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Downhole drilling dynamics are poorly understood. Neither models nor 

experiments seem capable of fully describing the movements and forces of the drillstring 

during drilling. Downhole measurements could potentially hold the key to those missing 

insights, however data is not yet used to its full potential. This work addresses the barriers 

to obtaining value from downhole dynamics data and offers solutions to overcome them.  

A novel kinematic model was developed that fully accounts for sensor position and 

measurement design. It supports the hypothesis that lateral vibrations cause high-frequency 

fluctuations of tangential accelerations. Hence, against currently prevailing scientific 

opinion, “high-frequency torsional oscillations” (HFTO) are not actually a torsional 

phenomenon, but the consequence of a lateral vibration. A downhole measurement tool 

under off-center rotation captures particular high-frequency data patterns that can be 

considered a sensor artifact. If ignored, these artifacts can impact the calculations of RPM 

and other derived measurements from downhole data.  

An extensive set of downhole data was analyzed to improve downhole dynamics 

data collection schemes for detecting drilling dysfunctions. For each prominent type of 

dysfunction, minimum data collection frequencies are specified. Such guidelines assist in 
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collecting downhole data at sampling rates that are high enough to draw meaningful 

conclusions, but low enough to not flood limited available bandwidth and memory 

capacities. Even though a sensor is set up to measure only a single parameter along a single 

axis, it captures a variety of downhole events, which may lead to misinterpretations. These 

events can still be differentiated based on their typical frequency ranges. It is further shown 

how ‘noisy’ frequency ranges can be detected and selectively removed by combining 

multiple downhole measurements.  

A lack of transparency and inefficient processes around sensor design, data 

collection, processing, and transfer cause misinterpretation and under-utilization of drilling 

downhole data. A review of tool design and sensor identifies sources of bad data quality. 

Eventually, defined data quality requirements will offer sustainable sensor data 

improvement. To work with downhole data generated under current circumstances, data 

processing techniques are developed and demonstrated. Algorithms that combine data, 

drilling processes, and physics automatically correct sensor errors. Further, a machine 

learning approach for automated vibration classification based on patterns is developed. 

A standardized structure to transfer downhole data from the service provider to the 

end user is suggested. The structure does not only define how the data should be shared, 

but also what additional data (metadata) is required. Specifications of such informational 

requirements improve transparency and comparability of measurements. Therefore, the 

proposed data format is a prerequisite for automated drilling data analysis.  
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Introduction 

Drilling is a process that removes soil and rock to gain access to a subsurface target: 

usually a reservoir containing hydrocarbons in the form of oil or natural gas. The drilling 

process creates a wellbore that ensures a connection between the reservoir and the surface. 

In its simplest form, the well construction process requires a rotating bit that breaks the 

rock, a rotating mechanism, and a string that transfers weight and rotation from the surface 

to the bit. In addition, a drilling fluid in the wellbore counteracts the downhole pressure 

and transports rock cuttings to surface. In the early days, wells were drilled vertically in 

the ground. Since the 19th century, technology has evolved towards creating complex 

drilling paths, including horizontal drilling. Nowadays, wellbores can reach thousands of 

feet in length, take a variety of shapes and while still reaching narrowly defined targets. 

Much of this success can be attributed to novel downhole measurements during the drilling 

process (e.g. Belaskie et al., 1993; Schen et al., 2003; Raap et al., 2011; Trichel et al., 

2016).  

Drilling is governed by uncertainties. Unknown geological structures, rock 

properties and pressure regimes, and uncertainties about hydraulic as well as mechanical 

behavior of the interplay of the drillstring, rock and the formation make the well 

construction process vastly different from constructing cars, airplanes, or buildings. In 

addition, the downhole processes usually cannot be directly observed, but need to be 

indirectly inferred by simplified physical models or measurements. All of this limits our 

ability to establish clear cause and effect relationships between our actions and their impact 

on the entire system.  
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Wells can be drilled with different purposes. Some are drilled to discover new 

petroleum reservoirs (exploration wells), others are drilled to maximize the production in 

relatively well-known fields (development wells) (Mitchell and Miska, 2010). Most of the 

data used in this work was collected from development wells. For such wells, the objective 

is not only to optimize operational time and cost to drill the well; it is also to create a high-

quality wellbore which ensures production over its entire active lifetime as well as integrity 

long after it has been shut-in. 

Decisions in drilling cover a spectrum of timelines, from long-term strategies to 

adjustments within less than a second. A drilling engineer decides on a variety of design 

factors before drilling commences. Such design factors include the structure, shape, and 

path of the wellbore, as well as surface equipment, components of the drillstring or the type 

of drilling mud used. During operations, parameters such as the amount of weight on bit 

(WOB) or the speed of rotation (RPM, revolutions per minute) need to be adjusted at every 

point in time. In some cases, for instance managed pressure drilling (MPD)1 or top drive 

torque2, control systems are already available to automatically controlling real-time 

adjustments in milliseconds. All these decisions are based on estimates of a variety of 

uncertain parameters. In reality, until today, prior experience of the people in charge is 

probably the most important factor for decision making.  

The research presented in this work is conducted on the premise of working towards 

drilling automation. Reducing human interactions through automation promises to not only 

improve the safety but also standardize and thus improve all processes of well construction. 

                                                 
1 Managed pressure drilling (MPD) is a process where the pressure in a wellbore is controlled from surface 

using chokes.  
2 Top drive is a device that rotates the pipe at surface. Top drive torque is controlled to mitigate stick-slip, a 

form of torsional vibration of the drillstring, where usually uniform rotational speed becomes erratic.  
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Before drilling automation can be achieved, many prerequisites must be in place: 

automated processes are carried out by control systems, which are orchestrated by 

algorithms. However, these algorithms can only be developed after scrupulously defining 

procedures for every process at the rig (Jamieson et al., 2008). For many, drilling is still 

considered an art. Art does not follow physical principles nor equations. The first challenge 

in this multi-step chain of procedures followed by algorithms followed by controls is to 

“take the art out of drilling” and turn it into a more predictable science. One of the 

inevitable and favorable “side-effects” of making drilling more scientific are drilling 

performance improvements. Such drilling optimization aims at two areas: first, to make the 

right decisions in the planning phase, and second, to remove all waste (in time and/or cost) 

during operations.  

In many other industries, physical relations are well established or experimental 

data has delivered meaningful insights. In drilling, the availability of data from surface and 

downhole is the basis for all drilling automation and optimization efforts. Downhole data 

traditionally has been immensely valuable for formation evaluation and wellbore 

positioning. The focus of this work is on drilling dynamics data, which concerns itself with 

the motions of the drilling system under the presence of forces. Such data offers a glimpse 

at the complex downhole environment and helps to define processes without solely relying 

on a human’s possibly biased descriptions. Due to the potentially high risks and even higher 

consequences (i.e. well blow-outs) critical models need to be thoroughly tested with field 

data before they can be employed in enhanced systems. The need for accurate real-time 

measurement is currently driving the development of downhole sensor technology and 

higher bandwidth data transmission technologies, such as wired drillpipe (e.g. Ali et al., 

2008).  
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Within the last years, exponential changes in processing power and data science 

provided a basis for big data analytics, which many industries are profiting from (e.g. 

Whitfield, 2017). Although large scale deployment of artificial intelligence (AI) in drilling 

has been predicted to be at the verge of breakthrough for many years, the barrier of entry 

in the drilling domain seems to be higher than elsewhere. While modern drilling rigs 

produce many gigabytes of data per well already, data is not yet used to its full potential. 

Many people working with drilling data may argue that there is no big data problem; 

instead, there is a messy data problem. A complicating factor is that tools, sensors, 

measurements, derived values, or data structures are still far from any standardization; such 

that data collected from one well does not compare to other wells. Oftentimes there is a 

complete lack of descriptive metadata to make sense out of the actual data. The type of tool 

and the process of data collection may be just as important as the data itself, but these 

factors are largely undocumented. Unplanned human actions can greatly impact 

measurements3 and lead to invalid interpretations or bad data. Merging data science with 

an understanding of engineering and operations thus becomes essential to make sense of 

data. Since actions are still carried out by humans, it is important to bear in mind that any 

suggested solution is currently only as effective as the willingness of the driller or engineer 

to implement it.  

OBJECTIVES 

This work aims at improving the value of information of downhole data in the most 

effective way possible. On the one hand, this means solving problems of data 

interpretation. This is complicated by the fact that the drilling process cannot be visually 

inspected by an outside observer: sensors move together with the system that they are 

                                                 
3 For instance, manually adding multiple barrels of water into a tank whose volume gets recorded. 
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measuring. On the other hand, it means developing strategies to systematically removing 

barriers for large scale data analytics and appropriately preparing drilling data for data 

scientists from outside this industry.  

In a larger context, this research aimed towards facilitating automation and 

performance improvements in the well construction process. The vision is to develop 

drilling systems with automated diagnostics and even decision-making capabilities. Such 

systems will be beneficial in an environment where humans are either physically excluded 

from decision making (e.g. smart downhole control) or where computational systems will 

prove to outperform humans (e.g. parameter adjustments to optimize the drilling 

penetration rate). Data is an enabler of automation. To confidently make decisions and take 

actions, data fidelity and reliability that data needs to be established first. Thus, this 

research is improving the value of downhole data through the following objectives: 

• Correct interpretation of downhole high-frequency data, i.e. providing an answer to 

the question: “What are the motions of the drillstring and sensors to produce the 

available measurements?”  

• Differentiation between valuable signals and noise or sensor artifacts, i.e. the 

segregation of effects that are simultaneous contributors to a downhole 

measurement.  

• Identification and removal of the technical root causes of bad data and data 

misinterpretations, by analyzing sensor design and operational errors.  

• Optimization of the data collection process by defining sampling rate requirements, 

e.g. for efficiently detecting drilling dysfunction in the data.  

• Development of effective data analysis methods with short term remedies for 

frequent data errors.  
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• Removing inefficiencies of data and knowledge transfer from service provider to 

end user by improving standardization and transparency.  

• Sustainably creating an environment that enables automation in companies and 

equips equipping current students with a “digital mindset”.  

CONTRIBUTIONS 

Drilling data analysis and automation applications are technological game changers 

in the drilling industry. The productivity of a single rig in the Bakken region is 8 times 

higher in 2017 than it was in 2007 for oil and more than 15 times higher for natural gas 

(EIA Drilling Productivity Report, 2017). Aside from fracking and horizontal drilling, part 

of this success can be attributed to improvements in surface and downhole measurements 

during drilling (e.g. Trichel et al., 2016). Despite these benefits, drilling data is not yet used 

to its full potential. The contributions of this work are removing important barriers to 

drilling data analysis and automation applications. Better utilization of data and sensors 

then ultimately leads to increases in the rate of penetration (ROP), tool life, reduced non-

productive time (NPT), faster learning curves, etc. and helps delivering better quality wells 

saver and cheaper. Detailed contributions will be listed in Chapter 7. 

OUTLINE 

Chapter 1 will provide the reader with the technical basics of drilling process data 

collection and drilling dysfunctions that should be detected and mitigated. The background 

given in this chapter is essential to the other chapters.  

Chapter 2 shows how a seemingly trivial off-center rotation of the drillstring can 

affect downhole measurements. Kinematic modeling using a tensor calculus approach is 

employed to simulate downhole acceleration data. It supports an alternative and simpler 
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explanation than the one currently prevailing in the drilling industry. This work initially 

has been published as a paper titled “Pure and Coupled Drill String Vibration Pattern 

Recognition in High Frequency Downhole Data” at the ATCE 2014 in Amsterdam, the 

Netherlands. Another paper titled “Interpretation of High-Frequency Vibration Patterns 

using a Kinematic Model” has been submitted to the Journal of Petroleum Science and 

Engineering and is currently under review. 

To shed light on the limitations of data collection, storage and transfer, Chapter 3 

describes a data collection system that is optimized under downhole circumstances. Based 

on the analysis of collected field data, optimum sample rates per sensor are suggested. The 

analysis offers solutions for differentiating meaningful measurements from noise and 

sensor artifacts. The work in this chapter was presented at the 2015 ATCE in Houston, TX, 

with a paper titled “Maximizing Drilling Sensor Value through Optimized Frequency 

Selection and Data Processing”.  

Chapter 4 addresses data errors. Root causes of data errors and misinterpretations 

often lie in the sensors and the collection process. Therefore, downhole sensors, intricacies 

of tool designs, calibrations and sensor errors are described in the introduction of this 

chapter. This work is based on inputs from Nii Ahele Nunoo and Alemzeb Khan, both 

affiliated with National Oilwell Varco (NOV), a manufacturer of downhole tools. A paper 

titled “What is Wrong with my Drilling Data? Current State and Developments of 

Downhole Dynamics Measurement Tools.” will be submitted for a drilling conference. In 

addition, short term solutions for automated error correction and data processing are 

presented in this chapter. These methods have been developed and tested using field data 

provided by ConocoPhillips and Hess. This work titled “Automated Downhole Drilling 

Data Correction and Cleaning Methodologies” will be submitted as a conference paper.  
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Along the lines of the importance of sensor design, deployment and processing for 

a meaningful analysis, Chapter 5 is an attempt at improving the transparency of data and 

sharing better information faster with data analysts. Therefore, a new memory data transfer 

standard has been developed and shared with the industry at the 2016 SPE IADC Drilling 

Conference in Fort Worth, TX. The paper “Efficiently Transferring and Sharing Drilling 

Data from Downhole Sensors.” has been conducted in collaboration with Yang “Alex” 

Zhou at the University of Texas at Austin.  

Chapter 6 summarizes the work, lists contributions, and identifies areas for future 

work. 

Appendices A, B, C, and D complement the chapters. In addition, Appendix E then 

takes a broader perspective and examines how universities can prepare their engineering 

students for future data driven jobs. It describes the approaches and findings of helping 

groups of undergraduate students analyze “messy” drilling data. Yang “Alex” Zhou and 

Gurtej Saini, Dr. Pradeepkumar Ashok, at the University of Texas at Austin, and Matt 

Isbell affiliated with Hess, as well as many undergraduate students collaborated in the 

project. In addition, it describes some of the basic data curation and visualization processes 

that proceeded any in-depth analysis described in this work. A paper titled “Future 

Workforce Education through Big Data Analysis for Drilling Optimization” was presented 

at the 2017 SPE IADC Drilling Conference in The Hague, the Netherlands. 

 

The chapters follow a sequence that gradually takes the reader from an in-depth 

mathematical topic, across engineering and process optimization, all the way to educational 

efforts. This range of topics is in line with the variety of necessary requirements to improve 

drilling data analysis.  
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Chapter 1: Background and Previous Work 

1.1 DRILLING DYSFUNCTIONS 

Drilling dysfunctions are unplanned and undesirable downhole circumstances 

during the well construction process. Dysfunctions may involve the mechanical system of 

drillstring, the hydraulics system, the rock formation, or a combination of these. Downhole 

sensors play a vital role in diagnosing dysfunctions, because some cannot be 

unambiguously detected from surface sensors alone, while others show critical latencies 

between downhole occurrence and surface detection. Oftentimes, models are used to infer 

downhole conditions based on simplified assumptions. Direct information from downhole 

sensors eliminates some of these uncertainties and latencies. The following section gives 

an overview of the most prominent dysfunctions and provides background information on 

drilling terminology.  

Downhole sensors and data processing are beginning to provide novel solutions to 

old problems. In most cases, however, formal methodologies (e.g. how to extract key 

performance indicators from data, established thresholds for dysfunction measurements) 

have not been established yet. This chapter should help the reader understand how and in 

which areas this “drilling data revolution” will be potentially most valuable.  

1.1.1 Drillstring Vibrations 

Drillstring vibrations are undesired oscillating movements of the drillstring. They 

are the most rigorously studied and modeled downhole dynamics events. They are known 

to cause high-frequency dynamic responses and are of high priority for the analysis of 

downhole high-frequency data. In addition, these vibrations are frequent and persistent 
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drilling performance limiters. Severe levels of vibrations might lead to potential damage 

of downhole tools with costly unintended trips for the bit, while mild levels of vibrations 

can already significantly slow down drilling progress (Ertas et al., 2013). The occurrence 

of vibrations has been correlated with wellbores full of “twists and turns”, i.e. wellbore 

tortuosity. Over the past 50 years, the drilling industry has used vibration models to 

represent downhole kinematics and dynamics to understand, detect and eventually mitigate 

them (Shor et al., 2014). Some of the models are used to control surface torque and RPM 

to mitigate low frequency torsional oscillations of the drillstring. These have shown 

considerable success and are currently widely implemented in drilling operations. Early 

models were often not capable of reproducing the complexities of real drilling 

dysfunctions, such as multiple vibrational modes acting together, the impact of unknown 

and constantly changing parameters such as formation properties, or the geometry of a 

flexible drillstring thousands of feet in length. More sophisticated finite element models 

are starting to take such complexities into account, but they often have the disadvantage of 

requiring significant calculation times. This limits their application in real-time, for 

instance when comparing modeled results with real-time high-frequency data. Vibrations 

have been detected in any part along the drillstring, from the bit to surface. The oscillations 

can be classified into three different basic types or modes: torsional, lateral, and axial.  

Stick Slip 

Stick-slip is a torsional vibration where the rotational speed varies periodically with 

time: in severe cases the bit can come to a complete stop, or even turn into the opposite 

direction, then ramp up in speed to several times the original rotational velocity, followed 

by a slow-down and another stop of rotation (Fig. 1).  



11 

 

 

Fig. 1—Example of downhole stick slip vibration observation as reported by Ledgerwood 

et al. (2010): “Downhole rotary speed of typical stick-slip event in the 

research well.” 

The most common theory on the causes of stick-slip is that torsional strength of the 

string is too low to overcome high frictional forces between the cutters and the formation 

and/or stabilizers and the borehole wall. During the “stick” cycle, the bit stops rotating, 

despite constant RPM input from surface. The drillstring then winds up until enough 

torsional force is applied to overcome the frictional forces, resulting in the “slip” cycle. 

Another hypothesis on the causes of stick-slip vibrations focuses on the oscillatory 

pendulum effect. Laboratory experiments (e.g. Shor, 2016) have shown fluctuations in 

rotational speed even without frictional forces.  

Stick-slip is a distinctly low-frequency phenomenon, with its period ranging from 

less than 1 to up to more than 20 seconds. In most cases, stick-slip can be detected from 

surface measurements, mainly from periodic fluctuations of the surface torque signal. A 

common mitigation action, following the theory of high friction, is to increase the 

revolutions per minute and decrease the weight on bit, to “reduce the depth of cut” and 

therefore the drag at the bit (Davis et al., 2012). In the late 1980s, companies like Shell and 
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NOV independently developed “soft torque” or “soft speed” rotary systems to mitigate 

torsional vibrations (Halsey et al., 1988; Runia et al., 2013). These are rotary drive control 

systems that adjust both torque and rotational speed to cancel out the first order vibrational 

mode of stick-slip. The original systems were developed for DC drilling drives using 

analog torque feedback. Due to changing control systems on modern drilling rig motors, 

these active stick-slip mitigation systems were no longer functioning properly. Currently 

the technology is revitalized and new algorithms are being developed (Harris et al., 2014). 

In addition, vibration simulations are now being integrated with real-time downhole 

measurements and add to the effectiveness and success of the control system. 

Whirl 

Whirl is a lateral vibration, where the rotational axis of the bit does not align with 

the center of the borehole, and the bit center performs additional rotations around the 

borehole. Brett et al. (1989) were one of the first to describe and show this phenomenon 

using both high-frequency downhole data and bottom-hole patterns. Just like a spirograph, 

the cutters leave patterns of hypotrochoid curves at the bottom of a hole. Equations for 

cutter positions during whirl and whirl angular speed show similarities to the parametric 

equations for a hypotrochoid. Whirl is a high-frequency phenomenon, with dominant 

frequencies in the range of 20 to 60 Hz, corresponding to the whirl angular speed, as shown 

in Fig. 2.  
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Fig. 2—Whirl frequency and high-frequency overtones as measured by Brett et al. 

(1989): “Typical lab frequency response of whirling bit.” 

Whirl can occur in two distinct forms: backward whirl (where the drillstring rotates 

clockwise and the center of the string rotates counter-clockwise around the borehole) and 

forward whirl, where both drillstring and drillstring center rotate clockwise but with 

different rotational speeds. Jansen (1992) also mentions chaotic whirl: a form of whirl 

where the drillstring center does not follow a particular direction, but moves in a random 

and highly unstable fashion. Whirl can hardly be directly measured from surface with data 

acquisition rates of 1 Hz or lower. In field practice, indirect methods are being used, such 

as the mechanical specific energy (MSE) approach, where the total energy input is 

compared with the rock penetration rate. If the same amount of energy input yields lower 

drilling progress, this could be indicative of losing energy to vibrations rather than rock-

cutting action (Dupriest et al., 2005). If a severe case of whirl is detected, a typical field 

recommendation is as follows: “Stop drilling, take the bit off bottom and wait a few minutes 

until the whirling motion of the bit has terminated. Then resume drilling with higher weight 

on bit, to prevent the bit from moving once more into an eccentric position.” Jogi et al. 
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(2002) link the occurrence of destructive whirl to excitements of resonance frequencies of 

the BHA (bottom hole assembly). Based on this theory, commercial software allows 

companies to test their BHA design against interference between natural frequencies of the 

BHA and input RPM values. The software then recommends the avoidance of certain 

ranges of surface rotational speeds during drilling.  

Bit Bounce 

Bit bounce is an axial vibration that is excited through bit-rock interaction, and are 

particularly prevalent when using tri-cone bits. The rise of preferential application of PDC 

(polycrystalline diamond compact) bits over tri-cone bits has caused a shift of focus away 

from axial vibrations towards lateral and torsional vibrations. Axial vibrations can also be 

artificially introduced by downhole tools, such as agitators or jars (Shor et al., 2014). 

1.1.2 Buckling  

The drillstring assembles pipes of different weights. In vertical wells, heavier pipes, 

such as drill collars and heavy weight drill pipes (HWDP), are located closer to the bit and 

provide the weight on bit required for crushing the rock. A drillstring assembly ensures 

that the upper part of the drillstring is kept under tension, and only a small portion under 

compression. Buckling occurs when compressive forces exceed the pipe’s buckling 

resistance. Under buckling, the string acts like a spring and inhibits the transfer of weight 

to the bit. In addition, RPM becomes erratic, thus almost impossible to predict (Lund and 

Martel, 2013). This dysfunction thereby significantly reduces drilling performance. 

Downhole sensors allow the detection of buckling and the adaptation of drilling 

parameters. 
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1.1.3 Tool Failure 

Mechanical tool failure is a major source of non-productive time. The process of 

pulling out the entire drillstring (tripping out), replacing tools and running back into the 

hole (tripping in) may result in significant costs and time delays. A parting of the BHA or 

drillstring (twist-off) can cause lost tools in the borehole, resulting in significant efforts for 

regaining the lower part of the string (fishing) and even abandoning parts of the well and 

re-drilling from a higher location (sidetracking). Vibrations subject the tools to extreme 

cyclic stresses. During stick slip vibrations, RPM values can by far exceed technical RPM 

limitations of motors and rotary steerable systems. Unintended rotation in the opposite 

direction under severe stick slip will have damaging effects on the bit. While there exists 

footage of destructive vibration during drilling, Close et al. (1988) studying some of the 

first downhole vibration measurements already pointed out that often the highest levels of 

vibrations are recorded while the bit is off bottom. They specifically identified reaming 

operations and pumping and rotating while off bottom as major sources of vibration. Other 

causes for fatigue failure of tools are drillstring bending due to hole tortuosity, unfavorable 

weight transfer or poor BHA design (Raap et al., 2011).  

1.1.4 Tortuosity 

Tortuosity is the deviation from a planned, straight wellbore and is one of the most 

important indicators for wellbore quality. Twists, abrupt turns, short radius curves and 

kinks (doglegs) in the wellbore bend the pipe, increase friction, and reduce the effective 

wellbore diameter. This can lead to tool failure due to high cyclic stresses and an inability 

to run casing and other tools to bottom. In addition, it can jeopardize cementing quality, 

zonal isolation, and production. Traditionally, the level of wellbore tortuosity has been 

reported as dogleg severity, a degree of curvature measured about every 90 ft. Wellbore 



16 

 

position is indirectly inferred from wellbore length (measured depth, MD), recorded 

inclination (slope) and azimuth (deviation from northern direction). Stockhausen and Lesso 

(2003) raised awareness about the negative impacts of smaller scale tortuosity that is 

undetectable with measurement intervals of 90 ft. Mud motors, in particular, can cause 

undesired and largely undetected deviations from the planned well path. Continuous 

measurements of position along the wellbore has in recent years led to better descriptions 

of wellbore shape. Along with new measurements, researchers are developing new ways 

to quantify wellbore tortuosity and offer KPIs (Key Performance Indicators) for wellbore 

quality (Zhou et al., 2016, Bang et al., 2016).  

1.1.5 Hydraulic Dysfunctions 

The fluids system is vital to the drilling process. In conventional drilling operations, 

the hydraulic pressure of the mud balances formation pressures and prevents influx of gas 

(kick) or excessive reservoir fluids into the wellbore (well control). Mud pressures must 

reside within a window of pore pressure (lower limit) and formation fracture pressures 

(upper limit). This mud-weight window is also called the “drilling margin”.  

Formation strength tests, such as a formation integrity test (FIT) or a leakoff test 

(LOT), determine the integrity of the formation and are usually conducted after drilling out 

a casing shoe. Pressure responses are usually monitored using surface data. For formation 

strength tests, the use of downhole data would remove uncertainties related to fluid 

compressibility and latencies of the pressure signal on surface (van Oort and Vargo, 2008).  

During drilling, surface pressures are monitored to recognize a sudden pressure 

increase, indicating a potential kick. Well control is an area that would greatly benefit from 

the availability of downhole data. Downhole pressure sensors distributed along the string 
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and real-time data transfer could enable an instant and reliable kick detection (Gravdal, 

2009). 

Staying within the mud-weight window is not only critical during drilling. Surge 

and swab pressures during tripping operations can exceed these limits if the axial velocity 

and acceleration of the string are too high. Models (e.g. Iversen et al., 2006; Cayeux et al., 

2011) are used to estimate the effect of pipe movements on downhole pressures; this 

enables the optimization and automation of tripping procedures.  

Mud transports rock cuttings to surface, which is a vital function of the drilling 

process. The blocking of the annulus between drillpipe and borehole with solids (cuttings 

and cavings, i.e. a pack-off, and not being able to move the pipe out of the borehole (stuck 

pipe) are dysfunctions caused by inadequate hole cleaning or cuttings transport.  

Insufficient bit hydraulic horsepower is considered another drilling dysfunction that 

limits ROP and may lead to bit balling. Kendall and Goins (1960) first studied the 

distribution of surface pump pressures to maximize the jet impact force at the bit.  

Cayeux et al. (2013) stated that measurements for drilling automation should be 

taken as close as possible to the real boundary of the problem. Downhole measurements of 

annular pressure minimize inaccuracies in comparison to surface measurements and can 

indicate insufficient hydraulic horse power, solids transport and hole cleaning (e.g. Coley 

and Edwards, 2013). 

1.1.6 Drilling Performance Limiters 

The rate of penetration (ROP) or drilling speed has a significant impact on time and 

cost of operations. Low ROP can have a variety of causes, including directional steering, 

hard formations, bit wear or failure, vibrations and buckling. To achieve high ROP under 

normal circumstances, there are basically only three operational parameters that can be 
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adjusted for high drilling performance: WOB, RPM and flow rate. Design choices, such as 

bit selection, mud properties, etc. can have a significant impact on performance, but these 

factors can usually only be adapted in between bit runs. Many theoretical models on ROP 

optimization exist; they usually rely on the correct input of such design choices (Bataee et 

al., 2010). ROP optimization using data and machine learning algorithms is becoming an 

increasingly active area of research (e.g. Jiang and Samuel, 2016, Gidh et al., 2012, 

Evangelatos and Payne, 2016). Despite these efforts, attempts at ROP optimization 

currently are mostly done using experience and data from nearby wells (offset wells), 

without the use of machine learning techniques.  

It is common drilling wisdom that an unfavorable combination of RPM and WOB 

parameters leads to lateral or torsional downhole vibrations. A low ROP could be indicative 

of losing energy to vibrations rather than rock-cutting action (Dupriest et al., 2005). 

Downhole WOB is generally lower than surface WOB for a variety of reasons, including 

friction and wellbore tortuosity. Inadequate weight transfer from surface to downhole is 

another major limiter of drilling performance. As detailed in Chapter 3, insights from 

downhole data can be used to systematically eliminate performance limiters.  

1.2 DATA AND MEASUREMENTS 

1.2.1 Rig Data and Performance 

Data has always been used in one way or another to improve drilling performance 

for decades. With the development of the “technical limit concept” in the late 1990s, the 

use of data has become more methodical (Bond et al. 1998). The technical limit describes 

the absolute minimum time in which a single operation can be conducted using currently 

available technology. The difference between actual drilling time and the technical limit is 
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lost time and should be eliminated if possible. To find the technical limit from data, well 

time records are broken down into single operations, the fastest of which are pieced 

together to form a theoretically “perfect well”. Such a breakdown of operational procedures 

and their respective times are included in daily drilling report since their introduction 

(Quay, 1986). In the beginning, operational time recordings were done manually. 

Thonhauser (2004) presented automated activity monitoring of wells to achieve unbiased, 

more accurate and more granular breakdowns of rig activities. Rule based algorithms and 

data of existing measurements such as block height, hook load, pump rates, rotary speed 

was used to identify rig activities like drilling, tripping, making connections, etc. 

Monitoring and evaluating time-based activities of different crews soon became the key to 

drilling performance. Today, time still is the number one performance indicator in drilling. 

New measurement technology might allow for a more differentiated perspective on drilling 

performance. Other factors, such as wellbore placement, low wellbore tortuosity (Zhou et 

al., 2016), strong cement bonding beyond the active well life (Liu et al., 2015) may become 

part of a future drilling performance evaluation. 

1.2.2 Drilling Data and Quality 

Bad data is data of insufficient quality characteristics for specific applications. 

Usually, first a new technology is developed, for which data is required. Then data is found 

to limit the performance of that technology. Only then calls for data quality improvements 

are starting to emerge. After Thonhauser et al. (2004, 2005) used rig data for activity 

monitoring, data quality was found to be inadequate. In 2007, Mathis and Thonhauser 

suggested solutions for data standardization, quality control and quality reporting, data 

compression, and visualization. In 2013, Arnaout et. al. defined real-time rig data quality 

KPIs as: completeness, continuity, timeliness, validity, accuracy, consistency, and 
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integrity. With the increased use of rig data for automation application, the need for reliable 

data quality became urgent (Zenero et al., 2016; Ashok et al., 2016; Otalvora et al., 2016).  

For surface measurements, the drilling industry is just beginning to consider sensor 

calibration critical to job execution. An increased awareness of the value of data preceded 

an increased awareness of the quality of data. A special task force has been formed amongst 

more than 20 operator companies. This operator’s group to promote standards to enable 

optimization and advanced analytics. They realized that advances in data quality do not 

start at the rig, but much earlier in the supply chain, at the manufacturers of sensors and 

tools. The group therefore is also working on standardized calibration devices and 

calibration procedures (Zenero and Behounek, 2016).  

Incorrect well position (MWD) or logging while drilling (LWD) information can 

result in collisions with other wells or lost production opportunities. Because of such 

obvious downsides of bad data, industry bodies, such as the Industry Steering Committee 

on Wellbore Survey Accuracy (ISCWSA) or the SPE - Well Positioning Technical Session 

are continuously working towards improving the quality of survey data. Conventions and 

standards on measurements have already been successfully implemented in these areas. 

The logging community is very well aware that knowing about data is just as important as 

knowing about the tools and processes of data collection. Therefore, courses on log analysis 

include in-depth knowledge of tools’ working principles, deployment methods, and data 

processing. A similar mindset towards downhole dynamics data would also improve 

drilling data analysis.  

