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Abstract 

 

A Comprehensive Review of Wellbore Breathing 

 

Tyler Jordan Adams, M.S.E 

The University of Texas at Austin, 2015 

 

Supervisor:  Kenneth E. Gray 

 

Wellbore breathing is a common occurrence during drilling operations, but the 

downhole mechanism and how it manifests itself in surface and subsurface processes, is 

not well understood. Wellbore breathing events often result in a drilling fluid gain at 

surface and are misidentified as a kick, resulting in unneeded shut in periods and associated 

non-productive time (NPT). Further, misidentification of wellbore breathing as 

underbalance often results in increases in mud weight, which only exacerbates the problem 

and may cause lost circulation.  

This work focuses on characterization of the wellbore breathing phenomenon in 

practical contexts of the pressure, volume, temperature, and time behavior of the 

components involved in the surface and subsurface system. This was accomplished through 

the examination of case studies published in literature to develop a comprehensive review 

of common experiences and incidents, as well as the operational responses to these. 

Methods for identification, differentiation from kicks and underbalance, mitigation and 

prevention of wellbore breathing are proposed, in addition to operational procedures for 

safe continuance of drilling operations. The coupled nature of pressure, temperate, and 



 vii 

volume, as they pertain to wellbore breathing, are analyzed in detail in order to quantify 

their effects and how they can inhibit identification of wellbore breathing. 

This research also proposes adaptation of the hydraulic fracturing pump-in 

flowback test interpretation developed by Plahn, Nolte, and Miska (1997) for the 

interpretation of wellbore breathing events and estimation of the minimum horizontal 

stress. This work presents estimates of the minimum horizontal stress for fractured zones 

in five wells using PWD data recorded during wellbore breathing events, which was 

obtained from literature. These estimates were verified qualitatively, when possible, by 

comparing across multiple connections and with available LOT data. 
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Chapter 1: Introduction 

1.1 Motivation 

During conventional drilling operations, the density of the drilling fluid must be 

maintained at a high enough level to provide a greater hydrostatic pressure than both the 

pore pressure and collapse pressure of the formation being drilled. If the wellbore pressure 

falls below this threshold, a formation fluid influx, known as a kick, will occur and result 

in a well control event. Kicks are relatively routine and if recognized quickly, can be safely 

circulated out of the well in accordance with well control procedures. However, if a kick 

is not recognized, it can lead to a blowout and endanger the lives of everyone at the well 

site. Because of this danger, well control is of the upmost importance and takes precedent 

over all other well site activity.  

Conversely, there is also an upper limit to the mud weight that can be employed 

while drilling, which is known as the fracture pressure. If the downhole pressure exceeds 

the fracture pressure, fractures will be initiated in the wellbore wall resulting in drilling 

fluid losses. This process is known as lost circulation. Lost circulation has been a leading 

cause of non-productive time (NPT) in the deepwater Gulf of Mexico over the last decade 

(van Oort, 2011). In deepwater settings where the spread rates on rigs often exceed one 

million dollars per day, NPT due to lost circulation can become extremely costly. 

Additionally, the drilling fluid systems in use today are highly engineered and losses of 

large fluid volumes adds incremental costs. 

The difference between the formation pore pressure and fracture pressure is known 

as the mud weight window and a primary goal of the drilling operation is to maintain the 
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mud weight within this range throughout the course of a well. One challenge in maintaining 

the mud weight within the drilling window, is the difference in the effective mud weight 

between circulating conditions and static conditions. During circulating conditions, 

frictional losses in the annulus lead to an increase in the effective mud weight of 0.1 to 0.5 

pound per gallon (ppg) compared to the static conditions. During conventional drilling 

operations, the well is circulated while drilling ahead and the pumps are shut off to make 

each connection. Therefore, this fluctuation occurs every 90 or 120 feet, depending on the 

rig design, throughout the course of a well. This has commonly resulted in wellbore 

pressures that exceed the fracture pressure while drilling and are below the fracture 

pressure while making connections. The effective result of this, known as wellbore 

breathing, is fluid losses while drilling as mud flows into the opening fractures and fluid 

gains during connections as the fractures close and force mud back into the wellbore.  

Wellbore breathing presents significant operational problems primarily because of 

the fluid flow into the wellbore during connections. This will register as a pit gain at surface 

and is often misidentified as a kick. The typical response to a kick is to raise the mud 

weight, but in the case of wellbore breathing, an increase in mud weight will only 

exacerbate the problem. The increased mud weight will cause the fractures to be 

propagated further, either worsening the breathing affect or breaking down the formation 

and causing large fluid losses. This scenario has played out numerous times during 

deepwater drilling operations, resulting in significant non-productive time and even 

complete loss of the well in extreme cases (Ashley, 2000). While there have been several 

wellbore breathing case studies published; the complex, highly coupled, and time 
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dependent processes responsible and how these processes manifest themselves both 

downhole and at the surface, have not been examined together and in detail.  

The primary objective of this thesis is to provide a comprehensive review of 

wellbore breathing, the mechanisms responsible for it, and how it can be identified through 

both surface and subsurface processes, or “signals”. This work focuses on explaining and 

detailing commonly encountered wellbore breathing scenarios in contexts of the pressure, 

volume, temperature, and time behavior of the involved surface and subsurface system. 

Additionally, there is significant ambiguity surrounding the terms, acronyms, and 

nomenclature pertaining to drilling operations and wellbore breathing specifically. This 

thesis work also defines and explains much of this terminology in both a technical and 

operational sense as it will be beneficial to the industry and academia alike.  

1.2 Thesis Organization 

This thesis consists of six chapters. Chapter 1 is composed of the introduction. 

Chapter 2 consists of a literature review of the past and present understandings of wellbore 

breathing and a review of the nomenclature, terms, and acronyms pertaining to wellbore 

breathing and drilling operations in general. Chapter 3 focuses on wellbore breathing case 

studies published in literature. Chapter 4 details methods for identification, mitigation, and 

prevention of wellbore breathing in addition to in addition to recommendations for safely 

continuing operations for wells experiencing wellbore breathing. Chapter 5 covers methods 

for inferring the in-situ minimum horizontal stress during breathing events and the 

theoretical background these methods are based on. Finally, Chapter 6 states the 

conclusions and recommendations for this thesis. 
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Chapter 2: Literature Review 

2.1 Wellbore Breathing Past and Present Understandings 

Wellbore breathing is a phenomenon that has been experienced from time to time 

on the drill floor over the decades and has been the subject of much debate as to the actual 

mechanism occurring downhole. Wellbore breathing was initially explained to be plastic 

deformation of wet shales or “shale charging” (Gill, 1986), later proposed to be caused by 

pressure, density, temperature behavior of drilling fluids downhole (Babu, 1993, 1997), 

and later hypothesized as the opening and closing of induced downhole fractures due to 

thermal affects (Maury and Idelovici, 1995). The hypothesis that opening and closing of 

downhole fractures, both induced and natural, due to pressure fluctuations between 

circulating and static conditions was then proposed (Tare et al., 2001) and has become 

widely accepted within the industry as the primary mechanism behind wellbore breathing. 

2.1.1 Plastic Deformation of Shales 

Wellbore breathing was initially termed wellbore ballooning when published and 

explained as the expansion of the wellbore, like a balloon, caused by long sections of wet 

plastic shales deforming plastically under the increased annular pressure during circulation 

(Gill, 1986).  The graphic in Figure 2.1 below, is representative of the downhole process 

described by Gill. On the left side of the figure, the shale formation is plastically deformed 

due to a wellbore pressure significantly higher than the pore pressure when the well is in 

static conditions. On the right side of the figure, ECD due to circulation increases the 

amount of overbalance and deforms the shale hole section further resulting in an apparent 

fluid loss at surface. When circulation is stopped, the excess overbalance due to ECD is 
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removed and the formation returns to a shape similar to that seen in the left figure, resulting 

in an apparent fluid gain at surface. 

 

Figure 2.1: Left is shale deformation at static conditions, right is increased shale 

deformation while circulating (Drill bit and collars graphics from drillingformulas.com) 

Supporting the plastic deformation of shales hypothesis, Gill cites wells which were 

drilled near each other, with significantly different mud weights, and experienced what 

were perceived to be vastly different pore pressure regimes as evidence that shale sections 

were being “super charged” to higher pore pressures by the higher mud weight. 

Additionally, Gill cites gravel size pieces of shale getting blown through a 3/8” choke 

holding 5,000 psi of back pressure on a well as evidence that shales behave plastically 

when subjected to high pressures. At the time, this hypothesis sparked significant debate 

within the industry and resulted in both industry and academic interest towards wellbore 
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breathing and identification of the underlying mechanism causing it. . The hypothesis that 

shales were behaving plastically downhole has been disproven due to a lack of shale rocks 

exhibiting this behavior in experiments. Additionally, finite element modeling and analysis 

has shown that elastic deformation of the borehole, due to the increased pressure caused 

by the ECD, would contribute a volume change of only 1.5 barrels for extremely soft rocks, 

with a Young’s modulus of 58,000 psi (Helstrup et al., 2001). While elastic deformation 

of the wellbore may be a contributing factor to wellbore breathing events, these gains and 

losses are often tens to hundreds of barrels in size, indicating that elastic wellbore 

deformation is not the primary mechanism. 

2.1.2 Pressure-Density-Temperature Behavior of Drilling Fluid 

Pressure, density, temperature behavior of muds was also proposed as an 

explanation for wellbore breathing events. Babu (1997) determined that after circulation is 

stopped, the drilling fluid in the wellbore will expand, between 11.1 and 35 bbls for a 

17,500 ft well, as it warms to the geothermal gradient along its depth. While this expansion 

is realistic, warming of the mud to cause the expansion is a slow and gradual process that 

takes between 4 and 9 hours for half the expansion to occur (Babu, 1997). Because 

breathing events typically occur over the course of minutes rather than hours, the 

temperature change of a mud column after circulation has stopped can be ruled out as a 

cause of wellbore breathing. 

2.1.3 Opening and Closing of Induced Fractures due to Thermal Effects  

 Maury and Idelovici (1995) published the first work attributing wellbore breathing 

to the opening and closing of induced fractures downhole. The work consisted of a 
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relatively unique North Sea case study where a heat exchanger was used at surface to cool 

the oil based mud (OBM) in order to keep it below the flash point. This case study will be 

examined in detail later, but throughout the case study, wellbore breathing was experienced 

and subsequent increases in mud weight resulted in increased flow during flow checks and 

increased gas cuts at surface. Maury and Idelovici (1995) attributed this to:  

 Fracture initiation caused by cooling of the formation during circulation and a 

subsequent reduction in its strength.  

 Further fracture propagation due to continued cooling while circulating coupled 

with increased mud weights. 

 Instantaneous mechanical decompression of the well and fractures partially closing 

when circulation is stopped due to loss of ECD, but this was thought to occur too 

quickly to be recorded during flow checks.  

 Flow back during flow checks and trips caused by thermally induced fracture 

closure as the mud system and surrounding formation warmed and the effective 

fracture gradient increased.  

The explanation of wellbore breathing as a thermally driven phenomenon is particular to 

the unique set of circumstances on this well, but poses important questions about the role 

of the thermal regimes and induced fractures in wellbore breathing. 

2.1.4 Opening and Closing of Fractures, Induced and Natural 

Present day understanding of wellbore breathing is that it is caused by fractures 

opening and closing due to downhole pressure fluctuations between static conditions and 
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circulating conditions. While this had been proposed in response to Gill’s hypothesis 

(Bowman, 1989) and (Holbrook, 1989), implementation of pressure-while-drilling (PWD) 

tools in the late 1990’s provided downhole pressure measurements that supported opening 

and closing of fractures as the primary mechanism responsible for breathing (Ward and 

Clark, 1998). Tare, Whitfill, and Mody (2001) explained that wellbore breathing was 

primarily due to opening and closing of fractures, both induced and natural, and stated that 

the geologic setting, well trajectory, and operational parameters contributed to the process. 

Their work cited two Gulf of Mexico wells that experienced wellbore breathing and the 

borehole analysis results from those wells which indicated that fractures were responsible 

for the wellbore breathing events. Figure 2.2 below displays a simplified graphic of the 

idealized fracture opening and closing process during wellbore breathing.  

 

Figure 2.2: Graphic depicting the idealized fracture opening and closing process (Bit and 

drill collar graphics from drillingformulas.com) 
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On the left, the well is in static conditions and there are either no fractures in the 

wellbore walls, or they are all closed. In the center, the pumps are being staged up to the 

circulating rate, raising the wellbore pressure above the fracture pressure and either 

initiating fractures, or opening already present fractures. On the right, the pumps are at the 

full circulating rate and drilling has commenced resulting in a higher wellbore pressure and 

pushing more fluid into the fractures, possibly propagating them. In the time sequence this 

occurs in drilling operations, from left to right, the result is a net loss in the pits at surface. 

Once the stand is drilled down, the order of these events is reversed as drilling stops and 

the pumps are shut down for a connection. The wellbore pressure is reduced and the 

fractures close, forcing fluid back into the wellbore and causing an apparent pit gain at 

surface.  

2.2 Definition of Terms and Nomenclature 

This section will delve into some of the terms, acronyms, and nomenclature 

typically used in relation to processes that occur in and around the wellbore during drilling 

operations. It will focus on both technical and operational definitions of these terms and 

how these are interrelated. 

2.2.1 Wellbore Integrity Tests 

Wellbore integrity tests are used during the course of drilling operations to 

determine the strength of a formation and to verify pressure integrity of the previous casing 

string and cement job. The typical operational events immediately preceding a formation 

integrity test are: complete drilling of a hole-section, set and cement casing string, drill out 

casing shoe and 10-20 feet of new formation (Zoback, 2007), and close the BOP. Wellbore 
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integrity test results are extremely important and will be used to make decisions concerning 

mud weight, kick tolerance, and well design during the subsequent hole section (van Oort 

and Vargo, 2007). There are multiple variations of formation integrity tests including LOT, 

LT, XLOT, and pump-in flowback tests, all of which will be detailed here  

2.2.1.1 Leak Off Test  

A typical pressure versus time and volume plot during a leak off test (LOT) is 

shown in Figure 2.3. As drilling fluid is initially pumped into the wellbore, the pressure 

typically displays a linear relationship with the volume of fluid pumped. At point 2, known 

as the fracture initiation pressure (FIP), the pressure begins to depart from its linear 

relationship with the volume pumped. Fluid continues to be pumped into the wellbore and 

pressure increases until point 3, when the mud pumps are shut down and fluid is no longer 

being pumped into the wellbore. The Pump-stop Pressure (PSP), point 3 in figure 2.3, is 

the maximum pressure recorded in a LOT. The pressure immediately drops to point 4, the 

Instantaneous Shut-in Pressure (ISIP). The pressure then decreases as drilling fluid leaks 

off into the formation or the pressure is bled off at the BOP. Additionally, a LOT is 

occasionally stopped prior to reaching the FIP. This is known as a Formation Integrity Test 

(FIT) and the pumps are stopped at point 1, the limit pressure (LP), while the pressure is 

still displaying a linear relationship with the volume pumped.  
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Figure 2.3: LOT plot (Modified after van Oort and Vargo, 2007) 

2.2.1.2 Extended Leak Off Test 

An example of a pressure versus time plot during an extended leak off test (XLOT) 

is shown in Figure 2.4. A XLOT is similar to a LOT, but fluid is pumped into the wellbore 

for an extended period rather than shutting the pumps down directly after the FIP has been 

reached. As fluid is pumped into the wellbore beyond the FIP, the pressure typically 
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increases until the uncontrolled fracture pressure (UFP), also commonly referred to as the 

formation breakdown pressure (FBP), has been reached. Beyond the UFP, fluid is pumped 

into the wellbore at the same constant rate and the pressure typically decreases to a 

relatively constant value, the fracture propagation pressure (FPP) or point 4 in Figure 2.4. 

After the FPP has been reached, the mud pumps are shut off and the pressure immediately 

drops to the ISIP. The pressure then decreases as the fluid leaks off into the formation. A 

point of inflection in the pressure vs. time curve during the shut-in period indicates the 

fracture closure pressure (FCP). This is denoted in figure 2.3 with a dashed circle at the 

intersection of the two dashed lines. 

 

Figure 2.4: XLOT Plot (Modified after van Oort and Vargo, 2007) 
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2.2.1.3 Pump-in Flow-back Test 

A typical plot for a pump-in flow-back test, or XLOT with flow-back, is shown in 

Figure 2.5. The test is identical to the XLOT described above, but the well is opened up 

and allowed to flow-back after the pumps have been shut down. The FCP can be identified 

by identifying the inflection point on the pressure versus time plot, which is marked as 

point 7 in Figure 2.5. The FCP can also be identified by locating the inflection point on a 

pressure versus volume plot during the flow-back portion of the test.  

 

Figure 2.5: Pump-in Flow-back Test Plot (Modified after van Oort and Vargo, 2007) 
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2.2.1.4 Formation Integrity Test 

A formation integrity test (FIT) is similar to a LOT, but the test is stopped prior to 

the pressure volume relationship departing from linearity. Limit tests are designed to test 

the cement strength in the shoe and are typically stopped at a pressure believed to provide 

a large enough drilling window to reach the next casing point. They are typically run in 

areas where past wells have been drilled and the minimum horizontal stress is relatively 

well understood. The reasoning for stopping the test early, in comparison with a LOT, is 

the desire to limit the damage to wellbore integrity that occurs when the pressure exceeds 

the FIP and the formation is fractured. FIT’s are also commonly called Jug Tests. 

2.2.2 Wellbore Integrity Test Nomenclature 

This section focuses on describing the physical process or processes behind the 

terms used in describing the pressure versus time and volume behavior during formation 

integrity tests. 

2.2.2.1 Limit Pressure  

The limit pressure is the highest pressure achieved during a limit test and occurs on 

the linear portion of the pressure versus volume LOT plot (van Oort and Vargo, 2007). The 

limit pressure is a predetermined pressure set by the drilling engineer and is not indicative 

of the actual fracture gradient other than to provide a minimum value. There are typically 

two different scenarios where a LOT is stopped at the LP rather than continuing to the FIP. 

First, if a well is being drilled in a mature field with a well understood fracture gradient; 

the LP will be set below the expected FIP to avoid fracturing the formation. Second, in a 

problematic well which has used contingency strings uphole, the LP may be set to a value 
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that is believed to provide enough kick tolerance to reach the next casing point. Similar to 

the first, the desire is to stop the LOT before the fracture gradient has been reached. 

Initiating a fracture could narrow the mud weight window enough to require the casing 

string be set short of its desired depth and potentially inhibit the well from reaching total 

depth. 

2.2.2.2 Fracture Initiation Pressure 

The fracture initiation pressure (FIP) is defined as the point where the pressure 

versus volume plot departs from linearity. The exact physical process causing this 

departure from linearity has been disputed in literature, but is believed to generally be 

related to the initiation of fractures in the formation (Edwards et al., 2002). The FIP is also 

commonly known as the leak off point (LOP). 

2.2.2.3 Uncontrolled Fracture Pressure 

The uncontrolled fracture pressure (UFP), commonly known as the fracture 

breakdown pressure (FBP), is the point on a XLOT plot when the pressure begins to 

decrease. The UFP is understood to be the point at which the energy stored within the 

fracture becomes large enough to overcome the hoop stress at the wellbore wall and the 

pressure loss along the length of the fracture and transmit enough pressure to the fracture 

tip to cause propagation out into the far field (van Oort and Vargo, 2007). The UFP can 

occur at the same point as the FIP, shown as (a) in Figure 2.6, or at a higher pressure than 

the FIP, shown as (b) in Figure 2.6.  
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Figure 2.6: Typical LOT profiles (Edwards et al., 1998) 

2.2.2.4 Fracture Propagation Pressure 

The fracture propagation pressure (FPP) can be seen on a XLOT plot as the 

relatively stable pressure which is reached sometime after the UFP. An example of a XLOT 

plot with the FPP identified is shown in Figure 2.7. The FPP is understood to be the 

pressure required to propagate the fracture out into the far field in addition to any frictional 

losses caused by fluid flow inside the fracture (Zoback, 2007). Additionally, Edwards 

(1998) suggests that solids present within the drilling fluid can inhibit fluid flow to the tip 

of the fracture and subsequently increase the FPP. It is also worth noting that due to the 

frictional losses within the fracture, the value of the FPP is dependent on the rate at which 

fluid is being pumped into the well. Higher pump rates will typically result in a higher FPP 

value as the frictional losses along the fracture are proportionate to the flow rate through 

the fracture. 
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Figure 2.7: XLOT example plot with the FPP identified 

2.2.2.5 Instantaneous Shut-in Pressure 

The instantaneous shut-in pressure (ISIP) occurs during a wellbore integrity test 

after the fracture has been propagated and the pumps are shut down prior to the shut-in 

period. When the pumps are shut down, the pressure immediately drops to a lower value 

known as the ISIP. The drop in pressure is due to the loss of frictional effects in the fracture, 

wellbore, and mud pumps when the fluid flow is stopped. Since there is no longer pressure 

lost to friction along the fracture, there is a gradient within the fracture from a higher 

pressure near the wellbore to a lower pressure at the fracture tip. As this pressure gradient 

equalizes, the pressure at the fracture tip will actually rise and could potentially cause 

further fracture growth even though the pumps have been stopped. Completion engineers 



 18 

typically refer to the ISIP as the fracture pressure because this is the pressure which will 

reopen this fracture. A typical XLOT plot with the ISIP labeled is shown below in Figure 

2.8.  

