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This report evaluates two distinct methods of improving the performance

of GPU memory systems. Over the past semester, our research has focused

on applying a state-of-the-art CPU cache replacement policy on GPUs and

exploring headroom of preemptively writing back dirty cache lines.

Our first goal is to reduce L1 and L2 cache miss rates on GPU by

implementing the Hawkeye cache replacement policy. Hawkeye calculates

the optimal cache replacement policy on previous cache accesses in order

to train its predictor for future caching decisions. While some benchmarks

show performance improvements with Hawkeye, a significant amount of our

benchmarks are not sensitive to the performance of the cache. From our

experiments, we show that Hawkeye, on average, gives an IPC improvement

of 3.57% and 0.56% over Least Recently Used (LRU) when applied to the L1

and L2 caches respectively.
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We also introduce the idea of precleaning, an alternative to write-back

or write-through caching that aims to spread out write bandwidth. Committing

L2 writes to main memory when memory congestion is low can hide or lower

the performance impact of said write. The idea of precleaning shows promise,

but evaluating precleaning fully requires more research in GPU access patterns

and prediction techniques.
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Chapter 1

Introduction

GPUs cater to highly parallel and regular data access patterns. While

GPUs provide hardware specifically tailored for parallel problems, good GPU

performance relies on programs exhibiting behavior that can be partitioned

into thousands of highly regular threads executing the same code. Warps are

what we call a collection of threads that run in lock-step, and all threads within

a warp should run similar code and access relatively nearby data in memory.

Data divergence occurs when these warps overload lower-level memory systems

by exhibiting irregular access patterns and accessing non-consectutive cache

lines. When a program starts to exhibit high levels of data divergence, cache

optimizations become more important for retaining good performance. Our

goal in this paper, with both Hawkeye and precleaning, is to limit and offset the

negative performance impacts of both data divergence and poorly optimized

data access patterns.

In this report, we explore two methods for improving performance of

GPU memory systems: Hawkeye cache replacement and cache precleaning.

We implement Hawkeye, a cache replacement algorithm that learns from a

delayed computation of the optimal cache replacement policy [15]. The second
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method, which we refer to as precleaning, avoids memory system stalls by

committing write-backs at a time of low bandwidth usage rather than at the

time of eviction.

1.1 Hawkeye

Computer architects have been using caches and smart cache replacement

policies to hide the latency of memory operations for decades [4, 9, 16, 18, 19,

21]. Caches ideally stores all data that will be accessed by the machine in

the near future, reducing latency of memory accesses on the critical path.

Unfortunately, cache memory is expensive and limited, thus architects rely on

cache replacement policies to decide what data will be the most useful in the

future.

Least Recently Used (LRU) is the baseline replacement policy for most

caches as it is easy to reason about and performs well considering its relative

simplicity. LRU does not store any information on lines previously evicted from

the cache. Because of this lack of additional meta-data, LRU generally doesn’t

work well with access patterns with working sets that exceed the size of the

cache. A cache with a more sophisticated replacement policy that can handle

irregular or complex data access patterns can filter out some of the requests

that would otherwise overload the GPU’s main memory. By providing a proven

approach to cache replacement on CPUs, we hope to improve performance on

GPU programs that would previously see no benefit from the cache due to

said programs’ data access patterns.
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Our first idea for improving GPU memory system performance is to use

Hawkeye, a CPU cache replacement policy that learns from the theoretically

optimal cache replacement decisions for previous accesses to the cache. Hawkeye

prefers to evict lines similar to other lower performing lines in the OPTGen

algorithm, an online calculation of Belady’s optimal cache replacement policy.

Hawkeye evaluates similarities between lines by comparing their defining features,

such as warp ID and Program Counter (PC). Features help us correlate performance

within OPTGen with future performance of lines with identical features. We

explore the application of Hawkeye in both the L1 and L2 caches.

1.2 Precleaning

Precleaning, our second idea for improving memory system performance,

aims to spread out the bandwidth usage by writing back dirty cache lines at

times of lower bandwidth usage. Write-through and write-back caches are the

two main ways that modern caches handle mutable data within the cache.

