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Abstract 

 

Predikt:  A Simpler Machine Learning Experience   

 

Piyush Prakash, M.S.E. 

The University of Texas at Austin, 2015 

 

Supervisor:  Adnan Aziz 

 

With the exponential growth in volume of data being generated by the businesses 

today, the need for automated systems to facilitate decision making is growing. In many 

cases, the volume of data has reached the scale where it is not humanly possible to 

analyze the relevant data using traditional processes, which are dependent on manual 

intervention, to reach a good decision. The increase in diversity of data sources (internal, 

external, social, sensors, etc) has added significantly to the challenge of decision making. 

Predikt presents a simplified approach for the automation of decision making in 

organizations using Data Mining and Machine Learning techniques with minimal human 

intervention. Human Intervention, when required, will typically be to accept, reject or 

override a decision already made by the machine. Predikt front-end as well as back-end is 

able to adapt to end users unique requirements. Predikt is able to render User Interface 

dynamically based on User Inputs, while backend is able to do intelligent data processing 

such as binning (for numeric columns) and multiple model evaluation.            
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Chapter 1:  Evolution of Big Data 

Growth of data in organizations is reaching proportions beyond the ability of 

commonly used software tools and processes to capture, curate, manage, and process data 

within a tolerable elapsed time [1,2].  Big data is a constantly moving target, as of 2015 

ranging from a few dozen terabytes to many petabytes of data are being generated today. 

According to a recent study by IBM, every day, we create 2.5 quintillion bytes of data — 

so much that 90% of the data in the world today has been created in the last two years 

alone. This data comes from everywhere: sensors used to gather climate information, 

posts to social media sites, digital pictures and videos, purchase transaction records, and 

cell phone GPS signals to name a few [4].  Big data is a set of techniques and 

technologies that require new forms of integration to uncover large hidden values from 

large datasets that are diverse, complex, and of a massive scale [3]. 

Companies that are to survive and be successful in this day and age of data 

abundance are the ones that will learn how to harness this data to drive intelligent 

decision making. A common denominator among the successful companies of today is 

data driven decision making. From Amazon to Walmart, from Google to Facebook, the 

focus is to enable data driven decision making that is not bound by the limitations of 

human mind (and bandwidth), but is powered by the scalability of the modern 

infrastructure and computing capacity. These companies have derived significant value 

by learning to harness Big Data. Predikt aims to bring the same capability and tools to 

mass market.  
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1.1 CURRENT STATE OF DATA SCIENCE  

 Data Sciences is a critical component to solving the explosive growth of data, but it is 

also no secret that the volume, variety, velocity and veracity (4 Vs of Big Data) of data is 

far outpacing the capacity of manual analysis and conventional data sciences tools. On 

top of it, practice of data science is widely considered a mysterious magical art far 

beyond the reaches/understanding of common business users. The commonly held 

perception (and to a great extent reality) regarding Data Sciences is that it requires an in-

depth understanding of the mathematics and complex algorithm to be able to derive 

meaningful value out of it. Although large companies are able to invest into building 

dedicated teams with this specialized skillset, this current state has become a bottleneck 

in the wider adoption of Data Sciences, especially by small and medium sized companies. 

Thus, opening up an opportunity for us to present a framework that relies on automation 

and simplification as its guiding principles.    

 

Challenges: There are several challenges in the current state: 

a. Needs heavy investment: Although large companies are able to invest into 

creating a dedicated team, small and medium sized companies are not able to 

invest into a dedicated team of Data Scientists, and typically end up relying on 

traditional gut-driven decision making.  

b. Lack of skilled resources: Growing realization among companies about the 

criticality for data-driven decision making has also led to significant deficit in the 

market between demand and supply of the trained data scientists. It gets even 

more difficult to find the right skillset if it is a complex domain, and requires data 
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scientist to also understand the nuances of the business to be effective and 

successful.  

c. Disconnected Decision Making: Even if a company has the capacity to invest into 

building a dedicated team of data scientists, there is almost always a disconnect 

between this team and the group that is responsible for building/envisioning the 

product line. For example, the data analysis and modelling team within an online 

retail business may be perceived as a scientific organization and their feedback 

not incorporated into deals and offerings being made on their website. The 

perception may also be because of a previous attempt at using data mining to 

drive decisions may not have yielded desired results, and thus creating a 

resistance in the minds of stakeholders to further optimize it. [9]  

d. Real-time Decision Making: Most of the time, team that is responsible for data 

mining does not have real-time access to the data. They try to make 

recommendations based on data that is old (generally by few weeks and 

sometimes by months) and does not reflect the current market situation. This 

could be because the systems/databases in many organizations exist in silos and 

data scientists do not have direct access to that data. They rely on operations or IT 

to bring that data into a central warehouse to be able to get access to the data. 

There is also lag in getting access to data, and cleansing/converting it in a format 

where it can be fed to a machine learning engine. The delay increases if data 

needs to be pre-processed by a batch job or map-reduce engines like Hadoop, 

which is performed by IT teams.    

 



4 

 

1.2 CASE FOR SIMPLIFICATION   

For Data Driven Decision making to be a norm and not an exception, it is critical that the 

end users should be able to learn and apply the underlying concepts behind Data Sciences 

and Machine Learning even without a background in mathematical modelling and 

Statistics. The user experience should be seamless and presented to them in a format that 

is intuitive, and in the language of their domain. 

1.3 CASE FOR AUTOMATION  

 If companies and users have to start trusting data and the decision being made by 

algorithms, it is important to reduce the lag time between choices that users make (input 

to the model) and the re-training of model. Additionally, steps need to be taken to ensure 

that the system is able to take corrective actions and be able to make the right choices on 

behalf of the users. For example, the system should be able to evaluate multiple 

algorithms based on real-time inputs be able to apply the right model to maximize the 

users ROI and satisfaction. Automation plays a critical role in ensuring this seamless 

interaction between users and machines, and enhancing user confidence in machine’s 

ability to take decisions. In such a scenario, user’s key role becomes that of providing 

inputs as needed by the algorithm, and oversight of the outcome.       