 

Figure 2.8: XLOT example plot with the ISIP identified 

2.2.2.6 Fracture Closure Pressure 

Fractures will tend to open in a plane perpendicular to the minimum in-situ earth 

stress because this is the path of least resistance for the fracture. Therefore, whenever the 

pressure inside the fracture decreases to a value below the minimum in-situ stress, the 

fracture will close mechanically; this pressure is the fracture closure pressure. Hydraulic 

closure typically does not occur until the pressure is reduced further, but mechanical 

closure is the value of importance to drilling engineers. The fracture closure pressure, if 
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correctly interpreted through a wellbore integrity test, should provide an accurate estimate 

of the minimum horizontal stress. There are numerous methods for estimating the fracture 

closure pressure which will be covered in detail in later chapters. From an operational 

standpoint, the minimum horizontal stress is important because it governs the maximum 

mud weight that can be used while drilling a section.  Because of this, accurate estimations 

of the fracture closure pressure and subsequently the minimum horizontal stress can be 

extremely valuable going forward in a drilling program.  

2.2.2.7 Fluid Leak Off 

Fluid leak off consists of the drilling fluid flowing into the formation and is 

recognized at the surface as a declining pressure during the shut-in portion of a formation 

integrity test. The rate of this flow is dependent on many things, but some of the primary 

drivers are formation permeability, mud cake thickness, mud cake permeability, fracture 

surface area, rock wettability, and capillary entry pressure. This leakoff process is most 

commonly described using Carter Leakoff theory (Carter, Howard, and Fast, 1957) which 

states that the flow rate of fluid leaking off into the formation is given by: 

𝑞𝑙𝑒𝑎𝑘𝑜𝑓𝑓 =
2𝐴𝑝𝐶𝐿

√𝑡−𝜏𝑝
                                      (2.1) 

Where, 

𝐴𝑝 = fracture surface area 

𝜏𝑝 = time when the fracture formed 

𝐶𝐿 = leakoff coefficient 
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During a typical LOT, the pressure decline due to fluid leak off during the shut-in 

period exhibits a square root of time relationship, as shown in equation 2.1. The pressure 

can be plotted against the square root of time and the inflection point used to estimate the 

minimum horizontal stress.  

2.2.3 Geologic and Geomechanic Terminology 

This section will focus on some of the terms typically used during drilling 

operations that pertain to geomechanical processes downhole. 

2.2.3.1 Principal Stresses  

Compressive stresses are present throughout the earth and their magnitudes depend 

on depth, pore pressure, and any active geological process that acting in the area (Zoback, 

2007). Additionally, using tensor transformation, these in situ stresses can be expressed in 

a principal coordinate system with three principal stresses as shown in Figure 2.9. 
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Figure 2.9: Stress tensor definition and transformation (Zoback, 2007; left graphic 

originally developed by Engelder and Leftwich, 1997) 

Within the oil and gas industry, these principal stresses are typically described in 

terms of the vertical stress (𝑆𝑣 𝑜𝑟 𝜎𝑣), the maximum horizontal stress (𝑆𝐻𝑚𝑎𝑥 𝑜𝑟 𝜎𝐻𝑚𝑎𝑥), 

and the minimum horizontal stress (𝑆𝐻𝑚𝑖𝑛 𝑜𝑟 𝜎𝐻𝑚𝑖𝑛). More details will be provided in the 

further sections, but these stresses are vitally important because they govern wellbore 

stability and set the upper and lower bounds for the mud weight that can be used while 

drilling a given hole-section. 

2.2.3.2 Far Field Stresses 

Far field stresses are the stresses at a distance far enough from the wellbore, 2 – 3 

wellbore radii, to be uninfluenced by the stress concentrations caused by the wellbore 
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(Zoback, 2007). In effect, these are the in-situ stresses within the formation and therefore 

are of much interest to petroleum engineers. The minimum horizontal stress is the primary 

stress of interest for drilling engineers as it governs the pressure required to open and 

propagate a fracture away from the wellbore. Because of this, determination of the 

minimum horizontal stress is a key aspect in drilling operations since it effectively sets the 

upper limit to the mud weight window. 

2.2.3.3 Stress Regimes 

The stress regimes within the earth are typically classified into three categories 

originally proposed by E.M. Anderson. These classifications are normal faulting, strike-

slip faulting, and reverse faulting. In a normal faulting regime, the vertical stress is the 

largest principal stress. In a strike-slip faulting regime, the maximum horizontal stress is 

the largest with the minimum horizontal stress being the smallest and the vertical stress 

falling somewhere in between. In a reverse faulting regime, the vertical stress is the 

smallest with both horizontal stress being larger. The stress regimes are important as they 

govern the stresses that will be dominant at the wellbore wall and can provide insight into 

potential wellbore stability issues. Each of these classifications is displayed below in figure 

2.10. 

 

Figure 2.10: Stress regime classification scheme (Zoback, 2007) 
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2.2.3.4 Pore Pressure 

Zoback (1998) explains that pore pressure is the scalar hydraulic potential acting   

within an interconnected pore space at depth; this is exemplified in Figure 2.11. 

Sedimentary rocks are not composed solely of grains and there are some spaces between 

these grains. The rocks within the earth typically have these voids, or pore spaces, filled 

with fluid. The pressure within these pore spaces, pore pressure, is described in comparison 

to the hydrostatic pressure at depth. The effective hydrostatic pressure at depth is known 

as normal pressure and any pore pressure exceeding this is considered overpressured while 

any pore pressure lower than normal pressure is considered underpressured. 

 

Figure 2.11: Pore pressure visualization (Zoback, 2007) 

From an operations standpoint, a good understanding of pore pressure is extremely 

important to execution of safe drilling operations. During convention drilling operations, 



 24 

the primary method of well control is application of a downhole pressure greater than the 

pore pressure via a hydrostatic fluid column of ample density; this state is known as 

“overbalanced”. If the pressure within the wellbore is allowed to fall below the pore 

pressure, an influx of formation fluids into the wellbore known as a “kick”, can occur if 

the formation’s permeability is high enough to allow flow; this state is called 

“underbalanced”. In order to proactively increase the density of the drilling fluid prior to 

encountering higher pressure zones, accurate predrill pore pressure predictions are vital. 

Pore pressure predictions can be obtained via a seismic velocity to pore pressure transform 

(Sayers et al. 2006) and via data analog well data if available (Ziegler and Jones, 2014). 

2.2.3.5 Fracture Gradient 

The fracture gradient is the maximum wellbore pressure that can be applied while 

drilling and it is typically described in terms of mud weight (ppg). The fracture gradient is 

important in drilling operations as pressures exceeding the fracture gradient typically result 

in fluid losses. However, the fracture gradient is an ambiguous term that that has typically 

been interpreted differently by operations staff and engineers. Operationally, it is 

commonly associated with the FIP in a LOT because this is the pressure that the wellbore 

was able to actually withstand during the test. The increase in the FIP value compared to 

the minimum horizontal stress is due to the pressure required to initiate tensile failure at 

the wellbore wall and overcome the hoop stress in the near wellbore region; the hoop stress 

is detailed in section 2.2.3.2.  Engineers typically relate the fracture gradient with the FCP 

because it is believed to be the best indicator of the minimum horizontal stress, but 

depending on the testing conditions during a LOT, the FIP or ISIP could also be indicative 
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of the fracture gradient (Zoback, 2007). For the purposes of this paper, the term fracture 

gradient indicates the wellbore pressure which will initiate tensile failure in the near 

wellbore region and overcome the hoop stress, resulting in drilling fluid losses.  

2.2.3.6 Collapse Pressure 

The collapse pressure is the minimum wellbore pressure that is capable of 

maintaining wellbore stability. If the pressure in the wellbore is allowed to drop below this, 

shear failure will initiate at the wellbore wall causing wellbore breakout and potentially 

wellbore collapse. Operationally, this can manifest itself in issues such as tight hole or pack 

off while drilling and difficulty attaining a good cement bond behind a casing string 

(Mitchell and Miska, 2011). Early stages of wellbore breakout can be observed at surface 

when large cavings are seen at the shakers (Zoback, 2007). 

2.2.3.7 Drilling Window 

The drilling window is defined as the difference between maximum allowable 

annular wellbore pressure and the minimum allowable annular wellbore pressure. The 

upper limit to this window is set by the fracture gradient while the lower limit is set by the  

pore pressure or collapse pressure, whichever is greater. Typically, a pre drill pressure 

gradient plot similar to Figure 2.12 is created in order to quantify the estimated limits for 

down-hole annular pressures during drilling operations. The pressure gradient plot in 

Figure 2.12 is from the Shell Oil Ursa A-10 well in the Gulf of Mexico (Gradishar, Ugueto, 

and van Oort, 2013) and incorporates data points from LOT’s and FIT’s on offset wells. 

Typically, the narrower a drilling window is, the more difficult a given well will be 

to drill. Wells with extremely narrow drilling windows often require complicated well 
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designs, which incorporate many casing and liner strings, or unconventional drilling 

applications such as managed pressure drilling. 

 



 27 

Figure 2.12: Estimated overburden, pore pressure, fracture, and minimum horizontal 

stress gradients (ppg) with proposed mud weight and LOT/FIT data (modified after 

Gradishar, Ugueto, and van Oort, 2013) 
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2.2.3.8 Rubble Zone 

Rubble Zone is the term often used to describe the fractured rock or sediments 

directly adjacent to a massive salt body. Salt has a lower density than the sediments 

around it, 2.16 SG compared to 2.35-2.6, and creeps upward over time because of this 

(Dussealt et al., 2004). Some examples of salt structures are shown below in Figure 2.13 

with potential rubble zones highlighted with red ellipses. Depending on the integrity of 

the adjacent rocks, the salt creep can create an adjacent highly fractured zone resulting in 

fluid losses while drilling or a “sheared” zone resulting in wellbore instability problems 

(Saleh, Williams, and Rizvi, 2013).   

 

Figure 2.13: Drilling through salt tongue intrusion, salt dome with potential structural 

traps highlighted in gray (Modified after Dussealt et al., 2004) 
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2.2.3.9 Hoop Stress 

Kirsch (1898) determined that stresses within a material become concentrated 

around a cylindrical opening because the void space cannot support the far-field stresses. 

This is known as the hoop stress. The hoop stress concentration around the wellbore result 

in the highest compressive stress in the direction of minimum horizontal stress and the 

lowest compressive stress in the direction of the maximum horizontal stress. Figure 2.14 

display these hoop stress concentrations using two Kirsch solutions superimposed at a 90 

degree angle from each other. 

 

Figure 2.14: Stresses around a cylindrical opening within a bi-axial stress field (Zoback, 

2007) 
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These stresses are governed by the Kirsch equations which are displayed below, 

simplified for just the stresses acting at the borehole wall (Zoback, 2007). 

The effective hoop stress is: 

𝜎𝜃𝜃 =  𝑆ℎ𝑚𝑖𝑛 + 𝑆𝐻𝑚𝑎𝑥 − 2(𝑆𝐻𝑚𝑎𝑥 − 𝑆ℎ𝑚𝑖𝑛) cos 2𝜃 − 2𝑃𝑝 − Δ𝑃               (2.1) 

The effective radial stress is: 

𝜎𝑟𝑟 =  Δ𝑃                                                           (2.2) 

Where, 

 Δ𝑃 = wellbore pressure – pore pressure 

𝑃𝑝 = pore pressure 

𝜃 = the angle measured from the azimuth of 𝑆𝐻𝑚𝑎𝑥 

Due to the smallest compressive stress being located at the azimuth of 𝑆𝐻𝑚𝑎𝑥 , 

fractures will initiate at this point and the wellbore pressure required to initiate these 

fractures is: 

𝑃𝑤 = 3𝑆ℎ𝑚𝑖𝑛 − 𝑆𝐻𝑚𝑎𝑥 − 𝑃𝑝 − 𝑇𝑜                                      (2.3) 

Where, 

𝑃𝑤 = Wellbore Pressure 

𝑇𝑜 = Tensile strength of the rock 

 Additionally, since the drilling fluid pumped downhole is typically colder than the 

in-situ temperature, it is important to include a term for the thermal stress change when 

calculating the hoop stress. Including the term for the stress change due to thermal 
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effects, provided by Fjaer et al., (2008), the wellbore pressure required to initiate 

fractures is given by:   

𝑃𝑤 = 3𝑆ℎ𝑚𝑖𝑛 − 𝑆𝐻𝑚𝑎𝑥 − 𝑃𝑝 − 𝑇𝑜 +
𝐸

1−𝜈
𝛼𝑇(𝑇𝑤 − 𝑇𝑓)               (2.4) 

Where: 

E  = Young’s Modulus 

∝𝑡  = linear thermal expansion coefficient 

𝜐   = Poisson’s Ratio 

𝑇𝑓 = Original formation temperature 

𝑇𝑤 = Wellbore temperature 

 Since the fluid temperature within the wellbore is less than the in-situ formation 

temperature, the thermal stress term in equation 2.4 will become negative and result in a 

lowering of the pressure required to initiate a fracture at the wellbore wall. 

2.2.4 Drilling Fluids Terminology and Nomenclature 

This section focuses on some of the key terms pertaining to drilling fluids and the 

processes associated with them. 

2.2.4.1 Equivalent Static Density (ESD) 

The equivalent static density (ESD) is the equivalent fluid density, typically 

displayed in pounds per gallon, of the mud column in the well when all pumps are shut off, 

there is no movement of the drill string, and there is no backpressure being applied at the 

surface. It differs from the MW measured at surface due to temperature and pressure effects 

in the wellbore. 
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2.2.4.2 Equivalent Mud Weight 

The equivalent mud weight (EMW) is the fluid density that would be required to 

provide an equivalent hydrostatic head to equal the bottom hole pressure being applied. 

During LOT’s, the well is shut-in and fluid is pumped into the well to increase the annular 

pressure. The goal of a LOT is to test the cement job and determine the strength of the 

formation. Operationally, the results of these tests are typically expressed in pounds per 

gallon and referenced as the EMW, because the value is the highest mud weight that can 

be used while drilling the subsequent hole section without fracturing the well.  

2.2.4.3 Equivalent Circulating Density 

During drilling operations, circulating fluid causes frictional losses in the annulus 

which cause an increase in the pressure downhole. In addition to the pressure increase 

caused by frictional losses, large amounts of heavy rock cuttings suspended in the drilling 

fluid, rotation of the drill string, and vertical movement of the drill string can increase the 

pressure down hole. The equivalent circulating density (ECD) is the fluid density that 

would be required to provide an equivalent hydrostatic head equal to the bottom hole 

pressure being applied during the aforementioned operations including but not limited to 

circulating.  

2.2.4.4 Mud Cake 

During the course of drilling, particles within the drilling fluid create a thin low 

permeability layer along the wellbore wall called a mud cake (Mitchell and Miska, 2011). 

As some of the drilling fluid flows into the formation, it drives fines and other suspended 

particles onto the rock face. Because fluid flow into the rock is the primary driver, mud 
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cake formation requires a permeable rock and some minimum of overbalance pressure 

(Jiao and Sharma, 1993).  

Formation of a mud cake is beneficial for prevention of large fluid losses into 

permeable formations while drilling. Additionally, once the hydrocarbon reservoir has 

been reached, a filter cake can prevent drilling fluid infiltration of the reservoir and 

subsequent formation damage.  

2.2.4.5 Cuttings Loading 

As the wellbore is deepened through drilling, the rock cuttings are carried up 

through the annulus by the drillings fluid. Cuttings loading is the increase in the equivalent 

density of the mud column due to the heavier pieces of rock suspended in the drilling fluid. 

In scenarios with a narrow drilling window, cuttings loading can potentially increase the 

ECD above the minimum horizontal stress and cause lost circulation. In scenarios like this, 

operators often attempt to limit the amount of cuttings suspended in the annulus by drilling 

at a controlled rate or drilling short sections and pausing to circulate. 

2.2.4.6 Barite Sag 

During drilling operations, weighting agents, with barite being the most typical, are 

introduced into the drilling fluid in order to increase its density. Barite sag is the 

fluctuations in mud weight that occur due to downhole settling of the barite (Bern et al., 

2000).  Barite sag can occur both while the fluid column is static and in circulation. Barite 

sag in a static fluid column occurs due to poor gel strength of the drilling fluid while sag 

during circulation occurs due to low drilling fluid rheology (Gradishar, Ugueto, and van 

Oort, 2013). Barite sag can result in an uneven mud profile in the well and result in an 
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influx if the heavier fluid falls below a high pressure zone. Additionally, if a large slug of 

higher density fluid has accumulated and is pumped up the hole, it may fracture the 

formation and cause lost circulation. 

2.2.5 Lost Circulation Nomenclature 

This section pertains to the terms and nomenclature commonly used to describe 

drilling fluid losses into permeable or hydraulically fractured formations during drilling 

operations. This process is commonly referred to as lost circulation. The term itself 

originated because drilling fluid returns to surface are reduced during these situations.  

2.2.5.1 Uncontrolled Fracture Growth 

Uncontrolled fracture growth occurs when the pressure in the wellbore rises to a 

point where it propagates fractures into the far field. This occurs as a result of the wellbore 

pressure exceeding the minimum horizontal stress, the hoop stress at the wellbore wall, and 

any pressure drop along the length of the fracture due to frictional effects. It is recognized 

at surface by significant fluid losses, on the order of tens to hundreds of barrels per hour, 

and typically requires changes in the current operating conditions to reduce or eliminate 

the losses. Some of these operational methods will be discussed in later sections, but the 

primary objective is to either reduce the wellbore pressure or plug the fracture. In some 

cases, the operator may continue to drill ahead even if losses have not been stopped because 

this is believed to be the best approach for reaching the next casing point. Due to the 

significant cost of oil based or synthetic based muds, the proposition of losing thousands 

of barrels of mud is an expensive endeavor. 
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2.2.5.2 Fracture Bridging  

Fracture bridging is the process of plugging off a downhole fracture using some 

form of material introduced to the mud system at surface. The desired result is to inhibit 

further fracture growth and stop or at least reduce fluid losses. Depending on the size of 

the lost circulation material (LCM) added to the system and aperture of the fracture, this 

may occur at the fracture tip, somewhere along the fractures length, or in the opening of 

the fracture at the wellbore wall. There are several competing hypotheses as to the exact 

physics pertaining to fracture bridging and its ability to mitigate lost circulation events 

which will be discussed in further detail in the in later chapters. 

2.2.5.3 Wellbore Strengthening 

Wellbore strengthening is the process of increasing the upper bound of the mud 

weight window by creating and then plugging fractures in the formation being drilled. 

Wellbore strengthening has been a focus in recent years as deep water basins with narrow 

mud weight windows, such as the Gulf of Mexico, have been targeted. These narrow 

drilling windows have led to a significant number of lost circulation events resulting in 

large amounts of non-productive time (NPT) and its associated cost (van Oort et Al., 2009). 

As mentioned previously, there are several competing hypotheses as to the exact physics 

pertaining to wellbore strengthening. Graphics depicting each of these are shown below in 

Figure 2.15 and explained further in the following paragraph. 
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Figure 2.15: Differing hypotheses for lost circulation mitigation. From left to right, stress 

cage effect (Alberty and McLean, 2004), fracture-closure stress (Dupriest, 2005), and 

fracture-propagation resistance (Fuh, Boyd, and McGoffin, 1992)). 

The stress cage concept, proposed by Alberty and McLean (2004), is based on 

placing high strength solids at or near the mouth of a fracture. As fluid leaks off into the 

formation, the fracture will begin to close and will be held partially open by the solids 

lodged at the fracture mouth. The prevention of the wellbore from returning to its initial 

state, is proposed to increase the hoop stress around the wellbore and subsequently increase 

the pressure needed to initiate future fractures.  

The fracture closure stress concept, proposed by Dupriest (2005), is based on first 

bridging the fracture at some finite distance from the tip of the fracture in order to isolate 

the tip and subsequently forcing drilling fluid and solids into the fracture causing the 

fracture to widen. As the fluid leaks off into the formation, it results in a solids filled 

fracture. The width of this solids filled fracture is proposed to result in a larger fracture 

closure pressure, which will enable the well to be deepened with a higher ECD than 

previously possible.  