For downhole measurements, shock, and vibration data from MWD tools has 

traditionally been collected to monitor and predict the life of downhole tools. Now 

downhole dynamics data receives more interest and is collected at increasingly high sample 



21 

 

rates. It is more commonly used for insights in downhole forces and motions, which are 

critical to drilling performance (e.g. Trichel et al., 2016). Bad drilling dynamics data can 

stem from many processes, including sensor technology, tool design, manufacturing, tool 

deployment, data collection, processing, and transfer. The calibration of downhole sensors, 

however, is even more challenging than the calibration of surface sensors.  

1.2.3 Surface Measurements 

Real-time information from the rig has been collected and streamed since the 1980s 

(e.g. Isaac and Bobo, 1984; Guidry and Scego, 1986). Numerous sensors continuously 

produce a variety of data from the rig site. Some sensors are concerned with the monitoring 

of tool conditions (e.g. sensors in the top drive), while others measure operational 

parameters. The most basic measurements are torque, tension or hookload, mud pressure, 

flow rates and rotational speed. From these parameters alone, rig activities (drilling, 

tripping, making connection, etc.) can be easily detected. For this reason, downhole data 

analysis always requires additional surface parameters. The sampling frequencies range 

from 1 to 15 Hz, but data is often stored and/or transmitted at lower rates (Lesso et al., 

2011). The data may be displayed on a simple gauge or viewed on an electronic human 

machine interface (HMI) with visualization capabilities. In addition to direct 

measurements, certain parameters are inferred from other measurement. MSE (mechanical 

specific energy) is an important parameter for drilling optimization and calculated from 

WOB, torque, RPM, ROP and bit size. With the inclusion of such calculated values, data 

sets of continuous surface data can have more than 500 “channels” (column or single value 

over time). 

Recent developments attempt to improve access to information at surface involve 

more accurate and higher frequency measurements at the top drive. Instrumented surface 
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subs contain sensors for bending, vibrations, pressures, temperatures, rotational speeds, 

etc. and can record at frequencies above 100 Hz (Wiley et al., 2015). 

1.2.4 Downhole Dynamic Sensors 

Downhole sensors have been used to gain insights in downhole dynamics 

phenomena and detect and mitigate drilling dysfunctions. The Esso Production Research 

Company used downhole high-frequency data to study forces and motions of the drillstring 

as early as 1968 (Cunningham, 1968; Deily et al., 1968). A step-change in sensor 

application and adoption came in the 1980’s, when MWD (measurement while drilling) 

tools started to be implemented for well logging and wellbore positioning purposes (Wolf 

et al., 1985; Ramsey, 1983). Most downhole dynamics sensors run today are still part of 

MWD tool suites, with ever-increasing downhole processing capabilities and real-time data 

transmission rates. In addition, stand-alone dynamic measurement subs have also been 

developed, in variable sizes and comprising a variety of sensor types.  

In its simplest setup, a dynamics measurement sub may comprise only a single 

sensor, for instance a radial accelerometer. Subs may be placed just behind the bit or at 

multiple locations along the drillstring. Larger tools typically contain an array of sensors, 

such as accelerometers, gyroscopes, magnetometers, strain gauges and pressure and 

temperature sensors. These tools often contain more than one sensor of one kind. For 

instance, combining measurements from multiple multi-axes accelerometers allows, in 

contrast to single sensors, “the separation of measurements in three orthogonal directions 

as well as decoupling of rotational and translational movement” (Hoffmann et al., 2012).  

In downhole dynamic subs, accelerometers are primarily used for measurements of 

vibrations. In most MWD tools, three orthogonally mounted accelerometers measure the 

strength of the Earth’s gravitational field. Combined with measurement of the magnetic 
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North using magnetometers, wellbore azimuth and inclination can be determined. These 

measurements are then used to determine the position of the wellbore in a Cartesian 

coordinate system. Gyroscopes and magnetometers are used to infer the downhole 

rotational speed. Strain gauges measure a change in resistance based on deformation of the 

material. They are used to determine downhole WOB (weight on bit) or more precisely 

weight on tool, downhole torque, or torque on bit (TOB), and bending forces. Orientation 

of the strain gauge determines the type of measurement. Orientation along the axis of the 

drillstring measures a proxy for WOB, while a layout with a certain angle to the drillstring 

axis indicates torque. Strain gauges are particularly susceptible to changes in temperature 

and can show significant offsets that need to be corrected for. 

Pressure transducers can record downhole pressures both inside the drillstring and 

in the annulus. The measurements can be used to monitor pressure conditions downhole 

and infer undesirable drilling states related to hydraulics. Pressure while drilling (PWD) is 

particularly valuable in managing ECD (equivalent circulating density), monitoring 

cuttings transport and hole cleaning (Mallary et al., 1999; Coley et al., 2013). Using more 

than one downhole pressure sensor even allows for the determination of mud rheology in 

real-time and under downhole conditions. The wellbore then becomes an instrument itself, 

the equivalent of a large pipe viscometer (Karimi Vajargah et al., 2015). 

1.2.5 Downhole Data Transmission 

For many years, the state of the art technology for downhole data transfer in near 

real-time has been mud pulse telemetry. In mud pulse telemetry, a downhole valve can 

restrict the flow in certain intervals and therefore send binary pressure pulses to surface, 

which are recorded by pressure sensors. Downhole information can be reconstructed from 

these digital pressure pulses. Data can also be pulsed down to a tool from surface and 



24 

 

trigger changes in parameters through the same process. Data transfer rates of mud pulse 

telemetry typically reach about 10 bits/seconds; this is usually too low to transfer 

measurements with high sample rates to surface. Also, these systems are susceptible to the 

drilling environment and face high error rates under challenging conditions, such as 

extended reach wells, high pressure high temperature wells, change in mud properties and 

interferences by vibrations (Emmerich, 2015). 

To overcome these limitations, high broadband connections between the downhole 

tools and the surface have been established. Wired drillpipe technologies, such as NOV’s 

IntelliServ, open new possibilities with regards to downhole monitoring, control, and rig 

automation. Networked drillstring telemetry allows having real-time bi-directional 

broadband communication with downhole tools in rates of 57,600 bits/seconds. Because 

the broadband telemetry works independently of the medium present, the networked 

drillstring can transmit data regardless of the fluid environment or during situations of total 

fluid losses (Craig et al., 2013).  

The network telemetry system consists of 1) a stainless steel, armored coaxial cable 

that runs between the pin and box of each tubular, 2) induction coils at the pin and the box 

of each connection, and 3) electronic elements known as booster assemblies that enhance 

the data signal as it travels the length of the drillpipe to prevent signal degradation, and 

additionally allow measurements to be taken along the length of the drillstring. An 

electromagnetic field associated with the alternating current signal transmitted through the 

cable is responsible for transmitting data. As the alternating electromagnetic field from one 

coil induces an alternating current signal in the nearby coil, data is transmitted from one 

tubular to the next. 
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Veeningen et al. (2011) point out the advantages of high-frequency and high 

resolution data transmission via wired drillpipe, especially for downhole dynamic events. 

Sensors for pressure, temperature and vibrations are placed along the entire drillstring and 

continuously transmit data to surface, giving more comprehensive insights into the 

drillstring system than with measurements at a single point (e.g. Cardy et al., 2016).  

1.2.6 Limits of Data Availability 

The physical disconnect between the bit (target of actions) and the surface 

(initiation of actions) together with insufficient data transfer between bit and surface is the 

cause of most challenges in drilling.  

Wired drillpipe was developed to overcome these limiters with high bandwidth bi-

directional communication. Such new technologies constitute significant improvements, 

but do not fully solve the issues of access to downhole information. The broadband capacity 

of wired drillpipe is currently limited to 57,600 bits/seconds (Craig et al., 2013), which is 

equivalent to 1800 32-bit numbers per second. 5 sensors each sending data at 400 Hz can 

already exceed the broadband capacities of wired communication. Improved data transfer 

systems open up technological improvements for sensors. New subs, equipped with more 

sensors, measuring, and transferring data at higher frequencies are currently under 

development and will quickly swamp available bandwidths and downhole memories.  

Drilling operations already produce gigabytes of data every day from a multitude 

of sources and in a variety of data formats, such as real-time data streams from surface or 

downhole, unstructured text from reports, static well, rig, or formation information, etc. To 

gain important knowledge on drilling dysfunctions, data must be aggregated and integrated 

at some point during its way from source to end usage. Even if downhole data could reach 
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surface in all attempted granularity, current data processing tools and capabilities wouldn’t 

yet be capable of properly analyzing it. 

1.2.7 Downhole Data 

Following the Nyquist frequency theorem (Poletto et al., 2004), the sampling rate 

should generally be at least twice as high as the highest frequency of interest. Frequencies 

of the measured signal that are higher than this Nyquist frequency are aliased (folded, 

mixed with lower frequencies) in the sampled output. If downhole vibration recorders are 

designed to detect characteristic frequencies and their overtones for lateral vibrations, 

sensors should have sampling rates of hundreds of Hz. While bit runs can last for several 

days, continuous sampling at such high frequencies would require data capacities far 

beyond current technological and economic limits. Due to limitations in data storage 

capacities, tool manufacturers have traditionally applied a different approach, collecting 

both continuous data (statistics) and burst data (raw measurements) with the following 

characteristics.  

• Continuous data: Most downhole vibration tools sample data at high-frequency 

rates and process it immediately downhole. Key statistical parameters, such as the 

root mean square (RMS) value (which is a measure for the variance of the signal 

(D’Ambrosio et al., 2012)) and minimum and maximum values within a time 

window of several seconds are calculated instantly and stored, while the bulk of the 

high-frequency data gets dismissed. The algorithms and type of extracted 

parameters vary across different tools. 

• Burst data: At certain points throughout the bit run, high-frequency snapshots, so-

called “burst” sequences, are recorded and stored in the tool’s memory. These 

snapshots can be taken at periodic time sequences or initiated through triggers, such 
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as high acceleration levels. These burst sequences or research sequences typically 

show sampling rates of hundreds of Hz (e.g. 800) and cover periods of several 

seconds. 

 

Nomenclature, exact sampling rates and window lengths vary by companies and 

projects. Fig. 3 illustrates a downhole data processing diagram as used by a particular 

company (Bowler et al., 2016). 

 

Fig. 3—Data processing diagram provided by Bowler et al. (2016): “Block diagram of 

the sensors, digital signal processing, and recording within the tool.” 

1.2.8 Vibration Models and Data 

Vibration modeling has been one of the most prominent areas of academic research 

in drilling for decades. To date, researchers develop new or better views on the underlying 
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physics of drillstring vibrations (e.g. Ledgerwood, 2010). It has become possible to 

simulate buckling and drillstring behavior in great detail.  

Still, there seems to exist a large gap between a purely research/analytical 

perspective and a practical/operational perspective. Despite the availability of hundreds of 

models, and possibly millions of invested research hours, drillstring vibrations are still 

mostly unpredictable and sometimes even stay undetected. Even the causes and main 

influence factors of vibrations leave room for disagreements and disputes.  

The importance of physical models to understand the underlying principles cannot 

be overstated. However, in field applications most of these models reach limits in the 

complexity-accuracy tradeoff. Predominant factors, like the heterogeneity of rock 

formations are typically neglected and modeled with simplifying assumptions (e.g. as 

homogeneous material with a uniform friction factor). A straight or slightly bent cylinder 

usually approximates the borehole shape. In reality, the shape shows differences in 

diameter (washouts), spirals, ledges, and doglegs. The shape determines the contact points 

throughout the well and thus the boundary conditions of the models (Sumrall, 2013). 

Regardless of how accurate models might be, the industry still lacks tools to describe these 

extremely relevant details with enough precision.  

Many different systems in drilling act together in known or unknown ways. With 

data, it is only possible to capture a fraction of the influence factors of the system and 

significant variables may be missed. As shown later in this work, a variety of different and 

sometimes unknown phenomena compound a single measurement. Well understood 

physics help to separate important measurements from noise. Sigura et al. (2016) note that 

high-bandwidth data availability will be a game changer for drilling models and simulation, 

but that such systems still pose significant challenges. Increased availability of downhole 
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measurements and a better understanding of such data could help to eventually close the 

gap between theoretical models and field applications.  
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Chapter 2: High-Frequency Downhole Data Interpretation: 

An Alternative View on High-Frequency Torsional 

Oscillations (HFTO)4 

2.1 INTRODUCTION 

New high-frequency downhole recorders and high-bandwidth real-time data 

transmission tools (such as wired drillpipe) are heralding the era of big data in drilling. 

Nevertheless, high-frequency data is not yet used to its full potential, as the industry is only 

just beginning to make sense out of the many gigabytes of recorded data. Analysis of high-

frequency data appears to be particularly useful to better characterize and understand 

vibration events, which are prominent technical limiters of drilling performance.  

A kinematic model was developed to study the expected high-frequency 

acceleration measurement output under a whirling motion of the drillstring. Two different 

modeling approaches were found to yield the same results. A numerical vector approach 

provides a clear geometric interpretation, while tensor calculus analysis yields an explicit 

mathematical formulation of sensor kinematics. The vibration patterns predicted by the 

model matched the patterns observed in high-frequency field data very well, both in the 

time and frequency domain. The comparison reveals essential details of the downhole 

kinematics of vibrational modes, particularly regarding interpretation of patterns, which 

allows a better classification of vibrational dysfunctions in field data. High-frequency 

                                                 
4 Chapter based on: Baumgartner, T., & van Oort, E. (2014, October 27). Pure and Coupled Drill String 

Vibration Pattern Recognition in High Frequency Downhole Data. Society of Petroleum Engineers. 

doi:10.2118/170955-MS. Contributions: Baumgartner, T.: Author, van Oort, E.: Supervisor. 
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fluctuations in downhole measurements previously attributed to a phenomenon called high-

frequency torsional oscillations (HFTO) can be explained purely by considering the effect 

of the whirling motion of the string on downhole accelerometers. This alternative 

explanation is much simpler than the HFTO hypothesis, which requires multiple 

assumptions.  

This novel interpretation of high-frequency downhole sensor data allows 

differentiation of measurements of downhole dynamics into sensor artifacts and harmful 

vibrational dysfunctions that require attention and mitigation actions and sensor artifacts, 

which do not require such action. Thus, the wealth of information provided by high-

frequency vibration patterns, which is unavailable in low-frequency surface data, offers the 

possibility to significantly improve vibration mitigation methods. This, in turn, provides 

opportunities for step-changes in drilling performance improvement. 

2.1.1 Previous Work 

Mathematical representation of drillstring dynamics began in the 1960s. Models 

had few degrees of freedom and simplifying assumptions such as circular boreholes, 

vertical wells, and independence of vibration modes (for a comprehensive overview, see 

Shor et al., 2014). Brett et al. (1989) were the first to describe the path of a single cutter of 

a PDC bit under bit whirling. With this, Brett could explain “star” or “weave basket” 

shaped patterns in the bottom hole produced by whirling PDC bits. Later, drillstring 

vibrations were represented using three dimensional dynamic models. In 1992, Jansen 

published analytical solutions for periodic forward whirl and backward whirl as well as a 

chaotic motion of a drillstring. He used a mass-spring system with two degrees of freedom 

to apply non-linear rotor dynamics. In 1994, Guo and Hareland created a dynamic model 

of the BHA and bit to assess the cyclic impact loads caused by bit “wobbling”. These loads 
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act on PDC bits and eventually lead to cutter failure. Leine et al. (2002) presented a model 

that incorporated both stick-slip and whirl. He used the model to support the theory that 

fluid forces are the cause for a sudden change from stick-slip to whirl, with both vibrational 

modes coexisting only for a very small range of drillpipe rotational speed.  

In 2011, Stroud et al. developed an analytical model to simulate backward whirl. 

Numerical approximation methods were used to solve equations of motions in real-time, 

which allows the observation of the effects of clearance and friction factors on borehole 

friction and whirl frequency. The model could reproduce frequencies observed in previous 

work (Vandiver et al., 1990) and in laboratory tests.  In 2014, Makkar et al. studied the 

coupling between lateral and torsional vibrations in laboratory tests and dynamic 

simulations, which incorporated cutter kinematics during whirl.  

2.1.2 Purpose 

Downhole vibration sensors are used to get an indication of the type and magnitude 

of dysfunctions during the drilling process. High-frequency snapshots of downhole 

accelerations show distinct patterns (re)occurring throughout different bit runs. Examples 

of high frequency downhole burst windows can be found in Appendix A.1. These patterns 

offer a wealth of information on downhole dysfunctions that will help to better distinguish 

and characterize different modes of vibration for tailored mitigation techniques. A simple 

kinematic representation of a string in a borehole as a planar disk is used in the following 

to study the displacements, velocities, and accelerations, which an accelerometer 

experiences during off-center rotation. Both RPM values and whirl rotational speeds are 

model inputs, not model results.  

For the purpose of analyzing patterns in high-frequency vibration data, kinematic 

models are advantageous over more complex dynamic models: calculations and 
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assumptions are very transparent and reproducible. Computation times are furthermore 

low. Variables can therefore be changed in real-time and their effect on the outcomes can 

be studied efficiently.  

2.2 INTERPRETATION OF HIGH-FREQUENCY DOWNHOLE DATA 

This introductory chapter presents an issue at the core of a misunderstanding of 

measurements and data, with profound impact on the drilling industry. The issue is related 

to the fact that the process of sensor design, data collection, calculations, and processing is 

still disconnected from data analysis.  

In downhole data recorded during drilling, tangential accelerometers measure non-

zero values with high-frequency fluctuations often in access of 100 Hz and multiple 

overtones in the frequency spectrum. These observations led to the discovery of a new 

vibrational phenomenon and the coining of the term “high-frequency torsional 

oscillations”. HFTOs have been reported in numerous publications (e.g. Warren and Oster, 

1998; Pastusek et al., 2007; Oueslati et al., 2013; Tikhonov and Bukashkina, 2014; Hohl 

et al., 2016) and have recently received increasing attention with the commercialization of 

services to detect and prevent HFTOs. The phenomenon observed in tangential 

accelerometer data has been attributed to torsional fluctuations of the drillstring, i.e. a high-

frequency form of stick-slip vibrations. Root causes are either attributed to bit rock 

interactions (e.g. Jain et al., 2014) or torsional resonances of the collar or drillstring (e.g. 

Warren and Oster, 1998 or Lines et al., 2013). In these publications, HFTOs were 

postulated based on field data observations and were verified by comparing the frequency 

spectra resulting from dynamic modeling to frequency spectra of field data. An important 

assumption underlying these modeling efforts is that the instantaneous center of rotation is 

in line with the centerline of the pipe (Macpherson et al., 2015). 
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A measurement of lateral vibration usually refers to the resulting acceleration 

vector of two orthogonal measurements, while a stick slip index is calculated from 

variations in RPM. Under an on-center rotation assumption, accelerations in tangential and 

radial direction of a sensor on a disc with constant distance r to the center of rotation and 

with angular speed 𝛼̇ (e.g. in revolutions per minute, RPM) can be described as: 

𝑟 = 𝑟 ∙ 𝑒𝑟 (1) 

𝑟̇ = 𝑣 = 𝑟̇𝑒𝑟 + 𝑟𝑒𝛼̇ = 𝑟̇𝑒𝑟 + 𝑟𝜃̇𝑒𝜃 (2) 

𝑟̈ = 𝑣̇ = 𝑎 =  𝑟̈𝑒𝑟 + 2𝑟̇𝑒𝑟 + 2𝑟̇𝑒𝜃̇ + 𝑟𝑒̈𝜃 = (𝑟̈ − 𝑟𝜃2̇)𝑒𝑟 + (𝑟𝜃̈ + 2𝑟̇𝜃̇)𝑒𝜃 (3) 

Since r = constant, 𝑟̇ = 𝑟̈ = 0, and the equation simplifies to: 

𝑎 =  (−𝑟𝜃2̇)𝑒𝑟 + (𝑟𝜃̈)𝑒𝜃. (4) 

For uniform circular motion (rotation around the string’s center), radial acceleration 

is directed towards the center of rotation, which for on-center rotation is the center of the 

string: 

𝑎𝑟 = −𝑟𝜃2̇ = −
𝑣2

𝑟
 with 𝑣 =  𝑟𝜃̇. (5) 

Tangential acceleration is perpendicular to radial acceleration and is positive in the 

direction of velocity. For uniform circular motion, tangential acceleration is zero:  

at = rθ̈ =
dv

dt
= 0   (6) 

Under the assumption of a constant center of rotation, fluctuations of tangential 

accelerations can only be explained by a non-constant rotational angular velocity of the 

pipe. Yet, as soon as the pipe centerline moves about in the wellbore, the path of the sensor 

is not circular and Eq. 5 and Eq. 6 do not apply. In a whirling string scenario, fluctuations 

of both radial and tangential accelerations are expected, because the sensor undergoes a 

non-circular path, first described for cutters on a bit by Brett et al. in 1989.  



35 

 

It is important to correctly interpret these high-frequency fluctuations. Hohl et al., 

for instance, point out in 2016: “Since it is not always possible to avoid HFTO with 

operational parameters the dynamic stresses must be considered in tool design to prevent 

severe damage to tools in the BHA.”, hinting at the destructive nature of HFTOs and at 

requirements of new downhole tool designs, measurements and software that can limit the 

“damages caused by this phenomenon”. 

The following section will introduce a kinematic whirl model that helps to interpret 

these accelerations and offers an alternative and simpler explanation for the phenomenon 

of HFTOs. 

2.3 MODEL  

The model represents borehole kinematics in two dimensions as a planar disk 

rotating in a confining, perfectly round circle. Effects of gravity, contact forces between 

the borehole and the drillstring, viscous damping forces, friction forces, more complex bit 

or stabilizer geometries, interactions between inner and outer string (e.g. cutting actions) 

and any other dynamic effects are ignored in this model. In the context of the presented 

model, forward and backward whirl only refer to the direction of whirl rotation in relation 

to the drillstring rotation, with the same direction for the former and the opposite direction 

for the latter.  

Fig. 4 illustrates a smaller circle of radius r (representing bit, BHA or drillstring) 

that rotates eccentrically in a larger circle of radius R (representing the borehole). Borehole 

and drillstring are viewed from above. The drillstring always rotates clockwise with 

angular velocity ω, while the string center rotates with angular velocity Ɵ ̇ in clockwise 

direction for forward whirl and in counter-clockwise direction for backward whirl. The 

center of the drillstring follows a circle of radius δ = R – r with angular velocity ω, while 
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the drillstring of radius r rotates around its center with angular velocity Ɵ. The position of 

the string center is a model input and can be varied anywhere from δ = R – r (fully eccentric, 

eccentricity = 100%) to δ = 0 (fully concentric, with coinciding borehole and drillstring 

center). A velocity or accelerometer sensor is represented as a point S at a distance p from 

the center of the drillstring. The distance is a model input and can be varied anywhere from 

the wall of the string to the center of the string.  

 

R = Borehole radius [m] 

r = Drillpipe radius [m] 

p = Distance of sensor from borehole center [m]  

ω = Whirl angular velocity [rad/s] 

Ɵ = Drillpipe rotation velocity [rad/s] 

δ = Eccentricity of drillpipe [m]  

 

 

Fig. 4—2D model of a drillstring in a borehole as a planar disk. The string rotates around 

its center with velocity Ɵ, while that center itself rotates around the borehole 

center with angular velocity ω. 

The coordinates of the sensor point S are given by superposition of drillstring 

rotation and whirl movements: xf and yf for forward whirl, and xb and yb for backward 

whirl as stated below. First and second time derivatives yield velocities and accelerations 

in x and y directions in a Cartesian coordinate system as follows:  

For forward whirl:  

𝑥𝑓(𝑡) =  +𝛿 𝑐𝑜𝑠(𝜔𝑡) + 𝑟 𝑐𝑜𝑠(Ɵ𝑡)   (7) 
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𝑦𝑓(𝑡) =  − 𝛿 𝑠𝑖𝑛(𝜔𝑡) −  𝑟 𝑠𝑖𝑛(Ɵ𝑡)   (8) 

𝑥𝑓
′(𝑡) = 𝑣𝑥𝑓(𝑡) =  − 𝛿 𝜔𝑠𝑖𝑛(𝜔𝑡) −  𝑟 Ɵ 𝑠𝑖𝑛(Ɵ𝑡)   (9) 

𝑦𝑓
′(𝑡) =  𝑣𝑦𝑓(𝑡) = − 𝛿 𝜔 𝑐𝑜𝑠(𝜔𝑡) −  𝑟 Ɵ 𝑐𝑜𝑠(Ɵ𝑡) (10) 

𝑥𝑓
′′(𝑡) =  𝑎𝑥𝑓(𝑡) = − 𝛿 𝜔2 𝑐𝑜𝑠(𝜔𝑡) − 𝑟 Ɵ2 𝑐𝑜𝑠(Ɵ𝑡) (11) 

𝑦𝑓
′′(𝑡) =  𝑎𝑦𝑓(𝑡) = + 𝛿 𝜔2 𝑠𝑖𝑛(𝜔𝑡) +  𝑟 Ɵ2 𝑠𝑖𝑛(Ɵ𝑡) (12) 

For backward whirl:  

𝑥𝑏(𝑡) =  + 𝛿 𝑐𝑜𝑠(𝜔𝑡) + 𝑟 𝑐𝑜𝑠(Ɵ𝑡) (13) 

𝑦𝑏(𝑡) =  + 𝛿 𝑠𝑖𝑛(𝜔𝑡) −  𝑟 𝑠𝑖𝑛(Ɵ𝑡) (14) 

𝑥𝑏
′(𝑡) =  𝑣𝑥𝑏(𝑡) = − 𝛿 𝜔 𝑠𝑖𝑛(𝜔𝑡) −  𝑟 Ɵ 𝑠𝑖𝑛(Ɵ𝑡) (15) 

𝑦𝑏
′(𝑡) =  𝑣𝑦𝑏(𝑡) = + 𝛿 𝜔 𝑐𝑜𝑠(𝜔𝑡) −  𝑟 Ɵ 𝑐𝑜𝑠(Ɵ𝑡) (16) 

𝑥𝑏
′′(𝑡) =  𝑎𝑥𝑏(𝑡) = − 𝛿 𝜔2 𝑐𝑜𝑠(𝜔𝑡) − 𝑟 Ɵ2 𝑐𝑜𝑠(Ɵ𝑡) (17) 

𝑦𝑏
′′(𝑡) =  𝑎𝑦𝑏(𝑡) = − 𝛿 𝜔2 𝑠𝑖𝑛(𝜔𝑡) +  𝑟 Ɵ2 𝑠𝑖𝑛(Ɵ𝑡) (18) 

In previous kinematic models, authors have used δ·cos(ωt) for the whirl rotation 

and r·sin(ωt+Ɵt) for the drillstring rotation, replicating the whirl rotation within the 

drillstring rotation (e.g. Brett et al., 1989; Stroud et al., 2011). However, the movement of 

the point S with regards to whirl angular velocity ω is entirely covered by the term δ·cos(ωt) 

and the model currently allows for whirl rotation while the drillstring does not rotate around 

its axis. Whirl and drillstring rotation therefore can be treated independently.  

2.4 ACCELERATIONS “AS SEEN” BY THE SENSOR 

Newton’s law applies in the inertial frame of reference, i.e. any forces experienced 

by a sensor need to be described in a fixed system. Here, the center of the inertial frame of 

reference is the center of the borehole circle, which is static relative to the earth’s frame of 

reference. The total movement of the sensor is therefore a superposition of the rotation of 
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the drillstring center around the borehole and a rotation of the sensor around the drillstring 

center.  

To represent the location, velocity, and accelerations in the coordinates of the 

borehole, superposition and first and second derivatives are sufficient. To compare the 

model to the sensor measurements, accelerations need to be expressed in the sensor’s 

coordinate system, described by unit vectors in tangential and radial directions of the sensor 

at any point along the curve it follows. Using a standard engineering approach, kinematic 

equations (positions, velocities, and accelerations) are described in the inertial frame of 

reference and are then successively transferred into the required coordinate system. The 

model requires at least 3 different coordinate systems, i.e. frames of reference to fully 

describe kinematic equations: the origin of the first frame (inertial) is the borehole center, 

the origin of the second frame is the pipe center that rotates around the borehole, and the 

third origin is the sensor center that rotates around the pipe.  

Previous work (e.g. Vandiver, 2011 and Dykstra, 1996) have used the methodology 

of rotational matrices to transfer accelerations described with the inertial coordinates to 

coordinates that travel with the sensor. A rotation matrix performs a rotation operation and 

can only be applied in Euclidian spaces, which is a world of straight lines. In his work on 

special and general relativity, Albert Einstein (1915) points out that Kugelgeschöpfe 

(spherical inhabitants) do not have to go on a Weltreise (world tour) to perceive that they 

are not living in a Euclidian universe and provides a simple geometric example, linking 

smaller circles with the radius of the inhabited sphere. In other words, principles of the 

Euclidean geometry do not hold on a sphere, circle, or other non-flat surfaces. For spheres 

of large radii, such as the earth, the difference between a Euclidian and a non-Euclidian 

space can oftentimes be negligible. This does not apply in our situation, however. The first 
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radius in the described whirl model, the distance between the center of the borehole and 

the center of the drillpipe, can be extremely short. When the rotation matrix is applied a 

second time, from the center of the drillpipe to the sensor itself, we are on a curve with 

extremely large curvature, thus in a highly non-Euclidian space. The rotation matrix 

approach is therefore no longer valid. Based on this insight, two novel approaches are 

presented that describe the kinematics of such a sensor in all their complexity.  

The first approach is numerically transforming the accelerations expressed in the x 

and y coordinates of the inertial reference frame into tangential and radial components, 

using geometric insights. The second approach uses tensor calculus to find explicit 

analytical expressions of a sensor’s accelerations when moving along any given curve. 

These expressions describe tangential and radial accelerations “as seen” by the sensor, but 

described in inertial x and y coordinates. 

2.4.1 Numerical Approach 

After all calculations are performed in the borehole (inertial) frame of reference 

accelerations are expressed in instantaneous tangential and radial coordinates of the 

sensor’s frame of reference in a separate step. The latter frame is moving together with the 

sensor, but the direction of the orthogonal unit vectors can be derived from the velocity 

and acceleration vectors at each time step. In a vector representation, β is the angle between 

the direction of the acceleration and velocity. Tangential and radial acceleration 

components atan(t) and arad(t) are orthogonal, and the tangential acceleration vector per 

definition points in the direction of the velocity (Fig. 5). 
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Fig. 5—Orthogonal components of the acceleration vector. 

Multiplication by the orthogonal components of β separates tangential and radial 

components of the total acceleration vector: 

𝑎tan(t) = 𝑎(t) 𝑐𝑜𝑠 𝛽 (𝑡) (19) 

𝑎𝑟𝑎𝑑(𝑡) = 𝑎(𝑡) 𝑠𝑖𝑛 𝛽 (𝑡) (20) 

where β is the angle between velocity and acceleration vectors, given by  

𝛽(𝑡) = cos−1  (
[
𝑎𝑥(𝑡)

𝑎𝑦(𝑡)
] ∙[

𝑣𝑥(𝑡)

𝑣𝑦(𝑡)
]

|𝑎(𝑡)|∙|𝑣(𝑡)|
) (21) 

2.4.2 Analytical Approach 

In addition to the geometric approach, the authors present a tensor analysis 

approach, which was employed to explicitly express the anticipated accelerations in 

tangential and radial directions of the sensor. Tensor analysis is a specific type of language 

within mathematics. Albert Einstein once championed Riemannian tensor analysis and 

made significant contributions, most notably in the formulation of the Theory of General 

Relativity. For instance, he achieved notational brevity of equations by introducing a 

concept that is still termed Einstein summation. Tensor analysis aims at a geometric 

description that is independent of a coordinate system, an application very well suited for 
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the given problem. Using tensors, one can develop equations without the requiring a 

specific choice of coordinate system beforehand. Detailed derivations, notation 

conventions, and further explanations can be found in Appendix A.2.  