1.4 CASE FOR FLEXIBILITY  

 For a solution to be adopted by the masses, it needs to be flexible to support multiple 

domains without manual intervention. For example, the user interface and prediction 

options shown to an Oil & Gas user should be customized for that domain and rendered 

dynamically based on data being provided by the end user. 
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1.5 PROJECT CONTRIBUTION 

 This project was able to accomplish the following: 

a. Establish a vision for simplification for adoption of Machine Learning in 

organizations that do not have the resources to invest into a dedicated Data 

Science team and/or tools.  

b. Design of an application that meets the requirements derived from the guiding 

principles – Simplification, Automation and Flexibility. 

c. Implementation, QA and Release of Predikt - An application that aims to bring 

the power of Machine Learning and Predictive Analytics to mass market. 

  

1.6 ORGANIZATION OF THIS REPORT 

The next chapters of this report are organized as follows: 

 Chapter 2 - Vision: This chapter presents the high level vision for Predikt by 

laying out the guiding principles, requirements and features. 

 Chapter 3 - Application Design: This chapter presents the high level design for 

Predikt including Mockups, User Stories, User Flows and Technical Design.  

 Chapter 4 – Project Results: This chapter presents various qualitative as well as 

quantitative results from the project including screenshot and Software 

Engineering Metrics.   

 Chapter 5 - Conclusion: This chapter concludes the report by discussing future 

work, lessons learnt and what went right in the project.  
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Chapter 2:  Vision 

2.1 GUIDING PRINCIPLES:  

Predikt attempts to solve the challenges discussed in the previous section by following 

these Guiding Principles: 

a. Simplicity 

b. Automation 

c. Domain Agnostic  

 

Following requirements are derived from the above stated guiding principles:  

a. A business user with no background in data science should be able to use the 

application with minimal training.  

b. Should be able to support various domains (healthcare, finance, Oil & Gas, etc) 

with minimal configuration. 

c. User Interface should be presented to user in the context/language of their 

domains.  

d. Should enable seamless publishing of latest data into the engine. 

e. Model re-training and comparison between various models (to pick the right 

model given latest data) should be abstracted from the end-users. 

f. Should allow end users to override the decisions made by the engine (for 

example, user can chose to use a different algorithm from the one recommended 

by Predikt to do their prediction).   
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2.2 FEATURES: 

Deriving from the high level guiding principles and requirements, following is the 

list of features needed in Predikt. These features can be divided into two categories:   

2.2.1 Predikt Responsibility:  

 These are the set of features that Predikt should be able to accomplish without any 

input/action from the end users. The output form these features can be made available to 

end users for review and actions, but the process itself should be automated behind the 

scene.   

 Rendering of UI based on user’s domain and Input data format  

 Intelligent data pre-processing   

o Example - Binning for Numeric parameters, Handling of 

outliers/negative/null values, training and test set identification, 

etc.   

 Training of multiple models based on latest data provided by the customer 

 Comparison of training outcome and recommendation of the optimal 

model  

2.2.2 Customer Responsibility: 

These features require an action or input by the end users. These will need a user 

interface for end users to perform these actions. These features can be further divided into 

the end users role and the level of familiarity with Machine Learning models.   

i. Basic Features:  

These features require no previous data science background and can be performed 

by a business user. 
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 Initial Setup: This is the one time step to configure Predikt specific to 

customer’s domain/requirements. Predikt team will work with end users to 

finalize their specific prediction requirements, input data format, relevant 

models to be evaluated, frequency of data refresh, etc. Predikt will be 

configured based on the collected requirements.       

 Ongoing Responsibility: Customer will be responsible for providing 

latest data to Predikt on an ongoing basis. Predikt will use this data to train 

and compare various models outcome, which will result in a 

recommended model for the customer that can be used for prediction (till 

new input data is provided).    

 

ii. Advanced Features: These features require data science background, and 

should be performed by an advanced/designated user. 

 Override the recommended model: Users will be able to review various 

technical parameters related to models, that were retrained based on the 

latest data, including the recommended model. User will be able to 

override the Predikt recommended model  

 Configure data pre-processing rules: Advanced users will be able to 

override default data pre-processing rules, such as number of bins for 

numeric columns, how to handle outliers, negative and null values.    
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Chapter 3:  Application Design   

Following chapter presents the high level design for Predikt. The sections included in this 

chapter are: 

a. UI Design (Mockups)  

b. User Stories  

c. User Flow  

d. Technical Design  

 

3.1 UI DESIGN 

 Mockups were prepared in Balsamiq to envision the overall user experience for 

Predikt.  

 Mockup 1 shows the overall layout for the Main page. The main page is divided 

into three main sections: 

1. Model Training - This section is used to upload new data and setup data pre-

processing rules. . 

2. Model Training Status Check -  This section is used to track the status of the 

model training. 

3. Model Execution - This section is used to predict an outcome by providing input 

parameters.  

   

 
Figure 1: Main Page Layout Mockup 

Mockup 2 shows the detailed Main page with the controls filled into the three sections 

highlighted in Mockup 1.  
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Figure 2: Main Page Mockup 

 

Design for each of the three sections is discussed below:   

 

3.1.1 Data Upload and Pre-processing Rules Setup  

This section is (marked at Section 1 in the Main Page Mockup) users to upload new data, 

and set data pre-processing rules. A new uploaded dataset and the associated pre-

processing rules can be labeled by giving a name (Job Name). Finally, a new model 

retraining job is kicked-off by clicking the “Retrain Model” button from this section.   
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Figure 3: Section 1 Mockup 

Additionally, user is also given an option to pick the columns from the new dataset that 

they would like to incorporate into the model (as Input Parameters) by providing the 

screen below: 



12 

 

 
Figure 4: Pre-processing Rules and Field Selection Mockup 

The first column of the grid shows the field (excel columns) that exist in the uploaded 

dataset. Users are able to select the Input field for the model training by dragging and 

dropping the fields from the left column to the right column.  
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3.1.2 Monitor Model Training Job Status  

This section is (marked at Section 2 in the Main Page mockup) is used to show the status 

of data upload as well as the status of latest model training job that submitted by the user. 