The fracture-propagation resistance concept originated from the DEA-13 joint 

industry project in the late 1980’s. The findings of this JIP were published in Morita, Black, 
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and Fuh (1990), which proposed the theory of lost circulation pressure and the variables 

influencing this pressure. Fuh, Boyd, and McGoffin (1992) then proposed use of narrowly 

sized granular material as a means to isolate the fracture tip from the wellbore pressure, 

known as fracture-propagation resistance. This results in an increase in the wellbore 

pressure required to propagate the fracture, which allows the well to be deepened with a 

mud weight higher than would have otherwise been possible. Fuh, Boyd, and McGoffin 

(1992) presented two field cases where this theory was successfully applied and resulted 

in significantly higher fracture propagation pressures. Based on this fracture-propagation 

resistance concept, Van Oort et al. (2009) later proposed constant application of 

specifically sized particles while drilling as a means to constantly strengthen boreholes 

while drilling and presented field evidence supporting the effectiveness of this application. 

Table 2.1 below highlights some of the primary differences between the competing 

wellbore strengthening hypotheses explained in the prior paragraphs. The materials added 

to the fluid system during wellbore strengthening operations are known as wellbore 

strengthening materials (WSM).  

 
 

Table 2.1: Differences between wellbore strengthening hypotheses (Modified after van 

Oort et al., 2009) 
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2.2.5.4 Lost Circulation Material 

Lost circulation material (LCM) consists of fibrous, flaky, or granular materials 

which are pumped downhole when fluid losses are occurring in an effort to bridge fractures 

and stop or decrease losses. Depending on the mechanism believed to be responsible for 

the fluid losses, differing types and sizes of LCM’s may be used. In years past, LCM 

designations had often been unspecific and resulted in a multitude of different materials 

being pumped downhole that were available at the wellsite. Through work performed by a 

joint industry project in the mid 1980’s, Drilling Engineering Association 13, it was 

determined that a large and uniform particle size could bridge fractures and inhibit further 

fracture propagation (Fuh et al. 1992). Later work identified particle size, particle size 

distribution, concentration, and shape as key attributes affecting material’s suitability as a 

LCM and identified a combination of graphite and calcium carbonate specifically as a 

suggested LCM (Friedheim, Sanders, and Roberts, 2008). Further work also identified 

chemical gel systems as suitable for LCM and suggested use of a combination of base oil, 

gelling agent, initiator, reaction retarder, oil-wetting agent, and viscosifier to achieve this 

(Scorsone, Sanders, and Patel, 2009).  

As shown by the references above, different combinations of materials and gel 

systems are capable of mitigating lost circulation events and can all be classified as LCM’s. 

Furthermore, depending on the formation being drilled and other downhole variables, each 

of these has a proper application and is currently used by industry to combat lost circulation 

issues. 
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2.2.5.5 Fracture Healing 

Fracture healing is a phenomenon occurring with water based muds (WBM) where 

repeat LOT’s will result in the same FIP while repeat LOT’s using oil based mud (OBM) 

or synthetic-oil based mud (SBM) typically result in a lower FIP value compared to the 

initial test. This phenomenon is believed to be a result of the inability of OBM and SBM 

to leak-off into the water-wet shales where casing shoes are typically set and LOT’s are 

subsequently performed. Fluid leak-off for non-aqueous fluids is limited by interfacial 

tension and capillary entry pressures in water-wet rocks (Peters, 2012). Because of this, the 

non-aqueous fluid will remain in the fracture, preventing complete fracture closure, while 

a WBM will be able to leak off into the formation, allowing complete fracture closure 

(Ziegler and Jones, 2014). This manifests itself in LOT pressure responses because 

subsequent pressure increases will immediately be felt on the fracture face for non-aqueous 

fluids resulting in a lower FIP value than the original, which had to initiate or open the 

fracture. Figure 2.16 below shows a depiction of the differences in leak-off behavior and 

fracture closure with WBM and OBM or SBM. 
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Figure 2.16: Interaction between WBM and OBM or SBM with a water-wet rock during 

fracture closure (Ziegler and Jones, 2014) 

Additionally, fracture healing can also manifest itself during typical drilling 

operations. In a case where a fracture closed due to a reduction in pressure and fluid leak-

off, circulating drilling fluid may build a filter cake over the fracture in the wellbore wall. 

This will provide an additional pressure barrier to reopening the fracture and may allow 

wellbore pressures to exceed the fracture closure pressure while drilling ahead without 

incurring losses.  

2.2.5.6 Surge Pressures 

Surge pressures are classified as sudden annular pressure increase due to 

operational activities. Surge pressures are important because the pressure spike could 

increase the wellbore pressure above the FIP and fracture the formation. Once this fracture 
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has been initiated, the wellbore integrity has been compromised and will likely be weaker 

than it was prior. In a hole-section where the FIP exceeds the FPP, a pressure surge induced 

fracture may lead to fluid losses at a mud weight that had previously been used with no 

associated losses. Typical operational activities that may exert surge pressures if performed 

improperly include tripping drill pipe into the hole, running a casing or liner string, and 

wireline activities.  

2.2.6 Formation Fluid Returns at Surface and Well Control Terminology 

This section focuses on the terms and nomenclature surrounding formation fluid 

returns at surface and well control. It is extremely important content in the scope of this 

thesis because wellbore breathing is a type of well control event. In order to better 

understand and characterize the subsurface processes during a breathing event, it is 

important to understand how these processes manifest themselves through returns at 

surface. Last, in order to understand and avoid potential pitfalls and miscalculations related 

to wellbore breathing and well control, it is necessary to have a solid understanding of the 

fundamental well control processes which will be explained in this section. 

2.2.6.1 Drill Gas 

During the course of drilling operations, gas measurements will be taken at surface 

to monitor the amount of gas present in the drilling mud when it returns to surface. These 

gas measurements are displayed on the driller’s screen in the doghouse and have been 

commonly used over the years as a qualitative assessment of whether the well is in a state 

of overbalance, underbalance, or near-underbalanced (Alberty and Fink, 2014). Formations 

will be encountered which have hydrocarbons in their pore spaces and as the drill bit cuts 
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away this formation, these hydrocarbons will be released into the drilling fluid and 

circulated to surface. When the formation being drilled has some gas within its pores, this 

will show up as a relatively low and stable gas reading at surface and is known as drill gas. 

The differentiation between drill gas and some of the other types of gas shows at surface 

is that the drill gas enters the wellbore while the hole is being deepened and fluid is being 

circulated. It can be verified as drill gas using the circulating flow rate and a simple 

volumetric calculation of the annular volume of the wellbore. Figure 2.17 below shows a 

typical mud circulation system with the equipment used to measure the gas cut, the gas trap 

and degasser, highlighted. 

 

Figure 2.17: Typical mud circulation system with gas separation and measurement 

devices highlighted in red (Modified after Alberty and Fink, 2014) 
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Operationally, low and constant levels of drill gas is very common and has little 

significance other than to indicate that the formation being drilled contains some 

hydrocarbons. It does not require raising of the mud weight as the associated hydrocarbons 

would still enter the wellbore when the rock containing them is crushed and cut away. 

Situations where there are sudden increases in the drill gas cut should be approached with 

caution and would typically require a flow check to ensure that well is in still in an 

overbalance condition and not flowing. Drill gas measurements in this type of scenario 

serve as a second line of defense to identify influxes when a pit gain either did not occur 

or was missed. Last, these measurements are extremely useful when drilling with an OBM 

or SBM as gas is soluble in these. This is dangerous because a gas influx that occurs at a 

pressure above the mixture’s bubble point may not register as a significant pit gain at 

surface. 

2.2.6.2 Connection Gas 

During conventional drilling operations, a stand of drill pipe (typically three, thirty 

foot joints depending on the rig) is typically used to continuously drill ninety feet prior to 

pausing to disconnect the top drive and add another stand of pipe to the drill string. During 

these connections, the mud pumps are shut down resulting in a static annular mud column 

and loss of ECD. Connection gas is the gas registered at surface when the volume of mud 

sitting in the open hole during the connection returns to surface once circulation has 

resumed. It is important to differentiate between connection gas and drill gas because the 

loss of ECD during connections reduces the bottom hole pressure (BHP) and can provide 

valuable insight regarding the formation’s pore pressure. Differentiation between drill gas 
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and connection gas can be easily achieved by accounting for the annular volume and the 

volumetric flow rate of drilling fluid into the well. 

Most connection gas is a result of one or a combination of these three different 

mechanisms:  

1. The aforementioned liberation of gas present in the drilled rock  

2. Formation-fluid flow into the wellbore as a result of an underbalance state 

(Alberty and Fink, 2014)  

3. Gas diffusion into OBM or SBM (Bradley et al., 2002).  

Since the gas present in the drilled rock volume should not change significantly 

within a formation section, any increase in connection gas readings over pre and post 

connection drill gas readings is an indication that either mechanism 2 or 3 is taking place. 

In the case of mechanism 2, an underbalance situation, the gas cut would be concentrated 

and register a significant spike at surface as the formation fluid influx entered the wellbore 

all at once. However, in a situation with an over pressured low permeability formation, the 

influx volume may be small and therefore difficult to differentiate from drill gas. One 

additional downhole phenomena which could appear as connection gas at surface is the 

hydrocarbon swap-out mechanism that has been observed in some wellbore breathing 

incidents (Ashley, 2000). The swap out mechanism will be explained in detail later in this 

section, but is mentioned here because of its potential contribution to connection gas. 

Hydrocarbon swap-out will typically exhibit long drawn out gas peaks as the hydrocarbons 

flow into the wellbore in combination with drilling fluid over the entire course of the 

connection. 
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It is important to understand each of these mechanisms in order to properly identify 

them at surface and make proper decisions to combat them. For instance, the best course 

of action for an underbalance condition during connections would be to raise the mud 

weight, while this same action for a well experiencing hydrocarbon swap out could 

exacerbate the problem.  

2.2.6.3 Trip Gas 

Trip gas is essentially the same phenomenon as connection gas, but the mud column 

is in a static state for significantly longer. Trip gas is the gas registered at surface when the 

mud that was in the open section while tripping in and out of the hole is circulated to 

surface. Depending on the purpose of the trip and the depth of the well, tripping in and out 

of the hole, along with any actions taken with equipment at surface, could take anywhere 

from a few hours to multiple days. Because of the significantly longer time frame, gas 

diffusion into an OBM or SBM has the potential to significantly increase the gas cut of the 

mud when it returns to surface. The process of gas diffusion into the mud is driven by the 

low partial pressure of the gas within the drilling fluid in comparison with the partial 

pressure of the formation gas and insignificantly influenced by higher wellbore pressures 

(Bradley et al., 2002). 

Additionally, because of the drill string being pulled out of the hole during tripping 

operations, there will certainly be temporary reductions in the BHP during the process 

which could lead to formation fluid influxes. If this were to take place, there would likely 

be significant gas peaks registered when the fluids are circulated back to surface as this 

volume would have entered the wellbore all together. However, this could be combatted 
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by circulating the well full of a higher mud weight drilling fluid prior to tripping out of the 

hole in order to ensure a more significant level of overbalance at static conditions. This 

increase in mud weight is known as a trip margin. 

2.2.6.4 Formation Fluid Influx 

 A formation fluid influx, known as a “kick”, is the process of formation fluids 

flowing into the wellbore due to the pressure in the wellbore being lower than the pressure 

in the formation. The influx may be composed of brine, oil, gas, or a combination of any 

of the three. It is referred to as a well control incident and should always be taken extremely 

seriously as it poses a threat to the safety of all crew members on board if handled 

improperly. An improperly handled kick can result in losing control of the well and a 

blowout.  

Typically, the key identifier for a kick is a mud gain in the pits as this indicates 

fluid has likely been added to the system via an influx. It is the responsibility of the driller 

and mud loggers to identify such pit gains, determine if a kick has been taken, and, if so, 

shut the well in using the blow out preventer (BOP). Once the well has been shut-in, the 

influx must be circulated up the annulus and out of the well using the choke manifold at 

surface. Precaution should be taken with any form of a pit gain because the formation fluids 

are often of a lower density than the drilling fluid. Therefore, any volume of formation 

fluids that enter the well will reduce the hydrostatic head of the column, increasing the 

degree of underbalance and potentially exacerbating the well control event. There are 

several other methods of kick detection which will be discussed later, but pit gains are the 
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primary method. Since wellbore breathing also results in pit gains, differentiation between 

the two can be difficult. 

2.2.6.5 Hydrocarbon Swap Out 

Hydrocarbon swap out is a phenomenon that can occur during wellbore breathing 

events in a fractured hydrocarbon bearing zone. During circulation, the increased annular 

pressure forces opens the fracture or fractures forcing fluid out into the formation and 

results in mixing of drilling fluid and hydrocarbons. Once circulation is stopped, the drop 

in wellbore pressure allows the fractures to close and force fluid back into the wellbore. In 

the case of a hydrocarbon swap out, some drilling fluid is left out in the formation or 

fracture system and some hydrocarbons are brought back into the wellbore. The effective 

result is a kick being taken without any net gain of fluid in the system. This renders it 

extremely difficult to identify at surface and therefore very dangerous as the driller may 

unknowingly circulate the kick up the annulus. The difficulty in identifying influxes from 

hydrocarbon swap out makes this phenomenon dangerous because the influx may be 

unknowingly circulated up the annulus and to surface. This can result in large gas volumes 

exiting the mud system at surface, potentially overloading gas separation equipment and 

posing a safety risk due to the potential for ignition of the gas. 

2.2.6.6 Flowback and Flowback Finger Printing 

When the mud pumps are shut down and circulation is stopped, a volume of drilling 

fluid, in the range of 20 to 50 barrel flows back to the mud pits and is known as flowback 

(Ali et al., 2013). Part of this flow can be attributed to gravity as the mud circulating system 

is typically located below the rig floor, so fluid in this system will drain to the pits. In 
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addition to this, the loss of ECD at pump shut off results in drilling fluid expansion and 

some elastic wellbore rebounding contributing to this flow out of the well (Ali et al., 2013). 

The volume between the rig floor and the pits is easily quantified and remains constant 

throughout the drilling process, but the flowback out of the well is dependent on the volume 

of the annular space, amount of open hole-section, and the pressure change between 

circulating and static conditions; each of which change over the course of a drilling 

operation. Because of this variability, it can be difficult to determine if the well is simply 

experiencing flow back or if a kick is being taken. 

Flowback fingerprinting was developed as means to monitor flowback and 

differentiate between normal flowback and a kick. Flow back fingerprinting is the process 

of plotting the pit volume change vs. time after pumps are shut down and comparing with 

past flowbacks. A typical flowback fingerprinting plot is displayed below in figure 2.18. 

The flowbacks are typically plotted consecutively on the same plot in order to obtain a 

cluster of flowback profiles. This can be monitored at each connection, but typically the 

mud logger will set an alarm on the system to signal if a certain rate or total volume gained 

has been exceeded. 
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Figure 2.18 Flowback profile monitoring from GOM well (Ali et al., 2013) 

2.2.6.7 Shut-in Drill Pipe Pressure (SIDPP) and Shut-in Casing Pressure (SICP) 

Once a kick has been detected and the well has been shut-in, pressure builds at 

surface until the combination of surface and hydrostatic pressures equal the formation 

pressure and the inflow has stopped (Mitchell and Miska, 2011). Once the surface pressures 

have stabilized, the shut-in drill pipe pressure (SIDPP) and shut-in casing pressure (SICP) 

can be used to determine the pressure of the formation, and subsequently the mud weight 

required to kill the well. Figure 2.19 below provides a simplistic representation of what the 

shut-in well looks like after taking a kick. This graphic is also helpful for visualization 

when using the formulas listed on the following page. 
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Figure 2.19 Graphic depicting well control situation with a shut-in well. 

As can be seen in Figure 2.19, a kick has been taken and now occupies a portion of 

the annular space below the column of drilling mud. The drill pipe typically has a backflow 

valve near the bit so it remains completely filled with drilling mud. Therefore, the 
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hydrostatic head of the fluid in the drill pipe and the SIDPP should provide an accurate 

estimate of the formation pressure: 

𝑃𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =   𝑆𝐼𝐷𝑃𝑃 +  𝑃𝐷𝑃 𝐻𝑦𝑑𝑟.                                    (2.1) 

It is also useful to determine the type of influx that has occurred which can be calculated 

using the surface pressures, mud density, and the kick height in the annulus: 

𝜌𝑘𝑖𝑐𝑘 =  𝜌𝑚𝑢𝑑  – 
𝑆𝐼𝐶𝑃−𝑆𝐼𝐷𝑃𝑃

ℎ𝑘𝑖𝑐𝑘
                                   (2.2) 

Where the densities are in psi/ft, the pressures are in psi, and the kick height is in feet. The 

kick height is challenging to estimate accurately but can be calculated by: 

ℎ𝑘𝑖𝑐𝑘 =  
𝑉𝑘𝑖𝑐𝑘

𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠
                                         (2.3) 

Where,  

𝑉𝑘𝑖𝑐𝑘 = kick volume (𝑓𝑡3) 

𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 = cross-sectional area of annulus (𝑓𝑡2) 

2.2.6.8 Flow Check 

Flow checks are operational procedures designed to identify kicks by stopping 

circulation, leaving the BOP open, and checking for flow out of the well. Flow checks are 

typically performed during the course of drilling when an abnormality has occurred to 

ensure the well is static. A drilling break, sudden increase in rate of penetration (ROP) 

while drilling, is a common reason for performing a flow check as the increase in ROP 

indicates a formation change or increase in pore pressure. Flow checks are also very useful 

for differentiating between an overpressured formation and wellbore breathing, which are 

often confused. In this case, wellbore breathing could be identified as the cause if the flow 
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out of the well dissipated over time and eventually stopped. Whereas, for an overpressured 

formation, the flow would not dissipate and may actually increase due to the displacement 

of the heavier drilling fluid. This differentiation becomes increasingly difficult in situations 

where there is a small differential between the formation and wellbore pressures or the 

formation has very low permeability. The rate of fluid flow into the well is directly related 

to these variables and it may take a very long flow check, 45 – 60 minutes, to determine 

the subsurface process occurring.  

2.2.6.9 Swab Pressures 

Swab pressures are a temporary reduction in the bottom hole pressure due to the 

swabbing effects of pulling drill pipe or a tool out of the hole. The primary danger in these 

situations, is that the swab pressure temporarily places the wellbore into an underbalance 

condition where an influx may occur. Two common situations where swab pressures may 

be induced are during tripping operations and wireline operations where the tool is pulled 

to surface too quickly. There are, however, multiple software packages provided by service 

companies designed to calculate swab pressures and determine a maximum allowable rate 

for pulling out of the hole with a given tool and hole size. As with any procedure, it is only 

effective if followed, so effective communication to the company man and well site crews 

is crucial.  

An additional swab pressure can occur when the bit, reamer, or stabilisers have 

balled up or even packed off resulting in a significantly larger diameter for the effected 

downhole equipment. Tripping out of the hole in these cases would result in extreme swab 

pressures and would significantly reduce the bottom hole pressure, potentially facilitating 
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large fluid influxes. Large volume swabbing can be identified while tripping by the fluid 

level in the annulus not dropping the proper amount or even rising in extreme cases. 

Potential solutions would be to trip out of the hole wet or turn the pumps on while pulling 

each stand in extreme cases. 

2.2.6.10 Trapped Pressure 

Trapped pressure is any artificial increase to the SICP and SIDPP above the surface 

pressure required to balance the pore pressure of downhole formations. In instances when 

a kick is believed to have occurred while circulating, shutting in the well prior to the pumps 

shutting off can result in trapped pressure. If trapped pressure is not properly identified, it 

can result in the calculation of inaccurate and unnecessarily high kill mud weight. While a 

higher kill mud weight will effectively kill the well, the unneeded increase in mud weight 

would subject the wellbore to increased pressures while drilling ahead and may lead to 

lower rates of penetration and lost circulation issues.   

2.2.6.11 Pressure Bleed Off 

Pressure bleed off is the process of opening the choke up for short periods after the 

well has been shut in to remove any excess fluid or pressure in the system above what is 

required to balance the pore pressure of the downhole formation. This is an important step 

for the reasons mentioned above in section 2.2.6.10, but it is also important to minimize 

the pressure bled off in excess of the trapped pressures. Mitchell and Miska (2011) 

provided some suggestions for bleed off procedures including:  

 Focus on the SIDPP as it indicates the bottom hole pressure and bleed small 

volumes (~ ½ bbl) of fluid at a time, close choke and monitor SIDPP  
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 Continue prior step until the SIDPP stops decreasing, if SIDPP reduces to zero 

continue bleeding small volumes off until the SICP stops decreasing.  

It is important to stop bleed off when the SIDPP no longer decreases because 

pressure bled off in excess of the trapped pressure will allow more formation fluid to enter 

the wellbore as this pressure is needed to balance the formation pore pressure. The resulting 

larger influx volumes can make a kick more difficult to handle at surface depending on the 

capacity of the mud-gas separator. Also, larger influx volumes will result in higher 

wellbore pressures due to gas expansion when circulating the kick out of the wellbore. It 

is important to keep these pressures to a minimum because fracturing the formation while 

circulating a kick out of the well can lead to an underground blow out.  

