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Abstract 

 

The lethal factor (LF) enzyme secreted by Bacillus anthracis is chiefly 

responsible for anthrax-related cytotoxicity. In this dissertation, I present the 

computational design, synthesis, biochemical testing, structural biology, and virtual and 

high-throughput screening approaches to identify binding requirements for LF inhibition. 

To this end, we designed ~50 novel compounds to probe design principles and structural 

requirements for LF. Specifically, in Chapters 2 and 3, computational, synthetic, 

biochemical and structural biology methods to explore the underinvestigated LF S2′ 

binding subsite are described. We discovered that LF domain 3 is very flexible and 

results in a relatively unconstrained S2′ binding site region. Additionally, we found that 

the S1′ subsite can undergo a novel conformational change resulting in a previously 

unreported tunnel region, which we term S1′*, that we expect can further be explored to 

design potent and selective LF inhibitors. Using this novel LF configuration, we virtually 

screened ~11 million drug-like compounds for activity against LF and have identified a 

novel compound that inhibits LF with an IC50 of 126 μM.  

In the course of this work, we found that reliable representation of zinc and other 

transition metal centers in macromolecules is nontrivial, due to the complexity of the 

coordination environment and charge distribution at the catalytic center. In Chapter 7, I 

will present work on applying and optimizing quantum mechanical methods developed 

by the Truhlar group to accurately calculate bond dissociation energies at low 

computational cost for various representative Zn2+ and Cd2+ model systems. By 

analyzing errors, we developed a prescription for an optimal system fragmentation 

strategy for our models. With this scheme, we find that the EE-3B-CE method is able to 

reproduce 53 conventionally calculated bond energies with an average absolute error of 
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only 0.59 kcal/mol. Therefore, one could use the EE-3B-CE approximation to obtain 

accurate results for large systems and/or identify better parameters for Zn centers for 

use in virtual screening.  

Finally, we present the results of a large-scale in vitro HTS campaign of 

~250,000 small-molecules against LF. After extensive validation, involving secondary 

assays and hit synthesis we were able to prioritize a key lead for further prosecution. 
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INTRODUCTION 
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1.1 Anthrax 

Despite the successful dissemination of Bacillus anthracis (B. anthracis) in 2001, 

which resulted in five American deaths, anthrax remains a significant threat to society 

because effective treatments remain elusive. B. anthracis is considered a serious 

bioterrorism threat because anthrax spores can be easily produced en masse, 

aerosolized, and these spores can remain in the environment for extended periods of 

time (up to 60 years).1–4 The Centers for Disease Control (CDC) continuously 

categorizes B. anthracis as a Tier 1 Select Agent, a pathogen that poses great risk to 

national security, economy, and critical infrastructure, because it can be easily 

disseminated to cause high mortality rates.5 In recent history, the former Soviet Union is 

rumored to have built aerosolization facilities for the large-scale production of B. 

anthracis.3,6 As evidence, a 1979 outbreak of anthrax in Sverdlovsk, former Soviet 

Union, has been attributed to inhalation of anthrax spores accidentally released at a 

military microbiological facility, which killed 64 people.7 Also, during WWII, the Japanese 

army used anthrax as a biological weapon against the Chinese in Manchuria in 1940.8 It 

is also a serious concern that antibiotic-resistant strains of B. anthracis can be 

engineered and used in a bioterrorist attack. Strains resistant to penicillin, doxycycline, 

and ciprofloxacin, the frontline therapies for anthrax treatment, have been engineered in 

vitro by several groups.9–12  

Anthrax is caused by B. anthracis, a Gram-positive, spore-forming, rod-shaped, 

facultatively anaerobic bacterium which affects both animals and humans. There are 

three main ways in which humans can contract anthrax: gastrointestinal (through the GI 

tract), cutaneous (through the skin), and inhalational (through the lungs). It has recently 

been reported that a fourth type of anthrax transmission, injection anthrax, is possible. 
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Injection anthrax appeared in heroin-drug users with mortality rate of 30%.13 

Gastrointestinal anthrax develops upon consumption of animal products infected with 

anthrax spores. If not treated in a timely manner, this type of anthrax results in a high 

mortality rate of >50%.14–16 The most common type of anthrax transmission is 

cutaneous, which comprises 95% of all anthrax infections.14,15 A person is infected with 

cutaneous anthrax when spores enter the body through broken skin. Even though it is 

rarely fatal, without treatment mortality rates can approach 20%.3,17  Inhalation anthrax is 

the most fatal of all three modes of infection. If left untreated, the mortality rate can reach 

90%.18 Infection with inhalational anthrax occurs when the spores are inhaled. 

Symptoms vary depending on type of anthrax infection. 

There are two virulence factors that are responsible for anthrax related cell death. 

These virulence factors are encoded in pXO1 and pXO2 plasmids and secreted by B. 

anthracis.19 Both plasmids are required for full virulence.20 pXO1 encodes anthrax toxin, 

which consists of edema factor (EF), lethal factor (LF) and a protective antigen (PA).21,22 

Edema factor and protective antigen form edema toxin, whereas lethal factor and 

protective antigen form lethal toxin. pXO2 encodes for antiphagocytic poly-γ-D-glutamic 

acid capsule.23 The capsule prevents the bacterium from being digested by 

macrophages.24,25 A strain that lacks pXO2 plasmid, called the Sterne strain, has been 

effectively used as a vaccine for animals in the US.26–28 

1.2 Current Treatments and Their Limitations 

1.2.1 Vaccines 

The first vaccine against anthrax was developed in 1880 and used in livestock.29 

The first vaccine for human use was developed in 1954 as a cell-free filtrate precipitated 
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with aluminum potassium sulfate (alum).30,31 Later, in the 1960s, the manufacturing 

procedure for the anthrax vaccine was modified resulting in BioThrax® (anthrax vaccine 

adsorbed). It is made by aluminum hydroxide precipitation of PA from filtrates of cultures 

of non-encapsulated Sterne anthrax strain V770-NP1-R.32 Currently, it is the only 

prophylactic, pre-exposure anthrax vaccine approved in the US. It stimulates the host 

immune system to produce antibodies against PA, the protein responsible for the 

transportation of anthrax toxin components such as lethal factor and edema factor into 

cells.33 Once PA is neutralized by antibodies, the toxic effects of lethal factor and edema 

factor are eliminated. There are no efficacy studies on BioThrax®; however, a 1954 

BioThrax® predecessor vaccine prevented inhalational and cutaneous anthrax with an 

efficacy of 92.5% according to a 1962 study.34 Primarily, BioThrax® is used in 

vaccinations of military and research personnel who are at high risk of anthrax exposure. 

Biothrax® usage is limited due to the following disadvantages of the vaccine: 1) 

Intensive vaccination schedule of 18 months duration followed by yearly boosters, 2) 

Possible severe allergic reactions (anaphylactic shock), 3) Vaccine is not licensed for 

post-exposure use, 4) Efficacy and safety have not been established in children and 

elderly people, 5) Vaccine may not protect all individuals who get the shots, especially 

people with immunodeficiency35, 6) Must be stored at 2-8 °C otherwise unstable36. 

These disadvantages and perception by the public that anthrax is rare disease prevent 

widespread civilian immunizations. 

1.2.2 Monoclonal and Polyclonal Antibodies 

After the 2001 anthrax attacks, the Project Bioshield Act was signed into law and 

provided funding for the development of new therapies aimed at anthrax, especially 

monoclonal antibodies. It was recognized that new treatments were needed since 
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existing therapies were severely limited in treating inhalational anthrax.3,37 Other 

treatment options include antibody-based therapeutics, which exhibit their own set of 

limitations. Antibody-based treatments belong to a well-established drug class that has a 

fairly high success rate for clinical approval, and are usually well tolerated by humans, 

but key caveats exist: they are very expensive due to the high cost of manufacturing and 

the often large doses required; rare but serious adverse effects have been reported; and 

antibodies can also display significant pharmacokinetic liabilities, limited tissue 

accessibility, and impaired interactions with the immune system.38,39 Consistent with 

antibody-based target restriction to those on the surface or exterior of host cells, all anti-

anthrax antibodies developed to date target the protective antigen in order to interfere 

with LF translocation into host cells. One of the first fully human monoclonal antibodies 

developed was Valortim. However, post-exposure studies performed on non-human 

primates (NHPs) showed that Valortim could only achieve 70% efficacy. In 2012, the 

Food and Drug Administration (FDA) approved raxibacumab (Abthrax) in combination 

with antibiotics for the treatment of inhalational anthrax. Raxibacumab is a recombinant 

human immunoglobulin G1λ monoclonal antibody that prevents binding of PA to cell 

surfaces. Despite achieving FDA approval, efficacy studies performed on Cynomolgus 

macaques and New Zealand white (NZW) rabbits showed that raxibacumab is inferior to 

the currently approved antimicrobials.40,41  

More recently, the FDA approved Anthrasil, a purified human immunoglobulin G, 

in combination with antibiotics to treat patients with inhalational anthrax. Anthrasil’s 

mechanism of action is similar to that of raxibacumab. Efficacy studies performed with 

Cynomolgus macaques and NZW rabbits demonstrated that even in combination with 

antimicrobials, complete protection of animals from B. anthracis by Anthrasil remains 

challenging.42 Thus, for post-exposure anthrax treatment, there is still a key unmet need 
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for novel therapeutics that reliably and effectively protect against the effects of anthrax 

toxin. Given the critical role of LF in anthrax pathogenesis and lethality, the discovery of 

strategies to inhibit this enzyme is still the most promising approach to combat post-

exposure anthrax.43,44 

1.2.3. Antibiotics 

The major limitation of relying on antibiotic treatment is that antibiotics have no 

effect on toxin itself and must be administered early in the disease cycle due to rapid 

exotoxin secretion and consequent host death. Unfortunately, early stage infection is 

also when diagnosis is the most difficult.14 At the later stages of infection, antibiotics fail 

to fight anthrax infection as high levels of anthrax toxin have already been secreted 

systemically, causing fatal septicemia. This has prompted various groups to research 

new therapies that neutralize anthrax toxin. For example, out of the eleven people who 

were diagnosed with inhalational anthrax and treated after the 2001 anthrax attacks, 

only six survived. This demonstrates some of the limitations of antibiotic treatments of 

inhalational anthrax.3 Antibiotics such as ciprofloxacin, penicillin, and doxycycline are 

effective against the causative agent B. anthracis, and approved by the FDA for the 

treatment of inhalational anthrax.  

Ciprofloxacin inhibits bacterial proliferation by binding to the active site of DNA 

gyrase, an essential enzyme in DNA replication. Therefore, ciprofloxacin only stops 

bacterial cell division (bacteriostatic effect) and has no effect on exotoxin secretion. 

Penicillin, on the other hand, kills bacteria by inhibiting cell wall synthesis (bactericidal 

effect). Doxycycline is also bacteriostatic and stalls bacterial growth and division by 

inhibiting protein synthesis. There are some antibiotics such as 

sulfamethoxazole:trimethoprim (Bactrim®), cefuroxime, cefotaxime sodium, aztreonam, 
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and ceftazidime that cannot be used to treat anthrax due to complete resistance.45–47 

Another concern is patient compliance as a 2-month long antibiotic regimen for exposure 

prophylaxis is required. After the 2001 anthrax attacks, only 40% of the sampled postal 

workers in Washington reported full adherence and 18% had completely stopped taking 

antibiotics.48 As anthrax toxin plays a crucial role in the pathogenesis and lethality of 

anthrax, the discovery of strategies to inhibit the exotoxin is a promising approach to 

treat post-exposure anthrax.43,44 

1.3 Anthrax Toxin Lethal Factor  

LF Structure. The lethality of anthrax results from the anthrax toxin, which is composed 

of three proteins: lethal factor (LF), a calmodulin-activated adenylate cyclase (edema 

factor; EF), and protective antigen (PA).49 LF, an 89-kDa zinc metalloprotease is 

primarily responsible for anthrax pathogenesis. LF consists of four domains: the N-

terminal domain (I), the large central domain (II), a small helical domain (III), and the C-

terminal catalytic domain (IV) (Figure 1.1).50 The N-terminal domain I (residues 1-263) 

binds to PA and is responsible for LF translocation into host cells. The functions of 

domains II (residues 264-297 and 385-550) and III (residues 303-382) are not fully 

understood; however, it is known that domain III plays an important role in LF substrate 

selectivity. The catalytic C-terminal domain (IV) (residues 552-776) contains the LF 

active site, which is defined by a catalytic Zn2+ coordinated to three active site residues: 

His686, His690, and Glu735. Residues His686, His690, and Glu687 form part of the 

signature Zn metalloproteinase HEXXH consensus motif that is characteristic of most 

matrix metalloproteinases (MMPs). 
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The LF active site consists of three subsites: (1) a primarily hydrophobic and 

sterically constrained S1′ subsite, (2) a mostly hydrophobic, but less sterically restricted 

S1-S2 region that is also a solvent-exposed tunnel, and (3) a poorly characterized S2′ 

area (Figure 1.2).50,51 

LF Mechanism of Action.  The first step in anthrax toxin-mediated pathogenesis 

is PA binding to cellular anthrax toxin receptor (ATR).52 This binding event triggers 

proteolytic cleavage of PA by furin proteases to PA63, which then undergoes 

heptamerization to form a prepore-like structure that binds three LF and/or EF units.52–54 

The LF/EF-bound complex is then endocytosed into a host target cell.55–57 A low pH 

environment converts the prepore-like structure to a pore-like channel releasing EF and 

LF into the cytoplasm.58–62 Once in the cytoplasm, LF cleaves mitogen-activated protein 

kinase kinases (MAPKKs) MEK1, MEK2, MKK3, MKK4, MKK6, and MKK7.63 MAPKK 

degradation inhibits the phosphorylation  of MAPKs, which effectively  shuts down 

Figure 1.1.  Anthrax toxin lethal factor. The N-terminal domain I is in dark blue, domain 
II in yellow, domain III in red, and domain IV in green with catalytic zinc in grey sphere 
(PDB ID 1JKY).50 (Schrödinger Maestro Discovery Suite 9.4).  

 

 



 

9 

 

cellular immune defense mechanisms.55,63–72 In later stages of the disease, LF also 

invades endothelial cells causing disruption of endothelial barriers and leaky 

vasculature.73–75 The exact mechanism by which LF cleaves MAPPKs is not well 

understood. However, current hypotheses are modeled on known mechanisms of similar 

catalytic zinc enzymes that contain the HEXXH signature consensus motif, such as the 

matrix metalloproteinases (MMPs). Based on the MMP mechanism of action, it is 

proposed that LF cleaves MAPKKs through activation of a zinc-coordinated water 

molecule.51,76 Specifically, the activated water molecule, which is strongly H-bonded to 

Glu687 and Tyr728, attacks the scissile amide bond in the MAPPK substrate. Tyr728 

plays a crucial role in this catalytic process by stabilizing the amino moiety of the leaving 

group, making it more susceptible to nucleophilic attack by the water molecule.77–79 

 

  

Figure 1.2. Active site of anthrax toxin lethal factor (PDB ID 1YQY).110 
(PyMOL Molecular Graphics System, Version 1.7.4). Zn2+ is 
represented as a blue sphere, with Zn-coordinating residues indicated 
and LF subsites labeled. 
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1.4 History of Lethal Factor Inhibitor Development 

Numerous studies have been conducted toward the design of small molecule LF 

inhibitors.53,80–88 The first reported LF inhibitors were small peptide sequences, designed 

as mimics of the natural MAPKK substrate, which were chemically linked to hydroxamic 

acid zinc-binding groups (ZBGs).89–91 Substrate analog inhibitors were first designed by 

Montecucco and coworkers, and the best inhibitor from their efforts was compound 1.1 

(Figure 1.3) with a Ki ~ 1 nM.90 Following this discovery, Cantley and coworkers 

screened millions of peptide sequences against LF. This approach resulted in the 

discovery of micromolar inhibitor GM6001 (Ilomastat, Figure 1.3).91 X-ray co-crystal 

studies with LF showed that the isobutyl moiety of GM6001 occupied the deep and wide 

S1′ subsite, while the Trp residue engaged the S2′ subsite (PDB ID 1PWU).91 They 

concluded that binding to the S1′ subsite greatly contributes to potent LF inhibition.91 By 

taking advantage of the deep S1′ subsite, Merck & Co. developed potent hydroxamic 

acid-based inhibitors of LF including MK-702/LF1-B with a Ki ~ 24 nM (Figure 1.3). 

More recently, Johnson and coworkers used MK-702/LF1-B to develop the most potent 

LF inhibitor to date with a Ki close to 40 pM (PT-8541, Figure 1.3).92,93 However, 

development of hydroxamic acid-based inhibitors as therapeutic agents has been limited 

due to the poor selectivity, pharmacokinetic and toxicological liabilities of this moiety.94–99 

Hence, much attention has also been directed to develop non-hydroxamate LF 

inhibitors.44,81–85,100–111 Reported inhibitors have included cationic polyamines,83 

aminoglycosides,101 pyrazolones,84 polyphenols,107 tetracyclins,102 α-defensins,108 

quinolines,100 rhodanines,103 and catechols.44 The majority of these compounds exhibit 

micromolar activity against LF. Most notably, Pellecchia and coworkers developed 

several potent inhibitors of LF based on a rhodanine scaffold. Compound 1.2 was the 
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most active rhodanine-based inhibitor of this series with a half maximal inhibitory 

concentration (IC50) of 190 nM (Figure 1.3).81,82,103,109 X-ray studies with LF showed that 

the molecule primarily binds to the S1-S2 subsite, and the rhodanine heterocycle 

chelates zinc through the thiazolidinedione sulfur (PDB ID 1ZXV) (1.2, Figure 1.3).78,79 

These rhodanine-based inhibitors have limited therapeutic value because they do not 

target the crucial S1′ or  S2′ subsites that are involved in native substrate binding. More 

recently, rhodanines were found to interfere with many biological assays gaining them a 

reputation as pan assay interference compounds (PAINS). Due to these problems, as 

well as a lack of selectivity, rhodanines were deemed non-optimizable for future LF 

inhibitor development.112,113   

Given the liabilities of the current LF inhibitors, there is still a significant need for 

novel, non-hydroxamate LF inhibitors. The challenge remains to develop small-molecule 

inhibitors that would engage in crucial protein-ligand interactions, while displaying 

selectivity for LF over other metalloproteinases. 

Figure 1.3. Published LF inhibitors with activities.  
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Chapter 2 

 

PROBING THE S2′ SUBSITE OF THE ANTHRAX TOXIN LETHAL FACTOR USING N-
ALKYLATED HYDROXAMATES 

  

 Adapted with permission from: 

 

Maize, K. M.; Kurbanov, E. K.; De La Mora-Rey, T.; Geders, T. W.; Hwang, D.-J.; 

Walters, M. A.; Johnson, R. L.; Amin, E. A.; Finzel, B. C. Anthrax Toxin Lethal Factor 

Domain 3 Is Highly Mobile and Responsive to Ligand Binding. Acta Crystallogr. Sect. D 

2014, 70, 2813–2822. 

 

 Kurbanov, E. K.; Chiu, T.-L.; Solberg, J.; Francis, S.; Maize, K. M; Fernandez, J.; 

Johnson, R. L.; Finzel, B. C.; Hawkinson, J. E.; Walters, M. A.; Amin, E. A. Probing the 

S2′ Subsite of the Anthrax Toxin Lethal Factor Using N-Alkylated Hydroxamates. 

Submitted 2015.  
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2.1 ACKNOWLEDGEMENTS  

 This chapter includes a description of work done in collaboration with Kimberly 

M. Maize, Teresa De La Mora-Rey, Todd W. Geders, Barry C. Finzel, Dong-Jin Hwang, 

Rodney L. Johnson, Subhashree Francis, Michael A. Walters, Jonathan Solberg, and 

Jon Hawkinson. In this work, Dong-Jin Hwang provided support in the synthesis of 

compounds. Subhashree Francis characterized the synthesized compounds by LC-MS. 

Jonathan Solberg tested the compounds in in vitro assays and Jon E. Hawkinson 

analyzed the data. X-ray crystallization studies with these compounds were completed 

by Kimberly M. Maize, Teresa De La Mora-Rey, and Todd W. Geders under the 

supervision of Barry C. Finzel. Synthetic guidance was provided by Rodney L. Johnson 

and Michael A. Walters. 