Write-through caches immediately write modified data back to their backing

store (such as a lower level cache or DRAM). On the other hand, write-back

caches delay committing writes to their backing store until the associated line

is evicted. This delay in committing writes is possible because non-atomic

writes are off the critical path, meaning the processor will never need to stall

for a non-atomic write. Write-back caches tend to be more efficient than write-

through caches as write-through caches require an access to lower level memory

for every single write. While the strategy of writing back at the last possible
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moment might be the most convenient, it is not necessarily the best time for

data to be written back to lower level memory. Writing back at the time

of eviction can be especially problematic in GPUs when unoptimized parallel

code causes many simultaneous evictions. The key takeaway is that, rather

than a binary choice of write-through and write-back, we actually have a full

spectrum of choices to choose from when cleaning dirty cache lines.

For example, a GPU program that needs to load in large chunks of new

data at once will incur many evictions in the cache. These evictions will cause

write-backs, all clustered around the same time, saturating our bandwidth and

stalling the machine. Referring to Figure 1.1 we see that we could make better

use of our bandwidth by writing back our dirty lines earlier, rather than at

eviction.

We believe this problem is exaggerated on GPUs due to the parallel

nature of the hardware. Making accesses to memory across many cores increases

the chances of multiple write-backs being triggered around the same time.

GPUs rely on having adequate bandwidth available to hide latency across all

cores. When bandwidth saturates, code executing on the GPU will effectively

start to serialize, which negates the performance benefits of using a GPU.

To further improve GPU memory system performance, we would like to

use previous data and current memory bandwidth usage levels to determine a

better time to write back modified cache lines. A perfect solution would evenly

spread out all write-back traffic, preventing bandwidth spikes that could stall

our GPU cores.
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Figure 1.1: Example of cache cleaning choices, showing potential improvement
for bandwidth usage. Traditionally, the two options available were at the time
of the original write (i.e. a write through cache) or at time of the eviction (i.e.
a write back cache). In this example both write through and write back are
arbitrary when trying to optimize for bandwidth usage. We can reason that
the better choice is when bandwidth usage is minimal.
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Chapter 2

Background

2.1 GPU Architecture

GPUs are highly parallel architectures that aim to always have cores

running some useful piece of code. GPUs can be thought of as a CPU with

dozens of cores and quick context switching. As a core stalls for a memory read

or write, another warp (analogous to a lightweight process) is scheduled to that

core. If the hardware has enough work to schedule across all cores, maximum

throughput is achieved and memory latency can be effectively hidden. This

GPU model is highly efficient at parallelizing regular code patterns.

Warps can be broken down even further into threads. Each thread

represents a Single Instruction Multiple Data (SIMD) lane. The GPU will

have dozens of cores running code in parallel, and each individual core will

be running 32 or more instances of the same code as a thread. SIMD greatly

increases the amount of parallelization within the hardware, but, as the name

suggests, allows a core to only run a single instruction at a time across its

threads. Warps rely on their threads to exhibit regular code and data access

patterns. Memory stalls and divergent branch paths within threads both

negatively impact performance, effectively serializing code execution in the
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worst case. Dynamic warp formation [11, 12] and memory coalescing can

offset the effects of code and data divergence respectively, but these techniques

cannot completely account for the negative effects of poor code design and

inefficient memory access patterns.

Each core on the GPU has a register file, an L1 cache, and on chip

SRAM referred to as shared memory. All L1 caches are backed by a shared L2

cache, which in turn is backed by DRAM or global memory. Shared memory

can be thought of as per-process memory, it is fast and solely owned by the

warp that allocates it. Global memory is the only way for different warps to

communicate. This memory hierarchy helps to alleviate latency of memory

accesses. An access to the L1 or L2 cache is less taxing on warps than waiting

on a memory access to DRAM.

2.2 Cache Eviction and Replacement

Cache replacement policies are a highly researched and developed area

in computer architecture. Least Recently Used (LRU) is typically used as a

baseline metric in papers because it is easy to reason about and gives relatively

good performance for its simplicity [9]. However, LRU only learns on basic

information currently within the cache (there are no extra data stores for

previously evicted lines). Additionally, LRU is susceptible to poor performance

given pathological access patterns that can cause thrashing. Early attempts

to improve LRU such as Qureshi’s et al’s DIP paper [21] avoid the effects

of thrashing by augmenting LRU to occasionally insert lines into the Most
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Recently Used (MRU) position. Over the past couple decades we have seen

a trend from heuristic based approaches, such as DIP, to more theoretically

grounded replacement policies like EVA [4] and Hawkeye [15].

