
Preference modeling and Accuracy in Recommender
Systems

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Mohit Sharma

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Dr. George Karypis, Advisor

September, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Minnesota Digital Conservancy

https://core.ac.uk/display/211351692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© Mohit Sharma 2017

ALL RIGHTS RESERVED

Acknowledgements

This thesis is a culmination of years of effort, and none of it would have been possible

without the unconditional support of my parents. I am thankful to my brother for his

encouragement and for taking over my responsibilities back home while I was away half

way across the world.

A heartful thanks to my advisor Professor George Karypis for his invaluable guidance

and support during my graduate studies. I am very grateful to him for his patience and

for devoting all the time to help me grow as a researcher. I consider myself very fortunate

to have him as a mentor and as a great source of inspiration.

I would like to thank Professors Arindam Banerjee, Joseph Konstan, Rui Kuang,

and Zizhuo Wang for taking the time to serve on my preliminary exam and thesis

committees.

Over the years, it has been a pleasure to work with the amazing members of the

Karypis lab: Agi, Ancy, Asmaa, David, Dominique, Eva, Fan, Glu, Haoji, Jake, Jedi,

Jeremy, Maria, Rezwan, Santosh, Sara, Saurav, Shaden, and Shalini. They have helped

me get through the ups and downs in grad school by being a constant source of encour-

agement, support, and laughter.

My special thanks to the wonderful staff at the Department of Computer Science,

the Digital Technology Center, and the Minnesota Supercomputing Institute at the

University of Minnesota for providing assistance, facilities, and other resources for my

research.

I am grateful to my mentors and colleagues during my internships at Technicolor

Labs and Samsung Research. I would also like to thank my collaborators Max, Wei-

Shou, Nandita, Arpan, Huong, Jiayu, and Junling for their valuable guidance.

Last, but not the least, I would like to thank all my wonderful friends.

i

Dedication

To mummy, papa and harshit

ii

Abstract

Recommender systems are widely used to recommend the most appealing items to

users. In this thesis, we focus on analyzing the accuracy of the state-of-the-art ma-

trix completion-based recommendation methods and develop methods to model users’

preferences to address different problems that arise in recommender systems.

Collaborative filtering-based methods are widely used to generate item recommen-

dations to the user. The low-rank matrix completion method is the state-of-the-art

collaborative filtering method. We will show that the accuracy and the ranking perfor-

mance of matrix completion-based methods are affected by the skewed distribution of

ratings in the user-item rating matrix. Additionally, we will illustrate that the number

of ratings an item has positively correlates with the prediction accuracy and the ranking

performance of the matrix completion approach for the item. Furthermore, we show

that the users or the items that are present in the tail, i.e., those having few ratings in

real datasets, may not have sufficient ratings to estimate the low-rank models accurately

by matrix completion approach. We use these insights to develop TruncatedMF, a ma-

trix completion-based approach that outperforms the state-of-the-art matrix completion

method for the users and the items in the tail.

Since for new items we do not have any prior preferences from existing users, it is

hard to recommend these items to the users. We can use non-collaborative methods

that rely on similarities between the new item and the items preferred by a user in the

past to model the user preference for the new item. However, these methods consider

the item features independently and ignore the interactions among the features of the

items while computing the similarities. Modeling the interactions among features can

provide more information towards the relevance of an item in comparison to the scenario

when the features are considered independently. We develop a new method called User-

specific Feature-based factorized Bilinear Similarity Model (UFBSM), that uses all

available information across users to capture these interactions among features and

learns a low-rank user personalized bilinear similarity model for Top-n recommendation

of new items.

iii

In addition to providing ratings over individual items, the users can also provide

ratings on sets of items. A rating provided by a user on a set of items conveys some

preference information about the items in the set and enables us to acquire a user’s

preferences for more items that the number of ratings that the user provided. More-

over, users may have privacy concerns and hence may not be willing to indicate their

preferences on individual items explicitly but may be willing to provide a rating to a

set of items, as it provides some level of information hiding. We will investigate how

do users’ item-level preferences relate to their set-level preferences. Also, we will in-

troduce collaborative filtering-based methods that explicitly model the user behavior of

providing ratings on sets of items and can be used to recommend items to users.

iv

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Key Contributions . 2

1.1.1 Accuracy of matrix completion in recommender systems 2

1.1.2 Truncated matrix factorization (TruncatedMF) 2

1.1.3 User-specific feature-based factorized bilinear similarity model . 3

1.1.4 Learning from sets of items in recommender systems 3

1.2 Outline . 4

1.3 Related Publications . 5

2 Notations 6

3 Background and Related Work 8

4 Accuracy of matrix completion in recommender systems 13

4.1 Introduction . 13

4.2 Matrix completion and skewed distribution of ratings 14

v

4.2.1 Experiment design . 15

4.2.2 Accuracy of the estimated low-rank models 16

4.2.3 Ranking performance of the estimated low-rank models 19

4.3 Conclusion . 24

5 TruncatedMF: Truncated matrix factorization 25

5.1 Introduction . 25

5.2 Effect of frequency on accuracy in real datasets 27

5.3 Truncated matrix factorization . 28

5.3.1 Frequency adaptive truncation 29

5.3.2 Frequency adaptive probabilistic truncation 30

5.3.3 Model learning . 33

5.3.4 Rating prediction . 33

5.4 Experimental Evaluation . 34

5.4.1 Evaluation methodology . 34

5.4.2 Comparison methods . 34

5.4.3 Model selection . 34

5.5 Results and Discussion . 35

5.5.1 Performance for rating prediction on real datasets 35

5.5.2 Performance for the users and the items with different number of

ratings . 35

5.6 Conclusion . 36

6 User-specific feature-based factorized bilinear similarity model for cold-

start Top-n item recommendation 39

6.1 Introduction . 40

6.2 Feature-based similarity model . 41

6.2.1 Parameter Estimation . 43

6.2.2 Performance optimizations . 45

6.3 Experimental Evaluation . 46

6.3.1 Datasets . 47

6.3.2 Comparison methods . 48

6.3.3 Evaluation Methodology . 49

vi

6.3.4 Model Training . 50

6.4 Results and Discussion . 50

6.4.1 Comparison with previous methods 51

6.4.2 Effect of increasing the number of global similarity functions . . 51

6.4.3 Effect of increasing the dimension of feature’s factor 52

6.4.4 Pairwise feature interaction analysis 52

6.4.5 Discussion . 52

6.5 Conclusion . 53

7 Learning from Sets of Items in Recommender Systems 57

7.1 Introduction . 58

7.2 Movielens set ratings dataset . 59

7.2.1 Data collection . 59

7.2.2 Data processing . 60

7.2.3 Analysis of the set ratings . 61

7.3 Methods . 64

7.3.1 Modeling users’ ratings on sets 64

7.3.2 Modeling user’s ratings on items 67

7.3.3 Combining set and item models 67

7.3.4 Model learning . 67

7.4 Experimental Evaluation . 71

7.4.1 Dataset . 71

7.4.2 Evaluation methodology . 73

7.4.3 Model selection . 74

7.5 Results and Discussion . 74

7.5.1 Fit of different rating models . 75

7.5.2 Performance on the synthetic datasets 77

7.5.3 Performance on the Movielens-based real dataset 82

7.6 Conclusion . 87

8 Conclusion 89

8.1 Thesis Summary . 89

8.2 Future research directions . 91

vii

References 93

viii

List of Tables

2.1 Symbols used and definitions. 7

4.1 Datasets used in experiments . 16

4.2 RMSE of the estimated low-rank models for different sparsity structures. 17

4.3 Overlap between the original top 5% of the items and the predicted top

5% of the items by the estimated low-rank models for real and random

sparsity structure. 19

4.4 Recall@n% of the top 5% of the ground-truth itemsin rankings by the

estimated low-rank models for datasets with real sparsity structure. . . 20

4.5 Recall@n% of the top 5% items predicted by low-rank modelsin non-increasing

ordering of all items by the ground-truth ratings for datasets with real

sparsity structure. 21

5.1 Datasets used in experiments . 26

5.2 Test RMSE for real datasets. 28

5.3 Test RMSE for real datasets . 37

5.4 Test RMSE of the proposed approaches for different datasets. We also

show the RMSE for the users and the items in different quartiles created

in increasing order by their frequency. Q1 refers to the quartile containing

the least frequent users or items followed by remaining in Q2, Q3, and Q4. 38

6.1 Statistics for the datasets used for testing 48

6.2 Performance of UFBSM and Other Techniques on different datasets . 54

6.3 User level investigation for datasets . 55

6.4 Effect of increasing number of global similarity functions 55

6.5 Effect of increasing the dimension of feature’s factor 56

6.6 Significant feature pairs . 56

ix

7.1 Fit of different rating models on the data 76

7.2 Average RMSE performance of ESARM and VOARM for item-level pre-

dictions for additional users (Ub), that have provided only the item-level

ratings. 83

7.3 The RMSE performance of the proposed methods with user- and item-

biases on ML-RealSets dataset. 83

7.4 Percentage of item-level predictions where method X performs better

than method Y. 84

7.5 RMSE for item-level predictions for additional users, that have provided

only the item-level ratings. 85

7.6 The item-level RMSE of the proposed methods on different subset of

users using only set-level ratings and after including additional item-level

ratings. 88

x

List of Figures

4.1 RMSE of the predicted ratings as the frequency of the items decreases. . 18

4.2 Scatter map of items having different frequency against their number of

accurate predictions (Mean absolute error (MAE) ≤ 0.5) for low-rank

models with rank 20 for FX and EM datasets. 19

4.3 Recall@n% and Freq@n% of the top 5% of the ground-truth items in

ordering by the predictions from the estimated low-rank models. 22

4.4 Recall@n% and Freq@n% of the top 5% of the ground-truth items in

ordering by the predictions from the estimated low-rank models initialized

with values in the range [0, 5]. 23

5.1 Test RMSE of the frequent and infrequent items in real datasets. 29

5.2 Test RMSE of the frequent and infrequent users in real datasets. 30

7.1 The interface used to elicit users’ ratings on a set of movies. 60

7.2 The distribution of number of sets rated by the users. 60

7.3 The distribution of the provided set ratings (left) and the ratings of their

constituent items (right). 61

7.4 Histogram of percentage of sets (left) and diversity (right) against mean

rating difference (MRD). 62

7.5 Histogram of elapsed time in months against mean rating difference. . . 62

7.6 Fraction of under-rated and over-rated sets across users in true and ran-

dom population. 63

7.7 The number of users for which their pickiness behavior is explained by

the corresponding least- and highest-rated subsets of items. 76

7.8 The number of users and their computed level of pickiness. 77

xi

7.9 The average RMSE obtained by the proposed methods on ESARM-based

datasets with different number of sets. 78

7.10 The average RMSE obtained by the proposed methods on VOARM-based

datasets with different number of sets. 78

7.11 Pearson correlation coefficients of the actual and the estimated parame-

ters that model a user’s level of pickiness in the VOARM model. 79

7.12 The percentage of users recovered by ESARM, i.e., the users for whom

the original extremal subset had the highest estimated weight under these

models. 80

7.13 Effect of adding disjoint item-level ratings for the users in ESARM-based

(left) and VOARM-based (right) datasets. 81

7.14 Effect of adding item-level ratings from additional users in ESARM-based

(left) and VOARM-based (right) datasets. 82

7.15 Effect of adding item-level ratings from the same set of users in the real

dataset. 85

7.16 Scatter plots of the user’s original level of pickiness computed from real

data and the pickiness estimated by VOARM from set-level ratings (left),

and after including 30% of item-level ratings (right). 86

7.17 Effect of adding item-level ratings from disjoint set of users in the real

dataset. 87

xii

Chapter 1

Introduction

This thesis focuses on investigating and developing methods to address different prob-

lems in the area of recommender systems. Recommender systems are used to help con-

sumers by providing recommendations that are expected to satisfy their tastes. They

can identify from a large pool of items those few items that are the most relevant to a

user and have become an essential personalization and information filtering technology.

They rely on the historical preferences that were either explicitly or implicitly provided

for the items and typically employ various machine learning methods to build predictive

models from these preferences. For example, e-commerce services (e.g., Amazon, eBay)

use them to help consumers by recommending products based on their past transac-

tions, video streaming services (e.g., Netflix, Hulu) utilizes them to help their viewers

by providing recommendations based on their previously watched movies or tv shows,

and mobile app stores (e.g., Apple, Google Play) use them to recommend apps to their

users.

Recommender systems generally use collaborative filtering-based methods to gener-

ate recommendations and low-rank matrix completion is the state-of-the-art collabora-

tive filtering method. However, its accuracy is affected due to the sparsity structure of

the rating matrices in real-world datasets. Also, standard collaborative filtering meth-

ods can not be used for recommendation of new items and to generate recommendations

from users’ preferences on sets of items. In this thesis, we primarily concentrate on three

problems in recommender systems. First, we investigate how the accuracy of matrix

1

2

completion is affected by the skewed distribution of ratings usually found in rating ma-

trices and use the derived insights to develop a method that performs better for users

and items with few ratings. Second, collaborative filtering-based methods can not be

applied to recommend new items as they do not have any prior preferences. We develop

a method to recommend new items to users based on the item features that take into

account the interaction among the item features. Finally, we investigate how a user’s

preferences on sets of items relate to his/her preferences over individual items and in-

troduce collaborative filtering-based methods that can be used to recommend items to

users.

1.1 Key Contributions

In this section, we will give a brief introduction to the contributions made in this thesis.

1.1.1 Accuracy of matrix completion in recommender systems

The collaborative filtering methods for generating recommendations rely on preferences

provided by the users over the items in the past. The matrix completion-based ap-

proaches are the state-of-the-art collaborative filtering methods that assume the user-

item rating matrix is low rank and estimates the missing ratings based on the observed

ratings in the matrix. However, the accuracy of these methods is affected by the distri-

bution and the number of observed entries in the matrix.

In this thesis (Chapter 4), we show that the skewed distribution of the user-item

rating matrix affects the accuracy and the ranking performance of recommendations

generated using matrix completion-based methods. Additionally, we will show that the

items having few ratings have low accuracy under matrix completion approach.

1.1.2 Truncated matrix factorization (TruncatedMF)

Certain attributes can describe an item being recommended, and few attributes deter-

mine a significant fraction of a user’s rating over the item while other attributes can

explain remaining rating. However, some users have provided ratings to few items, and

some items have received few ratings from the users thus these users and items may not

3

have sufficient ratings to estimate accurately the attributes that determine most of the

user’s rating over the item.

In this thesis (Chapter 5), we introduce a new method called TruncatedMF which

considers the number of ratings received by an item or provided by a user to predict

the user’s rating over the item.

1.1.3 User-specific feature-based factorized bilinear similarity model

Since state-of-the-art collaborative filtering methods rely on prior preferences by users

over items to generate recommendations, it is difficult to recommend new items as they

do not have any previous preferences associated with them. The new items in recom-

mender systems are often referred to as cold-start items. We can use non-collaborative

filtering methods that rely on similarities between the new items and the items preferred

by a user in the past to generate cold-start item recommendations. A major drawback

of these methods is that they ignore the interactions among the item attributes and

consider them independently while computing similarities between the items. The cold-

start item recommendations can benefit from capturing the interactions between item

features as modeling these interactions may provide additional information towards the

significance of the item.

We will present the method User-specific Feature-based factorized Bilinear Similarity

Model in Chapter 6 of this thesis, which leverages all the available information across

users to model interactions among features and learns a user personalized bilinear sim-

ilarity low-rank model for Top-n recommendation of new items.

1.1.4 Learning from sets of items in recommender systems

The collaborative filtering approaches used to generate recommendations depend on the

preferences provided by users over individual items. However, the users can also indicate

their preferences over sets of items rather than individual items and these preferences

over sets of items can serve as an additional source of the users’ preferences. Such

set-level ratings are readily available in most of the existing recommender systems, e.g.,

ratings on song playlists, music albums, and reading lists. A user’s preferences can be

4

acquired for many items by using his/her preferences on different sets of items. Addi-

tionally, sometimes the users are not willing to explicitly reveal their true preferences

on individual items but may provide a single rating to a set of items as it provides some

level of information hiding.

In this thesis (Chapter 7), we will investigate how do a user’s set-level ratings relate

to the individual item-level ratings and how can we use collaborative filtering-based

methods to generate item recommendations by using set-level ratings. To this end,

we have collected ratings from active users of Movielens1, a popular online movie rec-

ommender systems and based on our analysis of these collected ratings we will present

different models that can predict a user’s rating on a set of items as well as on individual

items.

1.2 Outline

This thesis is organized as follows:

• Chapter 2 provides notation which is used throughout this thesis.

• Chapter 3 provides details of the existing research related to the different problems

and methodologies presented in this thesis.

• Chapter 4 investigates how does the skewed distribution of ratings in rating ma-

trices affects the accuracy and the ranking performance of recommendations gen-

erated using matrix completion-based methods.

• Chapter 5 presents TruncatedMF, a new matrix completion-based method which

considers the number of ratings that a user or an item has before predicting the

rating of the user on the item.

• Chapter 6 presents User-specific Feature-based factorized Bilinear Similarity Model

method to address Top-n cold-start item recommendations problem.

• Chapter 7 investigates how does a user’s set-level rating relates to the item-level

ratings and presents collaborative filtering-based methods that use set-level ratings

to generate item recommendations.

1www.movielens.org

5

• Chapter 8 summarizes the research presented in this thesis and provide concluding

remarks along with some future research directions.

1.3 Related Publications

The publications related to the work presented in this thesis are listed as follows:

• Mohit Sharma, Jiayu Zhou, Junling Hu and George Karypis. Feature-based

factorized bilinear similarity method for cold-start top-n item recommendation.

In SIAM International Conference on Data Mining, 2015. SDM, 2015.

• David C. Anastasiu, Evangelia Christakapolou, Shaden Smith, Mohit Sharma

and George Karypis. Big Data and Recommender Systems. In Big Data Novatica

Special Issue, 2016.

• Mohit Sharma, F.Maxwell Harper and George Karypis. Learning from sets of

items in recommender systems. In eKNOW, International Conference on Infor-

mation, Process, and Knowledge Management, 2017, IARIA, 2017.

• Mohit Sharma and George Karypis. TruncatedMF: Improving recommenda-

tions for the tail. In ACM International Conference on Web Search and Data

Mining, 2018, WSDM, 2018 (under review).

• Mohit Sharma, F.Maxwell Harper and George Karypis. Learning from sets of

items in recommender systems. In ACM Transactions on Interactive Intelligent

Systems, 2018, TiiS, 2018 (Ready for submission).

Chapter 2

Notations

All vectors are represented by bold lower case letters and they are row vectors (e.g.,

p, q). The ith component of vector p is denoted by p[i]. All matrices are represented

by upper case letters (e.g., R, P). The ith row of a matrix P is represented by pi. The

(i, j) entry of matrix W is denoted by wi,j . We use calligraphic letters to denote sets

(e.g., S, T), and the size of a set S is represented by |S|.
For quick reference, all the important symbols used, along with their definition is

summarized in Table 2.1.

6

7

Table 2.1: Symbols used and definitions.
Symbol Definition

S Set of items.
|S| Number of items in set S.
u, i Individual user u and item i.
m, n Number of users and items.
k Number of latent factors.
R User-Item Feedback/Rating Matrix, R ∈ Rm×n.
R+
u Set of items for which user u has provided feedback
R−u Set of items for which user u has not provided feedback
rui Rating by user u on item i.
r̂ui Predicted rating for user u on item i.
rSu Rating by user u on set S.
r̂Su Predicted rating for user u on set S.

P User latent factor matrix, P ∈ Rm×k.

Q Item latent factor matrix, Q ∈ Rn×k.
pu Latent factor of user u.
qi Latent factor of item i.

Chapter 3

Background and Related Work

Recommender systems [1,2] employ different algorithms to generate recommendations.

These algorithms fall into two different classes: content-based methods [3, 4] and col-

laborative filtering-based methods [5]. Content-based methods rely on the attributes

of the users and the items to generate recommendations. Collaborative filtering-based

methodsmake use of the user preferences available in the form explicit ratings or implicit

feedback. These methods utilize the user or item co-rating information to estimate the

user preferences over the items. Collaborative filtering-based approaches can be further

divided into two categories, i.e., neighborhood-based methods [6–9] and model-based or

latent factor-based methods [10–12]. The neighborhood-based methods learn the user

or the item neighborhood based on the co-rating information to generate the recom-

mendations. The model-based approaches learn a model, i.e., the user and the item

latent factors, from the rating data and use it to generate the recommendations. Next,

we will discuss some of the work that is relevant to this thesis.

Matrix Completion The state-of-the-art methods for recommendations are based

on matrix completion [13], and most of them involve factorizing the user-item rating

matrix [10, 11, 14]. The Matrix Factorization (MF) method assume that the user-item

rating matrix is low-rank and can be computed as a product of two matrices known as

the user and the item latent factors. The predicted rating for the user u on the item i

8

9

is given by

r̂ui = puq
T
i . (3.1)

The user and the item latent factors are estimated by minimizing a regularized

square loss between the actual and predicted ratings

minimize
P,Q

1

2

∑
rui∈R

(rui − r̂ui)2 +
β

2

(
||P ||2F + ||Q||2F

)
, (3.2)

where the matrices P ∈ Rm×k and Q ∈ Rn×k contains latent factors of the users and

the items respectively. The parameter β controls the Frobenius norm regularization of

the latent factors to prevent overfitting. This optimization problem can be solved by

Stochastic Gradient Descent (SGD) [15].

