜂)/4 

𝜙3
𝑒 = (1 + 𝜉)(1 + 𝜂)/4 

𝜙4
𝑒 = (1 − 𝜉)(1 + 𝜂)/4 

Values interpolated in the area of the element take the linear combination of the four shape 

functions, while the coefficients are the values of the approximated 𝑢𝑘(𝒙) on the four 

vortices.  
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𝜑𝑘
𝑒 = [𝜙1

𝑒 𝜙2
𝑒 𝜙3

𝑒 𝜙4
𝑒]

[
 
 
 
 
𝑣1,𝑘

𝑒

𝑣2,𝑘
𝑒

𝑣3,𝑘
𝑒

𝑣4,𝑘
𝑒

]
 
 
 
 

 

Mapped onto each element, Eq.8.10 is rewritten into a linear algebra, leaving the values 

on the vortices as unknown coefficients to be solved.  

∫ ∇�̃�𝑘
𝑒 ⋅ ∇𝜑𝑘

𝑒𝑑Ω
e

= �̃�𝑘
(𝑒)𝑇

𝐾(𝑒)𝒗𝑘
(𝑒)

 

𝐾𝑖𝑗
(𝑒)

= ∫ ∇�̃�𝑖
𝑒 ⋅ ∇𝜙𝑗

𝑒 𝑑Ω
𝑒

= ∫ (
∂�̃�𝑖

𝑒

𝜕𝑥

𝜕𝜙𝑗
𝑒

𝜕𝑥
+

∂�̃�𝑖
𝑒

𝜕𝑦

𝜕𝜙𝑗
𝑒

𝜕𝑦
)

𝑑𝑥

𝑑𝜉
𝑑𝜉

𝑑𝑦

𝑑𝜂
𝑑𝜂

e

 

= ∫ (
∂�̃�𝑖

𝑒

𝜕𝜉

𝜕𝜙𝑗
𝑒

𝜕𝜉
+

∂�̃�𝑖
𝑒

𝜕𝜂

𝜕𝜙𝑗
𝑒

𝜕𝜂
)𝑑𝜉𝑑𝜂

e

 

𝑑𝑥

𝑑𝜉
=

𝑑𝑦

𝑑𝜂
=

ℎ

2
 

 

−𝑖𝒌 ⋅ ∫ [�̃�𝑘
𝑒∇𝜑𝑘

𝑒 − 𝜑𝑘
𝑒∇�̃�𝑘

𝑒]𝑑Ω
𝑒

= �̃�𝑘
(𝑒)𝑇

[−𝑖𝑘𝑥𝐶𝑥
(𝑒)

− 𝑖𝑘𝑦𝐶𝑦
(𝑒)

]𝒗𝑘
(𝑒)

 

𝐶𝑥,𝑖𝑗
(𝑒)

=
ℎ

2
∫ (�̃�𝑖

𝑒
𝜕𝜙𝑗

𝑒

𝜕𝜉
− 𝜙𝑗

𝑒 ∂�̃�𝑖
𝑒

𝜕𝜉
)𝑑𝜉𝑑𝜂

𝑒

 

𝐶𝑦,𝑖𝑗
(𝑒)

=
ℎ

2
∫ (�̃�𝑖

𝑒
𝜕𝜙𝑗

𝑒

𝜕𝜂
− 𝜙𝑗

𝑒 ∂�̃�𝑖
𝑒

𝜕𝜂
)𝑑𝜉𝑑𝜂

𝑒

 

 

∫ 𝒌 ⋅ 𝒌 �̃�𝑘
𝑒  𝜑𝑘

𝑒𝑑Ω
𝑒

= �̃�𝑘
(𝑒)𝑇|𝒌|2𝑀(𝑒)𝒗𝑘

(𝑒)
 

𝑀𝑖𝑗
(𝑒)

= (
ℎ

2
)
2

∫ �̃�𝑖
𝑒𝜙𝑗

𝑒 𝑑𝜉𝑑𝜂
𝑒

 

 