Belady’s OPT algorithm [5] is the optimal cache replacement policy

assuming no prefetching, identical cost for all misses, and knowledge of the

future. When determining what line to evict, OPT chooses the line that will

be reused furthest in the future. Belady’s OPT can be used as a ground truth

for algorithms attempting to predict optimal cache replacement choices. In

the related work section we will briefly elaborate on how Hawkeye calculates

OPT online with the OPTGen algorithm, and we will discuss how OPTGen

informs Hawkeye’s replacement decisions.

2.3 Deadblock Predictors

Deadblock predictors [18] are a natural evolution of basic replacement

policies like LRU. Deadblock predictors opt to predict what lines will no longer

be reused again in the cache rather than using locally optimal decisions like

LRU. Deadblock predictors predict on a variety of features such as timestamps

of hits and PC of the hit. We find deadblock predictors interesting for the idea

of precleaning because we believe they can be used to also help us predict a

write that benefits from precleaning. Predicting a deadblock is similar to

predicting when a line will not see writes again in the future. We hope to

learn from and alter deadblock predictors like Cache Burst [19] and EVA [4]

to predict when a modified line will not be written to again before eviction.
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Chapter 3

Related Work

This report draws upon many different concepts in computer architecture

cited above, but the three related works we find the most relevant are Hawkeye’s

original publication by Jain and Lin [15], Koo et al’s Access Pattern-Aware

Cache Management (APCM) paper [17], and two patents by Marvell and

Nvidia that are similar to our proposed idea of precleaning [13, 22].

3.1 Hawkeye

Hawkeye uses OPTGen as an online method for calculating the optimal

cache replacement policy. At every cache access, OPTGen tries to match two

sequential accesses to a cache line over the program’s execution. The time

between these sequential accesses represents how long a line needs to be in

the cache before getting a hit. For example, a 4-way set associative cache can

only have 4 of these cache access intervals overlapping before a line must be

evicted or bypassed. OPTGen, like Belady’s OPT, always prefers lines that

has its next access the earliest. When OPTGen sees a new access, it looks

back through the history of all cache accesses to find the last access to this

address. By looking back through the history of accesses, OPTGen construct
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the exact interval that this line needs to sit in the cache to be a hit. If adding

this interval would exceed the associativity of the cache, the line would not be

cached by Belady’s OPT.

When OPTGen decides to forego caching a line, Hawkeye negatively

trains this line’s associated feature negatively (cache unfriendly). Additionally,

Hawkeye positively trains (cache friendly) features associated with lines that

are successfully cached by OPTGen. When Hawkeye needs to evict a cache

line it prefers to evict the lines that were trained as cache unfriendly. When

all lines are cache friendly, Hawkeye falls back on RRIP to decide which line

to evict [16].

OPTGen is implemented in hardware using occupancy vectors. These

occupancy vectors keep track of the number of overlapping line intervals after

each cache access. When a cache access occurs, OPTGen looks up the last time

this line was referenced in the cache. To decide if the interval between these

accesses fits in the cache, OPTGen adds 1 to every occupancy vector element

that this line’s interval spans. If, after incrementing, the occupancy of any

element exceeds the associativity of the set, the interval in question is not

cached and all occupancy vector changes are rolled back. Unfortunately, with

this implementation of occupancy vectors, achieving 100% accurate calculations

of Belady’s OPT would require infinite memory. The original Hawkeye paper

shows that OPTGen can get within 99% accuracy of OPT when using cache

sampling and restricting the size of the occupancy vectors.
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3.2 APCM

APCM is a paper on GPU cache management improvements that our

research draws inspiration from for its cache sensitivity study and its application

to L1 caches. APCM provides key insights into the differences between CPU

and GPU caches. APCM detects when lines are likely to exhibit reuse between

warps of the same core. The cache management policy then pins or bypasses

lines to maximize reuse and avoid thrashing within the L1 cache.

To evaluate headroom, APCM measures how sensitive certain GPU

benchmarks are to cache performance through its cache sensitivity study.