 A sensor moving about a drillpipe that whirls in a borehole is best represented by 

a surface embedded in an ambient (inertial) space. Tensor calculus is an excellent choice 

to describe the geometry of an arbitrary surface, a 2D object in a 3D ambient space. Tangent 

vectors and normal vectors to the plane can be described explicitly for any point on such a 

surface.  

In general, the acceleration vector A of the sensor moving along a curve that is 

confined to a surface is given by 

𝑨 =
𝛿𝑉𝛼

𝛿𝑡
𝑺𝛼 + 𝑵𝐵𝛼𝛽𝑉𝛼𝑉𝛽, (22) 

where 
𝛿𝑉𝛼

𝛿𝑡
𝑺𝛼 is the tangential acceleration and the term 𝑵𝐵𝛼𝛽𝑉𝛼𝑉𝛽 constitutes 

the centripetal or radial acceleration.  

The application to the above described 2D sensor path yields the following 

expression: 

𝑨 =  
𝑥′(𝑡)∙𝑥′′(𝑡)+𝑦′(𝑡)∙𝑦′′(𝑡)

𝑥′(𝑡)2 + 𝑦′(𝑡)2
∙ [𝑥

′(𝑡)

𝑦′(𝑡)
] + 

𝑦′(𝑡)∙𝑥′′(𝑡) − 𝑥′(𝑡)∙𝑦′′(𝑡)

𝑥′(𝑡)2+𝑦′(𝑡)2
∙ [ 𝑦′(𝑡)

−𝑥′(𝑡)
], (23) 

where 𝑥′(𝑡), 𝑥′′(𝑡), 𝑦′(𝑡) and 𝑦′′(𝑡) are the above-described time derivatives of the 

position vector in the borehole frame of reference. The first part in Eq. 23 constitutes the 

tangential acceleration vector, the second part the radial acceleration vector.  

2.4.3 Approach Comparison 

The results of the numerical and the tensor analysis approach are identical. Both 

approaches have fit-for-purpose applications. The numerical approach is simple and 

evident to the reader. Calculations can be performed very quickly, and enabled the 
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development of a user interface to study the effects of changes in the input parameters on 

the output in real-time and compare them to existing field data patterns.  

The derivation using tensors provides an explicit mathematical expression and an 

understanding of how the curvature of the sensor path causes the fluctuations in 

accelerations. Different frames of reference and conversions between them previously have 

led to confusion in kinematic modeling. These equations are derived without pre-defining 

any frame of reference, making this approach fundamental and universally applicable. The 

equations are also valid in higher dimensions; thus, they provide a basis for adding axial 

vibrations to the kinematic model of a sensor and the accelerations it experiences.  

2.5 RESULTS 

The above-mentioned equations were used to calculate velocity and acceleration 

vectors during forward whirl and backward whirl (Fig. 6). Velocity and acceleration 

vectors in both cases change their magnitude and direction in each of the small lobes 

between the outer and the inner circle.  

Fig. 7 illustrates the simulated radial and tangential acceleration component in time 

and frequency domains. Pipe rotational speed and whirl speed are constant. The simulated 

sensor readings exhibit high-frequency fluctuations, which can be attributed to the non-

circular motion the sensor undertakes during off-center rotation.  
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Fig. 6—Velocity and acceleration vectors during forward whirl (left) and backward whirl 

(right). 

 

Fig. 7—Model results of simulated radial and tangential accelerations, displayed in time 

domain (top) and frequency domain (bottom) with the following parameters: 

Borehole diameter: 8.5 in, pipe diameter: 7.73 in, pipe rotational speed: 134 

RPM, whirl frequency: 14.7 Hz (backward whirl), eccentricity and sensor 

location: 100%. |Y(f)| in g is the absolute magnitude of the signal.  
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2.5.1 Model Verification  

The output of the simple kinematic model is compared to field data that was 

recorded during actual drilling operations using stand-alone vibration measurement 

devices with data recording capabilities. The field data sampling rate was either 400 Hz or 

800 Hz.  

Fig. 8 shows that field data of radial accelerations (left) and model outputs (right) 

correspond surprisingly well. Both time domain patterns and frequency peaks could be 

almost perfectly reproduced by adjusting pipe and whirl rotational speeds alone. A Fast 

Fourier Transform (FFT)5 was used to characterize the frequency response of the system. 

The sampling frequency of the model matches the sampling frequency of the field data. 

For the comparison of model results and field data, known parameters were unchangeable 

model inputs, such as a bit size of 8.5 in. or an RPM (revolutions per minute of the 

drillstring) value of 112. The peak of characteristic frequency and its approximately 

equidistant overtones depend mainly on the whirl speed. Other parameters such as type of 

whirl (forward/backward), clearance and eccentricity can be used as fitting parameters for 

acceleration amplitudes. Forward whirl and backward whirl showed similar responses in 

time and frequency domain. 

The simulation in Fig. 8 uses the backward whirl case for representation of the field 

data to better match the field data patterns. The field data shows an offset of 3 g from the 

0-g-line. This offset could originate from potential downhole sensor calibration or sensor 

                                                 
5 Fast Fourier transform (FFT) is a fast implementation of the discrete Fourier transform (DFT), for samples 

sized 2n (where n is a positive integer). The function transforms time domain signals into the frequency 

domain. The size of the data sets usually is not 2n, and can lead to distortions at the low end of the frequency 

spectrum. The MATLAB FFT implementation calculates the length closest to 2n and pads the data with zeros 

at the end, to improve the performance of the algorithm. 
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drift issues and was ignored. It is, however, an excellent example of the many data quality 

issues complicating high-frequency data analysis. 
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Fig. 8—Field Data (left), radial accelerations, bit size: 8.5 in. Simulated data (right): backward whirl, radial accelerations. 10 

seconds burst window on the top with 2 second zoom in the middle. Fast Fourier transform (FFT) of the data on 

the bottom shows characteristic frequency peaks of field and simulated data. Parameters for simulation: whirl: 

151 rad/s, 112 RPM, borehole diameter: 8.5 in., clearance: 0.162 in., pipe eccentricity: 65%. 
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Fig. 9 displays measured and simulated tangential accelerations for a different set 

of field data. The data was collected from a downhole memory tool with multiple tangential 

accelerometers. No post-processing was performed on the selected signal that was recorded 

from one of the accelerometers. Again, the model was able to match the patterns, both in 

time and frequency domains. The dominant frequency of tangential acceleration (66.41 

Hz) results from the subtraction of the drillpipe angular speed (1.59 Hz) from the whirl 

angular speed (68 Hz).  

Pipe eccentricity as an input factor can hardly be verified with actual field data. It 

varies with time during the drilling process and may depend on the axial location of the 

measurement tool, the presence of stabilizers in vicinity of the sensor, the borehole shape, 

etc. In the model, pipe eccentricity influences the amplitude of the accelerations, but not 

the patterns. Other effects that may influence the overall vibration amplitudes include 

damping/cushioning of fluids, forces due to interactions between drillstring and borehole 

wall (lateral bit bounces) or bit-rock interactions. 

Any additional noise in the signal broadens the base of individual frequency peaks 

in the spectrum. Such noise could stem from ab uneven shape of the borehole, bit cutters 

or from various other sources such as the downhole motor or surface equipment. Additional 

frequencies could be excited through interference with axial modes of vibrations that a 

two-dimensional model does not account for. Rotational effects in combination with 

stabilizer or bit geometries may have effects on the measurements. Quantification of the 

gap between real values and simulated values should be studied in future work.  
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Fig. 9—Field Data (left), tangential accelerations. Simulated data (right), forward whirl tangential accelerations. 10 seconds 

burst window on the top with 0.5 second zoom in the middle. Fast Fourier transform (FFT) of the data on the 

bottom shows characteristic frequency peaks. Parameters for simulation: forward whirl: 68 Hz, 95 RPM, 

borehole diameter: 8.5 in., drillpipe diameter: 8.422 in., clearance: 0.04 in., pipe eccentricity: 80%, sensor 

position: 80% of drillpipe radius. 



49 

 

2.5.2 Coupling of Stick Slip and Whirl Vibrations 

In addition to lateral vibrations, the model can represent stick-slip to investigate 

patterns of coupled vibration. The relationship between whirl frequency and rotational 

speed of the drillstring for pure rolling motion without slip can be calculated from borehole 

geometry and pipe speed (Brett et al., 1989, or equations for curves of hypotrochoid): 

ω =
𝑟

(𝑅−𝑟)
𝜃 (24) 

Varying friction factors between borehole and pipe in reality could allow for 

varying amounts of tangential slippage, and the relationship of drillstring angular speed 

and whirl speed could vary significantly from the given ratio (Vandiver et al., 1989). In 

this kinematic model, whirl angular speed and pipe angular speed can be varied either using 

the given ratio or varied independently from each other.  

Whirl and Stick Slip Frequency Variations 

The sticking and slipping periods are modeled by introducing a time dependent 

sinusoidal function for drillstring and whirl angular velocities. In field data, a great variety 

of RPM shape functions during stick slip can be observed (cf. Baumgartner et al., 2015 or 

Chapter 3). A sinusoidal function is an oversimplification of the vibrational complexity. 

Nonetheless, for modeling purposes, the advantages of using a differentiable function 

outweighs severe disadvantages of this simplification. The period pt of the stick-slip cycle 

is variable.  

 Instead of a constant rotational speed 𝜃, the position vectors x(t) and y(t) can be 

calculated by introducing a time-dependent drillpipe rotational speed ϑ̇(𝑡). ϑ̇(𝑡) is a 

sinusoidal function that depends on average pipe rotational speed RPMavg, oscillation 

amplitude Ampl (when RPMavg = Ampl the string reaches a momentary full stop) and a 

torsional oscillation period 𝑝𝑡 in [rad/sec]: 
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𝜗̇(𝑡) = 𝑅𝑃𝑀𝑎𝑣𝑔 − 𝐴𝑚𝑝𝑙 ∙ 𝑠𝑖𝑛(𝑝𝑡𝑡)   (25) 

Integration yields the time dependent rotation angle ϑ(𝑡) of the drillpipe, given by: 

𝜗(𝑡) = −∫(𝑅𝑃𝑀𝑎𝑣𝑔 − 𝐴𝑚𝑝𝑙 ∙ 𝑠𝑖𝑛(𝑝𝑡𝑡))𝑑𝑡   (26) 

ϑ(t) = −RPMavgt −
Ampl

pt
cos (ptt)  (27) 

If whirl variations are coupled with RPM variations, Eq. 24 applies: 

Ω(t) =  
𝑟

(𝑅−𝑟)
𝜗(𝑡) (28) 

For independent whirl variations, we again introduce a time-dependent whirl 

rotational speed Ω̇(t), described by an average whirl rotational speed 𝑊𝑟𝑙𝑎𝑣𝑔, whirl 

amplitude 𝑊𝐴𝑚𝑝𝑙, and the same period of torsional oscillation 𝑝𝑡 as above. Integration 

yields the time-dependent angle Ω(𝑡) 

for forward whirl:                    𝛺𝑓(𝑡) = −𝑊𝑟𝑙𝑎𝑣𝑔𝑡 −
𝑊𝐴𝑚𝑝𝑙

𝑝𝑡
𝑐𝑜𝑠 (𝑝𝑡𝑡) (29) 

for backward whirl:                 𝛺𝑏(𝑡) = +𝑊𝑟𝑙𝑎𝑣𝑔𝑡 +
𝑊𝐴𝑚𝑝𝑙

𝑝𝑡
𝑐𝑜𝑠 (𝑝𝑡𝑡) (30) 

The resulting position vectors with both variable pipe and whirl angular velocity are 

for forward whirl:  𝑥𝑓(𝑡) =  𝛿 𝑐𝑜𝑠(𝜔𝑓(𝑡)) + 𝑟 𝑐𝑜𝑠(𝜃(𝑡)),   

𝑦𝑓(𝑡) =  − 𝛿 𝑠𝑖𝑛(𝜔𝑓(𝑡)) −  𝑟 𝑠𝑖𝑛(𝜃(𝑡)), (31) 

for backward whirl:      𝑥𝑏(𝑡) =  + 𝛿 𝑐𝑜𝑠(𝜔𝑏(𝑡)) + 𝑟 𝑐𝑜𝑠(𝜃(𝑡)),   

𝑦𝑏(𝑡) =  + 𝛿 𝑠𝑖𝑛(𝜔𝑏(𝑡)) − 𝑟 𝑠𝑖𝑛(𝜃(𝑡)), (32) 

and the respective time derivatives yield velocity and acceleration vectors 

expressed in inertial x and y coordinates. These can be used as input for calculations of 
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tangential and radial accelerations, using either the numerical or the tensor calculus 

approach described in Chapter 2.3.  

2.5.3 Results of Coupled Vibrations Modeling 

Field accelerometer data reveals examples of coupling of high-frequency with low-

frequency variations. Fig. 10 shows tangential accelerations with low frequency variations 

of about 0.3 Hz and high-frequency variations of about 41, 67 and 131 Hz. Studying RPM 

variations by comparing field data to model outputs allows for interpretation of this pattern 

as stick slip phenomenon coupled with whirl. The discrepancy between modeled and field 

data can be attributed to many factors. The choice of modeled RPM(t) shape function is 

considered most important, i.e. a triangle or step function would show different results than 

this sinusoidal function. Another factor could be the coupling between stick slip and whirl 

amplitudes, i.e. the whirl rotational speed may or may not be directly correlated with the 

RPM fluctuations.  
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Fig. 10—Tangential accelerations, field data on the left and simulation on the right, of 

coupled whirl and stick-slip vibrations. 10 second windows of 800 Hz data 

on top, Fast Fourier Transform of the data on the bottom. Parameters for 

simulation: Borehole diameter: 8.5 in., clearance: 0.18 in., 48 RPM 

(average), stick slip period: 3.6 seconds, average whirl frequency: 45 Hz. 

Fig. 11 shows radial accelerations during a long stick-slip cycle with a period pt of 

8.5 seconds. Just as RPM picks up, typical whirl patterns appear. The fluctuations show a 

lower amplitude when a certain speed is reached and increase again at the end of the slip 

cycle with low RPM. Again, the field data shows an offset of about 4 g, which is attributed 

to a sensor drift and/or calibration issue. This particular pattern occurred throughout the bit 

run. Field data suggests that one or more parameters change within the stick-slip cycle and 

thus cause the change in whirl amplitude. One possible hypothesis is that the whirl stops at 

the peak of the RPM cycle, and picks up once the pipe speed slows down again. The model 

output on the right side is not capable of replicating this sudden decoupling of whirl and 

stick slip within the slip cycle.  
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Fig. 11—Radial accelerations, field data on the left and simulation on the right, of 

coupled whirl and stick-slip vibrations. 10 second windows of 400 Hz data 

on top, Fast Fourier Transform of the data on the bottom. Parameters for 

simulation: Borehole diameter: 7 in., clearance: 0.13 in., 150 RPM 

(average), stick slip period: 8.5 seconds, average whirl frequency: 19 Hz.  

Investigations using a kinematic model with variable parameters in real-time allow 

relating sensor data to actual pipe movements. This helps to create a better understanding 

of the physics of vibrations in pure or coupled forms, producing more accurate and faster 

predictive models, and eventually finding better mitigation strategies for drilling 

dysfunctions. Detailed studies and simulation of coupled effects will be part of future work. 

2.5.4 Kinematic Model Limitations 

Fig. 12 presents field data of radial accelerations. It shows periodic patterns of 2.6 

Hz and typical whirl frequencies with 75 and 95 Hz. The measured radial accelerations 

reached the highest values of the entire run whenever this pattern was present in the data. 
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Interestingly, the radial accelerations vary in both positive and negative directions. These 

patterns may not be related to stick-slip, since radial accelerations would never be negative 

in that case. In laboratory experiments, Minett-Smith et al. (2010) observed a transition 

phase before backward whirl gets fully developed (Fig. 13). At that stage, the BHA 

experiences strong lateral shocks. The relatively elevated levels of positive and negative 

radial accelerations therefore could show up if the bit laterally “bounces from one wall to 

another”. The periodicity of patterns in this data suggests an interpretation as backward 

whirl, rather than chaotic whirl.  

  

Fig. 12—Field data, radial accelerations showing periodic patterns with negative values. 
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Fig. 13—Recorded data of impact between BHA and borehole wall for partial backward 

whirl with 5 impacts per second at 100 RPM (Minett-Smith et al. 2010). 

As mentioned in the model description, in the context of the presented model, 

forward and backward whirl only refer to the direction of whirl rotation in relation to the 

drillstring rotation. In literature, forward whirl may refer to a special case of forward 

synchronous whirl, where whirl and pipe rotational speed are exactly the same. Backward 

whirl has been described as a high impact force and thereby destructive phenomenon. The 

kinematic whirl model can be used to demonstrate expected accelerations for the general 

case. If field data measurements exceed expected forces, explanations of such special cases 

require the presence of additional driving forces and could indicate more severe vibrational 

dysfunctions. 

2.5.5 Input Variable Sensitivities 

Characteristics of the output signals are levels of accelerations or velocities, 

frequency peaks, periodicity of overtones (peak distances) and relative amplitudes of 

frequency peaks. The effect of changing model input variable on these characteristics of 

the simulated data output is not straight forward. A reduction of pipe eccentricity, for 
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example, results in lower acceleration levels, while other input variables have more 

complex effects. In particular, the interaction of whirl and changing RPM values requires 

further investigation by comparison of model outputs and field data.  

In Fig. 14, the clearance between borehole and drillstring is varied while all other 

parameters are kept constant. Radial, tangential, and combined accelerations are displayed 

in the frequency domain, by performing a Fast Fourier Transform of the signal for each of 

the incremental changes in clearance. Radial acceleration levels of the dominant frequency 

increase with increased clearance while tangential levels decrease. The resulting 

acceleration vector remains constant for any clearance value. When the drillstring radius is 

exactly half the borehole radius, the frequency overtones disappear in the radial 

acceleration signal, while they reach peak levels in the tangential acceleration case. 

 

 

Fig. 14—Simulated data. Influence of variance in clearance on radial, tangential, and 

combined accelerations. 
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2.6 DISCUSSION 

2.6.1 Pipe Rotational Fluctuations vs. Whirl 

Appendix A.3 illustrates the expected measurements in time and frequency domain 

for a hypothetical HFTO pipe movement, i.e. high-frequency fluctuations of RPM(t) 

modeled as a sinusoidal function with a period of 0.05 (20 Hz). As predicted by Eq. 4, the 

tangential acceleration shows the exact same frequency content as the input signal (20 Hz) 

and radial accelerations have one additional “overtone” of twice the input signal (40 Hz). 

Unless the input signal RPM(t) is modified to a more complex function, the HFTO 

assumption is not capable of replicating the field data with its complex frequency spectrum. 

The comparison of model output and real-time data shows that this whirl model 

with constant pipe and whirl rotational speed in contrast can explain high-frequency 

fluctuations of both radial and tangential accelerations solely by the effect of eccentric 

rotation of the drillstring. The model in this work does not require any three-dimensional 

geometries or dynamic effects that attribute these simulated frequencies to natural 

frequencies of the drillstring or any other dynamic system.  

Occam’s razor states that “among competing hypotheses, the one with the fewest 

assumptions should be selected”. Whirl is a proven and observed physical effect during 

drilling and thereby presents a logical candidate for the origin of “HFTOs”. Under field 

conditions with well explored phenomena such as buckling, pipe sag, well paths with 

micro-doglegs, etc. the assumption of “no whirl” (constant instantaneous center of rotation) 

is actually unrealistic.  

By contrast, explaining the same measurements using the concept of real high-

frequency torsional oscillations requires a very different set of assumptions. First, the 

existence of high-frequency variations needs to be postulated. Note that the phenomenon 
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was “discovered” only based on observations in downhole high-frequency data 

(Evangelatos and Payne, 2016). Second, the kinematic model (Eq. 5 and 6) for radial and 

tangential components depends on the choice of function RPM = RPM(t). These functions 

are unknown and further assumptions of their characteristics are required. Previous work 

(Dykstra, 1996) simplifies the problem assuming a sinusoidal function, even though, in the 

case of lower frequency RPM fluctuations during stick slip, field data shows a large variety 

of shapes. We use the same sinusoidal function here to show coupling effects of stick slip 

and whirl vibrations, but our alternative theory of the origin of high-frequency tangential 

fluctuations being a sensor artifact does not require any such assumption.  

Comparing the assumptions required for the two explanations of the same 

phenomena, it is concluded that Occam’s razor favors the whirl alternative, as the simplest, 

most logical explanation for the HFTO observations. The model therefore offers an 

alternative explanation of the phenomenon of “high-frequency torsional oscillations” as a 

sensor artifact caused by off-center rotation during whirl events. 

In addition, providers of vibration monitoring services claim that the whirling 

motion can be accounted for using opposite accelerometers and adding or subtracting the 

measurements. As demonstrated using the whirl model in Appendix A.4, this approach, 

however, does not eliminate the high-frequency fluctuations in the data. 

This work demonstrates that as soon as the drillpipe rotates off-center, sensors 

placed on the side of the drillstring no longer represent the string as a whole. Sensors 

undergo a different path than the center of the pipe. Equations that apply for uniform 

circular motions no longer apply under whirl motion. This is not only true for 

accelerometers, but also for gyros and magnetometers that show similar high-frequency 

fluctuations under whirl. However, these exact sensors are used to infer the rotational speed 
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of the drillpipe (RPM). Hohl et al. (2016) claim that the occurrence of fluctuations in RPM 

is the causation of tangential accelerations. They thereby they neglect the possibility that 

the fluctuations in both cases are correlated and have similar root causes (Fig. 15).  

 

Fig. 15—Hohl et al. (2016) use calculated RPM values to claim a causation of high-

frequency torsional oscillations in the tangential acceleration signal by 

fluctuations in rotary speed. 

Fig. 16 compares the magnetometer reading with calculated RPM values for data 

recorded at a sampling rate of 800 Hz. Note that the time scales are 5, 10 and 3 seconds for 

normal, stick slip vibrations and whirl vibration respectively. For the case of normal 

drilling and stick slip, the calculated RPM values do not show significant high-frequency 

fluctuations. For the whirl case, calculated RPM values show fluctuations in accordance 

with whirl frequencies. RPM values are calculated from gyro or magnetometer data. 

Equations for RPM calculations, again, assume that assume uniform rotation (Meyer, 
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2007). Hence the high-frequency fluctuations in RPM values are again a sensor artifact that 

needs to be accounted for.  

 

Fig. 16—Comparison of magnetometer data and calculated RPM values for normal 

drilling (upper), stick slip (middle) and whirl vibrations (lower). Note that 

the time scales are different for each of the three cases. 

2.6.2 Experimental Proof for Future Work 

The following section describes a possible controlled experiment that could provide 

a proof for the described whirl hypothesis and will be subject to future work: 

The setup is a drillstring simulator that consists of a series of lumped masses 

mounted on a slender steel rod (Fig. 15). A motor provides rotary motion at defined 

rotational speeds. Such an experimental setup, for instance, has been developed at the Shell 

Research Center in Rijswijk (Shor, 2016).  

 



61 

 

  

In contrast to field operations, in this setup it is possible to add ‘outside observers’ 

to the drillstring system. These outside observers are high speed cameras that detect the 

rotational speed of individual elements. Vertical stripes on the string elements allow a 

visual analysis of the generated images. The cameras need to capture enough images to 

identify possible high frequency fluctuations in the rotational speeds (at least 500 frames 

per second). In addition, the cameras also capture any lateral movement of the individual 

lumped masses. To compare data from the experiment with available field data, radial and 

tangential accelerometers should be placed on string elements at an off-center position.  

During the experiment, the drillstring is rotated by the motor at the top with a 

constant rotational speed. Additional sensors are required to ensure such a constant RPM 

input. The drillstring needs to be brought into a whirling motion. This could be achieved 

by a mechanical lateral displacement at a certain point along the string or by implementing 

a bent section into the steel rod.  

For the analysis, data from the accelerometers on the string is compared with data 

from the RPM input and the high-speed cameras. The cameras can detect either whirling 

motions or torsional fluctuations of the drillstring. Data from the accelerometers then 

provides expected measurements for each type of pipe movement. 
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Fig. 17—Possible experimental setup to verify sensor artefact vs. high frequency torsional 

oscillations. 

2.6.3 Comparable Application 

A tangible analogy to the forces that apply to a sensor located on the side of a 

wobbling drillstring, exists in a very different context, the readers might have experienced 

firsthand: visitors in several theme parks around the world can enjoy a spinning tea cup 

ride. In Disney parks, these installations are named Mad Hatter Tea Party, inspired by a 

scene from Alice in Wonderland. A rider sits inside a tea cup that spins around its own 

center. Several groups of such tea cups are mounted on a larger turntable, sometimes 

rotating within even another turntable. Although individual rotations are smooth, their 

combination exerts rather strong “fictitious” forces on the riders.  
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2.6.4 Implications of Findings 

In state-of-the-art MWD tools, multiple multi-axis accelerometers are deployed to 

accurately separate lateral from torsional measurements. Although Zanonni et al. in 1993 

pointed out sensitivities of the radial accelerometer response to changes in RPM, a current 

perception is that accelerations in radial directions correspond only to lateral vibrations and 

tangential accelerations are indicators for torsional fluctuations and stick-slip. The 

kinematic model clearly demonstrates that as soon as the rotational axis does not align 

100% with the center of the borehole, these signals cannot - and should not - be looked at 

independently. Whirl affects the measured rotational speeds and accelerations, while stick-

slip also affects lateral measurements. Using the results of this whirl model, we can 

interpret high-frequency fluctuations as whirl and differentiate them from stick slip by their 

frequency content (Baumgartner and van Oort, 2015; see also Chapter 3), not by 

measurements of sensors oriented in different orthogonal directions.  

The current practice of only studying statistics (such as RMS, minimum or 

maximum values) of the data over certain time windows results in the loss of valuable 

information. High or low frequency signals can generate the same statistical values, despite 

their inherently different high-frequency patterns. In addition, measurements are not (yet) 

standardized (Osnes et al., 2009). They depend on the setup of the tool, on the placement 

of the tool in the drillstring, on the position of the sensor within the tool, on the type of 

accelerometer, on the number of sensors, on the number of measurement axes and so forth. 

In Chapter 4, we demonstrate the effectiveness of automated pattern recognition 

methodology when classifying large amounts of high-frequency data, an approach that 

takes overall acceleration levels and signal frequencies into account.  
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2.7 CONCLUSIONS 

A 2D kinematic model for whirl vibrations is proposed in this chapter. It represents 

the drillstring as a rotating disk within a larger circle of the borehole. The inner disk was 

prescribed an off-center rotational movement (whirling motion) that allowed the 

calculation of the velocities and accelerations experienced by a sensor placed at any point 

of the inner disk. Expected tangential and radial accelerations of a sensor are derived using 

a numerical as well as an explicit approach. Considering the sensor location, the kinematic 

equations of bit whirl closely reproduced whirl vibration patterns observed in multiple field 

data sets, both in time and frequency domains.  

The simulated responses demonstrate that high-frequency fluctuations of tangential 

and radial accelerations can be attributed to a whirling motion of the drillstring. The 

frequency of these fluctuations can reach hundreds of Hertz. Thus, this work offers an 

alternative explanation of fluctuations in tangential acceleration measurements, previously 

attributed to a phenomenon termed high-frequency torsional oscillations (HFTOs). 

The current work illustrates that the location of the sensor within the measurement 

sub must be considered when processing or analyzing downhole drilling high-frequency 

data. The path of the sensor is different from the path of the center of the string. Additional 

accelerations are recorded that do not represent the motions of the drillstring as a whole. 

For this reason, perfectly valid models of vibrations may not match up with measurements, 

unless sensor artifacts, such as the one described here, are considered. Eccentric rotation 

of the bit, BHA and/or drillstring affects the measurements of rotational speeds. To 

distinguish these vibration types from accelerometer measurements, the patterns should be 

investigated explicitly. Current practices of averaging accelerations or deriving only RMS 
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and maximum/minimum accelerations over a certain time window are insufficient to fully 

resolve downhole dysfunction behavior geared at taking the right mitigation actions.  
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Chapter 3: Optimization of Downhole Dynamics 

Measurement Systems6 

3.1 INTRODUCTION 

Downhole data transmitted in real-time can be used to optimally select parameters 

during drilling and optimize off-bottom operations. The wealth of information from 

retrieved memory data gives immediate insights in well specific performance limiters. 

Nevertheless, downhole data is not yet used to its full potential, as the industry is only just 

beginning to make sense out of the many gigabytes of recorded data. Often, measurements 

cannot be unambiguously linked to specific downhole dynamics and their respective 

dysfunction. Most valuable information is lost directly at the sensor when processing (e.g. 

averaging) is not done appropriately. In other cases, vast amounts of high-frequency data 

are transmitted and stored without providing much useful information. Large data volumes 

quickly reach the limits of transmission broadband and memory capacities of downhole 

tools. At surface, they pose huge challenges to drilling data analysis and data integration.  

As a solution to handling the rapidly increasing amounts of drilling data, this 

chapter proposes a value of information based approach to downhole sensors, data 

processing and analysis. An extensive set of field data from multiple operations is used to 

demonstrate the interrelation of dynamic effects and their impact on downhole sensor 

measurements. Different requirements on sensor type and sample frequency apply to 

                                                 
6 Chapter based on: Baumgartner, T., & van Oort, E. (2015, September 28). Maximizing Drilling Sensor 

Value through Optimized Frequency Selection and Data Processing. Society of Petroleum Engineers. 

doi:10.2118/174986-MS. Contributions: Baumgartner, T.: Author, van Oort, E.: Supervisor. 
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identify several types of drilling performance limiting dysfunctions, such as vibrations, 

well tortuosity or cutting accumulations due to poor hole cleaning.  

It is shown that the analysis of frequencies is key to separate multiple downhole 

effects wrapped into one measurement. For each prominent type of dysfunction, minimum 

data collection frequencies are specified. This approach allows for the differentiation of 

unimportant noise from valuable drilling performance insights. These insights are used to 

describe more effective methods of data processing, by cross-linking information from 

multiple sensors.  

3.1.1 Data and Performance 

Data can either be an enabler or performance limiter in drilling. Without 

transparency on surface actions and resulting downhole reactions, drilling is essentially a 

black box that limits its practitioners to trial and error. With direct access to comprehensive 

information on the downhole environment, drilling mechanics can be fully understood, 

procedures can be optimized and risks largely eliminated.  

Sensors are only capable of capturing a low dimensional snapshot of the complexity 

of the dynamics they are exposed to in a downhole environment. With increased data 

transfer capabilities, there is a tendency to simply increase the number of sensors downhole 

and collectively increase sampling rates. But more is not necessarily better. First, even the 

large transfer bandwidths of wired drillpipe can be exceeded with a few high-frequency 

sensors. Second, the amount of data produced by each drilling rig already cannot be fully 

analyzed in all its granularity at surface with current data processing technology. Third, not 

all data is equally valuable and useful.  

Insightful information on downhole dysfunctions and mechanical correlations is 

already present in current downhole data sets. In this work, we show how the value of 
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massive amounts of “confusing” and ambiguous downhole data can be increased and how 

a separation of valuable information from unimportant noise and sensor artifacts can be 

achieved. By answering the question “what specific information is required to identify and 

mitigate performance limiters?”, this chapter provides guidance on maximizing the value 

of current downhole sensors. At the same time, it shows how current and future downhole 

sensor data loads can be rationalized and managed. 

3.1.2 Value of Information 

Inadequate information on drilling dysfunctions is a real drilling performance 

limiter. The physical disconnect between the bit and surface, as well as additional barriers 

to data transfer are the main obstacles to exploit opportunities for drilling optimization and 

more efficient well delivery. Wired drillpipe was developed to overcome these limiters 

with high bandwidth bi-directional communication. Such recent technologies constitute 

significant improvements, but do not fully solve the issues of access to downhole 

information. New subs, equipped with more sensors, measuring, and transferring data at 

higher sample rates are currently under development and will quickly swamp bandwidths 

and downhole memories. 