It also shows the list of various models that were evaluated for this job, and the 

recommended model. Following figure shows the controls in Section #2 when the page 

initially loads.   

 

 
Figure 5: Section 2 - Model Training Status Mockup 

 

The button titled “Detailed Status” should bring up a dialog box (mockup shown below) 

that shows statistical output related to the various models (such as Logistic Regression, 

Decision Tree, Support Vector Machine, etc) that were evaluated for this job.  
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Figure 6: Detailed Model Retraining Status – Data View Mockup 

The dropdown titled “Jobs List” allows user to see the Statistical output related to model 

evaluation for the latest model training job, as well as any previous jobs that the user 

would have run. “Recommended Model” textbox shows the model recommended by the 

system, and “Selected Model” shows model that was selected by the user to override the 

recommended model. If user has not overridden the recommended model, “Selected 

Model” textbox will be shown same value as the “Recommended Model” textbox. A 

DataGrid shows the list of models that were trained for the uploaded data along with the 

statistical output that were used for evaluation (and comparison) of the models.  

The grid view is the default view for this dialog box. The radio button in the first column 

titled “Select” shows the model recommended by the system, and can be used to select a 

different model to be used for model prediction. User clicks the “Save Changes” button 

to save the model selection.   

Additionally, user can switch to the Chart View by clicking the “Chart View” button as 

shown below:   
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Figure 7: Model Training Status - Chart View Mockup 

Chart View enables a user to compare various output related to model retraining in an 

intuitive fashion.  

A short primer on the Statistical output data from model training jobs, including the 

model evaluation and comparison logic, is provided in the “Application Flow” section 

below. 

 

3.1.3 Model Execution  

This section (marked at Section 3 in the Main Page Mockup) is used to predict an 

outcome by providing input parameters. By default, it uses the latest trained model to do 

the prediction, but users have the option to select one of the previously trained models to 
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do the prediction (and compare the outcome). The section looks like below (with no input 

parameters) when initially the page loads: 

 

 
Figure 8: Model Execution - Section 3 

The section “Input Parameters” is empty as no model training job has been created yet. 

Users can select one of the previous jobs from the dropdown, or create a new job (in 

section 1). On selecting a particular job from the dropdown, the “Input Parameters” 

controls is dynamically loaded with the datalist control, dependent upon the data 

uploaded by the user or the columns/fields selected by the user for model training (in 

section 1). Following image shows an example of Input Parameters section rendered 

based on the fields selected in the previous screenshot shown in Figure # 4 above.  

 

 
Figure 9: Model Execution – Model Inputs Rendered Mockup 
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User can select the value from the datalist controls, and click the “Predict” button. At this 

point, system uses the “Selected Model” for the given job, and shows the prediction 

outcome in the “Model Output” textboxes, as shown in Figure 10. 

 

“Model Output –Simple” textbox shows the output in a simple format (For example, 1 or 

0 for a classification job) whereas “Model Output –Detailed” shows complete details of 

the input sent to the machine learning service, and the output received (including 

technical details such as “Scored Probabilities”).  

 

 3.2 APPLICATION FLOW  

Following section presents the user flow for Predikt as well as Use Cases from two 

different domains.  

The diagram below shows the typical user flow in Predikt:  

 

 
Figure 10: Application Flow 

Following section dives deeper into each step:  

a. Problem Definition: 

This is a one-time initial setup that will be done by customers to configure 

Predikt to meet their objectives and requirements. This step includes: 

i. Use Case Definition: This is a domain specific step when user will need to decide 

the input variables (features/instances) as well as the output variable 
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(outcome/classes) that they would want to predict. Following diagram presents 

use cases from two different domains.  

 
Figure 11: Use Cases 

    

The first use case is for the financial domain, where a lending company is trying 

to evaluate the Consumer Credit Risk by training the model with input parameters such as 

Income, Location, Credit History, Age and Existing Customer. 

      

The second use case is from Oil & Gas domain, where an E&P (Exploration and 

Production) company is trying to predict the probability of ESP (Electrical Submersible 

Pump) failure by training the model with input parameters such as Well Type, Drill Type, 

Rock Type, Basin and Hours in Operation.     
  

Upload Data

INPUT

Income

Location

Credit History

Age

Existing Customer

Predikt
OUTPUT

Credit Risk 

Rating

Upload Data

INPUT

Well Type

Drill Type

Rock Type

Basin

Hours In Operation

Predikt
OUTPUT

ESP Failure

Use Case 1: Financial (Credit Risk Evaluation)

Use Case 2: Oil & Gas (Electrical Submersible Pump Failure Prediction)
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ii. Input data format setup: Users will specify the format of data that will be 

provided to Predikt on a regular basis. This will include file format (excel, CSV, 

real-time database connection) as well as fields that they will provide in the file.  

iii. Pre-processing Rules:  

Users will be able to setup pre-processing rules such as number of bins for numeric 

columns, how –ve and null values will be handled in the application, etc). 

Predikt provides an intuitive UI for users to perform this initial step for data input as 

well as pre-processing rules setup.  

 

b. Upload Data: 

This is the key responsibility for the customer on an ongoing basis. For 

Predikt outcome (prediction) to be accurate and relevant one of the expectation from 

the customer is that latest data will be provided on a frequent basis. This will help 

Predikt automation engine to get trained on the latest data, and outcome will reflect 

the latest trend in the customer’s domain.   

Predikt currently supports data upload using Excel and CSV files as well as 

exposes web services to support automated data upload.  

 

c. Train Models 

In this step, Predikt will apply various modeling techniques to the provided data and 

calibrate the model parameters to the optimal values. The output of this step is 

typically in the form of Statistical output such as Precision, Accuracy, Recall, FScore, 

etc (explained in the next section). 