Furthermore, APCM also introduces the idea of sampling warps for its replacement

policy meta-data. Rather than adding costly sampling mechanisms to all

warps, APCM instead assumes that, because most warps are executing identical

code, a single warp’s access patterns is representative of all the other warps

on the core. This gives us insight into what types of features will be useful for

Hawkeye to predict on. Finally, APCM is notable for affirming the idea that

more complicated cache replacement policies can be applied at the L1 without

significant performance costs. Typically, on CPUs, we would not see cache

replacement policies besides LRU replacement at the L1 level due to latency

and cost concerns. However, APCM shows that we can benefit from a more

complex replacement policy at the L1 level on GPUs.
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3.3 Precleaning Related Patents

In our research we found two patents that come close to describing

or fully describe our idea of precleaning. The patent by Marvell [22] gives

a high level idea of how a precleaning unit works, but unfortunately gives

us no insight into the problem due to the lack of details on prediction and

precleaning criteria. The patent filed by Nvidia [13] doesn’t quite cover our

idea of precleaning, but does attempt to optimize away the costs of write backs

by using an intermediate cache. From our research we don’t believe there is any

published prior work that has attempted to implement what we’ve described

as precleaning in this paper. It still remains to be seen if precleaning can

provide performance benefits on GPU caches.

12



Chapter 4

Solution

In this section we cover the specifics of both applying Hawkeye to GPU

caching and a cache precleaning system. Our approach for Hawkeye consists of

fine tuning and optimizing the predictor for a GPU environment and evaluating

the importance of replacement policies on GPUs. Additionally, we present the

basic building blocks required for a cache precleaning system such as a modified

deadblock predictor and a bandwidth usage prediction scheme.

4.1 Hawkeye on GPU

Adapting Hawkeye to GPUs requires proper training features and adapting

caching mechanisms to support said features. We implement Hawkeye with

two basic features: the Program Counter (PC) and PC combined with warp

ID (PC+WID). Furthermore, we implement and evaluate Hawkeye on both

the L1 and L2 cache.

The PC is a rich feature to train on in CPUs and is a common feature in

CPU cache replacement policies, prefetchers, and branch predictors. However,

kernels on GPUs tend to be much smaller and have fewer accesses to global

memory compared to processes on CPUs. These factors lead to a much smaller
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number of PCs that access global memory presumably making it harder to use

only PC as a feature for Hawkeye. To alleviate this lack of diversity in PC

values, we consider warp ID as an additional feature. If we combine PC with

the ID of the warp executing the memory access we can achieve a more fine

grained set of values to train our predictor on. We use Cantor pairing [20] to

act as a hashing mechanism between PC and warp ID. While Cantor pairing

gives decent performance for how simple it is, we believe Cantor pairing may

be inefficient in hardware because of the multiplication step involved. Refer

to Figure 4.1 for a definition of the Cantor pairing function.

Cantor(x, y) =
(x + y)(x + y + 1)

2
+ y

Figure 4.1: Cantor pairing function. For the purposes of Hawkeye we use the
Cantor pairing function as a rudimentary hashing function between PC and
warp ID.

In caches we see a trade-off between latency for our access and complexity

of our logic. Typically, on CPUs, complex cache replacement policies are

reserved for last level caches where high latency is expected and more memory

is available for storing meta-data. However, as we’ve seen in implementations

like APCM, L1 caches on GPUs can actually have complex replacement policies

while still seeing performance benefits. Furthermore, GPU on-chip memory

is shared between the register file, shared memory, and L1 cache and can be

used to store meta-data for the L1 cache replacement policies. The additional
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meta-data required to implement Hawkeye can come both from the L1 cache

itself or additional memory can be repurposed from the register file and shared

memory if needed.

4.2 Cache Precleaning

To successfully hide write traffic, a proper solution requires a prediction

of: the final write to a line, and the optimal time to commit precleans to

lower level memory. Given a trace of the program from previous executions,

one could perfectly reorder writes to minimize the impact write backs have

on the GPU’s memory systems. Our first prediction, determining the final

write to a line, considers all lines that are dirty and requires information

such as the history of writes to said line and the line’s reuse interval. Our

second prediction, the optimal time to commit precleans, involves looking at

current and past bandwidth usage and using markers in the code and the warp

scheduler.

4.2.1 Final Write Prediction

Deadblock predictors are useful for precleaning because they give us an

idea of how active a line currently is. It’s likely that a deadblock is a good

candidate for precleaning, because said line is predicted to have no reads or

writes in the future. Though we would like to be more precise than this, we

would like a mechanism to predict when a line is a deadblock for the purposes

of writes but is still being accessed by reads. Potentially important features

15



for this predictor include the history of writes to this line, the global history

of writes, and which lines will be evicted soon. We believe we can modify a

deadblock predictor to predict precleaning candidates by finding when the final

write for a line is executed. Currently, this is one of the crucial, unexplored

areas for the problem of precleaning. For our experiments we have a basic

system using LRU as the indicator for when a line should be precleaned.