Streaming data from surface or downhole fulfills a variety of current or future 

purposes. For the detection of drilling dysfunction from downhole data, different types of 

dysfunctions require different datasets. To optimize the system of data capturing, transfer, 

analysis, and implementation it is essential to consider the end usage of the data. How many 

magnetometers are required to record downhole RPM for the purpose of stick slip alarms? 

What is the required sampling and data transfer rate? What data sensors and sample rates 

are required for automated surface adjustment of WOB and RPM parameters?  
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A piece of information is considered valuable if - and only if - it reveals new insight 

on the occurrence or state of drilling dysfunctions, and this insight can be used to make 

drilling improvements. Every sensor incrementally adds transparency and knowledge on 

downhole environment and dysfunctions. But at some point, the user knows enough, such 

that any additional data becomes of rapidly diminishing value. Under data transfer and 

budget limitations, what is the minimum set of measurements that allows the driller to be 

sufficiently informed to cope with most - if not all - of the drilling performance limiters 

and achieve optimized drilling conditions? 

3.1.3 Sample Rate Requirements 

In a system with bandwidth and memory limitations, the number of channels (signal 

outputs), measurement sample rate and measurement duration (for memory only) can be 

adjusted to optimize the information gain from downhole sensors. Sensors transfer an 

analog signal into discrete samples and later reconstruct a continuous function of the 

measurement. If the sampling rate is too low, the reconstruction will exhibit imperfection. 

The Nyquist criterion states that for a perfect transfer of an analog to a digital signal and 

vice versa, the sampling rate should be at least twice as high as the frequency of interest in 

the recorded signal. On the other hand, to delineate the dynamic effects of interest, 

phenomena do not have to be measured at a sampling rate much higher than this Nyquist 

frequency. Thus, a direct rationalization of sampling rate, data-storage and transmission 

can be achieved by characterizing phenomena of interest at their Nyquist frequency, and 

only at their Nyquist frequency. What those frequencies should be is discussed in more 

detail for various phenomena associated with the previously discussed drilling performance 

limiters in the next section.  
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3.1.4 Datasets 

Data sets used in this work were collected from different drilling projects. High 

frequency data was captured during land operations in Oklahoma and in the Middle East. 

No postprocessing had been done on these data sets, so they were ideal to study patterns of 

high frequency from these data sets.  

An operator conducted a drilling data study gathering data from 2 wells and 5 wells 

in two separate phases of the project. In phase 1, data was captured using continuous data 

(sampling periods of 2.56 seconds). In phase 2, all downhole data was collected using a 

sampling rate of 50 Hz for all available measurements. These measurements included 

annular pressures, axial vibrations, gravity, RPM (derived value), torque (corrected, 

derived), torque (uncorrected), weight on bit (corrected, derived), weight on bit 

(uncorrected). Surface data (1 Hz sampling rate) and other information such as daily 

drilling reports (DDR) and survey files were also available. 

3.1.5 Approach 

The downhole data sets were visually inspected to identify captured downhole 

dysfunctions. A comparison to literature, surface data sets and amongst multiple downhole 

measurements helped to identify data patterns and link them to their root causes. The data 

patterns are grouped by dysfunction type and into low/medium/high frequency ranges. The 

suggested sampling rates in this work are at least twice as high as the highest frequencies 

per dysfunction found in this dataset or shown in literature.  

• Literature review: listing commonly observed drilling dysfunctions and expected 

frequency ranges. For some dysfunctions, especially vibrations, frequency ranges 

are common drilling knowledge and are available in literature (see Chapter 1.1.1 
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Drillstring Vibrations). These literature observations could be verified with the 

available data in our study. 

• Data processing: data processing involves several steps to transfer data from the 

file format it was delivered into data sets that allow data analysis; including re-

organizing files into an appropriate structure; understanding the content of the data, 

quality checking, and cleaning data.7  

• General visualization of data: plotting downhole data together with available 

surface data. This step enables an overview over individual bit runs, hole depths, 

rig activities, etc. Additional general data can be found in daily drilling reports and 

needs to be studies to identify “unusual” operations and operational problems that 

may affect the data. 

• Visualization of data of interest: to identify coupled effects of dysfunctions in 

downhole data, multiple data streams (WOB, TOB, RPM, Vibrations, etc.) are 

visualized on the same graph. Together with available rig activity information 

(drilling/tripping/connection, etc.) the data is screened for relevant patterns. A 

combination of measurements helps to identify the root cause: e.g. for bit bounce, 

WOB fluctuates while TOB stays relatively constant. Flexible display options, 

zoom functions and programmable plots are required to efficiently screen large data 

sets.  

• Signal processing: for high frequency data, a discrete Fourier transform is 

performed to identify frequency spectra. An adequate selection of individual data 

windows has an outcome on the clarity of the results in the frequency domain. Since 

                                                 
7 Details on the specific steps required can be found in Chapter 5.1.3 Transfer of Downhole Data – A Case 

Study, as well as in Appendix D.3.2 Data Curation 
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associated frequency peaks tend to change over time, the spectra get noisy for large 

data sets.  

3.2 DOWNHOLE MEASUREMENTS AND THEIR INTERPRETATION  

The interpretation of downhole measurements is everything but trivial. Using 

sensors, the phenomenon causing a measurement can only be inferred but in most cases 

not directly measured. Movement and loads acting on sensor are unknown and one sensor 

usually can only observe variables associated with one particular axis at a time. The 

direction of that axis changes as the sensor moves within the system. Direct calibration of 

sensors in the downhole environment is generally not possible, and verification of sensor 

measurements through other sensors is generally limited (although considerable progress 

has been made in this area, cf. Ambrus et al., 2013).  

Despite these challenges, this section illustrates observable phenomena in field data 

and how the interpretation of measurements can be facilitated through differentiation by 

frequencies, comparisons of patterns and correlations of multiple signals.  

3.2.1 Vibrations  

The three basic types of oscillatory movements (vibrations) are differentiated into 

movements in lateral, torsional, or axial direction. In theory, vibrational types can be 

separated using orthogonally oriented accelerometers. In real measurements, we often see 

a variety of different phenomena captured by the same sensor and signal. These phenomena 

originate from a variety of root causes and a differentiation is essential for detection and 

mitigation of problems and for maximizing the information gain from a signal. 

Lateral, tangential and axial vibrations are associated with reduced ROP, tool 

failures and lead to measurement errors in other downhole sensors. Close et al. (1988) 
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studying some of the first downhole vibration measurements already pointed out that often 

the highest levels of vibrations are recorded during off bottom operations, such as reaming 

or pumping and rotating while off bottom.  

Lateral vibrations are responsible for the highest frequency dynamics (50 Hz and 

above, or periods of below 0.02 seconds). The results of Chapter 2 are again summarized 

here, because they are essential for the correct interpretation of the featured high-frequency 

data. Fig. 18 shows a 5-second sequence of field data (800 Hz sampling rate) from a 

tangential accelerometer recorded during off-center rotation (left). A fast Fourier transform 

(FFT) of the data reveals frequency peaks of 66 Hz and above. These high-frequency 

fluctuations in the tangential acceleration data can be solely attributed to a whirling motion 

of the drillstring in the borehole. A simple kinematic whirl model was able to reproduce 

the sensor output in a simulation (right) both in time and frequency domain (see Chapter 

2). In this case, the frequency responses are artifacts of the sensor movement within the 

drillstring, and do not represent the changes of acceleration the drillstring undergoes as a 

whole. The dominant frequency of such whirling movement ranges from 15 to 100 Hz, 

with overtones that can reach up to multiple hundreds of Hz, often exceeding the Nyquist 

frequency limits of the sample rate (Oueslati et al., 2013).  
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Fig. 18—Comparison of tangential accelerations for field data (left) and simulated 

forward whirl (right).  

Fig. 19 shows radial accelerations with high amplitudes. Its motions and dynamics 

most likely can be accredited to a backward whirl phenomenon. In the case of pure rotation 

(despite off-center rotation, RPM fluctuations or both), radial accelerations are always 

positive. In this data set, radial measurements are both positive and negative. The negative 

accelerations could indicate the presence of additional forces, such as a bit laterally 

bouncing off from one wall to another. In laboratory experiments, Minett-Smith et al. 

(2010) observed a transition phase before backward whirl gets fully developed. Their data 

is comparable to data in Fig. 19. At this stage, bit, BHA or string experience strong lateral 

shocks. The frequencies observed with this type of whirl pattern are typically in the order 

of 60 – 120 Hz, with very high vibration amplitudes. 
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Fig. 19—Destructive whirl with dynamic forces causing negative radial accelerations of 

high amplitudes. Fast Fourier transform (FFT) of the data on the bottom 

shows characteristic frequency peaks at 74 and 92 Hz. 

Torsional or stick-slip vibrations are visible in all downhole measurements. During 

the stick phase, radial and axial accelerations are reduced or close to zero or even negative, 

torque builds up and WOB decreases slightly. Fig. 20, Fig. 21 and Fig. 22 show periodic 

stick slip phenomena recorded at 50 Hz, with the periods of stick slip of about 5-6 seconds 

in each case. Downhole RPM values (blue line) are calculated from gyroscopes, with the 

measurement sub located right above the motor. RPM values in this data set had to be 

manually corrected for offsets (i.e. calibration/measurement errors). In these cases, it is 

easy to spot a zero RPM line from the stick slip patterns. In Fig. 20, stick slip periods are 

about 6 seconds. WOB, TOB and axial accelerations show patterns that are governed by 

stick slip behavior. Notably, TOB peaks just before the release from the stick period. 
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Fig. 20—RPM, WOB, TOB and axial accelerations under fully developed stick slip with 

periods of about 6 seconds.  

In Fig. 21, severe stick slip (1st minute) is followed by lower level torsional 

oscillations and then again by fully developed stick slip (6th minute). The severe stick slip 

is characterized by periods of 1 seconds and negative RPM values that indicate a counter-

clockwise rotation of measurement tool. A reduction of stick slip severity (minute 1 and 

minute 6.5) is correlated with a reduction of WOB. 

 

Fig. 21—Two severe stick slip events about 5 minutes apart.  
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Fig. 22 shows prolonged severe vibrations with counter-clockwise rotations. The 

stick slip periods are about 5-6 seconds long. RPM values are calculated from gyroscopes 

or magnetometers. In some cases, the derived values might be unreliable. Are the negative 

RPM values real? To eliminate the possibility of certain measurement or data processing 

errors when calculating RPM, downhole RPM data can be verified using surface RPM data: 

the total number of rotations during a given period of time must be the same for downhole 

and surface RPM data, when effects of “torqueing up” the string are neglected. These 

calculations were performed and verified the counter-clockwise rotation. 

 

Fig. 22—Stick slip with significant negative rotational speeds, stick slip period about 5-6 

seconds. 

Axial vibrations (Fig. 23) have been a major subject of research for roller cone bits, 

but are scarcely observed in data sets with PDC bits. Axial vibrational frequencies are 

found to be in the range of 3 – 20 Hz. Fig. 24 shows fluctuations of axial accelerations with 

two characteristic frequency peaks of about 0.25 and 7.5 Hz. A differentiator for axial 

vibrations are high fluctuations of WOB values, while TOB values are comparatively 

stable. 



78 

 

 

Fig. 23—Axial accelerations (blue) and corresponding WOB and TOB values. 

 

Fig. 24—Frequency response of axial vibration with a high-frequency peak of 7.5 Hz. 
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3.2.2 Strain Measurements 

Weight on Bit is regarded as one of the key factors for optimizing the rate of 

penetration. Downhole WOB values are usually significantly less than surface WOB 

values, weight is “lost” through friction, trajectory, and hang-ups in the wellbore. Buckling, 

a dysfunction, where the string acts like a spring, can greatly reduce the effective downhole 

weight. As a rule of thumb for normal operations, 30% of the applied surface WOB gets 

lost. This ratio, however, can be much higher or lower, and can be highly non-linear. The 

ability to more effectively apply WOB based on downhole limits rather than surface 

restrictions holds great potential ROP performance gains for oil and gas companies. 

Reliable absolute WOB measurements and low frequency changes and trends are essential 

for using this downhole information appropriately. However, the WOB measurement is a 

composition of a variety of downhole dynamics, such as all three forms of harmonic 

vibrations. Fig. 25 shows that under stick slip vibrations, WOB can fluctuate up to 10 klb, 

which in this case is 30 % of its maximum value of 30 klb. If, in a post-processing step, 

this 50 Hz data is averaged, these peaks might be removed from the data. Unable to observe 

the maximum loads in data displayed to e.g. a driller, unsuitable data could lead to exerting 

too high WOB during the slip phase. In addition, the data in Fig. 25 seems to demonstrate 

that stick slip vibrations are not affected by changes in WOB. Surface WOB is greatly 

reduced to almost zero within a period of 6 minutes, downhole WOB decreases 

simultaneously, but neither the amplitude, nor the period of stick slip seems to change.  
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Fig. 25—Comparison of WOB and TOB under stick slip. 

WOB measurements tend to oscillate in accordance with every rotation of the 

drillpipe despite relatively stable axial vibration levels. This can be explained by changes 

in the stress regime and bending of the pipe with every rotation, if there is a misalignment 

of the center of the drillpipe and the center of the borehole. Fig. 26 compares these WOB 

fluctuations with magnetometer data. Magnetometers measure the earth’s magnetic north 

and thus capture rotations in the inertial reference frame of the borehole. The stick slip 

pattern is clearly observable. In the slip phase, the pipe rotates 5 times, in the stick phase, 

the pipe rests at a certain angle from north and the data shows constant values. WOB 

measurements show a perfect alignment with magnetometer data throughout the entire run. 

This allows attributing WOB fluctuations to cyclic stress changes during each rotation. 

Changes in sensor design or post-processing techniques could remove such artifacts. Note 

that also the absolute WOB values in Fig. 26 are out of range. As detailed in Chapter 4, 

their offset is attributed to downhole pressures and temperatures acting on the strain 
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gauges.

 

Fig. 26—Downhole WOB measurements (top) shows fluctuations of 30 klb that are 

correlated to rotations of the drillpipe.  

Downhole torque (also referred to as TOB (torque on bit) or torque on tool) is 

obtained using strain gauges. In contrast to WOB, the strain gauges are offset by a certain 

angle to the axial axis of the drillstring. Downhole torque measurements are affected by 

pipe rotations as shown in Fig. 27.  
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Fig. 27—Comparison of RPM, WOB and TOB shows the strong correlation of these 

three measurements with respect to their frequencies. 

Bending information can be related to wellbore tortuosity. Dogleg severity as a 

measure of tortuosity is calculated from inclination and azimuth information. These 

surveys are usually taken every stand (90 ft) and do not capture wellbore tortuosity in its 

required granularity. Heisig et al. (2004) showed that downhole bending information from 

dynamics and MWD tools closely matched survey data. 

3.2.3 Pressure 

Sensors can record downhole pressures both inside the drillstring and in the 

annulus. Pressure data is used to infer slower response phenomena, such as hole cleaning 

efficiencies (e.g. Coley and Edwards 2013), downhole formation integrity tests (FIT) and 

equivalent circulating density (ECD) monitoring (e.g. van Oort and Vargo, 2008) or kick 

detection (e.g. Gravdal, 2009).  

 Still, high-frequency pressure data shows effects of lateral, torsional, and possibly 

axial dynamics. In Fig. 28 a comparison of 800 Hz burst sequences reveals the effects of 
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lateral vibrations on the pressure recordings. Tangential acceleration shows a dominant 

frequency peak of 72 Hz. This frequency range, together with the pattern and rather low 

amplitudes of +/- 15 G indicate off center rotation, or whirl vibration. The same frequency 

peak of 72 Hz can be found for the internal drillpipe pressure. This indicates that the root 

cause of these high-frequency pressure fluctuations is related to whirl dysfunctions. One 

hypothesis is that these pressure fluctuations of 1000 psi could be caused by the off-center 

pipe movements. Another possible explanation are mechanical effects on the sensor itself, 

making them sensor artifacts.  

 

Fig. 28—Pressure fluctuations show exactly the same frequency peaks as tangential 

accelerations. These vibrations cause pressure fluctuations of 1000 psi.  
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Fig. 29 compares internal drillpipe and annular pressure. The pressure scales are 

quite different, still some fluctuations show a clear negative correlation of the two signals 

(see arrows in Fig. 29). Temporary restrictions of the bit nozzles, for instance, could 

simultaneously increase the internal pressure and reduce the annular pressure. Other effects 

appear only in annular pressure. A comparison of the two signals could help to differentiate 

pressure effects by their location of occurrence. For instance, flow restrictions in the 

nozzles could possibly have effects on both pressure readings, while annular cuttings 

accumulations will not be visible inside the drillstring.  

Pressure data is typically monitored with a resolution of minutes to hours. Even 

formation integrity tests are conducted observing changes in pressure within a couple of 

minutes. The study of higher frequency pressure data could be beneficial for well control 

purposes. Hydraulic kick detection models suggest pressure responses to formation 

influxes within a couple of seconds (Gravdal, 2009). 

Hardly any literature has been published on investigation of high-frequency 

pressure data. The Nyquist frequency principle should only be applied after thorough 

investigation of the highest possible phenomena in the data. Burst samples of 400 or 800 

Hz are valuable for research on high-frequency pressure phenomena. These fluctuations 

may or may not influence drilling performance, however, it will be worthwhile to 

investigate. Just like in studies of patterns of vibration (Chapter 2), patterns in high-

frequency pressure data could reveal a wealth of information on flow regimes and 

downhole dysfunctions.  
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Fig. 29—Despite vastly different absolute pressures, high-frequency internal pressure and 

annular pressure show correlating pressure fluctuations. 

3.2.4 Sample Rate Requirements 

Fig. 30 summarizes downhole dynamics phenomena and frequencies observed in 

field data using commonly available downhole sensors. It specifies the required frequency 

to capture these phenomena with downhole sensors, based on the Nyquist frequency rule. 

This list can be used to greatly rationalize and optimize downhole data storage and transfer.  
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Fig. 30—Summary of downhole dynamics observed in high-frequency downhole data. 

3.3 SENSOR-SYSTEM REPRESENTATION 

The dynamic environment that sensors are subjected to poses a major challenge on 

downhole measurements. A sensor is collecting data from a system which the sensor itself 

Type Sub-Category Comments
Observed Typical 

Frequency/Periods

Data Sampling and 

Processing Rate

Backward Whirl
Additional dynamic component, high amplitudes, 

negative radial accelerations
Up to 120 Hz + 250 Hz +

Forward Synchronous Whirl
Identified from bit wear, whirl speed equals rotational 

speed, low frequencies
< 3 Hz 10 Hz

Off Center Rotation
Only movement of the sensor without dynamical forces, 

very high frequency spectra of overtones (500 Hz+)

First mode up to 70 

Hz + overtones
250 Hz +

Chaotic Whirl Described in literature, not (yet) identified in data

Harmonic Stick Slip
Period depends on length of drill string, negative rotation 

can occur
<0.1 – 2 Hz 5 Hz

Frequencies related to RPM, Different sources,  

e.g. stabilizers, doglegs, buckling,

Lithology changes Correlation with tangential acceleration, depth based < 1 Hz < 2 Hz

Bit Bounce Harmonic axial fluctuation of high amplitude 5-20 of Hz 50 Hz

Vibrational Dynamics
Effects of lateral and torsional vibrations on axial 

vibration measurements
Up to 120 Hz 250 Hz +

RPM Fluctuations
Stress and strain changes for each rotation, especially in 

curve section
0.5 Hz – 10 Hz 30 Hz

Weight transfer Low frequencies < 1 Hz < 2 Hz

Dynamics (Vibrations) Whirl and stick slip frequencies Up to 120 Hz 250 Hz +

Bit Bounce Harmonic fluctuation, medium frequency 5-20 of Hz 50 Hz

Torque Transfer Due to friction, buckling 0.5 Hz – 10 Hz 20 Hz

Torque Fluctuations RPM related 0.5 Hz – 10 Hz 20 Hz

Dynamics (Vibrations) Whirl and stick slip frequencies Up to 120 Hz 250 Hz +

Kick detection Pressure increase due to influx < 1 Hz* < 2 Hz

ECD monitoring Cuttings transport, surge and swap < 1 Hz* < 2 Hz

Changes in DH pressure 

regime
Depending on DH pressures, ECD, pump rates, etc. < 1 Hz* < 2 Hz

Dynamics (Vibrations) Pressure fluctuations based on pipe movements Up to 120 Hz 250 Hz +

Temperatures Low frequencies < 1 Hz < 2 Hz

… frequencies that reveal valuable information

….* currently reported in literature, high frequency pressure data may reveal higher frequency phenomena 

Temperature

Torsional Vibrations

Torsional Fluctuations 0.5 Hz – 10 Hz 20 Hz

Axial Vibrations

Lateral Vibrations

Downhole Weight on Bit

Downhole Torque

Pressure
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is part of. Under such conditions, it is impossible to isolate measurements and solely 

capture dynamics in one particular direction. This becomes most effectual when the 

drillstring starts to rotate off-center or “wobble” around the borehole. A sensor positioned 

within the wall of the pipe then follows the path of a spirograph or hypotrochoid curves 

(Brett et al., 1989). The nature of this path forces the sensor to constantly change direction, 

velocity, and acceleration of its movement, while the drillstring itself performs a rather 

smooth rotation. A sensor that is not located in the center of the drillstring thus does cannot 

represent the entire drillstring.  

In larger tools, often two or more measurements are combined to account for these 

effects from a purely mathematical perspective. Data sets often contain calculated values, 

such as “lateral vibration values” from multiple accelerometers. Most of these algorithms 

simply add, subtract, or average the outputs of two or more sensors (Mayer, 2007). This 

methodology is not sufficient to account for all the complexities in the movement of the 

pipe and these calculated values still contain high-frequency noise. 

The kinematic model in Chapter 2 shows that under whirl, tangential and radial 

accelerations are not independently indicated different modes of vibrations. Similar effects 

can be observed with other downhole measurements: torsional phenomena like stick-slip 

exhibit effects on strain measurements. Downhole RPM calculated from magnetometer 

outputs show whirl fluctuations. Similarly, all movements of the drillstring dynamically 

impact downhole pressures and cause stress effect in pipes.  

3.3.1 Differentiation by Frequency 

In addition to possible sensing errors (see Chapter 4), downhole sensors correctly 

measure different phenomena aliased in the signal. Stick-slip vibrations, mud motor 

rotations, fluctuations in pump pressure, automated surface WOB and RPM adjustments, 
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etc. could all happen at the same time and affect the measurements. These phenomena often 

can be differentiated by their individual frequencies. These frequencies may vary 

significantly, but they can be broadly categorized in low, medium, and high-frequency 

dynamics:  

Low frequency dynamics can be linked to change of surface parameters, such as 

surface WOB or RPM adjustments, changes in formation properties or other changes of 

the drilling system with no or low periodicity. Switching from sliding to rotating mode and 

back for directional drilling is another example of a low frequency dynamic phenomena 

that is visible in almost all data downhole streams. These lower frequency dynamics are in 

the order of minutes and can be studied using continuous low frequency downhole or 

sometimes even surface data. 

 Medium frequency dynamics show periodicities of several seconds. They can be 

linked to rotational movements of the drillstring, BHA or bit, mud motor or rotary-steerable 

system (RSS), low frequency vibration phenomena (e.g. stick slip) and other known or 

unknown effects of similar periodicity.  

High-frequency dynamics in this work are considered phenomena with frequencies 

above 1 Hz up to several hundreds of Hz. To study these dynamics, high-frequency data is 

required. Traditional continuous data generally does not have sufficient sampling rates to 

capture these effects. Using high-frequency burst data allows for an appropriate analysis, 

but this type of data is subject to availability. As to current knowledge, lateral vibrations 

or whirl is the only effect that has been proven to cause very high-frequency responses in 

the measurements. Fig. 31 shows low, medium, and high-frequency dynamics of the WOB 

measurement.  
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Fig. 31—TOB and WOB measured with 50 Hz sampling rate show dynamics that can be 

related to a variety of effects. 

3.4 SELECTIVE FILTERING  

3.4.1 Theory 

Making use of insights from the field data examples demonstrated here, data can 

be aggregated and more valuable information can be extracted from a signal. The following 

is an illustration of a data processing strategy for WOB data, yielding a high value of 

information and yet achieving significant data reduction:  

As an initial step, WOB data must be corrected for linear and non-linear offsets and 

time shifts in relation to surface data and other downhole measurements (details in Chapter 

4). Highest frequency dynamics can be associated with lateral vibrations of the drillstring. 

A frequency analysis of torsional or radial acceleration data reveals frequencies associated 

with whirl, low pass filters are adjusted instantaneously to filter these from the WOB 

signal. A similar process is valid if axial vibrations occur.  

The data reveals two kinds of medium frequency dynamics: stick slip vibrations (or 

less severe torsional oscillations) and cyclic loads due to bending at each rotation. Stick 

slip frequencies and downhole rotational frequencies are closely linked and can be obtained 

from magnetometers or gyroscopes. Note that within one slip cycle, the drillstring can 

perform multiple rotations. Again, associated frequencies can be filtered from the WOB 
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signal. Low frequency changes of surface WOB input values can be filtered from the signal 

using surface measurements. What is left in the signal is the actual information of interest: 

for instance, decreasing downhole WOB despite constant surface WOB could indicate 

increased friction factors due to accumulations of cuttings, or a more tortuous trajectory.  

3.4.2 Case Study 

This case study features data recorded during drilling operations in 2012. The burst 

data sequences studied here are recorded at a sample rate of 800 Hz and each sequence is 

10 seconds long. Multiple burst windows were captured at the curved section of a well, in 

a depth of 7000 – 9000 ft. A drilling dynamics measurement sub was located above an RSS 

(rotary-steerable system), used instead of a mud motor to provide directional control.  

Fig. 32 compares recorded downhole weight on bit values (blue), torque (yellow) 

and tangential accelerations (red). The top graph is 10 seconds long, while the bottom graph 

highlights details in a 1-second window. This time-based view already reveals multiple 

effects at different frequencies: high fluctuation levels for about 2.5 seconds, followed by 

low fluctuation levels for about 1.3 seconds, clearly indicate stick slip vibrations. In 

addition, the slip phase shows high-frequency fluctuations in all data streams. In the 

following, filtering techniques are applied to this snapshot of data to offer more insights. 
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Fig. 32—Downhole WOB, TOB and tangential acceleration measurements over 10 

seconds (top) and details (bottom). 

Fig. 32 displays the data described above after low pass filters have been applied 

to each time series. A lower frequency variance of about 0.4 Hz within the slip cycles is 

now clearly visible in acceleration and torque data. This signal component can be attributed 

to pipe rotations, as verified by comparison with magnetometer data (Fig. 26 in Chapter 3). 

Average stick and slip cycle RPM values add up to about 120 RPM, which is the surface 

RPM set point. 
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Fig. 33—Downhole WOB, TOB and tangential acceleration after a low pass filter had 

been applied to the data.  

Fig. 33, Fig. 34, and Fig. 35 show the results of a low pass filter applied to the data 

in time domain (top) and in frequency domain (bottom). The low pass filter amplifies the 

higher frequencies. The tangential accelerations (Fig. 33) have dominant frequencies of 

about 67 Hz and overtones of about 131 Hz and higher. Based on the analysis in Chapter 

2, these can be attributed to whirl vibrations.  

Torque measurements (Fig. 34) show the same frequencies as the acceleration data. 

The most likely explanation for this phenomenon is that whirl vibrations cause high-

frequency changes of pipe stress and strain, captured by strain gauges. Thus, the 

measurements can be considered noise.  

As expected, downhole WOB measurements (Fig. 35) also show the same known 

signal components. The same explanation applies here: strain gauges capture slight 

changes in pipe movements due to vibrations, even though the direction of measurement 

is orthogonal to the lateral vibrations. In addition, WOB has a prominent frequency peak 

at exactly 50 Hz.  
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Fig. 34—High pass filter applied to acceleration data (top) with resulting FFT (bottom). 

 

Fig. 35—High pass filter applied to torque data (top) with resulting FFT (bottom). 
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Fig. 36—High pass filter applied to WOB data (top) with resulting FFT (bottom).  

Additional filters help to find the root cause of the frequency peaks in Fig. 35. Fig. 

37 compares the results after a band pass filter was applied to the WOB data. A band pass 

filter only allows a narrow frequency spectrum to pass, the other data is discarded. When 

frequencies around 67 Hz are singled out (left side), most of these fluctuations occur during 

the slip phase when the pipe moves, as expected. In contrast to this observation, when 

frequencies of the 50 Hz peak are singled out (right side), these occur throughout the data 

snippet. This means a 50 Hz background noise is prevalent even during the stick phase. 

Accordingly, the root cause of the 50 Hz peak can be attributed to effects independent from 

pipe movement. Since pressure measurement also do not show a frequency peak at 50 Hz, 

hydraulics is another unlikely source. This extraordinarily “clean” peak may be attributed 

to noise inherent to the sensor or data processing.  
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Fig. 37—Band pass filters applied to WOB data (top), with the allowed frequency band 

(bottom): 65 – 70 Hz on the left and 47 – 53 Hz on the right.  

Annular pressure data also has frequency components associated with lateral 

vibrations. A high pass filter helps to make them visible in a plot of the frequency spectrum 

(Fig. 38). These frequencies can be removed to focus on periodic events that only occur in 

the pressure data (Fig. 39). For instance, periodic negative spikes occurring approximately 

every 0.9 seconds are not observed in any other measurement of the given data set and may 

be related to RSS tool activities.  
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Fig. 38—Annular pressure data, original measurements (top) with the frequency 

spectrum (bottom) after passing data through a high pass filter to amplify 

higher frequency ranges.  

 

Fig. 39—Low pass filter (cutoff at 30 Hz) applied to annular pressure data.  
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3.5 CONCLUSIONS 

Inadequate information on downhole drilling dysfunction is a real drilling 

performance limiter. Measurements recorded and transferred at insufficient sampling rates 

will miss important dynamical effects. At the same time, signals obtained at too high 

sampling rates may not add additional insights and instead clog up the data acquisition, 

storage, and transfer system. High sampling rates may also cover essential information by 

“high-frequency noise”, thus overloading systems and limiting analysis capabilities. The 

result is the same: opportunities for meaningful drilling performance optimization will be 

missed. 

Despite innovative technologies for data transfer becoming available, the 

bandwidths, downhole memories and analysis capabilities are still limited. Moreover, any 

time memory gets expanded it will quickly be used to the maximum of its capacity – 

rationalization of data is therefore essential. To stay within the bandwidths of the system 

while maximizing the value of information from downhole sensors, the frequency of 

captured data needs to be customized to the type of measurement and type of downhole 

dysfunction of interest. Guidelines for achieving this are provided in this chapter.  

Field data examples in this work show that downhole measurements are highly 

interlinked. For instance, drillstring vibrations influence all other measurements, including 

weight, torque and even pressure readings. To optimize the usage of downhole data, sensor 

outputs from different sensor types need to be combined during data processing. Some 

sensors can be used to detect the occurrence of downhole dynamics and their respective 

frequencies directly and instantaneously. Then these frequencies can be selectively filtered 

from other sensors. A differentiation of downhole dynamics by its characteristic 
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frequencies allows accurate drilling dysfunction root cause analysis with filtering of 

important signals from unimportant noise.  