2.2 INTRODUCTION 

The LF active site consists of three subsites: a strongly hydrophobic and 

sterically constrained S1′ subsite, a mostly hydrophobic but less sterically restricted S1-

S2 region that is also open-ended making a solvent-exposed tunnel, and a poorly 

characterized S2′ area (Figure 2.1). The S1′ and S1-S2 subsites were previously 

explored and characterized by several groups.80,86 Our research objectives delineated in 

this and the following chapters were to characterize the S2′ subsite so that ultimately the 

resulting data might be exploited to optimize potent LF inhibitors based on novel non-

hydroxamate scaffolds. 
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Upon examining the published X-ray structure of MK-702/LF1-B (Figure 2.1) co-

crystallized with LF (PDB ID 1YQY),110 we noted that the S2′ subsite could potentially be 

engaged and explored by modifying the ligand sulfonamide using various chemical 

functionalities (Figure 2.1). We ultimately selected MK-31,80 an analog of MK-702/LF1-

B, as our starting point for modification, because the tetrahydropyranyl group of MK-

702/LF1-B does not engage in protein-ligand interactions and is not essential for S2′ 

exploration, and moreover, MK-31 derivatives are more synthetically tractable than 

those of MK-702/LF1-B (Figure 2.1). We have also obtained the crystal structure of MK-

31 bound to LF (PDB ID 4WF6) and showed that MK-702/LF1-B and MK-31 have 

similar binding modes with an RMSD of 0.47 Å (Figure 2.2). We therefore designed and 

synthesized a series of MK-31 analogs that are functionalized at the sulfonamide N, 

thereby identifying residues in the S2′ pocket that can be engaged by small molecules.  

In so doing, we also found that the S2′ subsite is relatively accommodating to a variety of 

Figure 2.1. LF active site with catalytic Zn2+ (blue sphere) co-crystallized with MK-
702/LF1-B (PDB ID 1YQY). (PyMOL Molecular Graphics System, Version 1.7.4). 
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chemical functionalities. The results presented in this and the following chapters outline 

how the S2′ subsite can be targeted to elucidate its binding requirements. 

 

2.3 MATERIALS AND METHODS 

2.3.1 Molecular Modeling 

With 4WF6, we computationally docked and scored 300 N-alkylated analogs of 

MK-31 (Figure 2.1) using Glide 5.9114–117 with standard (SP) and then extra precision 

(XP) in the Schrödinger’s Maestro Discovery Suite 9.4 (Schrödinger, Inc.).118 The library 

of compounds utilized for the docking studies was designed from the following Sigma-

Aldrich databases:119 aliphatic bromides, benzyl bromides, and aliphatic iodides. 

Compounds with reactive moieties such as Michael acceptors, aldehydes, and cyanides 

were excluded. Interactive enumeration in the Maestro Suite was used to 

Figure 2.2. LF active site with co-crystallized MK-31 (yellow) (PDB ID 4WF6) 
superimposed to co-crystallized MK-702/LF1-B (green) (PDB ID 1YQY). (Schrödinger 
Maestro Discovery Suite 9.4). 
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computationally alkylate MK-31 generating 300 diverse and synthesizable compounds. 

The structures were appropriately protonated at pH 7 using LigPrep120 (Maestro), 

energy-minimized using the OPLS-AA force field,121 and docked with the SP protocol 

into the crystal structure of 4WF6. Their scores were compared to that of MK-31. The 

protein for the docking studies was prepared using the protein preparation wizard122,123 in 

Maestro which added hydrogens, removed co-crystallized waters, and added missing 

sidechains with Prime.124 The compounds that scored higher than MK-31 were re-

docked using the XP protocol. The 26 compounds that scored higher than MK-31 using 

the SP protocol were docked using the XP protocol. Of these 26 compounds, 19 were 

benzyl alkylated on the sulfonamide N. From these computational studies, we concluded 

that MK-31 analogues with benzyl modifications were able to occupy the S2′ subsite, 

and were predicted to have higher predicted potencies than MK-31. Our observations 

could be rationalized by the presence of hydrophobic residues at the entrance of the S2′ 

subsite, such as Tyr728 and Val675, which likely interact with the benzyl group. Based 

on these studies, we decided to synthesize a series of benzyl analogs of MK-31 

(Scheme 2.1).  

2.3.2 Synthesis 

 Synthetic modifications to the sulfonamide of MK-31 were accomplished as 

outlined in Scheme 2.1. A generalized synthetic route was fashioned for all designed 

analogues as follows. Intermediate sulfonamide 2.3 was readily synthesized from 

commercially available D-alanine and 4-fluoro-3-methylphenyl-sulfonylchloride through 

nucleophilic substitution. Protection of the carboxylic acid was accomplished under 

Fisher esterification conditions to give 2.4 in 78% yield over the first two steps. Alkylation 

of sulfonamide 2.4 with the appropriate aryl bromides and chlorides was carried out 
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under basic conditions to afford tertiary sulfonamides 2.5-2.9 in 52-83% yield. The 

penultimate esters were converted to hydroxamic acids 2.10-2.14 using hydroxylamine 

hydrochloride and sodium methoxide in 28-73% yield.  

Scheme 2.1 Synthetic modifications to the sulfonamide of MK-31. 

Reagents and conditions: (a) K2CO3, dioxane/H2O (1:1), rt; (b) concd H2SO4, methanol, 
reflux (78% over two steps); (c) R-X, K2CO3, DMF, rt (2.5, 82%; 2.6, 79%; 7, 83%; 2.8, 
52%; 2.9, 71%); (d) NH2OH·HCl, NaOMe, methanol, 0 °C to rt (2.10, 54%;2. 11, 28%; 
2.12, 73%; 2.13, 45%; 2.14, 50%); (e) 10 wt. % Pd/C, DCM, rt (2.15, 82%); (f) 4M HCl in 
dioxane (2.16, 97%). 

Further modification to 2.12 was pursued by reducing the m-nitrobenzyl 

substituent of the sulfonamide. The hydrogenation of 2.12, to afford 2.15, was 

accomplished in an 82% yield under a hydrogen atmosphere in the presence of 

palladium on activated carbon (Pd/C). Moreover, tert-butoxycarbonyl deprotection of 

analogue 2.14 was achieved with 4M HCl in dioxane to yield 2.16 as its HCl salt in 97% 

yield. 
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2.3.3 Biochemical Evaluation 

2.3.3.1 FRET Lethal Factor Protease Assay 

This work was completed by Jonathan Solberg and Jon E. Hawkinson at the 

Institute for Therapeutics Discovery and Development (ITDD) at the University of 

Minnesota. 

The quenched fluorescence resonance energy transfer (FRET) assay measures 

LF enzymatic activity using an internally quenched peptide substrate derived from 

MAPKK.111 LF cleavage separates the Dnp quencher from the oABz fluorescent tag, 

leading to an increase in fluorescence intensity.83,110 In this assay, 10 µL of 100 nM 

anthrax toxin lethal factor111 (final concentration 50 nM) in 2x assay buffer (40 mM 

HEPES containing 0.02% Triton X-100, pH 8.0) was added to 384-well assay plates 

(Corning #3677) using a MultiDrop dispensing instrument (Thermo-Fisher). The plate 

was pre-incubated at 37 °C for 15 min and the reaction was initiated by the addition of 

10 µL of 14 µM oAbz/Dnp-labeled substrate (developed in-house at the Biomedical 

Genomics Center, University of Minnesota) in water (final substrate concentration 7 µM). 

The reaction was allowed to continue for 5 minutes at 37 °C, before being terminated 

with addition of 5 µL 50 mM EDTA (final concentration 10 mM). Fluorescence intensity 

was measured on a SpectraMax M2e microplate reader with excitation and emission 

wavelengths of 320 nm and 420 nm, respectively. For IC50 determinations, test 

compounds were dissolved in DMSO at 10 mM and varying volumes were added to the 

assay plate using a Labcyte Echo® 550 acoustic dispenser prior to LF addition to 

achieve 8 concentrations in duplicate (final DMSO concentration 1%). IC50 values were 

determined as a percent of control wells containing no inhibitor (following subtraction of 

background wells lacking enzyme) from at least 3 independent experiments using 
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GraphPad Prism software. IC50 values were also determined for the positive control 

compounds MK-702/LF1-B and GM6001 for comparison, which were included on every 

plate. 

2.3.4 Structural Biology 

X-ray crystallography studies were done by Kimberly M. Maize, Teresa De La 

Mora-Rey, and Todd W. Geders under the supervision of Barry C. Finzel. Materials and 

methods for obtaining and processing X-ray crystal structures were previously 

published.125 

2.3.4.1 Protein Purification 

 DNA encoding residues 265-776 (A266S) of Bacillus anthracis lethal factor (LFNT) 

was cloned into pMCSG10126–130 to produce a TEV-cleavable, N-terminal GST fusion 

bearing a His6 tag. LFNT was expressed using BL21(DE3) Rosetta2 pLysS cells. In 10 L 

scale, the cells were grown to an OD600 = 0.6-0.8 at 310 K, cooled to 303 K, induced with 

0.2 mM IPTG for 6-8 hours and then harvested by centrifugation (15 minutes at 8,200 x 

g). Cell pellets were frozen at 253 K.  Cell pellets were resuspended in 145 mL of 50 mM 

Tris pH 7.6, 500 mM NaCl, 10% glycerol and 1 mM DTT and lysed by sonication on ice. 

Lysozyme (1 mg/mL), benzonase (1 mU/mL) and MgCl2 (1 mM) were added and stirred 

for 30 minutes on ice. Lysate was cleared by centrifugation at 40,000 x g for 45 minutes 

at 277 K and the supernatant was clarified by a 0.45 µm syringe filter prior to loading 

onto a 50 mL Ni-NTA column and eluted with lysis buffer containing 500 mM imidazole. 

Histidine-tagged tobacco etch virus (TEV) protease was added at 0.8% (w/w) and 

incubated at ambient temperature for 45 minutes followed by extensive dialysis 

overnight at 277 K against lysis buffer with 0.5 mM TCEP instead of 1 mM DTT.  The 
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dialyzed material was passed through the Ni-NTA column and untagged LFNT in the flow-

through was dialyzed extensively 25 mM HEPES pH 7.5 at 277 K. Light, flocculent white 

precipitate was isolated by centrifugation (15 min at 5000 x g) and resuspended in 50 

mM Tris pH 7.6, 500 mM NaCl and 10% glycerol. The redissolved LFNT was applied to a 

HiPrep 26/60 Sephacryl S-200 HR column (GE Healthcare) equilibrated with 25 mM 

HEPES pH 7.5 and 150 mM NaCl and eluted as a single peak.  LFNT was concentrated 

to A280 = 25.7 and stored at 193 K.  Yield was 25 mg from a 10 L batch. 

2.4.3.2 Crystallization 

 Prior to crystallization, the protein was incubated with each compound of 

interest. In brief, the incubation solution (500 μL) consisted of 200 μM compound, 2 μM 

protein, and 10% DMSO in 25 mM HEPES pH 7.5, 150 mM NaCl. After incubation at 

room temperature for 30-45 min, the solution was filtered (0.22 μm) and concentrated to 

greater than 5 mg/mL.  

 Crystals were grown at 286 K using the hanging drop vapor diffusion method 

and microseeding to encourage the growth of fewer larger crystals. Crystallization drops 

consisted of post-incubation protein solution (2.0 μL), and either 2.0 μL well solution or 

well solution (1.5 μL) plus microseeding solution (0.5 μL). Well solutions that yielded 

crystals are 50 mM Bis-Tris pH 6.8, 100 mM magnesium acetate, and polyethylene 

glycol 8000 (PEG 8K, 11-16%). A microseeding solution was prepared by crushing 

crystals grown without seeding with a micropestle. Crystals appeared and grew to full 

size within a month. To harvest samples for data collection, crystals were quickly dipped 

in a 25% ethylene glycol-supplemented well solution, followed by flash vitrification in 

liquid nitrogen.  
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2.4.3.3 Crystallographic Data Collection and Processing 

 Diffraction data for structures 4PKQ, 4PKT, 4PKU, 4PKV, and 4PKW were 

collected from crystals at 100 K at beamline 17-ID-B (IMCA-CAT) using a Dectris Pilatus 

6M Pixel Array Detector at the Advanced Photon Source of Argonne National 

Laboratories in Argonne, IL. The data were processed using XDS131 and scaled with 

SCALA.132  

For structures 4PKR and 4PKS, diffraction data were collected from crystals at 

100 K using the NOIR-1 MBC detector at beamline 4.2.2 at the Advanced Light Source 

of Lawrence Berkeley National Laboratories in Berkeley, CA. The data were processed 

using d*TREK.133  

The structures were solved using molecular replacement with atomic coordinates 

from structure 1YQY134 and the program Phaser135 in the CCP4 suite.136 Both the 

Refmac5137 and Phenix138,139 programs were utilized for data refinement, along with the 

Coot modelling and visualization software.140   

2.3.4.4 Protein Superposition 

 Non-isomorphous protein structures were aligned onto a common frame-of-

reference using only a conserved core substructure comprised of two helical segments 

(residues 686-692 and 735-740) from reference structure 1YQY.134 The segments 

include the Zn-coordinating histidines and glutamate. Locally centralized superposition of 

only this core substructure gives rise to a better alignment of the ligands141 and simplifies 

recognition of that changes to protein quaternary structure relative to the fixed active 

site. Overlay method ‘ATLF’ has been shared by the Finzel group at 
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https://drugsite.msi.umn.edu/ where web-based services exist to overlay any structures 

that share this core.141  

2.4 RESULTS AND DISCUSSION 

2.4.1 Biochemical Evaluation and Structural Biology 

 

GPHR #a PDB ID Cpd # R LF IC50 (μM)b 

00223332 4PKR 2.10 

 

15.2 ± 0.5 

00223341 4PKS 2.11 

 

23.8 ± 0.9 

00223590 4PKT 2.13 

 

14.9 ± 2.4 

00223588 4PKU 2.15 

 

29.8 ± 0.7 

00223596 4PKV 2.16 

 

5.6 ± 0.3 

aGPHR # is a compound number in our in-house collection of compounds 
bIC50 is a half maximal inhibitory concentration   

Initially, benzyl and picolyl N-alkylated analogs of MK-31 were synthesized and 

co-crystallized with LF (PDB IDs: 4PKR, 4PKS).125 As can be seen from Figure 2.3, the 

binding mode of N-benzylated analog 2.10 (PDB ID 4PKR) is similar to the binding mode 

of MK-31. Specifically, the 4-fluoro-3-methylphenyl groups of 2.10 and MK-31 occupy 

the S1′ site, whereas the hydroxamate groups of both chelate zinc. Figure 2.3 also 

shows that the benzyl group of 2.10 occupies the S2′ subsite of LF, as predicted by 

Table 2.1. LF FRET assay results for five N-benzylated 
analogs of MK-31. 
 

https://drugsite.msi.umn.edu/
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computer modeling. The N-picolyl analog 2.11 also binds in this fashion (PDB ID 4PKS). 

We observed that in order to accommodate the benzyl and picolyl groups, domain 3 

undergoes a ligand-induced conformational change, which is depicted by the arrow in 

Figure 2.3. By combining this information with that obtained by previous crystal 

structures,50,81,91,100 we observed that the proximity of domain 3 to domain 4, where 

domain 4 contains the active site, can vary greatly. We have classified these three 

different states of domain 3 as tight, open, and bioactive. The tight position is 

characterized by domain 3 being the closest to domain 4, and is observed in the crystal 

structure of LF with MK-31 (colored green in Figure 2.3). An alternative domain 3 

position can be induced by certain N-alkylated MK-31 derivatives, where the proximity of 

domain 3 to domain 4 is intermediary to the tight and bioactive positions. This domain 3 

position is termed the open position (colored magenta in Figure 2.3). Analogs 2.10 and 

2.11 induce the open conformation of domain 3. The bioactive position is induced by 

binding of the peptide substrate.125  

The advantage of promoting the open state of domain 3 is that the 

conformational change exposes crucial residues, such as Asp328, Lys380, and His654 

to ligand binding, offering multiple novel sites to accomplish favorable charge-charge 

and H-bonding interactions. We employed 4PKR, our crystal structure with domain 3 in 

the open position, to design and synthesize analogs 2.13, 2.15, and 2.16. Analogous to 

MK-31, analogs 2.13 and 2.16 induce the tight conformation of domain 3 (PDB IDs: 

4PKT, 4PKV). Alternatively, analog 2.15 induces the open conformation of domain 3 

(PDB ID 4PKU).  Notably, the activities of 2.10 and 2.13 are similar while the analogs 

bind to different states of domain 3. Moreover, the activities of 2.13 and 2.16 are 

noticeably different while the analogs bind to the same state of domain 3. As a result of 
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these observations, we argue that binding to a specific state of domain 3 (tight vs open) 

does not produce more potent inhibitors of LF.  

 

By analyzing the activities of 2.10, 2.11, 2.13, 2.15, and 2.16, we observed that 

the amino-containing analog 2.16 is more active than the rest. We analyzed the complex 

4PKV, between LF and 2.16, for further insights, but found no clear evidence for why 

2.16 is more active than the other compounds. We were able, however, to answer this 

question through molecular dynamics simulations discussed in the next chapter. 

Additionally, we found interesting protein-ligand interactions between 2.13 and 

2.15 and LF in the crystal structures 4PKT and 4PKU, accordingly. Figure 2.4 shows 

that the nitro group of 2.13 is engaged in electrostatic and H-bond interactions with the 

Figure 2.3. LF active site with co-crystallized MK-31 (green) (PDB ID 4WF6) 
superimposed to the co-crystallized N-benzyl analog 2.10 (yellow). (PDB ID 4PKR). The 
arrow denotes the conformational change that occurs upon binding 2.10. (Schrödinger 
Maestro Discovery Suite 9.4). 
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sidechain of Lys335 in the S2′ site (see figure legend). However, the potency of 2.13 did 

not improve upon the potency of 2.10. We argue that this can be due to several factors. 

The primary factor is that the S2′ site is solvent exposed. This, in turn, decreases the 

strength of the charge-charge interaction between 2.13 and the sidechain of Lys335. 

Moreover, desolvation and entropic penalties can also reduce the strength of this 

interaction. Taken together, these factors severely weaken the interactions of 2.13 with 

Lys335.  

  

Figure 2.4. Two-dimensional (2D) protein-ligand interaction map for 2.13 (PDB ID 
4PKT). (Schrödinger Maestro Discovery Suite 9.4). 
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For 2.15, we observe H-bond donating interactions between the aniline and the 

backbone of His654. However, the potency of 2.15 also did not improve upon the 

potency of 2.10. We argue that the H-bond interaction loses strength due to desolvation 

and entropic penalties (Figure 2.5).  

 

2.5 CONCLUDING REMARKS 

In this study, we synthesized five N-benzylated analogs of MK-31 to explore the 

S2′ site of LF. Co-crystal structures of these compounds with LF were obtained, which 

showed that domain 3 is highly flexible.  By combining this information with that obtained 

by previous crystal structures,50,81,91,100 we classified the frequently populated states of 

Figure 2.5. 2D protein-ligand interaction map for 2.15 (PDB ID 4PKU). 
(Schrödinger Maestro Discovery Suite 9.4). 
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domain 3 as tight, open, and bioactive. Biochemical evaluation and X-ray data for these 

compounds showed that binding to a specific state of domain 3 does not necessarily 

improve the potency of LF inhibition. However, we noted that we could design 

compounds that engage in additional favorable protein-ligand interactions with the newly 

exposed residues in the open state of domain 3. We designed 2.13, 2.15, and 2.16 to 

take advantage of crucial residues Asp328, Lys380, and His654. Surprisingly, 2.13 was 

found to engage Lys335. However, even though the nitro group of 2.13 was engaged in 

electrostatic and H-bond interactions with the sidechain of Lys335, the potency of 2.13 

did not improve upon the potency of 2.10. We argue that because the S2′ site is solvent 

exposed this decreases the strength of the charge-charge interaction between 2.13 and 

the sidechain of Lys335. For 2.15, we observed H-bond donating interactions between 

the aniline and the backbone of His654. We argue that the potency of 2.15 did not 

improve upon the potency of 2.10 because the H-bond interaction loses strength due to 

desolvation and entropic penalties. In the following chapter, additional studies that 

thoroughly explore the S2′ site are presented. 

2.6 EXPERIMENTAL 

General Synthesis Information. Chemical reagents were purchased from commercial 

sources and used without additional purification. Bulk solvents were from Fisher 

Scientific and anhydrous N,N’-dimethylformamide (DMF) was purchased from EMD 

Chemicals. Reactions were performed under an atmosphere of dry N2 unless otherwise 

noted. Silica gel chromatography was performed on self-packed columns with SiliaFlash 

60Å silica gel (SiliCycle). Preparatory thin layer chromatography (TLC) was performed 

on plates with glass backed SiliaPlate 60Å silica gel (SiliCycle). Compounds used in 

biological testing were no less than 90% pure as determined by two-wavelength HPLC 
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analysis (254 and 215 nm). The reaction mixture/purified compound was analyzed on a 

Waters UPLC which is connected to ELSD, UV and ZQ mass spectrometers. The mass 

analysis was carried out in both ESI positive and ESI negative modes. Multiple 

wavelengths of 214 nm, 220 nm, 244 nm and 254 were used for UV detection. Elution 

was carried out using a gradient mobile phase of 95:5 of water: acetonitrile with 0.1% 

formic acid to 100% acetonitrile over 6 minutes. The purity determination was carried out 

using OpenLynx. Nuclear magnetic resonance (NMR) spectra were recorded in CDCl3, 

CD3OD, or DMSO-d6 on a Varian instrument operating at 400 MHz (for 1H) and 100 MHz 

(for 13C) at ambient temperature. Chemical shifts are reported in parts per million and 

normalized to internal solvent peaks or tetramethylsilane (0 ppm).  