In a separate body of work [13, 16], it has been shown that in order to complete a

n × n matrix of rank r accurately by matrix completion-based methods, O(nr log(n))

entries should be sampled uniformly at random from the matrix.

There has been some work on locality-based matrix completion methods which as-

sume that different parts of the user-item rating matrix can be approximated accurately

by different low-rank models [17–19]. The complete user-item rating matrix can be ap-

proximated as a weighted sum of these individual low-rank models.

Cold-start Item Recommendations The prior work to address the cold-start item

recommendation can be divided into non-collaborative user personalized models and col-

laborative models. The non-collaborative models generate recommendations using only

the user’s past interaction history and the collaborative models combine information

from the preferences of different users.

Billsus and Pazzani [20] developed one of the first user-modeling approaches to

identify relevant new items. In this approach they used the users’ past preferences

to build user-specific models to classify new items as either “relevant” or “irrelevant”.

The user models were built using item features e.g., lexical word features for articles.

10

Personalized user models [21] were also used to classify news feeds by modeling short-

term user needs using text-based features of items that were recently viewed by user

and long-term needs were modeled using news topics/categories. Banos [22] used topic

taxonomies and synonyms to build high-accuracy content-based user models.

Recently collaborative filtering techniques using latent factor models have been used

to address cold start item recommendation problems. These techniques incorporate

item features in their factorization techniques. Regression-based latent factor models

(RLFM) [23] is a general technique that can also work in item cold-start scenarios.

RLFM learns a latent factor representation of the preference matrix in which item

features are transformed into a low dimensional space using regression. This mapping

can be used to obtain a low dimensional representation of the cold-start items. User’s

preference on a new item is estimated by a dot product of corresponding low dimensional

representations. The RLFM model was further improved by applying more flexible

regression models [24]. AFM [25] learns item attributes to latent feature mapping

by learning a factorization of the preference matrix into user and item latent factors

R = PQT . A mapping function is then learned to transform item attributes to a latent

feature representation i.e., R = PQT = PAF T where F represents items’ attributes

and A transforms the items’ attributes to their latent feature representation.

A recently introduced approach, which was shown to outperform both RLFM and

AFM methods in cold-start Top-n item recommendations is the User-specific Feature-

based Similarity Models (UFSM) [26]. In this approach, a linear similarity function

is estimated for each user that depends entirely on features of the items previously

liked by the user, which is then used to compute a score indicating how relevant a

new item will be for that user. In order to leverage information across users (i.e., the

transfer learning component that is a key component of collaborative filtering), each user

specific similarity function is computed as a linear combination of a small number of

global linear similarity functions that are shared across users. Moreover, due to the way

that it computes the preference scores, it can achieve a high-degree of personalization

while using only a very small number of global linear similarity functions.

Predictive bilinear regression models [27] belong to the feature-based machine learn-

ing approach to handle the cold-start scenario for both users and items. Bilinear models

can be derived from Tucker family [28]. They have been applied to separate “style” and

11

“content” in images [29], to match search queries and documents [30], to perform semi-

infinite stream analysis [31], and etc. Bilinear regression models try to exploit the

correlation between user and item features by capturing the effect of pairwise associ-

ations between them. Let xi denotes features for user i and xj denotes features for

item j, and a parametric bilinear indicator of the interaction between them is given by

sij = xiWx
T
j where W denotes the matrix that describes a linear projection from the

user feature space onto the item feature space. The method was developed for recom-

mending cold-start items in the real time scenario, where the item space is small but

dynamic with temporal characteristics. In another work [32], authors proposed to use

a pairwise loss function in the regression framework to learn the matrix W , which can

be applied to scenario where the item space is static but large, and we need a ranked

list of items.

Learning From Sets of Items There has been little published work on using set-

level ratings to improve the accuracy of item-level recommendations. The one exception

is a recent study in which relative preference information on different groups of items

was collected during a new user signup process and these preferences were then used

to assign a user to a set of pre-built recommendation profiles [33]. This approach

significantly reduced the time required to learn the user’s preferences in order to generate

recommendations for the new user. The principal difference from this approach is that

in this thesis we try to model the user behavior that determines his/her estimated rating

on a set and then use that to develop fully personalized recommendation methods that

are not limited to new users.

In addition, there has been some work that has focused on recommending lists

of items or bundles of items. For example, recommendation of music playlists [34–

36], travel packages [37–40], reading lists [41] and recommendation of lists under user

specified budget constraints [42, 43]. However, this research is not directly related to

the problems explored in this thesis because our focus is on learning the user’s ratings

on items in lists from the ratings that the user provided on these lists.

Another relevant work is the problem of energy disaggregation [44], which refers to

the task of separating the energy signal of a building into the energy signals of individual

appliances that reside in the building. Disaggregated energy consumptions are used to

12

provide feedback to consumers, forecast demands, design energy incentives and detect

appliances’ malfunction [45, 46]. Similar to the idea of energy disaggregation, in this

thesis, we try to separate a user’s rating on a set of items into the users’ ratings on

items in the set and generate item recommendations for the user.

The researchers have also investigated how a user’s preference is affected by the

position bias, i.e., the position of the items in the user interface showing a list of

items [47–50]. In addition to positioning of items, the phrase or caption used to elicit

preferences from a user can also affect a user’s preference on a set of items [47, 51, 52].

Similarly, a user’s rating on the set can be affected by reference points or anchoring

biases [53–57], e.g., a user can focus on few items in a set while providing his/her rating

on the set. The rating provided by a user can also depend on contextual factors, e.g., a

user’s mood at the time of providing his/her preference [58].

Furthermore, a user’s rating on a set can be affected by the synergy and competition

among items in the set. The user may rate the set of items independent of what is his

preference for an individual item and instead rate the set depending on how does he

perceive the set as a whole. There has been some work that has shown that a bundle

of related products may result in better purchase intention than a bundle containing

products that are not related [59–63]. Similar to the bundle of products, the items in

a set can complement each other and thereby receive a more favorable rating from the

user. On the contrary, it could be possible that items in a set compete with each other

and thus receive a more critical rating on the set.

In this thesis, we have investigated how does the user provides a rating on a set of

items and used the derive insights to develop collaborative filtering-based methods to

predict the rating for an individual item in the set.

Chapter 4

Accuracy of matrix completion in

recommender systems

The low-rank matrix completion-based approach is the state-of-the-art collaborative

filtering based method used for generating recommendations. In this chapter, we show

that the skewed distribution of ratings in the user-item rating matrix of real-world

datasets affects the accuracy and the ranking performance of the matrix completion

approach. Also, we investigate how does the number of ratings that an item has impacts

the ability of low-rank matrix completion approaches to correctly estimate the ratings

for the item and we show that the prediction accuracy and ranking performance for the

item positively correlates with the number of ratings an item has.

4.1 Introduction

Recommender systems commonly use methods based on Collaborative Filtering [8],

which rely on the historical preferences of the users over items in order to generate

recommendations. These methods predict the ratings for the items not rated by the user

and then select the items with the highest predicted ratings as item recommendations.

In Top-n recommendations, n unrated items with highest predicted ratings and for small

values of n, e.g., 10 and 50, are served as recommendations.

In practice, the users do not provide their ratings to all the items, and hence we

observe only partial entries in the rating matrix. For the task of recommendations,

13

14

we need to complete the matrix by predicting the missing ratings and select the un-

rated items with high predicted ratings as recommendations for a user. The matrix

completion-based methods, discussed in Section 3, estimate the missing ratings based

on the observed ratings in the matrix. These methods require entries in the matrix

should be sampled uniformly at random for accurate recovery of the underlying low-

rank model. However, most real-world rating matrices exhibit a skewed distribution of

ratings as some users have provided ratings to few items and certain items have received

few ratings from the users. This skewed distribution may result in insufficient ratings for

certain users and items, and can thus affect the accuracy of the matrix completion-based

methods.

This chapter investigates how does the skewed distribution of the ratings in the

user-item rating matrix affects the accuracy and the ranking performance of the matrix

completion-based methods and shows that the items having few ratings tend to have

lower prediction accuracy. The key contributions of the work presented in this chapter

are the following:

1. shows that the skewed distribution of ratings in the user-item rating matrix affects

the accuracy of the matrix completion methods.

2. illustrates that the matrix completion-based methods mis-predicts the users’ top

rated items because of the skewed distribution of ratings in the user-item rating

matrix.

3. shows that the false positives in Top-n item recommendations generated by the

matrix completion-based methods are not rated significantly low.

4. shows that the number of ratings an item has, i.e., item frequency, affect the

accuracy of the matrix completion and the Top-n item recommendations.

4.2 Matrix completion and skewed distribution of ratings

As described in Section 3, the matrix completion-based methods can accurately recover

the underlying low-rank model of a given low-rank matrix provided entries are observed

uniformly at random from the matrix. However, the ratings in the user-item rating

15

matrix in real-world datasets do not represent a random sample of entries because some

items receive few ratings and some users have rated few items, thus leading to a skewed

distribution of ratings in the matrix. In the following sections, we will try to answer the

question how does the skewed distribution of ratings in real datasets affects the accuracy

and the ranking performance of the matrix completion-based methods. Furthermore, we

will try to understand how does the performance of matrix completion-based methods

changes with the number of ratings an item have.

4.2.1 Experiment design

In order to study how the skewed distribution of ratings in real datasets affects the

ability of matrix completion to accurately complete the matrix (i.e., predict the missing

entries) we performed a series of experiments using synthetically generated low-rank

rating matrices. In order to generate a rating matrix R ∈ Rn×m of rank k we followed

the following protocol. We started by generating two matrices A ∈ Rn×k and B ∈
Rm×k whose values are uniformly distributed at random in [0, 1]. We then computed

the singular value decomposition of these matrices to obtain A = UAΣAV
T
A and B =

UBΣBV
T
B . We then let P = αUA and Q = αUB and R = PQT . Thus, the final rank k

matrix R is obtained as the product of two randomly generated rank k matrices whose

columns are orthogonal. Note that the parameter α was determined empirically in order

to produce ratings in the range of [−10, 10].

We used the above approach to generate full rating matrices whose dimensions are

those of the four real-world datasets shown in Table 4.1. For each of these matrices we

used two approaches to select the subset of their entries that will be given as input to

the matrix completion algorithm. The first approach selects the entries that correspond

to the actual user-item pairs that are present in the corresponding dataset, whereas the

second approach selects the entries uniformly at random from the entire matrix. The

number of entries that are selected by both approaches is the same and is the number

of non-zeros in the actual dataset (shown in Table 4.1).

The advantages of working with this type of synthetically generated datasets are

two-fold. First, by construction we can ensure that the underlying matrix is of known

(low) rank. Second, since we know the values of the full matrix, we can easily measure

how accurately the low-rank models estimated using matrix completion can complete

16

Table 4.1: Datasets used in experiments
Dataset users items ratings µu

a σu
b µi

c σi
d density

(%)†

EachMovie (EM) 61,265 1,623 2,811,983 45.89 59.48 1732.58 3882.55 2.8
Flixster (FX) 147,612 48,794 8,196,077 55.52 225.81 167.97 934.47 0.1
Movielens 20M (ML) 229,060 26,779 21,063,128 91.95 190.53 786.55 3269.45 0.3
Netflix (NF) 480,189 17,772 100,480,507 209.252 302.33 4550.75 16908.40 1.1
a The number of average ratings per user in the dataset.
b The standard deviation of ratings per user in the dataset.
c The number of average ratings per item in the dataset.
d The standard deviation of ratings per item in the dataset.
† The percentage of observed ratings in the dataset.

the entire matrix.

In order to estimate the low-rank factor matrices from the observed entries (Equa-

tion 3.2) we used Stochastic Gradient Descent [15] and initialized the factor matrices

with the singular vectors of the rating matrix by assuming that the missing entries were

rated as 0, which is shown to converge closer to global minimum [64]. For each dataset

we generated five different sets of matrices using different random seeds and we per-

formed a series of experiments using synthetically generated low-rank matrices of rank

5, 10, and 20. For each rank, we report the average of performance metrics in each set

from the estimated low-rank models over all the synthetic matrices.

To simplify the discussion, we will refer to the set of matrices derived from the

actual sparsity structure of the real datasets as SYN-REAL and from the randomly

sampled entries as SYN-RAND. In addition we will refer to the values of the synthetically

generated rating matrices as ground-truth in order to differentiate them from the values

predicted as part of matrix completion.

4.2.2 Accuracy of the estimated low-rank models

Table 4.2 shows the Root Mean Square Error (RMSE) achieved by the models estimated

using both the SYN-REAL and SYN-RAND matrices over the complete rating matrix.

As can be seen in the table, the RMSE of the low-rank models estimated using

the randomly sampled entries is lower than those estimated using the actual entries.

Additionally, the RMSE increases with the increase in the rank for both sets of matrices.

This is because, as mentioned in Section 4.1, the required number of observed entries

17

Table 4.2: RMSE of the estimated low-rank models for different sparsity structures.

Dataset Rank RMSE for
SYN-
REAL

matrices

RMSE for
SYN-

RAND
matrices

EM
5 0.675 0.028
10 1.110 0.052
20 1.229 0.165

FX
5 1.962 0.028
10 2.225 0.053
20 2.425 0.167

Dataset Rank RMSE for
SYN-
REAL

matrices

RMSE for
SYN-

RAND
matrices

ML
5 1.377 0.024
10 1.222 0.039
20 1.872 0.074

NF
5 0.246 0.023
10 0.425 0.034
20 0.621 0.052

to complete the matrix accurately increases linearly with the rank of the matrix. The

RMSE for the SYN-REAL matrices in NF is lower than that of the others because it

has more ratings for both users and items, thus leading to more accurate estimation of

low-rank models. The higher RMSE in the SYN-REAL matrices compared to that of

the SYN-RAND matrices suggest that the estimated low-rank model fails to recover the

missing entries accurately in the SYN-REAL matrices. This failure can result in poor

predictions for a user on some items and hence impact the recommendations served to

the user.

Effect of item frequency

Since the matrix completion-based methods fail to recover the missing entries accurately

in the SYN-REAL matrices, we investigated if the number of ratings an item has,

i.e., item frequency, has any influence on the accuracy of the matrix completion-based

methods for the item. We ordered all the items in decreasing order by their frequency

in the rating matrix. We divided these ordered items into ten buckets and for a user

computed the RMSE for items in each bucket based on the error between the predicted

rating by the estimated low-rank model and the ground-truth rating. We repeated this

for all the users and computed the average of the RMSE of the items in each bucket over

all the users. Figure 4.1 shows the RMSEs across the buckets along with the average

frequency of the items in the buckets. As can be seen in the figure, the predicted ratings

for the frequent items tend to have lower RMSE in contrast to infrequent items for most

18

0 1 2 3 4 5 6 7 8 9
0.0

0.4

0.8

1.2

1.6

R
M

S
E

EM
Rank 5

1

2

3

4

0 1 2 3 4 5 6 7 8 9
0

1

2

3

FX
Rank 5

0

1

2

3

0 1 2 3 4 5 6 7 8 9
0

1

2

3

ML
Rank 5

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

NF
Rank 5

1.5

2.5

3.5

4.5

lo
g

10
(F
re
q)

0 1 2 3 4 5 6 7 8 9
0.0

0.4

0.8

1.2

1.6

R
M

S
E

Rank 10

1

2

3

4

0 1 2 3 4 5 6 7 8 9
0

1

2

3
Rank 10

0

1

2

3

0 1 2 3 4 5 6 7 8 9
0

1

2

3
Rank 10

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

Rank 10

1.5

2.5

3.5

4.5

lo
g

10
(F
re
q)

0 1 2 3 4 5 6 7 8 9

Buckets

0.0

0.4

0.8

1.2

1.6

R
M

S
E

Rank 20

1

2

3

4

0 1 2 3 4 5 6 7 8 9

Buckets

0

1

2

3
Rank 20

0

1

2

3

0 1 2 3 4 5 6 7 8 9

Buckets

0

1

2

3
Rank 20

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9

Buckets

0.0

0.2

0.4

0.6

Rank 20

RMSE

1.5

2.5

3.5

4.5

lo
g

1
0
(F
re
q)

log10(Freq)

Figure 4.1: RMSE of the predicted ratings as the frequency of the items decreases.

of the datasets. However, in NF dataset because of the higher number of average ratings

for both the users and the items the RMSE tends to remain the same over all the items.

Figure 4.2 shows the scatter map of items in FX and EM dataset having different

frequency against the number of instances where the absolute difference between the

original and the predicted rating, i.e., Mean Absolute Error (MAE), is ≤ 0.5. As can

be seen in the figure, the number of accurate predictions is significantly lower for items

having fewer ratings (≤ 20) compared to that of the items having a greater number of

ratings (≥ 30). The higher RMSE of the infrequent items is because they do not have

sufficient ratings to estimate their latent factors accurately. Hence for the real datasets,

items appearing at the top in ordering by frequency and having high predicted scores

will form a reliable set of recommendations to a user.

19

10 20 30 40

Frequency

20000

25000

30000

35000

40000

45000

50000

N
o.

of
ac

cu
ra

te
p

re
d

ic
ti

on
s

FX

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

lo
g1

0(
C

ou
n
t)

10 20 30 40

Frequency

15000

20000

25000

30000

35000

40000

N
o.

of
ac

cu
ra

te
p

re
d

ic
ti

on
s

EM

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

lo
g1

0(
C

ou
n
t)

Figure 4.2: Scatter map of items having different frequency against their number of
accurate predictions (Mean absolute error (MAE) ≤ 0.5) for low-rank models with rank
20 for FX and EM datasets.

Table 4.3: Overlap between the original top 5% of the items and the predicted top 5%
of the items by the estimated low-rank models for real and random sparsity structure.

Dataset Rank Real (%) Random (%)

EM
5 90.77 99.59

10 79.94 99.08
20 63.69 95.62

FX
5 39.82 99.57

10 27.13 98.98
20 18.77 95.94

Dataset Rank Real (%) Random (%)

ML
5 68.86 99.75

10 56.50 99.34
20 43.32 98.65

NF
5 98.31 99.84

10 96.19 99.72
20 89.99 99.29

4.2.3 Ranking performance of the estimated low-rank models

We define ranking performance of the estimated low-rank models as their ability to

predict high the true high rated items for a user. In order to evaluate how the errors

in predictions by matrix completion-based methods impact the ranking performance of

the estimated low-rank model, we analyzed the top n% of the items predicted by the

estimated low-rank model for a user and investigated whether true high rated items are

predicted low or true low rated items are predicted high. In the following analysis, we

will refer to the top n% of the items predicted by the estimated low-rank models as

En%u and the top n% of the items ordered by the ground-truth ratings as Gn%u .

Table 4.3 shows the fraction of items that are common between G5%
u and E5%

u . As

can be seen in the table, the items in E5%
u for the matrices with real sparsity structure

20

Table 4.4: Recall@n%∗ of the top 5% of the ground-truth items in rankings by
the estimated low-rank models for datasets with real sparsity structure.

Dataset Rank Recall@5% Recall@10% Recall@15% Recall@25% Recall@50%

EM
5 90.77 94.2 95.45 96.88 98.67
10 79.95 86.4 89.33 92.87 97.26
20 63.69 73.93 79.17 85.74 94.44

FX
5 39.82 48.11 53.94 62.93 80.87
10 27.13 35.66 42.32 53.38 76.45
20 18.77 26.79 33.52 45.25 70.65

ML
5 68.87 73.20 75.94 80.13 89.43
10 56.50 62.17 66.09 72.50 87.26
20 43.33 50.66 55.84 64.41 83.93

NF
5 98.32 99.10 99.30 99.52 99.80
10 96.19 98.02 98.50 99.03 99.63
20 89.99 94.76 96.19 97.67 99.19

∗ The percentage of items in G5%
u that are present in En%u .

miss a significant number of the items in G5%
u . On the contrary, the low-rank models

estimated on the matrices with random sparsity miss a comparatively smaller number

of the items in G5%
u .

Further, we explored how the low-rank model mis-predicts the original top 5% items

for a user, i.e., G5%
u , in real datasets. We computed the position of these items in the

ranking of all items by their predicted ratings and based on these positions computed the

Recall@n%, i.e., the percentage of items inG5%
u that are present in En%u . In Table 4.4, we

present the Recall@n% of these items in the ranking of all the items by their predicted

ratings. For example, as can be seen in the table for ML dataset with rank 5, the

68.87% of the items in G5%
u are present in E5%

u , 73.20% of these appear in E10%
u , and

89.43% of these are in E50%
u . Similar trend occurs for the remaining datasets, i.e., the

items in G5%
u that are not present in E5%

u are spread across the entire ranking and this

spread increases with the rank of the matrices. Also, the Recall@n is higher for denser

datasets, i.e., for EM and NF, when compared to the other datasets. The lower value

of Recall@5 indicates that a considerable large number of the highest rated items are

not ranked high by the estimated low-rank models.