Even though it is very important to rationalize sensor data and optimize sampling 

frequencies as argued in this chapter, it is important to occasionally go “out of the box” 

and capture high-frequency dynamics for research purposes to obtain new and improved 

insights. An example is given in this chapter for high-frequency pressure data, which may 

be either real or a sensor artifact – more work is necessary to determine this. Note that this 

phenomenon would not have shown itself if pressure data-sampling would only have been 

restricted to “optimum” low frequency sampling rates.  
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Chapter 4: Sensor Errors and Correction Methods 

4.1 INTRODUCTION 

A higher interest in downhole information will inevitably be followed by a higher 

interest in good quality data. For wellbore positioning surveys, awareness of data errors 

and sensor calibration techniques are well established (e.g. Jamieson, 2012). For surface 

data, operators have realized that the data quality doesn’t only start when data is captured, 

it starts at the design and manufacturing of sensors (Zenero and Behounek, 2016). For 

downhole data, which is currently not part of standard drilling analysis, the awareness of 

data quality will come with a more frequent use of the data.  

An introductory chapter describes the process of sensor selection, tool design and 

calibration and lists major constraints for each process. Expected sensor errors due to 

downhole conditions are described. Processing techniques that can significantly shape the 

data are detailed. These insights establish a relation between sensor selection/calibration 

techniques and good downhole measurements. In the long run, only adequate sensors and 

calibrations will deliver sustained data quality.  

In the short-run, downhole data can demonstrate its benefits if it can be used in a 

timely and efficient manner. Despite sensor design efforts, downhole dynamics 

measurements show errors that are currently inevitable. The second part of this chapter 

addresses these challenges and offers short-term solutions. It describes a variety of 

commonly observed measurement errors and demonstrates their negative impact on 

drilling data analysis. Then, methodologies for automated corrections of such errors are 
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presented. All approaches are tested on medium to high-frequency downhole data from 

multiple drilling projects. 

4.1.1 Sensor Selection and Design 

Sensor selection and design is governed by a variety of factors that each impose 

technical limits. Power availability, tool size, software, ability to calibrate a sensor and tool 

life are amongst the most important design considerations for downhole measurement 

tools. 

Electrical Power 

 In traditional wireline logging applications, almost infinite power can be supplied 

through the cable and a sensor’s power draw is not a design consideration. In MWD tools 

and other measurement subs, batteries generally provide power to sensors and processing 

units. The tool’s batteries must supply enough electricity for at least an entire bit run. 

Therefore, sensor power becomes the “number one” commodity of a downhole tool. 

Sensors that consume less power are favored over the ones that consume more power, 

despite possible performance tradeoffs. Sensors with very low power draw can become 

unstable or “flakey” and are easily influenced by the environment. Power considerations 

also play a role in selecting self-calibrating features, more advanced processing techniques, 

or extracting additional data streams from a measurement, since these further increase the 

downhole power consumption.  

Size 

The maximum diameter of a tool is governed by the hole and BHA diameter, thus 

space for sensors and wiring is also a limited commodity. The hollow tubular shape adds 

additional constraints for mounting box shaped sensors; additional sleeves and pockets may 
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be required. Adequate pressure and temperature resistant sensors or self-calibrating sensors 

often are simply too big for the available tool space.  

Lately, microelectromechanical devices (MEMS) and even nanoelectromechanical 

devices (NEMS) are becoming available; these developments allow the compression of 

traditionally larger sensor designs into a much smaller scale. The size benefits, however, 

are often contrasted by showing reduced reliability and uncertain behavior. Also, additional 

protection material around such small-scale sensors can offset the size benefits.  

Mounting 

The type of mounting is an important consideration in the tool’s design phase and 

influences the sensor outputs. Some sensor bodies can have mounting holes or brackets 

integrated into the sensor. Other smaller sensors are integrated into a “package” that can 

be mounted in a pocket inside the tool. Sensors may require to be hard mounted to the tool 

(not cushioned), while others are soft mounted (cushioned) and more protected against 

impacts. For instance, shock recordings will be dampened for cushioned sensors and record 

much lower values than hard mounted ones. 

Data Transmission 

Downhole data can either be transmitted to surface in real-time (using mud pulse, 

wired drillpipe, etc.) or stored in memory and retrieved only after the bit run. Sensors, 

calibration, and post-processing systems must be tailored to the type of data display and 

the software applications. Real-time systems utilize different viewing platforms with 

specific processing requirements.  



102 

 

Calibration 

Calibration is the process of configuring a sensor to ensure that a measured data 

point lies within a predefined range. Calibration often requires specific calibration 

equipment and manual procedures; sensors and housing tools need to be designed to 

facilitate the testing process. Off-the-shelf calibration equipment is often unsuitable for 

testing downhole measurement subs, which can be many 10s of feet in length. Tool 

manufacturers need to develop their own calibration equipment and methods, whereby 

ideally, the downhole conditions are simulated during the calibration process. To facilitate 

the calibration process, the tool is may be separated into smaller parts; thus, the mechanics 

of the calibration process become an important variable in designing the tool.  

In-tool calibration (auto-correction) is required for real-time streaming of data. 

Calibration through software can remove errors from cross-talk of sensors, wiring between 

sensors and other tool components or inaccuracies of the sensor itself. For this technique, 

auxiliary systems, such as a memory chip or the central processing unit, must be capable 

of conducting the correction. Working memory, processing capacity, power draw, etc. can 

limit the software calibration techniques. If there is no immediate need for corrected data, 

raw values may be stored in the tool’s memory and retrieved after the bit run. Advanced 

correction techniques can then be applied at surface, where more computational power is 

available. 

4.1.2 Sources of Errors 

Despite careful sensor selection and design, some errors in the data are still 

inevitable. Downhole temperature, pressure, and shocks (high impact forces) are 

considered the main sources of error; details and error mitigating techniques are described 

in the following section: 
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Temperature  

Temperature carries the biggest potential for sensor error. Standard downhole 

temperatures range around 75-125°C; some high-temperature wells heat up to more than 

200°C. Sensors show various temperature-based characteristics, which need to be 

considered before the sensors are embedded in the tool. They may expand or “behave” 

differently, depending on the type of mounting. Calibrated sensors can become unreliable 

under high-temperature conditions; several effects are differentiated: 

1. Physical damage: Thermally resistant material may expand under heat, but these 

changes are usually reversible. If the sensor or sensor parts are not thermally 

resistant, they can experience physical deformation or melting. This type of damage 

is usually irreparable.  

2. Railing: “Railing” is a term used when the sensor incorrectly is outputting the 

maximum or minimum value of its range, which renders it unusable. Sensor 

manufacturers provide recommended temperature ratings; railing is a common 

phenomenon if a sensor is exposed to temperatures outside that range.  

3. Temperature drift: A commonly observed problem (also for data used in this 

chapter) is sensor drift, where a measured value varies from its zero level. The 

magnitude of the drift is a function of temperature. The functions can be linear or 

non-linear with change in temperature. Drift factors are determined from sensor 

data sheets and/or testing procedures. Such inputs can then be used for automated 

downhole corrections. 

4. Sensitivity changes: A change of sensor sensitivity leads to a change in the scale of 

the measurement. This is an important error to detect and correct, as it may change 

the measurements significantly and is not easily detected as sensor error.  
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Pressure 

Just like high temperatures, pressures of sometimes more than 20,000 psi are a 

common source of error for downhole sensors. Sensors have recommended operating 

ranges for pressures. The resulting sensor errors are comparable to temperature errors: 

irreparable damages, drifts, and sensitivity changes. Even if recommended pressure ranges 

are exceeded in downhole applications, there are multiple methods for compensation: 

• Sensors can be shielded off by being embedded into a pressure resistant case. 

However, this method adds complexity to the manufacturing process and is limited 

by space restrictions in the tool.  

• Mechanical pressure compensation is a more commonly used method to correct for 

errors caused by high pressures. It involves intricate machining and carefully 

balancing dissimilar materials, adding to manufacturing costs.  

• Pressure induced errors can also be compensated by computational methods, 

analogous to temperature corrections.  

Shocks 

Downhole forces induced through vibration or rough tool handling expose sensors 

to high impact loads, or shocks. Newer smaller sized sensor technology usually is even 

more susceptible to shocks. Shocks can not only cause spikes and noise in a measurement, 

it can physically damage a sensor. Sensor manufacturers may specify the accumulated 

number of shocks it can withstand. However, such shock numbers are unreliable for 

practical applications, because shocks cannot be accurately counted in the downhole 

environment. Additionally, downhole conditions may change the robustness of the sensor. 

High shock environments greatly affect sensor calibration. If it is possible to “soft-mount” 

the sensor, such cushioning reduces the exposure to shocks. 
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4.1.3 Data Processing 

Data Rates 

Sensors measure an analog (continuous) physical phenomenon at a certain sample 

rate and an analog to digital converter (ADC) turns this continuous signal into a discrete 

(digital) signal. The sampling rate of a sensor depends on multiple factors: the sensor 

design and its built-in processing (filtering) capacities, the ADC, the recording scheme and 

the data transfer or storage process. In some cases, sensors already have a digital output 

i.e. they have an ADC built into them. The output data rate of such digital sensors cannot 

be changed. An attempt to output higher data rates only provides more data points along 

an interpolated curve between actual data recordings. More commonly, a sensor outputs an 

analog signal and a separate ADC converts it into a digital signal. In this set up, the data 

sampling rate depends on the capabilities of the ADC. “Fast” ADCs with high sample rates 

consume a lot of power compared to “slower” ones. The system clock of an ADC ensures 

that the digital samples are taken uniformly (at the same time intervals). Currently, there is 

no standardized process available to calibrate these clocks.  

Digital Resolution 

Digital resolution is the smallest difference between two distinguishable numbers. 

It is a property of the sensor’s sensibility, thus the hardware. If the digital resolution is not 

high enough, measurements appear to be constant for certain time intervals, as shown in 

Fig. 40. More sensitive sensors can deliver a higher digital resolution, but thereby increase 

the data volumes per measurement. Downhole measurements typically have a 12 or 16-bit 

resolution; a higher resolution can be available if needed. Because of data storage and 

transmission limitations, there usually is a tradeoff between sample rates and resolution per 
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sample. These choices depend on the specific data requirements and should be carefully 

considered for different applications. 

 

Fig. 40—Example of a signal output with a digital resolution that is too low.  

Filtering 

Filtering is a standard procedure in digital signal processing. It is important if the 

measurement not only contains the expected variations, but also captures unwanted signals. 

Filtering then removes certain frequency variation and keeps others.  

Hardware filtering requires additional electrical components to be placed in the 

path of the sensor and the master devices, which control and coordinate all the sensors. 

Most sensors have built-in hardware filters to remove high-frequency noise. The setup of 

these filters can be tailored to specific applications.  

Software filtering can be implemented at the downhole sensor or in a post 

processing step. In both cases the filters need to be applied to raw data and not any derived 

or truncated data.  

Filters are essential tools to clean a signal from unwanted noise or errors and focus 

on the important measurements. However, the filtering process can greatly modify the data 
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and is usually irreversible. The exact same measurement with two different filters could be 

completely different, so filters need to be chosen wisely. Information on applied filters 

should be made available to the end user of the data. 

4.2 AUTOMATIC OFFSET CORRECTION 

Despite the above described efforts in sensor design, sensor errors sometimes are 

inevitable. Drifts of accelerometer data can be observed in most of the analyzed field data 

and were mentioned in literature (e.g. Shor et al., 2015). To effectively compare vibration 

levels throughout a run or amongst multiple wells, data needs to be corrected for drifts and 

other offsets. This chapter presents an algorithm that can automatically detect static 

components in the data and, based on those, shift data to zero levels. Only then, vibration 

severity levels should be determined and areas of high vibration flagged for further 

analysis. 

4.2.1 Static and Dynamic Acceleration Components 

For vibration analysis, it is beneficial to introduce a differentiation of acceleration 

data into 2 components: a static and a dynamic component.  

The static component depends on the angle of the sensor axis to the earth’s surface. 

An accelerometer resting parallel to the earth’s surface will read 1 g (or -1 g). Tilting the 

accelerometer will result in a reduced static component (Fig. 41).  
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Fig. 41—Measurements of a single accelerometer axis relative to its position. 

Movements in drilling are almost never uniform and smooth. While the drillstring 

is rotating and the bit is crushing the rock, the dynamic component oscillates around the 

static component. The dynamic component indicates vibrations or other pipe movements.  

Severe vibrations can cause acceleration peaks of more than 50 g. If the static value 

of vibration would range between 0 and 1 g, it wouldn’t have much impact on a severity 

classification and could potentially be ignored. However, sensors can drift significantly. 

As described in the introduction of this chapter, techniques exist to correct for drifts that 

follow functions with known parameters, but those corrections are often omitted or are 

inaccurate.  

4.2.2 Observations in Accelerometer Data 

Fig. 42 shows data from a downhole axial accelerometer. The data was recorded 

over 7 days and some of the data (day 2 and 3) is missing. Fig. 43 gives a detailed view of 

the first 5 hours. The dotted lines indicate -1, 0 and 1 g values. At the start of the data set, 

the static component of the acceleration data has a value of 0, as it can be expected while 

the tool lays flat on surface. The value quickly approaches -1, while the tool is turned into 

a vertical position and is “running in hole”. In hours 1.5-2 a slight drift from its expected 

value can be observed. From hour 2 onwards, the drilling process starts, observable through 
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higher levels of vibrations and less frequent connection patterns. As the tool changes its 

inclination in the curve section, the static component gradually increases to 0 g. For a 

correctly measuring device, the static component is expected to reside around 0 g as the 

horizontal section is drilled. Instead, the base value of the acceleration slowly rises to more 

than +3 g (Fig. 42, hour 60). At the end of the bit run (hour 66), the tool is “pulled out of 

hole”, and the static component falls back to almost -1g. When the BHA finally is laid 

down at surface, the accelerometer reads a correct value of 0 g. Surface calibration cannot 

prevent this type of sensor error, because it is only prevalent under downhole conditions.  

 

Fig. 42—Data from a downhole accelerometer (axial) recorded for one bit run over 5 

days (2 days are missing). 
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Fig. 43— Data from a downhole accelerometer (axial) recorded for one bit run over 5 

days (2 days are missing), details of the first 5 hours of the bit run.  

4.2.3 Acceleration Correction 

Only the dynamic component should be considered when comparing and 

classifying acceleration levels. The static component includes the drifts and effects of the 

sensor’s direction or setup (e.g. a horizontal tool can either show values of +1 g or –1 g).  

One may suggest finding the static component by simply calculating a running 

average of the data. Yet, when the sensor is in motion, the instantaneous mean of the data 

may not necessarily match the static component. For instance, an axial sensor measures 

additional accelerations as the tool moves along its axis, or a radial acceleration sensor 

measures a centrifugal component. High impacts from a particular direction may also skew 

the mean.  

However, during a connection, the drillpipe hangs “in slips”, and is therefore 

relatively stable for a short time (about 1.8 minutes in Fig. 44). During this period, the 
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variance is insignificant compared to the rest of the drilling process, so the mean of the 

data is reliably close resembling the static component.  

 

Fig. 44—Axial accelerations during a connection procedure. 

These no-movement sequences are characterized by a significantly lower standard 

deviation than all other data periods. For lower frequency data (e.g. data with sampling 

rates of about 0.4 Hz), standard deviation values can often be directly retrieved from 

“continuous data”. The data in Fig. 44 has a sampling rate of 50 Hz. Here the standard 

deviation is calculated for windows of 10 seconds (500 data points). Fig. 45 displays the 

distribution of standard deviation values calculated from the data shown above. In this case, 

about 9% of the standard deviation values are below 0.025 g – these are the times when the 

string hangs in the slips. After 9% there is as steep increase of variations in the data. Using 

this information, a cutoff of the lowest 7% or 0.020 g of standard deviation clearly 

identifies no-movement sequences of this bit run. 
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Fig. 45—Cumulative distribution for standard deviation values calculated from 

accelerometer data, all values (top) and details (bottom).  

 In a next step, the “baseline points” for each low-variance window (here each 

window is 10 seconds long) are calculated. For axial and tangential accelerometers, these 

are the mean values, for radial accelerometers these are the minimum values.  

Finally, individual baseline points are connected through interpolation. In most 

cases, a linear interpolation is sufficient, because the baseline points occur relatively 

frequently (during connections) and are evenly spread out through the run. For highly non-

linear shifts, a different method of interpolation can fit the data better.  

The resulting interpolated curve (offset) constitutes the static component of the 

data. Subtracting the offset from the original data yields the “cleaned” dynamic component 

of acceleration data. Fig. 46 shows the original data (blue), the offset curve (yellow), 

indicators for low standard deviation (stars) and the “cleaned” dynamic component 
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(orange) of axial acceleration data. A flow chart of the above-described algorithm can be 

found in Appendix B.1.  

 

Fig. 46—Corrected (orange) and uncorrected (blue) acceleration data. 

4.2.4 Accelerometer Data for Velocity and Position 

Rate of penetration (ROP) is usually inferred from surface data, e.g. using the 

movement of the block as an approximation for the progress of the bit. Even though the 

measurement of the change in block height may be fairly accurate, huge uncertainties lie 

in the transfer of movement within the string. The drillpipe could buckle, which interferes 

with transferring the movement and weight on bit. The stretch of steel along thousands of 

feet and under varying temperature and pressure conditions can be modeled, but is still 

subject to uncertainties.  

An obvious remedy would be to directly measure the movement along the 

drillstring axis downhole. In theory, an axial accelerometer should give an indication of the 

instantaneous velocity of the tool and thus the ROP of the bit. If it was possible to clean 

accelerometer data from noise (e.g. vibrations, drifts, gravity effects), accelerations could 

be numerically integrated to yield relative velocity and measured depth. 
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This process, known as “dead reckoning” is already difficult for surface 

applications with higher quality sensors in a stable environment (e.g. Randell et al., 2003). 

Despite several attempts of inferring velocities from accelerometer data, we have not 

achieved any meaningful results. For the given data quality, it is not possible to 

differentiate movements of drilling progress from noise, especially since the movements 

are insignificant compared to vibrational oscillations. We must conclude that it is not 

possible to derive bit position or velocity from acceleration data alone. 

4.3 AUTOMATED WOB AND TOB CORRECTION 

Weight on bit (WOB) is not directly measured at surface, instead it is inferred from 

a hook load sensor located at the deadline anchor. WOB is then calculated by subtracting 

that hook load measurement from the estimated buoyant weight of the string (Saputelli et 

al., 2003). Imperfect weight and torque transfer causes estimates based on surface data to 

be much higher than downhole measurements (Pink et al., 2013). Analytical or finite 

element models can provide better estimates for downhole values (e.g. Wu and Hareland, 

2012), but they are not generally used in drilling operations. Because of such inaccuracies, 

several authors could demonstrate the benefits of direct downhole weight and torque 

information on drilling performance (e.g. Belaskie et al., 1993; Pink et al., 2013).  

4.3.1 WOB and TOB Measurements 

Grosso et al. (1983) describe details on WOB and torque on bit (TOB) sensors of 

an MWD tool: “WOB is measured by a temperature and flexure-compensated strain-gauge 

bridge mounted on the drill collar. By taking a measurement with the bit off bottom, the 

system compensates for the drill-collar weight below the tool. The TOB measurement is 
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identical to the WOB measurement except that the gauges are oriented to be sensitive to 

the torsional shear strains in the drill collar”. 

Strain gauges are susceptible to high-pressure and high-temperature environments 

and show significant drifts. The above-mentioned off bottom measurement not only adjusts 

for the collar weight below the tool, but is also supposed to compensate for possible sensor 

drifts.  

Fig. 47 shows a typical downhole WOB profile during a connection procedure. The 

data has been recorded at 50 Hz. WOB is not yet corrected and has a negative offset of 

about 100 klb. Actions on surface, such as turning the mud pumps off and on, pulling the 

pipe up to remove the slips, tagging bottom, etc. cause reactions in the downhole WOB 

data. Circulating fluid exerts higher pressure than fluid at rest. When the pumps are on, the 

equivalent circulating density (ECD) of the fluid leads to a stronger buoyancy effect – the 

string is lighter. In the example shown in Fig. 47, the pump pressure induced buoyancy 

decreases the weight of the string by about 15,000 lb.  

Taring is a procedure carried out during a connection to calibrate MWD and surface 

torque and weight measurements (Sutcliffe and Sim, 1991). During rotary drilling (entire 

drillstring is rotated from surface) the bit is off bottom, rotary speed and flow rate are 

comparable to the parameters used during drilling. For taring while steering (mud motor 

turns only the lower portion of the BHA), the bit does not rotate. The taring procedure takes 

about 2 minutes and is usually conducted after the survey8.  

At the beginning of the connection, there is another chance to get a taring value 

from the data: the string is pulled off bottom, but the mud is still in circulation (minute 

                                                 
8 A survey is a measurement of inclination and azimuth of the MWD tool, which bit position is inferred 

from.  
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1040 in Fig. 47). If these points are not chosen carefully, downhole WOB data can 

potentially be off by more than 10 klb despite correction attempts. 

 

Fig. 47—Typical downhole WOB profile during a connection procedure; two pentagon 

arrows are indicating the theoretical zero WOB points. Note that the data is 

not yet calibrated and the values are off by about -100 klb.  

These taring values are used to correct real-time data, which is streamed or pulsed 

to surface while the tool is downhole. Oftentimes, tools do not automatically correct for 

the offset. Uncorrected or unreliably corrected data is then calibrated in a manual post-

drilling analysis process: an analyst hand-picks the above-described zero-WOB points 

from the data patterns. This process is error prone and time consuming. Manual post-

processing and data cleaning, such as WOB and TOB correction, are among the main 

reasons for delays in data delivery from the service company to the end user (see Chapter 

5).  
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4.3.2 Automated Zero-WOB Detection 

The process of picking correct zero-WOB values can be automated, and the tedious 

manual process eliminated. The proposed algorithm combines physics and downhole data 

to find the first of the two indicated zero-WOB moments: right when the pumps are shut 

off to make the connection. The algorithm consists of multiple steps: 

1. Selecting points with low pressure variance  

2. Finding connections from low variance clusters 

3. Selecting the beginning of each cluster as zero-WOB points 

4. Interpolating the selected zero-WOB points to produce an offset curve 

A flow chart of the algorithm can be found in Appendix B.1.  

Selecting Low Variance Pressure Points 

The variance distribution in the data helps to differentiate static (pumps off) from 

dynamic (pumps on) data. Just as demonstrated for the automatic correction of acceleration 

data, downhole pressure measurements (internal or annular) can be used to find connection 

operations in the data, i.e. clusters of low variance in pump pressure.  

Depending on the data set, pressure variance information may be directly available. 

Otherwise, the difference between the maximum and the minimum pressure over a short 

time window can serve as a proxy for variance values. In Fig. 48 this delta value is 

calculated for every available data point (here data points were available every 2.56 

seconds). Low absolute pressure values may also indicate connections. However, the static 

pressure values change with TVD (total vertical depth) and may be “out of calibration”. 

Therefore, using relative pressure values is advantageous over cutoffs based on absolute 

values.  
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Fig. 48—Distribution of differences between the minimum and maximum pressure 

values from an internal downhole pressure sensor.  

Defining Connections by Clustering Points 

Real data is noisy. The selected thresholds do not perfectly indicate pump-off times. 

Some random low pressure variance indicators may show during drilling, while pressure 

fluctuations may occur even when the pumps are off. Data processing techniques remove 

random points (e.g. indicators without other indicators nearby), connects adjacent indicator 

clusters into one cluster, and removes clusters that are too short to indicate a connection. 

All these steps can be done automatically, although they may require adjustments based on 

the sample rate of the available data. 

Finding Zero-WOB Times 

The moment where WOB or TOB should be zero is right at the start of a “pump-

off-cluster”. Fig. 49 shows the results of the automated WOB correction algorithm. The 

WOB data shown here has already been manually corrected. Most of the time, the 

automated procedure picked points close to the manual selection. In comparison to the 

performance of the human correction, the automated system picks very consistently. The 

automated taring points still can be off, especially at the end of a section, when the bit has 

reached TD (total depth). The performance of the automated system is sensitive to the 
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choice of pump-on-pump-off-threshold: if it is too low, the taring point is picked too late 

and WOB measurements appear lower than the real values; whereas if the threshold is too 

high, WOB measurements appear higher than they really are.  

 

Fig. 49—Results of automated WOB/TOB correction algorithm. The WOB data has 

already been corrected, the automatically picked points, by enlarge, coincide 

with the manually picked ones (zero line).  

Defining an Offset Curve 

The taring points can be used to correct both WOB and TOB data. Usually, the 

offset of the data follows a certain trend and taring points can be interpolated using linear 

or non-linear functions.  

4.3.3 Alternative Approach – SAX Algorithm 

In a search for WOB correction methods, it has been attempted to automatically 

replicate the human process by the application of a pattern recognition approach. We have 

implemented a SAX (Symbolic Aggregate approXimation) algorithm. SAX (e.g. Keogh et 

al., 2005 or Lin et al., 2012) can transform time series into strings. The algorithm consists 

of 2 steps, first the original time series is transformed into a Piecewise Aggregate 
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Approximation (PAA) and second, PAA data is turned into strings. PAA divides the time-

based data into equidistant sequences and stores the mean of each sequence.  

The SAX algorithm was applied to identify the zero-WOB point in the connection 

patterns. The algorithm is supposed to identify the overpull as the lowest point and then 

capture the zero-WOB point shortly thereafter. Based on the sequence of letters, these 

points may be identified throughout the entire dataset (e.g. through a letter combination A 

followed by an E). In Fig. 50, the algorithm could successfully identify the lowest WOB 

point, it fell short however, to identify the point of interest thereafter.  

 

Fig. 50—Application of SAX algorithm to identify zero WOB point in connection patters. 

WOB data is normalized in this example.  
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In Fig. 51 the SAX algorithm does not even identify the lowest point of the 

connection. 

 

Fig. 51—Sax algorithm misses the “a” letter required for the identification of the 

connection.  

The application of the SAX algorithm on connection patterns in WOB data didn’t 

yield satisfying results. Purely time series data based approaches, such as SAX, may face 

the following challenges: 

• The connection patterns are dissimilar, so it is even difficult for a trained human 

eye to pick the right point. 

• Techniques that apply averages are inaccurate due to unforeseeable and significant 

spikes in pressure data.  

• Even if the right letters were picked, the averaging techniques may have made the 

methodology inaccurate, since the correct WOB point is limited to a very small 

time interval.  
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• Normalization of data is required, because the data can drift out of physically 

possible values.  

• Event detection could improve the proposed SAX approach, but it adds another 

layer of complication to the problem.  

4.4 AUTOMATED DOWNHOLE AND SURFACE ALIGNMENT 

Downhole data does not include parameters such as surface values for WOB, RPM 

and flow rates, or other parameters that allow to determine the rig activity at a certain point 

in time. Therefore, the alignment of surface and downhole data is necessary to add context 

to downhole data. Downhole data sets usually contain “time stamps”, i.e. a date and time 

indicator for every row in the data set. However, these downhole times often are not well 

aligned with surface times. As described in more detail in Chapter 5, the time discrepancies 

can be seconds (e.g. latencies, clock errors), minutes (e.g. processing errors), hours (e.g. 

time zone errors) or even days and years (human errors).  

Correctly aligning surface and downhole data is currently a tedious manual process. 

It can be achieved by finding distinct spikes in both data sets, or comparing patterns of 

connection and drilling sequences.  

4.4.1 Alignment Algorithm 

The proposed automated alignment algorithm is based on detecting similar patterns 

in connection times and the distances between connections. Mud pumps must be shut off 

during each connection. Pressure data is a very reliable indicator of turned off pumps, both 

on surface and downhole. In short, binary pump-on/off patterns for downhole and surface 

data sets are compared at every instance, the best match indicates the right time alignment.  



123 

 

Fig. 52 is an illustration of the alignment algorithm. First, binary pump-off 

indicators are extracted from the data, both for surface and downhole. For surface data, a 

threshold for pump pressure (e.g. lower than 200 psi) is used to determine that the pumps 

are shut off. Other parameters, such as flow rate or pump strokes could be used 

interchangeably. For downhole data, absolute thresholds are not suitable, since pressure 

changes with TVD. Instead, turned off pumps are indicated by a low variance in pressure 

(see WOB correction algorithm).  

Next, basic data processing techniques are applied to the binary indicators for both 

downhole and surface data: scattered points are removed, clusters in close proximity are 

connected (they likely belong to the same connection activity) and short clusters are deleted 

(just low pressure, not a real connection). In addition, surface data is resampled at the same 

sample rate as the downhole data.  

  

Fig. 52—Illustration of algorithm for surface and downhole alignment. 

As shown in Fig. 53, the binary surface and downhole pump off indicators are 

compared at each time step, while the shorter set (most often downhole) is moved along 

the longer sequence (most often surface). For each time step n, the match number may be 
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calculated as the sum of instances, where the subtraction of surface and downhole 

indicators i yields zero. The highest match number indicates the best alignment.  

𝑚𝑎𝑡𝑐ℎ𝑛 = ∑ [(𝑆𝐹_𝐼𝑛𝑑𝑖 − 𝐷𝐻_𝐼𝑛𝑑𝑖) = 0𝑖 ] (33) 

𝑠ℎ𝑖𝑓𝑡 = max (𝑚𝑎𝑡𝑐ℎ𝑛) (34) 

 

Fig. 53—The shorter sequence is moved along all time steps of the longer sequence to find 

the right match. 

In Fig. 54 a single maximum point for best alignment clearly stands out.  

 

 

Fig. 54—Results of match number n for all surface data points.  
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Fig. 55 shows two matching sequences of real data. The algorithm was still able to 

identify the correct alignment, although both sequences do not perfectly match (which is 

expected using field data). 

 

Fig. 55—Matching binary sequences in surface and downhole data, downhole data 

indicators are 0.8 instead of 1 for better illustration.  

4.4.2 Latencies 

Theory 

The proposed algorithm matches the two time series by aligning changes in 

pressure responses to pump activities. It thereby neglects any latencies that inevitably occur 

as the distance between downhole and surface measurements advances. The term “water 

hammer” is describing the generation and propagation of a pressure wave through liquids 

in pipes. Shutting off or making changes to the pump rate produces a pressure wave 

traveling in the borehole. The more rapid the change, the larger the pressure wave. These 

pressure waves have been studied in the context of drilling for shut-in strategies of the 

blow-out-preventer (BOP) (Jardine et al., 1993) or pump pressure transients for long 

wellbores (Skalle et al., 2014). 

In rigid pipes, the acoustic velocity c of a pressure pulse is  

𝑐 =  √𝐾 𝜌⁄  , (35) 
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where K is the fluid’s bulk modulus and ρ is its density. Both, Jardine et al. (1993) and 

Skalle et al. (2014), adjust Eq. 35 for elasticities of the wellbore and pipe, because a fraction 

of the energy is absorbed by expanding walls. Skalle et al. (2014) additionally account for 

suspended solid particles in the mud by adjusting the bulk modulus and mud density. Based 

on their assumptions, Jardine et al. (1993) use a constant wave speed of c = 1,350 m/s, 

whereas Skalle et al. (2014) use c = 1,400 m/s for subsequent calculations.  

For our purposes, it is legitimate to assume a constant wave speed (e.g. of 1,350 

m/s), so the time delay is only proportional to the borehole length. For a hypothetical 

enhanced-reach well of 10,000 meters, the latency at the last connection for c = 1,350 m/s 

is 7.41 seconds, for c = 1,400 m/s is 7.14 seconds. Even if neglected parameters cause the 

assumed wave speed to be off by 200 m/s, the largest latency uncertainty spans about 1 

second. With sampling rate periods of about 2.5 seconds, this difference cannot be noticed 

in the data.  

Application of Latencies 

To improve the above-mentioned technique despite latencies, data can be corrected before 

running the algorithm. A flow chart of the matching algorithm under consideration of 

latencies can be found in Appendix B.1.  

Let’s say latency effects are “stretching” downhole data in comparison to surface 

data (Fig. 56). The downhole time t’ then is  

𝑡𝑖
′ = 𝑡𝑖 + ∆𝑡𝑖. (36) 

Making use of the relationship of latency and measured depth (MD) and wave speed 

c we get 

𝑡𝑖
′ = 𝑡𝑖 + 

𝑀𝐷𝑖

𝑐
. (37) 
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Note that downhole dynamics data is usually time based, while latency effects 

depend on the hole depth, so the “stretch” is not constant over time.  