2.2.6.12 Blow Out 

A blowout is an uncontrolled flow and release of reservoir fluids at the surface 

driven by the reservoir pressure. A blowout is the worst-case scenario for a drilling 

operation and indicates that there has been a failure in one or some combination of the well 

control barriers, equipment, and procedures. As evidenced by the Macondo blowout, which 

occurred in the Gulf of Mexico in 2010, a deepwater blowout can result in the loss of 

human life, environmental damage, a significantly diminished company reputation, and 

massive financial costs for damages, fines, and liabilities (Carter, van Oort, and 

Barendrecht, 2014).  

In addition to the more common surface blowout, there is another type of blowout 

called an underground blowout. An underground blowout consists of uncontrolled flow of 
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reservoir fluids out of the reservoir and into some lower pressured up-hole formation which 

was fractured due to the excessive pressure in the wellbore. The primary situation in which 

this can occur involves the circulation of a gas kick up the annulus. As the gas moves up 

the annulus, it begins to expand, reducing the hydrostatic head of the mud column and 

requiring higher surface pressures to maintain the required BHP. If the gas volume has not 

made it inside the casing, the formation above and to the base of the gas volume will be 

subjected to increased pressures. Because of this, the maximum pressure that the wellbore 

can handle without inducing a fracture, the maximum allowable annular surface pressure 

(MAASP), is calculated in well control situations; Operational decisions are then made to 

keep annular pressures below the MAASP and avoid potential underground blowouts 

(Santos et al., 2011). 

2.2.6.13 Kick Tolerance 

Kick tolerance is a key concept in well design and drilling operations which is 

related to a wellbore’s ability to withstand pressures during a well control situation without 

fracturing. Typically expressed in barrels, the kick tolerance is the largest gas influx 

volume at the highest expected pore pressure that can be taken without exceeding the 

MAASP while circulating the kick out of the hole. Therefore, kick tolerance is a function 

of the cross-sectional area of the annular space, mud weight, and true vertical depth (TVD).  

Santos, Catak, and Valluri (2011) explained that the kick tolerance dictates the number and 

setting depth of casing strings in a well plan, is used to determine whether drilling ahead is 

a safe proposition, and indicates whether a given kick can be circulated up the annulus or 

requires bull heading back into the formation.  
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In situations where a kick has already been taken, the pore pressure of the formation 

will be known and can be incorporated into the calculation for kick tolerance before 

deciding whether to circulate the kick up the annulus. Additionally, in this case it would 

also be beneficial to use the SICP for determination of the type and density of the influx 

which has occurred. These two steps will yield a more accurate value for kick tolerance 

and prove beneficial when determining the best way forward.  

 2.2.6.14 Slow Circulating Rate Pressures 

Slow circulating rate pressures are the increase in BHP caused by frictional losses 

when pumping through the choke or kill line while the well is shut-in. They are typically 

recorded on deepwater wells because the choke and kill lines may be several thousand feet 

long and impart significant frictional pressures. The slow circulating rates are usually 

recorded during BOP tests and measured at different circulating rates that may be used 

during a well control incident. These circulating rates are recorded in strokes per minute 

(SPM) and at a range of rates (30, 45, and 60 SPM for example).  Slow circulating pressures 

are important during well control operations as they will increase the bottom hole pressures 

while circulating out a kick and must be incorporated in kick tolerance calculations to avoid 

fracturing the wellbore.  

2.2.7 Conventional Drilling 

Conventional drilling is the standard and most common method for drilling an oil 

or gas well. It uses drill pipe to transmit torque from the top drive to the bit while circulating 

fluid down the drill pipe and up the annulus. The mud column is open to the atmosphere at 

surface and outflow from the annulus is directed to the cuttings handling system for 
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removal of solids prior to going back into the active mud system. Once a stand of pipe has 

been drilled down, the pumps are shut off to make a connection. Therefore, ECD is lost at 

connections and there is a reduction in bottom hole pressure compared to circulating 

conditions. The approach for conventional drilling operations is to maintain a high enough 

mud weight to maintain overbalance at all times, which results in an ECD significantly 

above the pore pressure. In wells with narrow drilling windows, it may be impossible to 

maintain a bottomhole pressure above the pore pressure during static conditions and below 

the fracture gradient during circulating conditions. For these narrow drilling window wells, 

conventional drilling systems may not be capable of reaching the target depth. 

2.2.8 Unconventional Drilling Methods 

Unconventional drilling methods incorporate specialized equipment and have been 

developed as a means to combat lost circulation and wellbore breathing, in addition to 

enabling drilling of wells with extremely narrow drillings windows, that would be 

impossible with conventional techniques.  

2.2.8.1 Managed Pressure Drilling 

Managed pressure drilling (MPD) is a form of drilling which employs a closed fluid 

system, which can be pressurized in order to manage the bottomhole pressure during 

drilling operations. It allows more precise and instantaneous control of the downhole 

pressures than would be possible using mud weight and flow rate adjustments alone. To 

create the isolated fluid system, a device called a rotating control device (RCD) is installed 

to create a seal in the annulus and divert flow to a MPD choke manifold where backpressure 

can be applied as needed while circulating (Driedger et al., 2013). During connections and 
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any other times the pumps are shut down, there is an auxiliary mud pump which applies 

back pressure to the annulus in order to maintain the desired bottomhole pressure. Figure 

2.20 below displays a typical MPD and mud circulating system layout.  

 

Figure 2.20: Diagram of a typical MPD system layout (Driedger et al., 2013)  

2.2.8.2 Pressurized Mud Cap Drilling 

Pressurized mud cap drilling (PMCD) is a specific application of MPD developed 

for wells that have lost circulation issues concurrently with well control issues. It was 

developed to eliminate non-productive time that typically results from drilling fluid losses 

in highly fractured carbonates in Southeast Asia by using the fractured formation to dispose 

of the fluid and cuttings downhole (Runtuwene et al., 2009). PMCD involves pumping a 

sacrificial fluid, usually sea water, down the drill pipe with no returns and pumping heavier 

drilling mud down the annulus and applying back pressure to maintain a pressurized mud 



 59 

cap above the loss zone. Runtuwene et al. (2009) also suggest that the annular drilling mud 

used should be of a density less than required to balance the formation pressure and should 

be pumped down the annulus at a rate high enough to maintain a velocity greater than the 

gas migration rate in the mud. This lighter drilling fluid requires back pressure applied by 

the RCD which can be monitored for any pressure changes indicative of downhole changes 

such as kicks. 

2.2.8.3 Dual Gradient Drilling 

Dual gradient drilling (DGD) is an unconventional drilling method developed to 

combat narrow drilling windows in deepwater basins such as the Gulf of Mexico. Using 

conventional drilling requires an excessive number of casing strings in these wells. DGD 

incorporates two fluid columns of different densities in the annulus to achieve the 

hydrostatic pressure needed rather than a single column of one density used in conventional 

drilling operations. DGD was originally proposed for deepwater applications in 1996 

through an industry workshop that ultimately resulted in the formation of the SubSea 

MudLift Drilling JIP focused on providing a total solution for DGD inclusive of both the 

hardware and operational methodology to implement it effectively (Smith et al., 2001).  

The system developed by this JIP was a technical success and ultimately resulted in 

Chevron contracting AGR Subsea, Pacific Drilling, and GE Oil and Gas to develop a built 

for purpose DGD system and drilling rig for use in the deepwater Gulf of Mexico (Dowell, 

2010).  

The DGD system incorporates seawater within the riser from a point near the mud 

line up to the drilling rig and heavier drilling fluid below the mud line. A subsea rotating 
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control device (SRD) is placed a small distance (~60 ft.) above the BOP to create a seal in 

the annulus preventing mixing of the fluids and any gas migration up the riser (Dowell, 

2010). A mudlift pump (MLP) to move the drilling fluid and cuttings to surface in 

conjunction with a solids processing unit (SPU) to reduce the solids particle size is installed 

on top of the lower marine riser package and powered by seawater pumped from surface 

(Dowell, 2010). When pumps are stopped for connections, the heavier mud present in the 

drill pipe will exert a higher pressure at the bit than the dual gradient system in the annulus, 

which would lead to U-tubing in a conventional drill string design. To combat this U-tubing 

effect, a special drill string valve which closes when the pumps are shut off and opens 

during circulation was designed and added to the BHA (Dowell, 2010). Figure 2.18 

displays a diagram of a DGD subsea system and plots highlighting the differences in 

downhole pressure gradients between a conventional and DGD system. 
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Figure 2.21: DGD system and the differences in mud hydrostatic gradient compared to a 

conventional drilling system (Stave, 2014). 

2.2.8.4 Continuous Flow System Drilling 

Continuous flow system (CFS) drilling is similar to MPD in that it aims to maintain 

a constant BHP throughout drilling operations, but it accomplishes this by maintaining 

constant circulation rather than pressurizing the mud system. The CFS consists of specially 

engineered subs with a side access port made up to the top of each stand, a clamp with 

secondary flow line to attach to these subs during connections, and an automated control 

system to switch drilling fluid flow between the top drive and side access port on the sub 

(Cunningham et al., 2014). When a stand is drilled down, floor hands manually attach the 

clamp to the sub and the automated system switches the flow to the side port. The top drive 
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can then be disconnected, pull another stand of pipe out of the derrick, and make this stand 

up to the drill string. At this point, the automated system would switch flow back to the top 

drive and drilling could begin. 

Additional advantages of CFS are uninterrupted data from downhole tools since 

they require circulation to transmit mud pulses to surface and improved hole cleaning due 

to the lack of static conditions when cuttings would settle (Cunningham et al. 2014). One 

negative with a CFS is that mud pump failure would result in an immediate reduction in 

annular pressure, which could put the well in an underbalance condition and cause an 

influx. However, a MPD system employed in combination with CFS could maintain 

wellbore pressures in the event of a pump breakdown.  

2.2.8.5 Casing or Liner Drilling  

Casing drilling is an unconventional drilling technique in which casing is used, with 

a specialized bit, to drill a hole section and is subsequently cemented in place once its 

setting depth has been reached. In some circumstances casing drilling can provide a 

significant cost benefit for a drilling program by eliminating the trip out with drill pipe and 

back in to the hole with casing that are required in conventional drilling operations. 

Additionally, and of more importance to this thesis, casing drilling has proven an effective 

approach to combat lost circulation issues as well as wellbore breathing (Rosenberg and 

Gala, 2011). The exact underlying mechanism causing this isn’t well understood, but is 

thought to be related to the small annular space between the formation and casing that the 

mud and cuttings must be circulated through. This belief has led to the process being 

commonly referred to as the “casing smear effect”. 



 63 

Chapter 3 Wellbore Breathing Case Studies 

3.1 Case Studies from Literature 

Several case studies have been published in literature which will be examined in 

detail in this section. Each of these wells encountered wellbore breathing although the 

amount of details and data published varies significantly between them. 

3.1.1 Timor Sea, Offshore Australia 

Ashley (2000) published a case study detailing two wells drilled in the Bonaparte 

Basin of the Timor Sea off the northwest coast of Australia and operated by Woodside 

Energy. The first well, the Bard-1, was spudded in October 1998 and was ultimately 

plugged and abandoned short of target depth (TD) due to severe wellbore breathing coupled 

with hydrocarbon swap-out. The Jura-1 was subsequently spudded in July 1999 targeting 

the same structure, but about 28 miles away. The Jura-1 also encountered wellbore 

breathing events but without any associated hydrocarbon swap-out and was able to 

successfully reach TD. Figure 3.1 below displays a map of the Jurassic Plover-Plover 

petroleum system within the Bonaparte Basin showing discoveries in the area, water 

depths, and well locations including the Bard-1 and Juna-1 towards the top left of the 

figure.  
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Figure 3.1: Map of the Jurassic Plover-Plover petroleum system within the Bonaparte 

Basin (Earl, 2004) 

3.1.1.1 Bard-1 

Ashley (2000) describes the exploration well plan, which can be seen in Figure 3.2, 

as targeting the Plover formation with a simple two string design and an 8 ½” hole to TD 

using a water based mud system. Furthermore, a FIT to 11.75 ppg was planned at the 9 

5/8” shoe and a 10.92 ppg mud weight was chosen to drill the overpressured Jamieson 

Formation with a plan to gradually reduce this mud weight to a minimum of 9.8 ppg prior 

to entering the Darwin formation.  
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Figure 3.2: Predicted section and pore pressure for Bard-1 (Modified after Ashley, 2000) 
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As planned, the mud weight was reduced prior to penetrating the Darwin and 

Echuca Shoals formations, but flow increased at surface followed by significant gas 

readings while drilling at 7,100 ft with a mud weight of 10.42 ppg.  The well was shut-in 

and although the SICP and SIDPP were zero, it was circulated through the choke as a 

precaution. After this circulation, the SIDPP and SICP were 170 and 180 psi respectively, 

the decision was made to increase the mud weight to 10.92 ppg to counteract the believed 

overpressure. This was the first step in a well control incident that transpired over a 5 day 

period and ultimately resulted in the well’s plugging and abandonment. Figure 3.3 displays 

the measured pressures as well as the increases in mud weight (ΔBHP) over the first 3 ½ 

days of the well control incident and the following paragraph provides details.  

 

Figure 3.3 Pressures during Bard-1 well control incident (Data from Ashley, 2000) 
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In Figure 3.3, the orange points indicate the increases in BHP caused by raising the 

mud weight in comparison to the initial mud weight of 10.42 ppg. The mud weight was 

raised first to 10.92 ppg at 1.5 hours, then to 11.33 ppg at 11.25 hours, and kept at this 

density until the 27 hour point which is marked with a star. Numerous circulations, bleed 

offs, and flow checks to static conditions were recorded over the course of this initial 27 

hour period. During the course of these operations, there were hydrocarbon returns to 

surface throughout and bleed off volumes were significantly larger than expected for 

trapped pressure, but there were no pit gains and the SIDPP was reduced to zero several 

times (Ashley, 2000).   

At this point, the downhole mechanism was diagnosed as a high pressured low 

permeability zone and the decision was made to increase the mud weight further to 11.83 

ppg and then 12.33. This only exacerbated the problem resulting in higher pressures, higher 

gas cuts, and fluid losses. Ultimately, the crew was unable stop these losses and 

hydrocarbon returns persisted so the decision was made to set cement plugs and abandon 

the well.  

In the post well review, Ashley (2000) suggests that the mechanism responsible for 

the anomalous pressure data and hydrocarbon returns was wellbore breathing coupled with 

hydrocarbon swap-out and cited eight reasons:  

 The formations below the Jamieson shale were thought to have a fractured 

lithology, which if filled with hydrocarbons would lend itself to this mechanism. 

 The SIDPP was reduced to zero several times during the well control event and the 

well was static when opened, indicating overbalance on bottom-hole pressure.  



 68 

 SIDPP did not decrease when the mud weight was increased to 12.33 ppg; if the 

well would have been underbalanced this increased BHP should have reduced the 

SIDPP somewhat.  

 There was a significant influx off hydrocarbons, 70 bbls of oil, without any 

associated pit gains. 

 The volume of fluid bled in instances of “trapped pressure” were 10 bbl per 100 psi 

compared with calculated compressibility from the FIT of a ½ bbl per 100 psi, 

indicating closure of fractures was contributing mud back to the system. 

 Influxes of hydrocarbons steadily increased with mud weight, indicating the higher 

annular pressures were causing additional fracture opening and subsequent 

hydrocarbon swap-out.   

Figure 3.4 below displays hydrocarbon levels at surface during the well control 

incident. The oil percent is cumulative throughout the incident as it was not removed, but 

the gas readings are instantaneous as the gas is separated out of solution at surface. 
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Figure 3.4: Percent of returns, oil and gas (Data from Ashley, 2000) 

In addition to the reasons listed by Ashley, which were primarily during the latter 

portion of the well control event, there is additional evidence within the first 27 hours of 

the well control incident that support wellbore breathing coupled with hydrocarbon swap-

out as the influx mechanism. It is important to note that the first 27 hours composed the 

critical time period for this well. The data gathered during this period was all that was 

available when the mechanism was mischaracterized as a low permeability high pressure 

zone.  

First, the mud weight was increased first by 0.5 ppg and then by an additional 0.4 

ppg for a total increase of 0.9 ppg, but there was no associated reduction in the SIDPP. On 

the contrary, the SIDPP was actually higher after each mud weight increase. If the well was 



 70 

in a state of underbalance, this 350 psi increase in wellbore pressure should have resulted 

in some reduction in SIDPP.  

Second, in Figure 3.3, the SICP and SIDPP at the 19 hour mark are circled in red 

as these were the highest shut in pressures observed throughout the incident. These 

pressures were recorded after a circulation of 1.25 times the wellbore volume with 10.92 

ppg while holding an additional 100 psi of back pressure on the well at the choke. The 

additional 100 psi of back pressure is equivalent to a 0.3 ppg increase in mud weight 

without taking into account any additional back pressure added by frictional effects of flow 

through the choke line. If the downhole mechanism was a high pressure low permeability 

zone, the shut-in pressures should have been lower after this circulation compared to 

previous shut-in pressures. Furthermore, these high shut-in pressures suggest that the 

increased annular pressures during circulation actually made the problem worse. This is 

consistent with our understanding of wellbore breathing, in which higher annular pressures 

result in increased fracture opening and higher surface pressures if the fluids are not 

allowed to flow back into the well prior to shut-in.  

Last, there were two sequences in the first 27 hours in which the well was circulated 

conventionally rather than through the choke manifold with the well shut-in. During each 

of these two circulations, flow significantly increased from the well when 65 to 70 percent 

of the annulus volume had been displaced, followed by significant gas readings at surface. 

This behavior is consistent with a volume of oil entering the wellbore when the pumps 

were off, this volume being circulated up the annulus, and the gas rapidly breaking out of 

solution when volume reaches a depth where the annular pressure drops below the bubble 
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point. This once again suggests that wellbore breathing coupled with hydrocarbon swap-

out was the mechanism because this would have resulted in an oil influx when circulation 

was stopped, with no associated pit gain. It would be difficult for a high pressure low 

permeability zone to cause similar behavior as the volume of influx would be limited by 

the formation’s permeability in the short time that the well was static prior to each 

circulation and a pit gain would be associated with the influx. Assuming the influx occurred 

at or near bottom-hole, the annular pressure was between 1,200 psi and 1,400 psi at the 

depth where the gas is believed to have broken out. These pressures are within the range 

of bubble points expected for hydrocarbon oils, confirming the plausibility of the increased 

flow being due to gas breaking out of solution.   

3.1.1.2 Jura-1 

The Jura-1 was spudded roughly 8 months after the Bard-1 with the objective of 

evaluating the Plover Formation on the same structure that the Bard-1 had been drilled. 

Ashley (2000) explains that due to the experiences on Bard-1, several new operational 

procedure were implemented prior to spudding the Jura-1 including:  

 Reduced circulating rates in order to reduce the ECD. 

  Staging pump start up and shut down over five minute periods in order to allow 

any fluid swap-out encountered to occur gradually. 

 Implementation of a PWD tool in the BHA to monitor downhole pressures. 

 Flow through both the choke and kill lines when circulating with the well shut-in 

to reduce frictional pressures. 

 Use flowback fingerprinting to distinguish between wellbore breathing and a kick. 
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  If hydrocarbon swap-out was encountered, circulate bottoms up after each 

connection prior to drilling ahead.  

Similar to the Bard-1, wellbore breathing was encountered in the interval of the 

Darwin and Echuca Shoals Formations. However, no hydrocarbon swap-out was 

encountered in conjunction with the wellbore breathing. In accordance with the new 

operational procedures, the well was shut-in and circulated bottoms up after the first two 

connections when wellbore breathing occurred. In each instance, the well was static after 

pressure bleed off and no hydrocarbons were returned to surface so the decision was made 

to drill ahead while monitoring flowback fingerprints at connections. Following this 

procedure, no influxes occurred and the well was successfully drilled to TD.  

It is worth noting that the Jura-1 was drilled with the same semi-submersible 

drilling rig and the same crew as the Bard-1 with the only major equipment or tool change 

being the incorporation of a PWD tool in the drill string. This demonstrates that a well-

trained and well-educated operations team is a necessity in situations where wellbore 

breathing is encountered and can be the difference between abandonment of a well and 

reaching TD. In addition, while the PWD tool did prove beneficial in monitoring downhole 

pressures due to ECD, there were no other significant changes regarding the equipment 

and tools used to drill the well. Identification of the back flow at connections, verification 

that this back flow was due to wellbore breathing, and verification that no hydrocarbons 

were entering the wellbore so it was safe to drill ahead were all rooted in the operational 

procedures implemented prior to spudding the well. This stresses the effectiveness that well 
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thought out operational procedures based on solid technical reasoning can have in drilling 

operations.  

3.1.2 Well ESS-107, Atlantic Ocean, Offshore Brazil 

Lage et al. (2002) published a case study detailing the 1-ESS-107 deepwater 

exploratory well drilled in 4,220 feet of water in the Espírito Santo basin offshore Brazil. 