4.2.2 Bandwidth Variation and Prediction

A common code pattern in GPU programs is to load data in from global

memory into shared memory, do parallel computations, then write back the

result of the computations to global memory. Because of the nature of parallel

programming, there are often times when different computation units need to

synchronize and wait for all other units before continuing. A convenient time to

do this synchronization is right after cores write back to global memory. This

synchronization ensures that all threads see the latest state of computation

before continuing. Please refer to Figure 4.2 for basic pseudo-code that shows

this coding pattern.

This synchronization technique yields a useful bandwidth pattern for

our technique of precleaning. As cores hit the synchronization barrier their

bandwidth usage will drop off, making the synchronization point an opportune

time to send out write backs. By getting hints from the compiler or looking

at the state of a warp a predictor can infer when threads are attempting to

synchronize. We also see much more pronounced dips in bandwidth usage

16



f o r ( i n t i = 0 ; i < N; i++) {
i n t new data idx = getNextPieceOfData ( threadIdx ) ;
i n t ∗ data = g l o b a l d a t a [ new data idx ] ;
doComputations ( data ) ;
g l o b a l d a t a [ new data idx ] = ∗data ;
syncThreads ( ) ;

}

Figure 4.2: Pseudo-code for common synchronization code pattern in CUDA
code. This data is loaded in from DRAM (as this is the only way data can be
shared across cores on a GPU) to local shared memory. When computations
are done and stored back to global memory, we need to manually synchronize
to prevent race conditions in the data.

between executions of kernels, though kernel termination happens much less

often compared to thread synchronization. Again, bandwidth usage prediction

still requires more research, for our experiments we usage a basic heuristic

based on the number of outstanding memory accesses to DRAM.
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Chapter 5

Experiments and Headroom

For our experiments we used GPGPUsim with a variety of programs

from the Rodinia 2.0 [8] and Lonestar 2.0 [7] benchmark suites. We chose these

programs to see a spread in both regular and irregular data access patterns

across our experiments. Later in this section, we present promising results for

applying Hawkeye to our GPU simulator environment. However, due to the

lack of both time and domain knowledge, we were only able to gather basic

headroom data for our idea of cache precleaning. In the following sections

we will describe the details of the simulator used, discuss properties of our

benchmarks and platform such as cache sensitivity and bandwidth usage, and

finally present headroom and actual performance improvements using Hawkeye

and precleaning.

5.1 Simulator

We use the GPGPUsim [3] simulator for our experiments, targeting

the provided configuration that approximates the Nvidia Fermi architecture.

This architecture supports 15 cores, each core consisting of 32 SIMD lanes

and a maximum of 48 scheduled warps. Each core has a private 16 KB, 4-
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way set associative L1 cache with 128 bytes lines, and the entire system has

a shared 786 KB, 8-way set associative L2 cache with 128 byte lines. The L2

cache is split into 12 portions and assigned to the 12 separate DRAM memory

partitions. Finally, the L1 cache acts as write-through cache while the L2

cache acts as a write-back cache.

GPGPUsim runs CPU code natively, then intercepts CUDA library

calls in order to perform full functional simulation (as opposed to a trace-based

simulation). Because GPGPUsim doesn’t provide an option for trace-based

simulation, we cannot skip warmup cycles and simulations take significant

amount of time to run to completion. Due to these restrictions, simulations

were sometimes cut short and compared against a baseline that ran for the

same amount of time. Unfortunately, this means that our results are often

extrapolated and could be inaccurate.

The version of GPGPUsim we use is a slight modification of the 3.0

release that has basic support for CUDA 5.5. This modified version is used in

order to be able to run the Lonestar 2.0 benchmark suite. Furthermore, we

made use of the AerialVision [2] visualization software provided with GPGPUsim,

but we made minor modifications in order to analyze bandwidth patterns while

researching precleaning.

The baseline caches within the simulator are all managed by a standard

implementation of LRU (no pseudo timestamps are used). Furthermore, as is

common on GPUs, the caches have no prefetching and they only cache global

reads/writes (accesses to shared memory are on chip and are thus equivalent
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to an L1 access). All atomic operations skip the L1 cache, and writes cause

evictions from the L1 cache.