20 

 

Predikt completely abstracts the end users from the technical complexity of training 

various models. 

 

d. Score Models 

Evaluation of various models based on output parameters, and be able to recommend 

the most optimal algorithm to maximize user’s return is one of the core value 

proposition of Predikt. Users should be abstracted from the implementation 

differences between various models and underlying complexity. User’s choices (if 

any) and level of interaction with the framework should be in context of domain. For 

example, the information given to users should be in the form of “Improvement in 

Prediction Outcome in one model Vs Other” as opposed to “chi-square test result of 

one model Vs other”. 

Following is a short introduction to some of the common evaluation metrics for a 

classification algorithm. Detailed discussion of various models and their respective 

metrics is out of scope of this report.  

Model Performance Evaluation: 

Although there can be many different metrics to measure the performance of a 

classifier, some of the most common ones try to estimate the Model performance 

based on correctness of prediction. They are: 

1. True Positives (TP)  

2. True negatives (TN)  

3. False positives (FP) 

4. False negatives (FN). 

 



21 

 

Following Confusion Matrix can help us understand these concepts much better: 

 

 
Figure 12: Confusion Matrix 

Positives and Negatives reflect the two possible outcomes in a 2-class 

classifier algorithm. For example, for the financial lending use case explained above, 

the Positive outcome can be that the requester is credit-worthy whereas negative 

outcome can be that requester is not credit-worthy.  

 True positives and True Negatives are the observations which were correctly 

predicted (out of total observations). 

 A false positive is an error in which a predicted outcome improperly indicates 

presence of a condition, such as “credit-worthy” (the result is positive), when 

in reality it is not, while a false negative is an error in which a test result 

improperly indicates a negative outcome (not credit-worthy), when in reality it 

is present.   

Although correctness of prediction measures explained above are basis for many 

other output, the model training output for end users is typically expressed in below 

terms: 

 Accuracy: Accuracy is perhaps the most intuitive performance measure. It is 

simply the ratio of correctly predicted observations. 
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 Precision: Precision looks at the ratio of correct positive observations. The 

formula is:  

True Positives / (True Positives + False Positives). 

 Recall: Recall is also known as sensitivity or true positive rate. It is the ratio of 

correctly predicted positive events. Recall is calculated as:  

True Positives / (True Positives + False Negatives). 

Note that the denominator is the count of all positive events, regardless whether 

they were correctly predicted by the model. 

 F1 Score: The F1 Score is the weighted average of Precision and Recall. 

Therefore, this score takes both false positives and false negatives into account, 

and is a good reflection of the model performance. 

 ROC Curve: The curve is created by plotting the true positive rate against the 

false positive rate at various threshold settings. The threshold setting is the cut-off 

mark if the classifier output is not a choice between  two labels, but is a real value 

(continuous output), to determine the outcome.  

 AUC: AUC stands for “area under curve”, and as it is name implies, it refers to 

the amount of area under the ROC curve, which theoretically is a value between 0 

and 1. AUC metric is a good tool to compare multiple learning models. Since 

ROC curves of two models usually do not cross each other, hence when 

comparing two models, the one with a higher AUC will be the better one 

regardless of the threshold setting. Compared to the statistical measures of 

accuracy, precision, recall and F1 score, AUC is independence of threshold makes 

it uniquely qualified for model selection. 
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 Lift: Gain or lift is a measure of the effectiveness of a classification model 

calculated as the ratio between the results obtained with and without the model. 

            

By default, Predikt uses AUC for model scoring and recommendation, but can be 

configured to use any of the other measures. It also allows for end users to override 

the recommended model after evaluating other performance measures.  

 

e. Publish Model 

Once various models have been evaluated for the best return, the next step in the 

process is to publish (deploy) the models to a production environment. This step 

makes the models available to end users for consumption.  

Predikt completely abstracts the end users from the technical complexity of deploying 

and making the model available for consumption. 

  

f. Consume Model 

The final step in the process is the consumption of published model by end users.  

Predikt facilitates this step by: 

i. Providing UI for users to select input parameters and be able to see the 

prediction outcome.  

ii. Providing web services that users can consume directly from their custom 

application. 
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3.3 TECHNICAL DESIGN  

  

Following section presents the high level architecture for Predikt and dives deeper into 

various components.  

3.3.1 High Level Architecture  

Predikt follows a 4-tier architecture as shown below: 

 

 
Figure 13: Technical Architecture 
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UI
(ASP.Net)
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(Service)

Domain Entities
(Entity Framework)
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Following table provides a short overview of each of the tiers in the architecture: 

 

Tier Purpose Technology 

Presentation  User Interface 

Implementation  

ASP.Net 4.5, Bootstrap 3.0 

Services  Business Logic 

Implementation 

ASP.Net Web Services API, Windows 

Console Application, Azure Machine 

Learning Service 

Model  Object Relational 

Mapper for domain 

driven development 

Entity Framework 6.0 

Data  Storage SQL Server 2012, Azure Storage 

Table 1: Architecture Tier Definition 

Design for each of the tiers is presented below:  

3.3.2 Presentation Tier  

Predikt provides an intuitive user experience built using ASP.Net 4.5. Bootstrap 3.0 is 

used to create a responsive UI.   Following diagram presents the high level pattern for 

processing of ASP.net pages by .Net Framework: 
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Figure 14: ASP.Net  Application Processing 

Steps shown in the diagram above are standard for any ASP.net application. Detailed 

description for each module is out of scope for this report.  

3.3.3 Service Tier: 

Service Tier comprises of the following three components:  

i. ASP.Net Web Services API 

ii. Model Retrain Service  

iii. Azure Machine Learning Service 

 

i. ASP.Net Web Services API was used to achieve clear packaging of various 

operations & function which the UI requires to perform. The application is 

designed to keep the services layer loosely coupled and unaware of the 

consumption from the presentation tier. This strategy enabled us to open up the 

service layer to external systems by publishing web services for direct 
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consumption by the client application (without going through our presentation 

layer).  