The well encountered what was believed to have been two separate overpressured intervals 

in which influxes occurred,  as well as wellbore breathing coupled with hydrocarbon swap-

out, in a single hole section. The well control situation, which resulted from these incidents, 

lasted 13 days and the well ultimately had to be temporarily abandoned due to hydrate 

formation in the choke and kill lines. After pulling the BOP and changing mud systems, 

the well was reentered and successfully drilled to TD with the use of an additional liner 

string.  Figure 3.5 below displays the well’s location roughly 37 miles off the Brazilian 

coast and roughly 21 miles from nearest producing field, the Peroá field.  
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Figure 3.5: 1-ESS-107 well location offshore Brazil (Lage et al., 2002) 

Lage et al. (2002) details the well plan as a 3-string design using a conventional 

water based mud and a TD of 16,290 ft. The well was drilled without incident to a depth 

of 15,483 feet when a drilling break occurred, a pit gain of 10 barrels was detected, and the 

stand pipe pressure dropped, indicating an influx had occurred. A flow check was 

performed and an additional 25 barrel pit gain occurred, so the well was shut in. The SIDPP 

was eventually measured at 620 psi after circulating the kick out and the decision was made 

to increase the mud weight to 12.5 ppg. This was the initial sequence in a well control event 

that lasted over the next five days. Figure 3.6 displays the shut-in pressures and the change 

in BHP due to mud weight over this period. 
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Figure 3.6: Pressures during first well control event (Data from Lage et al., 2002) 

As can be seen in Figure 3.6, the mud weight was increased twice during this 

sequence, first from 11.3 to 12.5 ppg and then from 12.5 to 13.2 ppg. Lage et al. (2002) 

explained that the initial kill mud weight was calculated using the 620 psi SIDPP while the 

second increase in mud weight was deemed necessary due to heightened shut-in pressures 

after circulating the initial kill mud. The magnitude of the second increase was assumed 

rather than calculated as there was difficulty obtaining a SIDPP due to a blind flapper valve 

in the drill string  After the circulating the 13.2 ppg mud into the hole, shut-in pressures 

were still present but at lower values than before. Furthermore, these pressures were 

believed to be associated with trapped pressure as the SICP was bled to zero multiple times.  
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Lage et al. (2002) states that drilling was resumed and the well was deepened from 

15,483 to 15,834 feet over the next two days. Throughout this hole-section, while no net 

pit gains occurred, heavy gas cuts (up to 30 %) were recorded and each was associated with 

the bottoms up time for a connection. A flow check after the first gas cut at surface showed 

a static well, but a flow check after the fourth gas cut at surface registered a 10 barrel gain 

over 75 minutes. The mud weight was subsequently increased to 13.5 ppg, but heavy gas 

cuts associated with bottoms up from static conditions continued, so the mud weight was 

increased further to 13.7 ppg. Gas cuts continued with this mud weight, but several flow 

checks indicated the well was static and therefore overbalanced. After tripping the string 

out of the hole to the BOP at a controlled pace to avoid swabbing, several influxes occurred 

totaling 128 barrels and the well was shut-in. Preparation for the static volumetric method 

was in progress when the kill line and subsequently the choke line became plugged with 

what was believed to be hydrates caused by free gas and low temperatures at the BOP 

(Lage et al., 2002). Cement was then bullheaded down the casing string to temporarily 

abandon the well and the BOP was pulled to clear the choke and kill lines. The BOP was 

then run again and the well was reentered and successfully drilled to TD with the use of a 

SBM and the setting an additional 7” liner string. 

In review of the well, Lage et al. (2002), discussed a low permeability 

overpressured reservoir or wellbore breathing coupled with hydrocarbon swap-out as the 

two potential mechanisms behind the influxes and concluded that it was likely a 

combination of the two. Lage et al. suggested that overpressure was present based on:  
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 Increased rate of penetration (ROP) indicated an increase in formation pore 

pressure at 15,483 feet, the depth of the first kick 

 Increased ROP indicated an increase in formation pore pressure between 15,716 

feet and 15,834 feet, the depth of the second kick 

 Sandstone cuttings impregnated with oil were identified at surface when bottoms 

up occurred for the 15,716-15,834 interval indicating a sandstone reservoir was 

present.  

Lage et al. suggested that wellbore breathing coupled with hydrocarbon swap-out was also 

present based on:  

 The volumes of fluid returns during bleed off were significantly larger than mud 

compressibility data indicated should be returned (3.3 bbl/100 psi vs. 1 bbl/100 psi), 

which indicates that the elastic closure of fractures was contributing volume to the 

system 

 After the mud weight was raised following the first kick, SIDPP and SICP were 

bled to zero multiple times indicating overbalance. However, gas shows continued 

at surface indicating hydrocarbons were still entering the wellbore 

 For the drilled interval, bottoms up for each connection consistently had associated 

gas peaks at surface indicating that gas entered the wellbore when pumps were 

stopped.  

 Significant volumes of gas were recorded at surface, but there were no associated 

pit gains detected.  
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 Losses during drilling were not explicitly mentioned by the authors, but the above 

bullet points and the assessment that hydrocarbon swap out is present are consistent 

with the wellbore breathing mechanism in which fluid flows into fractures during 

drilling and back into the wellbore during connections. Losses may not have been 

noticed at surface and recorded in the daily operational report if they occurred 

slowly over the course of drilling a stand of pipe. This could potentially explain the 

lack of fluid losses being mentioned in the paper. 

In addition to the reasons mentioned above, there are several other data points 

indicating that the wellbore breathing was present in this case study. First, shortly after the 

initial mud weight increase following the first influx at 15,483 feet, the SIDPP and SICP 

were measured at 440 psi. In light of this, the decision was made to raise the mud weight 

further and to circulate the well with the current 12.5 ppg mud while the heavier mud was 

prepared. During this 5 ½ hour time period the well was circulated through the choke line 

while holding an additional 230 psi of back pressure at the choke. The SIDPP couldn’t be 

measured due to the blind flapper valve but the SICP was measured as 620 psi, a 180 psi 

increase over the prior measurement. If the well were underbalanced, the additional 

pressure by the choke would have resulted in either the same or slightly lower SICP. The 

increased shut in pressure indicates that the increased bottom-hole pressure during 

circulation likely exacerbated the problem, indicating wellbore breathing was likely 

responsible. A pressure bleed off sequence combined with a flow check at this point, prior 

to weighting up to 13.2 ppg mud, could have been useful in identifying the mechanism.  
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Second, increases in mud weight following the second influx have no impact on the 

gas cuts observed at surface. In fact, the 40 percent gas cuts seen in the later part of the 

well control incident were actually the highest seen over the incident. This indicates that 

the higher mud weights employed at this point may have been making the problem worse 

rather than better, consistent with wellbore breathing coupled with hydrocarbon swap-out. 

Figure 3.7 below displays surface gas cut readings as well as the mud weight changes over 

the five days following the second kick.  

 

Figure 3.7: Mud weight and gas cuts after kick at 15,834 ft. (Data from Lage et al., 2002) 

Last, there were significant pit gains over the last day and a half of the well control 

incident in spite of a higher mud weight. These occurred after the mud weight had been 

increased to its highest level, 13.7 ppg, and after the drill string had been tripped out of the 

well to the BOP at 4,137 feet. The trip out of the hole took a total of 24 hours due to a 



 80 

controlled trip velocity to avoid swabbing and a complete BOP test. Over this time period, 

the well was in static conditions or near static conditions as no circulation occurred. 

Because of this, any downhole fractures responsible for the earlier wellbore breathing 

events would have been filled with drilling fluid as static pressures were now similar to 

circulating pressures earlier in the well control event. As the mud in the lower part of the 

well was no longer being replaced with mud from surface, the formation in contact with 

the mud would have been warming back to in-situ conditions throughout this period. The 

warming would increase the effective fracture gradient and result in some fracture closure, 

forcing drilling fluid into the wellbore and resulting in a gain at surface. An overpressured 

low permeability zone could cause slow pit gains like these, but similar gains would have 

been expected to occur throughout the static period rather than only at the end. 

Furthermore, if the well was still underbalanced with 13.7 ppg mud, fluid gains should 

have been experienced earlier in the well control sequence when lighter muds were in the 

hole. Therefore, taking all the available data into account, the fluid gains during static 

conditions late in the well control event were likely driven by thermal effects as the 

formation warmed back to in-situ conditions, increasing the effective fracture gradient of 

the downhole formation and closing fluid filled fractures.  

3.1.3 Well 22/30 C-10, North Sea, Offshore Scotland 

Maury and Idelovici (1995) published a case study detailing the 22/30 C-10 well 

targeting the Elgin Field located in the North Sea, 143 miles east of Aberdeen, Scotland. 

The well is unique in that it was drilling in HPHT conditions and was using a heat 

exchanger to keep the OBM below the flash-point at surface for safety reasons. This 
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combination of high temperature subsurface conditions and a cooled mud system led to 

significant thermally induced effective stress changes downhole. The well encountered 

significant wellbore breathing, connection gas, and thermally driven pit gains during static 

conditions while drilling the Kimmeridgian clays overlying the targeted reservoir. These 

events led to a loss of 30 rig days and required the setting of a contingency liner to 

ultimately reach TD. 

 Maury and Idelovici (1995) describe the well as being drilled without issue through 

16,913 feet TVD when increased connection gas, as well as slight flow during flow checks, 

was encountered and continued unabated despite several mud weight increases. Displayed 

in Figure 3.8 below, this series of events transpired over a four day period and culminated 

in a maximum connection gas measurement of 48 percent. Maury and Idelovici also 

mention that the increases in mud weight resulted in longer periods of flow during flow 

checks prior to eventual stabilization at static conditions. 



 82 

 

Figure 3.8: Gas cut and mud weight increases (Data from Maury and Idelovici, 1995). 

 The decision was then made to trip out of the hole, but multiple short trips, flow 

checks, and bottoms up circulations were performed to ensure that the well was 

overbalanced prior to tripping out to surface (Maury and Idelovici, 1995). These events are 

shown in Figure 3.9. Continued flow was observed during flow checks performed at the 

shoe while flow checks at bottom-hole resulted in static conditions being reached after 

about an hour. Complete circulation of the well was carried out several times and although 

no formation fluid was found to have entered the well, significant gas reading were 

measured. The well was eventually deemed stable and the pipe tripped out of the hole, but 

slight flows, similar to those observed at the casing shoe during short trips, were observed 

at flow checks throughout the trip. Once the bit was at surface and a complete BOP test 

had been performed, it was observed that mud was flowing out of the well so it was shut-
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in with an initial SIDPP of 400 psi increasing to 600 psi over four hours. The well was 

eventually reentered, determined to be overbalanced, and drilled to TD after setting an 

additional liner. 

 

Figure 3.9:  Log of events during short trips prior to pulling out of the hole (Data from 

Maury and Idelovici, 1995). 

In review of the well, Maury and Idelovici (1995) incorporated numerical modeling 

to evaluate the borehole stresses stress changes due to thermal effects and suggested that 

the mechanism involved was fracture initiation and propagation due to cooling and 

subsequent mud weight increases followed by fracture closure as the formation returned to 

thermal equilibrium. Additionally, Maury and Idelovici (1995) attributed the increased gas 

cuts experienced during the initial sequence to near wellbore vertical fractures, caused by 
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both cooling and subsequent mud weight increases, forming around the circumference of 

the wellbore and enabling some gas to enter the OBM. 

While the fluid gains that occurred while tripping and the shut-in pressures recorded 

at surface were likely driven by thermal effects as the downhole formation returned to 

thermal equilibrium, the connection gas and fluid gains during flow checks early in the 

well control sequence were likely not caused by the same mechanism. While the increased 

gas cuts were likely related to fractures, the assertion by Maury and Idelovici that the gas 

cuts were caused by fractures around the circumference of the wellbore is incorrect. The 

models prediction of fractures around the circumference of the wellbore is rooted in the 

incorrect assumption of isotropic horizontal stresses. This region of the North Sea has 

anisotropic horizontal stresses based on observed wellbore tensile fractures and wellbore 

breakouts (Zoback, 2007) and (Heidbach et al., 2008).  

The underlying mechanism causing the fluid gains and gas cuts during the early 

sequence shown in Figure 3.8 was likely wellbore breathing in which gas was diffusing 

into the OBM within the fractures while circulating and then being brought back into the 

wellbore with the drilling fluid when circulation was stopped. The fluid gains and gas cuts 

experienced during the short trips and trip out to surface were likely caused by a 

combination of the above mechanism and closure of fractures due to thermal effects as the 

formation returned to thermal equilibrium during static conditions. The reasoning for these 

conclusions are explained in the following paragraphs. 

Flow check behavior early in the sequence differed significantly from late in the 

sequence: early flow checks resulted in flow immediately after pumps were shut off and 
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then became static after 25-45 minutes while flow checks at the casing shoe during the 

short trips, during the trip out to surface, and once the bit was at surface resulted in 

continued flow over long periods of time. During the short trip sequence, flow checks 

performed at bottom-hole eventually went to static conditions while flow checks performed 

at the casing shoe did not. This can be explained because each flow check at bottom-hole 

during the short trips and during the initial well control sequence occurred immediately 

following circulation. Circulation would have charged the fractures with cold mud from 

surface and when the pumps were shut off for the flow check, the reduction in wellbore 

pressure would have caused some fracture closure and some mud to flow back into the 

wellbore. Thermal effects likely would not have time to take effect during the subsequent 

25-45 minute flow check because cold mud had just been forced into the fractures and the 

heat diffusion required to warm the fluid and the surrounding formation is a slow process. 

The flow checks performed at the casing shoe during the short trip sequence were each 

performed after the well had been static for between 1-3 hours (each occurred after a 

bottom-hole flow check and the string had to be tripped 800 feet to the shoe). This time lag 

would have provided some time for heat diffusion and the associated thermal effects to 

initiate and would explain the continuous small flow volumes observed at the casing shoe. 

Furthermore, the continuous small flow volumes were also seen during flow checks while 

tripping out to surface and the pressure build up at surface was gradual and occurred over 

a four hour period. This is consistent with thermal effects as it would be a slow process 

which would continue until the formation surrounding the fractures returned to thermal 

equilibrium.  
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The fact that the connection gas observed during the initial well control sequence 

was not lessened and increased with higher mud weights indicates that it was caused by 

wellbore breathing coupled with gas diffusion into the OBM. During circulation, some 

OBM would have been forced out into the fracture system and exposed to the gas bearing 

formation where gas diffusion could take place. When circulation was stopped, this OBM 

as well as the dissolved gas entrained in it, would flow back to the wellbore and be 

circulated up the annulus when pumps were started again. Furthermore, this effect would 

be exacerbated by mud weight increases because this would propagate the fracture and 

allow a larger volume of the OBM to come into contact with the gas bearing formation. 

Also, the gas diffusion process is driven by the high partial pressure of the formation gas 

compared to the low partial pressure of gas in the OBM so while increased overbalance 

caused by mud weight increases would influence diffusion, it would not be significant 

(Bradley et al., 2002).  
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Chapter 4: Identification, Mitigation, and Prevention of Wellbore 

Breathing 

4.1 Identification of Wellbore Breathing 

This section will discuss identification of wellbore breathing, differentiation 

between breathing and kicks, and time dependent variables which tend to inhibit 

identification at surface. In addition, the section also details methods for drilling ahead 

once wellbore breathing has been identified.  

4.1.1 Flowback Fingerprinting 

Flowback fingerprinting involves recording the mud returns to the pits following 

pump shut offs at connections and using these to develop a flowback “fingerprint” or 

“signature” which can be used to identify any abnormalities in flowback going forward. 

The primary abnormality being monitored for is an increase in either the rate of flowback 

or the total volume of flowback as this would indicate an influx or wellbore breathing had 

occurred. The typical method for this involves the mud logger plotting the flowback rate 

or cumulative pit gain versus time for each connection as can be seen in Figure 4.1. The 

mud logger then uses these plots to characterize the flowbacks, estimates the threshold of 

an abnormal flowback based on past experience, and manually sets an alarm at this 

threshold (Ali et al., 2013). While this has been successfully implemented to identify 

influxes in the past (Weisinger et al., 2000), it introduces the potential for human error in 

the quantification of an abnormal flowback. For example, on the Gulf of Mexico well 

displayed in Figure 4.1, the alarm was set at too high of a level which resulted in completely 
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missing the minor influx and would have resulted in missing the major influx had the field 

engineer not manually identified it (Ali et al., 2013). 

 

Figure 4.1: Flowback monitoring system (Modified after Ali et al., 2013) 

As a result of the rig time lost due to this influx, Ali et al. (2013) developed Smart 

Flowback Fingerprinting using statistical analysis and interpretation of flowback data to 

set alarms in place of the manually set alarm system. Smart Flowback Fingerprinting 

calculates the average and standard deviation of past flowback curves and uses these to 

define alarm curves. 

The average is: 

                         𝜇 =  
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1                                                  (4.1) 
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And the standard deviation is: 

𝜎 =  √
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1                              (4.2)                            

Where, 

𝑥1, 𝑥2 … . . 𝑥𝑁 = the last N flowbacks 

The alarm can then be set at whichever multiple of the standard deviation is desired. 

Ali et al. (2013) states that 95 % of all previous flowbacks fell within two standard 

deviations of the mean for the well examined and the system would have caught the minor 

kick within 70 seconds and the major kick immediately as shown in Figure 4.2. 

 

Figure 4.2: Smart Flowback System plot (Ali et al., 2013)  
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While this Smart Flowback Fingerprinting system was developed primarily for 

identification of kicks, it would also identify the initiation of wellbore breathing as 

flowback volumes would increase. On the initial increased flowback, it would be difficult 

to determine whether an influx or breathing had occurred so a flow check would likely be 

required. Following the identification of wellbore breathing, flowback fingerprinting could 

also be useful. In this case, the wellbore breathing flowback would be characterized and 

the Smart Flowback Fingerprinting system could identify increased flowback indicating a 

kick had occurred or a decreased flowback indicating that lost circulation had been 

initiated. 

4.1.2 Pressure While Drilling Measurements  

Ward and Clark (1998) first introduced the pressure while drilling (PWD) tool as a 

means to differentiate between wellbore breathing and an influx occurring. Data from 

connections on a Gulf of Mexico well, which can be seen below in Figure 4.3, was 

presented to show the downhole pressure behavior in time during wellbore breathing. The 

left side of Figure 4.3 shows the downhole pressure behavior of a well during a typical 

connection. When the pumps are shut off, the pressure immediately drops from the ECD 

of 16.26 ppg to the ESD of 15.92 ppg. When the pumps are brought back on after making 

the connection, the pressure immediately returns the ECD of 16.26 ppg. The right side of 

Figure 4.3 shows the downhole pressure response of the same well during a connection 

once wellbore breathing has started. When the pumps are shut off, there is a gradual 

decrease in pressure from the ECD to the ESD rather than the immediate drop seen on the 

conventional connection. The gradual pressure decline is due to mud flowing out of the 
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fractures and back into the wellbore, preventing the rapid decrease seen without breathing 

(Ward and Clark, 1998). When the pumps are started back up, there is a gradual increase 

back to the ECD due to fluid flowing back into the fractures. As can be seen, the pressure 

profile for the connection without breathing is square shaped whereas the pressure profile 

with breathing exhibits more of an irregular rounded shape. These pressure profiles make 

for easy identification of breathing and the rounded pressure profile is often call a “shark 

fin” profile due to its obvious resemblance.  

 

Figure 4.3: (a.) Pressure behavior during conventional connection. (b.) Pressure behavior 

during connection with breathing. (Ward and Clark, 1998) 

The primary issue with the application of PWD for identification of wellbore 

breathing while drilling, is the inability to get real-time data to surface. Currently, the 
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widely used technology for transmitting downhole data to surface is mud pulse telemetry 

(MPT), which creates pressure pulses as mud flows through the drill string to transmit the 

data. The primary drawbacks to this system include: no data transmission when pumps are 

off, difficulty in transmitting data in extremely deep wells, and limited bandwidth 

(McCartney et al., 2009). Due to these drawbacks, large amounts of data must be stored in 

memory downhole and downloaded whenever the BHA is brought back to surface. As a 

result, the analyzation method described by Ward and Clark (1998) cannot be performed 

until the data is downloaded at surface. Therefore, while useful in the characterization of 

the wellbore breathing mechanism, this method is not suitable for real-time differentiation 

of kicks and breathing events using the current industry standard MPT system. 

 One additional method for identification of wellbore breathing would be to 

perform step rate changes in fluid circulation rates while monitoring PWD measurements. 

A step down in flow rate would decrease the ECD similarly but to less of an extent than at 

connections and data could still be transmitted to surface through the flowing mud stream. 

If breathing were occurring, the reduction in ECD would allow some fluid to flow back 

into the wellbore and the downhole pressure should exhibit a rounded profile as it 

transitions to a lower pressure. Conversely, if no breathing were occurring, the transition 

should be more of an abrupt drop to the lower pressure. The primary issue with this 

approach would be the minimum flow rate required to transmit data to surface in a MPT 

system. If the circulation rate being used during drilling was not significantly higher than 

the minimum rate, the step down in pressure would be small and likely inhibit 

differentiation between a square or rounded transition profile.   
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In recent years, advances have been made in wired drill pipe technology enabling 

high speed, large bandwidth transmission of downhole data to surface in real-time. The 

technology has been successfully implemented in field tests with encouraging results 

(Edwards et al., 2013), but has yet to be widely incorporated within the drilling industry. 