Since in many cases, E5%
u contains items that are not ranked high according to

21

Table 4.5: Recall@n%∗ of the top 5% items predicted by low-rank models in
non-increasing ordering of all items by the ground-truth ratings for datasets
with real sparsity structure.

Dataset Rank Recall@5% Recall@10% Rec@15% Recall@25% Recall@50%

EM
5 90.77 94.81 95.96 97.28 98.87
10 79.95 88.38 91.03 94.13 97.78
20 63.69 77.34 82.29 88.21 95.40

FX
5 39.82 65.64 72.04 80.00 90.99
10 27.13 48.25 58.88 69.77 86.20
20 18.77 33.76 46.03 58.95 79.63

ML
5 68.87 95.63 96.90 98.06 99.23
10 56.50 89.55 92.67 95.54 98.41
20 43.33 74.97 81.83 88.88 96.21

NF
5 98.32 99.12 99.31 99.54 99.81
10 96.19 98.04 98.52 99.04 99.64
20 89.99 94.80 96.22 97.70 99.20

∗ The percentage of the items in E5%
u that are present in the Gn%u .

their ground-truth ratings, we investigated where these items are located in the ground-

truth rankings by computing the position of the items in E5%
u in the ranking of all

items by their ground truth ratings. We computed the Recall@n% of these items, i.e.,

the percentage of the items in E5%
u that are present in the Gn%u . Table 4.5 shows the

Recall@n% of the items in E5%
u in the ranking of all items by the ground-truth ratings

in decreasing order. For example, as can be seen in the table for ML dataset with rank

5, the 68.87% of items in E5%
u are present in G5%

u , 95.63% of these appear in G10%
u , and

almost all, i.e., 99.23% of these are in G50%
u . The remaining datasets in the table follows

a similar trend, i.e., the items in E5%
u are present close to the top in the ground-truth

ranking. This indicates that the items that are predicted high by the estimated low-rank

models are also in general true high rated items.

Effect of item frequency

We investigated how the ranking performance of the estimated low-rank models varies

with the frequency of the items in SYN-REAL matrices.

To this end, for each user we computed the Recall@n% of the items in G5%
u , i.e.,

the percentage of the items in G5%
u that are present in En%u . Here, n takes the value in

22

5 10 15
0

20

40

60

80

100

R
ec

al
l@
n

%
EM

Rank 5

1080

1120

1160

1200

25 50 75
0

20

40

60

80

100

FX
Rank 5

0

50

100

150

200

250

25 50
0

20

40

60

80

100

ML
Rank 5

0

200

400

600

800

5 10
0

20

40

60

80

100

NF
Rank 5

3750

3850

3950

4050

4150

F
re

q
@
n

%

5 10 15 20 25 30
0

20

40

60

80

100

R
ec

al
l@
n

%

Rank 10

1080

1120

1160

1200

1240

25 50 75
0

20

40

60

80

100

Rank 10

0

100

200

300

25 50
0

20

40

60

80

100

Rank 10

0

400

800

1200

5 10
0

20

40

60

80

100

Rank 10

3950

4000

4050

4100

4150

4200

F
re

q
@
n

%

10 20 30 40 50

n

0

20

40

60

80

100

R
ec

al
l@
n

%

Rank 20

950

1050

1150

1250

25 50 75

n

0

20

40

60

80

100

Rank 20

0

100

200

300

400

25 50 75

n

0

20

40

60

80

100

Rank 20

0

400

800

1200

5 10 15

n

0

20

40

60

80

100

Rank 20

Recall@n

3900

4100

4300

4500

F
re

q
@
n

%

Freq@n%

Figure 4.3: Recall@n% and Freq@n% of the top 5% of the ground-truth items in ordering
by the predictions from the estimated low-rank models.

[5, 10, 15, ..., 100]. Also, we computed the average frequency of the items in G5%
u that

are present in En%u but are absent in E
(n−5)%
u . We will refer to the average frequency

of these items as Freq@n%. As can be seen in Figure 4.3, for the datasets with fewer

ratings per item, i.e., the ML and the FX datasets, the items having low frequency

tend to appear at the end of the ranking. This trend is also seen to some extent in the

denser datasets, i.e., the EM and the NF datasets. We hypothesize that it is because the

low-rank model, i.e., the user and the item latent factors, is initialized with values close

to zero and since items with fewer ratings do not often occur in the updates during the

model estimation they are predicted low by the estimated low-rank model. Therefore,

the ranking performance of the estimated low-rank models on SYN-REAL matrices is

not affected by false positives as both frequent and infrequent items that are rated low

will be predicted low while frequent items that are rated high will be predicted high. To

test this hypothesis, we initialized the low-rank models with higher values in the range

23

5 10 15
0

20

40

60

80

100

R
ec

al
l@
n

%
EM

Rank 5

1100

1140

1180

1220

25 50 75
0

20

40

60

80

100

FX
Rank 5

0

100

200

300

10 20 30 40 50
0

20

40

60

80

100

ML
Rank 5

200

400

600

800

5 10
0

20

40

60

80

100

NF
Rank 5

3900

4000

4100

4200

F
re

q
@
n

%

10 20 30 40
0

20

40

60

80

100

R
ec

al
l@
n

%

Rank 10

700

900

1100

1300

25 50 75
0

20

40

60

80

100

Rank 10

0

100

200

300

400

25 50
0

20

40

60

80

100

Rank 10

0

200

400

600

800

5 10
0

20

40

60

80

100

Rank 10

4000

4040

4080

4120

4160

F
re

q
@
n

%

25 50 75

n

0

20

40

60

80

100

R
ec

al
l@
n

%

Rank 20

1150

1200

1250

1300

1350

1400

25 50 75

n

0

20

40

60

80

100

Rank 20

0

100

200

300

400

500

25 50 75

n

0

20

40

60

80

100

Rank 20

0

200

400

600

800

5 10 15 20 25

n

0

20

40

60

80

100

Rank 20

Recall@n

3900

4100

4300

4500

F
re

q
@
n

%

Freq@n%

Figure 4.4: Recall@n% and Freq@n% of the top 5% of the ground-truth items in ordering
by the predictions from the estimated low-rank models initialized with values in the
range [0, 5].

[0,5] and analyzed the learned models. Figure 4.4 shows the Recall@n% of the items

in G5%
u along with their average frequency, i.e., Freq@n%, for the estimated low-rank

models initialized with higher values. As can be seen in the figure, unlike the estimated

low-rank models initialized with values close to zero, the items having low frequency does

not necessarily appear in the later buckets. Additionally, the Recall@n is significantly

lower for smaller values of n when compared with that of the estimated low-rank models

initialized with values close to 0. This suggests that the model initialization affects both

the accuracy and the ranking performance of the matrix completion-based methods.

Previously in Section 4.2.2, we showed that the accuracy of the estimated low-rank

models is better for items having high frequency. Considering the analysis of ranking

performance, we can reason that the frequent items that are rated high will be predicted

high by the estimated low-rank model. Hence, the ranking performance of the estimated

24

low-rank model is better for these items than the items that are rated high but are

infrequent.

4.3 Conclusion

In this work, we have investigated the performance of the matrix completion-based

low-rank models for estimating the missing ratings in user-item rating matrices having

sparsity structure identical to real datasets. We showed in Section 4.2.2 that the matrix

completion-based methods because of the presence of skewed distribution of entries in

rating matrices in real datasets fail to predict the missing entries accurately in the

matrices. Also, we learned that the items with high frequency are predicted more

accurately than the others. These findings imply that for a user, the unrated items

which have more ratings in the matrix and are predicted high for the user, will form a

better set of recommendations than the items with fewer ratings in the rating matrix.

Further, we saw in Section 4.2.3 that the errors in predictions due to the skewed

distribution of ratings in the user-item rating matrix affect the ranking performance of

the matrix-completion based methods. In particular, under the assumption that the

rating that a user will provide to an item determines his ranking preference, our results

indicate that the items predicted at the top by matrix completion-based methods miss

a large number of true high rated items. In some datasets, the true high rated items

are missing even in the top 50% of the predicted items for the user. However, the items

that are predicted at the top for a user but are absent from the true high rated items

are present close to the true high rated items by the user. Therefore, the ranking based

on the predicted ratings is not severely affected by false positives as it does not contain

items that are significantly low rated. Additionally, we observed that the infrequent

items, irrespective of whether they are true high rated or true low rated, are predicted

low by the matrix completion-based methods thereby appearing later in the ranking of

the items for recommendations.

Chapter 5

TruncatedMF: Truncated matrix

factorization

This chapter focuses on improving the matrix completion-based recommendation meth-

ods for users and items present in the tail, i.e., those having few ratings in the user-item

rating matrix. We show that the performance of matrix completion in real datasets vary

with the number of ratings that a user or an item has, and its accuracy is low for the

users or the items with few rating. Furthermore, we use these insights to develop Trun-

catedMF, a matrix completion-based approach, that outperforms the state-of-the-art

MF method for the users and the items in the tail.

5.1 Introduction

The matrix completion-based methods, e.g., matrix factorization (MF) [10, 11, 14], are

the state-of-the-art collaborative filtering methods that use users’ historical preferences

over items to generate recommendations. The ratings provided by users over the items

can be viewed as a matrix whose rows represent the users, columns denote the items,

and entries are the ratings provided by the users over the items. There exists a small

number of attributes that describe the items, and a user’s rating depends on how the

user values those attributes. This makes the user-item rating matrix low-rank, and the

number of attributes determines the rank of the matrix. The attributes of the items

and the weights provided by a user over these attributes are often referred as the items’

25

26

Table 5.1: Datasets used in experiments
Dataset users items ratings µu

a σu
b µi

c σi
d density

(%)†

EachMovie (EM) 61,265 1,623 2,811,983 45.89 59.48 1732.58 3882.55 2.8
Flixster (FX) 147,612 48,794 8,196,077 55.52 225.81 167.97 934.47 0.1
Movielens 10M (ML10) 69.878 10,677 10,000,054 143.10 216.71 936.59 2487.21 0.01
Movielens 20M (ML20) 229,060 26,779 21,063,128 91.95 190.53 786.55 3269.45 0.3
Netflix (NF) 480,189 17,772 100,480,507 209.252 302.33 4550.75 16908.40 1.1
a The number of average ratings per user in the dataset.
b The standard deviation of ratings per user in the dataset.
c The number of average ratings per item in the dataset.
d The standard deviation of ratings per item in the dataset.
† The percentage of observed ratings in the dataset.

latent factors and the users’ latent factors, respectively. MF estimates the user-item

rating matrix as the product of the user latent factors and the item latent factors.

In practice, there are few attributes that are responsible for a large portion of the

rating provided by a user on an item and the remaining rating can be explained by

other attributes. However, certain users have provided ratings to few items, and some

items have received few ratings from the users thereby these users or items may not have

sufficient ratings to estimate weights for all the attributes accurately. The inaccuracy

in the estimation of weights for these users and items can affect the predicted ratings

and hence affect the generated recommendations. Therefore, the recommendations for

these users and items with few ratings may improve by focusing on few attributes that

are responsible for a significant portion of the rating and can be estimated accurately

by matrix completion-based methods.

This chapter investigates how does the performance of the matrix completion-based

methods changes with the number of ratings that a user or an item has, and shows that

the users or the items with few ratings tend to have low accuracy. Additionally, we show

that the error in predictions for such users or items increases further with the increase

in rank of the low-rank matrix completion-based methods. Furthermore, we use these

findings to develop TruncatedMF which considers the number of ratings received by an

item or provided by a user to estimate the rating of the user on the item. The exhaustive

experiments on the real datasets demonstrate the effectiveness of TruncatedMF over the

state-of-the-art MF method for the users and the items with few ratings.

27

5.2 Effect of frequency on accuracy in real datasets

We investigated how does the performance of matrix completion method vary for items

with the different number of ratings in user-item rating matrix and in order to do the

analysis we evaluated matrix completion on a random held-out subset of the real datasets

shown in Table 5.1. We followed the standard procedure of dividing the available ratings

in a dataset at random into training, validation and test splits, i.e., 60% of the ratings

were used for learning the low-rank models and rest were used equally for validation

and test splits. To learn the model we tried rank in the range [1, 5, 10, 15, 25, 30,

40, 50] and regularization parameters in the range [0.001, 0.01, 0.1, 1]. We performed

this procedure three times and selected the model giving the lowest average RMSE on

the validation splits. Table 5.2 shows the test RMSE achieved by the selected models

for different datasets. In addition to computing RMSE over all the ratings in the test

split, we also computed RMSE over the infrequent items in the test split, i.e., the items

that have few ratings in the training split. In order to identify infrequent items, we

ordered the items in increasing order by the number of ratings in training splits. Next,

we divided these ordered items into quartiles and designated the items in the first and

the last quartile as the infrequent and the frequent items respectively.

Figures 5.1 and 5.2 show the RMSE for the items and the users in the test, respec-

tively. As can be seen in the figures, for all the datasets the RMSE of the frequent items

(or users) is lower than that of the infrequent items (or users) . These results suggest

that the matrix completion method fails to estimate the preferences for the infrequent

items (or users) accurately in the real datasets. Also as can be seen in Figure 5.1, for

FX, ML10 and ML20 datasets, the RMSE of the infrequent items increases with the

increase in the rank while that of frequent items decreases with the increase in the rank.

Since NF and EM has a high number of average ratings for the items, the RMSE also

tends to decrease for the infrequent items with the increase in the rank. Similarly, as

can be seen in Figure 5.2, in FX and ML20 datasets the RMSE of the infrequent users

increases with the increase in the rank. The increase in RMSE with the increase in

ranks suggests that infrequent items or infrequent users may not have sufficient ratings

to estimate all the ranks accurately thereby leading to the error in predictions for such

users or items.

28

Table 5.2: Test RMSE for real datasets.

Rank EM FX ML10 ML20 NF

1 1.282 0.903 0.870 0.875 0.926
5 1.158 0.871 0.815 0.824 0.863
10 1.142 0.866 0.804 0.813 0.845
15 1.138 0.864 0.800 0.810 0.839
25 1.134 0.864 0.798 0.809 0.834
30 1.132 0.864 0.797 0.809 0.832
40 1.132 0.864 0.796 0.809 0.831
50 1.131 0.864 0.796 0.809 0.830

5.3 Truncated matrix factorization

In Section 5.2, we showed that the infrequent items and the infrequent users tend to

have a high error under matrix completion-based approach. Furthermore, this error

increases with the increase in rank of the estimated low-rank models, i.e, increases

with the dimension of estimated users’ and items’ latent factors. We propose to use

these observations to devise a approach, which we will refer to as Truncated Matrix

Factorization (TMF), to improve the accuracy of the low-rank models for both the

users and the items having few ratings. Since for the items and the users with few

ratings we may not be able to estimate all the ranks of a low-rank model accurately, we

propose to consider only a subset of the ranks for these users or items.

In our approach, the estimated rating for user u on item i is given by

r̂u,i = pu(qi � hu,i)
T , (5.1)

where pu denotes the latent factor of user u, qi represents the latent factor of item i,

hu,i is a vector containing 1s in the beginning followed by 0s, and � represents the

elementwise Hadamard product between the vectors. The vector hu,i is used to select

the ranks that are active for the (u, i) tuple. The 1s in hu,i denote the active ranks for

the (u, i) tuple.

29

1 5 10 15 25 30 40 50

Rank

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R
M

S
E

FX

1 5 10 15 25 30 40 50

Rank

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
M

S
E

ML10

1 5 10 15 25 30 40 50

Rank

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

R
M

S
E

ML20

1 5 10 15 25 30 40 50

Rank

0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

R
M

S
E

NF

1 5 10 15 25 30 40 50

Rank

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

R
M

S
E

EM

Infrequent

Frequent

Figure 5.1: Test RMSE of the frequent and infrequent items in real datasets.

5.3.1 Frequency adaptive truncation

A way to select the active ranks, i.e., hu,i for a user-item rating is based on the frequency

of the user and the item in the rating matrix. In this approach, for a given rating by

a user on an item, first, we determine the number of ranks to be updated based on

either the user or the item depending on the one having a lower number of ratings. In

order to select the ranks, we normalize the frequency of the user and the item, and use

a non-linear activation function, e.g., sigmoid function, to map this frequency of the

user or the item in [0, 1]. Finally, we use the product of the output of the activation

function and rank of the low-rank model as the number of active ranks selected for the

(u, i) tuple. The number of active ranks to be selected is given by

ku,i =

r

1+e−k(fu−z) , if fu ≤ fi
r

1+e−k(fi−z) , otherwise,
(5.2)

where r is the rank of the low-rank model, i.e., dimension of the user and the item

latent factors, fu is the frequency of user u, fi is the frequency of item i, k controls

the steepness of the sigmoid function and z is the value of the sigmoid’s midpoint. An

30

1 5 10 15 25 30 40 50

Rank

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
M

S
E

FX

1 5 10 15 25 30 40 50

Rank

0.75

0.80

0.85

0.90

0.95

1.00

R
M

S
E

ML10

1 5 10 15 25 30 40 50

Rank

0.8

0.9

1.0

1.1

1.2

R
M

S
E

ML20

1 5 10 15 25 30 40 50

Rank

0.80

0.85

0.90

0.95

1.00

1.05

R
M

S
E

NF

1 5 10 15 25 30 40 50

Rank

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

R
M

S
E

EM

Infrequent

Frequent

Figure 5.2: Test RMSE of the frequent and infrequent users in real datasets.

additional motivation for using a non-linear activation function, e.g., sigmoid function,

is that the shape of the plot in Figure 4.2 is non-linear. Hence, using such a function

assists in identifying the users or the items for whom we may estimate only a few ranks

accurately. The active ranks to be selected are given by

hu,i[j] =

1, if j ≤ ku,i
0, otherwise.

(5.3)

We will refer to this method as Truncated matrix factorization (TMF).

5.3.2 Frequency adaptive probabilistic truncation

An alternative way to select the active ranks is to assume that the number of active

ranks follows a Poisson distribution with parameter ku,i. This method is similar to

Dropout [65] technique in neural networks, where parameters are selected probabilisti-

cally for updates during learning of the model. Similar to regularization it provides a

way of preventing overfitting in learning of the model. The active ranks to be selected

31

Algorithm 1 Learn TMF

1: procedure LearnTMF
2: r ← rank of low-rank models
3: η ← learning rate
4: λ← regularization parameter
5: k ← steepness constant
6: z ← mid-point
7: R ← all users’ ratings on items
8: f ← users’ and items’ frequency
9: iter ← 0

10: Init P , Q with random values ∈ [-0.01, 0.01]
11: while iter < maxIter or error on validation set decreases do
12: for each ru,i ∈ R do
13: if fu ≤ fi then
14: ku,i ← r

1+e−k(fu−z)

15: else
16: ku,i ← r

1+e−k(fi−z)

17: end if
18: hu,i ← 1
19: for each doj ∈ [1, r]
20: if j > ku,i then
21: hui[j]← 0
22: end if
23: end for
24: r̂u,i = pu(qi � hu,i)

T

25: eu,i ← r̂u,i − ru,i
26: for each j ∈ [1, ku,i] do
27: pu[j]← pu[j]− η(2eu,iqi[j] + 2λpu[j])
28: qi[j]← qi[j]− η(2eu,ipu[j] + 2λqi[j])
29: end for
30: end for
31: end while
32: return P,Q
33: end procedure

32

Algorithm 2 Learn TMF + Dropout

1: procedure LearnTMFDropout
2: r ← rank of low-rank models
3: η ← learning rate
4: λ← regularization parameter
5: k ← steepness constant
6: z ← mid-point
7: R ← all users’ ratings on items
8: f ← users’ and items’ frequency
9: iter ← 0

10: Init P , Q with random values ∈ [-0.01, 0.01]
11: while iter < maxIter or error on validation set decreases do
12: for each ru,i ∈ R do
13: if fu ≤ fi then
14: ku,i ← r

1+e−k(fu−z)

15: else
16: ku,i ← r

1+e−k(fi−z)

17: end if
18:

19: θu,i ∼ Poisson(ku,i)
20: hu,i ← 1
21: for each doj ∈ [1, r]
22: if j > θu,i then
23: hui[j]← 0
24: end if
25: end for
26: r̂u,i = pu(qi � hu,i)

T

27: eu,i ← r̂u,i − ru,i
28: for each j ∈ [1, θu,i] do
29: pu[j]← pu[j]− η(2eu,iqi[j] + 2λpu[j])
30: qi[j]← qi[j]− η(2eu,ipu[j] + 2λqi[j])
31: end for
32: end for
33: end while
34: return P,Q
35: end procedure

33

are given by

hu,i[j] =

1, if j ≤ θu,i
0, otherwise,

where θu,i ∼ Poisson(ku,i) and ku,i is given by Equation 5.2. We will call this method

as Truncated matrix factorization with Dropout (TMF + Dropout).