 

Fig. 56—Latencies “stretch” downhole time t’ compared to surface time t. 

Since hole depth information is usually present in the surface data sets, the surface 

data needs to be “stretched” to resemble the downhole time using Eq. 37 before running 

the algorithm.  

If hole depth information is available in the downhole data set and not in the surface 

set, the time of the downhole set needs to be corrected using    

𝑡𝑖 = 𝑡𝑖
′ − 

𝑀𝐷𝑖

𝑐
. (38) 

Because this procedure changes the sampling rate (e.g. from periods of 1 second to 

periods of 1.0007 seconds), the surface data then needs to be resampled in the sampling 

periods of the downhole data. 

After adjusting for expected latencies, the matching algorithm can be run on the 

data. After the matching algorithm indicated the correct alignment of the data, the latency 

at the start of the downhole data set needs to be added to the matched time. Then, the 

original (unchanged) downhole data should be used for further analysis. Physics based 

latencies, as opposed to drifting clocks in sensors, should not be eliminated from the data. 
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If, in future studies, the correlation of surface and downhole data effects is 

investigated with high-frequency data, such latencies must be modeled and the properties 

of the mud and wellbore considered. Another option for more accurately aligned data is to 

carefully calibrate the clock located in the downhole tool. Such techniques for clock 

calibration are yet to be developed. In addition, data processing times in the downhole tool 

then need to be accounted for.  

Discussion 

Theoretically, latencies could be tackled using data based approaches such as time 

warping. In the case of determining latencies, a physical approach by nature is preferable 

over a data approach. Downhole data sets are usually based on individual runs while 

surface data sets contain data for the entire well. Therefore, the latency at the start of a 

downhole data set is not 0, but it is determined by physics (i.e. pressure latencies are 

determined by the pressure wave propagation speed and the length of the wellbore). A 

purely data based algorithm wouldn’t recognize this difference and the initial latency at the 

start of the data would be 0 by default.  

In addition, the duration of the latency depends on the type of data that is used for 

alignment. For pressures, latencies are determined by water hammer physics. For vibration 

data, latencies are determined by the vibrational wave propagation through the string. For 

WOB, latencies are determined by the properties of the string (elasticity, stretch, etc.).  

4.5 AUTOMATED VIBRATION CLASSIFICATION 

Current vibration classification methods usually differentiate type of measurement 

(radial, tangential, axial) and absolute vibration levels (Macpherson et al., 2015). With this 

alone, it is difficult to satisfactorily classify vibrations and their levels, because of coupling 
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effects, offsets, drifts, etc. Also, measurements are not (yet) standardized, they depend on 

the setup of the tool, on the placement of the tool in the drillstring, on the position of the 

sensor within the tool, on the type of accelerometer, on the number of sensors, on the 

number of measurement axes and so forth (Baumgartner et al., 2016; or see Chapter 5). 

Sometimes sensitive MWD tools are deliberately dampened to increase the tool life. This, 

however, will affect accelerometer measurements. Even if all these factors are accounted 

for, accelerometer outputs show a certain offset that varies over time in the same bit run.  

The current practice of only studying statistics (such as RMS, minimum or 

maximum values) of the data over certain time windows results in the loss of valuable 

information (Baumgartner, van Oort, 2015; or see Chapter 3). High or low frequency 

signals are capable of generating the same statistical values, despite their inherently 

different high-frequency patterns. Service companies usually have fixed thresholds for 

acceptable RMS acceleration levels, and sometimes these levels are different for torsional, 

lateral, and axial directions (Osnes et al., 2009). All these factors complicate quick 

identification of the type of vibration and the appropriate mitigation strategy, which is quite 

different for e.g. stick-slip and whirl. In the following, we propose an effective approach 

to identify vibrations based on their data patterns rather than absolute acceleration or torque 

values. 

4.5.1 Approach 

The approach to automated vibration classification revolves around the basic idea 

that patterns in acceleration data are more important for its distinction than absolute values. 

It employs statistical methods to automatically recognize the type of vibration in high-

frequency data sequences. Pattern recognition is a technique in machine learning concerned 

with assigning a given pattern to one of a finite set of known classes. The goal is to replicate 
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human recognition and classification techniques by an automated algorithm. The described 

pattern recognition approach is using supervised machine learning techniques that require 

labeled data for training an algorithm, as opposed to unsupervised learning techniques 

where the algorithm provides a classification automatically.  

First, the downhole high-frequency data set is spit into time windows of equivalent 

length. Each of the data sets is given a classification regarding the type of vibration that 

can be observed. The classification is done manually using the author’s prior knowledge 

and insights gained from the whirl model described in this work. While humans can 

recognize patterns naturally in a variety of representations (image, sound, data graphs, etc.), 

for machine processing the data input needs to be in a digitized and tabulated format. The 

process of describing the high-frequency patterns with a few characteristics is called 

“feature extraction”. These features, not the entire data set, function as predictive variables 

for the machine learning algorithm. The algorithm learns how features (characteristics) of 

a dataset relate to a particular classification. The algorithm then can reapply the learned 

relations to new data and perform the classification automatically.  

Only a certain portion of the pre-classified datasets are used for training the 

algorithm, the other part is used for testing it. In the testing phase the trained algorithm us 

run on the “unseen” test data. A comparison of the automated classification and the existing 

classification indicates the effectiveness of the algorithm.  

4.5.2 Validation 

In a test study, we demonstrate the effectiveness of the described approach for 

automated vibration classification. A set of field data recorded during an actual drilling 

operation was selected for this study. The particular data set included a variety of vibration 

types of different severities. Like other downhole data sets, in addition to continuous data, 



131 

 

it contained burst data sequences with sampling rates of 400 Hz in 10-second windows, 

recorded approximately every 20 minutes in a 90-hour bit run. The signal was recorded 

using one radially oriented accelerometer located close to the bit. Fig. 57 displays four 

examples of downhole vibration events in time windows of 10 seconds. The vibration 

patterns of interest are stick-slip and lateral vibrations.  

The data set includes 250 of the 10-second windows described above. Each burst 

sequence consists 4000 data points of acceleration measurements. We manually classified 

all 250 burst sequences after visual inspection as stick-slip/no-stick-slip or whirl/no-whirl. 

For the feature extraction step we defined several features (predictive variables) and 

automatically extracted these features from each burst set.  

 

Fig. 57—Examples for vibrational patterns from a radially oriented accelerometer, each 

being 10 seconds long. The top left window captured low frequency stick-

slip, the top right shows the same low frequency stick-slip coupled with whirl; 

the bottom left window was recorded while the bit was off bottom; the bottom 

right window most probably indicates a severe form of lateral vibration.  
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The final feature set included 250 observations with the following 15 predictive 

variables (an illustration of the feature set can be found in the Appendix B.2): 

• Time: Time stamp of the data recording is included in the data to account for time 

dependent phenomena. 

• Statistical Data: Statistical data includes absolute maximum and minimum values, 

the difference between them, standard deviation, and variance.  

• Smoothed Data: Since stick-slip is overlaid by higher frequency events, a running 

average algorithm has been used to calculate a smooth curve following low-

frequency fluctuations. Extracted from this smooth curve are the maximum, 

minimum and difference between those two.  

• Frequency Data: A Fast Fourier Transform (FFT) has been performed on the data 

and for the two highest peaks in the frequency spectrum, both frequency and 

amplitudes and their distance have been recorded. 

 

The data set with 250 observations was split into a training data set and a test data 

set with a ratio of 70% to 30%, i.e. 150 observations for training and 100 for testing. A 

Naïve Bayes Classifier was run on the set. Further information on the algorithm and 

parameters can be found in Appendix B.2. In this particular data set, the bit was on bottom 

and drilling in 93 out of the 250 observations, hence 37%. Stick-slip was present in 50% 

out of these 37% on-bottom-observations, lateral vibrations were present 30% of the time 

spent on drilling. The automated classification of stick-slip and whirl was performed 

independently with two separate algorithms, one for each class.  



133 

 

4.5.3 Results 

The naïve Bayes classifier was able to correctly identify stick-slip in approximately 

90% of the cases and whirl in approximately 92% of the cases. The algorithm was more 

likely to create false alarms, i.e. indicate a vibrational dysfunction event when there was 

none rather than failing to recognize it from the data. Many of the wrongly predicted classes 

were in fact also visually hard to distinguish from normal drilling or coupled forms of stick-

slip and whirl. Typical confusion matrices for stick-slip (left) and whirl (right) are shown 

in Fig. 58. 

 

Fig. 58—Example confusion matrix for a Naïve Bayes classifier, with a failure rate of 10%, 

showing false negative and false positive classifications for 100 sample burst 

sequences. 

The machine learning approach demonstrated to be effective in detecting stick-slip 

and whirl in a particular data set. Applications of this work could be an automated 

classification (tagging) system for new data sets for improved post drilling analysis or the 

development of algorithms for immediate classification, implemented downhole or at 

surface.  

With this approach, real-time classification of downhole data could be performed 

directly at the downhole sensor, offering opportunities for significant data reduction while 

essential information is provided. Only two numbers, one indicating the type of vibration 

and the other indicating its severity need to be sent to surface through either wired pipe or 

mud pulse telemetry. Post processing of gigabytes of data could be performed in minutes, 
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after an algorithm has been trained with a sufficient amount of data. The analysts could 

immediately identify downhole dysfunctions and easily link them to operational 

parameters, formations, and other drilling conditions. Heisig et al. (1998) describe the 

process of advanced feature extraction from downhole data using fixed thresholds in 

absolute values to classify vibrations. The novelty of the current method presented here is 

the application of supervised learning techniques for automated classification based on 

these features.  

4.6 DISCUSSION 

As mentioned throughout this work, the user is provided with downhole data in a 

variety of forms. Type of measurement (e.g. internal vs. annular pressure), data rates and 

types of recorded statistics (e.g. minimum, maximum, variance) usually solely depend on 

the settings chosen by the data provider and changes with every data set. The success and 

parameters for the shown algorithms in this chapter depend on these factors and need to be 

tailored to the characteristics of the data set.  

Downhole time series data shows an elevated level of complexity. First, as shown 

in Chapter 3, most downhole effects have a potential to influence a particular measurement. 

Thus, patterns are not always predictable and unexpected high or low frequency noises can 

interfere with the signal. For instance, periodicity of the signal can depend on operations 

(e.g. the distance between 2 connections), which varies significantly. Traditional signal 

processing approaches may fail under rapidly changing and unpredictable patterns. 

Therefore, the above described methods are tailored to the specifics of the drilling process 

(e.g. finding connections as ‘static points’) and, for the first time, achieve results that can 

replace manual input and improve performance (in comparison to the manual correction).  
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For offset correction of accelerometer data, the average of the data over a short 

window may not coincide with the expected zero level. Therefore, first, time windows 

without additional disturbances need to be found: during connections when the string is ‘in 

slips’.  

For example, a pattern recognition technique, the SAX (Symbolic Aggregate 

approximation) algorithm, was applied for the identification of the zero-WOB point during 

a connection. In our experience, such algorithms seemed to be less successful than the 

methods described above. The connection patterns may change significantly, because the 

actions on surface are not strictly standardized. Even if the data is normalized, high or low 

spikes cause the patterns to take different shapes each time. Often, the points of interest are 

difficult or impossible to spot for even a trained human eye. Thus, so far, the application 

of physics (e.g. finding low pressure variance) combined with data has been more 

successful than a purely data based technique.  

4.7 CONCLUSIONS 

Downhole sensors for measuring drilling dynamics are promising to positively 

impact drilling performance and enable drilling automation. Downhole data is currently 

underused. Many drilling engineers are facing difficulties making decisions based on 

downhole real-time data or analyzing such data after drilling. Better data quality will result 

in higher utilization of such data and positively impact drilling performance. However, 

sensors and the process of data collection, processing, and transmission need to be 

improved to deliver more useful and reliable data to the end users. 
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4.7.1 Long-Term Solutions 

Most importantly, operators and other users of data must define and enforce data 

quality according to their needs. The design of downhole sensors needs to be based on the 

requirements of the end users. Higher costs of better sensors that deliver more accurate 

data can then be justified by operational savings. Such efforts require interdisciplinary 

initiatives and collaborations across different types of companies. Tool manufacturers need 

to better involve suppliers of sensors, so they are adequately designed for applications in 

harsh downhole environments. This supply chain improvement process has been 

successfully implemented for many other services and products, and in many other 

industries.  

Wellbore positioning and well logging efforts have shown successes of 

standardization and transparency of calibration, corrections, and data formats that lead to 

more reliable data for decision making. Similarly, for downhole dynamics data, transparent 

and standardized calibration procedures could hold the key for improved data quality. 

Calibration periods should be subject to contracts between operators and service 

companies. The need for additional calibration methods, especially during operations, 

should be identified and new techniques developed.  

4.7.2 Short-Term Solutions 

Analysis of downhole data requires skills and experiences that every individual 

analyst currently needs to re-develop from scratch. This work summarizes commonly 

encountered obstacles and offers solutions to them. Novel data correction and classification 

techniques are developed and applied to recorded field data in this work. Drilling dynamics 

data that was previously completely out of range and thus unusable became valuable. 
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For downhole data, it is difficult to use absolute values (e.g. for identification of 

shut-off pumps) because the data can drift significantly out of physically possible values. 

Relative values, such as variance, are more reliable identifiers, despite bad data quality.  

For classification of vibrations, using the absolute values to differentiate severities 

is inaccurate for two reasons: first, accelerometers also record a gravity component and 

they usually drift significantly; second, as detailed in Chapter 2 and 3, movements cannot 

be recorded in isolation with single axis sensors. This work demonstrates how offsets can 

be removed from accelerometer data and how a naïve Bayes classifier can successfully 

detect vibration types, even for coupled events.  

A methodology to automatically identify zero-WOB/TOB points and thus calibrate 

data was developed and demonstrated using field data. This can make tedious manual 

processes that are currently delaying the transfer of data to the end users obsolete. It also 

could offer a solution to replace lengthy and error prone taring procedures at the rig.  

A simple but effective algorithm can automatically align downhole and surface 

data. Downhole latencies in pump pressure responses are also taken into account.  

The suggested techniques include applications of machine learning, as well as basic 

data processing, using a combination of data and process knowledge. Even though signal 

processing techniques were less successful in some of the tested applications, this work 

does not reject their usefulness in general. For future work, the application of conventional 

signal processing should be explored further.  

The presented methods in this work are a small selection of many possibilities. The 

same objectives can be achieved using different approaches and there is a need to develop 

additional methods to further improve the quality of analysis. Nonetheless, we hope that 
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the shown techniques are only short term fixes of a problem that, in the long run, can be 

solved by better sensor technology.  
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Chapter 5: A Data Transfer Format for Transparency and 

Standardization9 

5.1 INTRODUCTION 

The drilling industry has begun to cherish the value of data collected from 

downhole sensors, often gathered at high frequencies. Moreover, it has started to capitalize 

on the availability, analyses, and credibility of this data through step-changing knowledge 

gains that have enabled meaningful drilling performance improvements. As a result, topics 

like data quality, data ownership, and data integration are now routinely being discussed 

among stakeholders as data from downhole memory tools slowly starts to integrate into 

routine well planning, optimization, and automation workflows.  

The collectors of data usually are not the sole owners and main beneficiaries of 

such data. Large amounts of data are transferred from service providers to various 

collaborators within and across companies. The process of agreeing on a data format, 

relevant accessory information and means of transfer, is currently laboriously repeated on 

a project-by-project basis. This practice not only unnecessarily consumes resources on both 

ends, but also carries the risk of losing crucial contextual information. WITSML (Wellsite 

Information Transfer Standard Markup Language), a current standard for transmission of 

technical data, is often unsuitable for large high-frequency data files and do not provide 

enough flexibility for certain contextual information. 

                                                 
9 Chapter based on: Baumgartner, T., Zhou, Y., & van Oort, E. (2016, March 1). Efficiently Transferring and 

Sharing Drilling Data from Downhole Sensors. Society of Petroleum Engineers. doi:10.2118/178900-MS. 

Contributions: Baumgartner, T.: Concept, methodology and sample MDTS structure; Zhou, Y.: Literature 

and file formats; van Oort, E.: Supervision. 
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This work proposes a file format suitable for securely storing downhole data and 

sharing it across all stakeholders, providing both flexibility and simplicity. The developed 

file format implements a set of specialized horizontal and vertical dividers to structure 

contextual information on the well, the run, and the sensors, and to store them in the same 

file as the measurements. Among other things, well and section information, responsible 

personnel, equipment and sensor properties, time calibration, and operational parameters 

may be specified. The inclusion of both required and optional inputs ensures both 

flexibility and essential context, and allows the coverage of a variety of applications. It is 

comparable to the Log ACSII Standard (LAS) file that quickly found wide acceptance in 

the well logging community and beyond after its introduction in 1990.  

The implemented dividers enable the data files to be easily accessed by variety of 

programs and comfortably viewed by the human eye using any standard spreadsheet or text 

file application. Importing and exporting applications can be provided to the users, who 

can then easily produce these files from raw data for transfer, or integrate them into existing 

data management systems.  

Stakeholders, such as operators, service companies, and tool manufacturers are 

involved with the creation of this standard file format to ensure consent among all users. 

The standardization of downhole sensor data files proposed in this work marks a key step 

towards automated analysis of downhole data, reduction of data loads, and data integration. 

Our approach is illustrated using examples of how the new standard can be applied on 

actual field data. 

5.1.2 Problem Statement 

In recent years, the emergence of downhole sensor data has helped the industry to 

gain a better understanding of the drilling dynamics. However, analysis of such data has 
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been difficult mainly due to the incompleteness of contextual data. Unlike its more 

standardized off-shelf counterparts, the surface sensors, downhole sensors can be vastly 

different from one another. The same downhole sensor measurement (i.e. measurement of 

lateral drillstring vibration) can generate very different values depending on the sensor 

orientation, sensor location, processing technique, etc. Lately, the industry has started to 

recognize the importance of providing such information to avoid confusion in downhole 

memory data (Macpherson et al., 2015). They proposed to use an open measurement 

framework in an attempt to standardize the measurement. However, it stopped short from 

offering a solution for transferring such important data. 

Sharing data among stakeholders is of essential importance in the oil and gas 

industry. Vital measurements of the downhole environment are usually carried out by 

multiple service providers, which are later reported back to the operator (who are the main 

beneficiaries of the data). To extract value, data is frequently analyzed by internal 

personnel from different segments within the operator company, by external consultants, 

and by third party collaborators. Often as the data owner, the operator company has a strong 

incentive to thoroughly collect, properly store, and effectively share a complete set of data. 

Data acquisition and exploitation are usually done by separate groups of people with little 

overlap. This makes metadata (or contextual information) an even more essential part of 

such a data set, without which sophisticated analyses by different parties becomes very 

labor-intensive. In addition, vendor neutrality in the data structure allows effective use of 

it by all parties equally.  

At this time, the transfer of the downhole memory data lacks a standardized 

protocol. Downhole measurements have traditionally been saved in a spreadsheet; minimal 

to no contextual information is usually provided, typically only through a short name of a 
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measurement, the file name itself, or in a dump of unstructured separate files. When 

analyzing such data, the end user must reach out to multiple parties to acquire the needed 

contextual data, making the process inefficient and painfully slow. There is an urgent need 

for a standardized format for transferring memory data with a minimal set of essential 

metadata to enable an efficient, user friendly way of sharing data.  

This work proposes a LAS-style data format specifically to address this issue. LAS 

is a remarkable success story for sharing well logging data, and could be similarly helpful 

for downhole dynamics data. It provides an easy to adopt, simplistic solution that can 

facilitate the effective sharing of downhole data until it can be integrated with more 

advanced standards supporting all ranges of data in the drilling industry. 

Other industries that use data to explore complex relationship have had similar 

struggles and came up with similar mitigation strategies. For instance, the Genomics 

Standard Consortium (GSG) was founded in 2005 and helps promoting standards to make 

genomic data discoverable, by international standards. They too, defined a framework for 

standardized minimum information about gene sequences, described in a commentary in 

Nature Chemical Biology10. 

5.1.2 Approaches for Sharing Data 

Sharing and transferring of data is of immense importance for the entire oil and gas 

industry. Compared to the drilling industry, the well logging community has done an 

excellent job in developing specific formats for data transferring and sharing, supporting 

the need for data collaboration among a diverse group of end users. They, too, had to go 

through a process of defining and managing data quality in their data (e.g. Al-Farisi et al., 

                                                 
10 http://www.nature.com/nchembio/journal/v11/n9/pdf/nchembio.1890.pdf 
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2002). A case study on the well logging data usage for the Belridge field by Area Energy 

provided a detailed breakdown in Fig. 59 below (Allan et. al., 2012). 

 

Fig. 59—The use of well logging data by different parties (after Allan et al., 2012). 

Propelled by the need, several different data transfer standards have been developed 

over the years. They are the general ASCII format used for temperature logs and profile 

surveys, the Log Information Standard (LIS) by Schlumberger, the LOG ASCII Standard 

(LAS) by Canadian Well Logging Society, the Digital Log Interchange Standard (DLIS) 
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forma by API (American Petroleum Institute), and the WellLogML format by Energistics 

(Allan et al., 2012).  

Among them, WellLogML is the most technically advanced data format. It was 

designed to be a web based exchange standard for well log data, with the intent to replace 

the LAS format in the 2000s (Schultz et al., 2000). However, it has yet to gain popularity. 

The LAS format is still the “work horse” of well logging community and beyond, mainly 

because of its simple, easily readable layout (Schultz et al., 2000).  

On the drilling front, the quest for a data transferring format catering to real-time 

surface sensor data has led to WITSML (Wellsite Information Transfer Standard Markup 

Language). It has become the de-facto transfer standard for surface sensor data exchange 

and real-time data streaming. However, the current WITSML version 1.4, is inadequate for 

downhole memory data use because of its limited capabilities for metadata specification. 

The addition of comprehensive downhole data support in future releases will give 

WITSML extended capabilities. Even then, downhole data will require metadata of much 

greater detail and complexity than surface data.  

Recently, the SPE Drilling System Automation Technical Section (DSATS) 

selected OPC-UA (Open Platform Communications Unified Architecture) as a 

communication framework for drilling automation. It has benefits over WITSML, because 

of its wide acceptance in industrial automation, security model, extensibility, scalability 

(Florence et al., 2015). While those are all desirable characteristics, OPC-UA does not 

specifically address the issues in downhole data transfer and certain added features make 

it inefficient to use for this purpose. 

As mentioned previously, the transferring of downhole memory data frequently 

involves the use of USB sticks or hard drives. Many end users also prefer manual 
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inspection, and for some measurements, manual or semi-automated manipulation after 

retrieving the data is required. Simplicity and human readability, along with machine 

readability and data completeness, are the most desirable features. The memory data 

transfer standard (MDTS) proposed in this chapter provides a ready-to-use solution for the 

transferring of downhole memory data until it can be integrated with more advanced 

standards supporting all ranges of data in the drilling industry. A detailed case study that 

inspired the development of the proposed memory data transfer standard is described in the 

next section. 

5.1.3 Transfer of Downhole Data – A Case Study  

The transferring of downhole dynamics data from vendors to a client (operator) for 

analysis is just starting to become more common. Traditional drilling data transfer methods 

(e.g. WITSML) are currently not used for such downhole dynamics data; an efficient 

transaction process has yet to be developed.  

This illustrative case study describes difficulties during data analysis of a pilot 

project for drilling optimization using downhole data. The lack of an appropriate data 

transfer method caused significant delays and reduced potential value of the data. During 

the case study, multiple wells were drilled using a variety of measurement devices from 

multiple vendors, both at surface and downhole. Quick and reliable analysis of vibration 

data usually allows a drilling engineer to adjust the designs of bits and BHAs for future 

runs and wells, or optimize drilling parameters (weight on bit, rotary speed etc.) while 

drilling for improved drilling performance. Vibration data from various locations in the 

drilling system also has value for research purposes. It allows for the study of propagation 

of vibrations through the string, to find vibration sources (e.g. bit, BHA or drillstring for 

lateral vibration), to verify vibration models with actual data, to determine the optimum 
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placement for measurement tools, etc. Some of these goals were set back by a variety of 

issues, most notably related to inefficiencies in the data transfer process.  

Time Delay in Data Delivery 

It can be generally stated that the value of downhole data decreases rapidly with 

time. Real-time information from the downhole system has the highest potential for instant 

mitigation of drilling performance limiters, risks, and identification of improvement 

opportunities. From post-run analysis, new runs and wells can be improved. Months after 

the well construction operation, historical data will have only indirect impact through 

research, identification of bad drilling practices, etc. In this example, it took up to several 

months for the complete datasets to reach the operator. By that time, momentum and 

incentives for operation engineers to analyze these datasets had nearly vanished.  

Lack of Standardization and Definitions 

In 2009, Osnes et al. outlined the lack of standardization of MWD vibration 

measurements. Until today no significant progress seems to have been made. The industry 

has yet to come up with a satisfying, but simple vibration classification, i.e. a single, well 

defined number that triggers the right mitigation action. Tool set up, sampling rates, data 

processing (such as filtering or combining multiple sensors), axial and lateral distances, 

etc. all influence the measurements. For vibrations, some companies calculate an RMS 

(root mean square) value, where the severity of vibrational dysfunctions is defined by 

threshold per type (Macpherson et al., 2015). These thresholds, however, are not universal. 

Two different tools deployed under the exact same circumstances would measure different 

levels of vibrations. In addition, thresholds for vibration severity classifications, if there 

are any, are not based on certain rules, but are chosen more or less arbitrarily (Osnes et al., 
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2009). Thus, measurement data alone carries little value, metadata on thresholds is 

provided. 

Data Corrections Requirements 

Downhole sensors are susceptible to pressure and temperature conditions and 

experience a significant drift with time. One way these drifts can be corrected is to use 

defined off-bottom conditions as zero lines. This process, if done manually, is labor 

intensive and prone to errors. Physically impossible values (e.g. WOB is significantly 

higher downhole than on surface) can then be attributed to measurement errors either 

downhole, at surface, or both, or they are due to data processing errors. Such corrections 

need to be properly recorded in the metadata. 

Another form of data correction is the synchronization of surface and downhole 

time stamps. Clocks do not only suffer from time shifts, but also exhibit systematic errors 

(for one clock, time passes faster than for another). These frequency errors can originate 

from downhole pressure and temperature conditions and are hard to detect. Considerable 

time shifts can occur due to processing errors, where a manually entered date is off by years 

or a tool gets calibrated at the shop and then deployed at a well in a different time zone. 

These factors make it difficult and labor intensive to align downhole and surface data.  

Chapter 4 offers background information and automated solutions to some of the 

measurement errors. A standardized format for downhole memory data does not solve the 

issue of data synchronization, but properly recorded time synchronization information 

prevents this labor-intensive effort from being carried out multiple times.  
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High-Frequency Sequences 

High-frequency sequences (also referred to as “burst” or “snapshot”) are very 

particular to downhole data sensors, and file sharing structures must account for them. Due 

to memory limitations, not all the recorded data is stored at its sampling frequency but at a 

much lower output rate. Downhole tools commonly are set up to record short windows of 

typically 5 or 10 seconds of data of frequencies in the range of 400 to 1000 Hz. These 

sequences are usually shared in individual files for each sequence. In this case study, these 

windows were recorded every 20 minutes. It proved impossible to analyze these sequences 

in context of continuous data (i.e. aligning “slow” and “fast” data from the same sensor), 

since no information to assist time alignment was shared. Even the automated alignment 

algorithm would fail in this case, because the sequences are non-continuous and usually 

too short to pinpoint connections or other spikes in data.  

Lack of Metadata 

In general, metadata is data that describes other data. In the context of this work we 

define metadata very broadly. Metadata can be any additional data assisting the usage of 

the actual time-based values in the datasets. In current convention, information necessary 

to relate downhole dynamics data to other data of the same well or run is only captured in 

the structure of how the file is stored. For instance, the only reference to the well name 

could be the name of the folder containing all the data for a certain well. Furthermore, 

subfolders might be named after the run number or called “lateral section” or “curve 

section”. If the datasets are taken out of their original structures, issues with unclear 

identification of datasets and subsets will arise. Information provided through data headers 

does not sufficiently indicate the nature of the measurement, e.g. if it was directly recorded 

or derived from multiple measurements. In exceptional cases, metadata is provided through 
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separate data files, such as specification sheets or daily drilling reports. Even then, the 

unstructured nature of those separate files and possible information overload prevent an 

efficient and automated usage of those metadata.  

No Basis for Automation of Analysis 

The volumes of downhole data collected per well was in the order of several 

gigabytes. These volumes per se do not constitute a “big data problem”, however, under 

current circumstances, there is a high amount of manual labor required to convert the data 

into digestible information (e.g. into key performance indicators (KPI) or summary 

reports). Ideally, data should reside in the operator’s database, which then enables 

automated analysis. Such a transfer from current spreadsheets, however, would require a 

tedious mapping process for each individual file type and would need to involve engineers 

and as well as IT personnel. Then, new vendors with different data formats would require 

a repetition of this process each time.  

Case Study Conclusions 

Barriers for the correct interpretation of data from downhole sensors are high. 

Because hiring a new service from a new company involve resources on both sides, 

operators will naturally tend to settle with a small number of tools and thus file types. This 

eliminates them from the potential benefit of competition or trying out innovative 

technology. The oil and gas industry in general - and the drilling industry in particular - 

significantly lags innovative developments in other industries. Latest technological 

developments show potential of handling data efficiently without requiring relational 

databases and semi-standardized structures. New machine learning techniques possibly 

have the potential to make the definition of structures, features and algorithms, obsolete 
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(e.g. Hinton et al., 2013). Yet, until these technologies can be proven to be effective 

solutions for complex drilling data problems, standardization is the way to go. 

5.2 STANDARDIZED FORMAT 

The suggested approach of agreeing upon a standard for transferring downhole 

high-frequency data constitutes a solution to most of the problems in the case study. As 

mentioned previously, there is a great diversity of file formats for the purpose of data 

transfer currently available. The selection of an appropriate file format for transferring 

downhole dynamics data should foster the widespread use and acceptance. Highest benefits 

for users should be achieved through the following principles: 

1. Simplicity and User Friendliness: 

Downhole dynamics data could become the ideal drilling optimization playground 

for data scientists and drilling engineers. The proposed data format should facilitate 

opening this field to professionals outside the major operating and service companies, as 

well as players in the disciplines outside the oil and gas industry. To avoid any barriers to 

data access, these files must be both human- and machine-readable, and accessible with 

any standard spreadsheet or text application. Moreover, the files should be easy on the eyes 

of the users and open to direct manipulation. 

2. Flexibility: 

Similar to the transfer of well log data, some metadata is absolutely required for its 

use (e.g. unique well name) and other data is “nice to have”, i.e. optional (e.g. well 

coordinates). The suggested MDTS supports this differentiation in required and optional 

metadata. As soon as such a choice of metadata becomes available to the industry, the 

exchange of metadata for each operation can be implemented through contractual 

agreements between data collectors and their clients.  
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The comprehensive analysis of downhole dynamics data is not (yet) part of the 

standard drilling engineering workflow. As sharing of such data becomes more popular, 

the specifications of required and optional metadata will be subject to an iterative process. 

The file format and related applications need to support these iterations in a flexible way. 

3. Data Integration, Completeness, and Quality: 

Companies still face many issues with data storage and data management. Many 

files are still stored and shared outside of standardized data management systems. This is 

especially true for one-off data sets and non-routine projects. To ensure the ease of 

integration of data contained in a file, metadata that is essential for the identification of an 

operation, should be stored within the file itself. A human readable header section ensures 

that measurements can be traced back to the respective run and integrated with other data.  