This architecture provides for a uniform & standard way to deliver machine 

learning services to users through different presentation mediums like Mobile 

Apps in future.  

Following figure shows some of the key web services exposed by this tier: 

 

 
Figure 15: Key Methods in Asp.Net API Web Services Project 
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ii. Model Retrain Service is a Console Client that can also be deployed as a 

Windows Service. It takes the file that was uploaded by the end user with the 

latest data, and uploads it to Windows Azure Blob Storage. It also invokes the 

Azure ML Studio REST Web Service to start the model retraining. It also keeps 

track of the status of model retraining, and provides the intermediate messages 

along the way. On completion of evaluation, this service is also responsible for 

selection of the recommendation model for a particular job.  

Following figure shows some of the key methods implemented in the Model 

retrain Service: 

 

 
Figure 16: Key Methods in Model Retrain Service  

 

iii. Azure Machine Learning Service is used as the backend Engine to configure 

and deploy various Machine Learning Algorithms. It is a SaaS (Software as a 
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Service) service provided by Microsoft that enables deployment of various 

Machine Learning Algorithms.  
 

I decided to use Azure ML Studio for Predikt because it is a hosted service (and 

thereby eliminating the need to setup a separate infrastructure) and exposes web 

services that can be called from client applications to perform various common 

tasks such as: 

i. Execute a deployed model 

ii. Retrain the model 

Azure ML Studio also supports Synchronous as well as Asynchronous options to 

call web services. This capability coupled with tight integration with Azure 

Storage Service can enable elastic cloud based scaling for high volume data 

mining requirements.  

Following figure shows the orchestration for hosting a Two Class Boosted 

Decision Tree algorithm in Azure ML Studio Service: 
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Figure 17: Azure ML Studio - Double Boosted Decision Tree Model 

Although Azure ML Studio was used for this exercise, Predikt architecture has been 

designed to work with other open-source alternatives such as RApache, Shiny, 

OpenCPU, etc or commercial offerings such as SAS, IBM Watson Analytics, etc that can 

expose access to machine learning algorithms as web services.  

 

3.3.4 Model Tier:  

Predikt follows the principles of Model Driven Development (MDD) by enabling the 

separation of the Physical Model from the conceptual model which is exposed to higher 
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layers for consumption. This limits the impact of changes in the physical model 

implementation and storage choices to the upper layers. The layers above are decoupled 

from the storage layer implementation details which leads to  overall increase in the 

reliability and maintainability of the application. Apart from that it provides the data 

access consumer a more intuitive and easy to use domain entities based conceptual model 

instead of a technical table entities based physical model. 

Following figure presents the Entity Model for Predikt: 
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Figure 18: Predikt Entity Model 
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Microsoft Entity Framework 6.0 is used to implement the Model tier. Following diagram 

shows the conceptual architecture for the implementation of Entity Framework: 

 

 
                  Figure 19: Entity Framework Conceptual Architecture 

 I decided to use an object-relational (ORM) mapper for Predikt (instead of direct 

database access) so that the development can be done with the dependency on domain-

specific objects, instead of relational database structures. It allowed for rapid 

development of Services layer without me needing to update database layer for every 

change in UI and services layer. It also eliminated the need for me to write data-access 

code, and will allow in future to easily switch my database from SQL Server 2012 to 

something else (if needed).  
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3.3.5 Database Tier  

Database Tier comprises of the following are the two components:  

i. SQL Server 2012: 

SQL Server 2012 is used as the relational database.  

Following diagram shows the database model for Predikt.   

 
Figure 20: Database Design 
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ii. Blob Storage:  

Windows Azure Storage was used for storing data such as: 

i. Newly uploaded data 

ii. Model Retraining Output   

 

Microsoft Azure Storage is a scalable elastic cloud storage solution from Microsoft. 

Windows Azure Storage was selected for this sample application because of 

streamlined set of web services it exposes as well as because of tight integration with 

Azure ML Studio.  

Azure Blob storage is one of the service in Azure Storage for storing large amounts of 

unstructured data, such as text or binary data, and can be accessed from anywhere in 

the world via HTTP or HTTPS. 

 

Following figure contains shows the configuration of Blob Storage for Predikt: 
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Figure 21: Predikt Blob Storage Setup 

There are three main components in the diagram:  

 Storage Account: All access to Azure Storage is done through a storage account. 

There is typically one account maintained for a product.   

 Container: A container provides a grouping of a set of blobs. All blobs must be 

in a container. An account can contain an unlimited number of containers. A 

container can store an unlimited number of blobs.  

I decided to create a container per supported model (currently three) to allow 

Predikt to scale as the number of models grow. It will also allow Predikt to 

control the scalability on a per model basis. For example, if there are more takers 

for Support Vector Machine compared to Logistic regression, having separate 

container will allow up to scale up (buy better subscription) the storage for SVM 

in terms of capacity, availability and performance.    

Account

Piyush

Container

Support Vector 
Machine

Logistic Regression

    ... 

Blob

Job 1 – Input File

Job 1 – Output File 

Job 1 – Input File

Job 1 – Output File 

  ...

   ..
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 Blob: Blob can be a file of any type and size. There are two types of blobs that 

can be stored in Azure Storage: block and page blobs. Most files are block blobs. 

A single block blob can be up to 200 GB in size. This tutorial uses block blobs. 

Page blobs can be up to 1 TB in size. Predikt is currently using Block Blob to 

store Input and Output files.      

URL format: Blobs are addressable using the following URL format: 

http://<storageaccount>.blob.core.windows.net/<container>/<blob>  

Following is a screenshot of the three blob containers that were created for Predikt.  

 

 
Figure 22: Azure Blob Storage URLs 
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Chapter 4:  Project Results    

Following chapter presents various qualitative as well as quantitative results from the 

project including screenshot and Software Engineering Metrics.  