Once implemented, wired drill pipe can enable real-time monitoring of downhole pressures 

during connections and therefore real-time differentiation between wellbore breathing and 

formation fluid influxes. 

4.1.3 Logging While Drilling Measurements 

 Bratton et al. (2001) presented a method for identification of wellbore breathing in 

wells drilled with an OBM or SBM using resistivity measurements. Because resistivity 

tools measure the resistance to electrical current, fractures filled with a nonconductive fluid 

like OBM or SBM will artificially increase the resistivity reading of the formation. The 

method proposed by Bratton et al. identifies these artificially increased resistivity 

measurements and correlates them to different stages of fracture propagation and closure.  

An increased shallow resistivity measurement compared to the deep resistivity 

measurement for a formation indicates that there are drilling fluid filled fractures extending 

from the wellbore, but these fractures do not extend far enough to influence the reading of 

the deep resistivity measurement. An example of such behavior from a GOM well shown 

by Bratton et al. can be seen below in Figure 4.4. Between 5,655 and 5,700 feet, the shallow 

resistivity with a 16 in. depth of investigation registers a significantly larger resistivity than 

the deep resistivity with a 40 in. depth of investigation. While not specific to wellbore 
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breathing, this method can reveal fractures before large losses or wellbore breathing have 

occurred, enabling preemptive action to prevent such issues. 

 

Figure 4.4: Resistivity plot revealing shallow mud filled fracture (Bratton et al., 2001) 

The second method presented by Bratton et al. (2001) uses time-lapsed resistivity 

measurements to identify the opening and closing of a drilling fluid filled fracture during 

the wellbore breathing process. This can be identified by a higher resistivity for a given 

depth when the ECD is higher and a lower resistivity reading for the same depth when the 

ECD is lower, indicating a closing fracture, as shown in Figure 4.5 below. The black line 

registering the highest resistivity was logged while drilling with an ECD of 13.1 ppg. The 

red line and the yellow line were logged a short time later when circulating off bottom with 

ECD’s of 12.7 and 12.6 ppg respectively. The lowest resistivity, the turquoise line, was 

logged once the pumps had been shut down and is indicative of the actual formation 
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resistivity. The graphic at the bottom of the figure depicts the fracture closing as the 

wellbore pressure is reduced and is color coded to correspond with the respective resistivity 

measurement for each stage of fracture closure. 

 

Figure 4.5: Time-lapsed resistivity plot showing fracture closure (Bratton et al., 2001) 

While using resistivity measurements to identify wellbore breathing and shallow 

wellbore fractures can be effective in some cases, there are a few limitations worth 

mentioning. Similar to the PWD tool, LWD tools also rely on mud pulse telemetry to 

transmit data so real-time resistivity logs would only be available at surface when 

circulating. Additionally, it may be difficult to identify the closure of a fracture if it has 

been propagated a significant distance away from the wellbore and outside the depth of 

investigation for the resistivity tool. In this case, some fracture closure could occur near 
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the fracture tip but this would likely have little effect on a resistivity measurement taken 

closer to the wellbore. Last, unless LWD is being employed specifically to identify and 

locate wellbore breathing, sections of the wellbore are not typically logged multiple times 

with different ECD’s. 

4.1.4 Time and Temperature Dependent Variables  

Time and temperature dependent effects are often unaccounted for or neglected 

during drilling operations and can lead to misidentification of the downhole mechanism 

responsible for processes observed at surface. This section details these variables and 

provides examples from published case studies to demonstrate the effects these variables 

can have in regards to wellbore breathing. 

4.1.4.1 Thermally Induced Stress Changes due to Drilling Fluid Temperatures 

Thermal effects on stresses around the wellbore can have a significant effect on the 

effective fracture gradients of formations. These thermal effects are extremely important 

in HPHT wells, especially when the conditions at surface are cold. This is because the cold 

mud from surface will result in a significant reduction in the formation temperature and 

hoop stress, as shown in equation 2.4. Alaska and North Sea wells often exhibit these 

conditions and care should be taken to monitor drilling fluid temperatures in such 

environments. When drilling a hole-section, the mud circulated into the well from surface 

is significantly cooler than the in-situ temperature of the formation. This results in cooling 

of the formation in the lower portion of the well near the bit and warming of the formation 

higher up in the wellbore (Karstad, 1998) as shown in Figure 4.6.  
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Figure 4.6: Various temperatures in a well during drilling (Karstad, 1998). 

In an effort to quantify the effect of such temperature changes, Pepin et al. (2004) 

performed three leak off tests with different stabilized downhole temperatures and 

determined that there was a change in fracture gradient of 0.16 ppg/10° F. Although this 

test was for a single formation, it is indicative of the negative effects that formation 

temperature reductions can have on effective fracture gradients. This phenomenon has been 
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well documented in literature (Schmidt et al. 1999) and can be approximated for a given 

formation using a linear elastic model (Fjaer et al., 2008). 

Δ𝜎𝑡 =
𝐸 ∝𝑡(𝑇−𝑇𝑓) 

1−𝜐
                                                 (4.3) 

where, 

E = Young’s Modulus 

∝𝑡  = linear thermal expansion coefficient 

𝜐 = Poisson’s Ratio 

𝑇𝑓 = original formation temperature 

While most literature pertaining to reductions in fracture gradients due to thermal 

effects have focused on lost circulation events, thermal effects can also contribute to 

wellbore breathing. The North Sea case study detailed earlier in this work by Maury and 

Idelovici (1995) discussed a wellbore breathing event believed to be entirely driven by 

thermal stress changes. In this case, the mud losses were likely very hard to identify 

because cooling of additional extents of the formation would be required each time the 

fracture propagated, making it a slow and gradual process. Also, the formation would 

need to warm back up in order for the fracture gradient to increase and cause mud 

backflows. This delays the gains significantly from the losses, making identification of 

the thermal mechanism responsible extremely difficult.  

In cases where the fracture gradient is initially higher than the wellbore pressure 

until it has been sufficiently cooled by drilling fluid, the fracture would initiate up-hole 

from the bit. This is because the portion of the wellbore wall cooled most by the drilling 
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fluid occurs uphole of the bit, as shown in Figure 4.6. This will make identification of the 

loss zone difficult as it would likely be diagnosed as occurring in the formation closest to 

the bit. This can lead to difficulties in remediation as LCM and cross-linked pills 

typically need to be placed across the loss interval to be effective. 

Last, the casing shoe is usually identified as the weakest point in the open-hole 

section as the minimum horizontal stress is related to the overburden and typically 

increases with depth (Zoback, 2007). Therefore, the maximum pressure from the FIT or 

LOT performed at the casing shoe defines the upper limit of mud weight that can be used 

in the hole-section. However, this does not take into account thermal effects which may 

alter the strength of the formation at the casing shoe either during the LOT or afterwards, 

as the hole is being deepened. As shown by Karstad in Figure 4.6, the borehole wall’s 

temperature actually increases in the upper part of the well during drilling as mud that 

was warmed near the bottom hole is circulated up the annulus. Depending on the length 

of a given hole-section, the casing shoe may see an increase in temperature which would 

raise its effective fracture gradient. This would likely invalidate the assumption that the 

casing shoe is the weakest point in the wellbore and could increase or decrease the 

effective fracture gradient for the wellbore, depending on rock properties and thermal 

effects elsewhere in the hole-section. 

4.1.4.2 Downhole Pressure Variations 

 Another variable, which is often unaccounted for, are increases in annular 

pressure which periodically occur during drilling operations. Typical causes for such 

pressure increases include increased cuttings loading, barite sag, or restrictions in the 
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annulus. Each of these three causations are due to downhole processes and may not be 

recognized at surface. These pressure increase events, however gradual or seemingly 

insignificant, can initiate wellbore breathing if they exceed the fracture pressure. One 

such incident was published by Edwards, Bratton, and Standifird (2002) and is shown in 

Figure 4.7 and discussed in detail below the figure. 

 

Figure 4.7: Initiation of wellbore breathing (Modified after Edwards, Bratton, and 

Standifird, 2002) 

Starting at the left side of the figure, drilling is in progress with a flow rate of 400 

gallons per minute (gpm) in red, an ECD of roughly 17.25 in black, and zero cumulative 

losses in blue. Circulation is stopped for a connection at the 150 minute mark, with an 

immediate drop in ECD and the accustomed flowback signature for the well of 20 bbl. 

When pumps are started back up and return to 400 gpm, annular pressure behaves 
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abnormally and spikes slightly above 17.6 ppg. Losses were initiated at this point so the 

flow rate was decreased in order to reduce the annular pressure. The pumps were next shut 

off at the 210 minute mark to make a connection. The slow decline in ECD at this 

connection indicates that wellbore breathing is occurring, but pumps were started back 

before any significant pit gain was seen at surface.  Losses continued throughout this stand, 

even at a lower ECD than had been used with no losses prior to the pressure spike. This 

likely occurred because the fracture gradient was exceeded and a fracture initiated at the 

wellbore wall. Once a fracture has been initiated, the mud pressure must only exceed the 

minimum horizontal stress to open the fracture. In this case, the wellbore pressure was also 

above the FPP as the continued fluid losses indicate that the fracture was being propagated. 

When pumps were shut off for a connection at the 342 minute mark, a 50 bbl pit gain 

occurred and the ECD behavior at pump shut-off confirms that wellbore breathing is 

occurring. 

While the ECD data in Figure 4.7 is useful in confirming that wellbore breathing is 

occurring, the data during connections would not have been available at surface in real-

time to identify the wellbore breathing. In real-time, the driller noticed the pressure increase 

had initiated fluid losses at the 180 minute mark and reduced the flow rate accordingly. 

Two connections and almost 3 hours later, a flowback 30 bbls in excess of the typical 

flowback signature was recorded. At first glance, this gain would appear to be a kick and 

the driller would likely shut the well in as a precautionary step and monitor pressures.  

However, a well-trained and educated on-site drilling engineer or supervisor should be able 

to prevent this NPT. The engineer in this case would understand the contributors to 
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wellbore breathing, anticipate that it is a possibility in this situation, and institute a method 

for quick differentiation between a kick and breathing prior to the fluid gain. 

4.1.5 Differentiation between Underbalance and Breathing 

The most challenging aspect of dealing with wellbore breathing in drilling 

operations is that it exhibits characteristics very similar to those exhibited in an 

underbalanced or near balanced well. These similarities include pit gains, significant 

pressure build ups when shut in, gas cuts corresponding to connections, and hydrocarbon 

influxes in some cases. Key identifiers for differentiation between wellbore breathing and 

underbalance conditions will be discussed in this section. 

4.1.5.1 SIDPP and SICP Behavior 

Once a pit gain or excess flow from the well has been detected, shutting in the well 

via the BOP is often the next step. Once the SIDPP and SICP have stabilized, it is necessary 

to verify that these shut-in pressures are not being artificially increased due to trapped 

pressure. Artificially increased shut in pressures would result in an erroneous kill mud 

weight calculation. In addition to monitoring the SIDPP for the pressure response while 

performing bleed offs as mentioned in 2.6.11, the SICP should be monitored as well. Since 

the SIDPP is a direct measure of formation pressure, a reduction in SIDPP to zero during 

bleed off indicates that the well is not in an underbalanced state. This is the key indicator 

that underbalance is not the influx mechanism and should be a “red flag” that some other 

process is be taking place downhole. Three different potential shut-in scenarios are 

examined in detail here to enable better understanding of the SIDPP and SICP behavior 

they exhibit:  
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 A volume of formation fluids entered the wellbore due to the formation pressure 

exceeding the hydrostatic pressure applied by the current mud weight. 

 A volume of formation fluids entered the wellbore due to some temporary 

decrease in wellbore pressure such as swabbing.   

 Wellbore breathing is occurring, only drilling mud is flowing into the wellbore 

from the fractures. 

These scenarios and their associated behavior during pressure bleed off is displayed in 

Figure 4.8, 4.9, and 4.10 respectively. Brown indicates drilling mud, green indicates 

formation fluid, and the drill string is grey. 

 

Figure 4.8: SIDPP and SICP behavior for underbalanced scenario (𝑃𝑚 < 𝑃𝑝). 

Figure 4.8 depicts a well that has been shut-in due to an influx caused by 

underbalance. On the left side, the well has just been shut in and the SIDPP is 400 psi and 
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the SICPP is 600 psi. Pressure is then bled off to check for trapped pressure in the time 

between the left and middle graphics. This results in a SIDPP reduction of 100 psi, 

confirming trapped pressure was present. The SICP has increased because bleeding mud 

from the annulus allowed the influx to expand, reducing the height of the mud column, and 

requiring a higher surface pressure to balance the formation pressure. Pressure is then bled 

off again in the time between the middle and right graphics to check for trapped pressure. 

This time the SIDPP stays constant at 300 psi, indicating that no more trapped pressure is 

present and the formation pore pressure is 300 psi greater than the hydrostatic pressure 

provided by the mud. The SICP increases due to either more inflow from the formation or 

further expansion of the influx already present in the annulus. At this point, the bleed off 

process would be stopped because the SIDPP did not decrease after the last bleed off. Kill 

mud weight could now be calculated using the SIDPP and circulated into the hole to kill 

the well. 
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Figure 4.9: SIDPP and SICP behavior for swabbed influx scenario (𝑃𝑚 > 𝑃𝑝). 

Figure 4.9 depicts a well that has been shut-in due to a pit-gain caused by a swabbed 

influx. On the left side, the well has just been shut in with a SIDPP of 400 psi and a SICPP 

of 600 psi. Pressure is then bled off to check for trapped pressure in the time between the 

left and middle graphics. This results in a SIDPP reduction to zero, indicating trapped 

pressure was present and that the well is not in an underbalanced state. The SICP remained 

the same at 600 psi in this example, but could go also go up depending on how much 

formation fluid was in the annulus and the compressibility of this fluid. Pressure is then 

bled off again in the time between the middle and right graphics to check for more trapped 

pressure. The SICP increases indicating that there is no more trapped pressure present and 

that a formation fluid is in the annulus and has expanded as the mud was bled off at surface. 

The next step in this case would be to circulate the annular volume out of the well and over 
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the choke to remove the influx from the well. This would be done using the same mud 

weight already in the well because the SIDPP indicates that the well is in overbalance. 

Once the entire annular volume has been circulated out, the well would be shut in again to 

check pressures. Some trapped pressure may need to be bled off, but once this is done both 

SIDPP and SICP would be zero as the well would be overbalanced. The BOP could then 

be opened up and drilling ahead continued. In this case, because a kick was swabbed in, it 

would be beneficial to do a look-back in order to identify the cause of the swab pressure 

and avoid recurrence. 

 

Figure 4.10: SIDPP and SICP behavior for a wellbore breathing scenario (𝑃𝑚 > 𝑃𝑝). 

Figure 4.10 depicts a well that has been shut-in due to a pit-gain caused by wellbore 

breathing. On the left side, the well has just been shut in with a SIDPP of 500 psi and a 

SICPP of 500 psi. Pressure is then bled off to check for trapped pressure in the time between 
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the left and middle graphics. The SIDPP is reduced to 250 psi through bleed off indicating 

that trapped pressure was present. In this case, the reduction in pressure is due to the 

fractures closing somewhat. The implicit assumption here, is that the rock behaves in a 

linear elastic manner: When fluid flows out of the fracture, the rock becomes less deformed, 

and therefore applies a lower stress (or pressure) at the fracture interface between the rock 

and drilling fluid. The SICP is also reduced to 250 psi during bleed off. Pressure bleed off 

is then continued in the time between the middle and right graphics. The SIDPP is reduced 

to zero indicating that the well is not underbalanced. The SICP is also reduced to zero. This 

indicates that the annular fluid column is also of sufficient density to balance downhole 

pressures, suggesting the column is composed completely of mud and no formation fluid 

entered the wellbore. In this scenario, losses should have also been recorded during drilling 

prior to shut-in and this can be used as another means to verify that wellbore breathing is 

occurring. 

At this point, the well is static so drilling ahead could continue. However, since 

there was a pit gain at surface, the well would often be circulated bottoms up as a safety 

precaution to confirm that no influx occurred. Regardless of which approach was taken, 

some fluid losses would occur while circulating and another pit gain would occur whenever 

the pumps were shut off. If the losses were noticed while circulating, the following gain 

would be further evidence indicating wellbore breathing was taking place. The well may 

also be shut in again when the pit gain occurs. In this case, a similar bleed off process to 

the one described in the last paragraph would be observed indicating that wellbore 

breathing is occurring. Going forward, the mud weight or flow rate could be lowered, if 
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possible, or the wellbore breathing connections flow backs could be fingerprinted similar 

to the process described in section 4.1.1.  

In the case where hydrocarbon swap out occurred coupled with wellbore breathing, 

interpretation of shut-in pressures could prove to be more difficult. In this instance, an 

iterative approach would be required to identify the wellbore breathing coupled with 

hydrocarbon swap out mechanism. The shut-in pressure behavior during bleed off would 

be similar to the swabbed kick scenario shown in Figure 4.9, but the shut-in pressures after 

circulation of the influx out of the well would not be zero. In this case, another influx would 

enter the well via the hydrocarbon swap out mechanism when the pumps are shut off and 

the shut-in pressure behavior during bleed off similar to that shown in Figure 4.9 would 

occur again. Therefore, repetitive shut-in pressure bleed off scenarios where the SIDPP 

pressure is reduced to zero and the SICP is non zero, would indicate that wellbore breathing 

coupled with hydrocarbon swap out is occurring. A reduction in mud weight could then be 

used to verify if this is indeed the mechanism responsible; a reduced mud weight should 

lessen or eliminate the wellbore breathing and hydrocarbon swap out mechanism. 

It is important to note that the three step diagrams used in this section are simplified 

for ease of presentation in this format. The process of bleeding off shut-in pressures at 

surface is a slow methodical process. It involves letting small fluid volumes out of the well 

and then monitoring the pressure build up once the flow is stopped. If the SIDPP pressure 

decreases and does not rise back to its previous value, the process is repeated. In the case 

of a breathing wellbore as depicted in Figure 4.10, all the drilling fluid in the fracture would 

need to flow back into the wellbore during the bleed off process. When each bleed off 
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sequence only allows a barrel or two out of the wellbore, the process will take a significant 

amount of time. Also, if only a barrel or two of fluid is flowing out of the fracture in each 

of these sequences, the reduction in pressure associated with the fracture closing would be 

relatively small and therefore difficult to notice in surface pressures. This is a possible 

explanation for some of the difficulty in differentiating between wellbore breathing and 

kicks when shut in.    

4.1.5.2 Pressure Bleed Off Volumes 

The volumes required to bleed off trapped pressure after shutting in the well can be 

key in differentiating between wellbore breathing and a kick. These volumes are typically 

expressed in terms of the volume of mud flowed from the well in order to cause a 100 psi 

drop in the shut-in pressure or (bbl 100 psi)⁄ . Field experience has shown that the bleed off 

volumes for wells experiencing wellbore breathing are significantly larger than the 

compressibility data from up-hole LOT’s would suggest: Ashley (2000) experienced bleed 

off volumes of 10 (bbl 100 psi)⁄  in comparison to the expected 0.5 (bbl 100 psi)⁄  and Lage 

et al. (2002) experienced bleed off volumes of 3.25 (bbl 100 psi)⁄  in comparison to the 

expected 0.4125 (bbl 100 psi)⁄ . 

This significant difference between bleed back volumes is due to the increased size 

of the system that is being decompressed in a breathing wellbore. In a conventional well 

control situation, the system that would be decompressed in the bleed off process includes 

the fluid in the wellbore, the casing strings and cement behind them, and the formation 

itself in the open hole-section. Whereas in the case of wellbore breathing, the system 

includes the fluid in the wellbore, the casing strings and cement behind them, the formation 
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itself in the open hole-section, the fluid that is in the fractures, and the portion of the 

formation which has been compressed due to the aperture of the fracture.  

4.1.5.3 Connection Gas and Mud Weight Correlation  

During drilling, increased connection gas is associated with the static wellbore 

pressure being at or below the formation pore pressure, which allows some formation fluids 

to enter the wellbore (Alberty and Fink, 2014). The appropriate response is to raise the mud 

weight because this would place the well back into overbalance at connections when pumps 

are off.  Once the mud weight has been increased, inflow from the formation during 

connections should stop and therefore the associated connection gas reduced. If however, 

the connection gas continues unabated or increases with increased mud weight, this should 

be a “red flag” that wellbore breathing is taking place.  