 

(R)-2-(3-Fluoro-4-methylphenylsulfonamido)propanoic acid (2.3) 

 

D-Alanine (2.1, 2.5 g, 28.1 mmol) was added to a solution of K2CO3 (8.3 g, 59.9 mmol) in 

dioxane/water (60 mL, 1:1, v/v). A solution of 4-fluoro-3-methylphenyl-sulfonylchloride 

(5.0 g, 24.0 mmol) in dioxane (4 mL) was added immediatly after with vigorous stirring. 

The mixture was stirred at rt overnight. Upon consumption of the starting material as 

determined by TLC, the solvent was reduced to one third the reaction volume under 

reduced pressure, and DCM was added to extract the organic layer. The aq. layer was 

acidified with conc. HCl to pH = 1 and extracted with EtOAc (3 x 20 mL).The combined 

organic layers were washed with brine (1 x 20 mL), dried over Na2SO4, filtered, and 

concentrated under reduced pressure to yield 2.3 as a white solid. 1H NMR (400 MHz, 

CDCl3) δ 9.57 (bs, 1H), 7.55-7.48 (m, 2H), 7.33 (m, 1H), 5.42 (d, J = 8.0 Hz, 1H, NH), 



 

29 

 

4.03 (m, 1H), 2.33 (s, 3H), 1.33 (d, J = 6.0 Hz, 3H).13C NMR (100 MHz, CDCl3) δ 177.0, 

160.5 (d, J = 49.0 Hz), 138.8 (d, J = 6.8 Hz), 132.8 (d, J = 4.5 Hz), 131.2 (d, J = 17.5 

Hz), 122.6 (d, J = 3.8 Hz), 114.1 (d, J = 2.5 Hz), 51.2, 19.6, 14.8. 

 

(R)-Methyl 2-(4-fluoro-3-methylphenylsulfonamido)propanoate (2.4) 

 

To a solution of 2.3 (4.9 g, 17.8 mmol) in MeOH (10 mL) was added a catalytic amount 

of conc. H2SO4. The reaction was heated to reflux. After 6 h, the solution was 

concentrated under reduced pressure and the resulting residue was dissolved in EtOAc 

(10 mL). This solution was washed with water (20 mL), sat. aq. NaHCO3 (20 mL), brine 

(20 mL), dried over anhydrous MgSO4, filtered, and concentrated under reduced 

pressure to yield 2.4 as a white solid (5.15 g, 78%, two steps). 1H NMR (400 MHz, 

CDCl3) δ 7.72 (m, 1H), 7.67 (m, 1H), 5.54 (d, J = 8.4 Hz, 1H), 4.01 (m, 1H), 3.50 (s, 3H), 

2.33 (s, 3H), 1.43 (d, J = 7.4 Hz, 0.5 H), 1.38 (d, J = 7.4 Hz, 2.5 H). 13C NMR (100 MHz, 

CDCl3) δ 172.6, 163.8 (d, J = 251.9 Hz), 135.4 (d, J = 3.0 Hz), 130.9 (d, J = 6.8 Hz), 

127.1 (d, J = 9.8 Hz), 126.4 (d, J = 18.3 Hz), 115.8 (d, J = 24.2 Hz), 52.7, 51.5, 19.9, 

14.6. 

 

General Procedure for N-Alkylation (2.5-2.9) 

To a solution of 2.4 (110 mg, 0.4 mmol) and benzyl bromide (80 μL, 0.5 mmol) in 

anhydrous DMF (2 mL) was added K2CO3 (275.0 mg, 2.0 mmol). The reaction mixture 

was stirred at room temperature. After 48 h, the solvent was removed under reduced 

pressure and the resulting residue was taken up in H2O, extracted with EtOAc (3 x 15 
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mL), dried over MgSO4, filtered, and concentrated under reduced pressure. The crude 

product was purified over SiO2 using an eluent of EtOAc/hexane (1/4, v/v).  

 

(R)-methyl 2-(N-benzyl-4-fluoro-3-methylphenylsulfonamido)propanoate (2.5) 

 

Colorless oil (120 mg, 82%). 1H NMR (400 MHz, CDCl3) δ 7.64 (m, 2H), 7.32-7.23 (m, 

5H), 7.08 (t, J = 9.2 Hz, 1H), 4.65 (q, J = 7.2 Hz, 1H), 4.57 (d, J = 16.0 Hz, 1H), 4.40 (d, 

J = 16.0 Hz, 1H), 3.47 (s, 3H), 2.30 (s, 3H), 1.30 (d, J = 7.6 Hz, 3H). 13C NMR (100 MHz, 

CDCl3) δ 171.6, 163.6 (d, J = 252 Hz), 137.1, 135.7 (d, J = 3.0 Hz), 131.1 (d, J = 6.0 Hz), 

128.4, 128.1, 127.6, 127.3 (d, J = 9.1 Hz), 126.0 (d, J = 18.2 Hz), 115.6 (d, J = 23.6 Hz), 

55.3, 52.1, 49.2, 16.6, 14.6 (d, J = 3.8 Hz). 

 

(R)-methyl 2-(4-fluoro-3-methyl-N-(pyridin-3-

ylmethyl)phenylsulfonamido)propanoate (2.6) 

 

Colorless oil (126 mg, 79%). 1H NMR (400 MHz, CDCl3) δ 8.50 (m, 2H), 7.90 (m, 1H), 

7.62 (m, 2H), 7.27-7.23 (m, 1H), 7.10 (t, J = 8.8 Hz, 1H), 4.71 (q, J = 7.2 Hz, 1H), 4.60 

(d, J = 16.8 Hz, 1H), 4.44 (d, J = 16.4 Hz, 1H), 3.50 (s, 3H), 2.31 (s, 3H), 1.32 (d, J = 6.8 

Hz, 3.0 H).13C NMR (100 MHz, CDCl3) δ 171.4, 163.7 (d, J = 252.8 Hz), 149.2, 149.0, 
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135.9, 135.3 (d, J = 3.0 Hz), 133.2, 131.0 (d, J = 6.1 Hz), 127.3 (d, J = 9.1 Hz), 126.3 (d, 

J = 18.2 Hz), 123.4, 115.8 (d, J = 24.3 Hz), 55.3, 52.2, 46.6, 16.9, 14.6 (d, J = 3.1 Hz). 

 

(R)-Methyl 2-(4-fluoro-3-methyl-N-(3-nitrobenzyl)phenylsulfonamido)propanoate 

(2.7) 

  

Colorless oil (147 mg, 83%). 1H NMR (400 MHz, CDCl3) δ 8.14 (m, 2H), 7.77 (m, 1H), 

7.63 (m, 2H), 7.51 (m, 1H), 7.08 (t, J = 7.6 Hz, 1H), 4.76 (m, 1H), 4.69 (d, J = 17.2Hz, 

1H), 4.52 (d, J = 17.2Hz, 1H), 3.52 (s, 3H), 2.31 (s, 3H), 1.32 (d, J = 7.2 Hz, 3H). 13C 

NMR (100 MHz, CDCl3) δ 171.4, 163.8 (d, J = 252.7 Hz), 148.2, 140.1, 135.5 (d, J = 3.8 

Hz), 133.8, 131.0 (d, J = 6.1 Hz), 129.4, 127.3 (d, J = 9.2 Hz), 126.4 (d, J = 18.2 Hz), 

122.5, 122.4, 115.7 (d, J = 23.5 Hz), 55.5, 52.2, 48.3, 17.0, 14.6. 

 

(R)-methyl 2-(4-fluoro-3-methyl-N-(4-nitrobenzyl)phenylsulfonamido)propanoate 

(2.8) 

 

Colorless oil (155 mg, 52%). 1H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 8.0 Hz 2H), 7.66-

7.57 (m, 4H), 7.13 (t, J = 8.0 Hz, 1H), 4.77-4.71 (m, 2H), 4.52 (d, J = 16.0 Hz, 1H), 3.50 

(s, 3H), 2.33 (s, 3H), 1.30 (d, J = 4.0 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 171.4, 163.9 
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(d, J = 253.0 Hz), 147.32, 145.82, 134.9 (d, J = 3.0 Hz), 131.1 (d, J = 7.0 Hz), 128.35, 

127.3 (d, J = 9.0 Hz), 126.4 (d, J = 19.0 Hz), 123.6, 115.8 (d, J = 24.0 Hz), 55.5, 52.2, 

48.5, 17.1, 14.6 (d, J = 3 Hz). 

 

(R)-methyl-2-(N-(4-(((tert-butoxycarbonyl)amino)methyl)benzyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (2.9) 

 

Colorless oil (380 mg, 71%). 1H NMR (400 MHz, CDCl3) δ 7.65-7.62 (m, 2H), 7.28 (d, J = 

8.4 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.09 (t, J = 8.4 Hz, 1H), 4.91 (s, 1H), 4.63 (q, J = 

7.6 Hz, 1H), 4.55 (d, J = 16.8 Hz, 1H), 4.38 (d, J = 16.4 Hz, 1H), 4.28 (s, 2H), 3.48 (s, 

3H), 2.32 (s, 3H), 1.46 (s, 9H), 1.30 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 

171.57, 163.65 (d, J = 252.0 Hz), 155.89, 138.47, 136.29, 136.10 (d, J = 3.7 Hz), 131.12 

(d, J = 6.1 Hz), 128.21, 127.46, 127.33 (d, J = 9.9 Hz), 126.08 (d, J = 18.2 Hz), 115.63 

(d, J = 23.6 Hz), 79.55, 55.27, 52.06, 48.94, 44.27, 28.40, 16.75, 14.59 (d, J = 3.0 Hz). 

 

General Procedure for conversion of esters to hydroxamic acids (2.10-2.14) 

To a solution of 2.5 in MeOH (1.0 mL) was added hydroxylamine hydrochloride (46 mg, 

0.7 mmol) and NaOMe (225 μL, 1.0 mmol, 25 wt %) in MeOH at 0 oC. The reaction was 

allowed to gradually warm to rt and was stirred overnight. After 16 h, the solvent was 

removed under reduced pressure and the resulting residue suspended in brine. The 

aqueous layer was extracted with EtOAc (3 x 10 mL), and the combined organic phases 
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were dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude 

residue was purified by preparatory TLC using DCM/MeOH (19/1, v/v). 

 

(R)-2-(N-benzyl-4-fluoro-3-methylphenylsulfonamido)-N-hydroxypropanamide 

(2.10) 

 

White foam (65 mg, 54%). 1H NMR (400 MHz, CD3OD) δ 7.63-7.58 (m, 2H), 7.35-7.20 

(m, 5H), 7.13 (t, J = 8.8 Hz, 1H), 4.69 (m, 2H), 4.53 (q, J = 6.8 Hz 1H), 2.26 (s, 3H), 1.21 

(d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 168.68, 163.56 (d, J = 250.5 Hz), 

138.40, 135.75 (d, J = 3.1 Hz), 130.80 (d, J = 6.1 Hz), 127.82, 127.60, 127.09 (d, J = 9.9 

Hz), 126.81, 125.97 (d, J = 19.0 Hz), 115.23 (d, J = 23.5 Hz), 53.1, 16.4, 13.07 (d, J = 

3.8 Hz). MS (ESI) 367.22 [M + H]+. 

 

(R)-2-(4-fluoro-3-methyl-N-(pyridin-3-ylmethyl)phenylsulfonamido)-N-

hydroxypropanamide (2.11) 

 

White foam (35 mg, 28%). 1H NMR (400 MHz, CD3OD) δ 8.53-8.40 (m, 2H), 7.88-7.86 

(m, 1H), 7.66-7.64 (m, 2H), 7.37-7.35 (m, 1H), 7.17 (t, J = 9.2 Hz, 1H), 4.80-4.69 (m, 

2H), 4.60-4.55 (m, 1H), 2.30 (s, 3H), 1.22 (d, J = 7.2 Hz, 3.0 H). 13C NMR (100 MHz, 

CD3OD) δ 168.4, 163.7 (d, J = 250.5 Hz), 148.2, 147.2, 136.6, 135.3 (d, J = 3.8 Hz), 
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130.8 (d, J = 6.0 Hz), 127.2 (d, J = 9.9 Hz), 126.3 (d, J = 19.0 Hz), 123.5, 115.4 (d, J = 

24.3 Hz), 52.9, 45.5, 16.1, 13.0 (d, J = 3.0 Hz). MS (ESI) 368.26 [M + H]+. 

 

(R)-2-(4-Fluoro-3-methyl-N-(3-nitrobenzyl)phenylsulfonamido)-N-

hydroxypropanamide (2.12) 

 

White foam (92 mg, 73%). 1H NMR (400 MHz, DMSO-d6) δ 10.95 (s, 1H), 8.87 (s, 1H),  

8.17 (s, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8 Hz, 1H), 7.70 (m, 1H), 7.65 (m, 1H), 

7.58 (t,  J = 8 Hz, 1H), 7.30 (t, J = 9.0 Hz, 1H), 4.80 (d, J = 17.4 Hz, 1H), 4.72 (d, J = 

17.4 Hz, 1H), 4.46 (m, 1H), 2.25 (s, 3H), 1.10 (d, J = 7.2 Hz, 3.0 H). 13C NMR (100 MHz, 

CDCl3) δ 167.8, 164.1 (d, J = 252.8 Hz), 148.2, 139.1, 134.6 (d, J = 3.2 Hz), 134.2, 

130.8 (d, J = 6.1 Hz), 129.6, 127.1 (d, J = 9.9 Hz), 127.0, 122.9, 122.8, 116.3 (d, J = 

23.5 Hz), 53.0, 47.5, 14.9, 14.6. MS (ESI) 412.22 [M + H]+. 

 

(R)-2-(4-fluoro-3-methyl-N-(4-nitrobenzyl)phenylsulfonamido)-N-

hydroxypropanamide (2.13) 

 

White foam (70 mg, 45%). 1H NMR (400 MHz, CD3OD) δ 8.12 (d, J = 8.4 Hz 2H), 7.68-

7.58 (m, 4H), 7.17 (t, J = 9.2 Hz, 1H), 4.88-4.72 (m, 2H), 4.57 (q, J = 6.4 Hz, 1H), 2.29 

(s, 3H), 1.19 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 168.39, 163.80 (d, J = 
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250.4 Hz), 147.01, 146.84, 135.13 (d, J = 3.8 Hz), 130.86 (d, J = 6.0 Hz), 128.24, 127.25 

(d, J = 9.1 Hz), 126.30 (d, J = 18.2 Hz), 122.87, 115.50 (d, J = 23.6 Hz), 52.89, 16.02, 

13.04 (d, J = 3.8 Hz). MS (ESI) 412.17 [M + H]+. 

 

(R)-tert-butyl-4-((4-fluoro-N-(1-(hydroxyamino)-1-oxopropan-2-yl)-3-

methylphenylsulfonamido)methyl)benzylcarbamate (2.14) 

 

White foam (190 mg, 50 %). 1H NMR (400 MHz, CDCl3) δ 9.1 (s, 1H), 7.60-7.58 (m, 2H), 

7.27 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 7.6 Hz, 2H), 7.11 (t, J = 8.0 Hz, 1H), 4.99 (s, 1H), 

4.62 (d, J = 15.6 Hz, 1H), 4.43 (brs, 1H), 4.28 (brs, 3H), 2.30 (s, 3H), 1.46 (s, 9H), 1.19 

(d, J = 5.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 167.98, 163.86 (d, J = 253.5 Hz), 

156.10, 138.80, 135.31, 135.04 (d, J = 3.7 Hz), 130.86 (d, J = 6.1 Hz), 128.80, 127.58, 

127.06 (d, J = 9.1 Hz), 126.70 (d, J = 18.2 Hz), 116.06 (d, J = 23.5 Hz), 79.73, 53.17, 

48.12, 44.30, 28.42, 14.61 (d, J = 3.0 Hz), 14.42. 

 

(R)-2-(N-(3-aminobenzyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide (2.15) 
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To a solution of 2.12 (130 mg, 0.3 mmol) in DCM (10 mL) under an H2 atmosphere was 

added palladium on activated carbon (Pd/C) (130.0 mg, 10 wt. %). The reaction was 

shaken in a Parr apparatus at 4 atm at rt. After 4 h, the reaction mixture was filtered 

through a Celite pad and the filtrate was concentrated under reduced pressure. The 

crude residue was purified by flash column chromatography on SiO2 using 

acetone/hexane (1/3, v/v) to yield the 2.15 as white foam (98 mg, 82%). 1H NMR (400 

MHz, DMSO-d6) δ 10.61 (s, 1H), 8.78 (s, 1H), 7.62 (m, 2H), 7.26 (t,  J = 9.2 Hz, 1H), 

6.90 (t,  J = 7.6 Hz, 1H), 6.53 (s, 1H), 6.40 (m, 2H), 5.30-4.95 (bs, 2H, NH2), 4.55 (d, J = 

16.8 Hz, 1H), 4.46 (d, J = 16.8 Hz, 1H), 4.37 (m, 1H), 1.17 (d, J = 6.8 Hz, 3.0 H). 13C 

NMR (100 MHz, CDCl3) δ 168.2, 163.8 (d, J = 263.5 Hz), 146.2, 137.4, 135.1, 130.9 (d, 

J = 6.0 Hz), 129.5, 127.1 (d, J = 9.1 Hz), 126.6 (d, J = 17.4 Hz), 119.1, (d, J = 24.3 Hz), 

53.5, 48.5, 14.6, 14.1. MS (ESI) 382.33 [M + H]+. 

 

(R)-2-(N-(4-(aminomethyl)benzyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide hydrochloride (2.16) 

 

Compound 2.14 (190 mg, 0.4 mmol) was treated with 4N HCl in dioxane (2 mL) at rt. 

After 30 min, the solvent was removed under reduced pressure , and the resulting 

residue was triturated with diethyl ether (3 x 3 mL) to yield 2.16 as white solid (160.0 mg, 

97%). 1H NMR (400 MHz, CD3OD) δ 7.72-7.65 (m, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.40 (d, 

J = 8.0 Hz, 2H), 7.20 (t, J = 8.8 Hz, 1H), 4.79 (d, J = 16.8 Hz, 1H), 4.65 (d, J = 16.8 Hz, 

1H), 4.51 (q, J = 7.2 Hz, 1H), 4.10 (s, 2H), 2.32 (s, 3H), 1.16 (d, J = 7.2 Hz, 3H). 13C 
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NMR (100 MHz, CD3OD) δ 168.56, 163.75 (d, J = 250.5 Hz), 140.27, 135.33 (d, J = 3.0 

Hz), 131.79, 130.81 (d, J = 6.0 Hz), 128.50, 128.11, 127.20 (d, J = 9.9 Hz), 126.26 (d, J 

= 18.2 Hz), 115.42 (d, J = 23.5 Hz), 52.88, 42.64, 16.09, 13.05 (d, J = 3.8 Hz). MS (ESI) 

396.36 [M + H]+. 
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Chapter 3 

 

MODELING, SYNTHESIS, AND IN VITRO EVALUATION OF SECOND-GENERATION 
LF INHIBITORS 
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3.2 INTRODUCTION 

Based on the studies reported in chapter 2, we have concluded that domain 3 of 

LF is highly dynamic. This domain 3 mobility exposes crucial residues, such as Asp328, 

Lys380, and His654, to additional protein-ligand interactions. In this chapter, we will 

describe our efforts to take advantage of these important interactions. 

3.3 MATERIALS AND METHODS 

3.3.1 Molecular Modeling 

The 4PKR co-crystal structure was used for further computational studies to 

target Asp328, Lys380, and His654 of LF with next generation MK-31 analogs. This 

strategy included the design and docking and scoring of ~90 diverse analogs of MK-31 

using Glide 5.9 with the XP protocol in Schrödinger’s Maestro Discovery Suite 9.4 

(Schrödinger, Inc.).118 Designed compounds were minimized, appropriately protonated 
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with LigPrep (Maestro), and docked with the XP protocol into the 4PKR co-crystal 

structure. Docking and scoring revealed that incorporating polar functionalities, such as 

amino, amido, or carboxyl groups, into the N-alkyl substituent would successfully engage 

the side chains of Lys380 and Asp328 in favorable charge-charge interactions and the 

backbone of His654 and Asp328 through H-bonding interactions. Upon analyzing the 

results of docking and scoring, we decided to synthesize a library of compounds bearing 

such polar functionalities. 

3.3.2 Synthesis of Second-Generation Inhibitors  

Scheme 3.1. Synthesis of Compounds 3.2a-3.2r. 