∫ (
𝜔

𝑐
)
2

𝜖𝑟(𝒙)�̃�𝑘
𝑒 𝜑𝑘

𝑒𝑑Ω
𝑒

= �̃�𝑘
(𝑒)𝑇

𝜆𝑘𝑀𝜖
(𝑒)

𝒗𝑘
(𝑒)

 

𝜆𝑘 = (
𝜔𝑘

𝑐
)
2

 

𝑀𝜖,𝑖𝑗
(𝑒)

= (
ℎ

2
)
2

∫ 𝜖𝑟
(𝑒)

�̃�𝑖
𝑒𝜙𝑗

𝑒 𝑑𝜉𝑑𝜂
𝑒
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Collecting all terms we have 

�̃�𝑘
(𝑒)𝑇

(𝐾(𝑒) − 𝑖𝒌 ⋅ 𝑪(𝑒) + |𝒌|2𝑀(𝑒))𝒗𝑘
(𝑒)

= 𝜆𝑘�̃�𝑘
(𝑒)𝑇

𝑀𝜖
(𝑒)

𝒗𝑘
(𝑒)

     (8.11) 

Next, Eq.8.11 of all the elements are assembled into a comprehensive system of 

equations. Meanwhile, we need to eliminate some degrees of freedom that are not 

independent: (1) In the quad-tree mesh, a vortex positioned in the middle of an edge (red 

dots in Fig.8.2) depends on the nearest two vortices on the same edge (taking the 

interpolation). (2) Under periodic boundary condition, vortices on the interfacing 

boundaries are related by a phase factor 𝑒𝑖𝒌⋅𝒂.  

Assembling Eq.8.11 of all the elements and keeping only the independent degrees 

of freedom, we arrive at  

�̃�𝑘
𝑇(𝐾 − 𝑖𝒌 ⋅ 𝑪 + |𝒌|2𝑀)𝒗𝑘 = 𝜆𝑘�̃�𝑘

𝑇𝑀𝜖𝒗𝑘               (8.12) 

Because the test function can take arbitrary values, the vector of coefficients �̃�𝑇 can take 

arbitrary values, requiring  

(𝐾 − 𝑖𝒌 ⋅ 𝑪 + |𝒌|2𝑀)𝒗𝑘 = 𝜆𝑘𝑀𝜖𝒗𝑘                 (8.13) 

Or equivalently, 

(𝐾 − 𝑖𝒌 ⋅ 𝑪 + |𝒌|2𝑀)𝑉𝑘 = 𝑀𝜖𝑉𝑘𝛬𝑘                 (8.14) 

where 𝑉𝑘 is the orthonormal matrix of Eigen vectors. 𝛬𝑘 is the diagonal matrix of eigen 

values 𝜆𝑖𝑏𝑎𝑛𝑑,𝑘 = (
𝜔𝑖𝑏𝑎𝑛𝑑,𝑘

𝑐
)
2

, 𝑖𝑏𝑎𝑛𝑑 = 1,2,3, ….  
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Figure 8.2: Quad-tree mesh shown around a rod. Dots represent vortices of the elements. 

Red dots represent vortices that are located in the middle of an edge, which 

are not independent degrees of freedom. Each square in the mesh is mapped 

to a local coordinate (𝜉, 𝜂), on which the basis functions are defined.  

8.2.2 Gradient Based Optimization 

Topology optimization in photonics usually involve tuning thousands of parameters 

simultaneously. It is inefficient to use Newton or Quasi-Newton methods, because 

computing the Hessian or even the approximation of Hessian are numerically heavy. 

Instead, we use the globally-convergent method-of-moving-asymptotes (MMA) 

algorithm[147] to perform gradient-based local optimization, which is available in an open 

source package nlopt[149].  