There are two mechanisms, when coupled with wellbore breathing, which exhibit 

these characteristics: hydrocarbon swap-out and gas diffusion into the drilling fluid while 

in the fractures. Hydrocarbon swap-out can occur with WBM, OBM, or SBM and has no 

temperature or pressure constraints. Gas diffusion on the other hand, will occur only when 

drilling with an OBM or SBM system and is more likely to occur in high pressure and high 

temperature (HPHT) conditions. In a WBM, gas diffusion will not occur quickly enough 

to cause connection gas as gas solubility in water is very small (Bradley et al., 2002). Along 

the same lines, gas diffusion related connection gas can be significant in HPHT wells 

drilled with OBM or SBM systems because methane is infinitely soluble in these conditions 

and substantial amounts of gas can be dissolved into the mud (Bradley et al., 2002). 

Regardless of which of these specific mechanisms is coupled with wellbore breathing, the 
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appropriate response is to reduce the mud weight because this will reduce the wellbore 

breathing effect. A reduction in the wellbore breathing effect will reduce the amount of 

fluid in the fracture system and therefore reduce the effects of either hydrocarbon swap-

out or gas diffusion, whichever is occurring. 

4.1.5.4 PWD Measurements 

The best solution to reduce the effects of wellbore breathing, a reduction in mud 

weight, is often not possible due to high pore pressures. In these cases, drilling ahead is 

continued with the current mud weight, resulting in losses while drilling and large pit gains 

at connections. These large pit gains, anywhere from 25 to 350 barrels (Tare, Whitfill, and 

Mody, 2001), can easily mask a kick occurring during a connection. However, a PWD tool 

could be used to detect these kicks by monitoring for any changes in circulating density.  

Once pumps are started up after a connection, the ECD measured by the PWD tool 

can be used to infer whether an influx has taken place as long as circulating conditions are 

the same as before the connection. In this case, the ECD returning and stabilizing at the 

same pre-connection value would indicate that no influx has occurred. However, if the 

ECD were to stabilize at some value lower than the pre-connection ECD, this would 

indicate an influx has occurred. This behavior is due to the fluid density in the annulus. If 

a formation fluid influx were to occur during a connection, the density of the fluid column 

would be lessened. If the fluid gain at the connection was mud flowing back into the well, 

as occurs during wellbore breathing, the density of the fluid column would be unchanged. 
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4.2 Mitigation of Wellbore Breathing 

This section focuses on methods for mitigation of wellbore breathing and its effects 

while drilling. These approaches typically fall into two categories: (1) limitation of the 

pressure fluctuations which cause fracture opening and closing or (2) mechanical limitation 

or elimination of the underlying fracture opening and closing mechanism itself. 

4.2.1 ECD Management 

ECD management involves limiting the fluctuation between downhole pressures 

during static conditions and during circulating conditions as well as the rate at which those 

fluctuation occur. ECD management pertains primarily to operating procedures which can 

be changed in real-time, but also includes changes in the well plan both while drilling and 

pre-spud, if wellbore breathing is expected. A large driver of ECD is frictional losses in 

the annulus so reduction in these frictional effects are a key aspect of ECD management. 

These frictional losses are a function of fluid velocity, fluid density, and the flow area as 

shown by Mitchell and Miska (2011): 

∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =  
2 𝑓𝜌𝑣2

𝑑𝑎𝑛𝑛.−𝑑𝑑𝑝
                                                  (4.4) 

Where, 

f   =  Fanning friction factor 

𝑑𝑎𝑛𝑛 =  Diameter of annulus 

𝑑𝑑𝑝 = Outer diameter of drill pipe 

v = Fluid velocity 

ρ = Fluid density 
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First, limiting the fluid velocity in the annulus will reduce frictional losses and can 

be achieved by using reduced circulating rates. There are however limiting factors 

pertaining to the magnitude of circulating rate reductions. Circulating rates need to be 

maintained at a high enough rate to adequately clean the hole and move drill cuttings up 

the annulus. Further, circulation rates also need to be maintained at a high enough level to 

adequately cool the bit while drilling. Inadequate cooling of the bit can result in early bit 

failure, which could prove costly over the course of a well due to both bit costs and 

associated NPT. Last, circulating rates must be maintained at a high enough level to enable 

downhole tools to transmit data to surface using mud pulse telemetry or they will be 

effectively drilling blind. 

Second, increasing the diameter of the annulus will increase its cross sectional area 

and decrease frictional losses. Additionally, an increased annular cross section will 

decrease the annular fluid velocity for a given flow rate, and therefore decrease frictional 

losses. An increased flow area can be achieved during the pre-spud stage if breathing is 

expected by designing the well with larger hole sizes and larger casing diameters. However, 

increasing casing diameters can significantly increase the well cost and wellbore breathing 

is often not expected until encountered while drilling. In real-time, once wellbore breathing 

is encountered, the bit diameter size that can be used for a given hole-section is limited by 

the diameter of the casing string set up-hole. However, a hydraulically activated reamer 

could be run in the BHA above the bit, enabling a larger hole size to be drilled below the 

limiting casing string. Hydraulically activated reamers consist of sets of rock cutting blades 

and cutters similar to those found on the bit, which extend out from the BHA once a certain 
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flow rate has been exceeded. These extended blades cut away at the wellbore wall to create 

a larger hole-section than the bit diameter alone could create. 

In addition to altering the magnitude of the pressure fluctuations caused by ECD, 

the rate at which those fluctuations occur can also be reduced. This can be done by staging 

pump start up and shut down over a period of time, rather than bringing pumps to and from 

circulating rates instantaneously. In this case, the fluid gains and losses at surface would 

be more gradual. This is beneficial because it makes the gains easier to monitor at surface 

and also dilutes the fluid exiting the fracture downhole. Dilution of this outflow is 

advantageous because of the potential for hydrocarbons to be present in this flow. With a 

staged pump shut down, these hydrocarbons would reach surface over a long period of time 

rather than all at once. 

Another method for ECD management is minimizing the increased fluid density 

during drilling caused by cuttings suspended in the fluid. This can be accomplished by 

control drilling to keep the rate of penetration below a designated threshold. This will 

decrease the amount of drill cuttings in the annulus at a given time and therefore reduce 

the density of the fluid column. Another potential approach would be to pause periodically 

while drilling and circulate fluid to remove some of the cuttings laden drilling mud from 

the annulus. This could be accomplished by circulating for periods before and after 

connections and would work hand in hand with the staged pump start up and shut down 

procedure mentioned earlier in this section. Both management of ROP and circulation for 

periods around connections will increase the total drilling time for a section, increasing 

costs. 
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4.2.2 Fracture Bridging/Plugging 

While typically discussed as a response to severe lost circulation events, the 

underlying fracture mechanism is similar and can be mitigated using similar approaches. 

As it pertains to wellbore breathing, the goal is to isolate the fracture from the wellbore so 

that fluid cannot flow into and out of the fracture or propagate the fracture. Some of the 

typical products and techniques used include adding fibrous, flaky, or granular lost 

circulation material (LCM) to the drilling fluid, placement of a cross-linked polymer and 

fibrous material blend across the loss zone, and in extreme cases pumping a cement plug 

into the wellbore in the area where losses are occurring.  

An advantage to the approach of adding LCM to the drilling fluid is that the LCM 

will contact the entire annulus.  It can therefore be successful in the plugging of fractures 

without exact identification of the loss zone. However, shear degradation of the LCM 

particles during circulation and removal of the LCM particles from the mud by the solids 

control equipment can limit the effectiveness of this approach (van Oort et al., 2009).  

An advantage to using the cross-linked polymer mixture is the speed with which it 

can be applied. The polymer and fibrous material can be pre-mixed and stored at surface 

so that only the cross-linker needs to be added and it can be pumped downhole after 5 

minutes of mixing (Caughron et al., 2002). This is useful because it could be applied 

whenever wellbore breathing is first identified and therefore limit the extent to which the 

fracture is propagated. In the case of wellbore breathing, it would likely be necessary to 

bullhead the cross linked mixture into the fractures because fluid is not flowing into the 

fractures at static conditions, like in a lost circulation situation. Bullheading is the process 
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of shutting in the well and pumping fluid down the drill pipe to force fluid, or bullhead, 

into the formation. The primary disadvantage with the cross-linked polymer mixture is that 

it is a spot treatment. Therefore, the exact zone where wellbore breathing is occurring needs 

to be properly identified to enable a successful treatment. 

In extreme wellbore breathing and lost circulation cases where one or both of the 

aforementioned approaches fail, a cement plug can be pumped into the fractured zone and 

allowed to set. The cement will penetrate into the fractures filling and sealing off the system 

and once set, the plug left in the wellbore is drilled out (Low, Daccord, and Bedel, 2003). 

While pumping cement can be an effective approach to eliminate wellbore breathing, it can 

be very expensive due to the volume of cement required to pump as well as the rig time 

spent waiting on the cement to set. Additionally, care must be taken when drilling through 

the cement plug. If the cement is harder than the formation itself, this can lead to 

inadvertently side tracking the well and exposing the wellbore to the same wellbore 

breathing or loss zone.  

4.3 Prevention of Wellbore Breathing 

There are typically two lines of approach for the prevention of wellbore breathing: 

prevention of the initiation of fractures and elimination of the ECD induced pressure 

fluctuations between circulating and static conditions. The former focuses on managing 

downhole pressures and temperatures to maintain wellbore integrity while the latter focuses 

on the development and implementation of specialized equipment at surface. 
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4.3.1 Accurate Kill Mud Weight Calculations 

Often times, kill mud weights are calculated in a conservative manner to ensure 

overbalance, which subjects the wellbore to unnecessarily high pressures. These 

unnecessary pressures can exceed the fracture gradient and result in fracture initiation. 

Furthermore, initiation of these fractures can lead to wellbore breathing occurring directly 

after a well control event. As shown by the earlier case study from offshore Brazil (Lage 

et al., 2002), a wellbore breathing event directly following a well control incident can mask 

the wellbore breathing mechanism and make identification difficult. Also, since kicks often 

take place in hydrocarbon bearing zones, wellbore breathing in these situations may be 

coupled with hydrocarbon swap-out or gas diffusion. This can make identification more 

difficult and cause safety issues due to hydrocarbon returns at surface.  

The accuracy of kill mud weight calculations is directly related to the accuracy of 

the SIDPP in its measurement of the BHP. In order to achieve an accurate BHP 

measurement via the SIDPP, all trapped pressure must be bled off and the float valve within 

the drill string must be open. Details regarding pressure bleed off procedures have already 

been detailed in 2.6.11 so they will not be repeated here, but issues with attaining SIDPP 

due to float valves have not yet been discussed. Float valves are typically run in drill strings 

as a means to prevent formation fluids from travelling up the drill string during well control 

events. While preventing flow up the drill string is necessary, closure of the float valve in 

these situations prevents pressure communication from below the valve and prevents 

measurement of the BHP via the SIDPP. Bradley (1987) detailed a procedure for attaining 

the SIDPP with a closed float valve in the drill string: 
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 Once well has been shut in, record the SICP. 

 Start pumps and maintain the pump rate at the pump rate used during the last 

recording of the slow circulating rate pressures. 

 Once pumping has begun, use the choke to maintain the SICP at the pressure 

recorded in the first step. 

 Record the stand pipe pressure with the correct pump rate and casing pressures 

specified above being maintained. 

 Shut down the pumps and close the choke so the well is shut in again. 

 Subtract the earlier slow circulating rate pressure from the stand pipe pressure 

recorded while pumping and this value is the SIDPP that should be used for 

calculation of the kill mud weight. 

The expected pressure response during this procedure as well as explanations for their 

occurrence are displayed below in Figure 4.11. 
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Figure 4.11: Procedure to attain SIDPP with a float valve in drill string (Bradley, 1987). 

4.3.2 Drilling Fluid Temperature Management 

Fluid temperatures, as detailed in 4.2.4.1, can induce thermal stress changes in 

downhole formations resulting in a reduction in the effective fracture gradient if the 

formation is cooled sufficiently. Because of this, fluid system temperatures should be 

managed to ensure that thermal stress changes are not allowed to decrease the effective 

fracture gradient to the point where fractures are induced. In order to do this, accurate 

temperature measurements of the mud within the pit system is necessary as well as real-

time downhole temperature measurements using MWD.  

Using downhole temperature measurements, a minimum threshold can be set for 

the downhole temperature. Since the bottom hole temperature decreases during circulation 
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and increases during static periods (Karstad, 1998), this may require periodic pauses in 

drilling to allow the formation to warm whenever the minimum temperature threshold is 

approached. Additional care must be taken in artic or cold weather environments where 

temperatures are low and can cause significant drilling fluid temperature reductions at 

surface. In these situations, the pit system at surface should be insulated or a heat exchanger 

used to keep the drilling fluid warmed. 

An additional point of emphasis should be placed on kill mud temperatures prior to 

circulating the mud into the well during well control situations. Regardless of whether the 

Driller’s Method or Wait-and Weight Method is used, mud from the active pit system 

should be weighted up to the specified kill mud weight rather than using mud from outside 

the active pit system.  The mud within the active system will be at a higher temperature 

because it has been continuously circulated downhole and warmed by the earth’s thermal 

gradient. Using colder mud from the inactive pit system will create an unnecessary 

reduction in the effective fracture gradient.  

Last, a heat exchanger could be incorporated at surface to warm the drilling fluids. 

This would maximize the drilling window on a given well by minimizing reductions in the 

formation’s effective fracture gradient due to thermal effects. Incorporation of the heat 

exchanger would likely incur significant costs due to the needed rig modifications, but 

would could be cost competitive in situations where the downhole temperatures were being 

actively managed; pausing drilling activities to allow the downhole formation to warm 

would prove timely and likely cost prohibitive due to the high price of rig day rates. One 



 121 

limitation to this approach would be use with OBM’s as maintaining these muds at higher 

temperatures would result in gases being released at surface.  

4.3.3 Managed Pressure Drilling 

Managed pressure drilling (MPD) is a suitable system for prevention of wellbore 

breathing because it maintains a constant bottom hole pressure throughout the drilling 

process. This eliminates the pressure fluctuation between circulating and static conditions, 

which drive the wellbore breathing phenomenon. Maintaining a constant bottom hole 

pressure allows wells with extremely small mud weight windows to be drilled, which 

would be either impossible or very costly to drill conventionally. Furthermore, since the 

downhole pressure is maintained by backpressure at surface in addition to the fluid column, 

changes can be made instantaneously by adjusting the backpressure applied at surface. This 

is extremely useful in response to events such as lost circulation or a kick. The primary 

limitations to MPD implementation are the initial cost and time required to install the 

system, as well as some drilling engineer’s and operations staff’s unfamiliarity with the 

system. However, Saponja, Adeleye, and Hucik (2006) suggest that the system’s 

advantages far outweigh the additional up front cost and can actually save money due to 

reductions in NPT and increased ROP due to less overbalance while drilling. 

4.3.4 Continuous Circulation System 

Continuous circulation systems aim to maintain a constant bottom hole pressure by 

maintaining ECD throughout the drilling process. This will effectively eliminate wellbore 

breathing as there will no longer be downhole pressure fluctuations due to shutting pumps 

off. However, the continuous circulation system does require installation of a secondary 



 122 

flow line on the rig floor and operational procedures at connections must be altered to allow 

connection of this flow line to the side port sub in the drill string prior to disconnecting the 

top drive. Additionally, reliance on ECD to maintain overbalance can result in influxes if 

pump failure is experienced and annular pressures decrease. A distinct advantage of the 

constant circulation system would be constant availability of downhole data via mud pulse 

telemetry since the pumps are not shut-off. 
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Chapter 5: Estimation of Minimum Horizontal Stress 

5.1 Hydraulic Fracturing Background and Theory 

This section details the theoretical background for using downhole pressure 

measurements to obtain the fracture closure and estimate the minimum horizontal stress 

using pump-in flowback tests. It details the original work focused on aqueous fluids, 

subsequent works verifying applicability to pump-in flowback tests with drilling fluid, and 

then discusses the applicability to PWD measurements during wellbore breathing 

incidents.  

5.1.1 Pump-in Flowback Tests in Hydraulic Fracturing 

Pump-in flow back tests consist of initiation or reopening of a fracture by pumping 

fluid downhole and then flowing this fluid back out of the fracture to force fracture closure. 

Pressures are recorded throughout the test and can be used to determine the fracture closure 

pressure, indicating the minimum horizontal stress, which is useful for fracture treatment 

design and evaluation (Plahn, Nolte, and Miska, 1997). 

Plahn, Nolte, and Miska (1997) used a numerical model, validated over a broad 

range of test cases, composed of a wellbore and a single propagating/closing fracture within 

a reservoir to model pump-in flowback tests in order to better understand the physical 

mechanisms behind the pressure response seen during tests in the field. Their model 

assumed a slightly compressible Newtonian fluid was being injected, all simulated 

pressures were BHP’s, and the fracture deformation and geometries were described using 

two different models: plane strain in the vertical direction (Perkins and Kern, 1969) and 

plane strain in the horizontal direction (Nordgren, 1972). Their work resulted in a multitude 
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of useful findings pertaining to hydraulic fracturing stimulation, but of interest for this 

work, was the determination of the correct method for picking the closure pressure from 

the pressure response during tests. Plahn, Nolte, and Miska (1997) explained that the 

methodology for picking the fracture closure pressure involves drawing lines through the 

linear trends seen early in the flowback and late in the flowback with the intersection of 

these lines providing a close estimate of the minimum horizontal stress (zero wellbore net 

pressure is the minimum horizontal stress). This methodology is shown for differing 

flowback rates in Figure 5.1 

 

Figure 5.1: Simulation results for flowback portion of pump-in flowback tests (Plahn, 

Nolte, and Miska, 1997) 
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5.1.2 Pump-in Flowback Tests in Drilling Operations 

Pump-in Flowback tests are also employed during drilling operations in order to 

estimate the minimum horizontal stress at the casing shoe prior to drilling ahead, although 

LOT’s are far more common. However, the drilling fluids used to perform these tests are 

typically non-aqueous and laden with solid material such as barite, which differs 

significantly from the slightly compressible Newtonian fluid used in the Plahn, Nolte, and 

Miska (1997) model. Additionally, the pressures simulated in the Plahn, Nolte, and Miska 

(1997) model were all downhole pressures, whereas pressures are typically recorded at 

surface for pump-in flowback tests performed during drilling operations.  

Raaen et al., (2001) used an analytical model composed of a fluid filled well, an 

ellipsoidal vertical fracture, fluid leak off into the formation, and fluid flowback at surface 

to describe the pump-in flowback test. Raaen et al. described the model behavior in terms 

of the system stiffness: 

𝑆 =
𝑑𝑝

𝑑𝑉
                                                    (5.1) 

Where, 

S = system stiffness 

p = pressure 

V = volume 

And the two primary contributors to system stiffness are: 

 Hydrostatic compression/decompression of fluid volume in well (well stiffness) 

 The elasticity of the fracture (fracture stiffness) 
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The fracture closure was considered to be a two stage closure as described by 

Hayashi and Haimson (1991) in which the fracture initially closes in a “hinge like” manner 

followed by closure at the fracture tip as displayed in Figure 5.2. 

 

Figure 5.2: Fracture closure process 

Raaen et al. (2001) proposed that during a pump-in flowback test, the system 

stiffness would initially be constant as it composed both the fracture stiffness and well 

stiffness, followed by a transitionary period as the fracture initially closes at the tip and 

then approaches full closure, and ending with the constant well stiffness as the fracture has 

completely closed. Raaen et al. (2001) proposed that the initial deviation from constant 

slope, when the fracture tip closes, indicates the minimum horizontal stress. Using this 
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simple model, Raaen et al. (2001) were able to interpret pump-in flowback tests from two 

different field tests which showed good qualitative agreement over several tests and with 

the authors’ understanding of stresses in the area. A plot of pressure versus volume, the 

system stiffness, from one of the field tests is shown below in Figure 5.3 with an 

interpretation of 75 MPA as the minimum horizontal stress. A plot of pressure versus time 

can also be used and yielded similar results in the work by Raaen et al. (2001).  

 

Figure 5.3: Pump-in Flowback test data from North Sea well (Raaen et al. 2001). 

Additional work by Gederaas and Raaen (2009) confirmed the system stiffness 

approach for determination of the minimum horizontal stress through three additional field 

tests using OBM in impermeable formations at casing shoes. Gederaas and Raaen (2009) 

also proposed using a square root of pressure versus time plot rather than the volume versus 

time plot, because flowback volume data tends to be noisy, and showed that its results were 



 128 

in agreement. The square root of pressure relationship arises because the flow rate through 

the choke during flowback is proportional to the square root of the pressure drop across the 

choke. 

While Raaen et al. (2001) and Gederaas and Raaen (2009) demonstrated the ability 

of pump-in flowback tests with drilling mud to estimate the minimum horizontal stress, the 

simplistic model used to interpret the tests provides a qualitative estimate of the minimum 

horizontal stress rather than a quantitative. Raaen et al. (2001) acknowledged that the 

fracture closure process is very complex, stated that the minimum horizontal stress within 

the fracture closure transition period is difficult to distinguish, and states that authors’ 

interpretation of the closure process indicates the minimum horizontal stress is associated 

with the deviation from the initial linear stiffness slope. This interpretation of pump-in 

flowback tests was originally proposed by Nolte and Smith (1981) using a similar 

simplistic analytical model to describe the fracture behavior. However, as shown in 5.1.1, 

later work by Plahn, Nolte, and Miska (1997) showed that this interpretation was actually 

incorrect and resulted in an overestimation of the minimum horizontal stress. 