4.1 SCREENSHOTS 

Following screenshot shows the main page when Predikt loads: 

  

 
Figure 23: Predict Main Page 

As envisioned during the design phase, there are three main sections in the screen:   

 

i. Data Upload and Pre-processing rules Setup  

This section is used by users to upload new data, and set data pre-processing rules as 

shown below:  
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Figure 24: Data Upload (Section 1) 

Following control is shown to select the fields from the new dataset that they would like 

to incorporate into the model (as Input Parameters). In this screenshot, user is trying to 

create a training job named April 2015 Job 1 and is uploading a file named Test Input 

File_1.CSV.   

 
Figure 25: Pre-processing Rules and Field Selection 
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The first column of the grid shows the field (excel columns) that exist in the uploaded 

data – Income, Location, Married, Age, Existing Customer and Credit History.  

As per the UI design, users are able to select the Input field for the model training by 

dragging and dropping the fields from the left column to the right column as shown 

below.  

 

You will also notice that the Data Upload Status section on top right corner has been 

uploaded with the status of file upload, and Model Retraining Status has been updated to 

reflect the latest status.   
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Figure 26: Field Selection 

 

ii. Monitor Model Training Job Status  

As per design, Section 2 is used to show the status of data upload as well as the status of 

latest model training job that submitted by the user. It also shows the list of various 

models that were evaluated for this job, and the recommended model. Following figure 

shows the controls in Section #2 when the page is initially loaded.  
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Figure 27:  Model Training Status – Not Started (Section 2) 

 

 Following figure shows the controls in Section # 2 after a job has been run.  

 
Figure 28: Model Training Status – On Completion (Section 2) 

 The hyperlink titled “Detailed Model Retraining Status” brings up a dialog box (shown 

below) that shows statistical output related to the various models (such as Logistic 

Regression, Decision Tree, Support Vector Machine, etc) that were evaluated for this job.  
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Figure 29: Detailed Model Retraining Status 

You will notice that the dropdown titled “Jobs” is selected by default as it was the most 

recent job created by the user. This screen is also showing the Statistical Output for the 

job April 2015 Job 1. Since user did not override the recommended model for this job, 

the Recommended as well as Selected Model fields are showing the same Model.  

Following Chart View is rendered on click of the Chart View button:   

 
Figure 30: Model Training Status - Chart View 
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iii. Model Execution  

As per design, Model Execution Section shown below can be used by users to predict an 

outcome by providing input parameters. The section looks like below when initially the 

page loads: 

 
Figure 31: Model Execution Screenshot (Section 3) 

Following screenshot shows an example of Input Parameters section rendered based on 

the fields selected in the previous screenshot:  

 
Figure 32: Model Execution Screenshot - Inputs Selected 

Screenshot below shows the output of the model execution. You will notice that “Model 

Output –Simple” textbox shows the output in a simple format (1 in the case of this 

particular classification job) whereas “Model Output –Detailed” screenshot shows 
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complete details of the input sent to the machine learning service, and the output 

received: 

 
Figure 33: Prediction Outcome 

iv. Model Retrain Service:  

Following screenshot shows the output from the File Watcher Service when executed 

from the console prompt:     
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Figure 34: Model Retrain Service Output 

4.2 CODE STRUCTURE  

Following table presents a short introduction to the item/folder in the ASP.net project 

structure for Predikt: 

# Name Overview 

1 References References to .Net as well as external libraries used in the 

UI project. 

2 Themes Folder used to structure various CSS files used in the 

project, including Bootstrap css files.  

        Table 2
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3 Import Library A set of utility classes written to assist with processing 

uploading CSV and excel files. Following image shows 

various functions that are written for this library: 

 

 
 

4 JS This folder is used to organize JavaScript libraries used by 

ASP.net as well as a JavaScript file written to interface 

with Asp.net Web Services API.  

5 Model Folder used to use the Entity Framework model for Predikt. 

6 Scripts Folder used to store 3
rd

 party JavaScript libraries used in 

the project including:  

i. JQuery 1.9  

ii. Modernizr 2.6 for browser compatibility 

detection  

iii. Redips JS for drag and drop capability  

Table 2 Continued 
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# Name Overview 

7 UploadedDocuments 

& MovedDocuments 

These server side folders are used to ensure that the data 

uploaded by users are not lost in case of a server side 

failure. This also ensures that uploaded data is available to 

be re-processed once server recovers from the failure. 

 

Uploaded files are first stored in the UploadedDocuments 

folder, and then moved to MovedDocuments folder on 

completion of the processing. In case of any failure, the file 

is kept in UploadedDocuments till server recovers.  

 

File is moved from the MovedDocuments folder to another 

folder where “RetrainService” picks it up for submission to 

Azure ML service. This ensures that the same file is not 

processed twice by the Azure ML service. 

8 FileHandleerManager

.ashx 

This is an ASP.NET HTTP handler process that provides 

an endpoint to file upload control. It encapsulates the logic 

to create a file stream to save the uploaded file to the web 

server.  

9 MyControls.cs A class that is used to serialize and de-serialize UI controls 

used to achieve dynamic rendering of controls based on 

user domain.  

10 Web.config Configuration file for ASP.net project which enables 

environment specific variables to set Database connection 

string, Azure Credentials, folder  names and other 

parameters.  

11 WebForm1.aspx Main page for the application that holds the overall layout 

and HTML structure for the page.   

12 XMLHelper.cs A utility class to assist with XML processing.  

Table 2: ASP.Net Project Structure 

4.3 CODE METRICS 

Following section provides Code Metrics related to the two Visual Studio projects for 

Predikt.  

Following is a short introduction of the Metrics captured for the two projects: 
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i. Maintainability Index: Measures ease of code maintenance. Higher value is 

better. 

ii. Cyclomatic Complexity: Measures number of branches. Lower values are 

better.  

iii.  Depth of Inheritance: Measures length of object inheritance hierarchy. 