5.2 Cache Sensitivity

Cache sensitivity tells us how much cache performance affects a given

benchmark. We would expect that a benchmark with heavy code divergence

or a small memory footprint would see little to no improvements even from

an optimal cache implementation. By enlarging the cache and measuring the

change in instructions per clock (IPC) over the baseline, we can get a rough

approximation of how much a given benchmark relies on the cache. If we

see little to no improvement when enlarging the cache, we wouldn’t expect

a change in replacement policy to have much affect on performance either.

Benchmarks with large IPC improvements have high cache sensitivity and

benchmarks that do roughly the same as baseline are considered to have low

cache sensitivity. In our Hawkeye experiments, we would like to see large

performance improvements on benchmarks that have high cache sensitivity,

but see performance on par with LRU in benchmarks with low cache sensitivity.

This experiment is motivated by the same study done by the APCM paper as

referenced in our Related Work section earlier.

To measure L1 cache sensitivity, we quadruple the size of the L1 cache

and compare IPC performance against our baseline cache described above. We

also repeat this experiment for the L2 cache. Our results for this experiment

are presented in Figure A.1 in Appendix A. Interestingly enough, we see that
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a number of graph algorithms including MST, SSSP, and BFS exhibit high

levels of cache sensitivity. Graph algorithms on GPU tend to do poorly due

to their irregular and hard to predict memory access patterns. The other

interesting thing to note here is that between two runs of bfs we see different

levels of cache sensitivity, this could be due to how the two data sets were

generated or the differing sizes of the data sets. We also see a performance

drop in some benchmarks when enlarging the size of the cache. We believe

this strange result can be explained by Belady’s anomaly [6].

5.3 Hawkeye

For Hawkeye on GPU, we first evaluate both PC and PC combined with

warp ID as training features by comparing prediction biases. Next, we evaluate

real performance impact by measuring the change in miss rate and IPC over

the LRU baseline. Overall, we find that Hawkeye does well compared to LRU,

and that, despite our initial thoughts, PC provides better performance than

the PC+WID feature at the L1 cache level. Though the best feature to use at

the L2 level isn’t as obvious a choice.

To begin, we measure the per-feature bias of the OPTGen algorithm

for both the PC and PC+WID features. Per-feature bias essentially tells us

the prediction quality of our chosen feature, it tells us how often predictions

on a feature agree with each other. We note that the HOTSPOT benchmark

has a 100% per-feature bias. We believe this high bias is caused by a well

optimized code base that provides a small amount of PC values (a max of 4 in
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our simulations). The full set of per-feature biases for L1 and L2 caches can

be seen in Figures A.2 and A.3 respectively.

Figure 5.1: IPC improvements over baseline when applying Hawkeye to L1
caches. Improvements are measured with both PC and PC+WID features
and also with default (4-way associate) and fully associative OPTgen training.
FA denotes the fully-associative OPTgen training.

An important difference between the PC and PC+WID features that’s

not displayed in our bias metric is the larger number of values being trained

on for PC+WID. In Figure A.4 is a plot of the number of unique values seen

per feature. This large increase in potential feature values requires adequate

hardware to track, and more values being trained typically leads to slower

training times. In Figure A.5 we present the number of unique PC values
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Figure 5.2: IPC improvements over baseline when applying Hawkeye to L2
caches.

seen by OPTGen when running on a last level cache on a CPU using SPEC

2006 [14] benchmarks and ChampSim [1]. We note that the number of unique

values seen for PC+WID on GPU and PC on CPU are both on the same

order of magnitude. We believe there is more room for complex feature

experimentation, especially involving dynamic warp IDs or better hashing

algorithms.

In our full performance tests we measure two important metrics: post-

warmup cache miss rate, and IPC improvement over baseline. For the post-

warmup miss rate metric, we ignore all cache misses before a specified warmup
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time, as most misses at the beginning of a program are compulsory and cannot

be avoided. We find that a post-warmup time of 3,000,000 cycles fits most of

the benchmarks being used (with the exception of HOTSPOT which ends

before 3,000,000 cycles). We present the miss rate improvements over LRU

for L1 and L2 caches in Figures A.6 and A.7. As mentioned above, PC

performs better than the PC+WID feature for all L1 caching benchmarks.

We present IPC improvements for L1 and L2 caches in Figures 5.1 and 5.2.