4. Standardization: 

With more and more data generated from every well, standardization is a 

prerequisite for an efficient and automated data analysis. After going through a mapping 

process once, data and corresponding metadata can flow seamlessly into a database. MDTS 

does not restrict or standardize what kind of measurement is being transferred, it is only 

concerned with the standardization of format and corresponding metadata. 

 

From a variety of different transfer standards, LAS type ASCII (or Unicode) text 

files seem to be most suitable for the given objectives. It promises the alluring benefit of 

quick and widespread adaptation, both within and beyond the drilling industry. 

Standardizing the transfer of downhole data and setting metadata requirements will need 

to go through several iterations with small improvements. Those changes can be best 
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implemented and tested making use of the flexibility of a stand-alone MDTS file. Once 

accepted, it can later be integrated with other transfer standards. 

5.3 METADATA SPECIFICATIONS 

The drilling industry would greatly benefit from established and agreed upon 

measurements. Under current circumstances, standardization of measurements can only be 

pursued as a long-term goal. Cultivating transparency of measurements therefore is the best 

first step towards that goal. Metadata on the measurement, processing techniques and 

sensor specifications aims to achieve this transparency for the end user and has been 

addressed by a recent cross-industry effort (Macpherson et al., 2015).  

The metadata header contains 5 basic blocks: file, well, run, sensor and 

measurement information. While file, well and run information ensure the “integrability” 

of the data, sensor and measurement information enable the required transparency of the 

measurements. One of the advantages of a LAS type file format is the ability to store a 

description of a “tag” (i.e. a piece of metadata with a unique name) together with the tag 

itself. This minimizes the misinterpretation of what a tag means. It therefore improves both 

the quality of the metadata during file creation and the interpretation of the end user. One 

file typically reports the output of one measurement tool, which can contain more than one 

sensor and multiple measurements. In Appendix C, an exemplary memory data transfer 

standard (.mdts) file for downhole dynamics measurements is provided.  

File information features details on the version of the standard and the creation of 

the file, allowing end users to trace errors and ambiguities back to their origin.  
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Fig. 60—File information block. 

Well information includes descriptions that allow to link the file to related well 

information, such as a unique well identifier, geographical information and companies 

involved.  

 

 

Fig. 61—Well information block. 

Run information details parameters specific to the setup of the bit and BHA and 

includes time synchronization, sensor calibration and operational details. Downhole 

dynamics data is typically reported separately for each drilling run. Unlike depth based 
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logging data, drilling dynamics data is time-based and there are no overlaps between 

different runs, so the files can be treated separately.  

 

 

Fig. 62—Run information block. 

Device information describes the measurement sub (MWD, near-bit measurement 

system, etc.) that can contain one or more sensors. Details on device vendor, location and 

data transmission are specified in this block.  
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Fig. 63—Device information block. 

Sensor information specifies technical details on the sensors in a tool. The 

suggested list of metadata is repeated for each sensor in a device. This information does 

not change for the same sensor and should therefore be easy to compile by respective 

vendors. A sensor is any device that produces an individual measurement, e.g. if a multi-

axis accelerometer produces 3 different data streams (axial, radial, and tangential), these 3 

sensors should be described separately.  
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Fig. 64—Sensor information block. 

Measurement information specifies each of the data channels (columns) in the data 

section, it constitutes the data headers. Fig. 65 illustrates such header information, where 

each row describes one column of data. Downhole dynamics data is often derived from one 

or more sensor measurements, so additional metadata is required for transparency. One 

sensor can produce a variety of sensor outputs, so each channel (time based data stream) 

requires a separate description. The measurement information block contains the very basic 

but essential information for each channel. 
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Fig. 65—Measurement information block. 

For sophisticated analysis, the end user needs to know more than just basic data. In 

the Channel Details Block, details on each measurement need to be disclosed (Fig. 66). 

Since the details may differ for each sensor, they are differentiated in required and optional 

measurement metadata. These include details on the measurement sequences (if not 

continuous), calculated statistics, corrections, and data classification information. 
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Fig. 66—Channel details block (per channel). 

The data service company are capable of collecting all the above information. As 

described in the next section, MDTS generation software (writers) can be set up to largely 

automate the process of data collection, by extracting metadata from the vendor’s 

databases. The LAS type format facilitates quality and completeness checks for metadata.  

5.4 WORKFLOW, BENEFITS, AND IMPLEMENTATION 

The memory data transfer format is intended to provide a vendor-neutral, simplistic 

solution for the effective transferring of downhole data for different parties. It specifies a 

minimal requirement for metadata that is provided along with measurements themselves. 

This ensures the completeness and usefulness of the measured data. The introduced format 

enables effective and efficient transfer of this data. Vendor-neutrality frees operators and 
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end users from the service provider’s proprietary data architecture. As a standard format, 

it also functions as a point of reference for all parties to define data completeness. The 

simplicity of the format promotes an easy and direct access of the data by all parties, 

including universities, individuals, and small companies without sophisticated data 

infrastructures. It promotes wider adoption and utilization of valuable downhole data for 

deep analysis and drilling optimization. 

Along with MDTS, readers and writers supporting popular data managing system 

will also need to become available for use. The service provider will then use a supported 

writer application to output all required data (and metadata) into the proposed MDTS file 

automatically. On the other end, end users can either uses the transferred data directly with 

a text editor, spreadsheet software, or can incorporate the transferred data with suitable 

readers into their data managing system. 

Currently, several service providers, sensor manufacturers, and operators have 

expressed their interest, and have provided their input in finalizing the memory data 

transfer standard. Future collaboration towards reader and writer development catering to 

specific data managing systems is also being planned. We welcome interested parties to 

join the conversation. 

5.5 CONCLUSIONS  

This work outlines issues that are currently experienced with the transfer of 

downhole data from vendor to client and offers a solution. Recognizing that measurements 

cannot be fully standardized, it is suggested to define a standardized structure for sharing 

downhole data that can be easily adopted by all parties involved. In addition, by defining 

not only how the data should be shared, but also what additional data (metadata) needs to 

be shared, this solution ensures transparency of measurements. Such transparency will 
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increase the confidence in downhole dynamics measurements, and therefore enable and 

stimulate the development of applications building upon these measurements. These 

applications, not the measurements or tools themselves, are the true value creators.  

Transparency and standardized data structures are not limiting to innovation, they 

are the first and necessary steps towards building a strong business case for the use of 

downhole data, captured either in real-time or in memory. Only then a true innovation 

process can be initiated to help the industry drill safer, faster, and better wells. 
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Chapter 6: Conclusions 

6.1 CONCLUSIONS 

This work shows that many areas in the field of high-frequency downhole data 

analysis are still terra incognita. For downhole dynamics data, the disconnect between tool 

technology, data collection and data analysis is larger than in other related areas, such as 

petrophysics. This disconnect can lead to misinterpretations of downhole data. Before such 

data can feed into rig controls and decision support systems, it needs to be fully understood, 

trusted and be of well-defined quality. 

In Chapter 2 a 2D kinematic whirl model could demonstrate that high frequency 

fluctuations of tangential accelerometer data can be attributed to a whirling motion of the 

drillstring, not a high frequency change in rotational speed as the prevailing industry belief 

suggests. This work therefore offers an alternative explanation for the phenomenon of high 

frequency torsional oscillations (HFTOs). A novel tensor calculus approach to transferring 

the accelerations into the sensor’s frame of reference reveals the nature of discrepancies 

with previous approaches: additional derivatives stemming from the transfer of coordinate 

systems had been neglected using rotational matrices. 

It is consequently demonstrated that sensors under off-center rotation capture 

artifacts due to their eccentric sensor position within the drillstring. For comparison of 

results of vibration modeling and field data, these artifacts need to be accounted for. In 

addition, eccentric rotation of the bit, BHA and/or drillstring affects the calculation of 

rotational speeds from other measurements.  
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Chapter 3 provides an observational study of drilling dysfunctions using downhole 

data from a 5-well dataset. It is demonstrated that under bandwidth and memory 

limitations, the sampling rate of captured data needs to be customized to the type of 

measurement and type of downhole dysfunction of interest. Guidelines for optimized 

sampling rates are provided in the chapter. In addition, it is shown that downhole 

measurements are closely interlinked. Still, downhole dynamics can be differentiated by 

their characteristic frequency ranges. For adequate data interpretation and dysfunction 

detection, data from multiple measurements need to be combined during data processing. 

It is further shown how frequency ranges associated with a specific type of dysfunction can 

be selectively removed from other measurements in an instantaneous fashion.  

Chapter 4 investigates design aspects of downhole sensors and reveals limitations 

and the source of sensor errors. To improve the quality of data from downhole sensors, tool 

design needs to be optimized for respective applications. Eventually, sensor and data 

quality requirements need to be specified by the end users.  

To improve data quality in the short run, Chapter 4 demonstrates commonly 

observed obstacles to automated drilling data analysis and offers solutions to them. 

Automated solutions for accelerometer and weight/torque sensor error corrections are 

demonstrated. An algorithm is suggested that can automatically align surface and 

downhole data using pressure data patterns. For correct alignment, latencies due to 

traveling speeds of pressure wave propagation are considered. Based on the insights of 

previous chapters, a new method of vibration classification is demonstrated. The new 

approach is based on detecting patterns in high frequency data, as opposed to using hard 

thresholds of either lateral or torsional measurements.  
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The introduced techniques combine physics, drilling processes, and data. Signal 

processing approaches alone may be insufficient: data patterns may be non-repetitive, 

sensors may drift out of physically possible values, and data may not fully reveal 

phenomena such as latencies without a physical assessment.  

Chapter 5 offers solutions to currently inadequate processes when transferring data 

from a data service provider to the end users. A data structure for sharing downhole data is 

specified. In addition to how data is shared, this work also specified what metadata needs 

to be shared with the data. The specification of such requirements of additional information 

improves transparency and is a prerequisite for downhole dynamics data analysis. Such 

standardized data structures do not limit sensor innovation as they are adaptive to new 

developments.  

6.2 MAJOR CONTRIBUTIONS 

The contributions include: 

• Re-interpretation of high-frequency downhole accelerometer data using tensor 

analysis methods. The correct interpretation of such high-frequency variations of 

accelerometer readings as sensor artifacts will save companies millions of dollars 

in research, service, and unnecessary vibration mitigation cost. This finding 

underlines the importance of having an in-depth understanding of data acquisition 

as well as the physics underlying the data before a meaningful and appropriate 

response can be formulated. 

• Provision of guidelines for optimized sampling rates for detecting drilling 

dysfunctions. Bandwidth and memory space usually pose limits on downhole data 

collection. The suggested approach optimizes the data collection scheme by 

maximizing the informational content from the sensors. 
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• Demonstration of coupled downhole dynamics effects, its impacts on data analysis 

and its mitigation. Sensors capture not only the intended phenomena, but also other 

downhole forces and motions. This awareness is a prerequisite for a meaningful 

comparison of downhole dynamics models with actual field data.  

• Suggestions for short and long term strategies to improve downhole data quality. 

Demonstrated automated processing techniques improve processes significantly 

and enable valuable applications. In addition, a novel strategy for feature extraction 

of time series data was developed that enables the application of automated 

classification algorithms. 

• Development of a new data transfer format that specifies meta data for faster 

transfer and better usage of downhole data. This basic but useful work was well-

received in the industry and its implementation and wide-scale adoption is currently 

in preparation.  

• Supporting the education of undergraduate students in data analysis. The job of a 

drilling engineer is currently migrating from being experienced-based to being 

analysis based. Such efforts are helping a new generation being optimally prepared 

a career in a “digital” drilling industry. 

6.3 FUTURE WORK 

Data from downhole sensors is just beginning to gain attention from researchers 

and engineers in the drilling industry. With current trends in automation, having a more 

scientific understanding of the drilling process and better models that can incorporate 

measurements, downhole data will become ever more important. The following guidelines 

and suggestions for further word are concerned with prerequisites and enablers for a truly 

automated and optimized drilling process.  



165 

 

Comprehensive Tool Model 

A downhole measurement tool within a drillstring is exposed to certain forces and 

undergoes certain movements. A sensor located in this tool then captures these dynamics. 

What we can study as measurements are mere hints at the original processes that created 

the data. This work sheds light on other influencing factors from data generation to data 

analysis. A comprehensive model can now be developed that combines the physics of 

multiple sensors and their locations along the string with the data they capture. The output 

of the model then is a replication of the motions and forces that led to the measurements. 

Such a system could then automatically correct for sensor error (in the presence of other 

measurements), analogous to the sensor fusion approach previously demonstrated by 

Ambrus et al. (2013) for surface data.  

Big Data Drilling Sets 

Drilling data is complicated to analyze, mostly because of its unstructured and non-

repetitive nature. At this moment, it is nearly impossible to collect a comprehensive data 

set for a single well, while carrying out effective comparisons of a large number of wells 

is unthinkable. The presented work attempts to start a process of digitization and 

standardization of drilling data to make this possible in the future. These data sets would 

have a classification of impact factors (rotating vs. sliding, motor vs. RSS, stabilizer 

placement, human interventions etc.). Classification algorithms can then be applied on all 

data sets. Such big data sets would finally open up the drilling industry to machine learning 

applications that have shown tremendous success in other industries.  
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APPENDIX A 

A.1 Patterns of High Frequency Acceleration Data 

The following section shows examples of burst windows measured with downhole 

accelerometers. These burst windows are captured about every 20 minutes throughout the 

bit run. Fig. 67, Fig. 68 and Fig. 69 were recorded with a radial accelerometer and a 

sampling rate of 400 Hz from a vertical well. Each plot shows 4 patterns recorded for 10 

seconds each at separate times. Fig. 70 and Fig. 71 were recorded from a different well 

with a tangential accelerometer and a sampling rate of 800 Hz. Here each figure shows 2 

separate patterns, 10 second windows on the top and an additional detailed view of 2 

seconds on the bottom.  

 

Fig. 67—Normal drilling (Burst ID = 53, 54, 55) and distinct pattern with negative radial 

accelerations (discussion of this particular pattern can be found in Chapter 

2.5.4) 
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Fig. 68—Pattern examples for whirl (Burst ID = 221), fully developed stick slip (Burst ID 

= 222) and no drilling (Burst ID = 223 and 224). ‘No drilling’ can occur 

during a connection or during tripping. 

 

Fig. 69—Pattern examples for whirl (Burst ID = 229), whirl with slower RPM in the middle 

(Burst ID = 230), fully developed stick slip (Burst ID = 231) and whirl and 

RPM fluctuation (Burst ID = 232) 
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Fig. 70—Fully developed stick slip pattern (Burst ID = 255) and normal drilling with an 

onset of whirl (Burst ID = 256).  

 

Fig. 71—Normal drilling with an onset of whirl (Burst ID = 265) and whirl (Burst ID = 

266). 
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A.2 Radial and Tangential Accelerations with Tensor Analysis 

General Derivation 

The following equations are derived for the general case and are valid for n ambient 

coordinates and (n-1) surface coordinates (Fig. 72). The equations are then specified for a 

2D ambient space (x, y) and a 1D surface, i.e. the curve that the sensor is confined to. The 

acceleration of the sensor thus depends on the curvature of its trajectory. Vectors are 

represented by bold capital letters with a single index, while tensors are represented by a 

capital letter with two indices. The following derivation presupposes a basic understanding 

of the basics of tensor calculus, such as tensor notation, vectors, coordinate systems, index 

juggling, Einstein summation or surface descriptions. Nomenclature and most definitions 

are borrowed from Grinfeld, 2013 and Collier, 2012.  

 

 

 

Fig. 72—Illustration of a surface and its covariant basis S1 and S2 embedded in an 

ambient Cartesian coordinate system i, j, k. 

A sensor is moving along a trajectory confined to a surface. The trajectory 𝛾(𝑡) is 

given by 

𝑆𝛼 = 𝑆𝛼(𝑡). (A.1) 

S2 
S1 

Surface S i 

j 

k ambient space 
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The position vector of the sensor is given by 𝐑 = 𝐑(S(t)) and velocity vector V is 

derived by  

V  = 
𝑑𝑹(𝑆(𝑡))

𝑑𝑡
 (A.2)  

  = 
𝜕𝑹

𝜕𝑆𝛼

𝑑𝑆𝛼

𝑑𝑡
 (A.3) 

  =  𝑺𝛼𝑉𝛼 (A.4) 

  =  𝑉𝛼𝑺𝛼 , (A.5) 

with velocity component 𝑉𝛼 

𝑉𝛼 = 
𝑑𝑺𝛼

𝑑𝑡
. (A.6) 

Acceleration A can be derived by 

𝑨   =    
𝑑𝑽

𝑑𝑡
  (A.7) 

 =    
𝑑

𝑑𝑡
[𝑉𝛼𝑺𝛼]  (A.8) 

 =    
𝑑𝑉𝛼

𝑑𝑡
𝑺𝛼 + 𝑉𝛼 𝑑𝑺𝛼(𝑆(𝑡))

𝑑𝑡
  (A.9) 

 =    
𝑑𝑉𝛼

𝑑𝑡
𝑺𝛼 + 𝑉𝛼 𝜕𝑺𝛼

𝜕𝑆𝛽

𝑑𝑆𝛽

𝑑𝑡
  (A.10) 

 =    
𝑑𝑉𝛼

𝑑𝑡
𝑺𝛼 + 𝑉𝛼𝑉𝛽 𝜕𝑺𝛼

𝜕𝑆𝛽  (A.11) 

 =    
𝑑𝑉𝛼

𝑑𝑡
𝑺𝛼 + 𝑉𝛼𝑉𝛽(𝛻𝛽𝑺𝛼 + 𝛤𝛼𝛽

𝛾
𝑺𝛾)  (A.12) 

 =    
𝑑𝑉𝛼

𝑑𝑡
𝑺𝛼 + 𝑉𝛼𝑉𝛽𝛤𝛼𝛽

𝛾
𝑺𝛾+ 𝑉𝛼𝑉𝛽𝛻𝛽𝑺𝛼  (A.13) 

 =    
𝛿𝑉𝛼

𝛿𝑡
𝑺𝛼+ 𝑉𝛼𝑉𝛽𝛻𝛽𝑺𝛼  (A.14) 

 =    
𝛿𝑉𝛼

𝛿𝑡
𝑺𝛼 + 𝑵𝐵𝛼𝛽𝑉𝛼𝑉𝛽  (A.15) 

Finally, the acceleration vector A of the sensor is given by 

𝑨 =
𝛿𝑉𝛼

𝛿𝑡
𝑺𝛼 + 𝑵𝐵𝛼𝛽𝑉𝛼𝑉𝛽 ,  (A.16) 

where the term 
𝛿𝑉𝛼

𝛿𝑡
𝑺𝛼 is called tangential acceleration and the term 𝑵𝐵𝛼𝛽𝑉𝛼𝑉𝛽is called 

centripetal or radial acceleration. The total derivative of velocity 
𝛿𝑉𝛼

𝛿𝑡
 is defined as 
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𝛿𝑉𝛼

𝛿𝑡
= 

𝑑𝑉𝛼

𝑑𝑡
+ 𝛤𝛽𝛾

𝛼 𝑉𝛽𝑉𝛾, (A.17) 

resulting in  

𝑨 = (
𝑑𝑉𝛼

𝑑𝑡
+ 𝛤𝛽𝛾

𝛼 𝑉𝛽𝑉𝛾) 𝑺𝛼 + 𝑵𝐵𝛼𝛽𝑉𝛼𝑉𝛽. (A.18) 

The covariant basis of the surface 𝑺𝛼 is defined by partial differentiation. For a 2D 

surface in a 3D ambient space, 𝑺𝛼 are two vectors tangential to the coordinate lines S1 and 

S2:  

𝑺𝛼 = 
𝜕𝑹

𝜕𝑆𝛼 (A.19) 

The covariant metric tensor is defined by  

𝑆𝛼𝛽 = 𝑺𝛼 ∙ 𝑺𝛼  (A.20) 

The contravariant metric tensor 𝑆𝛼𝛽 is defined as the matrix inverse of 𝑆𝛼𝛽: 

𝑆𝛼𝛽𝑆𝛽𝛾 = 𝛿𝛾
𝛼 (A.21) 

Finally, the contravariant basis 𝑆𝛼 of a surface is defined by  

𝑺𝛼 = 𝑆𝛼𝛽 ∙ 𝑺𝛽  (A.22) 

The shift tensor 𝑍𝛼
𝑖  relates the surface (Greek letters) and the ambient basis (Latin 

letters). The entries of this tensor are the components of the covariant basis 𝑺𝛼 of the 

surface with respect to the ambient basis 𝐙i. The shift tensor is given by  

𝑍𝛼
𝑖 =

𝜕𝑍𝑖

𝜕𝑆𝛼 = 𝒁𝑖 ∙ 𝑺𝛼 (A.23) 

In the ambient space, the Christoffel symbol 𝛤𝑖𝑗
𝑘 measures the rate of change of the 

covariant basis with respect to the coordinate variables. For embedded surfaces, the 

covariant basis 𝑺𝛼 is only capable of representing vectors that lie in the tangent plane of 

the surface. In a curved surface, at least some of the vectors of the Christoffel symbol will 

have components in the normal direction. The Christoffel symbol 𝛤𝛽𝛾
𝛼  is defined by 
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𝛤𝛽𝛾
𝛼 = 𝑺𝛼 ∙

𝜕𝑺𝛽

𝜕𝑆𝛾 (A.24) 

The normal vector N with components Ni represents the direction orthogonal to the 

covariant basis 𝐒α. It is implicitly defined by stating orthogonality to the tangent plane and 

unit length: 

𝑵 ∙ 𝑺𝛼 = 0 (A.25) 

𝑵 ∙ 𝑵 = 1 (A.26) 

For the subsequent calculations, the explicit expression of Ni given in 3 and 2 

dimensions, respectively, will be used: 

𝑁𝑖 =
1

2
𝜀𝑖𝑗𝑘𝜀

𝛼𝛽𝑍𝛼
𝑗
𝑍𝛽

𝑘  (3D) (A.27) 

𝑁𝑖 = 𝜀𝑖𝑗𝜀
𝛼𝑍𝛼

𝑗
  (2D), (A.28) 

where 𝜀𝑖𝑗𝑘 or 𝜀𝑖𝑗𝑘and 𝜀𝛼𝛽 or 𝜀𝛼𝛽 are the Levi-Civita symbols. They are absolute tensors 

and are used to define the curl operator and the cross product of vectors. The absolute 

property with respect to orientation-preserving coordinate changes can be achieved by 

scaling the permutation symbols 𝑒𝑖𝑗𝑘 or 𝑒𝑖𝑗𝑘and 𝑒𝛼𝛽 or 𝑒𝛼𝛽 by a volume element (3D) or 

length element (2D) √𝑍 for ambient space and √𝑆 for surfaces. The permutation symbols 

are defined by 

𝑒𝑖𝑗𝑘 = 𝑒𝑖𝑗𝑘 = { 
     1   𝑖𝑓 𝑖𝑗𝑘 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 1,2,3
−1   𝑖𝑓 𝑖𝑗𝑘 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 1,2,3

  0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               

  (A.29) 

The Levi-Civita symbols can be calculated by 

𝜀𝑖𝑗𝑘 = √𝑍 𝑒𝑖𝑗𝑘, 𝜀𝛼𝛽 = √𝑆 𝑒𝛼𝛽 

𝜀𝑖𝑗𝑘 = 
𝑒𝑖𝑗𝑘

√𝑍
, 𝜀𝛼𝛽 = 

𝑒𝛼𝛽

√𝑆
, 
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where √𝑍 and √𝑆 are the square roots of the determinants of the covariant metric 

tensors 𝑍𝑖𝑗 and 𝑆𝛼𝛽, respectively: 

√𝑍 =  √|𝑍𝑖𝑗|  and √𝑆 = √|𝑆𝛼𝛽| . 

In Cartesian coordinate systems √𝑍 = 1. 

Tensor calculus is especially valuable to create a proper description of physically 

meaningful derivatives of vectors. However, differentiations of vectors in tensor notation 

is not trivial. The core of tensor calculus is the fact that only tensors are invariant to changes 

of coordinates. Thus, differentiation in a tensor calculus sense is not only required to satisfy 

familiar sum and product rules, but also to produce tensors out of tensors during 

differentiation. To satisfy the latter rule, a new differential operator, the covariant 

derivative ∇𝑖 had to be developed. In affine coordinates (skewed but otherwise regular grid 

of coordinates, e.g. Cartesian coordinates are affine coordinates), the covariant derivative 

∇𝑖 coincides with the partial derivative 𝜕 𝜕𝑍𝑖⁄ . In non-affine coordinate systems (e.g. polar 

coordinates) covariant differentiation, the Christoffel symbol arises, accounting for time 

derivatives of the coordinate system itself. While for ambient coordinates the covariant 

derivative of the covariant basis ∇𝑖𝒁𝑗 vanishes, the quantity ∇𝛼𝑺𝛽 (covariant derivative of 

the covariant surface basis) does not vanish due to the curvature of the surface. This lack 

of the metrilinic property for surface tensors gives rise to the curvature tensor 𝐵𝛼𝛽 defined 

by 

𝐵𝛼𝛽 = 𝑵 ∙ 𝛻𝛼𝑺𝛽 (A.30) 

The curvature tensor is an extrinsic property of a surface and depends on how the 

surface is embedded in the ambient space. The acceleration of a particle (or sensor) that 

moves along a surface depends on the curvature tensor.  
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Application  

The above equations are applied to the problem described in Chapter 2. The sensor 

follows a trajectory that is confined to a planar surface. The ambient space is described by 

a two-dimensional Cartesian coordinate system with coordinates 𝑍𝑖, with 𝑍1 = 𝑥 and 𝑍2 =

𝑦. A single variable describes the surface coordinate system 𝑆𝛼 = 𝑆1 = 𝑡, i.e. it is a curve 

embedded in a 2D ambient system. 

The position vector R is given by 

𝑹 = 𝑹(𝑥(𝑡), 𝑦(𝑡))  

Velocity: 

𝑽𝛼 =
𝑑𝑺𝛼

𝑑𝑡
=

𝑑𝑡

𝑑𝑡
= 1  

Covariant basis: 

𝐒α = 
∂𝐑

∂Sα = [x′(t)
y′(t)

]  

Covariant metric tensor: 

𝑆𝛼𝛽 = 𝑺𝛼 ∙ 𝑺𝛼 = [𝑥
′(𝑡)

𝑦′(𝑡)
] ∙ [𝑥

′(𝑡)

𝑦′(𝑡)
] = 𝑥′(𝑡)2 + 𝑦′(𝑡)2  

Contravariant metric tensor given by: 

𝑆𝛼𝛽 =
1

𝑆𝛼𝛽
=

1

𝑥′(𝑡)2+𝑦′(𝑡)2
  

Contravariant basis: 

𝑺𝛼 = 𝑆𝛼𝛽 ∙ 𝑺𝛽 = 
1

𝑥′(𝑡)2+𝑦′(𝑡)2
∙ [𝑥′(𝑡)

𝑦′(𝑡)
]  

Shift tensor: 

𝑍𝛼
𝑖 = 

𝜕𝑍𝑖

𝜕𝑆𝛼
= [𝑥′(𝑡)

𝑦′(𝑡)
]  

The Christoffel symbol Γ𝛽𝛾
α  has a single entry Γ̃: 
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𝛤𝑡𝑡
𝑡 = 𝛤̃ =  

1

𝑥′(𝑡)2 + 𝑦′(𝑡)2
∙ [

𝑥′(𝑡)

𝑦′(𝑡)
] ∙ [

𝑥′′(𝑡)

𝑦′′(𝑡)
] =

𝑥′(𝑡) ∙ 𝑥′′(𝑡) + 𝑦′(𝑡) ∙ 𝑦′′(𝑡)

𝑥′(𝑡)2 + 𝑦′(𝑡)2
 

Permutation symbols: 

𝑒𝑖𝑗 = [
0 1

−1 0
], and  

𝑒𝛼 = 1 

With √𝑍 =  1 and √𝑆 = √𝑥′(𝑡)2 + 𝑦′(𝑡)2, the Levi-Civita Symbols are: 

𝜀𝑖𝑗 = 
𝑒𝑖𝑗

√𝑍
= [

0 1
−1 0

] and  

𝜀𝛼 = 
𝑒𝛼

√𝑆
=

1

√𝑥′(𝑡)2+𝑦′(𝑡)2
   

Normal vector: 

𝑵 = 𝜀𝑖𝑗𝜀
𝛼𝑍𝛼

𝑗
= [

0 1
−1 0

] ∙
1

√𝑆
∙ [𝑥

′(𝑡)

𝑦′(𝑡)
] =

1

√𝑆
∙ [ 𝑦′(𝑡)

−𝑥′(𝑡)
] =

[
 
 
 
 𝑦′(𝑡)

√𝑥′(𝑡)2+𝑦′(𝑡)2

−𝑥′(𝑡)

√𝑥′(𝑡)2+𝑦′(𝑡)2]
 
 
 
 

  

The curvature tensor: 

𝐵𝛼𝛽 = 𝑵 ∙ 𝛻𝛼𝑺𝛽 = 
1

√𝑆
∙ [ 𝑦′(𝑡)

−𝑥′(𝑡)
] ∙ [𝑥

′′(𝑡)

𝑦′′(𝑡)
] =

𝑦′(𝑡)∙𝑥′′(𝑡) − 𝑥′(𝑡)∙𝑦′′(𝑡)

√𝑥′(𝑡)2+𝑦′(𝑡)2
  

The above results yield the final acceleration given by Eq. A.16: 

𝑨 = (0 + 
𝑥′(𝑡)∙𝑥′′(𝑡)+𝑦′(𝑡)∙𝑦′′(𝑡)

𝑥′(𝑡)2+𝑦′(𝑡)2
∙ 1 ∙ 1) [𝑥

′(𝑡)

𝑦′(𝑡)
] +  

1

√𝑆
[

𝑦′(𝑡)

−𝑥′(𝑡)
]

1

√𝑆
[ 𝑦′(𝑡)

−𝑥′(𝑡)
] [𝑥

′′(𝑡)

𝑦′′(𝑡)
] ∙ 1 ∙ 1  

𝑨 = 
𝑥′(𝑡)∙𝑥′′(𝑡)+𝑦′(𝑡)∙𝑦′′(𝑡)

𝑥′(𝑡)2+𝑦′(𝑡)2
∙ [𝑥

′(𝑡)

𝑦′(𝑡)
] + 

𝑦′(𝑡)∙𝑥′′(𝑡) − 𝑥′(𝑡)∙𝑦′′(𝑡)

𝑥′(𝑡)2+𝑦′(𝑡)2
∙ [ 𝑦′(𝑡)

−𝑥′(𝑡)
] (A.31) 

The individual components of tangential and radial acceleration expressed in 

Cartesian x and y components of the ambient system are: 

 𝐴𝑡𝑎𝑛𝑥 =
𝑥′(𝑡) ∙ 𝑥′′(𝑡) + 𝑦′(𝑡) ∙ 𝑦′′(𝑡)

𝑥′(𝑡)2 + 𝑦′(𝑡)2
∙ 𝑥′(𝑡) 
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𝐴𝑡𝑎𝑛𝑦 =
𝑥′(𝑡) ∙ 𝑥′′(𝑡) + 𝑦′(𝑡) ∙ 𝑦′′(𝑡)

𝑥′(𝑡)2 + 𝑦′(𝑡)2
∙ 𝑦′(𝑡) 

𝐴𝑟𝑎𝑑𝑥 =
𝑦′(𝑡) ∙ 𝑥′′(𝑡) − 𝑥′(𝑡) ∙ 𝑦′′(𝑡)

𝑥′(𝑡)2 + 𝑦′(𝑡)2
∙ 𝑦′(𝑡) 

𝐴𝑟𝑎𝑑𝑦 = −
𝑦′(𝑡) ∙ 𝑥′′(𝑡) − 𝑥′(𝑡) ∙ 𝑦′′(𝑡)

𝑥′(𝑡)2 + 𝑦′(𝑡)2
∙ 𝑥′(𝑡) 

For uniform on-center rotation with rotational speed ω and radius R, positions x 

and y are given by 𝑥 = R cos(𝜔𝑡) and 𝑦 = 𝑅 sin (𝜔𝑡). Plugging positions x and y and their 

derivatives into Eq. A.31, it simplifies to  

𝑨 = [
0

𝜔2
+ 

−R2ω3 cos2(𝜔𝑡)−R2ω3 sin2(𝜔𝑡)

𝑅2𝜔2
] ∙ [−R ωsin(ωt)

R ω cos(ωt)
]  

= −𝜔 ∙ [−R ωsin(ωt)
R ω cos(ωt)

] = −𝑅𝜔2,   

where the result 𝑅𝜔2 is the familiar centripetal acceleration for uniform circular 

motion. In this case, as expected for uniform circular motion, the tangential acceleration is 

0.  