The gradients of the target and constraints versus the design parameters (i.e. 

permittivities in the design region 𝜖𝑟
𝔻) are  

𝜕𝑓

𝜕𝜖𝑟
𝔻 = ∑

𝜕𝑓

𝜕𝜔𝑖𝑏𝑎𝑛𝑑,𝑘
⋅

𝜕𝜔𝑖𝑏𝑎𝑛𝑑,𝑘

𝜕𝜖𝑟
𝔻𝑖𝑏𝑎𝑛𝑑,𝑘                  (8.15) 

𝜕𝑔𝑖

𝜕𝜖𝑟
𝔻 = ∑

𝜕𝑔𝑖

𝜕𝜔𝑖𝑏𝑎𝑛𝑑,𝑘
⋅

𝜕𝜔𝑖𝑏𝑎𝑛𝑑,𝑘

𝜕𝜖𝑟
𝔻𝑖𝑏𝑎𝑛𝑑,𝑘                  (8.16) 

To find 
𝜕𝜔𝑖𝑏𝑎𝑛𝑑,𝑘

𝜕𝜖𝑟
𝔻  from Eq.8.14, we notice that for a generalized eigen value problem 

𝐴𝑘𝑉𝑘 = 𝐵𝑘𝑉𝑘𝛬𝑘                           (8.17) 

𝑉𝑘
+𝐵𝑘𝑉𝑘 = 𝐼                          (8.18) 



 147 

the derivative of the 𝑖𝑡ℎ eigen value is  

λ𝑖,𝑘
′ = 𝒗𝑖,𝑘

+ (𝐴𝑘
′ − λ𝑖,𝑘𝐵𝑘

′ )𝒗𝑖,𝑘                     (8.19) 

where 𝒗𝑖,𝑘 is the eigen vector corresponding to the 𝑖𝑡ℎ eigen value for a specific Bloch 

k. In our case (Eq.8.14), only 𝑀𝜖 depends on 𝜖𝑟
𝔻, which greatly simplifies the gradient 

calculation. Next, using the relation 𝜔𝑖𝑏𝑎𝑛𝑑,𝑘/𝑐 = √𝜆𝑖𝑏𝑎𝑛𝑑,𝑘, we can find 
𝜕𝜔𝑖𝑏𝑎𝑛𝑑,𝑘

𝜕𝜖𝑟
𝔻 .  

For numerical feasibility, we rewrite the target function as 

𝑓 = ∑ 𝜔𝑤𝑔,𝑘
4

𝑘∈[0.35⋅
2𝜋

𝑎
,0.5⋅

2𝜋

𝑎
]

                    (8.20) 

which offers improved continuity compared to the original Eq.8.1. To save computational 

cost, we can limit the sum in Eq.8.20 to only a few k points that have higher frequencies in 

the range 𝑘 ∈ [0.35 ⋅
2𝜋

𝑎
, 0.5 ⋅

2𝜋

𝑎
] along the dispersion curve of the waveguide mode in 

Fig.8.1b, for example, using 0.45 ⋅ 2𝜋/𝑎 and 0.48 ⋅ 2𝜋/𝑎.  

Regarding the choice of slack variables in the constraints specified by Eq.8.2 and 

Eq.8.3, we notice that first, the initial condition should satisfy the constraint, requiring 

휀𝑖 ≥ 0. Second, the target of lowering the frequencies of a specific mode in a specific range 

of k requires adding dielectrics, which inevitably lowers the frequencies for the global band 

structure. This requires 휀𝑖 > 0, to grant a certain percentage of down shifts in the global 

band structure. Third, larger 휀𝑖  allows more dielectrics to be added at the risk of 

drastically deforming the global band structure. To avoid the drastic deformation, 휀𝑖 

should be controlled under 0.01. Finally, the slack variables 휀𝑖 can be treated as hyper-

parameters that are optimized via grid search. Here we use 휀1 = 0.003, 휀2 = 0.006.  

Mirror symmetries are enforced on the design regions, to maintain symmetries in 

the responses and optical forces. The mirror planes are located across the center of the unit 

cell (Fig.8.2a) both horizontally and vertically. The vertical mirror plane enforces the 

symmetry discussed in Section 3.3.3, leading to symmetric power and phase responses in 

the transmitted wave. This is crucial to ensure zero average axial forces contributed from 
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the responses in the transmitted wave, so that optical pulling forces are guaranteed by the 

incidence of backward-waves. The horizontal mirror plane makes the force field mirror 

symmetric between the upper and lower half of the waveguide. These symmetries reduce 

the number of design parameters by a factor of 4. Setting the minimum element size to be 

𝑎/128, we have 3.5k independent design parameters.  