5.3.3 Model learning

The parameters of the model, i.e., the user and the item latent factors, can be estimated

by minimizing Equation 3.2 as described in Section 3. Algorithms 1 and 2 provides the

detailed procedure for TMF and TMF + Dropout, respectively.

5.3.4 Rating prediction

After learning the model the predicted rating for a user u on a item i for TMF model

is given by

r̂u,i = pu(qi � hu,i)
T , (5.4)

where the active ranks, i.e., hu,i, is given by Equation 5.3. The predicted rating for

the user and the item under TMF + Dropout model is given by the least number of

ranks for whom the cumulative distribution function (CDF) for Poisson distribution

with parameter kui obtains approximately the value of 1. The active ranks, i.e., hu,i,

used for prediction under TMF + Dropout are given by

hu,i[j] =

1, if j ≤ s

0, otherwise,
(5.5)

where s is the least number of ranks for whom the CDF, i.e, P (x <= s) ≈ 1, x ∼
Poisson(ku,i) and ku,i is given by Equation 5.2.

34

5.4 Experimental Evaluation

In this section, we conduct experiments to demonstrate the effectiveness of the proposed

methods on different rating datasets presented in Table 5.1.

5.4.1 Evaluation methodology

To evaluate the performance of the proposed methods we divided the available ratings

in different datasets into training, validation and test splits by randomly selecting 20%

of the ratings for each of the validation and the test splits. The validation split was

used for model selection, and the model that was selected was used to predict ratings

on the test split. We repeated this process three times and report the average RMSE

across the runs.

In addition to computing RMSE obtained by different methods for the ratings in

the test split, we also investigated the performance of the proposed approaches for the

items and the users with a different number of ratings in the training split. To this end,

we ordered the items and the users in increasing order by their number of ratings in

training split and divided them equally into four buckets or quartiles. We will report

the RMSE achieved by different methods for ratings in the test split for the users and

the items in these quartiles.

5.4.2 Comparison methods

We compared the performance of our proposed approaches against the state-of-the-art

MF method described in Chapter 3.

5.4.3 Model selection

We performed grid search to tune the dimensions of the latent factors, regularization

hyper-parameters and sigmoid function’s parameters, i.e., k and z. We searched for

regularization weights (λ) in the range [0.001, 0.01, 0.1, 1, 10], dimension of latent

factors (r) in the range [1, 5, 10, 15, 25, 50], steepness constant (k) in the range [1 5,

10, 20, 40] and mid-point (z) in the range [-0.75, -0.50, -0.25, 0, 0.25, 0.50, 0.75]. The

final parameters were selected based on the performance on the validation split.

35

5.5 Results and Discussion

We evaluated the performance of MF method and the proposed methods, i.e., Truncat-

edMF (TMF) and TruncatedMF with Dropout (TMF + Dropout) on the real datasets

presented in Table 5.1.

5.5.1 Performance for rating prediction on real datasets

We investigated the performance of the different methods for the task of rating predic-

tions on different rating datasets. Table 5.3 shows the best performance achieved by the

different methods on the datasets for different ranks. As can be seen in the table, the

proposed approaches outperform the MF method for the task of rating predictions in

different datasets. The performance is significantly better for FX dataset. The better

performance of the proposed methods for FX is because in this dataset there exists

either the users or the items that have few ratings and the proposed approaches are

effective in selecting the few ranks that can be estimated accurately for these users or

items. Also, for NF and EM datasets which have a high average number of ratings for

the users and the items the performance of the proposed approaches is similar to that

of the MF method. This is because the proposed methods use all the available ranks as

active ranks in such a dataset and hence essentially reduces to MF method.

Additionally, among the proposed methods, TMF + Dropout outperforms the TMF,

and this improved performance of TMF + Dropout illustrates its effectiveness in pre-

venting overfitting and generating better predictions compared to that of the TMF

method.

5.5.2 Performance for the users and the items with different number

of ratings

We investigated how does the performance of the MF and the proposed methods vary

for the users and the items with the different number of ratings. Table 5.4 shows

the performance of the different methods for different quartiles of the users and the

items ordered by their frequency. As can be seen in the table, the proposed methods

outperform the MF method for lower quartiles for most of the datasets. The performance

of the proposed methods is significantly better for lower quartiles in FX, ML10 and

36

ML20 datasets, as these datasets contain users or items with few ratings. The better

performance of the proposed methods for the users and the items with few ratings

is because unlike MF the proposed approaches consider only a subset of ranks that

are estimated accurately while trying to predict ratings that involve infrequent users

or items. Also, since NF and EM datasets has a high average number of ratings, the

proposed approaches use all the ranks as active ranks thereby giving similar performance

as that of the MF method for all the quartiles.

Also, similar to our results for overall rating prediction the TMF + Dropout method

outperforms the TMF method for different quartiles for most of the datasets thereby

demonstrating its advantage over the TMF method.

5.6 Conclusion

In this chapter, we learned that the user or items with few ratings may not have suf-

ficient ratings to estimate the low-rank models accurately thereby leading to an error

in predictions and thus affecting item recommendations. Based on these insights we

presented TruncatedMF in Section 5.3, which considers the frequency of both the user

and the item to select a subset of ranks to estimate the rating of the user on the item

accurately. The experiments on real datasets show that TruncatedMF outperforms the

state-of-the-art MF method for rating predictions for the users and the items having

few ratings in the user-item rating matrix.

37

Table 5.3: Test RMSE for real datasets

EM FX

Rank MF TMF TMF
+

Dropout

MF TMF TMF
+

Dropout

1 1.282 NA NA 0.903 NA NA
5 1.158 1.158 1.157 0.871 0.860 0.860
10 1.142 1.142 1.142 0.866 0.851 0.849
15 1.138 1.138 1.139 0.864 0.852 0.847
25 1.134 1.134 1.135 0.864 0.859 0.853
30 1.132 1.133 1.133 0.864 0.862 0.856
40 1.132 1.131 1.132 0.864 0.862 0.861
50 1.131 1.131 1.131 0.864 0.862 0.867

ML20 NF

Rank MF TMF TMF
+

Dropout

MF TMF TMF
+

Dropout

1 0.875 NA NA 0.926 NA NA
5 0.824 0.824 0.822 0.863 0.863 0.864
10 0.813 0.813 0.809 0.845 0.845 0.844
15 0.810 0.810 0.805 0.839 0.839 0.838
25 0.809 0.808 0.804 0.834 0.834 0.833
30 0.809 0.808 0.804 0.832 0.833 0.832
40 0.809 0.807 0.804 0.831 0.831 0.831
50 0.809 0.806 0.804 0.830 0.829 0.829

ML10

Rank MF TMF TMF
+

Dropout

1 0.870 NA NA
5 0.815 0.815 0.814
10 0.804 0.804 0.802
15 0.800 0.799 0.798
25 0.798 0.797 0.796
30 0.797 0.797 0.796
40 0.796 0.796 0.795
50 0.796 0.795 0.795

38

Table 5.4: Test RMSE of the proposed approaches for different datasets. We also show
the RMSE for the users and the items in different quartiles created in increasing order
by their frequency. Q1 refers to the quartile containing the least frequent users or items
followed by remaining in Q2, Q3, and Q4.

EM FX

MF
(Rank 50)

TMF
(Rank 50)

TMF
+ Dropout
(Rank 50)

MF
(Rank 15)

TMF
(Rank 10)

TMF
+ Dropout
(Rank 15)

Overall 1.131 1.131 1.131 0.864 0.851 0.847

Item Q1 1.212 1.213 1.212 1.302 1.252 1.256
Item Q2 1.105 1.104 1.105 0.961 0.944 0.944
Item Q3 1.086 1.086 1.087 0.800 0.785 0.780
Item Q4 1.137 1.137 1.137 0.864 0.851 0.847

User Q1 1.387 1.384 1.384 1.292 1.247 1.260
User Q2 1.200 1.201 1.200 1.177 1.144 1.151
User Q3 1.156 1.157 1.156 0.974 0.964 0.964
User Q4 1.094 1.093 1.095 0.853 0.841 0.836

ML20 NF

MF
(Rank 25)

TMF
(Rank 50)

TMF
+ Dropout
(Rank 25)

MF
(Rank 50)

TMF
(Rank 50)

TMF
+ Dropout
(Rank 50)

Overall 0.809 0.806 0.804 0.830 0.829 0.829

Item Q1 2.347 2.390 2.115 0.958 0.959 0.956
Item Q2 1.396 1.435 1.123 0.935 0.935 0.932
Item Q3 0.867 0.874 0.851 0.887 0.887 0.884
Item Q4 0.804 0.801 0.801 0.824 0.823 0.823

User Q1 1.130 1.119 1.078 1.019 1.019 1.014
User Q2 0.967 0.969 0.968 0.923 0.923 0.921
User Q3 0.856 0.859 0.863 0.859 0.859 0.858
User Q4 0.774 0.770 0.769 0.803 0.802 0.802

ML10

MF
(Rank 40)

TMF
(Rank 50)

TMF
+ Dropout
(Rank 40)

Overall 0.796 0.795 0.795

Item Q1 1.259 1.250 1.198
Item Q2 0.855 0.853 0.848
Item Q3 0.811 0.810 0.809
Item Q4 0.791 0.790 0.791

User Q1 0.921 0.919 0.915
User Q2 0.864 0.864 0.863
User Q3 0.820 0.820 0.820
User Q4 0.770 0.770 0.770

Chapter 6

User-specific feature-based

factorized bilinear similarity

model for cold-start Top-n item

recommendation

Recommending new items to existing users has remained a challenging problem due

to the absence of user’s past preferences for these items. The user personalized non-

collaborative methods based on item features can be used to address this item cold-start

problem. These methods rely on similarities between the target item and user’s previous

preferred items. While computing similarities based on item features, these methods

overlook the interactions among the features of the items and consider them indepen-

dently. Modeling interactions among features can be helpful as some features, when

considered together, provide a stronger signal on the relevance of an item when com-

pared to case where features are considered independently. In this work we introduce

the User-specific Feature-based factorized Bilinear Similarity Model (UFBSM), which

learns a low-rank user personalized bilinear similarity model to generate Top-n rec-

ommendation of new items. UFBSM model leverages all available information across

users to model these interactions among features. Results on benchmark dataset shows

that UFBSM can improve upon traditional linear collaborative methods for cold-start

39

40

Top-n item recommendation.

6.1 Introduction

Top-n recommender systems are used to identify from a large pool of items those n items

that are the most relevant to a user and have become an essential personalization and in-

formation filtering technology. They rely on the historical preferences that were either

explicitly or implicitly provided for the items and typically employ various machine

learning methods to build content-agnostic predictive models from these preferences.

However, when new items are introduced into the system, these approaches cannot be

used to compute personalized recommendations, because there are no prior preferences

associated with those items. As a result, the methods used to recommend new items,

referred to as (item) cold-start recommender systems, in addition to the historical in-

formation, take into account the characteristics of the items being recommended; that

is, they are content aware. The items’ characteristics are typically captured by a set

of domain-specific features. For example, a movie may have features like genre, actors,

and plot keywords; a book typically has features like content description and author

information. These item features are intrinsic to the item and as such they do not

depend on historical preferences.

In this work, we extend UFSM, previously described in Section 3, in order to account

for interactions between the different item features. We believe that such interactions

are important and quite common. For example, in an e-commerce website, the items

that users tend to buy are often designed to go well with previously purchased items

(e.g., a pair of shoes that goes well with a dress). The set of features describing items of

different type will be different (e.g., shoe material and fabric color) and as such a linear

model can not learn from the data that for example a user prefers to wear leather shoes

with black clothes. Being able to model such dependencies can lead to item cold-start

recommendation algorithms that achieve better performance.

Towards this goal, we present a method called User-specific Feature-based factor-

ized Bilinear Similarity Model (UFBSM) that uses bilinear models to capture pairwise

dependencies between the features. Like UFSM, UFBSM estimates a user-specific

similarity function by linearly combining a small number of global similarity functions.

41

However, unlike UFSM’s linear global similarity functions, UFBSM’s global similarity

functions are bilinear. A challenge associated with such bilinear models is that the

number of parameters that needs to be estimated becomes quadratic on the dimension-

ality of the item’s feature space, which is problematic given the very sparse training

data. UFBSM overcomes this challenge by assuming that the pairwise relations can

be modeled as a combination of a linear component and a low rank component. The

linear component allows it to capture the direct relations between the features whereas

the low rank component allows it to capture the pairwise relations. The parameters of

these models are estimated using stochastic gradient descent and a ranking loss func-

tion based on Bayesian personalized ranking (BPR) that optimizes the area under the

receiver operating characteristic curve.

We performed extensive empirical studies to evaluate the performance of the pro-

posed UFBSM on two benchmark datasets and compared it against state-of-the-art

models for item cold-start recommendation. In our results UFBSM optimized using

the BPR loss function can improve upon other methods in terms of recommendation

quality, especially for datasets in which there are considerable historical data for each

item and datasets whose items are described by relatively small number of features.

This chapter is a generalized extension of Feature-based factorized Bilinear Similarity

Model (FBSM) [66].

6.2 Feature-based similarity model

To solve the cold-start item recommendation problem the current state-of-art method

UFSM models direct interaction between features. However, it fails to capture depen-

dencies betweeen features. Modeling these dependencies can enable user to discover

new items whose characteristics complement the items that he or she has liked in the

past. To this end, we developed UFBSM that instead of learning linear feature-based

similarity functions, it uses bilinear models to estimate the feature-based similarity of

the items. Bilinear models estimate the contribution of all feature-pairs towards pref-

erences of a user over items and as such allows UFBSM to identify relations between

different pairs of features that correlate with a user liking an item. Thus, such a model

can potentially identify items whose features complement each other and which can lead

42

to better recommendations.

Following UFSM, UFBSM computes the preference score for a new item i for user

u as

r̂ui =
∑
j∈R+

u

simu(i, j),
(6.1)

where simu(i, j) is the user-specific similarity function given by

simu(i, j) =
l∑

z=1

mu,z gsimz(i, j), (6.2)

where gsimz(.) is the zth global similarity function, l is the number of global similarity

functions, and mu,z is a scalar that determines how much the zth global similarity

function contributes to u’s overall similarity function.

However, unlike UFSM, in UFBSM the similarity between two items i and j under

the zth global similarity function gsimz(.) is estimated as

gsimz(i, j) = fiWzf
T
j , (6.3)

where Wz is the interaction matrix of the bilinear model that captures the correlation

among different pairs of item features under the global similarity function gsimz(.). The

diagonal of Wz determines linear interactions among features while the off-diagonal ele-

ments of Wz capture the pairwise relations among features. The user-specific similarity

function in Equation 6.2 can be expanded as

simu(i, j) =
l∑

z=1

mu,z fiWzf
T
j . (6.4)

A key challenge in estimating the bilinear model matrices Wzs is that the number of

parameters that needs to be estimated is quadratic on the number of features. In order

to overcome this challenge, we model Wz as the sum of diagonal weights and a low-rank

approximation of the off-diagonal weights:

Wz = Dz + V T
z Vz, (6.5)

43

where Dz is a diagonal matrix and Vz is a matrix of rank h. Note that in Equation

6.5 the model assumes that Wz is symmetric. Using this low-rank approximation the

number of parameters that need to be estimated is reduced significantly when compared

with the full-rank formulation of Equation 6.3. The global similarity function gsimz(.)

is thus given by:

gsimz(i, j) = fiWzf
T
j = fi(Dz + V T

z Vz)f
T
j

= fiDzf
T
j +

nF∑
k=1

nF∑
p=1

fikfjpvz,k · vz,p.
(6.6)

The first part of Equation 6.6 captures the direct relations between features, whereas

the second part of Equation 6.6 captures the effect of off-diagonal elements of Wz by

inner product of latent factor of features. This also gives us a flexible model where we

can regularize diagonal weights and feature latent factors separately.

Note that unlike the bilinear model discussed in Section 3, which models relations

between user and item features [27], UFBSM is trying to find correlations within fea-

tures of items itself. The advantage of modeling interactions among item features is

especially attractive when there are no explicit user features available. Note that it

is not hard to encode the user features in the proposed bilinear model such that the

similarity function is parameterized by user features, and we leave a detailed study to

an extension of this chapter.

6.2.1 Parameter Estimation

UFBSM is parameterized byΘ = [M,D1, . . . , Dl, V1, . . . , Vl], whereD1, . . . , Dl, V1, . . . , Vl

are the parameters of the global similarity functions and M is nU × l matrix of user’s

weight on global similarity functions. The inputs to the learning process are: (i) the pref-

erence matrix R, (ii) the item-feature matrix F , and (iii) the dimension of latent factor

of features. There are many loss functions that can be used to estimate Θ, among which

the Bayesian Personalized Ranking (BPR) loss function [67] is designed especially for

ranking problems. In the Top-n recommender systems, the predicted preference scores

are used to rank the items in order to select the highest scoring n items. The BPR loss

function [25, 67] tries to learn item preference scores such that the items that a user

44

liked have higher preference scores than the ones he/she did not like, regardless of the

actual item preference scores. Thus it can better model the problem than other loss

functions such as least squares loss and in general lead to better empirical performance.

Therefore, we adopted BPR as the loss function to estimate model parameters Θ and

it is given by

Lbpr(Θ) ≡ −
∑
u∈U

∑
i∈R+

u ,

j∈R−
u

ln σ(r̂ui(Θ)− r̂uj(Θ)), (6.7)

where σ(x) is the sigmoid function and r̂ui is the estimated value of the user u’s prefer-

ence for the item i. The estimated rating r̂ui is given by

r̂ui =
∑

j∈R+
u \i

simu(i, j), (6.8)

which is identical to Equation 6.1 except that item i is excluded from the summation.

The model parameters Θ = [M,D1, . . . , Dz, V1, . . . , Vz] are estimated via an opti-

mization of the following objective function:

min
Θ
Lbpr(Θ) + λ

l∑
z=1

‖Vz‖2F + β

l∑
z=1

‖Dz‖22 + γ‖M‖2F , (6.9)

where we penalize the frobenious norm of the model parameters in order to control the

model complexity and improve its generalizability.

To optimize Equation 6.9 we used stochastic gradient descent(SGD) [15], which

is well-suited for large-scale datasets. The update steps for Dz, Vz,muz are based on

triplets (u, i, j) sampled from the training data. For each triplet, we need to compute

the estimated relative rank as r̂uij = r̂ui − r̂uj . If we let τu,ij = 1/(1 + er̂u,ij), then the

updates for model parameters for each SGD iteration is given by:

Dz = Dz + α1

(
τu,ij∇Dz r̂u,ij − βDz

)
, (6.10)

vzp = vzp + α2

(
τu,ij∇vz

p
r̂u,ij − λvzp

)
, and (6.11)

mu,z = mu,z + α3

(
τu,ij∇mu,z r̂u,ij − γmu,z

)
. (6.12)

where α1, α2 and α3 are the learning rates of the SGD.

45

6.2.2 Performance optimizations

In our approach, the direct computation of gradients is time-consuming and is pro-

hibitive when we have high-dimensional item features. For example, the relative rank

r̂u,ij given by

r̂u,ij =
l∑

z=1

mu,z

((
fi(Dz + V T

z Vz)
((∑

q∈R+
u

fq

)
− fi

)T)
−

(
fj(Dz + V T

z Vz)
(∑
q∈R+

u

fTq

)))
,

(6.13)

has complexity of O(|R+
u |nFhl), where h is the dimensionality of latent factors, nF is

the number of features and l is number of similarity functions.

To efficiently compute these, let fu =
∑

q∈R+
u
fq, which can be precomputed once

for all users. Then, Equation 6.13 becomes

r̂u,ij =
l∑

z=1

mu,z

((
fi(Dz + V T

z Vz)(fu − fi)T
)
−

(
fj(Dz + V T

z Vz)f
T
u

))

=

l∑
z=1

mu,z

((
(fi − fj)Dzf

T
u − fiDzf

T
i

)
+

(
(fi − fj)(V T

z Vz)f
T
u − fiV T

z Vzf
T
i

))

=

l∑
z=1

mu,z

((
δijDzf

T
u − fiDzf

T
i

)
+

(
δij(V

T
z Vz)f

T
u − fiV T

z Vzf
T
i

))

=
l∑

z=1

mu,z

((
δijDzf

T
u − fiDzf

T
i

)
+

(
(Vzδ

T
ij)(Vzf

T
u)T − (Vzf

T
i)(Vzf

T
i)T

))
,

46

where δij = fi − fj .
The complexity of computing the relative rank then becomes O(lnFh), which is

lower than complexity of Equation 6.13.

The gradient with respect to user weight is given by

∂r̂u,ij
∂mu,z

=

((
δijDzf

T
u − fiDzf

T
i

)
+(

(Vzδ
T
ij)(Vzf

T
u)T − (Vzf

T
i)(Vzf

T
i)T

))
,

(6.14)

which has a complexity of O(nFh).

The gradient of the diagonal component is given by

∂r̂u,ij
∂Dz

= mu,z

(
δij ⊗ fu − fi ⊗ fi

)
, (6.15)

where ⊗ represents elementwise scalar product. The complexity of Equation 6.15 is

given by O(nF).