A.3 Modeled HFTO Signal 

This work mainly focuses on the kinematics of the whirling pipe in the borehole. 

Here we show the expected radial and tangential accelerations for the hypothetical 

kinematics of high-frequency torsional oscillations. This should give even more evidence 

that HFTOs are unsuitable to explain the high frequency fluctuations in the field data. The 

center of rotation, in this case, is perfectly aligned with the center of the pipe, while the 

input rotary speed signal varies sinusoidally from 0 to 200 RPM with a frequency of 20 Hz 

(Fig. 73, left). The expected tangential acceleration signal of a sensor capturing such 

movement is in turn a sinusoidal signal with the same frequency content as the input signal 



178 

 

(Fig. 73, middle). The expected radial accelerations show an additional overtone of twice 

the input frequency (Fig. 73, right). Note that for HFTOs, we expect the absolute value of 

radial accelerations to greatly exceed the absolute value of tangential accelerations. Eq. 4 

in Chapter 2 already predicts these results. Therefore, the multiple signal overtones found 

in field data cannot be explained by a sinusoidally oscillating pipe rotational speed alone.  

 

 

Fig. 73—Simulations of tangential and radial acceleration based on a sinusoidal high-

frequency RPM variations.  

A.4 Applied Whirl Correction Methodology 

According to Hoffman et al. (2012), MWD tools usually are equipped with a 

methodology to correct for whirl: Data is recorded from multiple accelerometers, they are 

then combined to offset the effects of eccentric rotations.  

The whirl model described in Chapter 2 can be used to test the described 

methodology. Fig. 74 shows the simulation of two tangential accelerometers mounted on 

the tool with a 180-degree phase shift. In standard MWD setups, resulting tangential 
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acceleration from such a setup is calculated by combining values from both sensors 

(Mayer, 2007): 

𝑎𝑡𝑎𝑛 =
1

2
(𝑎𝑡𝑎𝑛,𝑆2 − 𝑎𝑡𝑎𝑛,𝑆1)  (A.32) 

𝑎𝑟𝑎𝑑 =
1

2
(𝑎𝑟𝑎𝑑,𝑆2 + 𝑎𝑟𝑎𝑑,𝑆1)  (A.33) 

Fig. 74 demonstrates for tangential accelerations that applying these formulas to 

the simulated data does not reduce the high-frequency fluctuations of the data. The same 

procedure for radial acceleration yields comparable results. We therefore can conclude that 

the whirl correction procedures in MWD and other downhole measurement devices are not 

sufficient to remove fictious forces on the sensor because of off-center rotation.  

 

Fig. 74—Combined data from 2 sensors with a 180-degree phase shift still yields high-

frequency fluctuations and overtones. 

A.5 Graphical User Interface for Whirl Simulations 

A graphical user interface (Fig. 75) was created to study the effect of different 

parameters on the sensor movement and the resulting velocities and accelerations, as seen 

by a sensor. The interface allows to adjust parameters in real-time, using the proposed 

numerical approach.  
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Fig. 75—Graphical user interface for whirl simulations.  
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APPENDIX B 

B.1 Flow Charts of Correction Algorithms 

The following sections conceptualizes algorithms described in Chapter 4 using flow 

chats. Fig. 76 illustrates the algorithm for accelerometer offset correction. Fig. 77 

illustrates the algorithm for WOB correctio. Fig. 78, Fig. 79 and Fig. 80 illustrate the 

algorithm for downhole and surface alignment under consideration of latencies.  

 

 

Fig. 76—Algorithm description for accelerometer offset correction. 
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Fig. 77—Algorithm description for WOB drift correction 

 

 

Fig. 78—Algorithm description for surface-downhole alignment – surface data processing. 
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Fig. 79—Algorithm description for surface-downhole alignment – downhole data 

processing 

 

 

Fig. 80—Algorithm description for surface-downhole alignment – finding match time. 

B.2 Naïve Bayes Classifier  

The Naïve Bayes classifier is an approach of supervised machine learning. These 

types of models are probably the most common Bayesian models used in machine learning 

(Russell et al., 2010). This model consists of the class variable, which in this case is the 

“stick-slip” or “no-stick-slip” tag for each observation, as well as 15 predictor or attribute 

variables. The model is called “naïve” because it assumes that the attributes are 

conditionally independent of each other, given the class.  
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The prior probabilities for each class are directly estimated from the data. Kernel 

distributions were used for fitting the continuous attributes. A kernel is a nonparametric 

representation of the probability density function of random variables. Although the 

assumption of conditional independence of the predictor variables given the class might 

not be valid here, this approach has been chosen for its simplicity. Russell et al. (2010) 

states: “In practice, Naïve Bayes systems can work surprisingly well, even when the 

conditional independence assumption is not true.”  

Fig. 81 illustrates the input for the classifier algorithms. For each row, 15 predictor 

variables were extracted from the high-frequency data snippet.  

 

 

Fig. 81—Dataset with attributes and classifiers as input for the Naïve Bayes classifier.  
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APPENDIX C: MDTS FILE ILLUSTRATION 

 

 

Fig. 82—Example MDTS File part 1 (illustrative). 
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Fig. 83—Example MDTS File part 2 (illustrative). 
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APPENDIX D: A JOINT INDUSTRY PROJECT TO COMBINE DRILLING DATA AND 

EDUCATION11 

D.1 Introduction 

On their continuous quest to improve drilling efficiency, operators are reaching 

more and more towards sensor and data-streaming technologies and their powerful data 

analytics capabilities. For this project, an operator partnered with the drilling automation 

research group at the University of Texas at Austin to develop a workflow for big data 

analysis and visualization. The objectives were to maximize the value derived from data, 

establish an analysis toolkit, and train students on data analytics—a necessary job function 

of any future drilling engineer. The operator provided data sets, business and technical 

objectives, and guidance for the project, while a multi-disciplinary group of undergraduate 

and graduate students piloted an analysis workflow. The students developed methods to: 

1) understand and clean the data; 2) structure, combine, and condense information; 

3) visualize, benchmark, and interpret the data, as well as derive key performance 

indicators (KPI); and 4) automate these processes.  

The operator provided data collected from drilling 16 wells in an US 

unconventional play. The large data sets comprised of unorganized time and depth based 

information from surface and downhole sensors, daily drilling reports, geological 

information, etc. Students were trained on specialized software and subsequently curated 

data into smaller sizes and standard formats. 

                                                 
11 Chapter based on: Zhou, Y., Baumgartner, T., Saini, G., Ashok, P., van Oort, E., Isbell, M. R., & Trichel, 

D. K. (2017, March 14). Future Workforce Education through Big Data Analysis for Drilling Optimization. 

Society of Petroleum Engineers. doi:10.2118/184739-MS. Zhou, Y., Baumgartner, T. and Saini, G. 

contributed in equal shares to the content and text of the paper. Ashok, P supervised the project that the paper 

is based on and contributed to the paper in a supervisory role. van Oort, E. initiated the project and supervised 

the composition of the paper.  
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Students investigated bottom hole assembly (BHA) and directional drilling 

performance using a combination of auto-generated conventional visuals (e.g. BHA 

designs, annotated time vs. depth curves) and newly developed tools (e.g. tortuosity, 3D 

well trajectory plots combined with operational data). Methods for “push a button” 

investigations of mechanical specific energy (MSE), vibration, torque and drag were also 

developed by calculating specific KPIs from the raw data. The analysis work itself coupled 

with the attempt to improve the workflow processes served as a meaningful and highly 

effective way to educate students and prepare them to be the “drilling engineers of the 

future” with proficiency in data analytics. 

Drilling Data Analysis 

The oil and gas industry is undergoing a transformation to drive waste out of the 

business of safely delivering hydrocarbons to consumers. The societal, technological, and 

political environment in which petroleum producers operate continues to elevate future 

requirements (Handscomb et al., 2016): 

• Sustained resource abundance and the possibility of moderate oil prices require 

companies to focus on production maximization with efficiency and speed.  

• Technological advances in the areas of digitization, data analytics and automation 

may enable step changes in productivity when the industry takes on the challenge.  

• Demographic changes with an entire generation going into retirement leaves room 

for millennials12 as the “digital natives” to become technical experts and take on 

leadership roles.  

 

                                                 
12 Millennials are individuals with starting birth years as early as 1980’s and ending birth years as late as 

the 2000’s 
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Companies across the oil and gas industry face fierce pressures to make effective 

decisions and execute them safely and efficiently while struggling to remain profitable in 

a time of lower oil and gas prices. The people completing this work use their experience, 

work processes, and tools to guide business operations. The measurements and records 

from these activities are increasingly being captured in the form of digital data. Efforts are 

underway to combine this data in innovative ways to safely increase the rate of 

improvement in well delivery in terms of reduced cycle time and cost.  

Analysis of historical data has always been used to characterize performance in 

well delivery. Our specific focus in this chapter is on drilling performance. Technological 

advances offer the right tools: big data analysis to derive meaningful insights, machine 

intelligence and mechanization to carry out tasks in as efficient a manner as possible. 

Exploration and production companies can adapt the way they hire and train their 

employees and encourage collaboration to fully take advantage of these new methods as 

they seek to create and protect more value from their existing business data. 

Soon, every sensor or measurement device at a rig could be connected in real-time 

– with each other and to the office. Operations of the future will have an increased level of 

complexity in such a multi-connected environment. Engineers will only be able to master 

a small portion of a project, and will need to consult other specialists. Collaboration, 

sharing knowledge, structuring tasks, and explaining complicated material in simple terms 

to business stakeholders will become ever more important.  

In addition to being able to work effectively in teams, mastering digitization (being 

technology savvy, recognizing the potential of data and automation in processes and 

workflows, making best use of software and programming, comfortably handling large 

amounts of data, etc.) could be the most sought-after skillset of a future drilling engineer. 
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Data-savvy drilling engineers will prepare real-time data from drilling operations for more 

senior colleagues to make informed and effective decisions. Repetitive tasks will be taken 

over by machines, allowing engineers to test creative solutions and to focus on solving 

unfamiliar problems. The drilling engineer of the future will need to develop machine 

intelligence, the ability to use machine to automate day-to-day processes, and will need to 

work closely with data science currently considered in the information technology domain.  

Universities are still somewhat disconnected from industry pressures and 

objectives. The current educational systems value competition over collaboration, 

individual effort over team work, single-number answers over uncertainty, and strict 

assumptions over understanding fuzzy complexities. In general, they need to start doing a 

better job of preparing a new generation of engineers for success in industry. This requires 

effectively addressing disconnects in current curricula.  

At the University of Texas at Austin (UT Austin), a Real-Time Collaboration 

Center (RTCC) was built in 2014 to facilitate the receipt and use of data by students. Real-

time and historical drilling data can be streamed, visualized, and analyzed. Students are 

provided with several multi-screen working stations and a variety of data analysis software. 

Data security precautions are in place to ensure integrity and security of the data.  

UT Austin collaborated with an independent operator to involve undergraduate and 

graduate students in analyzing large sets of unconventional shale drilling data over the 

course of an entire year. This project is helping to address some of the gaps between the 

current educational system and the challenges in a rapidly transforming industry, while 

making effective use of the unique research capabilities at UT Austin.  
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D.2 Project Overview 

Objectives 

The project stakeholders agreed on three main objectives:  

• Foremost, maximize the value from the tens of gigabytes of data gathered during 

drilling operations. Several work streams were selected to help identify key drilling 

performance limiters and cost saving opportunities. These work streams include 

assessment of the bottom hole assembly and directional drilling performance, by 

using measures such as wellbore tortuosity, time-based vibration data, and other 

well information to create meaningful visualizations and implement standardized 

data structures.  

• Establish a standardized data analysis toolkit. The steps towards such a toolkit were 

to 1) identify, streamline, and document the working process to establish 

workflows, and 2) build software tools that automate these workflows (i.e. perform 

analysis and/or visualization of the data).  

• Help educate undergraduate students and equip them with skill sets necessary to 

tackle problems in a big data world. By working on the project, the students would 

familiarize themselves with in-depth drilling processes and drilling jargon, i.e. learn 

drilling in an entirely different (but very relevant and hands-on) way from the usual 

university curriculum, and acquire a data analysis skill set at the same time.  

Data Sets 

The data available for this project covered four pads, sixteen wells, in the Bakken 

formation that were drilled from 2014 to 2015 for a total of 256 active rig days. The data 

was a product of a drilling automation pilot project previously published by the operator 

(Trichel et al., 2016). The data set for each well was comprehensive and included well 
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planning reports (well plan, drilling schedule), geology information (formation tops, log, 

compressive strength), surface sensor data, directional surveys, daily drilling reports 

(DDR) and extensive measurement/logging while drilling (MWD/LWD) and other 

downhole data. Raw file formats included pdf, text, spreadsheets, and presentations. Their 

size varied from a few hundred KB to more than 5 GB each. In total, there were more than 

50 individual files, amounting to over 100 GB of data with more than 20 million rows of 

information. 

D.3 Deliverables 

To accomplish the first two objectives noted above, the students decided they would 

work towards interactive visualizations using available drilling data, to quickly assess a 

well’s drilling performance. Three main deliverables formed the basis for the data analysis 

toolkit (Fig. 84): 

1. Data curation: assure data quality and organize data into a more cohesive, consistent, 

and accessible format. Effective analytical approaches could only be applied once the 

data was classified and cleaned. Note that a significant amount of time was spent on 

data preparation for analysis. 

2. Data visualization: analyze and visualize key information in the form of interactive and 

informative graphics. 

3. Storyboard: Develop a workflow that guides the user through different visualizations 

from an overview to a highly-detailed level, in order to illustrate and quantify key 

elements of the drilling performance related to the drilling systems and well delivery 

requirements. 
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Fig. 84—Key components in delivering value from big data. 

Data Security 

Sharing critical data with third parties raises evident security concerns. 

Traditionally, geological, and geophysical data giving insight into the properties of 

hydrocarbon reservoirs is the most sensitive information to oil and gas companies, for 

reasons of investment decisions and competitive intelligence. However, even drilling tool 

selection and operational practices can give companies a competitive advantage and allow 

them to develop certain plays more successfully than others. For these reasons, companies 

do not want their data to be used by unauthorized people or for unauthorized purposes.  

Legal agreements between the university and the operator prevent students from 

sharing data, storing it on their personal machines, keeping files beyond the project, or 

using data in unintended ways. To create data security barriers, UT Austin’s RTCC is 

equipped with modern security systems, such as access control with door badge systems to 

ensure only students with the required permission can physically enter the RTCC, where 
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computers and servers are located. Access to the data, stored on protected servers, is 

granted only to individuals working on the projects. This is an essential step that 

educational institutes working with business data must take to address their project 

partner’s data security concerns.  

Data Curation 

Efficient data transfer from the data service provider to the operator seems to be 

one of the greatest challenges that is currently preventing the industry from using data to 

its full potential. In this case, the operator received drilling operation data recorded at the 

rig site and downhole through different data service providers using multiple measurement 

systems.  

One of the other big challenges in this project was associated with data dumps that 

were too large to open. The size of files with 1-2 million rows and almost 600 data columns 

(i.e. channels for individual measurements) exceeded the capabilities of standard data 

processing software. Several iterations were required to establish a successful workflow to 

overcome these difficulties. The students spent some time identifying tools13 for 

processing large data sets: 

A software tool called “Delimit” was used to slice the large CSV files into smaller 

files, then process the smaller files in either Microsoft Excel (2016) for visual inspection 

or in MATLAB (2015b) for a more in depth analysis and visualization. A more unified 

method to process the data replaced it in the second step.  

Next, MATLAB scripts imported pre-selected channels for targeted analysis. After 

importing those channels, many of them were identified as completely empty or had too 

many invalid data points.  

                                                 
13 The mentioned software tools are generally available in a university setting. 
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Data quality checks were performed. This step successfully reduced the data size 

by ~30-50% in most cases. The files were cut into individual sections by either casing 

strings or BHA run, which further reduced the file sizes.  

A database was created as a last step to upload and store processed and good quality 

data for all wells in a structured format. Specific channels (measurements) at a given 

time/depth interval for each well could now be downloaded and used for further analysis. 

As mentioned above, the quality of the data provided a challenge. The largest data 

files contained time-series data with a sample rate of 1 Hz. Many columns consisted of null 

data (e.g. were completely empty, contained an invalid dummy value). The column names 

were the only hint to the nature of the measurements. Other channels were used to store 

“static” data (i.e. bit size with the same value at every time step), unnecessarily adding to 

the file sizes. The quality and nature of each channel was quantified by automatically 

calculating certain statistics for each data column, as shown in Fig. 85. 

 

 

Fig. 85—A summary report of some channels with one unique value. 

For example, channels that had only one unique value (either 0 or -999.25 as a 

dummy value) were classified to be either empty or invalid. Out of more than one million 



196 

 

rows, any channel with less than a dozen unique values was considered to be static. In 

general, one third of the 588 listed channels in all wells had less than 10 unique values, 

hence could not be considered time-based data. 

Then, there was the challenge of missing contextual data. The large data file 

initially had 588 data channels without any additional documentation or description. 

Chapter 5 proposes a data transfer structure that could help preserve important contextual 

information during data transfers.  

After a series of requests to the service company, multiple documents were 

received; each described a small subset of channels listed in the raw data file. In a 

time-consuming, manual process, the descriptions were matched to the files column names. 

However, only ~20% of the channels could be matched with its contextual information. It 

is worth noting that some channels with potentially useful information, such as “Rig 

Activity Code” and “Bit Status”, were rendered useless because of the lack of associated 

decoding information. 

Visualization  

Drilling is a complex process. Often, one single measurement does not provide 

enough insight to evaluate performance or to even determine the current rig activity. Only 

a combination of multiple measurement streams and static data allows the analysis of 

drilling operations. Structured visualizations organically combine the data and provide 

insights. Several KPIs allow an engineer to quickly evaluate a well’s performance. The 

students designed a variety of such visualizations and KPIs, and then wrote scripts to 

automatically extract, process, and display the data and calculate KPIs.  

Much useful information in drilling today is still stored in unstructured formats such 

as written text, PDFs, or scanned images. For example, daily drilling reports or tool 
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specifications contain essential information that is hard to automatically extract. Sidahmed 

et al. (2015) described various methods and workflows of transforming such files into a 

more accessible format. In this project, undergraduate students read unstructured data 

(DDRs), then manually extracted and reformatted various streams of information into a 

new format. This tedious process helped the students to familiarize themselves with drilling 

jargon and the various operational processes, and gave them a good overview of the wells.  

In future work, an automated process could leverage natural language processing 

capabilities for handling this task. Fig. 86 illustrates the three-step workflow to creating 

easily interpretable visuals from unstructured data. First, information was extracted from 

DDRs. Second, students classified the text and compiled data tables. Third, the data tables 

served as input for automated visualizations. For example, a list of categorized BHA 

components could be automatically plotted and was used to compare multiple BHA designs 

at a quick glance. In a different visualization, the students could augment a time vs. depth 

curve with descriptions of notable events.  
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Fig. 86—Visualization process for unstructured data. 

To quickly assess essential information (e.g. directional performance, BHA 

performance, vibration severity), the students developed analysis toolkits that produced a 

variety of 2D and 3D visualizations. These provide clear and intuitive assessments of 

aspects of an individual well as also for multiple wells in each pad. Visualizations can 

cover either a single well or all wells on an entire well pad. They can extend from a high-

level overview, such as pad specific multi-well rate of penetration (ROP) comparison and 

annotated time vs. depth graph, to detailed assessments such as BHA component 

visualization and downhole vibrations.  

For example, the planned vs. actual directional performance visualization 

illustrated in Fig. 87 combined 3D and 2D well profile visualizations. Key parameters 

displayed alongside in strip charts help compare the well’s actual to the planned well path. 

Users can trace root causes of anomalies by making use of additional visualizations of BHA 

components and/or directional performance per BHA design and per formation.  



199 

 

 

Fig. 87—Visualizations for directional performance. 

The students developed scripts to automatically perform the analysis and generate 

associated visualizations with minimum user effort. The script would prompt the user at 

various points of execution, asking for input data files when the user executed the master 

script. The scripts would then process the data and generate multiple one page 

visualizations. The modular nature of the scripts also made them robust and easy to modify 

and maintain.  

Storyboard 

Multiple individual visuals were generated for each well, and several more for each 

well pad because of the large amount of available data and the automated process. The 

team developed a storyboarding concept, where sets of visuals provided the required 
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context for various drilling system performance aspects. As the name suggests, it organized 

the visualizations in different threads and layers to tell the story of the well. A drilling 

engineer or a trained user can follow a storyline to gain an in-depth understanding of a 

particular element of well performance, and to extract clues to potential drilling 

performance optimization.  

Pre-set visualizations were selected to address commonly asked questions about 

drilling performance. Visualizations were then grouped together to form a storyline that 

the user follows in a specific order. Fig. 88 illustrates a sample storyboard. For instance, to 

answer “How did the BHA perform?”, the user is presented with a storyline of four 

visualizations. The user first looks at the comparison of the planned and actual well path, 

which illustrates the directional execution of the well. Next, the user is shown the ROP 

distribution information along different sections of the well. Then, the user is shown the 

BHA run and formation top information, alongside with inclination, azimuth, dogleg 

severity, and tortuosity index in vertical strip charts. Finally, the user is presented with 

vibration and other downhole measurements associated with different BHAs at different 

formations. By following the story line, the user develops a thorough understanding of 

information relevant to the posed question(s), and is equipped to draw conclusions from 

the information presented.  
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Fig. 88—Storyboard application example. 

D.4 Student Learning 

As mentioned, one key objective of this project was to further educate, train, and 

develop students’ data analytics skills and offer them real industry experience. 

Traditionally, petroleum engineering degrees are not very industry oriented, with 

internship(s) as the only opportunity to learn more about industry operations. Moreover, 

the cyclical business environment can take a toll on newly graduating students and reduces 

the options for internships and other industry involvement. Students themselves are 

generally keen to keep up with trends in the industry, constantly learning new skills not 

covered in class curricula. The present project presented a useful opportunity to acquaint 

themselves with industry jargon and learn relevant skills. Over the course of a year, three 

groups of undergraduate students were recruited and trained for participation in this project. 

Students gained valuable experience learning and applying problem solving tools with 

messy real data, as described below.  
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Project Management and Ownership 

During the course of the project, the undergraduate students formed separate groups 

and worked on separate sub-projects. This encouraged students to establish ownership for 

different parts of the project and to deliver results on a strict timeline. Weekly meetings 

and regular individual deliverables helped students to document their progress, discuss 

their road blocks, and plan their future work. At the same time, their reports were used as 

the basis for reporting to the operator. This workflow seemed to incentivize undergraduate 

students to effectively manage their own progress, and also allowed the graduate student 

leaders to better support the students in achieving their goals. 

Problem Solving Skills  

Shifting the focus from the path or method towards the goal itself was an important 

lesson the students took away from this project. During this project, we noticed that the 

undergraduate students could be easily discouraged if some parts of the puzzle needed to 

solve a problem weren’t readily available. For instance, unavailable or faulty data 

constituted the end of the task for some. If the right data is missing, or equations are wrong 

in a homework problem, the task is dropped. However, real life tasks are not structured that 

way. Solving real life problems meant utilizing any tool available and finding resources 

when the path forward was not clear.  

Team Building 

The students experienced a mix of individually assigned problems and 

collaboration tasks within groups. They participated in brainstorming sessions, where they 

became more comfortable speaking up and sharing their ideas as the project progressed in 

time. We believe that such group sessions not only produced excellent ideas, but also made 

students feel like they were equal stakeholders in the project.  
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Time Management and Prioritization 

The students committed to a certain number of hours on the project each week, and 

were held accountable to fulfill the set expectations. Exceptions for exams and other 

situations needed to be communicated and approved ahead of time, and the students were 

encouraged to make their own arrangements to ensure the completion of their tasks. In this 

process, the students encountered different time management and prioritization 

requirements. Most of them attended every weekly meeting, delivered on their tasks, and 

sent their progress reports on time.  

Presentation Skills 

Through monthly presentations, the project team kept the operator apprised of 

progress in the project, providing students timely feedback for their current and future 

work. The presentation deck reflected a seamless integration of everyone’s work. To that 

effect, the students made sure that their final set of slides fit into the overall goal of the 

team’s presentation, and that they complemented each other’s work. During those 

meetings, individual students were given the opportunity to present their own work. This 

helped them advance their presentation skills, and a marked improvement was seen over 

the course of this project.  

Technical Competency 

Perhaps more than anything else, this project developed students’ abilities on the 

technical front: 

The students gained a thorough and in-depth understanding of multi-well pad 

drilling. Working with data such as the daily drilling reports, formation information and 

surveys helped them make sense of the drilling jargon and understand the drilling processes 
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better. The students acquired data analysis techniques by working with large amounts of 

drilling data, conducting data processing, analysis, and visualization. 

Interactions and brainstorming sessions with graduate students and feedback from 

supervising professors and operators helped the students gain insight in solving drilling 

problems. The students were exposed to advanced drilling engineering research and 

concepts by reading papers on BHA analysis, mechanical specific energy (MSE), drilling 

specific energy (DSE), and drilling dysfunction such as torsional (stick-slip) and lateral 

(whirl) vibrations.  

Leadership Skills 

The PhD students co-leading the project also gained leadership training. This 

managerial and mentoring task presented a perfect learning opportunity for them. 

Typically, PhD students are expected to join the industry with higher responsibility, but 

leadership training or exposure is rarely offered at school or during internships. Coaching, 

leading and mentoring undergraduate students provided them with an opportunity to work 

on their leadership skills. In this project, the graduate student co-leaders faced many 

challenges a typical manager would encounter: How to deliver strong results? How to 

motivate the undergraduate students and guide them to stay on course? How to prioritize, 

and stay focused on the project? How to maintain productive and high-quality work?  

D.5 Conclusions 

This joint project between the University of Texas at Austin and an independent 

operator provided an exciting glimpse of an automated future state where data is 

proactively used while drilling a well and re-used to find limiting factors and improved 
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practices to advance efficiency. The work has benefitted the parties involved in the 

following ways: 

The Operator 

• Improved value extracted from data collected for an in-depth data study. Many files 

would otherwise never have been further analyzed.  

• Gained insights into data quality will improve data standards and service 

agreements between the data service provider and the operator in the future.  

• Realized quick cost savings from operational, BHA and well design changes 

identified by observations in the data. 

• Improved standardization and use of drilling data for visualizations. 

• Tested new visualization concepts, such as the storyboards, to increase the 

efficiency of dealing with large amounts of data and several types of measurements. 

• Utilized an inexpensive yet well qualified research workforce at an educational 

institute. 

• Educated and supported the training of future drilling engineers, i.e. their future 

workforce. 

The Students 

• Acquired a variety of important soft skills and real world drilling knowledge, 

improving their ability to successfully compete in the marketplace for future 

industry jobs. 

• Gained an understanding of the benefits of data analysis and structured problem 

solving for moving towards more efficient drilling. 
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• Learned various tools and methods for analyzing large data sets containing 

information from multiple systems and representing complex engineering 

problems. 

• Benefitted from the monetary compensation while at school.  

• Made contacts with a potential future employer.  

The University 

• Provided a competitive advantage for their students in landing a position in the 

industry.  

• Showcased the beneficial applied use of research funding. 

• Demonstrated its flexibility to adapt teaching strategies to a changing environment.  

• Contributed in innovative ways to solve new industry problems. 

• Differentiated itself by quickly adapting to new industry needs and trends.  

 

The project showed that process automation is the key to success in data analysis 

exercises such as these; the amount of data analyzed was too much to handle manually. It 

is essential to define a set of KPIs, analysis methods, and visualizations, and then automate 

their generation and deployment, such that any insights revealed by them can become 

available in a timely manner for multiple data sets.  

Process automation requires a standardized and structured data input. The process 

of gathering the data from an unstructured, undocumented, and faulty state into a 

standardized one was the most challenging and time-consuming task of the entire project. 

Structured, standardized and transparently formatted data is essential for stakeholders to 

derive maximum timely value from any data gathered. 
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Applying information technology to engineering problems is a key challenge to 

future engineers, and it therefore is essential that they become proficient in information 

technology methods. Every task in this project required coding skills in one way or another. 

Students that had some prior coding experience could leverage these skills to solve 

problems faster or even augment tasks that were traditionally performed manually (e.g. 

screening daily drilling reports for key words). This clearly shows that learning at least one 

commonly used programming language early is a prerequisite to become an effective future 

petroleum engineer. Drilling engineering graduates with coding skills are capable of 

quickly prototyping tailored tools to solve specific drilling problems; these tools can then 

be developed into user friendly software by company’s IT departments or outside 

resources.  

D.6 Future Work 

The project demonstrated what is possible in using new capabilities in data handling 

and analysis methods. Future projects will further drive drilling performance and 

innovation. Formalizing this problem-solving approach and offering students a class on 

various aspects of drilling data analysis is a key goal for the research and education 

program.  

This drilling data analytics project constitutes the first of hopefully many such 

initiatives in the future. By communicating the benefits for all parties and eliminating 

concerns about data security, we hope that more companies will be willing to share their 

data and be open to sharing their analyses to enable the entire industry to drill faster and 

safer wells.  
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Glossary 

ADC Analog to Digital Converter  

API American Petroleum Institute 

ASCII American Standard Code for Information Interchange 

ATCE Annular Technical Conference and Exhibition 

BHA Bottom Hole Assembly 

CSV Comma Separated Value 

DDR Daily Drilling Reports 

DLIS Digital Log Interchange Standard 

DSATS Drilling Systems Automation Technical Session 

DSE Drilling Specific Energy 

ECD Equivalent Circulating Density 

EIA Energy Information Administration 

FFT Fast Fourier transform 

FIT Formation Integrity Tests  

GB Gigabytes 

HFTO High-Frequency Torsional Oscillations 

HMI Human Machine Interface  

HWDP Heavy Weight Drill Pipe 

IPTC International Petroleum Technical Conference 

ISCWSA Industry Steering Committee on Wellbore Survey Accuracy  

KB Kilobytes 

KPI Key Performance Indicators 

LAS Log ACSII Standard 
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LIS Log Information Standard  

LWD Logging While Drilling 

MD  Measured Depth 

MDTS Memory Data Transfer Standard 

MEMS Microelectromechanical  

MPD Managed Pressure Drilling 

MSE Mechanical Specific Energy 

MWD Measurement While Drilling 

NEMS Nanoelectromechanical 

NOV National Oilwell Varco 

NPT Non-Productive Time 

OPC-UA Open Platform Communications Unified Architecture 

PAA Piecewise Aggregate Approximation 

PDC Polycrystalline Diamond Compact 

PWD Pressure While Drilling 

QRI Quantum Reservoir Impact 

RMS Root Mean Square 

ROP Rate of Penetration 

RPM Revolutions Per Minute 

RSS Rotary Steerable System 

RTCC Real-Time Collaboration Center 

SAX Symbolic Aggregate approXimation 

SPE Society of Petroleum Engineers 

TD Total Depth 
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TOB Torque on Bit 

TVD Total Vertical Depth 

UT The University of Texas 

WITSML Wellsite Information Transfer Standard Markup Language 

WOB Weight on Bit 
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