 
Reagents and Conditions: (a) R-Br, K2CO3, DMF, rt, 2 days; for 3.1q: 2-propanol, PPh3, 
DIAD, THF (b) NH2OH·HCl, NaOMe, MeOH, 0 °C to rt, 16 h. 
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Synthetic modifications to the sulfonamide of MK-31 were accomplished from 

advanced intermediate 2.4, as shown in Scheme 3.1. Intermediate 2.4 was alkylated 

using various bromides and K2CO3 in DMF to give 3.1a-3.1p in 52%-88% yield (Scheme 

3.1a). Intermediate 3.1q was preferentially alkylated under Mitsunobu conditions 

employing PPh3 and DIAD, which increased the yield to 54% from 17% with the SN2 

methodology. Esters 2.4 and 3.1a-3.1q were converted to their corresponding 

hydroxamic acids 3.2a-3.2q using hydroxylamine hydrochloride and NaOMe in MeOH in 

27%–87% yield (Scheme 3.1b). Compound 3.2b was further hydrogenated to 3.3a 

using 10% wt. Pd/C in 43% yield. Compounds 3.2i-3.2o were deprotected using 4 N HCl 

in 1,4-dioxane or a solution of TFA/DCM (1:2) to their corresponding hydrochloride or 

trifluoroacetate salts (3.4a-3.4g, Scheme 3.2). 

Scheme 3.2. Synthesis of Compounds 3.4a-3.4g. 

 
Reagents and Conditions: (a) 4 N HCl in dioxane, rt, 1 h; or TFA/DCM (1:2), TES, 0 °C. 

Acetylated analogues 3.6a-3.6f were synthesized through a three-step procedure 

from 3.1h-3.1m (Scheme 3.3). Initially, Boc-protected intermediates 3.1h-3.1m were 
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deprotected using 4 N HCl in 1,4-dioxane, and the resulting amines were acetylated with 

Ac2O, TEA, and DMAP to give 3.5a-3.5f in 33%-95% yield.  

Scheme 3.3. Synthesis of Compounds 3.6a-3.6f 

 
Reagents and Conditions: (a) 4 N HCl in dioxane, rt, 1 h; (b) Ac2O, TEA, DMAP, THF, 0 
°C, 16 h; (c) NH2OH·HCl, NaOMe, MeOH, 0 °C to rt, 16 h. 

Finally, the penultimate esters were converted to their corresponding hydroxamic 

acids using hydroxylamine hydrochloride and NaOMe in MeOH as described above. 

Methyl amide 3.8 was synthesized in parallel fashion over three steps (Scheme 3.4). 

Initially, tBu-ester 3.1o was deprotected with TFA/DCM (1:3). The resulting carboxylic 

acid was coupled with methylamine hydrochloride using EDCI, HOBt, and NMM to yield 

methyl ester 3.7 in 71% yield. The desired hydroxamate was accomplished using the 

previously described procedure in 30% yield. 

Compound 3.11 was synthesized according to Scheme 3.5. The m-nitrobenzyl 

substituent was first hydrogenated to the m-amine using 10% wt. Pd/C in MeOH in 77% 

yield. The free amine was acetylated with AcCl to yield 3.10, which was subsequently 

converted to hydroxamic acid 3.11 under the previously described conditions.  
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Scheme 3.4. Synthesis of Compound 3.8 

 

Reagents and Conditions: (a) TFA/DCM (1:3), rt, 2.5 h; (b) CH3NH2·HCl, NMM, HOBt, 
EDC, THF, rt, 16 h; (c) NH2OH·HCl, NaOMe, MeOH, 0 °C to rt, 16 h. 

Scheme 3.5. Synthesis of Compound 3.11 

 

Reagents and Conditions: (a) 10 wt. % Pd/C, MeOH, rt, 4h; (b) AcCl, TEA, DCM, 0 °C to 
rt, 16 h; (c) NH2OH·HCl, NaOMe, MeOH, 0 °C to rt, 16 h.  
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3.3.3 Biochemical Evaluation 

3.3.3.1 Mobility Shift Protease (MSA) and FRET Assays 

The off-chip mobility-shift protease assay uses a microfluidic chip to measure the 

conversion of fluorescent substrate to fluorescent product using a Caliper LC3000 

(PerkinElmer). The terminated reaction mixture is introduced through a capillary sipper 

onto the chip where substrate and product are separated by electrophoresis and 

detected via laser-induced fluorescence. Briefly, 10 µL of 100 nM anthrax toxin lethal 

factor111 (final concentration 50 nM) in 2X assay buffer (40 mM HEPES containing  0.02 

% Triton X-100 (to prevent compound aggregation), pH 8.0) was added to 384-well 

assay plates (Corning #3677) using a MultiDrop (Thermo-Fisher). The plate was pre-

incubated at 37 °C for 15 min and the reaction was initiated by the addition of 10 µL of 8 

µM FITC-substrate (Celtek Peptides, #RK-10-4) in water (final substrate concentration 4 

µM). The peptide sequence of the substrate is identical to the FRET assay substrate. 

The reaction was allowed to continue for 10 minutes at 37 °C, and then terminated with 

addition of 4 µL 0.5 mM phenanthroline/32.5 µM EDTA solution (final concentration of 

0.1 mM phenanthroline /6.5 µM EDTA). Samples were then analyzed via the LabChip 

3000 software. For IC50 determinations, test compounds were dissolved in DMSO at 10 

mM and varying volumes were added to the assay plate using a Labcyte Echo® 550 

acoustic dispenser prior to LF addition to achieve 8 concentrations in duplicate (final 

DMSO concentration 1 %). IC50 values were determined as a percent of control wells 

containing no inhibitor (following subtraction of background wells lacking enzyme) from 

at least 3 independent experiments using GraphPad Prism software. IC50 values were 

determined for the positive control compounds MK-702/LF1-B and GM6001 included on 

every plate. FRET assay was performed as described earlier. 
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3.3.4 Structural Biology 

Structural biology studies were performed as described earlier. Briefly, lethal 

factor protein (residues 265-776, A266S) was prepared and small molecule ligands were 

co-crystallized as reported previously.125 Diffraction data for structure 4WF6 was 

collected at 100 K using a Saturn 944+ detector and a Rigaku Miromax-007FHM source 

at the University of Minnesota. The data were processed using HKL2000.142  

Diffraction data for structures 5D1S, 5D1T, and 5D1U were collected at 100 K on 

beamline 17-ID-B (IMCA-CAT) using a Dectris PILATUS 6M pixel-array detector at the 

Advanced Photon Source of Argonne National Laboratories in Argonne IL. The data 

were processed using XDS131 and scaled with SCALA.132  

The structures were solved using molecular replacement with the atomic 

coordinates from either 1YQY or 4PKR using Phaser135 in the CCP4 suite.136 Structural 

refinement was done using both Refmac5137 and Phenix,138,139 while the Coot modeling 

software140 was used for visualization and model building. 

3.3.5 Molecular Dynamics Simulations 

We performed molecular dynamics simulations on amine-containing analog 2.16 

using Desmond 3.7143–146 in Schrödinger’s Maestro Discovery Suite 9.7 (Schrödinger, 

Inc.).147 The 4PKV system was solvated with a TIP3P water model and simulated for 1.2 

ns at constant pressure and temperature ensemble (NPT) at 300 K.  

3.4 RESULTS AND DISCUSSION 

3.4.1 Biochemical Evaluation and Structural Biology 
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Table 3.1. Activities of novel MK-31-based LF inhibitors bearing substitutions at R1. 

 

GPHR #a Compound R1 MSAb FRET 

IC50 (μM)c IC50 (μM)c 

00223593 3.2a Me 9.6 ± 0.1 37 ± 5 

00225280 3.2c 

 

7.0 ± 2 26 ± 5 

00225273 3.2d 
 

11 ± 3 29 ± 5 

00225274 3.2e 
 

9.5 ± 2 33 ± 3 

00225275 3.2f 

 

13 ± 2 42 ± 1 

00223693 3.2g 
 

14 ± 0.6 57 ± 6 

00223595 3.2h 

 

3.4 ± 0.1 15 ± 0.9 

00223694 3.2j 

 

2.1 ± 0.1 6.9 ± 1 

00225282 3.2o 
 

3.2 ± 0.3 8.0 ± 0.9 
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00223659 3.2q isopropyl >100 >100 

00223407 3.2r H 0.5 ± 0.1 1.6 ± 0.1 

00223591 3.3a 
 

6.4 ± 0.7 29 ± 6 

00223599 3.4a 
 

1.7 ± 0.1 10 ± 2 

00223692 3.4b 
 

1.2 ± 0.1 8.9 ± 0.6 

00223596 2.16* 
 

1.3 ± 0.1 5.6 ± 0.3 

00223664 3.4c  1.1 ± 0.1 4.4 ± 0.2 

00223709 3.4d  1.3 ± 0.2 8.2 ± 0.3 

00225278 3.4e  1.8 ± 0.1 7.4 ± 0.6 

00225279 3.4f  3.7 ± 0.8 12 ± 3 

00225281 3.4g 
 

47 ± 2 91 ± 4 

00223655 3.6a 

 

3.5 ± 0.3 16 ± 4 
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00223657 3.6b 

 

4.7 ± 0.5 15 ± 2 

00223695 3.6c 

 

3.2 ± 0.3 17 ± 2 

00223696 3.6d 
 

3.9 ± 0.5 14 ± 1 

00223706 3.6e 
 

4.3 ± 0.5 19 ± 3 

00225277 3.6f 
 

30 ± 2 117 ± 18 

00225276 3.8 
 

9.3 ± 1 19 ± 3 

00223601 3.11 

 

4.8 ± 0.2 21 ± 2 

aGPHR # is a compound number in our in-house collection of compounds 
bMSA = mobility shift assay 
cIC50 is the mean of 3 independent experiments. 
*- previously published125 

To gain insight into the SAR of our compounds, we employed the five co-crystal 

structures discussed in chapter 2 (PDB IDs 4PKR, 4PKS, 4PKT, 4PKU, and 4PKV) in 

further docking studies. Docking validation was performed by removing the co-

crystallized ligands, then docking the ligands back into the LF active site using 

Surflex,148,149 Glide,114–117 AutoDock,150 and MOE.151 A docking program’s accuracy is 

defined by how well the native pose of the ligand is reproduced by the highest ranked 

pose. An average root mean square deviation (RMSD) between the docked and 
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crystallized poses in each of the LF structures was used to compare the programs. 

Table 3.2 shows RMSDs for each ligand. An effective docking tool should reliably 

identify the most favorable binding pose and highly rank this mode of interaction. Thus, 

programs that best reproduce the experimentally determined structure would be of most 

use in further docking and scoring studies. As we can see from Table 3.2, Glide 

reproduces the conformations observed in our crystal structures more accurately than 

the other programs. Thus, we selected Glide 5.9 since it performs better than 

Surflex,148,149 AutoDock,150 and MOE.151 (Table 3.2).  

Table 3.2. Comparison of RMSD values (Å) for Surflex, Glide, AutoDock, and MOE. 

 Surflex 2.1 Surflex Glide 5.9 AutoDock MOE 

4PKR 5.39 5.35 0.59 2.5 6.31 

4PKS 5.39 1.36 1.00 0.49 5.92 

4PKT 0.66 0.64 0.30 2.07 1.02 

4PKU 1.02 1.04 0.98 3.93 1.42 

4PKV 4.86 5.55 0.68 3.15 6.49 

Average 3.46 2.79 0.71 2.43 4.23 

To select the best crystal structures for further docking studies, we cross-docked 

the five co-crystallized ligands into each of the structures. The RMSD values between 

the docked ligands and the co-crystallized ligands were measured and are presented in 

Table 3.3. Structures 4PKS and 4PKV were selected for further docking studies since 

they exhibit the lowest RMSD values, of 0.91 Å and 0.93 Å respectively (Table 3.3).  
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Table 3.3. RSMD (Å) values for Glide 5.9 XP docked structures. 

 4PKR 4PKS 4PKT 4PKU 4PKV 

4PKR ligand 0.67 0.58 0.50 0.54 0.84 

4PKS ligand 1.00 1.01 0.38 1.19 1.04 

4PKT ligand 0.38 0.77 0.47 5.32 0.47 

4PKU ligand 1.98 1.00 1.80 0.99 1.66 

4PKV ligand 0.96 1.20 5.10 5.12 0.65 

Average 1.00 0.91 1.65 2.63 0.93 

Based on our previous studies, which are summarized in chapter 2,125 we 

hypothesized that binding to a specific conformational state of domain 3 does not 

guarantee a more potent LF inhibitor. For example, the potent LF inhibitors MK-702/LF1-

B (1YQY) and MK-31 (4WF6) bind to domain 3 in the tight position and exhibit IC50s in 

the nanomolar range; however, later generation N-alkylated inhibitors, which also bind to 

the tight domain 3 state (PDB ID 4PKT, previously discussed in chapter 2 and 5D1S, a 

complex with analog 3.2a (Figure 3.1)), show drastically reduced potency. Moreover, N-

alkylated analogues that bind to the open domain 3 state demonstrated better potencies 

than some tight binders. For example, structures 5D1T, a complex with compound 3.4a, 

and 5D1U, a complex with 3.4c, exhibit domain 3 in the open position, yet the co-

crystallized ligands are among the more potent analogs. Based on these results, we 

have concluded that inhibitors are not required to bind the tight conformation of LF to 

achieve high potency, thus corroborating our conclusions in chapter 2. 

From the crystallographic125 and activity data, we can ascertain that the active 

site of LF is able to accommodate many diverse N-alkylated analogs of MK-31. The 

IC50s of all synthesized analogs in the mobility shift assay (MSA) range from 1.1 μM to 
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47 μM, which can be compared to the 0.5 μM IC50 value of MK-31. Because the loss of 

inhibitory potency for N-alkylated analogs is not likely due to the ligand-induced 

conformational change of domain 3 as described above, we investigated the effect of 

losing an H-bond interaction with the sidechain of Tyr728. We were able to provide 

support for this hypothesis by synthesizing and co-crystallizing 3.2a (PDB ID 5D1S), 

which contained an N-methyl modification. Based on the activity and crystal structure 

data for 3.2a (Figure 3.1), we rationalized that the reduced inhibitory potency of N-

alkylated MK-31 analogs results from the loss of a key H-bond with the sidechain of 

Tyr728, which is part of the S1′ site. 

 

In both structures, domain 3 is observed in the tight position (Figure 3.1). The 

ligands align well, with the 4-fluoro-3-methylphenyl groups of 3.2a and MK-31 occupying 

Figure 3.1. LF active site with co-crystallized MK-31 (yellow) (PDB ID 4WF6) 
superimposed onto the co-crystallized N-methyl analog 3.2a (green) (PDB ID 
5D1S). The circle denotes the sufonamide H. (Schrödinger Maestro Discovery 
Suite 9.4). 
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the S1′ site and the hydroxamate groups of both chelating zinc. Compound 3.2a, 

however, exhibits a 20-fold loss in activity compared to MK-31, providing support for our 

hypothesis that the loss of an H-bond interaction with the sidechain of Tyr728 is the main 

reason for the loss of 3.2a’s activity. 

An inactive analog incorporated an isopropyl modification (3.2q). We hypothesize 

that the isopropyl analog 3.2q is inactive due to a steric clash with the sidechain of 

Tyr728 (Figure 3.2). Our docking studies similarly predicted 3.2q to be the least active. 

The steric clash with Tyr728 could be relieved by synthesizing the n-propyl analog, 

which shows inhibitory activity of 6.4 μM in the MSA. 

 

The most active analogs incorporated primary amines into the N-alkyl 

substituents, with the notable exception of 3.4f. The docking studies rationalized that the 

primary amine-containing compounds are more active due to the introduction of 

Figure 3.2. LF active site with modeled 3.2q (yellow). The circle 
denotes the steric clash between the isopropyl group (grey) and the 
sidechain of Tyr728 (yellow). (Schrödinger Maestro Discovery Suite 
9.4).  
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additional electrostatic interactions with the sidechain of Asp328, or H-bond donating 

interactions with the backbones of Asp325, Ser326 or Ser327. Analogue 3.4f, however, 

exhibited a completely different orientation in the active site when docked into both 

crystal structures and was not predicted to have any interactions with the four 

aforementioned residues. As analog 3.4f is characterized by the shortest N-alkyl 

substituent, a propyl linker, the substituent is likely too short to reach the interacting 

residues. 

The amine-containing analogs 3.4a-3.4f were more active than their Boc-

protected or acetylated counterparts 3.2h, 3.2j, and 3.6a-3.6f. Docking studies revealed 

that upon Boc-protection or acetylation, the analogs lose H-bond donating interactions 

with the backbone of Asp325, Ser236, and Ser327, or electrostatic interactions with 

Asp328.  

Carboxylic acid-containing compound 3.4g, butyl protected analog 3.2o, and 

amide-containing analog 3.8 are all less active than the amine-containing analogues. 

This is not surprising since these compounds cannot engage in H-bond donating 

interactions with Asp325, Ser236, and Ser327, or electrostatic interactions with Asp328.  

Hydrophobic compounds 3.2c-3.2g do not engage in crucial protein-ligand 

electrostatic or H-bond donating interactions with Asp325, Ser236, Ser327, and Asp328, 

and are therefore less active than amines 3.4a-3.4e.  

Since 4PKV contains one of the most potent amine-containing analogs (2.16), we 

selected this co-crystal structure for molecular dynamics simulation studies. The 

molecular dynamics simulation demonstrated that the amino group was engaged in H-

bond donating and electrostatic interactions with Asp325, and water-bridging H-bond 

interactions with Ser326 and Ser327 for 30% of the simulation time. Hence, electrostatic 

and H-bond donating interactions with Asp325, and water-bridging H-bond interactions 
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with Ser326 and Ser327 are responsible for the activity associated with primary amine-

containing analogs 3.4a-3.4e. 

3.5 CONCLUDING REMARKS  

 The S2′ binding site of LF is a large, solvent exposed tunnel that undergoes a 

key conformational change upon binding to MK-31 analogs alkylated at the sulfonamide 

N. We modified MK-31 analogs to take advantage of the residues that were exposed as 

a result of the conformational change. We observed that steric clashes with Tyr728, near 

the entrance of the S2′ subsite, drastically decreased the potency of the compounds and 

should be taken into account during future inhibitor optimization. The biological activity 

and X-ray data indicate that the reduced inhibitory activity is not due to the 

conformational change of domain 3, but likely results from the loss of a key ligand-

receptor H-bond to the sidechain of Tyr728. Partial inhibitory activity can be recovered 

by installing amine-containing substituents on the sulfonamide N, which can interact with 

the key residues Asp325, Ser326 and Ser327. Hence, it may be possible to improve the 

potency of future scaffolds, other than those based on MK-31, by incorporating amino-

containing groups that specifically target the S2′ site residues Asp325, Ser326, and 

Ser327. Because of this observation, next generation compounds with improved potency 

may be obtained by targeting the S2′ subsite. 

3.6 EXPERIMENTAL 

FRET and MSA Correlation 

 As shown in Figure 3.3, there was a high correlation between the quenched 

FRET and mobility shift assays indicating that both assays provide reliable inhibitory 
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potency data for these compounds. On average, the compounds were 3.9-fold more 

potent in the mobility shift assay relative to the quenched FRET assay. This apparent 

potency difference is likely due to: 1) a 1.75-fold higher substrate concentration in the 

FRET relative to the mobility shift assay, and 2) the substrate Km may be higher in the 

mobility shift assay relative to the FRET assay. Although the amino acid sequence is 

identical for the substrates used in both assays, the N-terminal and C-terminal 

modifications are different (FITC-substrate in MSA and Dnp/oAbz-substrate in FRET), 

which may affect cleavage efficiency by LF. Unfortunately, it is not technically feasible to 

determine the substrate Km in the mobility shift assay because signal linearity is lost at 

high concentrations of substrate. The higher substrate concentration in the FRET assay 

coupled with a higher Km in the mobility shift assay would decrease the apparent 

potency of these competitive inhibitors in the FRET assay. 

 

Figure 3.3.  Correlation between the quenched LF FRET 
and mobility shift assays. 
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General Synthesis Information. Chemical reagents were purchased from commercial 

sources and used without additional purification. Bulk solvents were purchased from 

Fisher Scientific and anhydrous N,N’-dimethylformamide (DMF) was purchased from 

EMD Chemicals. Reactions were performed under an atmosphere of dry N2 unless 

otherwise noted. Silica gel chromatography was performed on self-packed columns with 

SiliaFlash 60Å silica gel (SiliCycle). Preparatory thin layer chromatography (TLC) was 

performed on glass-backed SiliaPlate 60Å silica gel plates (SiliCycle). Compounds used 

in biological testing were no less than 95% pure as determined by two-wavelength HPLC 

analysis (254 and 215 nm) and nuclear magnetic resonance (NMR). The reaction 

mixture/purified compound was analyzed on a Waters UPLC which is connected to 

ELSD, UV and ZQ mass spectrometers. The mass analysis was carried out in both ESI 

positive and ESI negative modes. Multiple wavelengths of 214 nm, 220 nm, 244 nm and 

254 were used for UV detection. Elution was carried out using a gradient mobile phase 

of 95:5 of water: acetonitrile with 0.1% formic acid to 100% acetonitrile over 6 minutes. 