The gradient of the low rank component is given by

∂r̂u,ij
∂vzp

= mu,z

(
δij,p(Vzf

T
u) + fup(Vzδ

T
ij)− 2fip(Vzf

T
i)
)
, (6.16)

whose complexity is O(nFh).

Hence, the complexity of gradient computation for all the parameters is given by

O(l(nFh+ nF + nFh)) ≈ O(lnFh). We were able to obtain both the estimated relative

rank and all the gradients in O(lnFh), which is linear with respect to feature dimension-

ality as well as the size of latent factors and the number of global similarity functions.

This allows the UFBSMbpr to process large-scale datasets.

We summarize the proposed UFBSMbpr algorithm in Algorithm 3.

6.3 Experimental Evaluation

In this section we perform experiments to demonstrate the effectiveness of the proposed

algorithm.

47

Algorithm 3 UFBSMbpr-Learn

1: procedure UFBSM bpr Learn
2: l← Number of global similarity functions
3: λ← V1, . . . , Vl regularization weights
4: β ← D1, . . . , Dl regularization weights
5: γ ← M regularization weight
6: α1, α2, α3 ← D’s, V ’s and M ’s learning rates
7: Initialize Θ = [D1, . . . , Dl, V1, . . . , Vl,M] randomly
8:

9: while not converged do
10: for each user u do
11: sample a pair (i, j) s.t. i ∈ R+

u , j ∈ R−u
12: compute r̂u,ij = r̂ui − r̂uj
13: compute ∇Dz r̂u,ij
14: compute ∇vz

p
r̂u,ij

15: compute ∇mu,z r̂u,ij
16: update Dz using (6.10)
17: update vzp∀p using (6.11)
18: update mu,z using (6.12)
19: end for
20: end while
21:

22: return Θ = [D1, . . . , Dl, V1, . . . , Vl,M]
23: end procedure

6.3.1 Datasets

We used four datasets to evaluate the performance of UFBSM.

CiteULike (CUL)1 aids researchers by allowing them to add scientific articles to

their libraries. For users of the CUL, the articles present in their library are considered

as preferred articles i.e., 1 in a preference matrix while rest are considered as implicit 0

preferences.

MovieLens-HetRec (ML-HR (genre)) is the dataset described in [68]. The ratings

were binarized by treating all ratings greater than 2 as 1 and below or equal to 2 as 0.

The movie genres were used as the item’s content.

Amazon Books (ABB) is a dataset collected from amazon about best-selling books

and their ratings. The ratings are binarized by treating all ratings greater than equal

1http://citeulike.org/

48

Table 6.1: Statistics for the datasets used for testing
Dataset users items features preferences prefs/user prefs/item density

ML-HR (genre) 2,113 10,109 20 855,598 404.9 84.6 4.01%
CUL 3,272 21,508 6,359 180,622 55.2 8.4 0.13%
Book-Crossing 17,219 36,546 8,946 574,127 33.3 15.7 0.09%
ABB 13,097 11,077 5,766 175,612 13.4 15.9 0.12%

to 3 as 1 and ratings below 3 as 0. Each is accompanied with a description which was

used as item’s content.

Book-Crossing (BX) dataset is extracted from Book Crossing data [69] such that

user has given at least four ratings and each book has received the same amount of

ratings. Description of these books were collected from Amazon using ISBN and were

used as item features.

Various statistics about these datasets are shown in Table 6.1. Also comparing the

densities of the datasets we can see that the MovieLens-HetRec dataset have significantly

higher density than other dataset. For the ABB, CUL and Book-Crossing dataset, the

words that appear in the item descriptions were collected, stop words were removed

and the remaining words were stemmed to generate the terms that were used as the

item features. All words that appear in less than 20 items and all words that appear in

more than 20% of the items were omitted. The remaining words were represented with

TF-IDF scores. The item feature matrix was normalized row-wise in datasets.

6.3.2 Comparison methods

We compared UFBSM against non-collaborative personalized user modeling methods

and collaborative methods.

1. Cosine-Similarity (CoSim) This is a personalized user-modeling method. The

preference score of user u on target item i is estimated using Equation 6.8 by using

Cosine Similarity to compute similarity between the items.

2. User-specific Feature-based Similarity Models (UFSM) As mentioned be-

fore in Section 3, this method [26] learns personalized user model by using all

the past preferences from users across the dataset. It outperformed other state of

49

the art collaborative latent factor based methods e.g., RLFM [23], AFM [25] by

significant margin.

3. RLFMI We used the Regression-based Latent Factor Modeling(RLFM) tech-

nique implemented in LibFM [70] that accounts for inter-feature interactions. We

used LibFM with SGD learning to obtain results.

6.3.3 Evaluation Methodology

For each dataset we split the corresponding user-item preference matrix R into three

matrices Rtrain, Rval and Rtest. Rtrain contains a randomly selected 60% of the columns

(items) of R, and the remaining columns were divided equally among Rval and Rtest.

Since items in Rtest and Rval are not present in Rtrain, this allows us to evaluate the

methods for item cold-start problems as users in Rtrain do not have any preferences for

items in Rtest or Rval. The models are learned using Rtrain and the best model is selected

based on its performance on the validation set Rval. The selected model is then used

to estimate the preferences over all items in Rtest. For each user the items are sorted in

decreasing order and the first n items are returned as the Top-n recommendations for

each user. The evaluation metrics as described later are computed using these Top-n

recommendation for each user.

After creating the train, validation and test split, there might be some users who

do not have any items in the validation or the test split. In that case we evaluate

the performance on the splits for only those users who have at least one item in the

corresponding test split. This split-train-evaluate procedure is repeated three times for

each dataset and the evaluation metric scores are averaged over these runs before being

reported in results.

We used two metrics to assess the performance of the various methods: Recall at n

(Rec@n) and Discounted Cumulative Gain at n (DCG@n). Given the list of the Top-n

recommended items for user u, Recall@n measures how many of the items liked by u

appeared in that list, whereas the DCG@n measures how high the relevant items were

placed in the list. The Recall@n is defined as

REC@n =
|{Items liked by user} ∩ {Top-n items}|

|Top-n items|

50

The DCG@n is defined as

DCG@n = imp1 +

n∑
p=2

impp
log2(p)

,

where the impp of the item with rank p in the Top-n list is

impp =

{
1/n, if item at rank p ∈ R+

u,test

0, if item at rank p /∈ R+
u,test.

The main difference between Recall@n and DCG@n is that DCG@n is sensitive to the

rank of the items in the Top-n list. Both the Recall@n and the DCG@n are computed

for each user and then averaged over all the users.

6.3.4 Model Training

UFBSM’s model parameters are estimated using training set Rtrain and validation

set Rval. After each major SGD iteration of Algorithm 3 we compute the Recall@n

on validation set and save the current model if current Recall@n is better than those

computed in previous iterations. The learning process ends when the optimization

objective converges or no further improvement in validation recall is observed for 10

major SGD iterations. At the end of learning process we return the model that achieved

the best Recall@n on the validation set.

To estimate the model parameters of UFBSMbpr, we draw samples equal to the

number of preferences in R for each major SGD iteration. Each sample consists of a

user, an item preferred by user and an item not preferred by user. If a dataset does not

contain items not preferred by user then we sample from items for which his preference

is not known.

6.4 Results and Discussion

In this section we will compare UFBSM with the other competing methods and discuss

the effect of increasing the number of global similarity functions and the dimension

of feature’s factor. We will also analyze pairs of feature whose bilinear interaction

51

contributes the most towards the performance on the dataset ML-HR (genre).

6.4.1 Comparison with previous methods

We compared the performance of UFBSM with other methods described in Section

6.3.2. Results are shown in Table 6.2 for different datasets. We tried different values

for various parameters e.g., latent factors and regularization parameters associated with

methods and report the best results found across datasets.

These results show that the relative performance of the UFBSM over UFSM is

dataset dependent. For some datasets, UFBSM is able to improve the performance

whereas for the others it does not lead to any improvements.

In order to better characterize and understand the nature of the datasets for which

UFBSM leads to better results, we analyzed for each dataset the set of users for which

the UFBSM leads to an increase, no change and a decrease in performance over UFSM.

We present these results in Table 6.3. For the ML-HR (genre) dataset more users

benefited from changing to UFBSM from UFSM, while for the other datasets the

number of users that benefited from both the methods remains the same. ML-HR

(genre) in comparison to other datasets has more preferences per item, hence UFBSM

takes advantage of availability of more data while UFSM fails to do the same.

6.4.2 Effect of increasing the number of global similarity functions

Table 6.4 shows the performance achieved by using the different number of global sim-

ilarity functions across different datasets.

For high-dimensional feature datasets (CiteULike, ABB and Book-Crossing) the

performance remains similar on increasing the number of global similarity functions.

The UFBSM method performs reasonably well using fewer global similarity functions.

Therefore similar to UFSM, UFBSM can capture diverse preferences from the users

successfully.

For the low-dimensional feature dataset (ML-HR (genre)) the performance decreases

with number of global similarity functions. UFBSM requires a single global similarity

function to achieve the best performance on ML-HR (genre).

52

6.4.3 Effect of increasing the dimension of feature’s factor

Table 6.5 shows the effect of increasing the dimension of feature’s factor on the perfor-

mance across different datasets. For all datasets smaller dimension of feature’s factor are

enough to achieve the best performance; however, it may use multiple global similarity

functions for the same.

6.4.4 Pairwise feature interaction analysis

For ML-HR (genre) dataset we identified pairs of features (genres), such that the bilinear

interaction among these pairs contribute most towards the performance of UFBSM.

Some of these significant pairs of feature are shown in Table 6.6. We identified these pairs

by removing the bilinear interaction between all the possible pair of features and report

those pairs whose removal led to a significant change in the performance. The pairs

which led to a decrease in the performance are the ones whose interaction contribute

towards generating better recommendations, on the other hand the pairs which led to

an increase in the performance are redundant e.g., Animation and Children. We looked

at how often these feature pairs occur together for items and found that the frequency

of these feature pairs’ co-occurrence is small and that is the reason why a linear model

(UFSM) fails to capture the interaction between these pairs, whereas a bilinear model

(UFBSM) performs better.

6.4.5 Discussion

In our experiments the performance of the bilinear model is found to be dependent

on the datasets. It outperformed the linear model by a significant margin when the

dimension of the features in the datasets were small. The linear model is designed to

recommend those items that have common features with the items preferred by the user.

The bilinear model in addition to common features among items also take into account

the features that do not co-occur among the items. The low dimensional feature dataset

e.g., ML-HR (genre) contains features which are disjoint and do not co-occur frequently

among the items. The high dimensional features in our datasets are derived from text

and these may contain terms which co-occur frequently among the items. For example,

in the task of scientific articles recommendation, consider a user who prefers articles

53

related to machine learning and high-performance computing. The articles related to

high-performance computing may contain terms that are related to machine learning

e.g., an article describing parallel implementation of the LASSO method. Due to these

terms the linear model can recommend articles that are related to machine learning from

a high performance computing article. While in the task of movies recommendation the

movies are presented by their corresponding genres, consider a user who prefers children

and IMAX movies. Here the bilinear model can recommend IMAX movies to a person

who prefers children movies while linear model can not perform such recommendations.

6.5 Conclusion

We presented here UFBSM for the personalized cold-start Top-n item recommendation.

It tries to learn multiple global bilinear similarity functions between items, represented

by their features, by using all the information available across users. It captures the

interaction among the item features by using a bilinear model. The computation com-

plexity of the bilinear model estimation is significantly reduced by modeling the simi-

larity as sum of the diagonal component and off-diagonal component. The off-diagonal

components are further estimated as dot product of latent spaces of features. Results

on benchmark datasets shows that UFBSM can improve upon the existing linear col-

laborative methods used for the cold-start item recommendation.

54

Table 6.2: Performance of UFBSM and Other Techniques on different datasets
Method CiteULike ML-HR (genre)

Params Rec@10 DCG@10 Params Rec@10 DCG@10

CoSim - 0.1791 0.0684 - 0.0050 0.0199

RLFMI h=75,
λ=0.001

0.0874 0.0424 h=35,
λ=0.05

0.012 0.0466

UFSMbpr l=3,
µ1=0.25,
γ=0.1

0.2017 0.0791 l=1,
µ1=10,
γ=50

0.0074 0.0233

UFBSMbpr λ=0.25,
β=10,
γ=0.1,
h=5,
l=1

0.2026 0.0791 λ=50,
β=50,
γ=50,
h=5, l=1

0.012 0.0418

ABB Book-Crossing

CoSim - 0.1732 0.0221 - 0.1485 0.0148

RLFMI h=100,
λ=0.01

0.014 0.0020 h=100,
λ=0.01

0.063 0.0072

UFSMbpr l=3,
µ1=0.1,
γ=0.1

0.2054 0.0280 l=2,
µ1=0.1,
γ=0.01

0.1979 0.0211

UFBSMbpr λ=1,
β=10000,
γ=1,
h=5,
l=3

0.2046 0.0283 λ=0.1,
β=1,
γ=0.01,
h=1, l=1

0.1985 0.0211

The “Params” column shows the main parameters for each method. For UFSMbpr, l is the number of similarity
functions, and µ1 is the regularization parameter. For UFBSMbpr, l is the number of similarity functions, λ, β and
γ are regularization parameters and h is dimension of feature latent factors. The “Rec@10” and “DCG@10” columns
show the values obtained for these evaluation metrics. The entries that are underlined represent the best performance
obtained for each dataset.

55

Table 6.3: User level investigation for datasets

Dataset UFBSM
against
UFSM

users items average user
preferences

average item
preferences

ML-HR (genre)

BETTER 897 5791 348 54

SAME 1149 5526 154 32

WORSE 62 4403 435 6

ABB

BETTER 99 3530 48 1

SAME 6178 9074 15 10

WORSE 85 1728 23 1

CiteULike

BETTER 32 2491 94 1

SAME 3136 12901 32 8

WORSE 30 2170 82 1

Book-Crossing

BETTER 18 4044 260 1

SAME 2838 34042 95 8

WORSE 8 3313 428 1

Table 6.4: Effect of increasing number of global similarity functions

No. of Global
Similarity
Functions

CiteULike ML-HR (genre) ABB Book-Crossing

Rec@10 Factor
Dim.

Rec@10 Factor
Dim.

Rec@10 Factor
Dim.

Rec@10 Factor
Dim.

1 0.2026 5 0.0119 5 0.2053 0 0.1985 1

2 0.2023 5 0.0098 3 0.2052 0 0.1982 1

3 0.2017 0 0.0083 10 0.2054 0 0.1980 1

5 - - 0.0076 10 - - - -

7 - - 0.0082 10 - - - -

The “Rec@10” columns shows the best recall obtained for given number of global similarity functions.
“Factor Dim.” column shows the dimension of factors at which best recall was achieved. “Factor Dim.”
of 0 corresponds to UFSM method.

56

Table 6.5: Effect of increasing the dimension of feature’s factor

Dimension of
feature’s
factor

CiteULike ML-HR (genre) ABB Book-Crossing

Rec@10 No. of
global
similarity
func.

Rec@10 No. of
global
similarity
func.

Rec@10 No. of
global
similarity
func.

Rec@10 No. of
global
similarity
func.

0 0.2017 1 0.0074 1 0.2054 3 0.1979 2

1 0.2015 1 0.0079 3 0.2044 3 0.1985 1

3 0.2021 1 0.0098 2 0.2045 3 0.1980 1

5 0.2026 1 0.0119 1 0.2046 3 0.1981 2

7 - - 0.0115 1 - - - -

10 - - 0.009 1 - - - -

The “Rec@10” columns shows the best recall obtained for given dimension of feature’s factor.

Table 6.6: Significant feature pairs

Feature 1 Feature 2 Recall
change(%)

Feature 1 Feature 2 Recall
change(%)

Drama IMAX -28.672 Crime IMAX 2.485

Children Drama -19.790 Animation Fantasy 2.488

Drama Musical -13.953 Adventure Musical 2.602

Fantasy Drama -11.596 Drama Documentary 2.802

Children IMAX -6.185 Adventure Animation 3.369

Children Comedy -6.118 Animation Musical 4.084

Children Musical -5.641 Animation Comedy 4.468

Drama Western -4.902 Adventure Drama 4.476

Romance IMAX -3.912 Animation Children 5.484

Animation Film-Noir -3.360 Animation Drama 7.451

Chapter 7

Learning from Sets of Items in

Recommender Systems

Most of the existing recommender systems use the ratings provided by users on indi-

vidual items. An additional source of preference information is to use the ratings that

users provide on sets of items. The advantages of using preferences on sets are two-

fold. First, a rating provided on a set conveys some preference information about each

of the set’s items, which allows us to acquire a user’s preferences for more items that

the number of ratings that the user provided. Second, due to privacy concerns, users

may not be willing to reveal their preferences on individual items explicitly but may

be willing to provide a single rating to a set of items, since it provides some level of

information hiding. This chapter investigates two questions related to using set-level

ratings in recommender systems. First, how users’ item-level ratings relate to their

set-level ratings. Second, how collaborative filtering-based models for item-level rating

prediction can take advantage of such set-level ratings. We have collected set-level rat-

ings from active users of Movielens on sets of movies that they have rated in the past.

Our analysis of these ratings shows that though the majority of the users provide the

average of the ratings on a set’s constituent items as the rating on the set, there exists a

significant number of users that tend to consistently either under- or over-rate the sets.

We have developed collaborative filtering-based methods to explicitly model these user

behaviors that can be used to recommend items to users. Experiments on real data and

57

58

on synthetic data that resembles the under- or over-rating behavior in the real data,

demonstrate that these models can recover the overall characteristics of the underlying

data and predict the user’s ratings on individual items.

7.1 Introduction

Recommender systems help consumers by providing suggestions that are expected to sat-

isfy their tastes. They are successfully deployed in several domains such as e-commerce

(e.g., Amazon, Ebay), multimedia content providers (e.g., Netflix, Hulu) and mobile app

stores (e.g., Apple, Google Play). Collaborative filtering [71,72] which takes advantage

of users’ past preferences to suggest relevant items, is one of the key methods used by

recommender systems.

Most collaborative filtering approaches rely on past preferences provided by users

on individual items. An additional source of preferences is the user’s preferences on

sets of items. Example of such set-level ratings includes ratings on song playlists, music

albums, reading lists, and watchlists. A rating provided by the user on a set of items

conveys some information about the user’s preference on each of the set’s items and,

as a result, it is a mechanism by which some information about user’s preferences can

be acquired for many items. At the same time, due to privacy concerns, users that are

not willing to explicitly reveal their true preferences on individual items may provide a

single rating to a set of items, since it provides some level of information hiding.

This chapter investigates two questions related to using set-level preferences in rec-

ommender systems. First, how users’ item-level ratings relate to the ratings that they

provide on a set of items. Second, how collaborative filtering-based methods can take

advantage of such set-level ratings towards making item-level rating predictions.

To answer the first question, we collected ratings on sets of movies from users of

Movielens, a popular online movie recommender system1. Our analysis of these ratings

leads to two key findings. First, for the majority of the users, the rating provided on

a set can be accurately approximated by the average rating that they provided on the

set’s constituent items. Second, there is a considerable user population that tends to

consistently either over- or under-rate the set, especially for sets that contain items

1www.movielens.org

59

on which the user’s item-level ratings are diverse. Using these insights, we developed

different models that can predict a user’s rating on a set of items as well as on individual

items. Furthermore, these methods can use ratings on both the sets and the items and

lead to better results for the users that have either both or only one type of ratings.

These methods solve these problems in a coupled fashion by estimating models to predict

the item-level ratings and by estimating models that combine these individual ratings

to derive set-level ratings.

The key contributions of the work are the following:

(i) collection and analysis of a dataset that contains users’ ratings both on individual

items and on various sets containing these items;

(ii) introduction of Variance Offset Average Rating Model (VOARM) and Extremal

Subset Average Rating Model (ESARM) to model a user’s consistency to over- or

under-rate the set of items as a function of his/her ratings on the set’s constituent

items; and

(iii) development of collaborative filtering-based methods that take advantage of VOARM

and ESARM in order to estimate users’ preferences on sets of items as well as on

individual items.

7.2 Movielens set ratings dataset

7.2.1 Data collection

Movielens is a recommender system that utilizes collaborative filtering algorithms to

recommend movies to their users based on their preferences. We developed a set rating

widget to obtain ratings on a set of movies from the Movielens users. The set rating

widget could be rated from 0.5 to 5 with a precision of 0.5. For the purpose of data

collection, we selected users who were active since January 2015 and have rated at least

25 movies. The selected users were encouraged to participate by contacting them via

email. The sets of movies that we asked a user to rate were created by selecting five

movies at random without replacement from the movies that they have already rated.

Furthermore, we limited the number of sets a user can rate in a session to 50, though

60

users can potentially rate more sets in different sessions. The set rating widget went

live on February 2016 and, for the purpose of this study, we used the set ratings that

were provided until April 2016.

Figure 7.1: The interface used to elicit users’ ratings on a set of movies.