IPC improvements appear to roughly correlate with our sensitivity metric from

before, for instance KMEANS does the best in both the sensitivity study and

in our L1 IPC measurements. However, LUD, which exhibited high sensitivity

saw almost no difference from applying Hawkeye at L1.

The performance gains seen at the L1 level are encouraging, as we see

significant performance improvements on a few benchmarks. Hawkeye applied

to L2 caches gives less significant results, but this is mostly in line with what

we found in our cache sensitivity study above. It appears that PC is currently

the best feature to use with Hawkeye on GPUs at both the L1 and L2 level.

Furthermore, we believe that training OPTgen on a fully-associative cache

isn’t a good choice as we consistently see performance drops compared to the

default OPTGen.

Overall, we see that naively applying Hawkeye to L1 caches gives decent

performance improvements. While it is unclear if the cost of Hawkeye at the

L1 level can be justified, we believe a simplified, fine-tuned implementation

of Hawkeye can give significant performance improvements for a subset of
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GPU problems. However, Hawkeye applied at the L2 cache currently gives

inconclusive results. On average we see little to no performance improvements

and even large dips in performance depending on the benchmark. From these

results, we believe the focus of more complex cache replacement should be put

towards the L1 cache rather than the L2 cache.

5.4 Precleaning

The results for our idea of precleaning include a coarse measure of

headroom and performance tests of the heuristic based predictor we tried.

The headroom tests give a idealized view of how much room we have to

improve. Like our Hawkeye results, we measure performance benefits in IPC

improvement over baseline with no precleaning enabled.

For our headroom study we measure performance improvement when

assuming no cost for executing a write-back. In an ideal scenario, a precleaner

would be able to completely hide the effects of write-back being sent to main

memory. This experiment also gives us an idea of which benchmarks are

bandwidth sensitive, much like our cache sensitivity study earlier. We refer

to Figure 5.3 for the results of the headroom study. Rodinia’s BFS sees a

large increase in performance due to the extra bandwidth available. Rodinia’s

BFS is a clear outlier from the other benchmarks, we hypothesize that this is

caused by a underutilization of shared memory causing all writes to go through

global memory. If our hypothesis is correct, this would lead us to believe

that precleaning has the most potential improvements on unoptimized, ported
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code that does not properly make use of CUDA specific concepts like shared

memory.

Figure 5.3: IPC improvement over LRU when write back bandwidth costs are
negated. This figure shows us idealized headroom for precleaning.

We also evaluate our basic implementation of a precleaning unit. Referring

to Figure 5.4 we see little impact to performance with our implementation of

a precleaning unit. While we see a small increase in performance from BH, we

see a more significant decrease in performance from Rodinia’s implementation

of BFS. These poor results highlight the difficulty of fine tuning a predictor

for precleaning. Much like prefetching, it is easy to make a precleaner too

aggressive and actually hurt performance.
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Figure 5.4: IPC improvement over LRU when cleaning the least recently used
line across all sets.

Our idea of precleaning certainly needs more evaluation and exploration

of prediction mechanisms beyond what is provided in this report. We believe

with more time and better domain knowledge we could make real performance

improvements. Though it remains uncertain if these performance improvements

would be significant enough to warrant the cost of an entirely new prediction

unit in the L2 cache. This prediction unit could be costly as it needs to

evaluate precleaning candidates, clean lines, and predict bandwidth usage on

a regular basis.

We believe that, right now, precleaning isn’t a viable approach for
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improving memory system performance on GPUs. While we can currently

achieve small improvements in performance, the problem space is ill defined

and the predictors will be hard to tune. If GPUs become more starved for

bandwidth in the future we believe this would give us the headroom required

to make precleaning worth the effort.
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Chapter 6

Future Work and Remarks

In this section we touch on future work and next steps for both Hawkeye

and precleaning. We also talk about lessons learned from the research and

how the author can improve their research in the future. Furthermore, we give

suggestions for anyone hoping to do similar research on GPUs.

6.1 Future Work

While the results from the previous section show promise for both

Hawkeye and precleaning applied to GPUs, there’s still considerable work

before either of these ideas can be fully evaluated. Hawkeye appears to give

decent performance improvements, but it needs more tuning of the predictors

and features. Precleaning also shows promising headroom, but we would like

to explore better predictors and more fitting metrics for bandwidth usage and

data divergence.