5.1.3 Pump-in Flowback Test Applicability to Wellbore Breathing 

The downhole process which occurs during wellbore breathing events is very 

similar to a pump-in flowback test and should enable interpretation of PWD measurements 

during breathing events in a similar manner. The similarities between wellbore breathing 

and a pump-in flowback test include:  

 Increased wellbore pressure forces fracture opening and forces fluid into the 

fracture causing propagation. 
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 Wellbore pressure then decreases, allowing fractures to close and forcing fluid back 

into the wellbore. 

The dissimilarities between wellbore breathing and a pump-in flowback test include: 

 There is an uncontrolled flowback rate during wellbore breathing events while 

pump-in flowback tests typically incorporate a constant flowback rate or use a 

choke to restrict flowback at surface. 

 Wellbore breathing often takes place within a large open hole-section while pump-

in flowback tests are typically performed in a confined hole-section or short rat hole 

below a casing shoe. 

 Pump-in flowback tests start with a pressure below the minimum horizontal stress, 

create and propagate a fracture, and then end with a pressure below the minimum 

horizontal stress. In wellbore breathing this may or may not be the case.  

Plahn, Nolte, and Miska (1997) showed that rate of flowback does not have an 

effect on the ability of their interpretation method to determine the minimum horizontal 

stress, but increased flowback rate does shorten the linear portions of the pressure versus 

time plot. Therefore, in wellbore breathing cases where the flowback rate is high and 

fracture closure occurs quickly, it may be difficult to identify the linear behavior required 

to estimate the minimum horizontal stress.  

Wellbore breathing events which take place within a large open hole-section may 

also make interpretation difficult. This opens up the potential for multiple fractures within 

different formations. This scenario would make interpretation difficult, if not impossible, 
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because the pressure responses would be occurring simultaneously and the in-situ stresses 

would likely be different. Additionally, the fracture in wellbore breathing may or may not 

be at the same depth as the PWD device recording the pressures. Because of this, the 

interpretation of downhole pressure measurements and expression of results should use a 

pressure gradient rather than actual pressure values. If the specific wellbore breathing zone 

can be identified via LWD tool or some other means, these gradients can easily be 

converted to actual pressure and stress values for that given depth.  

Last, wellbore breathing can occur in circumstances where the static wellbore 

pressure is at or above the minimum horizontal stress. In these cases, interpretation of the 

PWD data would not yield an estimate for the minimum horizontal stress because fracture 

closure would not occur. In this case, the static wellbore pressure could be taken as the 

upper bound for the minimum horizontal stress.  

A potential advantage of using wellbore breathing events for estimation of the 

minimum horizontal stress is the repetitive nature of wellbore breathing compared to 

pump-in flowback tests or LOT’s, which are typically performed only once at the casing 

shoe. This repetition will provide a larger data set and reduces the risk of an incorrect 

estimation of the minimum horizontal stress as any outliers can be identified and excluded. 

If the volume lost and gained during a breathing event is large, in the tens to 

hundreds of barrels, the fracture will likely reach more than several wellbore radii into the 

formation, depending on the fracture height. Therefore, the fracture closure pressure will 

be indicative of the far field minimum horizontal stress and will not be altered due to stress 

concentrations around the wellbore. During LOT’s, the fracture is typically not propagated 
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into the far field as this would reduce wellbore strength. Because of this, fracture closure 

pressures obtained using LOT, if obtained at all, may be influenced by near wellbore stress 

concentrations and result in an inaccurate estimate of the minimum horizontal stress.   

5.1.4 Previously Proposed Methods 

Use of downhole pressure measurements during wellbore breathing events for 

estimation of the minimum horizontal stress was first proposed by Ward and Clark (1998) 

and subsequently by Edwards, Bratton, and Standifird (2002). Ward and Clark (1998) 

proposed that the early departure of pressure from linearity with time during flowback 

could be interpreted as the minimum horizontal stress similar to the method in LOT’s, but 

referenced no theoretical background for this assertion. Edwards, Bratton, and Standifird 

(2002) proposed using two different methods to estimate the minimum horizontal stress: 

(1) early departure of pressure from linearity with time during flowback could be 

interpreted as the minimum horizontal stress, (2) plotting the square root of pressure versus 

time results in the intersection of the lines drawn through the two linear portions indicating 

the minimum horizontal stress. 

Using the early departure from linearity in a pressure versus time graph, proposed 

by both Ward and Clark (1998) and Edwards, Bratton, and Standifird (2002) is the same 

method originally proposed by Nolte and Smith (1981) for interpretation of pump-in 

flowback tests. However, as mentioned in section 5.1.2, later work by Plahn, Nolte, and 

Miska (1997) showed that this method was incorrect and overestimates the minimum 

horizontal stress.  
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The second method proposed by Edwards, Bratton, and Standifird (2002) originates 

from shut in tests used during hydraulic fracturing to estimate the fracture closure pressure. 

These shut in tests rely on fluid leakoff into the formation to allow fracture closure. While 

this test will not be detailed here, the square root of time relationship used to estimate the 

fracture closure pressure originates from Carter Leakoff theory (Howard, Fast, and Carter, 

1957) which states that the flow rate of fluid leaking off into the formation is: 

𝑞𝑙𝑒𝑎𝑘𝑜𝑓𝑓 =
2𝐴𝑝𝐶𝐿

√𝑡−𝜏𝑝
                                      (5.2) 

Where, 

𝐴𝑝 = fracture surface area 

𝜏𝑝 = time when the fracture formed 

𝐶𝐿 = leakoff coefficient 

While this square root of time relationship is useful for shut-in test, fluid flow out 

of the fracture during wellbore breathing is dominated by flow back into the wellbore rather 

than flow into the formation via leakoff. Because of this, there will not be a square root of 

time relationship for wellbore breathing and the second method proposed by Edwards, 

Bratton, and Standifird (2002) will yield inaccurate estimates of the minimum horizontal 

stress. 

While Ward and Clark (1998) and Edwards, Bratton, and Standifird (2002) each 

proposed estimating the minimum horizontal stress using PWD measurements during 

wellbore breathing, to the best of the author’s knowledge, this is the first proposal to use 

the pump-in flowback interpretation proposed and verified by Plahn, Nolte, and Miska 
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(1997) to interpret PWD data from wellbore breathing events in order to estimate the 

minimum horizontal stress. 

5.2 Results for Estimation of Minimum Horizontal Stress Using PWD Measurements 

This section presents results for the estimation of the minimum horizontal stress 

using PWD data during wellbore breathing events. The methodology used to interpret the 

data and estimate the minimum horizontal stress is the same method originally presented 

by Plahn, Nolte, and Miska (1997) for pump-in flowback tests. A number of wells with 

published PWD data during breathing events will be presented. Estimates of the minimum 

horizontal stress obtained from these PWD measurements will be compared with the values 

obtained during LOT’s as well as the pressures which initiated losses or the wellbore 

breathing itself. These minimum horizontal stress values will be expressed in terms of the 

pressure gradient, lbs/gallon (ppg), rather than an exact stress in psi as the measurements 

occur at different depths in the wellbore and the exact depth of the fracture is often 

unknown. 

5.2.1 Gulf of Mexico, Well 1   

Ward and Clark (1998) published a case detailing wellbore breathing incidents and 

included PWD measurements for three wellbore breathing events. Each of the wellbore 

breathing events occurred in the 8 ½” hole section at connections between 16,877 and 

17,553 feet. The first connection did not exhibit a noticeable increase in flowback at 

surface, but the pressure decay after pump shut down indicated that breathing was 

occurring. The second two connections showed flowback volumes of 170 bbls and 60 bbls 

respectively, indicating that the fractures were likely propagated into the far field. The third 
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connection was performed quickly and the pumps were turned back on prior to the static 

mud weight being reached. For reference, a LOT was performed near the casing shoe, 

15,616 feet, and indicated a fracture pressure of 16.45 ppg. Also, the drilling fluid in use 

was an OBM. The PWD data from each of the connections is plotted below with lines 

drawn through the linear behavior and the intersection of these lines indicating the 

minimum horizontal stress. 

 

Figure 5.4: Minimum horizontal stress estimation for first connection on GOM well 1 

(Data from Ward and Clark, 1998)   
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Figure 5.5:  Minimum horizontal stress estimation for subsequent connection on GOM 

well 1 (Data from Ward and Clark, 1998) 

 

Figure 5.6: Minimum horizontal stress estimation for third connection on GOM well 1 

(Data from Ward and Clark, 1998) 
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The PWD data from the three connections indicate a minimum horizontal stress 

value of 16.15, 16.14, and 16.16 ppg respectively. Care should be taken interpretation of 

the last connection, shown in Figure 5.6, as the pressure decline is cut short when pumps 

are started up. While the data just prior to pump start up does appear to exhibit a linear 

tend, the trend is relatively short and it is unknown if this trend would have continued. 

However, the fact that the analysis yielded a similar result to the other two connections is 

encouraging. These estimates show that the LOT pressure recorded was significantly larger 

than the pressure required to induce losses. Ward and Clark (1998) stated that the mud 

weight was later decreased, resulting in ECD’s of 16.23-16.28 ppg, which reduced but did 

not eliminate flowback from wellbore breathing. This indicates that the minimum 

horizontal stress was below these ECD’s, which is consistent with the values estimated in 

this analysis. 

5.2.2 Gulf of Mexico, Well 2 

Edwards, Bratton, and Standifird (1998) published a case detailing wellbore 

breathing incidents and included PWD measurements for wellbore breathing events in two 

different wells. The first of these two wells will be examined here. The wellbore breathing 

events occurred in the 8 ½” hole section and PWD data for one is included in the paper. 

Over 50 barrels of drilling fluid was flowed back at this connection, indicating the fracture 

was likely propagated into the far field and should provide an accurate estimate of the 

minimum horizontal stress. . The pressure data from the connection is plotted in Figure 5.7 

below. The data exhibits a distinct linear trend early in the flowback, while the linear trend 
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in later part of flowback is more difficult to identify. The minimum horizontal stress is 

estimated as 16.87 ppg, but it is difficult to gauge the accuracy of this without more data. 

 

Figure 5.7: Minimum horizontal stress estimation for connection on GOM well 2 (Data 

from Edwards, Bratton, and Standifird, 1998) 

5.2.3 Gulf of Mexico, Well 3 

The second well Edwards, Bratton, and Standifird (1998) included in their paper is 

included here. LWD data presented in the paper shows that the fracture responsible for this 

wellbore breathing event was in a sandstone bounded by shale intervals. The fracture height 

was roughly 75 feet. . The pressure data from the connection is plotted in Figure 5.7 below. 

The data exhibits a distinct linear trend early in the flowback, while the linear trend in later 

part of flowback is more difficult to identify. This is likely due to the pumps being turned 

back on at the 8 minute mark, which would have stopped fluid flow out of the fracture. The 



 138 

minimum horizontal stress is estimated as 12.93 ppg, but it is difficult to gauge the accuracy 

of this without more data concerning the well. More connection data with breathing would 

be useful to compare the estimated minimum horizontal stress from each. 

 

Figure 5.8: Minimum horizontal stress estimation for connection on GOM well 3 (Data 

from Edwards, Bratton, and Standifird, 1998) 

5.2.4 Gulf of Mexico, Well 4 

Nagy et al. (2013) published a paper concerning geomechanical modeling in the 

Gulf of Mexico and include PWD data for a well which experienced wellbore breathing. 

The PWD data for two connections is plotted below in Figure 5.9 and Figure 5.10. Similar 

to the prior examples shown, the early linear period is distinct and easy to identify while 

the late linear period is more indistinct and difficult to identify. The minimum horizontal 

stress is estimated to be 15.29 ppg using the data from the first connection in Figure 5.9 
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and 15.295 ppg using the data from the second connection in Figure 5.10. These estimates 

are similar, but more data points would be useful in confirming the validity of the estimates 

as the late linear period is not distinct in either of these data sets. 

 

Figure 5.9: Minimum horizontal stress estimation for first connection on GOM well 4 

(Data from Nagy et al., 2013). 
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Figure 5.10: Connection with wellbore breathing (Data from Nagy et al., 2013). 

5.2.5 Offshore Nova Scotia Well 

Marland et al. (2007) published a case study regarding deepwater subsalt well off 

the coast of Nova Scotia, Canada. The section that experienced wellbore breathing was 

directly below the salt body and believed to be related to the pressure perturbation caused 

by the salt. The breathing occurred in the 14” hole section and a LOT had been performed 

at the casing shoe prior to drilling out, which indicated a fracture pressure of 13.6 ppg. The 

pressure data for a connection during this hole section is shown in Figure 5.11. A distinct 

linear trend can be seen both early in the flowback and late in the flowback, which provides 

for relatively easy interpretation. The minimum horizontal stress is estimated to be 12.592 

ppg in this case, which is a full 1 ppg below the LOT performed at the top of hole section. 
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Figure 5.11: Minimum horizontal stress estimation for Nova Scotia well (Data from 

Marland et al., 2007)  

5.3 Application of Minimum Horizontal Stress Estimations 

The method for minimum horizontal stress estimations using PWD data during 

wellbore breathing events proposed in the last section can provide valuable data for better 

understanding the earth stresses in a given area. While the PWD connection data is not 

available in real-time, it can be used to better plan the remainder of the well once the BHA 

is tripped out to surface and the data downloaded. If quickly interpreted, the minimum 

horizontal stress estimates can be useful in properly designing the cement design on that 

hole section. Additionally, the minimum horizontal stress estimations can be used to 

calibrate the pore pressure/frac gradient model on the well. This should yield better 
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estimates of the fracture gradient for the next hole section. In the case that this new data 

alters the well design in some way, this also provides extra lead time for contingency plans. 

The minimum horizontal stress estimation are most useful for calibrating 

geomechanical models to better predict the stresses in the region. Typically, the values 

obtained in LOT’s are used in these geomechanical models for calibration. However, 

LOT’s are often difficult to interpret and can provide poor stress estimates, while pump-in 

flowback tests are easy to interpret and have been shown to provide more accurate stress 

estimates (Økland et al., 2002). Since wellbore breathing events are essentially the same 

process as a pump-in flowback test, they should also provide better stress estimates if 

interpreted correctly. Better calibrated geomechanical models can be extremely useful for 

future wells as it will enable better well planning, casing design, and well placement.  
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 Chapter 6: Conclusions and Recommendations 

6.1 Case Studies 

The three case studies presented in this work provide useful context to wellbore 

breathing scenarios that may be encountered in the field, how these mechanisms can 

present themselves at surface, and some potential pitfalls to avoid when wellbore breathing 

is encountered. The Jura-1 case study was especially useful in exemplifying the dangers 

present when wellbore breathing is coupled with hydrocarbon swap-out. Furthermore, this 

case study stressed the importance of proper interpretation of shut in pressures during well 

control situations as misinterpretation of the pressures ultimately resulted in the loss of this 

well. Last, the successful drilling of the subsequent Bard-1 well showcased the 

effectiveness of a well-trained and educated crew in combination with sound operational 

procedures in handling wellbore breathing during drilling operations. 

The ESS-107 case study was useful in representing the difficulty in identifying 

overpressure and wellbore breathing when they are encountered consecutively within the 

same hole section. Additionally, this case study illustrated the need to use correctly 

calculated kill mud weights as using a higher mud weight to be safe can result in exceeding 

the minimum horizontal stress. Last, this case study was useful in showing the effects 

thermal stress changes can have in a well control situation as the fluid gains during static 

conditions late in the well control sequence were likely caused by the warming of the 

formation forcing drilling fluid out of the fractures. 

The 22/30-C-10 case study shows the significant impacts that the often neglected 

thermal regime can have on wellbore integrity. The initiation of wellbore fractures was 
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caused by a reduction in the effective fracture gradient due to cooling and these fractures 

were then propagated with subsequent increases in mud weight. This case study also 

exhibited the coupled relation of wellbore breathing with both pressures and temperatures. 

Some of the wellbore breathing was driven by pressure fluctuations between static and 

circulating conditions, but other instances of drilling fluid flowback from the fractures were 

driven by thermal stress changes as the formation warmed and closed the fractures. 

6.2 Identification, Mitigation, and Prevention 

As far as real-time identification while drilling, the best current method is likely 

flowback finger printing but this method can only identify an increase in connection 

flowback volumes and cannot differentiate between a kick and wellbore breathing, just 

identify that one is occurring. PWD measurements offer the best potential for real-time 

identification of wellbore breathing as well as differentiation between breathing and kicks, 

but current downhole data transmission technologies limit it to use in post well analysis. 

Eventual implementation of wired pipe technology would eliminate the data transmission 

limitation and allow PWD to be used for true real-time identification of wellbore breathing 

and differentiation between breathing and kicks. The identification section also provided 

examples of SIDPP and SICP behavior for several different scenarios and explained how 

these pressures can be interpreted to differentiate between wellbore breathing and a kick. 

In terms of mitigation, ECD management is the best method to reduce the effects 

of wellbore breathing during drilling operations. ECD management can be used to lessen 

the magnitude of fluid gains and losses from breathing and to decrease the rate at which 

these gains and losses occur. Bridging or plugging the fracture can also be deployed as a 
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mitigation technique, but this can be time consuming, expensive, and sometimes 

ineffective. 

For prevention, in conventional drilling, focus must be on keeping wellbore 

pressures to a minimum and monitoring fluid and bottom-hole temperatures to ensure that 

the formation is not weakened significantly by cooling. In effect, the goal for conventional 

drilling operations should be to maximize the available fracture gradient through prudent 

operational procedures. Both managed pressure drilling and continuous circulation systems 

provide the prospect of eliminating downhole pressure fluctuations and therefore the 

wellbore breathing mechanism associated with those fluctuations. However, each require 

some incremental cost to install and operate. This has limited the implementation of these 

systems in areas where they are not absolutely needed. For instance, MPD is widely used 

in the Asia Pacific region, but this is only because narrow drilling margins make 

conventional drilling of many reservoirs impossible. 

6.3 Estimation of Minimum Horizontal Stress Using PWD 

This work details the theoretical background pertaining to the interpretation of 

pump-in flowback tests in hydraulic fracturing developed by Plahn, Nolte, and Miska 

(1997). Using this interpretation, minimum horizontal stress estimations were made using 

PWD measurements from wellbore breathing published in literature. The estimations 

obtained for each of these wellbore breathing events was validated qualitatively, when 

possible, by comparing across multiple connections and comparing with LOT data. These 

estimations of minimum horizontal stress can provide value to industry by enabling 

calibration of geomechanical models to better predict the earth stresses within this area. 
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This will allow better well design and well placement and can potentially provide value for 

production operations and reservoir engineering if the wellbore breathing events occur near 

or in a hydrocarbon reservoir. 

6.4 Future Work 

While the method proposed for estimation of the minimum horizontal stress using 

PWD measurements during wellbore breathing events was validated qualitatively, it 

requires further validation across a larger data set. Furthermore, comparison against a more 

common method for minimum horizontal stress estimation would be useful. Last, 

development of a full model of the wellbore breathing mechanism would be a useful 

endeavor. This could provide details about the mechanism itself and could be used to 

evaluate the accuracy of the proposed method in its estimation of the minimum horizontal 

stress. 
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List of Acronyms 

BHA: Bottomhole assembly 

BHP: Bottomhole pressure 

BOP: Blowout preventer 

CFS: Continuous flow system 

DGD: Dual gradient drilling 

ECD: Equivalent circulating density 

EMW: Equivalent mud weight 

FCP: Fracture closure pressure 

FIP: Fracture initiation pressure 

FIP: Fracture initiation pressure 

FIT: Formation integrity test 

FPP: Fracture propagation pressure 

GOM: Gulf of Mexico 

HPHT: High pressure high temperature 

ISIP: Instantaneous shut-in pressure 

JIP: Joint industry project 

LCM: Lost circulation material 

LOT: Leak off test 

LP: Limit pressure 

LT: Limit test 

LWD: Logging while drilling 
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MAASP: Maximum allowable annular surface pressure 

MLP: Mudlift pump 

MPD: Managed pressure drilling 

MPT: Mud pulse telemetry 

NPT: Non-productive time 

OBM: Oil based mud 

PMCD: Pressurized mud cap drilling 

PSP: Pump stop pressure 

PWD: Pressure while drilling 

RCD: Rotating control device 

ROP: Rate of penetration 

SBM: Synthetic-oil based mud 

SG: Specific Gravity 

SICP: Shut-in casing pressure 

SIDPP: Shut-in drill pipe pressure 

SMW: Static mud weight 

SPU: Solids processing unit 

TD: Target depth 

TVD: True vertical depth 

UFP: Uncontrolled fracture pressure 

WBM: Water based mud 

XLOT: Extended leak off test 
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