7.2.2 Data processing

From the initially collected data, we removed users who have rated sets within a time

interval of less than one second to avoid users who might be providing the ratings at

random. After this pre-processing, we were left with ratings from 854 users over 29,516

sets containing 12,549 movies. Figure 7.2 shows the distribution of the number of sets

rated by the users, which shows that roughly half of the users have rated at least 45

sets in a session.

1 5 10 15 20 25 30 35 40 45 50 55

Number of rated sets

0

50

100

150

200

250

300

350

U
se

rs

Figure 7.2: The distribution of number of sets rated by the users.

61

0.5 1.0 1.5 2.0 2.5 3 3.5 4 4.5 5

Rating

0

5

10

15

20

25

30

P
er

ce
n
ta

g
e(

%
)

Set ratings

0.5 1.0 1.5 2.0 2.5 3 3.5 4 4.5 5

Rating

0

5

10

15

20

25

30

P
er

ce
n
ta

g
e(

%
)

Item ratings

Figure 7.3: The distribution of the provided set ratings (left) and the ratings of their
constituent items (right).

7.2.3 Analysis of the set ratings

We investigated whether ratings are distributed uniformly or if some ratings tend to

appear more than others. Figure 7.3 (left) depicts the distribution of the collected

ratings over all the sets. The majority of the ratings lie between 3.0 and 4.0. Since,

by construction, we know the actual ratings that these users provided on the actual

movies. Figure 7.3 (right) shows the distribution of the ratings of the movies that were

contained in all these sets. By comparing these distributions we can see that the average

item-rating (3.50) is somewhat higher than the average set-based rating (3.44) but the

overall variance of the set-based ratings (0.65) is lower than that of the item ratings

(1.01).

In order to analyze how consistent a user’s rating on a set is with the ratings provided

by the user on the movies in the set, we computed the difference of the average of the

user’s ratings on the items in the set and the rating assigned by a user to the set. We

will refer to this difference as mean rating difference (MRD). Figure 7.4 (left) shows

the distribution of the MRD values in our datasets. The majority of the sets have an

MRD within a margin of 0.5 indicating that the users have rated them close to the

average of their ratings on set’s items. The remaining of the sets have been rated either

significantly lower or higher from the average rating. We refer to these sets as the

under- and the over-rated sets, respectively. Moreover, an interesting observation from

the results in Figure 7.4 (right), is that the number of under-rated sets is more than

that of the over-rated sets.

62

-1.25 -1.0 -0.75 -0.5 -0.25 0.25 0.5 0.75 1.0 1.25

Mean rating difference

0

5

10

15

20

25

30

35

40

P
er

ce
n
ta

g
e

of
se

ts
(%

)

Under-ratedOver-rated

-1.25 -1.0 -0.75 -0.5 -0.25 0.25 0.5 0.75 1.0 1.25

Mean rating difference

0.0

0.2

0.4

0.6

0.8

1.0

D
iv

er
si

ty

Under-ratedOver-rated

Figure 7.4: Histogram of percentage of sets (left) and diversity (right) against mean
rating difference (MRD).

-1.25 -1.0 -0.75 -0.5 -0.25 0.25 0.5 0.75 1.0 1.25

Mean rating difference

0

10

20

30

40

50

60

70

80

M
on

th
s

Under-ratedOver-rated

Elapsed time since rating vs
Mean rating difference

Earliest Median Average

Figure 7.5: Histogram of elapsed time in months against mean rating difference.

In order to understand what can lead to a set being under- or over-rated, we investi-

gated if the diversity of the ratings of the individual movies in a set could lead a user to

under- or over-rate the set. We measured the diversity of a set as the standard deviation

of the ratings that a user has provided to the individual items of the set. As shown

in Figure 7.4 (right), the sets that contain more diverse ratings (i.e., higher standard

deviations) tend to get under- or over-rated more often when compared to less diverse

sets. This trend was found to be statistically significant (p-value of 0.01 using t-test).

Furthermore, we investigated whether the recently rated items carry more weight

than the items rated a long time ago. To this end, we computed the difference between

the timestamp of the earliest rating of the movies in the set and the year 2016, i.e.,

63

0 50 100 150 200 250 300 350

Users

0.0

0.2

0.4

0.6

0.8

1.0

U
n

d
er

-r
a
te

d
se

ts
(%

) True

Random

0 50 100 150 200 250 300 350

Users

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

r-
ra

te
d

se
ts

(%
) True

Random

Figure 7.6: Fraction of under-rated and over-rated sets across users in true and random
population.

when the users were asked to rate the sets. Similarly, we computed the median and

average age of movies in a set. Interestingly as shown in Figure 7.5, the under-rated sets

contained movies whose ratings were provided on average five years before the survey

while the remaining sets contained the movies whose ratings were provided on average

four years before the survey. This difference among the sets was found to be statistically

significant (p-value < 1e-16 using t-test). This suggests that the user’s preference for a

movie rated in the past carries lower weight than the recently rated movie. The user’s

higher preference for a recent movie is not surprising as it has been shown that the user

tends to rate a movie close to the middle of the scale as the time between viewing a

movie and rating it increases [73].

Additionally, we studied if there are users that tend to consistently under- or over-

rate sets. To this end, we selected users who have rated at least 50 sets and computed

the fraction of their under- and over-rated sets. We also computed the fraction of

under- and over-rated sets across a random population of the same size. We generated

this random population by randomly permuting the under-rated and over-rated sets

across the users. Figure 7.6 shows the fraction of under- and over-rated sets for both

the true and random population of user. In the true population, some users tend to

under- or over-rate sets significantly more than that of the random population. Using

the Kolmogorov-Smirnov 2 sample test, we found this behavior of true population to

be statistically different (p-value < 1e-16) from that of random population.

The above analysis reveals that our dataset contains users that when they are asked

64

to assign a single rating to a set of items, some of them consistently assign a rating that

is lower than the average of the ratings that they provided to the set’s constituent items

(they under-rate), whereas others assign a rating that is higher (they over-rate). Thus

some users are very demanding (or picky) and tend to focus on the worst items in the

set, whereas other users are less demanding and tend to focus on the best items in the

set.

7.3 Methods

In this section, we will investigate different approaches that capture the user behavior

of providing ratings on sets. We will describe various methods that use the set ratings

alone or in combination with individual item ratings towards solving two problems: (i)

predict a rating for a set of items, and (ii) predict a rating for individual items. Our

methods solve these problems in a coupled fashion by estimating models for predicting

the ratings that users will provide to the individual items and by estimating models

that use these item-level ratings to derive set-level ratings.

7.3.1 Modeling users’ ratings on sets

In order to estimate the preferences on individual items from the preferences on the sets,

we need to make some assumptions on how a user derives a set-level rating from the

ratings of the set’s constituent items. Informed by our analysis of the data described in

Section 7.2, we investigated three approaches of modeling that.

Average Rating Model (ARM)

The first approach assumes that the rating that a user provides on a set reflects his/her

average rating on all the items in the set. Specifically, the estimated rating of user u on

set S is given by

r̂Su =
1

|S|
∑
i∈S

rui. (7.1)

As the analysis in Section 7.2 showed, such a model correlates well with the actual

ratings that the users provided on majority of the sets, especially when the ratings of

65

the constituent items are not very different.

Extremal Subset Average Rating Model (ESARM)

In order to capture the user-specific pickiness illustrated in Section 7.2.3, this approach

postulates that a user rates a set by considering only a subset of the set’s items. If

a user tends to consistently under-rate each set, then that subset will contain some of

each set’s lowest-rated items. Analogously, if a user tends to consistently over-rate each

set, then that subset will contain some of each set’s highest-rated items. Moreover, this

approach further postulates that given such subsets, the rating that a user will assign

to the set as a whole will be the average of his/her ratings on the individual items of

the subset. The parameter in this model that captures the level of a user’s pickiness is

the size of the subset and whether or not it will contain the least- or the highest-rated

items. We will call these subsets having least- and highest- rated items as extremal

subsets. The set rating of an extremely picky user will be determined by the average

rating of one or two of the least rated items, whereas the set rating of a user that is not

picky at all will be determined by the average rating of one or two of the highest rated

items.

If ei denotes the average rating of items in ith extremal subset and ns denotes

number of items in set S, then 〈e1, . . . , ens , . . . , e2ns−1〉 represents the average rating on

all the extremal subsets; for 1 ≤ i ≤ ns, ei is the average rating of i least rated items,

for ns ≤ i ≤ 2ns − 1, ei is the average rating of the 2ns − i highest rated items and ens

is the average rating of all the items in the set. Then r̂Su is given by

r̂Su =

2ns−1∑
i=1

wu,iei, (7.2)

where wu,i is a non-negative weight of user u on ith extremal subset and the weights

sum to 1. The weight wu,i measures the influence of the items in ith extremal subset

towards estimating the user’s rating on set S. One of the weights corresponds to the

extremal subset that is responsible for majority of the user’s rating on set, and it is

66

higher than others, i.e.,
2ns−1∑
i=1

wu,i = 1,

wu,j < wu,j+1,∀j < k,

wu,j+1 < wu,j ,∀j ≥ k,
wu,k > c, c > 0,

(7.3)

where c is the minimum weight of the extremal subset having the highest contribution

towards the user’s rating on set.

Note that this model assume that the size of all the sets is the same, however it can

be generalized to sets of different sizes by constructing the extremal subsets for fixed

number of quantiles in a set.

Variance Offset Average Rating Model (VOARM)

This approach captures the user-specific pickiness by assuming that a user rates a set

by considering both the average rating of the items in the set and also the diversity of

the set’s items. In this model, the set’s rating is determined as the sum of the average

rating of the set’s items and a quantity that depends on the sets diversity (e.g., the

standard deviation of the set’s ratings) and the user’s level of pickiness. If a user is

very picky, that quantity will be negative and large, resulting to the set being (severely)

under-rated. On the other hand, if a user is not picky at all, that quantity will be

positive and large, resulting to the set being (severely) over-rated.

If βu denotes the pickiness level of user u, then the estimated rating on a set is given

by

r̂Su = µs + βuσs, (7.4)

where µs and σs are the mean and the standard deviation of the ratings of items in the

set S. Both µs and σs are given by

µs =
1

|S|
∑
i∈S

rui, σs =

√
1

|S|
∑
i∈S

(rui − µs)2. (7.5)

67

7.3.2 Modeling user’s ratings on items

In order to model a users’ ratings on the items, similar to matrix factorization method

described in Section 3, we assume that the underlying user-item rating matrix is low-

rank, i.e., there is a low-dimensional latent space in which both the users and the items

can be compared to each other. Thus, the estimated rating of user u on item i, i.e., r̂ui,

is given by Equation 3.1.

7.3.3 Combining set and item models

Our goal is to estimate the item-level ratings by learning the user and item latent factors

of Equation 3.1; however, the ratings that we have available from the users are at the

set-level. In order to use the available set-level ratings, we need to combine Equation 3.1

with Equations 7.1, 7.2 and 7.4. To solve the problem, we assume that the actual item-

level ratings used in Equations 7.1, 7.2 and 7.4 correspond to the estimated ratings given

by Equation 3.1. Hence, the estimated set-level ratings in Equations 7.1, 7.2 and 7.4

are finally expressed in terms of the corresponding user and item latent factors.

7.3.4 Model learning

The parameters of the models that estimate item- and set-level ratings are the user

and item latent vectors (pu and qi), in the case of ESARM method the users’ weights

on extremal subsets (W) and in the case of the VOARM method the user’s pickiness

level (βu). These parameters are estimated using the user-supplied set-level ratings by

minimizing a square error loss function given by

Lrmse(Θ) ≡
∑
u∈U

∑
s∈Rs

u

(r̂Su (Θ)− rSu)2, (7.6)

where Θ represents model parameters, U represents all the users, Rsu contains all the

sets rated by user u, rSu is the original rating of user u on set S and r̂Su is the estimated

rating of user u on set S.

To control model complexity, we add regularization of the model parameters thereby

68

Algorithm 4 Learn ARM

1: procedure LearnARM
2: η ← learning rate
3: λ← regularization parameter
4: Rs ← all users’ ratings on sets
5: iter ← 0
6: Init P , Q with random values ∈ [0,1]
7: while iter < maxIter or error on validation set decreases do
8: Rs ← shuffle(Rs)
9: for each rsu ∈ Rs do

10: r̂Su ← 1

|S|
∑

i∈S puq
T
i

11: esu ← (r̂Su − rSu)
12: vk ∈ Rk ← 0
13: for each item i ∈ s do
14: vk ← vk + qi
15: end for
16: pu ← pu − η(esu

|S|vk + λpu) . Update user’s latent representation

17: for each item i ∈ s do
18: qi ← qi − η(esu

|S|pu + λqi) . Update item’s latent representation

19: end for
20: end for
21: iter ← iter + 1
22: end while
23: end procedure

69

Algorithm 5 Learn ESARM

1: procedure LearnESARM
2: η ← learning rate
3: λ← regularization parameter
4: Rs ← all users’ ratings on sets
5: ns ← number of items in set
6: nes ← 2ns − 1 . number of possible extremal subsets
7: iter ← 0
8: Init P , Q with random values ∈ [0,1]
9: Init W with random values ∀ user u ∈ U , s.t.,

∑nes
i=1wu,i = 1

10: while iter < maxIter or error on validation set decreases do
11: Rs ← shuffle(Rs)
12:

13: for each rSu ∈ Rs do
14: r̂Su ← 0
15: Es ← All possible extremal subsets for set S
16:

17: ∇pu ∈ Rf ← 0
18: for each subset i ∈ Es do
19: êi ← 0, qsum ∈ Rf ← 0
20: for each item j ∈ i do
21: êi ← êi + puq

T
j , qsum ← qsum + qj

22: end for
23: êi ← êi

|i| , qsum ←
qsum
|i|

24: r̂Su ← r̂Su + wu,iêi
25: ∇pu ← ∇pu + wu,iqsum
26: end for
27: esu ← (r̂Su − rSu)
28: ∇pu ← 2esu∇pu + 2λpu . update user’s latent representation
29: pu ← pu − η∇pu
30:

31: ∇q ← 2esupu
32: for each subset i ∈ Es do
33: for each item j ∈ i do
34: qj ← qj − η(

wu,i∇q
|i| + 2 λ

ns
qj) . update items’ latent representation

35: end for
36: end for
37: end for
38:

39: for each u ∈ U do
40: Update wu using constraint quadratic programming as described
41: in Section 7.3.4.
42: end for
43:

44: iter ← iter + 1
45: end while
46: end procedure

70

Algorithm 6 Learn VOARM

1: procedure LearnVOARM
2: η ← learning rate
3: λ← regularization parameter
4: Rs ← all users’ ratings on sets
5: iter ← 0
6: Init P , Q and βs with random values ∈ [0,1]
7: while iter < maxIter or error on validation set decreases do
8: Rs ← shuffle(Rs)
9: for each rSu ∈ Rs do

10: µ̂s ← 1
|S|
∑

i∈S p
T
uqi

11: σ̂s ← ε+
√

1
|S|
∑

i∈S(pTuqi − µ̂s)2
12: r̂Su ← µ̂s + βuσ̂s
13: esu ← (r̂Su − rSu)
14: q ∈ Rf ← 0, v ∈ Rf ← 0
15: for each item i ∈ S do
16: q ← q + qi
17: v ← v + (puq

T
i)qi

18: end for
19: ∇pu ← q

|S| + βuv
σ̂s|S| −

βuµsq
σ̂s|S|

20: ∇q ← 2esupu
S

21: for each item i ∈ S do
22: t← 1 + βupTu qi

σ̂s
− βuµs

σ̂s
23: qi ← qi − η(t∇q + 2λqi) . Update item’s latent representation
24: end for
25: pu ← pu − η(2esu∇pu + 2λpu) . Update user’s latent representation
26: βu ← βu − η(2esuσ̂s + 2λβu) . Update βu
27: end for
28: iter ← iter + 1
29: end while
30: end procedure

71

leading to an optimization process of the following form

minimize
Θ

Lrmse(Θ) + λ(||Θ||2), (7.7)

where λ is the regularization parameter. The L2-regularization is added to reduce the

model complexity thereby improving its generalizability. This optimization problem can

be solved by Stochastic Gradient Descent (SGD) [74] algorithm.

Note that for the ESARM model, we need to solve this optimization problem with

linear and non-negative constraints on user weights wu. If we know the users’ and

the items’ latent factors then the user weights can be determined by solving the Equa-

tion 7.7 as a constraint quadratic programming [75] for each user. We can determine a

user’s weights by solving multiple quadratic programs, each corresponding to a different

extremal subset having the highest weight, and selecting the solution that has lowest

RMSE over the user’s sets. Hence, for ESARM we solve for W and {pu, qi} alternately

at each SGD iteration. In ESARM, the minimum weight of the extremal subset having

highest contribution towards ratings on sets, i.e., c, can be specified in the range [0,1].

Also, in the VOARM method we add a fixed constant, i.e., ε in [0, 1], to computed σ

for robustness. Algorithms 4, 5 and 6 shows the steps used to learn the ARM, ESARM

and VOARM models, respectively.

If we also have ratings for the individual items, then we can incorporate these ratings

into model estimation by treating each item as a set of size one.

7.4 Experimental Evaluation

7.4.1 Dataset

We evaluated the proposed methods on two datasets: (i) the dataset analyzed in Sec-

tion 7.2, which will be referred to as ML-RealSets, and (ii) a set of synthetically gener-

ated datasets that allow us to assess how well the optimization algorithms can estimate

accurate models and how their accuracy depends on various data characteristics.

The synthetic datasets were derived from the Movielens 20M dataset2 [76] which

contains 20 million ratings from approximately 229,060 users on 26,779 movies. For

2https://grouplens.org/datasets/movielens/20m/

72

experiment purposes, we created a synthetic low-rank matrix of rank 5 as follows. We

started by generating two matrices A ∈ Rn×k and B ∈ Rm×k, where n is number of

users, m is number of items and k = 5, whose values are uniformly distributed at

random in [0, 1]. We then computed the singular value decomposition of these matrices

to obtain A = UAΣAV
T
A and B = UBΣBV

T
B . We then let P = αUA, Q = αUB and

R = PQT . Thus, the final rank k matrix R is obtained as the product of two randomly

generated rank k matrices whose columns are orthogonal. Note that the parameter α

was determined empirically in order to produce ratings in the range of [−10, 10].

Since we know the complete synthetic low-rank matrix we can generate the rating

corresponding to an observed user-item pair in the real dataset from the complete rating

matrix. We randomly selected 1000 users without replacement from the dataset and

for each user we created sets containing five movies. The movies in a user’s set were

selected at random without replacement from the movies rated by that user. For each

user, we created at least k such sets of movies, where k ∈ [40, 60, 80, 100, 140]. We

generated rating for a user on a set by following two approaches:

(i) ESARM-based rating: For each user, we chose one of the extremal subsets at

random and used that to generate ratings for all the sets. The set is assigned an

average of the user’s ratings on the items in the chosen extremal subset of the

items in the set.

(ii) VOARM-based rating: For each user, we chose the user’s level of pickiness (the βu

parameter) at random from the range [-2.0, 2.0]. The set is assigned an average of

the user’s ratings on the items in the set, and also we offset this rating by adding

a quantity computed by scaling the standard deviation of ratings in the set by the

randomly chosen user’s level of pickiness.

For all these datasets, we added random N (0, 0.1) Gaussian noise while computing

ratings at both the item and set-level for the users. For each approach, we generated 15

different synthetic datasets, each by varying the user-item latent factors and the users’

pickiness.

73

7.4.2 Evaluation methodology

To evaluate the performance of the proposed methods we divided the available set-level

ratings for each user into training, validation and test splits by randomly selecting five

set-level ratings for each of the validation and test splits. The validation split was

used for model selection. In order to assess the performance of the methods for item

recommendations, we used a test set that contained for each user the items that were not

present in the user’s sets (i.e., these were absent from the training, test, and validation

splits) but were present in the original user-item rating matrix used to generate the

sets. We used Root Mean Square Error (RMSE) to measure the accuracy of the rating

prediction over items and sets.

7.4.2.1 Comparison methods

In addition to the evaluation of the proposed methods, i.e., ARM, ESARM and VOARM,

we also present the results for the following non-personalized methods:

(i) SetAvg: This method predicts a user’s ratings on items and sets as the average of

the user’s ratings on sets. The rating of user u on set S is given by

r̂su =
1

|Qu|
∑
k∈Qu

r̂uk, (7.8)

where Qu represents all the sets rated by user u. The rating of user u on item i is

given by

r̂ui =
1

|Qu|
∑
k∈Qu

r̂uk, (7.9)

where Qu represents all the sets rated by user u.

(ii) Item average: This method estimates the rating for an item as the average of the

ratings provided by the users on the item. The rating r̂i for an item i is given by

r̂i =
1

|Ui|
∑
u∈Ui

rui, (7.10)

where Ui denotes the set of users who have rated item i.

74

(iii) UserMeanSub: This method estimates the rating for an item as the sum of average

rating on sets and average of user mean subtracted item ratings. The rating r̂i for

an item i is given by

r̂i = µs +
1

|Ui|
∑
u∈Ui

(
rui −

1

|Iu|
∑
k∈Iu

ruk
)
, (7.11)

where µs is the average of the ratings on all the sets, Iu represents the set of items

rated by user u.