8.2.3 Computation 

We use python to implement the finite element method and gradient based 

optimization. The built-in data structures of python facilitate efficient finite element 

meshing and matrix assembling. Scipy provides fast and accurate computation for sparse 

linear algebra16. It is also convenient to parallelize the program using well-developed 

packages17.  

Notice that with 14 rods and a line defect in the unit cell, the waveguide mode of 

interest (blue curve in Fig.8.1b) which lies above the 2nd bulk band is located at the 29th 

eigenvalue, while the upper bulk mode involved in the constraints is located at the 30th 

eigenvalue. Therefore we only need to calculate the smallest 30 Eigen values and their 

corresponding Eigen vectors.  

At each iteration, the solving of Eq.8.14 for different 𝑘  are parallelized by 

broadcasting the current design parameters 𝜖𝑟
𝔻 from the master process to the parallel 

processes. Using a discretization with minimum element size of a/128, Eq.8.14 has 91k 

degrees of freedom. The individually solved eigenvalues and eigenvectors for each 𝑘 are 

gathered from the parallel processes to the master process to compute the values and 

gradients of the target function and constraints, which are next fed into the optimization 

algorithm (MMA[147] implemented in nlopt[149]) for updating the design parameters 𝜖𝑟
𝔻. 

                                                 
16 Using scipy.sparse.linalg.eigsh to solve the eigen value problem for sparse matrix.  
17 One can use either multiprocessing or mpi4py.  
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Each fully parallelized iteration takes 11 seconds on Xeon E5-2680 processors. The 

optimization usually converges within 50 iterations.  

8.3 RESULTS 

First, we allow continuous values for the permittivity 𝜖𝑟
𝔻 during optimization. The 

resultant distribution of dielectrics in the upper design region of Fig.8.1a is shown in 

Fig.8.3a. Following mirror symmetry, the lower design region in Fig.8.1a maps to the 

vertical flip of Fig.8.3a. The optimization have indeed lowered the frequencies of the 

waveguide mode in the range 𝑘𝑥 ∈ [0.35 ⋅
2𝜋

𝑎
, 0.5 ⋅

2𝜋

𝑎
], without drastically deforming the 

rest of the band structure (Fig.8.3b). Next, in order to arrive at a manufacturable structure, 

we apply level set method[148] to enforce binary permittivity values (Fig.8.3c), which 

leads to the dispersion relation as shown in Fig.8.3d. The backward-waves after topology 

optimization (blue curves in Fig.8.3b,d) have a broad frequency range (2.2%) for single 

mode operation.  
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Figure 8.3: (a)(c) Distribution of dielectrics in the design region after optimization. The 

area maps to the upper design region, and vertically flipped lower design 

region in Fig.8.1a. Color scale represents relative permittivity from 1(white) 

to 12.25(black). (a) Permittivity takes continuous values. (c) Permittivity 

takes discrete values after applying level set, which yields a manufacturable 

geometry. (b)(d) Dispersion relations corresponding to (a)(c). The 

waveguide mode (blue curves) now support a broad frequency range of 

single-mode backward-wave operation.  

8.4 CONCLUDING REMARKS 

In this chapter, we incorporated topology optimization to replace human effort for 

the dispersion engineering task encountered in Chapter 4. We performed a gradient based 

dispersion engineering to enable broad-band (2.2%) single mode operation of a backward-

wave mode, which can be used to generate long range and robust optical pulling forces in 

an all silicon guided wave system (Chapter4).  

Topology optimization is a powerful technique for seeking device performance 

beyond intuition. Nowadays, many finite element/finite difference based commercial 

software, such as COMSOL[48] and CST[150], are also increasing their efforts to 

incorporate topology optimization functionalities. Topology optimization have great 
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potential to take over the inefficient hand-tuning or parameter sweeping in photonics and 

optomechanics structural design, given that suitable target functions and constraints can be 

formulated specific to the problem.  
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