Lower values are better.  

iv. Class Coupling: Measures number of classes that are references. Lower 

values are better. 

v. Lines of Code: Approximates the lines of executable code. Lower values are 

better.  

vi. Response Time: The time taken for web service calls to Azure ML and 

Storage service. 

Metrics (i) to (v) were captured using Visual Studio 2012 Code Metrics tool, whereas 

metric (vi) was captured using Fiddler 4.0. 

 

a. Following table provides the code metrics for the ASP.Net project:  

 

Maintainability Index 86 

Cyclomatic Complexity 347 

Depth of Inheritance 5 

Class Coupling 187 

Lines of Code 1054 

Table 3: SE Metrics for Project 1 
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b. Following table provides the code metrics for the Model Retrain Service Project:  

 

Maintainability Index 86 

Cyclomatic Complexity 58 

Depth of Inheritance 1 

Class Coupling 31 

Lines of Code 133 

Table 4: SE Metrics for Project 2 

c. Azure ML Web service response times: Following table presents the average 

response times for calls to various Azure services.  

  Table 5: Azure ML Web Service Response Time 

  

 

Service Response Time (Secs) 

Azure ML Model Execution Service 
 

03.948 

Azure Storage Service 

(uploading the new data) 

00.408 

Azure ML Model Training Job 

Submission Service 

 For 2,000 training records: 03.092 

 

 For 10,000 training records: 
04.842 

Azure ML Job Status Check Service 
00.261 

Azure ML Job Completion and 

Endpoint binding service 

02.910 
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The response time presented above is based on the following Azure subscription details: 

 Storage Account:   

o Location - South Central US 

o Account type - Locally Redundant 

o Subscription type - Pay-As-You-Go 

 ML Studio Subscription: 

o # of Web services deployed - 8 

o Location - South Central US 

o Subscription type - Pay-as-you-go 

 Model Training Web Services Endpoint: 

o Throttle level - High 

o Diagnostic trace level - None 

o Subscription Type - Pay-As-You-Go 

o Location - South Central US 
 

4.4 PROJECT TIMELINE 

The overall time taken for the project was about 4 months with about 25% average 

bandwidth dedicated on an ongoing basis. Initial four weeks were spent doing literature 

research, finalization of scope and machine learning engine/service to be used for the 

project. After scope and Machine Learning Service were finalized, I also reached out to 

the Azure ML team at Microsoft to get answers to few open questions (as Azure ML was 

in beta phase and many features were not documented). With the help from the Azure 

ML team, I was able to successfully do a Proof of Concept to validate availability of 
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needed services for this application. POC was followed by the development of User 

Interface with ASP.net 4.5 and Bootstrap 3.0.  

Following table presents the key milestones: 

 

Milestone Duration (Weeks) 

Scope Definition 2 

Selection of Machine Learning Engine 2 

POC with Azure ML Service 3 

Design  2 

UI Development 2 

Integration with Azure ML 1 

Testing 2 

Report Creation 2 

Total Duration (Weeks) 16 

Table 6: Project Timeline  

4.5 TEST CASES 

I created a total of 24 test cases to cover for various combinations of data inputs and 

prediction requirements supported by Predikt. 

The test cases that I created for this project can be categorized as follows: 

 Test Cases to validate the result by changing the number of input fields.  

 Test Cases to validate the result by changing the Input Field names.  

 Test Cases to validate the result by providing different data types (strings, number, 

decimals). 

 Test Cases for data pre-processing rules such as: 

a. # of bins  

b. Handling of –ve and blank values  
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Following are examples of some of the test cases: 

i. Test Case 1: 

 Domain: Finance – Credit Risk Prediction  

 # of Input Variables: 6  

 Input File Format:  

 

Income Location Married Age Existing 
Customer 

CreditHistory CreditRisk 

High Rural Married 45to100 Yes Bad 1 

Medium Urban Single 45to100 No Good 1 

Low Sub Married 45to100 Yes Ugly 1 

Low Urban Single 20to45 No Ugly 0 

Table 7: Test Case 1 Input 

 Expected UI for prediction: 

 

Text 

Area   

1 2 3 4 5 6 

Heading Income Location Married Age Existing 

Customer 

Credit 

History 

Values High 

Medium 

Low 

Rural 

Urban 

Sub 

Married 

Single 

20to45 

45to100 

 

Yes 

No 

Good 

Bad 

Ugly 

    Table 8: Test Case 1 Output 

ii. Test Case 2: 

 Domain: Oil & Gas – ESP Failure Prediction   

 # of Input Variables: 5  

 Input File Format:  
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Table 9: Test Case 2 Input 

 Expected UI for prediction: 

 

Text 

Area   

1 2 3 4 5 

Heading WellType Drill Type RockType Basin Hours 

Values Oil 

Gas  

Water  

Horizontal 

Vertical 

Clay 

Shale 

Coal 

Permian 

Eagleford 

Saudi 

Kazakhstan 

 

4 bins  

     Table 10: Test Case 2 Output 

  

WellType Drill Type RockType Basin Hours FailureRisk 

Oil Horizontal Clay Permian 357 1 

Gas Vertical Shale Eagleford 155 1 

Water Horizontal Coal Saudi 941 1 

Gas Vertical Shale Kazakhstan 32 0 
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Chapter 5:  Conclusion    

Machine Learning is a critical piece of how Big Data is harnessed. Implementation of 

Predikt was an attempt to simplify the machine learning experience to the extent where it 

can be adopted by the masses with or without any knowledge of underlying mathematical 

complexity. I started this project by stating out the guiding principles and documenting 

the detailed requirements. Design phase helped in solidifying the User Interface as well 

as technical design for the project, followed by implementation and testing of the 

application.  

Below I conclude by presenting various lessons learnt and things that went well. I have 

also presented few items in the Future Work section that I believe are needed in Predikt 

for it realize it’s full potential, and to create a comprehensive set of features that can be 

taken to market. 