In practice, a significant proportion of the ratings provided by users on items de-

pends on factors that are associated with either users or items, and do not depend on

interactions between the users and the items. For example, some users have a tendency

to rate higher than others, and some items receive higher ratings than others. For

the real set-level rating dataset, that we obtained from Movielens users, we determined

these factors by estimating user- and item-biases [72] as part of the model learning.

7.4.3 Model selection

We performed grid search to tune the dimensions of the latent factors and regularization

hyper-parameters for the latent factors. We searched for regularization weights (λ) in

the range [0.001, 0.01, 0.1, 1, 10], ε in the range [0.1, 0.25, 0.5, 1] and c in the range

[0, 0.25, 0.50, 0.75, 0.90] for both the synthetic and the real datasets. We searched for

the dimension of latent factors (f) in the range [1, 5, 10, 15, 25, 50, 75, 100] for real

datasets, and used 5 as the dimension of latent factors for synthetic datasets. The final

parameters were selected based on the performance on the validation split.

7.5 Results and Discussion

The experimental evaluation of the various methods that we developed is done in three

phases. First, we investigated how well the proposed models can explain the users’

ratings over sets in the dataset we obtained from a subset of Movielens users (described

in Section 7.2). Second, we evaluated the performance of the methods using the syn-

thetically generated datasets in order to assess how well the underlying optimization

75

algorithms can recover the underlying data generation models and achieve good predic-

tion performance at either the set- or item-level. Note that unless otherwise specified,

we report the average of RMSEs of all the synthetic datasets as the final RMSE values

for each rank and proposed approach. Finally, we evaluated the prediction performance

achieved by the proposed methods at both the set- or item-level in the real dataset.

7.5.1 Fit of different rating models

In order to determine how well the proposed models can explain the ratings that the

users in our dataset provided, we performed the following analysis. We selected sets

with standard deviation of at least 0.5, and included only those users who have rated

at least 20 such sets. This left us with 17,552 sets rated by 493 users.

To study the ESARM model, for each set rated by a user we created all the possible

subsets having either k lowest or k highest rated items for all the possible values of

k ∈ [1, 5], i.e., nine extremal subsets. We computed the error between the average

rating of items in the extremal subsets and the rating provided by a user on a set.

Similarly, we computed the error over the remaining sets for a user and selected that

subset among the nine extremal subsets corresponding to which the user has lowest

Root Mean Square Error (RMSE) for all the sets. Figure 7.7 shows the number of users

and their corresponding extremal subset that obtained lowest RMSE for their sets. As

can be seen in the figure, there are certain users for whom the lowest RMSE on sets

corresponds to either k lowest or k highest rated items in a set, where k < 5. This

indicates that while providing a rating to a set of items, the user may get influenced

more by a subset of the items in a set rather than all the items in the set.

Further, to investigate VOARM model, we computed the user’s level of pickiness

(βu) as

βu =
1

ns

ns∑
s=1

rsu − µs
σs

, (7.12)

where ns is the number of sets rated by user u, rsu denotes the rating provided by user

u on set s, µs is the mean rating of the items in set s and σs is the standard deviation

of the ratings of the items in set s. Figure 7.8 shows the histogram of the users’ level

of pickiness. As can be seen from the figure, certain users tend to under- or over-rate

76

L
ea

st
1

L
ea

st
2

L
ea

st
3

L
ea

st
4

A
ll

H
ig

h
es

t
4

H
ig

h
es

t
3

H
ig

h
es

t
2

H
ig

h
es

t
1

Extremal subsets having best RMSE for a user

0

50

100

150

200

250

U
se

rs

Figure 7.7: The number of users for which their pickiness behavior is explained by the
corresponding least- and highest-rated subsets of items.

Table 7.1: Fit of different rating models on the data

ARM ESARM VOARM

RMSE 0.597 0.509 0.521

sets with high standard deviation, and interestingly more users tend to under-rate sets

than over-rate them.

Additionally, we computed how well the above rating models, i.e., ESARM and

VOARM, compare against the ARM model where a user rates a set as the average of

the ratings that he/she gives to the set’s items. We used the user-specific pickiness

determined in above analysis for the ESARM and the VOARM models to estimate a

user’s rating on a set. Table 7.1 shows the RMSE of the estimated ratings according

to different models and as can be seen in the table both the ESARM and the VOARM

give a better fit to the real data than ARM, thereby suggesting that modeling users’

level of pickiness could lead to better estimates.

77

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

User-specific pickiness

0

20

40

60

80

100

120

140

U
se

rs

Figure 7.8: The number of users and their computed level of pickiness.

7.5.2 Performance on the synthetic datasets

7.5.2.1 Accuracy of set- and item-level predictions

We investigated the performance of the proposed methods for both item- and set-level

predictions on the synthetic datasets. In addition to the performance of each method

on its corresponding dataset, we also show the performance of the ARM and SetAvg

methods in Figures 7.9 and 7.10.

Figure 7.9 shows that ESARM outperforms all other methods for both set- and

item-level predictions for datasets with a large number of sets. However, for datasets

with fewer sets, ARM outperforms ESARM and SetAvg for the set- and item-level

predictions. Figure 7.10 shows that VOARM outperforms all other methods for both

set- and item-level predictions. Unlike ESARM, VOARM performs better than other

methods even for the case when we have fewer sets, and this suggests that ESARM

needs a larger number of sets than VOARM to recover the underlying characteristics of

the data.

78

40K 60K 79K 100K 141K

Number of sets

0.5

1.0

1.5

2.0

2.5

3.0

3.5

It
em

R
M

S
E

40K 60K 79K 100K 141K

Number of sets

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
et

R
M

S
E

ESARM ARM SetAvg

Figure 7.9: The average RMSE obtained by the proposed methods on ESARM-based
datasets with different number of sets.

40K 60K 79K 100K 141K

Number of sets

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

It
em

R
M

S
E

40K 60K 79K 100K 141K

Number of sets

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
et

R
M

S
E

VOARM ARM SetAvg

Figure 7.10: The average RMSE obtained by the proposed methods on VOARM-based
datasets with different number of sets.

7.5.2.2 Recovery of underlying characteristics

We examined how well ESARM and VOARM recover the known underlying character-

istics of the users in the datasets. Figure 7.11 plots the Pearson correlation coefficient of

the actual and the estimated weights that model the users’ level of pickiness in VOARM

(i.e., βu parameters). The high values of Pearson correlation coefficients in the figure

suggests that VOARM is able to recover the overall characteristics of the underlying

data. Additionally, this recovery of underlying characteristics increases with the in-

crease in the number of sets. In order to investigate how well ESARM can recover the

underlying characteristics, we computed the fraction of users for whom the extremal

subset having the highest weight (wui) is same as that of the extremal subset used to

generate the rating on sets. Figure 7.12 shows the percentage of users for whom the

79

40K 60K 79K 100K 141K

Number of sets

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

P
ea

rs
on

co
rr

el
at

on
co

effi
ci

en
t

VOARM

Figure 7.11: Pearson correlation coefficients of the actual and the estimated parameters
that model a user’s level of pickiness in the VOARM model.

extremal subsets are recovered by ESARM. As can be seen in the figure, the fraction

of users recovered by ESARM increases significantly with the increase in the number of

sets. The better performance of ESARM on the larger datasets suggests that in order to

recover the underlying characteristics of the data accurately, ESARM needs significantly

more data than required by VOARM method.

7.5.2.3 Effect of adding item-level ratings

In most real-world scenarios, in addition to set-level ratings, we will also have available

ratings on individual items as well, e.g., users may provide ratings on music albums

and as well as on tracks in the albums. Also, there may exist some users that are not

concerned about keeping their item-level ratings private. To assess how well ESARM

and VOARM can take advantage of such item-level ratings we performed three sets of

experiments. In the first experiment, we added in the synthetic datasets a set of item-

level ratings for the same set of users for which we have approximately 100K set-level

ratings. The number of item-level ratings was kept to k% of their set-level ratings, where

k ∈ [5, 75], and the items that were added were disjoint from those that were part of the

80

40K 60K 79K 100K 141K

Number of sets

0

20

40

60

80

100

U
se

rs
re

co
ve

re
d

(%
)

ESARM

Figure 7.12: The percentage of users recovered by ESARM, i.e., the users for whom the
original extremal subset had the highest estimated weight under these models.

sets that they rated. Additionally, we used the matrix factorization (MF) method to

estimate the user and item latent factors by using only the added item-level ratings. In

the second experiment, we selected 100, 250 and 500 additional users (beyond those that

exist in the synthetically generated datasets) and added a random subset of 50 ratings

per user from the items that belong to the existing users’ sets. In the final experiment,

we investigate if using set-level ratings from one set of users can improve the item-level

predictions for another set of users for whom we have item-level ratings. We selected

500 additional users (Ub) and added a random subset of 50 ratings per user from the

items that belong to the sets rated by existing users (Ua).

Figures 7.13 and 7.14 shows the performance of ESARM and VOARM on these

datasets. As can be seen from Figure 7.13, as we continue to add item-level ratings

for the same set of users who have provided ratings for the sets, there is an increase

in accuracy of both the set- and item-level predictions for ESARM and VOARM. Both

ESARM and VOARM outperform ARM with the availability of more item-level ratings.

For the task of item-level rating prediction, ESARM and VOARM even outperform MF

which is estimated only based on the additional item-level ratings. Figure 7.14 shows

81

0 10 20 30 40 50 60 70 80

% of additional item-level ratings

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

It
em

R
M

S
E

ARM MF ESARM SetAvg

0 10 20 30 40 50 60 70 80

% of additional item-level ratings

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

It
em

R
M

S
E

ARM MF VOARM SetAvg

0 10 20 30 40 50 60 70 80

% of additional item-level ratings

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
et

R
M

S
E

0 10 20 30 40 50 60 70 80

% of additional item-level ratings

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
et

R
M

S
E

Figure 7.13: Effect of adding disjoint item-level ratings for the users in ESARM-based
(left) and VOARM-based (right) datasets.

how the performance of the proposed methods changes when item-level ratings are

available from another set of users. Similar to the addition of item-level ratings from

the same set of users, ESARM and VOARM outperform ARM with the availability of

item-level ratings from a different set of users.

Table 7.2 shows the performance of item-level predictions for additional users (Ub)

after using set-level ratings from existing users (Ua). As can be seen from the table, using

set-level ratings from users in Ua significantly improves the performance of item-level

predictions for users in Ub. That is, using item-level ratings from the additional set of

users and the set-level ratings from the existing users not only improves the performance

for the latter but also for those additional users who have provided item-level ratings.

The result that the performance of the proposed methods improve with the addition of

item-level ratings suggests that using both item- and set-level ratings can lead to better

item recommendations for the users.

82

0 100 250 500

No. of aditional users

0.5

1.0

1.5

2.0

2.5

3.0

3.5

It
em

R
M

S
E

ARM ESARM SetAvg

0 100 250 500

No. of additional users

0.5

1.0

1.5

2.0

2.5

3.0

3.5

It
em

R
M

S
E

ARM VOARM SetAvg

0 100 250 500

No. of aditional users

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S
et

R
M

S
E

0 100 250 500

No. of additional users

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S
et

R
M

S
E

Figure 7.14: Effect of adding item-level ratings from additional users in ESARM-based
(left) and VOARM-based (right) datasets.

7.5.3 Performance on the Movielens-based real dataset

Our final experiment used the proposed approaches (ARM, ESARM, and VOARM) to

estimate both set- and item-level rating prediction models using the real set-level rating

dataset that we obtained from Movielens users.

7.5.3.1 Accuracy of set- and item- level predictions

Table 7.3 shows results for the case when we have only set-level ratings. As can be

seen in the table, ARM outperforms the remaining methods for item-level predictions.

However, VOARM performs somewhat better than ARM for set-level predictions. The

better performance of ARM for item-level predictions is not surprising as most of the

sets in the dataset are rated close to the average of the ratings on items in sets. Also, as

seen in our analysis in Section 7.5.2.2, ESARM needs a large number of sets in order to

accurately recover the users’ extremal subsets. The difference between the predictions

83

Table 7.2: Average RMSE performance of ESARM and VOARM for item-level predic-
tions for additional users (Ub), that have provided only the item-level ratings.

Item-level RMSE for Ub

Type of ratings ESARM VOARM

Item-level (Ub) 2.860 2.860

Set-level (Ua) + item-level (Ub) 1.811 1.866

Ua represents the existing users that have provided ratings at
the set-level. Ub represents the additional 500 users that have
provided ratings only at item-level and item-level (Ub) denotes
their item-level ratings. Set-level (Ua) refers to the set-level
ratings from the users in Ua.

Table 7.3: The RMSE performance of the proposed methods with user- and item-biases
on ML-RealSets dataset.

Method Item Set

SetAvg 0.976 0.630

ARM 0.971 0.624

ESARM 0.979 0.631

VOARM 0.973 0.623

of different models was found to be statistically significant (p-value ≤ 0.016 using t-

test). Table 7.4 shows the percentage of the item-level predictions for whom a proposed

approach performs better than the other approaches. As can be seen in the table, ARM

and VOARM performs better than other methods for the majority of the item-level

predictions. Also, to some extend VOARM performs better than ARM for the majority

of the item-level predictions. The lower RMSE of ARM for item-level predictions and

better performance of VOARM for the majority of the item-level predictions suggest

that there are few item-level predictions where the error in VOARM is significantly

higher than that of ARM, thereby leading to higher RMSE for item-level predictions

for VOARM method. In Section 7.5.3.3, we will investigate the performance of the

proposed methods independently for picky and non-picky users.

84

Table 7.4: Percentage of item-level predictions where method X performs better than
method Y.

Method X

Method Y
SetAvg ARM ESARM VOARM

SetAvg - 49.56 53.74 46.41

ARM 50.44 - 51.01 49.85

ESARM 46.26 48.99 - 45.54

VOARM 53.59 50.15 54.46 -

7.5.3.2 Effect of adding item-level ratings

In addition, we assessed how well the proposed methods can take advantage of additional

item-level ratings. In the first experiment, we added k% of the users’ set-level ratings,

where k ∈ [10, 75], as additional item-level ratings and the items that were added

were disjoint from those that were part of the sets that they rated. In the second

experiment, we added ratings from 100, 250 and 500 additional users (beyond those

that have participated in the survey), and these users have provided on an average

20,000 ratings for the items that belong to the existing users’ sets.

As can be seen from Figure 7.15, the performance for item-level predictions improves

significantly after including item-level ratings. ARM and to some extend ESARM and

VOARM even outperform MF for item-level predictions when fewer additional item-level

ratings, i.e., < 30% of set-level ratings, are available. Figure 7.16 plots the estimated

weights that model a user’s level of pickiness in VOARM against the user’s level of

pickiness, i.e., βu, computed from the data in Section 7.5.1. As can be seen in the

figure, to some extend VOARM is able to recover the user’ level of pickiness after

addition of few item-level ratings.

Additionally, we examined the case when we have item-level ratings from the addi-

tional users. In addition to estimating ratings from the proposed methods, we estimated

the ratings at item-level from the two non-personalized methods, i.e., Item average and

UserMeanSub, as described in Section 7.4.2.1. Figure 7.17 shows the results for these

non-personalized methods along with that of the proposed methods. As can be seen in

85

0 10 20 30 40 50 60 70 80

% of additional item-level ratings

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

It
em

R
M

S
E

ARM

ESARM

VOARM

MF

SetAvg

Figure 7.15: Effect of adding item-level ratings from the same set of users in the real
dataset.

the figure, the proposed methods outperform the non-personalized methods and per-

formance of the proposed methods continue to improve with the availability of more

item-level ratings from additional users.

Further, we investigated if using set-level ratings from existing users can improve

the item-level predictions for additional users who have provided ratings only at item-

level. To this end, we selected 500 additional users and added a random subset of 10

ratings per user from the items that belong to the sets rated by existing users. Table 7.5

Table 7.5: RMSE for item-level predictions for additional users, that have provided only
the item-level ratings.

Method Item-level RMSE

MF 1.003

ARM 0.978

ESARM 1.043

VOARM 1.033

86

−0.15 −0.10 −0.05 0.00 0.05 0.10

Learned user-specific pickiness

−4

−3

−2

−1

0

1

2

3

A
ct

u
al

u
se

r-
sp

ec
ifi

c
p

ic
k
in

es
s

−1.0 −0.5 0.0 0.5 1.0 1.5

Learned user-specific pickiness

−4

−3

−2

−1

0

1

2

3

A
ct

u
al

u
se

r-
sp

ec
ifi

c
p

ic
k
in

es
s

Figure 7.16: Scatter plots of the user’s original level of pickiness computed from real
data and the pickiness estimated by VOARM from set-level ratings (left), and after
including 30% of item-level ratings (right).

shows the performance of item-level predictions for additional users after using set-level

ratings from the existing users and also shows the performance of MF method after using

only the additional item-level ratings. As can be seen in the table, ARM outperforms

MF for item-level predictions after using set-level ratings from existing users. However,

ESARM and VOARM do not perform better than MF for the additional users. Similar

to our results on synthetic datasets, it is promising that using item-level ratings from the

additional users and set-level ratings from the existing users improves the performance

not only for latter but also for those additional users who have provided only item-level

ratings.

7.5.3.3 Accuracy of item-level predictions for picky users

Even though ARM performs better than remaining methods for item-level predictions,

we investigated how well do ARM, ESARM and VOARM perform for item-level pre-

dictions for the users who have rated at least 20 sets and have a high level of pickiness,

i.e., |βu| > 0.5. We found 374 users in the dataset that were non-picky (UNon−picky)

and 135 users that were having a higher level of pickiness (UPicky). Table 7.6 shows the

performance of the proposed methods for item-level predictions using set-level ratings

and after including 30% of additional item-level ratings on both UPicky and UNon−picky.

As can be seen in the table, for set-level ratings VOARM performs somewhat better

than ARM on Upicky and after including additional item-level ratings both ESARM and

87

0 100 250 500

No. of additional users

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98
It

em
R

M
S

E
ARM

VOARM

SetAvg

Item average

UserMeanSub

ESARM

Figure 7.17: Effect of adding item-level ratings from disjoint set of users in the real
dataset.

VOARM outperform ARM on UPicky.

The overall consistency of the results between the synthetically generated and the

real dataset suggests that VOARM and to some extend ESARM are able to capture the

tendency that some users have to consistently under- or over-rate diverse sets of items.

7.6 Conclusion

In this work, we studied how users’ ratings on sets of items relate to their ratings on

the sets’ individual items. We collected ratings from active users of Movielens on sets

of movies and based on our analysis we developed collaborative filtering-based models

that try to explicitly model the users’ behavior in providing the ratings on sets of items.

Through extensive experiments on synthetic and real data, we showed that the proposed

methods can model the users’ behavior as seen in the real data and predict the users’

ratings on individual items.

88

Table 7.6: The item-level RMSE of the proposed methods on different subset of users
using only set-level ratings and after including additional item-level ratings.

Set only +Items

Method UNon−picky UPicky UNon−picky UPicky

ARM 0.915 1.089 0.879 0.975

ESARM 0.922 1.103 0.898 0.923

VOARM 0.921 1.085 0.892 0.932

The “Set only” column denotes the results of the mod-
els that were estimated using only set-level ratings.
The “+Items” column show the results of the mod-
els that were estimated using the sets of “Set only”
and also some additional ratings on a different set of
items from the same users that provided the set-level
ratings. Upicky refers to the users who have rated at
least 20 sets and have a high level of pickiness, i.e.,
|βu| > 0.5, in real dataset, and UNon−picky represents
the remaining users.

Chapter 8

Conclusion

8.1 Thesis Summary

Recommender systems are widely used to recommend relevant products to the users.

They help a user by identifying few relevant products from a catalog containing a large

number of products and thus help the user by filtering information for the user. Rec-

ommendations are typically generated by using either content-based or collaborative

filtering-based methods. Content-based methods rely on attributes of users or items to

generate recommendations, and collaborative filtering-based methods rely on explicit

or implicit preferences provided by the users over items. Furthermore, collaborative

filtering-based methods are divided into two classes, i.e., neighborhood-based and ma-

trix completion-based methods. Neighborhood-based methods identify the user and

item neighborhoods based on co-rating data to generate recommendations. Matrix

completion-based methods learn low-rank models, i.e., the user and the item latent

factors, from the data to generate recommendations.

In this thesis, we have investigated how the accuracy and the ranking performance

of the matrix completion-based approaches are affected by the skewed distribution of

ratings in the user-item rating matrices. Furthermore, we have model user preferences

in scenarios where standard recommendation methods can not be applied. We have

developed methods to recommend new items, i.e., cold-start item recommendations,

and to leverage user preferences over sets of items to generate item recommendations.