The purity determination was carried out using OpenLynx. NMR spectra were recorded 

in CDCl3, CD3OD, or DMSO-d6 on a Varian instrument operating at 400 MHz (for 1H) and 

100 MHz (for 13C) at ambient temperature. Chemical shifts are reported in parts per 

million and normalized to internal solvent peaks or tetramethylsilane (0 ppm). 

 

Procedure A for N-Alkylation (3.1a-3.1p) 

To a solution of 2.4 (1 equiv.) and appropriate bromide (1.25 equiv.) in anhydrous DMF 

(0.4 M) was added K2CO3 (5 equiv.). The reaction mixture was stirred at rt. After 48 h, 

the solvent was removed under reduced pressure, and the resulting residue was taken 

up in H2O (15 mL) and extracted with EtOAc (3 x 15 mL). The combined organic layers 
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were washed with brine (5 mL), dried over Na2SO4, filtered, and concentrated under 

reduced pressure.  

 

(R)-Methyl 2-(4-fluoro-N,3-dimethylphenylsulfonamido)propanoate (3.1a) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/3, v/v) to 

yield the desired product as a colorless oil (110 mg, 96%). 1H NMR (400 MHz, CDCl3) δ 

7.70-7.63 (m, 2H), 7.14 (t, J = 8.8 Hz, 1H), 4.76 (q, J = 8.0 Hz, 1H), 3.57 (s, 3H), 2.84 (s, 

3H), 2.34 (s, 3H), 1.36 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 170.91, 163.2 

(d, J = 251.0 Hz), 134.5 (d, J = 3.0 Hz), 130.5 (d, J = 7.0 Hz), 126.8 (d, J = 9.0 Hz), 

125.8 (d, J = 18.0 Hz), 115.2 (d, J = 24.0 Hz), 54.3, 51.6, 29.5, 15.0, 14.1 (d, J = 4.0 Hz). 

 

(R)-Methyl 2-(4-fluoro-3-methyl-N-(4-nitrobenzyl)phenylsulfonamido)propanoate 

(3.1b) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/4, v/v) to 

yield the desired product as a colorless oil (155 mg, 52%). 1H NMR (400 MHz, CDCl3) δ 

8.17 (d, J = 8.0 Hz 2H), 7.66-7.57 (m, 4H), 7.13 (t, J = 8.0 Hz, 1H), 4.77-4.71 (m, 2H), 

4.52 (d, J = 16.0 Hz, 1H), 3.50 (s, 3H), 2.33 (s, 3H), 1.30 (d, J = 4.0 Hz, 3H). 13C NMR 

(100 MHz, CDCl3) δ 171.4, 163.9 (d, J = 253.0 Hz), 147.32, 145.82, 134.9 (d, J = 3.0 
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Hz), 131.1 (d, J = 7.0 Hz), 128.35, 127.3 (d, J = 9.0 Hz), 126.4 (d, J = 19.0 Hz), 123.6, 

115.8 (d, J = 24.0 Hz), 55.5, 52.2, 48.5, 17.1, 14.6 (d, J = 3 Hz). 

 

(R)-Methyl 2-(N-(3,5-difluorobenzyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.1c) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/5, v/v) to 

yield the desired product as a colorless oil (71 mg, 68%). 1H NMR (400 MHz, CDCl3) δ 

7.64-7.60 (m, 2H), 7.11 (t, J = 8.4 Hz, 1H), 6.92-6.88 (m, 2H), 6.71-6.66 (m, 1H), 4.71 (q, 

J = 7.2 Hz, 1H), 4.60 (d, J = 17.2 Hz, 1H), 4.38 (d, J = 16.8 Hz, 1H), 3.51 (s, 3H), 2.33 

(s, 3H), 1.31 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 171.47, 163.83 (d, J = 

252.7 Hz), 163.08 (d, J = 247.4 Hz), 162.95 (d, J = 247.4 Hz), 142.18 (t, J = 9.1 Hz), 

135.13 (d, J = 3.8 Hz), 131.11 (d, J = 6.1 Hz), 127.34 (d, J = 9.1 Hz), 126.34 (d, J = 18.2 

Hz), 115.76 (d, J = 23.5 Hz), 110.49 (d, 1JC-F = 7.6 Hz, d, 2JC-F = 18.9 Hz), 102.91 (t, J = 

25.0 Hz), 55.42, 52.14, 48.43, 17.0, 14.57 (d, J = 3.8 Hz). 

 

(R)-Methyl 2-(4-fluoro-N-(4-fluorobenzyl)-3-methylphenylsulfonamido)propanoate 

(3.1d) 
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The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/5, v/v) to 

yield the desired product as a colorless oil (75 mg, 64%). 1H NMR (400 MHz, CDCl3) δ 

7.64-7.61 (m, 2H), 7.33-7.29 (m, 2H), 7.10 (t, J = 8.0 Hz, 1H), 6.98 (t, J = 8.0 Hz, 2H), 

4.67 (q, J = 8.0 Hz, 1H), 4.53 (d, J = 16.0 Hz, 1H), 4.37 (d, J = 16.0 Hz, 1H), 3.49 (s, 

3H), 2.31 (s, 3H), 1.30 (d, J = 6.0 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 171.53, 163.65 

(d, J = 252.0 Hz), 162.23 (d, J = 245 Hz), 135.60 (d, J = 3.0 Hz), 134.93 (d, J = 3.0 Hz), 

131.04 (d, J = 6.0 Hz), 129.77 (d, J = 8.0 Hz), 127.22 (d, J = 9.0 Hz), 126.13 (d, J = 18.0 

Hz), 115.67 (d, J = 23.0 Hz), 115.23 (d, J = 21.0 Hz), 55.23, 52.10, 48.41, 16.73, 14.58 

(d, J = 4.0 Hz). 

 

(R)-Methyl 2-(4-fluoro-N-(2-fluorobenzyl)-3-methylphenylsulfonamido)propanoate 

(3.1e) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/4, v/v) to 

yield the desired product as a colorless oil (55 mg, 71%). 1H NMR (400 MHz, CDCl3) δ 

7.65-7.62 (m, 2H), 7.56 (t, J = 7.6 Hz, 1H), 7.27-7.2 (m, 1H), 7.14-7.05 (m, 2H), 6.96 (t, J 

= 9.2 Hz, 1H), 4.70 (q, J = 7.2 Hz, 1H), 4.59 (d, J = 16.8 Hz, 1H), 4.53 (d, J = 16.4 Hz, 

1H), 3.48 (s, 3H), 2.31 (s, 3H), 1.33 (d, J = 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 

171.44, 163.69 (d, J = 252.0 Hz), 160.28 (d, J = 244.4 Hz), 135.38 (d, J = 3.8 Hz), 

131.09 (d, J = 6.0 Hz), 130.50 (d, J = 3.8 Hz), 129.24 (d, J = 8.4 Hz), 127.30 (d, J = 9.1 

Hz), 126.11 (d, J = 18.2 Hz), 124.42 (d, J = 12.9 Hz), 124.16 (d, J = 3.8 Hz), 115.64 (d, J 

= 24.3 Hz), 115.01 (d, J = 21.3 Hz), 55.40, 52.09, 42.33, 16.33, 14.59 (d, J = 3.8 Hz). 
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(R)-Methyl 2-(N-(2,6-difluorobenzyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.1f) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/5, v/v) to 

yield the desired product as a colorless oil (95 mg, 73%). 1H NMR (400 MHz, CDCl3) δ 

7.65-7.63 (m, 2H), 7.28-7.19 (m, 1H), 7.06 (t, J = 9.2 Hz, 1H), 6.80 (t, J = 7.6 Hz, 2H), 

4.62 (q, J = 7.2 Hz, 1H), 4.53 (s, 2H), 3.53 (s, 3H), 2.29 (s, 3H), 1.47 (d, J = 7.2 Hz, 3H). 

13C NMR (100 MHz, CDCl3) δ 171.44, 163.63 (d, J = 252.0 Hz), 161.89 (d, J = 249.7 

Hz), 161.81 (d, J = 249.7 Hz), 135.42 (d, J = 3.8 Hz), 131.20 (d, J = 6.9 Hz), 130.24 (t, J 

= 9.8 Hz), 127.43 (d, J = 9.1 Hz), 125.83 (d, J = 18.2 Hz), 115.48 (d, J = 23.5 Hz), 

112.14 (t, J = 17.5 Hz), 111.27 (d, 1JC-F = 19.7 Hz , d, 2JC-F = 6.1 Hz), 55.55, 52.18, 

37.17, 15.42, 14.55 (d, J = 3.8 Hz). 

 

(R)-Methyl 2-(N-(2-(benzyloxy)ethyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.1g) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/5, v/v) to 

yield the desired product as a colorless oil (222 mg, 71%). 1H NMR (400 MHz, CDCl3) δ 

7.68-7.61 (m, 2H), 7.35-7.25 (m, 5H), 7.06 (t, J = 8.8 Hz, 1H), 4.63 (q, J = 7.6 Hz, 1H), 

4.47 (s, 2H), 3.72-3.61 (m, 2H), 3.53-3.46 (m, 4H), 3.40- 3.33 (m, 1H), 2.29 (s, 3H), 1.43 
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(d, J = 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 171.67, 163.63 (d, J = 252.0 Hz), 

137.98, 135.39 (d, J = 3.8 Hz), 131.01 (d, J = 6.8 Hz), 128.38, 127.68, 127.59, 127.28 

(d, J = 9.1 Hz), 126.07 (d, J = 18.9 Hz), 115.57 (d, J = 23.6 Hz), 73.20, 69.91, 55.61, 

52.04, 45.09, 16.77, 14.54 (d, J = 3.1 Hz). 

 

(R)-Methyl 2-(N-(4-(((tert-butoxycarbonyl)amino)methyl)benzyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.1h) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/3, v/v) to 

yield the desired product as a colorless oil (380 mg, 71%). 1H NMR (400 MHz, CDCl3) δ 

7.65-7.62 (m, 2H), 7.28 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.09 (t, J = 8.4 Hz, 

1H), 4.91 (s, 1H), 4.63 (q, J = 7.6 Hz, 1H), 4.55 (d, J = 16.8 Hz, 1H), 4.38 (d, J = 16.4 

Hz, 1H), 4.28 (s, 2H), 3.48 (s, 3H), 2.32 (s, 3H), 1.46 (s, 9H), 1.30 (d, J = 7.2 Hz, 3H). 

13C NMR (100 MHz, CDCl3) δ 171.57, 163.65 (d, J = 252.0 Hz), 155.89, 138.47, 136.29, 

136.10 (d, J = 3.7 Hz), 131.12 (d, J = 6.1 Hz), 128.21, 127.46, 127.33 (d, J = 9.9 Hz), 

126.08 (d, J = 18.2 Hz), 115.63 (d, J = 23.6 Hz), 79.55, 55.27, 52.06, 48.94, 44.27, 

28.40, 16.75, 14.59 (d, J = 3.0 Hz). 
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(R)-Methyl 2-(N-(3-(((tert-butoxycarbonyl)amino)methyl)benzyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.1i) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/3, v/v) to 

yield the desired product as a colorless oil (350 mg, 73%). 1H NMR (400 MHz, CDCl3) δ 

7.64-7.62 (m, 2H), 7.24-7.15 (m, 4H), 7.09 (t, J = 8.0 Hz, 1H), 5.0 (bs, 1H), 4.64 (q, J = 

7.6 Hz, 1H), 4.56 (d, J = 16.0 Hz, 1H) 4.38 (d, J = 16.0 Hz, 1H), 4.26-4.22 (m, 2H), 3.48 

(s, 3H), 2.31 (s, 3H), 1.46 (s, 9H), 1.30 (d, J = 8.0 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 

171.50, 163.55 (d, J = 252.0 Hz), 155.85, 139.24, 137.52, 135.61 (d, J = 4.0 Hz), 131.05 

(d, J = 6.0 Hz), 128.60, 127.27 (d, J = 9.0 Hz), 126.87, 126.83, 126.61, 126.0 (d, J = 

19.0 Hz), 115.67 (d, J = 23.0 Hz), 79.38, 62.78, 55.29, 52.01, 49.06, 28.35, 16.69, 14.51 

(d, J = 4.0 Hz). 

 

(R)-Methyl 2-(N-(4-(2-((tert-butoxycarbonyl)amino)ethyl)benzyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.1j) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/4, v/v) to 

yield the desired product as a colorless oil (244 mg, 78%). 1H NMR (400 MHz, CDCl3) δ 

7.66-7.63 (m, 2H), 7.25 (d, J = 7.2 Hz, 2H), 7.13-7.07 (m, 3H), 4.66-4.61 (m, 2H), 4.53 

(d, J = 16.0 Hz, 1H), 4.38 (d, J = 16.0 Hz, 1H), 3.48 (s, 3H), 3.35 (m, 2H), 2.78 (t, J = 6.8 
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Hz, 2H), 2.31 (s, 3H), 1.43 (s, 9H), 1.31 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) 

δ 171.57, 163.63 (d, J = 251.9 Hz), 155.85, 138.47, 135.67 (d, J = 3.8 Hz), 135.19, 

131.12 (d, J = 6.1 Hz), 128.81, 128.24, 127.33 (d, J = 9.1 Hz), 126.06 (d, J = 19.0 Hz), 

115.61 (d, J = 23.6 Hz), 79.2, 55.21, 52.04, 48.93, 41.77, 35.84, 28.4, 16.63, 14.58 (d, J 

= 3.8 Hz). 

 

(R)-Methyl 2-(N-(6-((tert-butoxycarbonyl)amino)hexyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.1k) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/5, v/v) to 

yield the desired product as a colorless oil (960 mg, 88%). 1H NMR (400 MHz, CDCl3) δ 

7.69-7.63 (m, 2H), 7.11 (t, J = 8.4 Hz, 1H), 4.69 (s, 1H), 4.61 (q, J = 7.6 Hz 1H), 3.56 (s, 

3H), 3.26-3.18 (m, 1H), 3.12-3.04 (m, 3H) 2.33 (s, 3H), 1.74-1.53 (m, 2H), 1.52-1.42 (m, 

14H), 1.34-1.28 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 171.80, 163.56 (d, J = 251.3 Hz), 

156.03, 135.67 (d, J = 3.8 Hz), 130.95 (d, J = 6.0 Hz), 127.22 (d, J = 9.1 Hz), 126.02 (d, 

J = 19.0 Hz), 115.56 (d, J = 23.5 Hz), 78.91, 55.20, 52.10, 45.81, 40.39, 30.90, 29.98, 

28.43, 26.56, 26.33, 16.74, 14.59 (d, J = 3.8 Hz). 
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(R)-Methyl 2-(N-(5-((tert-butoxycarbonyl)amino)pentyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.1l) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/4, v/v) to 

yield the desired product as a colorless oil (300 mg, 69%). 1H NMR (400 MHz, CDCl3) δ 

7.69-7.64 (m, 2H), 7.12 (t, J = 8.8 Hz, 1H), 4.81 (s, 1H), 4.61 (q, J = 7.2 Hz 1H), 3.56 (s, 

3H), 3.26-3.06 (m, 4H), 2.34 (s, 3H), 1.74-1.24 (m, 18H). 13C NMR (100 MHz, CDCl3) δ 

171.82, 163.58 (d, J = 251.2 Hz), 156.07, 135.70 (d, J = 3.8 Hz), 130.95 (d, J = 6.8 Hz), 

127.25 (d, J = 9.1 Hz), 126.05 (d, J = 18.3 Hz), 115.60 (d, J = 23.5 Hz), 78.87, 55.24, 

52.10, 45.79, 40.38, 30.67, 29.70, 28.43, 24.11, 16.73, 14.57 (d, J = 3.0 Hz).  

 

(R)-Methyl 2-(N-(3-((tert-butoxycarbonyl)amino)propyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.1m) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/3, v/v) to 

yield the desired product as a colorless oil (315 mg, 81%). 1H NMR (400 MHz, CDCl3) δ 

7.69-7.64 (m, 2H), 7.12 (t, J = 8.8 Hz, 1H), 5.08 (s, 1H), 4.60 (q, J = 7.2 Hz 1H), 3.56 (s, 

3H), 3.32-3.16 (m, 4H), 2.34 (s, 3H), 1.89-1.76 (m, 2H), 1.44-1.40 (m, 12H). 13C NMR 

(100 MHz, CDCl3) δ 171.58, 163.50 (d, J = 252.0 Hz), 155.97, 135.28 (d, J = 3.0 Hz), 
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130.80 (d, J = 6.0 Hz), 127.11 (d, J = 9.8 Hz), 126.05 (d, J = 18.3 Hz), 115.55 (d, J = 

23.5 Hz), 78.84, 55.15, 52.02, 43.09, 37.55, 31.02, 28.27, 16.37, 14.42 (d, J = 3.0 Hz). 

 

(R)-Methyl 2-(N-(4-((tert-butoxycarbonyl)amino)butyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.1n) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/3, v/v) to 

yield the desired product as a colorless oil (240 mg, 73%). 1H NMR (400 MHz, CDCl3) δ 

7.69-7.62 (m, 2H), 7.11 (t, J = 8.4 Hz, 1H), 4.77 (s, 1H), 4.61 (q, J = 7.2 Hz 1H), 3.55 (s, 

3H), 3.30-3.09 (m, 4H), 2.34 (s, 3H), 1.76-1.62 (m, 1H), 1.62-1.58 (m, 1H), 1.49-1.41 (m, 

14H). 13C NMR (100 MHz, CDCl3) δ 171.69, 163.50 (d, J = 252.0 Hz), 155.94, 135.45 (d, 

J = 3.0 Hz), 130.85 (d, J = 6.0 Hz), 127.12 (d, J = 9.9 Hz), 126.0 (d, J = 18.2 Hz), 115.52 

(d, J = 23.5 Hz), 78.93, 55.14, 52.14, 45.38, 39.84, 28.33, 28.11, 27.27, 16.62, 14.48 (d, 

J = 3.8 Hz). 

 

(R)-tert-Butyl 8-(4-fluoro-N-(1-methoxy-1-oxopropan-2-yl)-3-

methylphenylsulfonamido)octanoate (3.1o) 
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The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/5, v/v) to 

yield the desired product as a colorless oil (270 mg, 66%). 1H NMR (400 MHz, CDCl3) δ 

7.70-7.64 (m, 2H), 7.11 (t, J = 8.8 Hz, 1H), 4.62 (q, J = 6.8 Hz, 1H), 3.56 (s, 3H), 3.26-

3.19 (m, 1H), 3.12-3.05 (m, 1H), 2.33 (s, 3H), 2.19 (t, J = 7.6 Hz, 2H), 1.71-1.28 (m, 

22H). 13C NMR (100 MHz, CDCl3) δ 173.08, 171.83, 163.54 (d, J = 252.0 Hz), 135.80 (d, 

J = 3.8 Hz), 130.98 (d, J = 6.1 Hz), 127.27 (d, J = 9.1 Hz), 125.96 (d, J = 18.3 Hz), 

115.54 (d, J = 23.5 Hz), 79.85, 55.20, 52.05, 45.90, 35.47, 30.89, 29.97, 28.87, 28.11, 

26.76, 24.97, 16.73, 14.56 (d, J = 3.0 Hz). 

 

(R)-Methyl 2-(4-fluoro-3-methyl-N-(3-nitrobenzyl)phenylsulfonamido)propanoate 

(3.1p) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/hexane (1/4, v/v) to 

yield the desired product as a colorless oil (147 mg, 83%). 1H NMR (400 MHz, CDCl3) δ 

8.17-8.07 (m, 2H), 7.79 (m, 1H), 7.67-7.63 (m, 2H), 7.53-7.51 (m, 1H), 7.12 (t, J = 7.6 

Hz, 1H), 4.79-4.69 (m, 2H), 4.54 (d, J = 17.2Hz, 1H), 3.52 (s, 3H), 2.32 (s, 3H), 1.34 (d, J 

= 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 171.27, 163.71 (d, J = 252.7 Hz), 148.10, 

140.15, 135.03 (d, J = 3.1 Hz), 133.86, 130.96 (d, J = 6.0 Hz), 129.38, 127.30 (d, J = 9.1 

Hz), 126.37 (d, J = 18.2 Hz), 122.39, 122.34, 115.71 (d, J = 23.5 Hz), 55.49, 52.11, 

48.22, 16.76, 14.4 (d, J = 3.8 Hz). 
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Procedure B for N-Alkylation (3.1q) 

(R)-Methyl 2-(4-fluoro-N-isopropyl-3-methylphenylsulfonamido)propanoate (3.1q) 

 

To a solution of 2.4 (100 mg, 0.36 mmol), 2-propanol (140 μL, 1.82 mmol), and 

triphenylphosphine (478 mg, 1.82 mmol) in THF (2 mL) at 0 °C was slowly added DIAD 

(360 μL, 1.82 mmol). The mixture was stirred at room temperature overnight. Upon 

consumption of the starting material as determined by TLC, the solvent was 

concentrated under reduced pressure. The crude product was purified over SiO2 using a 

gradient elution of EtOAc/hexane (1/9 to 1/5, v/v) to yield 3.1q as a colorless oil (62 mg, 

54%). 1H NMR (400 MHz, CDCl3) δ 7.81-7.76 (m, 2H), 7.10 (t, J = 8.8 Hz, 1H), 4.09 (q, J 

= 7.2 Hz, 1H), 3.77-3.73 (m, 4H), 2.34 (s, 3H), 1.64 (d, J = 6.8 Hz, 3H), 1.19 (m, 6H). 13C 

NMR (100 MHz, CDCl3) δ 172.3, 163.47 (d, J = 252.0 Hz), 136.92 (d, J = 3.8 Hz), 131.41 

(d, J = 6.0 Hz), 127.56 (d, J = 9.1 Hz), 125.86 (d, J = 18.2 Hz), 115.53 (d, J = 23.5 Hz), 

52.59, 52.46, 50.22, 21.61, 20.93, 18.21, 14.63 (d, J = 3.8 Hz). 