Hawkeye gives good results, but the performance impact of the additional

meta-data store still needs to be fully evaluated, and we need to explore

potentially better OPTgen training features. Furthermore, it is unclear whether

Hawkeye will perform well if applied to both the L1 and L2 caches simultaneously,
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and we would also like to see if we could apply warp sampling techniques as seen

in APCM. Given the results in the previous section, we are unsure whether or

not the performance gains are worth the cost of implementation when APCM

seems to give better results. Finally, we would like to evaluate a larger set

of benchmarks. Jeff Diamond’s thesis uses the Parboil benchmark suite in

addition to Rodinia, noting that benchmarks like pns show large usage of the

cache [10]. We believe Diamond’s evaluation of cache intensity and reuse across

benchmarks can help us select a more representative selection of benchmarks

in the future.

Precleaning, as mentioned before, shows promise, but it requires a

significant amount of additional work to fully evaluate. Currently one of the

limiting factors to additional research is a lack of well defined metrics that can

easily measure performance improvements. IPC improvements and memory

bandwidth usage are both fairly coarse grained metrics. We would like to

find a metric, for instance, that gives a clear indicator of memory stalls and

data divergence in each benchmark. Being able to measure the level of data

divergence would allow us to see headroom and improvements for a precleaner,

rather than bandwidth which doesn’t give us an idea of our headroom.

6.2 Remarks and Lessons Learned

We believe that the results of this research will be useful, but we

are slightly disappointed by the amount of progress made and how we left

certain avenues of research unexplored. One of the biggest hurdles to overcome
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was understanding both the landscape of GPU programming and the tooling

provided for GPU simulation.

Our suggestions to others hoping to pick up from this research or

study other GPU architecture topics: work with a known environment, use a

powerful, highly parallel machine, and explore alternate tooling. GPGPUsim

is quite old at the time of writing, and setting up the simulator reliably will

only get harder as time goes on. Finding the appropriate versions of gcc, g++,

and CUDA can be difficult on modern operating systems (Ubuntu 16.04 LTS).

For this reason, if one decides to use GPGPUsim, we suggest working with a

known environment that has been successfully used for GPU research in the

past. We also suggest using a highly parallel machine. GPGPUsim will only

use a single core per simulation, but each simulation can take upwards of 24

hours with no option for skipping warmup periods. One can save a lot of time

by running all relevant benchmarks in parallel over the course of a day.

Finally, as mentioned before, GPGPUsim hasn’t received substantial

updates in almost 4 years. GPGPUsim was vital for getting the results given

in this paper, but in the future it will only get further from state of the art GPU

architecture. Thus, we suggest exploring simulators that are more regularly

updated and maintained.
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Chapter 7

Conclusion

In this research report we evaluated the cache replacement policy Hawkeye

on GPUs and provided coarse headroom for the idea of precleaning. We believe

both of these ideas can provide benefits to GPU performance, but current

implementations are fairly situational and require the code being run to be

sensitive to caching performance and bandwidth usage. We conclude that

Hawkeye will provide the most benefit when applied at the L1 cache with

just PC as the feature for OPTgen. However, from our performance impact

experiments, we believe there’s more room for improvement especially with the

L2 cache replacement policy. Furthermore, our idea of precleaning requires

more sophisticated predictors and metrics before it can be fully evaluated,

and we are unsure if this effort is worth the small increases in performance

indicated by our headroom study.
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Appendix A

Hawkeye Experimental Results

Figure A.1: Cache sensitivity for both L1 and L2 caches. These numbers are
percentage improvements over in IPC over baseline when quadrupling the size
of each cache. Replacement for all cases is done with LRU.
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Figure A.2: Average per-feature prediction bias for L1 caches. The bias
denotes the percentage of truth values that agree with our predicted value
of cache friendly or unfriendly. Here 50% would be equivalent to a random
prediction. The final column denotes our average per-feature bias across all
benchmarks.
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Figure A.3: Average per-feature prediction bias for L2 caches.
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Figure A.4: Average unique values per feature at L1 and L2 caches.
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Figure A.5: Number of unique PC values seen on CPU SPEC Benchmarks.
Notice that these numbers are roughly on the same order of magnitude as the
number of PC+WID hashed values we see on GPU.
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Figure A.6: Average miss rate improvement over LRU for L1 caches. This
improvement is measured in percentage points over the miss rate observed
with LRU.
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Figure A.7: Average miss rate improvement over LRU for L2 caches. This
improvement is measured in percentage points over the miss rate observed
with LRU.
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