89

90

Accuracy of matrix completion methods

Matrix completion is the state-of-the-art collaborative filtering method and is widely

used to generate recommendations. In this thesis, we investigated the effect of the

skewed distribution of ratings, as found in real datasets, on the accuracy and the ranking

performance of matrix completion. We showed that the skewed distribution affects the

accuracy of matrix completion, and the item with high frequency are predicted more

accurately than the others. Additionally, we found that the items predicted at the top

by matrix completion miss a significant number of true high-rated items. Furthermore,

the ranking based on the predicted ratings is not severely affected by false positives as

the items that are predicted at the top for a user but are absent from the true high

rated items are present close to the true high rated items by the user. Also, we saw

that the infrequent items are predicted low by the matrix completion-based methods

thereby appearing later in the ranking of the items for recommendations.

Truncated matrix factorization (TruncatedMF)

In practice, few item attributes determine a significant portion of the user rating and

the leftover portion of the rating is determined by other attributes. The item attributes

and the user weights over these attributes are known as the item latent factors and

the user latent factors respectively. In this thesis, we showed that in real datasets,

some users or items may not have sufficient ratings to estimate all the user and the

item latent factors accurately. We developed TruncatedMF, a matrix completion-based

method which considers the number of ratings that a user and an item has to estimate

the user’s rating on the item. The exhaustive experiments on real datasets illustrate

that the TruncatedMF method outperforms the state-of-the-art MF method for the task

of rating prediction for the users and the items with few ratings.

User-specific feature-based factorized bilinear similarity model

Since we do not have any prior preferences for new items, the standard collaborative

filtering methods can not be used to recommend the new or cold-start items. The non-

collaborative methods that rely on similarities between the new item and the items pre-

ferred by a user in the past can be used for cold-start item recommendations. However,

91

these non-collaborative methods ignore the interaction among features and consider

them independently while computing similarities. In this thesis, we presented User-

specific Feature-based factorized Bilinear Similarity Model (UFBSM) for cold-start

item recommendations. UFBSM captures the interaction among the item features and

leverages the information available from all the users to recommend new items. The

extensive experiments on real dataset show that UFBSM can perform better than other

methods in terms of recommendation quality, especially in datasets that have relatively

small number of features and a considerable number of ratings for existing items.

Learning from sets of items in recommender systems

An additional source of information in recommender systems can be the ratings pro-

vided by the users on sets of items. For example, the users can provide ratings on

music albums, song playlists, and reading lists. A preference provided by a user on a

set of items indicates some information about the user’s preference for individual items

in the set. Additionally, due to privacy concerns, users may not be willing to indicate

their preferences for individual items but may provide a rating to a set of items as it

provides some level of information hiding. In this thesis, we have investigated how a

user’s rating on a set of items relates to individual item-level ratings and developed

collaborative filtering methods that can use the set-level ratings to generate item rec-

ommendations. The experiments on the real and the synthetic datasets show that the

developed methods can recover the characteristics of underlying data and can be used

for item recommendations.

8.2 Future research directions

The problems explored and methods presented in this thesis can be further extended

in multiple future directions. It will be interesting to investigate the effect of different

properties of ratings, e.g., diversity of ratings, in the user-item rating matrix on the

performance of the matrix completion-based recommendation methods. We can also

leverage the derived insight in Section 5.2, i.e., only fewer dimensions of latent fac-

tors are estimated accurately for users or items with few ratings, to modify existing

locality-based matrix completion methods [17–19] by using lower ranks for the sparse

92

part and higher ranks for the dense part of the user-item rating matrix. Similar to

TruncatedMF, we may be able to improve other latent factor-based methods that may

suffer from inaccuracy due to insufficient data, e.g., Factorization Machines [70,77] and

Word2Vec [78].

Furthermore, we can improve the usage of preferences over sets of items by modeling

temporal effects and by using side-information like genres or other movie metadata.

Also, it will be interesting to investigate if similar to the diversity of ratings in the set

there exists other properties at the item- or set-level that can affect a user’s ratings on

sets of items. Moreover, a user may rate the set of items independent of what is his

preference for an individual item and instead rate the set depending on how does he

perceive the set as a whole. In this scenario, the items in a set can complement each

other and thereby receive a more favorable rating from the user. On the contrary, it

could be possible that items in a set compete with each other and thus receive a more

critical rating on the set. Thus, modeling the synergy and the competition among items

in a set can further improve the estimation of the user preferences over sets and items.

References

[1] David C. Anastasiu, Evangelia Christakopoulou, Shaden Smith, Mohit Sharma,

and George Karypis. Big data and recommender systems. Technical Report 16-

034, University of Minnesota, Department of Computer Science & Engineering,

2016.

[2] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. Recommender

Systems Handbook. Springer-Verlag New York, Inc., New York, NY, USA, 1st

edition, 2010.

[3] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. Content-based recom-

mender systems: State of the art and trends. In Recommender systems handbook,

pages 73–105. Springer, 2011.

[4] Michael J Pazzani and Daniel Billsus. Content-based recommendation systems. In

The adaptive web, pages 325–341. Springer, 2007.

[5] Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John Riedl. An al-

gorithmic framework for performing collaborative filtering. In Proceedings of the

22nd annual international ACM SIGIR conference on Research and development

in information retrieval, pages 230–237. ACM, 1999.

[6] Upendra Shardanand and Pattie Maes. Social information filtering: algorithms

for automating word of mouth. In Proceedings of the SIGCHI conference on Hu-

man factors in computing systems, pages 210–217. ACM Press/Addison-Wesley

Publishing Co., 1995.

93

94

[7] Joseph A Konstan, Bradley N Miller, David Maltz, Jonathan L Herlocker, Lee R

Gordon, and John Riedl. Grouplens: applying collaborative filtering to usenet

news. Communications of the ACM, 40(3):77–87, 1997.

[8] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based

collaborative filtering recommendation algorithms. In Proceedings of the 10th In-

ternational Conference on World Wide Web, WWW ’01, New York, NY, USA,

2001. ACM.

[9] Mukund Deshpande and George Karypis. Item-based top-n recommendation algo-

rithms. ACM Transactions on Information Systems (TOIS), 22(1):143–177, 2004.

[10] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative

filtering model. In Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 426–434. ACM, 2008.

[11] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques

for recommender systems. Computer, 42(8):30–37, August 2009.

[12] Yehuda Koren. Collaborative filtering with temporal dynamics. Communications

of the ACM, 53(4):89–97, 2010.

[13] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex

optimization. Foundations of Computational Mathematics, 9(6):717–772, 2009.

[14] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit

feedback datasets. In 2008 Eighth IEEE International Conference on Data Mining,

pages 263–272. Ieee, 2008.

[15] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[16] Emmanuel J. Candès and Terence Tao. The power of convex relaxation: Near-

optimal matrix completion. IEEE Trans. Inf. Theor., 56(5):2053–2080, May 2010.

[17] Joonseok Lee, Seungyeon Kim, Guy Lebanon, and Yoram Singer. Local low-rank

matrix approximation. In International Conference on Machine Learning, pages

82–90, 2013.

95

[18] Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy Lebanon, and Yoram Singer.

Local collaborative ranking. In Proceedings of the 23rd international conference on

World wide web, pages 85–96. ACM, 2014.

[19] Chao Chen, Dongsheng Li, Yingying Zhao, Qin Lv, and Li Shang. Wemarec:

Accurate and scalable recommendation through weighted and ensemble matrix ap-

proximation. In Proceedings of the 38th international ACM SIGIR conference on

research and development in information retrieval, pages 303–312. ACM, 2015.

[20] Daniel Billsus and Michael J. Pazzani. A hybrid user model for news story classi-

fication. In Proceedings of the seventh international conference on User modeling,

pages 99–108, 1999.

[21] Manuel de Buenaga Rodŕıguez, Manuel J. Maña López, Alberto Dı́az Esteban, and

Pablo Gervás Gómez-Navarro. A user model based on content analysis for the

intelligent personalization of a news service. In Proceedings of the 8th International

Conference on User Modeling 2001, UM ’01, pages 216–218, London, UK, UK,

2001. Springer-Verlag.

[22] E. Banos, I. Katakis, N. Bassiliades, G. Tsoumakas, and I. Vlahavas. Personews: a

personalized news reader enhanced by machine learning and semantic filtering. In

Proceedings of the 2006 Confederated international conference on On the Move to

Meaningful Internet Systems: CoopIS, DOA, GADA, and ODBASE - Volume Part

I, ODBASE’06/OTM’06, pages 975–982, Berlin, Heidelberg, 2006. Springer-Verlag.

[23] Deepak Agarwal and Bee-Chung Chen. Regression-based latent factor models.

In Proceedings of the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’09, pages 19–28. ACM, 2009.

[24] Liang Zhang, Deepak Agarwal, and Bee-Chung Chen. Generalizing matrix factor-

ization through flexible regression priors. In Proceedings of the fifth ACM conference

on Recommender systems, RecSys ’11, pages 13–20, New York, NY, USA, 2011.

ACM.

96

[25] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle, and Lars

Schmidt-Thieme. Learning attribute-to-feature mappings for cold-start recommen-

dations. In Data Mining (ICDM), 2010 IEEE 10th International Conference on,

pages 176–185. IEEE, 2010.

[26] Asmaa Elbadrawy and George Karypis. User-specific feature-based similarity mod-

els for top-n recommendation of new items. ACM Trans. Intell. Syst. Technol.,

6(3):33:1–33:20, April 2015.

[27] Wei Chu and Seung-Taek Park. Personalized recommendation on dynamic content

using predictive bilinear models. In Proceedings of the 18th International Confer-

ence on World Wide Web, WWW ’09, pages 691–700, New York, NY, USA, 2009.

ACM.

[28] LedyardR Tucker. Some mathematical notes on three-mode factor analysis. Psy-

chometrika, 31(3):279–311, 1966.

[29] Joshua B. Tenenbaum and William T. Freeman. Separating style and content with

bilinear models. Neural Comput., 12(6):1247–1283, June 2000.

[30] Wei Wu, Zhengdong Lu, and Hang Li. Learning bilinear model for matching queries

and documents. J. Mach. Learn. Res., 14(1):2519–2548, January 2013.

[31] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs:

Dynamic tensor analysis. In In KDD, pages 374–383, 2006.

[32] Seung-Taek Park and Wei Chu. Pairwise preference regression for cold-start rec-

ommendation. In Proceedings of the Third ACM Conference on Recommender

Systems, RecSys ’09, pages 21–28, New York, NY, USA, 2009. ACM.

[33] Shuo Chang, F. Maxwell Harper, and Loren Terveen. Using groups of items for

preference elicitation in recommender systems. In Proceedings of the 18th ACM

Conference on Computer Supported Cooperative Work & Social Computing,

CSCW ’15, pages 1258–1269, New York, NY, USA, 2015. ACM.

97

[34] Shuo Chen, Josh L. Moore, Douglas Turnbull, and Thorsten Joachims. Playlist

prediction via metric embedding. In Proceedings of the 18th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, KDD ’12, pages

714–722, New York, NY, USA, 2012. ACM.

[35] Joshua L Moore, Shuo Chen, Thorsten Joachims, and Douglas Turnbull. Learning

to embed songs and tags for playlist prediction. In ISMIR, pages 349–354, 2012.

[36] Natalie Aizenberg, Yehuda Koren, and Oren Somekh. Build your own music recom-

mender by modeling internet radio streams. In Proceedings of the 21st international

conference on World Wide Web, pages 1–10. ACM, 2012.

[37] Roberto Interdonato, Salvatore Romeo, Andrea Tagarelli, and George Karypis. A

versatile graph-based approach to package recommendation. In 2013 IEEE 25th In-

ternational Conference On Tools with Artificial Intelligence, pages 857–864. IEEE,

2013.

[38] Q. Liu, E. Chen, H. Xiong, Y. Ge, Z. Li, and X. Wu. A cocktail approach for travel

package recommendation. IEEE Transactions on Knowledge and Data Engineering,

26(2):278–293, Feb 2014.

[39] Qi Liu, Yong Ge, Zhongmou Li, Enhong Chen, and Hui Xiong. Personalized travel

package recommendation. In 2011 IEEE 11th International Conference on Data

Mining, pages 407–416. IEEE, 2011.

[40] Min Xie, Laks VS Lakshmanan, and Peter T Wood. Comprec-trip: A composite

recommendation system for travel planning. In Data Engineering (ICDE), 2011

IEEE 27th International Conference on, pages 1352–1355. IEEE, 2011.

[41] Yidan Liu, Min Xie, and Laks V.S. Lakshmanan. Recommending user generated

item lists. In Proceedings of the 8th ACM Conference on Recommender Systems,

RecSys ’14, pages 185–192, New York, NY, USA, 2014. ACM.

[42] Min Xie, Laks VS Lakshmanan, and Peter T Wood. Breaking out of the box

of recommendations: from items to packages. In Proceedings of the fourth ACM

conference on Recommender systems, pages 151–158. ACM, 2010.

98

[43] Idir Benouaret and Dominique Lenne. A package recommendation framework for

trip planning activities. In Proceedings of the 10th ACM Conference on Recom-

mender Systems, RecSys ’16, pages 203–206, New York, NY, USA, 2016. ACM.

[44] George William Hart. Nonintrusive appliance load monitoring. Proceedings of the

IEEE, 80(12):1870–1891, 1992.

[45] Jon Froehlich, Eric Larson, Sidhant Gupta, Gabe Cohn, Matthew Reynolds, and

Shwetak Patel. Disaggregated end-use energy sensing for the smart grid. IEEE

Pervasive Computing, 10(1):28–39, 2011.

[46] Sarah Darby et al. The effectiveness of feedback on energy consumption. A Review

for DEFRA of the Literature on Metering, Billing and direct Displays, 486(2006),

2006.

[47] Dan Cosley, Shyong K Lam, Istvan Albert, Joseph A Konstan, and John Riedl.

Is seeing believing?: how recommender system interfaces affect users’ opinions. In

Proceedings of the SIGCHI conference on Human factors in computing systems,

pages 585–592. ACM, 2003.

[48] Tien T Nguyen, Daniel Kluver, Ting-Yu Wang, Pik-Mai Hui, Michael D Ekstrand,

Martijn C Willemsen, and John Riedl. Rating support interfaces to improve user

experience and recommender accuracy. In Proceedings of the 7th ACM conference

on Recommender systems, pages 149–156. ACM, 2013.

[49] Katja Hofmann, Anne Schuth, Alejandro Bellogin, and Maarten De Rijke. Effects

of position bias on click-based recommender evaluation. In ECIR, volume 14, pages

624–630. Springer, 2014.

[50] Yisong Yue, Rajan Patel, and Hein Roehrig. Beyond position bias: Examining

result attractiveness as a source of presentation bias in clickthrough data. In Pro-

ceedings of the 19th International Conference on World Wide Web, WWW ’10,

pages 1011–1018, New York, NY, USA, 2010. ACM.

[51] Alejandro Belloǵın, Alan Said, and Arjen P de Vries. The magic barrier of rec-

ommender systems–no magic, just ratings. In International Conference on User

Modeling, Adaptation, and Personalization, pages 25–36. Springer, 2014.

99

[52] Katja Hofmann, Fritz Behr, and Filip Radlinski. On caption bias in interleaving

experiments. In Proceedings of the 21st ACM International Conference on Infor-

mation and Knowledge Management, CIKM ’12, pages 115–124, New York, NY,

USA, 2012. ACM.

[53] Gretchen B Chapman and Eric J Johnson. The limits of anchoring. Journal of

Behavioral Decision Making, 7(4):223–242, 1994.

[54] Zimo Yang, Zi-Ke Zhang, and Tao Zhou. Anchoring bias in online voting. EPL

(Europhysics Letters), 100(6):68002, 2013.

[55] Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative

representation of uncertainty. Journal of Risk and uncertainty, 5(4):297–323, 1992.

[56] Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuristics

and biases. Science, 185(4157):1124–1131, 1974.

[57] Gediminas Adomavicius, Jesse Bockstedt, Shawn Curley, and Jingjing Zhang. Rec-

ommender systems, consumer preferences, and anchoring effects. In RecSys 2011

Workshop on Human Decision Making in Recommender Systems, pages 35–42,

2011.

[58] Pinata Winoto and Tiffany Y. Tang. The role of user mood in movie recommen-

dations. Expert Syst. Appl., 37(8):6086–6092, August 2010.

[59] Andreas Herrmann, Frank Huber, and Robin Higie Coulter. Product and service

bundling decisions and their effects on purchase intention. Pricing Strategy and

Practice, 5(3):99–107, 1997.

[60] Dorothy Paun. When to bundle or unbundle products. Industrial Marketing Man-

agement, 22(1):29–34, 1993.

[61] Manjit S Yadav. How buyers evaluate product bundles: A model of anchoring and

adjustment. Journal of Consumer Research, 21(2):342–353, 1994.

[62] Bari A Harlam, Aradhna Krishna, Donald R Lehmann, and Carl Mela. Impact of

bundle type, price framing and familiarity on purchase intention for the bundle.

journal of Business Research, 33(1):57–66, 1995.

100

[63] Gary J Gaeth, Irwin P Levin, Goutam Chakraborty, and Aron M Levin. Con-

sumer evaluation of multi-product bundles: An information integration analysis.

Marketing letters, 2(1):47–57, 1991.

[64] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix comple-

tion using alternating minimization. In Proceedings of the Forty-fifth Annual ACM

Symposium on Theory of Computing, STOC ’13, pages 665–674, New York, NY,

USA, 2013. ACM.

[65] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[66] Mohit Sharma, Jiayu Zhou, Junling Hu, and George Karypis. Feature-based factor-

ized bilinear similarity model for cold-start top-n item recommendation. In SIAM

International Conference on Data Mining, 2015., SDM ’15, 2015.

[67] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of

the twenty-fifth conference on uncertainty in artificial intelligence, pages 452–461.

AUAI Press, 2009.

[68] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2nd workshop on information

heterogeneity and fusion in recommender systems (hetrec 2011). In Proceedings of

the 5th ACM conference on Recommender systems, RecSys 2011, New York, NY,

USA, 2011. ACM.

[69] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. Im-

proving recommendation lists through topic diversification. In Proceedings of the

14th International Conference on World Wide Web, WWW ’05, pages 22–32, New

York, NY, USA, 2005. ACM.

[70] Steffen Rendle. Factorization machines with libFM. ACM Trans. Intell. Syst.

Technol., 3(3):57:1–57:22, May 2012.

101

[71] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based

collaborative filtering recommendation algorithms. In Proceedings of the 10th In-

ternational Conference on World Wide Web, WWW ’01, New York, NY, USA,

2001. ACM.

[72] Yehuda Koren, Robert Bell, Chris Volinsky, et al. Matrix factorization techniques

for recommender systems. Computer, 42(8):30–37, 2009.

[73] Dirk Bollen, Mark Graus, and Martijn C Willemsen. Remembering the stars?:

effect of time on preference retrieval from memory. In Proceedings of the sixth

ACM conference on Recommender systems, pages 217–220. ACM, 2012.

[74] Léon Bottou. Online algorithms and stochastic approximations. In David Saad,

editor, Online Learning and Neural Networks. Cambridge University Press, Cam-

bridge, UK, 1998.

[75] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-

sity press, 2004.

[76] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and

context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4):19, 2016.

[77] Steffen Rendle. Factorization machines. In 2010 IEEE International Conference

on Data Mining, pages 995–1000. IEEE, 2010.

[78] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In Ad-

vances in neural information processing systems, pages 3111–3119, 2013.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Key Contributions
	Accuracy of matrix completion in recommender systems
	Truncated matrix factorization (TruncatedMF)
	User-specific feature-based factorized bilinear similarity model
	Learning from sets of items in recommender systems

	Outline
	Related Publications

	Notations
	Background and Related Work
	Accuracy of matrix completion in recommender systems
	Introduction
	Matrix completion and skewed distribution of ratings
	Experiment design
	Accuracy of the estimated low-rank models
	Ranking performance of the estimated low-rank models

	Conclusion

	TruncatedMF: Truncated matrix factorization
	Introduction
	Effect of frequency on accuracy in real datasets
	Truncated matrix factorization
	Frequency adaptive truncation
	Frequency adaptive probabilistic truncation
	Model learning
	Rating prediction

	Experimental Evaluation
	Evaluation methodology
	Comparison methods
	Model selection

	Results and Discussion
	Performance for rating prediction on real datasets
	Performance for the users and the items with different number of ratings

	Conclusion

	User-specific feature-based factorized bilinear similarity model for cold-start Top-n item recommendation
	Introduction
	Feature-based similarity model
	Parameter Estimation
	Performance optimizations

	Experimental Evaluation
	Datasets
	Comparison methods
	Evaluation Methodology
	Model Training

	Results and Discussion
	Comparison with previous methods
	Effect of increasing the number of global similarity functions
	Effect of increasing the dimension of feature's factor
	Pairwise feature interaction analysis
	Discussion

	Conclusion

	Learning from Sets of Items in Recommender Systems
	Introduction
	Movielens set ratings dataset
	Data collection
	Data processing
	Analysis of the set ratings

	Methods
	Modeling users' ratings on sets
	Modeling user's ratings on items
	Combining set and item models
	Model learning

	Experimental Evaluation
	Dataset
	Evaluation methodology
	Model selection

	Results and Discussion
	Fit of different rating models
	Performance on the synthetic datasets
	Performance on the Movielens-based real dataset

	Conclusion

	Conclusion
	Thesis Summary
	Future research directions

	References