 

General Procedure for the Conversion of Esters to Hydroxamic acids (3.2a-3.2r, 

3.6a-3.6f, 3.8, 3.11) 

To a solution of ester (1 equiv.) in anhydrous MeOH (0.38 M) was added hydroxylamine 

hydrochloride (2 equiv.) and NaOMe (3 equiv., 25 wt. % in MeOH) at 0 oC. The reaction 

was allowed to gradually warm to rt and was stirred overnight. After 16 h, the solvent 

was removed under reduced pressure, and the resulting residue was suspended in brine 

(5 mL). The aqueous layer was extracted with EtOAc (3 x 10 mL), and the combined 
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organic phases were dried over Na2SO4, filtered, and concentrated under reduced 

pressure.  

 

(R)-2-(4-fluoro-N,3-dimethylphenylsulfonamido)-N-hydroxypropanamide (3.2a) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(19/1, v/v) to yield the desired product as a white foam (55 mg, 50%). 1H NMR (400 

MHz, CD3OD) δ 7.75-7.67 (m, 2H), 7.22 (t, J = 8.0 Hz, 1H), 4.52 (q, J = 8.0 Hz, 1H), 2.87 

(s, 3H), 2.32 (s, 3H), 1.13 (d, J = 8.0 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 169.83, 

165.11 (d, J = 250.0 Hz), 135.73 (d, J = 3.0 Hz), 132.10 (d, J = 7.0 Hz), 128.58 (d, J = 

9.0 Hz), 127.82 (d, J = 19.0 Hz), 116.98 (d, J = 25.0 Hz), 54.3, 30.84, 14.67, 14.55 (d, J 

= 3.0 Hz). MS (ESI) 291.0 [M + H]+. 

 

(R)-2-(4-Fluoro-3-methyl-N-(4-nitrobenzyl)phenylsulfonamido)-N-

hydroxypropanamide (3.2b)  

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(19/1, v/v) to yield the desired product as a white foam (70 mg, 45%). 1H NMR (400 

MHz, CD3OD) δ 8.12 (d, J = 8.4 Hz 2H), 7.68-7.58 (m, 4H), 7.17 (t, J = 9.2 Hz, 1H), 

4.88-4.72 (m, 2H), 4.57 (q, J = 6.4 Hz, 1H), 2.29 (s, 3H), 1.19 (d, J = 6.8 Hz, 3H). 13C 

NMR (100 MHz, CD3OD) δ 168.39, 163.80 (d, J = 250.4 Hz), 147.01, 146.84, 135.13 (d, 
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J = 3.8 Hz), 130.86 (d, J = 6.0 Hz), 128.24, 127.25 (d, J = 9.1 Hz), 126.30 (d, J = 18.2 

Hz), 122.87, 115.50 (d, J = 23.6 Hz), 52.89, 16.02, 13.04 (d, J = 3.8 Hz). MS (ESI) 412.1 

[M + H]+. 

 

(R)-2-(N-(3,5-Difluorobenzyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.2c) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(20/1, v/v) to yield the desired product as a colorless oil (46 mg, 68%). 1H NMR (400 

MHz, CDCl3) δ 7.68-7.64 (m, 2H), 7.17 (t, J = 8.8 Hz, 1H), 6.97-6.95 (m, 2H), 6.77 (t, J = 

7.2 Hz, 1H), 4.60 (d, J = 17.2 Hz, 1H), 4.38 (d, J = 17.2 Hz, 1H), 4.54 (q, J = 7.2 Hz, 1H), 

2.30 (s, 3H), 1.21 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 168.45, 163.77 (d, J 

= 251.2 Hz), 163.00 (d, J = 245.9 Hz), 162.87 (d, J = 245.9 Hz), 143.78 (t, J = 9.1 Hz), 

135.27 (d, J = 3.8 Hz), 130.85 (d, J = 6.8 Hz), 127.23 (d, J = 9.8 Hz), 126.24 (d, J = 18.2 

Hz), 115.40 (d, J = 24.3 Hz), 110.13 (d, 1JC-F = 6.8 Hz, d, 2JC-F = 19.0 Hz), 101.70 (t, J = 

25.8 Hz), 52.91, 16.21, 13.03 (d, J = 3.8 Hz). MS (ESI) 403.0 [M + H]+. 

 

(R)-2-(4-Fluoro-N-(4-fluorobenzyl)-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.2d) 
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The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(19/1, v/v) to yield the desired product as a white foam (32 mg, 40%). 1H NMR (400 

MHz, CD3OD) δ 7.63-7.58 (m, 2H), 7.37-7.34 (m, 2H), 7.14 (t, J = 8.8 Hz, 1H), 6.98 (t, J 

= 8.8 Hz, 2H), 4.65 (d, J = 16.4 Hz, 1H), 4.58 (d, J = 16.4 Hz, 1H), 4.54 (q, J = 7.2 Hz, 

1H), 2.27 (s, 3H), 1.21 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 168.64, 

163.60 (d, J = 250.4 Hz), 162.05 (d, J = 242.9 Hz), 135.75 (d, J = 3.0 Hz), 134.36 (d, J = 

3.0 Hz), 130.76 (d, J = 6.1 Hz), 129.59 (d, J = 8.3 Hz), 127.07 (d, J = 9.9 Hz), 126.02 (d, 

J = 18.2 Hz), 115.28 (d, J = 24.3 Hz), 114.42 (d, J = 21.3 Hz), 53.07, 16.29, 13.02 (d, J = 

3.8 Hz). MS (ESI) 385.1 [M + H]+. 

 

(R)-2-(4-Fluoro-N-(2-fluorobenzyl)-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.2e) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(20/1, v/v) to yield the desired product as a white foam (17 mg, 31%). 1H NMR (400 

MHz, CD3OD) δ 7.67-7.64 (m, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.27-7.09 (m, 3H), 6.99 (t, J 

= 8.8 Hz, 1H), 4.64-4.52 (m, 3H), 2.30 (s, 3H), 1.23 (d, J = 6.8 Hz, 3H). 13C NMR (100 

MHz, CD3OD) δ 168.64, 163.71 (d, J = 250.5 Hz), 160.13 (d, J = 243.6 Hz), 135.32 (d, J 

= 3.0 Hz), 130.82 (d, J = 6.8 Hz), 129.85 (d, J = 3.8 Hz), 128.60 (d, J = 7.6 Hz), 127.17 

(d, J = 9.9 Hz), 126.12 (d, J = 18.2 Hz), 125.11 (d, J = 12.9 Hz), 123.69 (d, J = 3.8 Hz), 

115.34 (d, J = 23.5 Hz), 114.43 (d, J = 21.3 Hz), 52.91, 41.42, 15.87, 13.04 (d, J = 3.8 

Hz). MS (ESI) 385.0 [M + H]+. 
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(R)-2-(N-(2,6-Difluorobenzyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.2f) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(20/1, v/v) to yield the desired product as a white foam (40 mg, 42%). 1H NMR (400 

MHz, CD3OD) δ 7.59-7.51 (m, 2H), 7.26 (p, J = 8.0 Hz, 1H), 7.11 (t, J = 8.8 Hz, 1H), 6.82 

(t, J = 8.4 Hz, 2H), 4.69-4.57 (m, 3H), 2.25 (s, 3H), 1.40 (d, J = 7.2 Hz, 3H). 13C NMR 

(100 MHz, CD3OD) δ 168.63, 163.57 (d, J = 249.7 Hz), 161.75 (d, J = 248.2 Hz), 161.68 

(d, J = 248.2 Hz), 135.46 (d, J = 3.0 Hz), 130.62 (d, J = 6.8 Hz), 129.82 (t, J = 10.6 Hz), 

127.02 (d, J = 9.1 Hz), 125.83 (d, J = 18.2 Hz), 115.22 (d, J = 23.5 Hz), 112.92 (t, J = 

16.7 Hz), 110.85 (d, 1JC-F = 19.0 Hz , d, 2JC-F = 6.1 Hz), 53.92, 36.63, 14.82, 13.06 (d, J = 

3.8 Hz). MS (ESI) 403.1 [M + H]+. 

 

(R)-2-(N-(2-(Benzyloxy)ethyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.2g) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(18/1, v/v) to yield the desired product as a white foam (100 mg, 44%). 1H NMR (400 

MHz, CDCl3) δ 7.68-7.61 (m, 2H), 7.35-7.26 (m, 5H), 7.05 (t, J = 8.8 Hz, 1H), 4.54-4.48 

(m, 3H), 3.82-3.80 (m, 1H), 3.58-3.56 (m, 2H), 3.24-3.22 (m, 1H), 2.26 (s, 3H), 1.22 (d, J 
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= 5.6 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 169.06, 163.71 (d, J = 250.5 Hz), 137.92, 

135.20 (d, J = 3.0 Hz), 130.74 (d, J = 6.1 Hz), 128.01, 127.51, 127.36, 127.21 (d, J = 9.1 

Hz), 126.34 (d, J = 18.2 Hz), 115.49 (d, J = 24.3 Hz), 72.71, 68.98, 53.54, 43.97, 14.90, 

13.09 (d, J = 3.8 Hz). MS (ESI) 409.37 [M - H]-.  

 

(R)-tert-Butyl 4-((4-fluoro-N-(1-(hydroxyamino)-1-oxopropan-2-yl)-3-

methylphenylsulfonamido)methyl)benzylcarbamate (3.2h) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(20/1, v/v) to yield the desired product as a white foam (190 mg, 50%). 1H NMR (400 

MHz, CDCl3) δ 9.1 (s, 1H), 7.60-7.58 (m, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 7.6 

Hz, 2H), 7.11 (t, J = 8.0 Hz, 1H), 4.99 (s, 1H), 4.62 (d, J = 15.6 Hz, 1H), 4.43 (brs, 1H), 

4.28 (brs, 3H), 2.30 (s, 3H), 1.46 (s, 9H), 1.19 (d, J = 5.2 Hz, 3H). 13C NMR (100 MHz, 

CDCl3) δ 167.98, 163.86 (d, J = 253.5 Hz), 156.10, 138.80, 135.31, 135.04 (d, J = 3.7 

Hz), 130.86 (d, J = 6.1 Hz), 128.80, 127.58, 127.06 (d, J = 9.1 Hz), 126.70 (d, J = 18.2 

Hz), 116.06 (d, J = 23.5 Hz), 79.73, 53.17, 48.12, 44.30, 28.42, 14.61 (d, J = 3.0 Hz), 

14.42. (ESI) 496.34 [M + H]+. 
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(R)-tert-Butyl 3-((4-fluoro-N-(1-(hydroxyamino)-1-oxopropan-2-yl)-3-

methylphenylsulfonamido)methyl)benzylcarbamate (3.2i) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(20/1, v/v) to yield the desired product as a colorless oil (216 mg, 62%). 1H NMR (400 

MHz, CDCl3) δ 9.40 (brs, 1H), 7.59 (m, 2H), 7.23-7.06 (m, 5H), 5.22 (bs, 1H), 4.63 (d, J 

= 16.0 Hz, 1H) 4.46 (m, 1H), 4.26-4.23 (m, 3H), 2.28 (s, 3H), 1.45 (s, 9H), 1.14 (m, 3H). 

13C NMR (100 MHz, CDCl3) δ 171.25, 163.74 (d, J = 252.0 Hz), 156.31, 139.30, 136.65, 

135.10 (d, J = 4.0 Hz), 130.80 (d, J = 6.0 Hz), 128.67, 127.27, 127.01 (d, J = 9.0 Hz), 

126.75, 126.54 (d, J = 19.0 Hz), 115.96 (d, J = 24.0 Hz), 79.77, 60.41, 53.14, 48.25, 

28.38, 21.01, 14.53 (d, J = 3.0 Hz).  

 

(R)-tert-Butyl 4-((4-fluoro-N-(1-(hydroxyamino)-1-oxopropan-2-yl)-3-

methylphenylsulfonamido)methyl)phenethylcarbamate (3.2j) 

 

The crude residue was purified by preparatory TLC using an eluent of  DCM/MeOH 

(14/1, v/v) to yield the desired product as a white foam (80 mg, 27%). 1H NMR (400 

MHz, CD3OD) δ 7.60-7.59 (m, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.14-7.09 (m, 3H), 6.53 (s, 

1H), 4.66 (d, J = 16.4 Hz, 1H), 4.60 (d, J = 16.4 Hz, 1H), 4.49 (q, J = 7.2 Hz, 1H), 3.21 (t, 
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J = 7.2 Hz, 2H), 2.71 (t, J = 7.2 Hz, 2H), 2.26 (s, 3H), 1.40 (s, 9H), 1.19 (d, J = 6.8 Hz, 

3H). 13C NMR (100 MHz, CD3OD) δ 168.70, 163.55 (d, J = 250.5 Hz), 138.26, 136.24, 

135.79 (d, J = 3.8 Hz), 130.79 (d, J = 6.1 Hz), 128.29, 127.75, 127.11 (d, J = 9.9 Hz), 

125.95 (d, J = 19.0 Hz), 115.21 (d, J = 24.3 Hz), 78.54, 53.13, 41.58, 35.41, 27.36, 

16.34, 13.05 (d, J = 3.8 Hz). MS (ESI) 510.45 [M + H]+. 

 

(R)-tert-Butyl (6-(4-fluoro-N-(1-(hydroxyamino)-1-oxopropan-2-yl)-3-

methylphenylsulfonamido)hexyl)carbamate (3.2k) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(24/1, v/v) to yield the desired product as a yellow foam (306 mg, 87%). 1H NMR (400 

MHz, CD3OD) δ 7.76-7.69 (m, 2H), 7.21 (t, J = 8.0 Hz, 1H), 4.44-4.43 (m, 1H), 3.43-3.31 

(m, 1H), 3.31-3.15 (m, 1H) 3.03-3.00 (m, 2H), 2.33 (s, 3H), 1.67-1.59 (m, 2H), 1.42 (m, 

11H), 1.28-1.21 (m, 7H).  13C NMR (100 MHz, CD3OD) δ 168.82, 163.61 (d, J = 250.4 

Hz), 157.09, 135.66 (d, J = 3.0 Hz), 130.66 (d, J = 6.1 Hz), 127.12 (d, J = 9.1 Hz), 

126.24 (d, J = 18.2 Hz), 115.48 (d, J = 24.3 Hz), 78.39, 52.76, 44.72, 39.86, 30.65, 

29.46, 27.50, 26.23, 26.03, 14.78, 13.20 (d, J = 3.7 Hz). MS (ESI) 476.33 [M + H]+. 

 

  



 

75 

 

(R)-tert-Butyl (5-(4-fluoro-N-(1-(hydroxyamino)-1-oxopropan-2-yl)-3-

methylphenylsulfonamido)pentyl)carbamate (3.2l) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(24/1, v/v) to yield the desired product as a white foam (60 mg, 30%). 1H NMR (400 

MHz, CD3OD) δ 7.76-7.69 (m, 2H), 7.21 (t, J = 8.4 Hz, 1H), 4.43-4.42 (m, 1H), 3.42 (brs, 

1H), 3.18 (brs, 1H) 3.01 (brs, 2H), 2.33 (s, 3H), 1.67-1.21 (m, 18H). 13C NMR (100 MHz, 

CD3OD) δ 168.80, 163.65 (d, J = 250.5 Hz), 157.12, 135.50 (d, J = 3.1 Hz), 130.67 (d, J 

= 6.1 Hz), 127.12 (d, J = 9.1 Hz), 126.27 (d, J = 18.2 Hz), 115.46 (d, J = 24.3 Hz), 78.42, 

52.76, 44.68, 39.81, 30.41, 29.14, 27.44, 23.71, 14.76, 13.12 (d, J = 3.8 Hz). MS (ESI) 

462.38 [M + H]+. 

 

(R)-tert-Butyl (3-(4-fluoro-N-(1-(hydroxyamino)-1-oxopropan-2-yl)-3-

methylphenylsulfonamido)propyl)carbamate (3.2m) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(20/1, v/v) to yield the desired product as a white foam (120 mg, 50%). 1H NMR (400 

MHz, CD3OD) δ 7.76-7.70 (m, 2H), 7.20 (t, J = 8.8 Hz, 1H), 4.45-4.43 (m, 1H), 3.48-3.46 

(m, 1H), 3.23-3.22 (m, 1H), 3.05 (brs, 2H), 2.33 (s, 3H), 1.82-1.81 (m, 2H), 1.42 (s, 9H), 
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1.21 (d, J = 6.0 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 168.81, 163.68 (d, J = 250.5 

Hz), 157.05, 135.60 (d, J = 3.8 Hz), 130.71 (d, J = 6.0 Hz), 127.16 (d, J = 9.9 Hz), 

126.32 (d, J = 18.2 Hz), 115.51 (d, J = 23.5 Hz), 78.61, 52.88, 42.36, 37.49, 30.96, 

27.47, 14.64, 13.2 (d, J = 3.0 Hz). 

 

(R)-tert-Butyl (4-(4-fluoro-N-(1-(hydroxyamino)-1-oxopropan-2-yl)-3-

methylphenylsulfonamido)butyl)carbamate (3.2n) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(20/1, v/v) to yield the desired product as a white foam (150 mg, 63%). 1H NMR (400 

MHz, CD3OD) δ 7.77-7.70 (m, 2H), 7.20 (t, J = 8.8 Hz, 1H), 4.43-4.42 (m, 1H), 3.43-3.42 

(m, 1H), 3.21-3.17 (m, 1H), 3.04-2.98 (m, 2H), 2.33 (s, 3H), 1.66-1.58 (m, 2H), 1.42-1.38 

(m, 11H), 1.21 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 168.77, 163.65 (d, J = 

250.5 Hz), 157.11, 135.60 (d, J = 3.8 Hz), 130.69 (d, J = 6.0 Hz), 127.13 (d, J = 9.1 Hz), 

126.28 (d, J = 18.2 Hz), 115.47 (d, J = 24.3 Hz), 78.49, 52.78, 44.45, 39.50, 28.03, 

27.46, 26.86, 14.77, 13.13 (d, J = 3.8 Hz). 
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(R)-tert-Butyl 8-(4-fluoro-N-(1-(hydroxyamino)-1-oxopropan-2-yl)-3-

methylphenylsulfonamido)octanoate (3.2o) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(20/1, v/v) to yield the desired product as a white foam (130 mg, 48%). 1H NMR (400 

MHz, CD3OD) δ 7.76-7.70 (m, 2H), 7.21 (t, J = 8.8 Hz, 1H), 4.43 (m, 1H), 3.43-3.37 (m, 

1H), 3.21-3.14 (m, 1H), 2.33 (s, 3H), 2.20 (t, J = 7.2 Hz, 2H), 1.66-1.53 (m, 4H), 1.43 (s, 

9H), 1.29-1.21 (m, 9H). 13C NMR (100 MHz, CD3OD) δ 173.66, 168.81, 163.62 (d, J = 

250.5 Hz), 135.72 (d, J = 3.1 Hz), 130.61 (d, J = 6.1 Hz), 127.18 (d, J = 9.1 Hz), 126.23 

(d, J = 19.0 Hz), 115.47 (d, J = 24.3 Hz), 79.91, 52.81, 44.78, 35.02, 30.68, 28.66, 

28.56, 27.11, 26.42, 24.74, 14.8 (d, J = 3.0 Hz), 13.19. MS (ESI) 475.1 [M + H]+. 