 

5.1 LESSONS LEARNT: 

Lessons learnt can be categorized into two sections: 

a. Technology 

b. Project management 

 Lessons learnt in each of these areas are presented below: 

a. Technology: 

i. Server Side Vs HTML Control:  

It is important to finalize the choice of controls to be used in user interface 

implementation during the design phase. When I started the implementation 
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phase, I had a rough idea on what controls to use. I picked the UI control as 

project progressed based on the specific requirements. Late into a project I 

realized that I had ended up using a combination of ASP.Net Server side 

controls and client side HTML controls to create the UI. It was getting 

difficult for them to talk to each other, which led to significant rework. For 

example, The identifier for client side controls was not readily accessible from 

event handler for Server side controls, and I was having to find workaround to 

make it work.  

Following table presents a mapping for some of the common ASP.net Server 

side and HTML controls. 

 

 
Figure 35: Server Side and HTML Control Mapping 
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ii. Choice of Machine Learning Engine:  

One of the early decisions that I had to do make was identification of the right 

machine learning engine for Predikt. Although I had to try multiple options 

before zeroing in on Azure ML service, I was caught unprepared because 

Azure ML Service is in a very early stage. Although the key factor into 

picking Azure ML service was availability of   web services to interact with 

Machine Learning models, the fact that these web services were not fully 

documented made it difficult to use them. I spent significant amount of time 

trying to figure it out myself, before reaching out to Microsoft Support team, 

who were very helpful. Most of the time they were able to respond back to my 

queries within a day with proper (many times unpublished) documentation. 

Reaching out to them early on would have saved significant time and effort.  

Also, given that Azure was in an early stage of release, there were operational 

issues such as I was not able to move my models from the free tier to paid tier. 

I had to recreate all my models in the paid tier, which could have been 

avoided if this was a known limitation.     

 

iii. Asynchronous Processing: Predikt needs to support concurrent data upload 

and model re-training.  Given that I am using Shared Folder to store the 

uploaded file before pre-processing rules are run, and then it is uploaded to 

Azure blob for model training. I ran into several issues because of File 

Watcher Service was not designed to process multiple files at a time. 

Similarly, Azure web services calls were not designed to be asynchronous 

which led to the program control being stuck till the response comes back.  I 
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had to rework the code to use .net System.Threading namespace to ensure that 

uploaded files are processed in parallel, and that all calls to Azure web 

services are also not done asynchronously.  

 

b. Project Management: 

i. Cost Control:  

Although Azure Ml service provided a streamlined way for me to access 

various Machine Learning models, it also was costing me money for every 

transaction and every bit of data that I was storing in Azure. I was surprised 

by how quickly the amount adds up. The total spend for this project was few 

hundred dollars. Although the amount in this instance is not very high, but it is 

making me question the long term impact of choice between 3
rd

 party service 

hosted model (SaaS) Vs self-hosted model. This is definitely something that I 

will need to re-consider as I plan to take Predikt to market.  

 

ii. Scope Definition: 

I did not document the features needed in Predikt which led to last minute 

scrambling to meet the expectations. The invaluable lesson learnt is to 

understand the stakeholder expectations early on and document via 

wireframes to ensure that there is a shared understanding of overall scope. 

Additionally, I was weighing in multiple choices for this exercise (master’s 

project). Delay in making decision about the high level scope led to delay in 

subsequent phases as well.   
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iii. Milestones:  

Lack of milestone definitions also led to inadequate tracking of project 

completeness. Having intermittent milestones would have helped catch any 

delay as well as validation of the expectations with respect to scope as the 

project progressed.    

 

iv. Testing:    

I underestimated the effort required to test multiple combinations of scenarios 

that Predikt is expected to support. Issue was intensified because of need to re-

test all the scenarios multiple times after any change in code. Planning for QA 

automation would have prevented this issue from happening.  

 

5.2 WHAT WENT RIGHT 

1. Appreciation for the Machine Learning domain:  

Going through this exercise and diving into the complexity of machine learning 

domain has given me a deep appreciation for the potential as well as risks associated 

with decision making using these techniques.  

 

2. Cloud based Machine Learning Service:  

Although Azure ML Service is in an early stage, it provides a very streamlined way 

for users to interact with machine learning models. Once I was able to get the proper 

documentation from Microsoft Support team, the service itself worked flawlessly. 
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The time saving that otherwise would go into setting up infrastructure and dealing 

with system level issues was critical to be able to complete this project on time.  

 

3. Feedback from Supervisor:  

Feedback from Dr Aziz and his insistence on meeting certain level of academic rigor 

with respect to this project led to a more complete solution, that I believe is at a point 

where it can be demonstrated to potential customers and partners.  

 

5.3 FUTURE WORK 

Following are some of the potential addition needed in Predikt to make it into a 

comprehensive solution ready for market:  

a. Role Based Access:   For Predikt to be a hosted service supporting multiple 

customers and domains, having a secure role based access implementation is critical. 

Because data for multiple customers is going to reside in the same database, special 

consideration needs to be given to ensure that data is properly secured and not 

accessible across customer boundaries. Although database is designed to supported 

multiple users, UI and service layers need to be enhanced to provide this feature.      

b. More Control over Model Training and Execution: More control can be provided 

in the form of data pre-processing rules such as column level pre-processing rules. 

For example, currently number of bins specified by users gets applied to all the 

numeric columns.  

c. Support for multiple levels of licensing: Screens can be provided for end users to 

select the number of models that they want to be trained and evaluated for their 
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dataset. A licensing regimen can be defined based upon number of models that user 

selects (and the volume of their data).  

d. Support for more machine learning models: Currently only three classification 

models are enabled (Support Vector Machine, Boosted Decision Tree and Logistic 

Regression). More machine learning models can be added for Predikt to be a 

comprehensive self-service data mining service. 

e. Incorporate more real-time data sources: The basic premise of being able to 

predict future based on what happened in the past can lead to incorrect decision 

making. Incorporating latest data outside of customer’s domain (such as current 

Macro economic data and Social trends) into decision making can add significant 

value to customer.  
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