 

(R)-2-(4-Fluoro-3-methyl-N-(3-nitrobenzyl)phenylsulfonamido)-N-

hydroxypropanamide (3.2p)  

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(19/1, v/v) to yield the desired product as a white foam (92 mg, 73%). 1H NMR (400 

MHz, DMSO-d6) δ 10.95 (s, 1H), 8.87 (s, 1H),  8.17 (s, 1H), 8.07 (d, J = 8.4 Hz, 1H), 

7.78 (d, J = 8 Hz, 1H), 7.70 (m, 1H), 7.65 (m, 1H), 7.58 (t,  J = 8 Hz, 1H), 7.30 (t, J = 9.0 

Hz, 1H), 4.80 (d, J = 17.4 Hz, 1H), 4.72 (d, J = 17.4 Hz, 1H), 4.46 (m, 1H), 2.25 (s, 3H), 
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1.10 (d, J = 7.2 Hz, 3.0 H). 13C NMR (100 MHz, CDCl3) δ 167.8, 164.1 (d, J = 252.8 Hz), 

148.2, 139.1, 134.6 (d, J = 3.2 Hz), 134.2, 130.8 (d, J = 6.1 Hz), 129.6, 127.1 (d, J = 9.9 

Hz), 127.0, 122.9, 122.8, 116.3 (d, J = 23.5 Hz), 53.0, 47.5, 14.9, 14.6. MS (ESI) 412.22 

[M + H]+.  

 

(R)-2-(4-Fluoro-N-isopropyl-3-methylphenylsulfonamido)-N-hydroxypropanamide 

(3.2q) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(20/1, v/v) to yield the desired product as a white foam (25 mg, 30%). 1H NMR (400 

MHz, CD3OD) δ 7.85-7.77 (m, 2H), 7.20 (t, J = 8.8 Hz, 1H), 4.19 (q, J = 7.2 Hz, 1H), 3.94 

(s, J = 6.8 Hz, 1H), 2.33 (s, 3H), 1.41 (d, J = 6.8 Hz, 3H), 1.27 (m, 6H). 13C NMR (100 

MHz, CDCl3) δ 169.3, 163.4 (d, J = 249.7 Hz), 137.3 (d, J = 3.8 Hz), 131.0 (d, J = 6.1 

Hz), 127.5 (d, J = 9.1 Hz), 125.9 (d, J = 18.3 Hz), 115.2 (d, J = 23.5 Hz), 52.4, 50.1, 

21.0, 20.6, 15.8, 13.0 (d, J = 3.0 Hz). MS (ESI) 319.34 [M + H]+. 

 

(R)-2-(4-Fluoro-3-methylphenylsulfonamido)-N-hydroxypropanamide (3.2r) 

 

The crude residue was purified by preparatory TLC using DCM/MeOH (12/1, v/v) to yield 

white solid (45 mg, 45%). 1H NMR (400 MHz, CD3OD) δ 7.77-7.70 (m, 2H), 7.19 (t, J = 

8.8 Hz, 1H), 3.76 (brs, 1H), 2.32 (s, 3H), 1.19 (d, J = 5.2 Hz, 3H). 13C NMR (100 MHz, 

CD3OD) δ 169.38, 163.53 (d, J = 249.7 Hz), 136.32 (d, J = 3.0 Hz), 130.45 (d, J = 6.1 
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Hz), 126.82 (d, J = 9.8 Hz), 126.09 (d, J = 18.9 Hz), 115.32 (d, J = 23.5 Hz), 50.15, 

18.05, 13.06 (d, J = 3.1 Hz). MS (ESI) 277.24 [M + H]+. 

 

(R)-2-(N-(4-(Acetamidomethyl)benzyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.6a) 

 

The crude residue was purified by preparatory TLC using an eluent of  DCM/MeOH 

(20/1, v/v) to yield the desired product as a white solid (10 mg, 7%). 1H NMR (400 MHz, 

CD3OD) δ 8.39 (s, 1H), 7.62-7.59 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 

2H), 7.14 (t, J = 9.2 Hz, 1H), 4.70 (d, J = 16.4 Hz, 1H), 4.64 (d, J = 16.4 Hz, 1H), 4.51 (q, 

J = 7.2 Hz, 1H), 4.33 (s, 2H), 2.29 (s, 3H), 1.98 (s, 3H), 1.20 (d, J = 7.2 Hz, 3H). 13C 

NMR (100 MHz, CD3OD) δ 171.66, 168.68, 163.60 (d, J = 250.5 Hz), 137.54, 137.48, 

135.73 (d, J = 3.8 Hz), 130.78 (d, J = 6.1 Hz), 127.78, 127.17, 127.09, 126.02 (d, J = 

18.2 Hz), 115.23 (d, J = 23.5 Hz), 53.09, 42.48, 21.13, 16.34, 13.03 (d, J = 3.8 Hz). MS 

(ESI) 438.34 [M + H]+. 

 

(R)-2-(N-(3-(Acetamidomethyl)benzyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.6b) 
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The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(20/1, v/v) to yield the desired product as a white solid (60 mg, 43%). 1H NMR (400 MHz, 

CD3OD) δ 7.63-7.60 (m, 2H), 7.26-7.12 (m, 5H), 4.70 (d, J = 16.4 Hz, 1H), 4.63 (d, J = 

16.4 Hz, 1H), 4.53 (q, J = 6.8 Hz, 1H), 4.30 (s, 2H), 2.28 (s, 3H), 1.99 (s, 3H), 1.20 (d, J 

= 7.2 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 171.79, 168.66, 163.59 (d, J = 250.5 Hz), 

138.68, 138.57, 135.77 (d, J = 3.0 Hz), 130.79 (d, J = 6.1 Hz), 128.00, 127.12 (d, J = 9.8 

Hz), 126.71, 126.44, 126.03, 126.03 (d, J = 19.0 Hz), 115.27 (d, J = 24.3 Hz), 53.07, 

42.70, 21.16, 16.09, 13.05 (d, J = 3.8 Hz). MS (ESI) 438.34 [M + 1]+. 

 

(R)-2-(N-(4-(2-Acetamidoethyl)benzyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.6c) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(10/1, v/v) to yield the desired product as a white solid (40 mg, 20%). 1H NMR (400 MHz, 

CD3OD) δ 7.63-7.61 (m, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.17-7.12 (m, 3H), 4.68 (d, J = 

16.4 Hz, 1H), 4.60 (d, J = 16.4 Hz, 1H), 4.51 (q, J = 7.2 Hz, 1H), 3.40-3.35 (m, 2H), 2.75 

(t, J = 7.2 Hz, 2H), 2.28 (s, 3H), 1.90 (s, 3H), 1.20 (d, J = 6.8 Hz, 3H). 13C NMR (100 

MHz, CD3OD) δ 171.81, 168.66, 163.57 (d, J = 250.5 Hz), 138.11, 136.32, 135.77 (d, J = 

3.8 Hz), 130.78 (d, J = 6.1 Hz), 128.25, 127.80, 127.11 (d, J = 9.2 Hz), 125.99 (d, J = 

18.2 Hz), 115.23 (d, J = 23.5 Hz), 53.08, 47.88, 40.59, 34.71, 21.08, 16.12, 13.02 (d, J = 

3.8 Hz). MS (ESI) 452.30 [M + H]+. 
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(R)-2-(N-(6-Acetamidohexyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.6d) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(12/1, v/v) to yield the desired product as a white solid (60 mg, 30%). 1H NMR (400 MHz, 

CD3OD) δ 7.79-7.69 (m, 2H), 7.23 (t, J = 8.8 Hz, 1H), 4.44 (q, J = 7.2 Hz, 1H), 3.47-3.39 

(m, 1H), 3.23-3.14 (m, 3H), 2.35 (s, 3H), 1.94 (s, 3H), 1.72-1.59 (m, 2H), 1.53-1.46 (m, 

2H), 1.37-1.28 (m, 4H), 1.23 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 171.76, 

168.82, 163.62 (d, J = 250.5 Hz), 135.67 (d, J = 3.0 Hz), 130.64 (d, J = 6.0 Hz), 127.09 

(d, J = 9.1 Hz), 126.25 (d, J = 18.2 Hz), 115.44 (d, J = 23.5 Hz), 52.73, 44.66, 38.97, 

30.58, 28.78, 26.14, 26.09, 21.18, 14.72, 13.09 (d, J = 3.8 Hz). MS (ESI) 418.32 [M + 

H]+. 

 

(R)-2-(N-(5-Acetamidopentyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.6e) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(12/1, v/v) to yield the desired product as a white solid (15 mg, 18%). 1H NMR (400 MHz, 

CD3OD) δ 7.96 (brs, 1H), 7.76-7.68 (m, 2H), 7.21 (t, J = 8.8 Hz, 1H), 4.40 (q, J = 7.2 Hz, 
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1H), 3.46-3.38 (m, 1H), 3.21-3.12 (m, 3H), 2.34 (s, 3H), 1.92 (s, 3H), 1.71-1.58 (m, 2H), 

1.53-1.45 (m, 2H), 1.38-1.26 (m, 2H), 1.21 (d, J = 7.6 Hz, 3H). 13C NMR (100 MHz, 

CD3OD) δ 171.81, 168.79, 163.65 (d, J = 249.8 Hz), 135.67 (d, J = 3.1 Hz), 130.65 (d, J 

= 6.1 Hz), 127.09 (d, J = 9.1 Hz), 126.27 (d, J = 18.3 Hz), 115.43 (d, J = 24.2 Hz), 52.72, 

44.56, 38.90, 30.34, 28.47, 23.76, 21.13, 14.64, 13.03 (d, J = 3.8 Hz). MS (ESI) 404.3 

[M + H]+. 

 

(R)-2-(N-(3-Acetamidopropyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.6f) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(10/1, v/v) to yield the desired product as a white solid (5 mg, 8%). 1H NMR (400 MHz, 

CD3OD) δ 8.0 (brs, 1H), 7.77-7.68 (m, 2H), 7.22 (t, J = 8.8 Hz, 1H), 4.41 (q, J = 7.2 Hz, 

1H), 3.51-3.44 (m, 1H), 3.25-3.16 (m, 3H), 2.34 (s, 3H), 1.94 (s, 3H), 1.89-1.82 (m, 2H), 

1.21 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 171.89, 168.76, 163.71 (d, J = 

250.5 Hz), 135.45 (d, J = 3.8 Hz), 130.68 (d, J = 6.8 Hz), 127.12 (d, J = 9.1 Hz), 126.33 

(d, J = 18.2 Hz), 115.46 (d, J = 24.3 Hz), 52.75, 42.35, 36.62, 30.46, 21.16, 14.58, 13.02 

(d, J = 3.8 Hz). MS (ESI) 376.2 [M + H]+. 
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(R)-8-(4-Fluoro-N-(1-(hydroxyamino)-1-oxopropan-2-yl)-3-

methylphenylsulfonamido)-N-methyloctanamide (3.8) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(12/1, v/v) to yield the desired product as a white solid (15 mg, 30%). 1H NMR (400 MHz, 

CDCl3) δ 7.87 (brs, 1H), 7.76-7.67 (m, 2H), 7.22 (t, J = 8.8 Hz, 1H), 4.41 (q, J = 6.8 Hz, 

1H), 3.45-3.37 (m, 1H), 3.20-3.12 (m, 1H), 2.71 (s, 3H), 2.34 (s, 3H), 2.16 (t, J = 7.2 Hz, 

2H), 1.69-1.57 (m, 4H), 1.30-1.21 (m, 9H). 13C NMR (100 MHz, CDCl3) δ 175.46, 168.83, 

163.63 (d, J = 250.4 Hz), 135.70 (d, J = 3.0 Hz), 130.64 (d, J = 6.8 Hz), 127.09 (d, J = 

9.9 Hz), 126.24 (d, J = 18.2 Hz), 115.41 (d, J = 23.6 Hz), 52.71, 44.72, 35.54, 30.67, 

28.72, 28.50, 26.34, 25.47, 24.88, 14.75, 13.05 (d, J = 3.8 Hz). MS (ESI) 432.1.0 [M + 

H]+.  

 

(R)-2-(N-(3-Acetamidobenzyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.11) 

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(10/1, v/v) to yield the desired product as a white solid (65 mg, 33%). 1H NMR (400 MHz, 

CDCl3) δ 9.57 (s, 1H), 8.49 (s, 1H), 7.62-7.61 (m, 2H), 7.16-6.95 (m, 4H), 4.60 (d, J = 

16.0 Hz, 1H), 4.48 (m, 1H), 4.25 (d, J = 16.0 Hz, 1H), 2.27 (s, 3H), 1.98 (s, 3H), 1.11 (d, 
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J = 6.0 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 170.25, 167.93, 163.87 (d, J = 252.7 Hz), 

138.12, 137.34, 134.84 (d, J = 3.0 Hz), 130.82 (d, J = 6.1 Hz), 128.88, 127.08 (d, J = 9.1 

Hz), 126.75 (d, J = 18.2 Hz), 123.97, 120.14, 119.79, 116.09 (d, J = 23.5 Hz), 53.09, 

48.16, 24.14, 14.55 (d, J = 3.8 Hz), 13.88. MS (ESI) 424.26 [M + H]+. 

 

Procedure A for Boc Deprotection (3.4a-3.4c) 

Boc-protected amines (1 equiv.) were treated with 4 N HCl in dioxane (2 mL) at rt. After 

1 h, the solvent was removed under reduced pressure and the resulting residue was 

triturated with diethyl ether (3 x 3 mL) to yield desired product. 

  

(R)-2-(N-(3-(Aminomethyl)benzyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide hydrochloride (3.4a)  

 

White solid (180 mg, 96%). 1H NMR (400 MHz, CD3OD) δ 7.70-7.68 (m, 2H), 7.46-7.36 

(m, 4H), 7.18 (t, J = 8.8 Hz, 1H), 4.76 (d, J = 16.4 Hz, 1H), 4.64-4.57 (m, 2H), 4.08 (s, 

2H), 2.29 (s, 3H), 1.19 (d, J = 6.4 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 168.78, 

163.71 (d, J = 250.5 Hz), 139.69, 135.37 (d, J = 3.0 Hz), 133.0, 130.84 (d, J = 6.8 Hz), 

128.76, 128.26, 128.09, 127.53, 127.27 (d, J = 9.9 Hz), 126.27 (d, J = 18.2 Hz), 115.52 

(d, J = 23.5 Hz), 53.04, 42.97, 15.83, 13.19 (d, J = 3.8 Hz). MS (ESI) 396.29 [M + H]+.  
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(R)-2-(N-(4-(2-Aminoethyl)benzyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide hydrochloride (3.4b) 

 

White solid (69 mg, 99%). 1H NMR (400 MHz, CD3OD) δ 7.67-7.64 (m, 2H), 7.34 (d, J = 

6.8 Hz, 2H), 7.22-7.15 (m, 3H), 4.72 (d, J = 16.4 Hz, 1H), 4.60-4.53 (m, 2H), 3.18-3.14 

(m, 2H), 2.96-2.92 (m, 2H), 2.30 (s, 3H), 1.19 (d, J = 6.0 Hz, 3H). 13C NMR (100 MHz, 

CD3OD) δ 168.67, 163.67 (d, J = 249.7 Hz), 137.55, 135.56 (d, J = 3.1 Hz), 135.37, 

130.79 (d, J = 6.9 Hz), 128.29, 128.16, 127.17 (d, J = 9.1 Hz), 126.16 (d, J = 18.2 Hz), 

115.37 (d, J = 24.3 Hz), 52.92, 40.56, 32.73, 15.75, 13.06 (d, J = 3.0 Hz). MS (ESI) 

410.31 [M + H]+. 

 

(R)-2-(N-(6-Aminohexyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide hydrochloride (3.4c) 

 

White solid (157 mg, 85%). 1H NMR (400 MHz, CD3OD) δ 7.74-7.66 (m, 2H), 7.21 (t, J = 

8.8 Hz, 1H), 4.38 (q, J = 7.6 Hz, 1H), 3.46-3.11 (m, 2H) 2.90 (t, J = 7.6 Hz, 2H), 2.32 (s, 

3H), 1.70-1.62 (m, 4H), 1.42-1.33 (m, 4H), 1.17 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, 

CD3OD) δ 168.92, 163.68 (d, J = 250.5 Hz), 135.59 (d, J = 3.8 Hz), 130.62 (d, J = 6.1 

Hz), 127.09 (d, J = 9.1 Hz), 126.35 (d, J = 19.0 Hz), 115.52 (d, J = 23.6 Hz), 52.68, 
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44.20, 39.17, 30.04, 26.64, 23.11, 14.54, 13.08 (d, J = 3.8 Hz). MS (ESI) 376.33 [M + 

H]+. 

 

Procedure B for Boc or tButyl Deprotection (3.4d-3.4g) 

To a solution of protected amine (1 equiv.) in DCM (0.2 M) at 0 °C was added a solution 

of TFA and triethylsilane (5/1, v/v). The TFA and triethylsilane were premixed at 0 oC 

prior to addition. After 1 h, the solvent was removed under reduced pressure yielding the 

desired products.  

 

(R)-2-(N-(5-Aminopentyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide TFA salt (3.4d) 

 

White foam (26 mg, 50%). 1H NMR (400 MHz, CD3OD) δ 7.76-7.70 (m, 2H), 7.68 (t, J = 

8.8 Hz, 1H), 4.41 (q, J = 7.2 Hz, 1H), 3.49-3.41 (m, 1H), 3.24-3.17 (m, 1H), 2.92 (t, J = 

7.6 Hz, 2H), 2.34 (s, 3H), 1.74-1.63 (m, 4H), 1.43-1.36 (m, 2H), 1.19 (d, J = 7.2 Hz, 3H). 

13C NMR (100 MHz, CD3OD) δ 168.89, 163.65 (d, J = 250.5 Hz), 135.56 (d, J = 3.0 Hz), 

130.58 (d, J = 6.1 Hz), 127.04 (d, J = 9.1 Hz), 126.35 (d, J = 18.3 Hz), 115.49 (d, J = 

24.3 Hz), 52.63, 44.15, 39.11, 30.01, 26.63, 23.08, 14.45, 13.03 (d, J = 3.8 Hz). MS 

(ESI) 362.2 [M + H]+. 
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(R)-2-(N-(4-Aminobutyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide TFA salt (3.4e) 

 

White foam (15 mg, 17%). 1H NMR (400 MHz, CD3OD) δ 7.76-7.68 (m, 2H), 7.22 (t, J = 

8.8 Hz, 1H),4.38 (q, J = 6.8 Hz, 1H), 3.51-3.45 (m, 1H), 3.28-3.21 (m, 1H), 2.97-2.93 (m, 

2H), 2.34 (s, 3H), 1.77-1.64 (m, 4H),  1.19 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, 

CD3OD) δ 168.82, 163.74 (d, J = 250.5 Hz), 135.41 (d, J = 3.8 Hz), 130.59 (d, J = 6.1 

Hz), 127.04 (d, J = 9.9 Hz), 126.40 (d, J = 18.3 Hz), 115.53 (d, J = 24.3 Hz), 52.60, 

43.68, 38.94, 27.56, 24.32, 14.50, 13.03 (d, J = 3.8 Hz). MS (ESI) 348.1 [M + H]+.  

 

(R)-2-(N-(3-Aminopropyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide TFA salt (3.4f) 

 

White foam (52 mg, 42%).1H NMR (400 MHz, CD3OD) δ 7.79-7.70 (m, 2H), 7.24 (t, J = 

8.4 Hz, 1H),4.39 (q, J = 6.8 Hz, 1H), 3.60-3.53 (m, 1H), 3.39-3.31 (m, 1H), 3.07-3.01 (m, 

2H), 2.34 (s, 3H), 2.09-2.01 (m, 2H),  1.19 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, 

CD3OD) δ 168.91, 163.86 (d, J = 250.5 Hz), 134.98 (d, J = 3.8 Hz), 130.66 (d, J = 6.9 

Hz), 127.11 (d, J = 9.1 Hz), 126.54 (d, J = 18.2 Hz), 115.63 (d, J = 24.3 Hz), 52.83, 

41.32, 36.88, 28.53, 14.54, 13.02 (d, J = 3.8 Hz). MS (ESI) 334.1 [M + H]+. 
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(R)-8-(4-Fluoro-N-(1-(hydroxyamino)-1-oxopropan-2-yl)-3-

methylphenylsulfonamido)octanoic acid (3.4g) 

 

The crude residue was purified by preparatory TLC using an eluent of 

DCM/MeOH/AcOH (19/1/0.1, v/v) to yield the desired product as a white solid (19 mg, 

20%). 1H NMR (400 MHz, CDCl3) δ 7.67-7.62 (m, 2H), 7.14 (t, J = 8.8 Hz, 1H), 4.42 (m, 

1H), 3.39-3.31 (m, 1H), 3.08-3.02 (m, 1H), 2.36-2.32 (m, 5H), 1.61-1.57 (m, 4H), 1.30-

1.26 (m, 6H), 1.14 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 179.19, 169.01, 

163.88 (d, J = 252.8 Hz), 134.91 (d, J = 3.8 Hz), 130.66 (d, J = 6.8 Hz), 126.91 (d, J = 

9.1 Hz), 126.75, 116.17 (d, J = 24.3 Hz), 52.77, 44.87, 33.88, 29.69, 28.52, 28.44, 

26.41, 24.41, 14.65 (d, J = 3.1 Hz), 13.06. MS (ESI) 419.0 [M + H]+. 

 

General Procedure for Hydrogenation (3.9, 3.3a) 

To a solution of nitroarene (1 equiv.) in MeOH or DCM (0.2 M) under H2 was added 

palladium on activated carbon (Pd/C) (200 mg, 10 wt. %). The reaction was shaken in a 

Parr apparatus at 4 atm at rt. After 4 h, the reaction mixture was filtered through a Celite 

pad, and the filtrate was concentrated under reduced pressure.  
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(R)-Methyl 2-(N-(3-aminobenzyl)-4-fluoro-3-methylphenylsulfonamido)propanoate 

(3.9) 

 

The crude residue was purified over SiO2 using an eluent of EtOAc/hexane (1/4, v/v) to 

give the desired product as a colorless oil. (277 mg, 77%). 1H NMR (400 MHz, CDCl3) δ 

7.66-7.65 (m, 2H), 7.11-7.01 (m, 2H), 6.67-6.54 (m, 3H), 4.61 (q, J = 7.6 Hz, 1H), 4.48 

(d, J = 16.0 Hz, 1H), 4.29 (d, J = 16.0 Hz, 1H), 3.67 (brs, 2H), 3.49 (s, 3H), 2.31 (s, 3H), 

1.31 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 171.64, 163.60 (d, J = 251.9 Hz), 

146.73, 138.29, 135.74 (d, J = 3.8 Hz), 131.15 (d, J = 6.0 Hz), 129.24, 127.32 (d, J = 9.1 

Hz), 126.02 (d, J = 18.2 Hz), 117.93, 115.57 (d, J = 23.5 Hz), 114.542, 114.29,  55.29, 

52.03, 49.31, 16.64, 14.56 (d, J = 3.8 Hz). 

 

(R)-2-(N-(4-Aminobenzyl)-4-fluoro-3-methylphenylsulfonamido)-N-

hydroxypropanamide (3.3a)  

 

The crude residue was purified by preparatory TLC using an eluent of DCM/MeOH 

(19/1, v/v) to give the desired product as yellow solid (40 mg, 43%). 1H NMR (400 MHz, 

CDCl3) δ 7.60-7.56 (m, 2H), 7.11-7.08 (m, 3H), 6.62-6.60 (m, 2H), 4.51-4.41 (m, 2H), 

4.12-4.09 (m, 1H), 2.29 (s, 3H), 1.18 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 

168.42, 163.77 (d, J = 252.7 Hz), 146.10, 135.33, 130.86 (d, J = 6.8 Hz), 130.10, 127.0 
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(d, J = 9.1 Hz), 126.62 (d, J = 18.2 Hz), 125.62, 116.0 (d, J = 23.5 Hz), 115.45, 53.28, 

48.20, 14.58 (d, J = 3.8 Hz), 14.0. MS (ESI) 380.27 [M - H]-. 

 

Procedure A for Acetylation (3.10) 

To a solution of 3.9 (1 equiv.) in DCM (0.15 M) was added TEA (10 equiv.), then AcCl 

(10 equiv.) at 0 oC. The reaction was gradually allowed to warm to rt. After 16 h, the 

reaction mixture was concentrated under reduced pressure, and the resulting residue 

was re-suspended in EtOAc (15 mL). The organic layer was washed with sat. NH4Cl (5 

mL), brine (5 mL), dried over Na2SO4, filtered, and concentrated under reduced 

pressure. 

 

(R)-Methyl 2-(N-(3-acetamidobenzyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.10) 

 

The crude product was purified over SiO2 using an eluent of EtOAc/Hex (1/1, v/v) to yield 

the desired product as a yellow solid (200 mg, 65%). 1H NMR (400 MHz, CDCl3) δ7.65-

7.63 (m, 3H), 751-7.46 (m, 2H), 7.22 (t, J = 7.6 Hz, 1H), 7.12-7.03 (m, 2H), 4.65 (q, J = 

7.2 Hz, 1H), 4.57 (d, J = 16.4 Hz, 1H), 4.36 (d, J = 16.4 Hz, 1H), 3.48 (s, 3H), 2.31 (s, 

3H), 2.15 (s, 3H), 1.30 (d, J = 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 171.57, 168.60, 

163.70 (d, J = 252.0 Hz), 138.35, 138.31, 135.43 (d, J = 3.7 Hz), 131.10 (d, J = 6.1 Hz), 
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129.01, 127.33 (d, J = 9.9 Hz), 126.18 (d, J = 18.2 Hz), 123.46, 119.04, 119.0, 115.66 

(d, J = 23.5 Hz), 55.45, 52.10, 48.09, 24.55, 16.86, 14.58 (d, J = 3.8 Hz). 

 

Procedure B for Acetylation (3.5a-3.5f) 

To a solution of amine (1 equiv.) in THF (0.3 M) was added TEA (1.2 equiv.), followed by 

DMAP (0.1 equiv.) and acetic anhydride (1.2 equiv) at 0 °C. The flask was allowed to 

gradually warm to rt, and the reaction was stirred overnight. After 16 h, the reaction 

mixture was evaporated under reduced pressure. The resulting residue was re-

suspended in EtOAc (15 mL), and the organic solution was washed with 1 N HCl (5 mL), 

sat. aq. NaHCO3 (5 mL), and brine (5 mL), dried over Na2SO4, filtered, and concentrated 

under reduced pressure. The crude product was purified over SiO2 using an eluent of 

DCM/MeOH/TEA (33/1/0.3, v/v) to yield the desired product. 

 

(R)-Methyl 2-(N-(4-(acetamidomethyl)benzyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.5a) 

 

Colorless oil (204 mg, 95% over two steps). 1H NMR (400 MHz, CDCl3) δ 7.64-7.6 (m, 

2H), 7.27 (d, J = 8 Hz, 2H), 7.19 (d, J = 8 Hz, 2H), 7.1 (t, J = 8.4 Hz, 1H), 6.48 (bs, 1H), 

4.61 (q, J = 7.2 Hz, 1H), 4.55 (d, J = 16.4 Hz, 1H) 4.38-4.35 (m, 3H), 3.47 (s, 3H), 2.32 

(s, 3H), 1.98 (s, 3H), 1.29 (d, J = 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 171.5, 

170.3, 163.7 (d, J = 252.8 Hz), 137.9, 136.5, 135.5 (d, J = 3.8 Hz), 131.1 (d, J = 6.1 Hz), 
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128.1, 127.8, 127.3 (d, J = 9.1 Hz), 126.2 (d, J = 18.2 Hz), 115.7 (d, J = 23.6 Hz), 55.3, 

52.1, 49.0, 43.2, 23.1, 16.8, 14.6 (d, J = 3.0 Hz).  

 

(R)-Methyl 2-(N-(3-(acetamidomethyl)benzyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.5b) 

 

Colorless oil (91 mg, 80% over two steps)1H NMR (400 MHz, CDCl3) δ 7.65-7.61 (m, 

2H), 7.25-7.23 (m, 3H), 7.17 (m, 1H), 7.1 (t, J = 8 Hz, 1H), 6.1 (bs, 1H), 4.63 (q, J = 7.6 

Hz, 1H), 4.54 (d, J = 16.4 Hz, 1H) 4.41-4.36 (m, 3H), 3.47 (s, 3H), 2.32 (s, 3H), 2.03 (s, 

3H), 1.30 (d, J = 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 171.6, 170.0, 163.7 (d, J = 

252.0 Hz), 138.6, 137.7, 135.5 (d, J = 3.0 Hz), 131.1 (d, J = 6.1 Hz), 128.8, 127.3 (d, J = 

9.1 Hz), 127.17, 126.99, 126.1 (d, J = 18.2 Hz), 115.7 (d, J = 23.5 Hz), 55.3, 52.1, 49.0, 

43.5, 23.2, 16.7, 14.6 (d, J = 3.8 Hz). 

 

(R)-Methyl 2-(N-(4-(2-acetamidoethyl)benzyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.5c) 

 

Colorless oil (195 mg, 90% over two steps). 1H NMR (400 MHz, CDCl3) δ 7.67-7.63 (m, 

2H), 7.25 (d, J = 7.6 Hz, 2H), 7.14-7.09 (m, 3H), 6.19 (s, 1H), 4.63 (q, J = 7.2 Hz, 1H), 

4.54 (d, J = 16.0 Hz, 1H), 4.39 (d, J = 16.0 Hz, 1H), 3.48-3.43 (m, 5H), 2.79 (t, J = 7.6 
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Hz, 2H), 2.32 (s, 3H), 1.93 (s, 3H), 1.31 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) 

δ 171.49, 170.27, 163.64 (d, J = 252.0 Hz), 138.45, 135.54 (d, J = 3.8 Hz), 135.27, 

131.06 (d, J = 6.8 Hz), 128.72, 128.19, 127.29 (d, J = 9.1 Hz), 126.13 (d, J = 18.2 Hz), 

115.67 (d, J = 23.5 Hz), 55.20, 52.03, 48.93, 40.70, 35.26, 23.17, 16.60, 14.58 (d, J = 

3.0 Hz). 

 

(R)-Methyl 2-(N-(6-acetamidohexyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.5d) 

 

Colorless oil (190  mg, 89% over two steps).1H NMR (400 MHz, CDCl3) δ 7.69-7.64 (m, 

2H), 7.12 (t, J = 8.8 Hz, 1H), 6.25 (s, 1H), 4.60 (m, 1H), 3.56 (s, 3H), 3.26-3.08 (m, 4H), 

2.34 (s, 3H), 1.97 (s, 3H), 1.70-1.24 (m, 11H). 13C NMR (100 MHz, CDCl3) δ 171.84, 

170.31, 163.59 (d, J = 251.2 Hz), 135.56 (d, J = 3.8 Hz), 130.89 (d, J = 6.8 Hz), 127.18 

(d, J = 9.1 Hz), 126.10 (d, J = 18.3 Hz), 115.63 (d, J = 23.6 Hz), 55.20, 52.13, 45.78, 

39.39, 30.85, 29.40, 26.47, 26.41, 23.20, 16.72, 14.60 (d, J = 3.0 Hz). 
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(R)-Methyl 2-(N-(5-acetamidopentyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.5e) 

 

Colorless oil (85 mg, 80% over two steps). 1H NMR (400 MHz, CDCl3) δ 7.68-7.61 (m, 

2H), 7.11 (t, J = 8.8 Hz, 1H), 5.92 (s, 1H), 4.60 (q, J = 7.2 Hz, 1H), 3.56 (s, 3H), 3.26-

3.19 (m, 3H), 3.15-3.09 (m, 1H), 2.34 (s, 3H), 1.97 (s, 3H), 1.74-1.47 (m, 4H), 1.41 (d, J 

= 7.2 Hz, 3H), 1.35-1.30 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 171.81, 170.21, 163.62 

(d, J = 252.0 Hz), 135.48 (d, J = 3.1 Hz), 130.90 (d, J = 6.0 Hz), 127.16 (d, J = 9.1 Hz), 

126.14 (d, J = 19.0 Hz), 115.63 (d, J = 23.5 Hz), 55.19, 52.15, 45.63, 39.39, 30.57, 

29.07, 24.07, 23.28, 16.71, 14.61 (d, J = 3.1 Hz). 

 

(R)-Methyl 2-(N-(3-acetamidopropyl)-4-fluoro-3-

methylphenylsulfonamido)propanoate (3.5f) 

 

Colorless oil (50 mg, 33% over two steps). 1H NMR (400 MHz, CDCl3) δ 7.67-7.62 (m, 

2H), 7.13 (t, J = 8.8 Hz, 1H), 6.37 (s, 1H), 4.56 (q, J = 7.2 Hz, 1H), 3.57 (s, 3H), 3.32-

3.25 (m, 4H), 2.34 (s, 3H), 1.99 (s, 3H), 1.89-1.78 (m, 2H), 1.39 (d, J = 7.6 Hz, 3H). 13C 

NMR (100 MHz, CDCl3) δ 171.65, 170.31, 163.66 (d, J = 252.0 Hz), 135.10 (d, J = 3.0 
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Hz), 130.79 (d, J = 6.1 Hz), 127.08 (d, J = 9.1 Hz), 126.29 (d, J = 18.2 Hz), 115.73 (d, J 

= 23.5 Hz), 55.14, 52.20, 43.13, 36.47, 30.35, 23.22, 16.34, 14.56 (d, J = 3.0 Hz). 

 

Synthesis of Methyl Amide (3.7). 

(R)-Methyl 2-(4-fluoro-3-methyl-N-(8-(methylamino)-8-

oxooctyl)phenylsulfonamido)propanoate (3.7) 

 

To a solution of 3.1n (97 mg, 0.2 mmol) in DCM (3 mL) was added TFA (1 mL). The 

reaction mixture was stirred at room temperature. After 2.5 h, the solvent was removed 

under reduced pressure, and the resulting residue was dissolved in DCM (15 mL). The 

organic layer was washed with 1 N HCl (5 mL), and brine (5 mL), dried over Na2SO4, 

filtered, and concentrated under reduced pressure to give crude product which was 

subjected to the next reaction without further purification. To a solution of the crude 

product, 1-hydroxybenzotriazole (25 mg, 0.19 mmol), 4-methylmorpholine (95 μL, 0.85 

mmol), and methylamine hydrochloride (35 mg, 0.5 mmol) in THF (2 mL) was added 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (46 mg, 0.24 mmol), and the 

reaction mixture was stirred overnight. After 16 h, the reaction mixture was diluted with 

water (10 mL) and extracted with DCM (3 x 15 mL). The combined organic extracts are 

washed with brine (5 mL), dried over Na2SO4, filtered, and concentrated under reduced 

pressure. The crude product was  purified over SiO2 using an eluent of DCM/MeOH 

(50/1, v/v) to give 3.7 as colorless oil (50 mg, 71%). 1H NMR (400 MHz, CDCl3) δ 7.68-

7.63 (m, 2H), 7.11 (t, J = 8.8 Hz, 1H), 5.89 (brs, 1H), 4.61 (q, J = 6.8 Hz, 1H), 3.56 (s, 
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3H), 3.26-3.18 (m, 1H), 3.12-3.04 (m, 1H), 2.8 (s, 3H), 2.34 (s, 3H), 2.16 (t, J = 7.6 Hz, 

2H), 1.71-1.52 (m, 4H), 1.42 (d, J  = 7.2 Hz, 3H), 1.28-1.25 (m, 6H). 13C NMR (100 MHz, 

CDCl3) δ 173.86, 171.87, 163.57 (d, J = 252.0 Hz), 135.55 (d, J = 3.8 Hz), 130.91 (d, J = 

6.8 Hz), 127.18 (d, J = 9.1 Hz), 126.06 (d, J = 18.2 Hz), 115.59 (d, J = 23.5 Hz), 55.17, 

52.14, 45.87, 36.50, 30.89, 29.11, 28.83, 26.67, 26.24, 25.60, 16.74, 14.62 (d, J = 3.8 

Hz). 

Synthesis of Non-Commercial Starting Materials 

tert-Butyl 4-(hydroxymethyl)phenethylcarbamate (3.12) 

 

To a solution of [4-(2-Amino-ethyl)-phenyl]-methanol hydrochloride (200 mg, 1.06 mmol) 

in DMF (1 mL) containing TEA (163 μL, 1.17 mmol) was added Boc anhydride (256 mg, 

1.17 mmol) at 0 oC. The reaction was allowed to gradually warm to rt, and was stirred 

overnight. After 16 h, the reaction was concentrated under reduced pressure. The crude 

residue was purified over SiO2 using an eluent of EtOAc/Hexane (1/3, v/v) to give the 

desired product as colorless oil (234 mg, yield 88%).1H NMR (400 MHz, CDCl3) 7.26 (d, 

J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 4.74 (m, 1H), 4.6 (s, 2H), 3.31 (m, 2H), 2.98 (s, 

1H), 2.75 (t, J = 6.8 Hz, 2H), 1.42 (s, 9H). 13C NMR (100 MHz, CDCl3) 156.00, 139.24, 

138.14, 128.83, 127.24, 79.24, 64.68, 41.78, 35.78, 28.38. 

 

tert-Butyl 4-(bromomethyl)phenethylcarbamate (3.13). 
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To a solution of 3.12 (234 mg, 0.93 mmol) and triphenylphosphine (367 mg, 1.4 mmol) in 

DCM (2 mL) was added carbon tetrabromide (463 mg, 1.4 mmol) at 0°C. After 1 h, the 

reaction was concentrated under reduced pressure. The crude residue was purified over 

SiO2 using an eluent of EtOAc/Hexane (1/5, v/v) to give the desired product as a white 

solid (247 mg, yield 84%).1H NMR (400 MHz, CDCl3) 7.32 (d, J = 8.0 Hz, 2H), 7.16 (d, J 

= 8.0 Hz, 2H), 4.64 (m, 1H), 4.48 (s, 2H), 3.36 (m, 2H), 2.79 (t, J = 6.8 Hz, 2H), 1.44 (s, 

9H). 13C NMR (100 MHz, CDCl3) 155.81, 139.46, 135.85, 129.23, 79.20, 41.62, 35.92, 

33.43, 28.39. 

 

tert-Butyl 8-bromooctanoate (3.14). 

 

To a solution of 8-bromooctanoic acid (200 mg, 0.9 mmol) in DCM (2 mL) was added 

TFAA (280 μL, 2.0 mmol) dropwise at 0 °C. After 2.5 h, tBuOH (310 μL, 3.2 mmol) was 

slowly added. After 1 h reaction warmed to rt. After 2.5 h the reaction was quenched with 

H2O (5 mL) and extracted with Et2O (4 x 15 mL). The combined organic layers were 

washed with brine and dried over MgSO4, filtered, and concentrated under reduced 

pressure. The crude product was purified over SiO2 using an eluent of EtOAc/Hex (1/10, 

v/v) to give 3.14 as colorless oil (240 mg, 96%).1H NMR (400 MHz, CDCl3) δ 3.39 (t, J = 

6.8 Hz, 2H), 2.2 (t, J = 7.2 Hz, 2H), 1.85 (p, J = 6.8 Hz, 2H), 1.58 (t, J = 6.8 Hz, 2H), 1.44 

(s, 11H), 1.33 (s, 4H). 13C NMR (100 MHz, CDCl3) δ 172.91, 79.73, 35.36, 33.64, 32.65, 

28.77, 28.34, 28.12, 27.93, 24.86. 
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Chapter 4 

 

IDENTIFICATION OF A LIGAND-INDUCED BINDING POCKET IN ANTHRAX TOXIN 
LETHAL FACTOR 

 

Adapted with permission from: 

 

Maize, K. M.; Kurbanov, E. K.; Johnson, R. L.; Amin, E. A.; Finzel, B. C. Ligand-

Induced Expansion of the S1′ Site in the Anthrax Toxin Lethal Factor . Submitted 2015. 
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4.2 INTRODUCTION 

 As a consequence of the work reported in chapter 3, we produced analog 4.17, 

which shows a unique binding mode compared to the rest of the compounds. Instead of 

occupying the S2' subsite like the other N-alkyl substituents, the isobutyl substituent 

occupies the S1′ subsite, causing the 4-fluoro-3-methylphenyl group to position in a new 

pocket designated S1′*. The S1′* site is created by the movement of Lys656 and 

Leu677. This conformational change results in a solvent exposed tunnel that may be 

used to develop potent and novel LF inhibitors (Figure 4.1). I have synthesized analogs 

of 4.17, with modifications to the 4-fluoro-3-methylphenyl substituent, in an effort to take 

advantage of this solvent exposed tunnel. 
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4.3 MATERIALS AND METHODS 

4.3.1 Synthesis, Biochemical Evaluation, and Structural Biology 

 Analog synthesis was accomplished as outlined in Scheme 4.1.  A generalized 

synthetic route was fashioned for all the designed analogs. Intermediate sulfonamides 

4.5-4.7 were readily synthesized from commercially available D-valine tert-butyl ester 

hydrochloride and commercially available sulfonyl chlorides 4.2-4.4 through nucleophilic 

substitution. Alkylation of sulfonamides 4.5-4.7 with 1-iodo-2-methylpropane was carried 

out under basic conditions to afford tertiary sulfonamides 4.8-4.10 in 56-66% yield. tert-

Butoxycarbonyl deprotection of analogues 4.8-4.10 was achieved with TFA/DCM (1:2, 

v/v) in nearly quantitative yields. The resulting carboxylic acids 4.11-4.13 were submitted 

to EDC coupling to yield THP-protected hydroxamic acids 4.14-4.16 in 30-97% yield. 

The THP group was removed with TFA/DCM (1:2, v/v) to yield 4.17-4.19 in 31-57% 

yield. Synthesized compounds were evaluated for LF inhibition utilizing the previously 

Figure 4.1. LF active site with co-crystallized 4.17 (PDB ID 4XM6). 
The circle denotes the site of substitution in 4.17. (Schrödinger 
Maestro Discovery Suite 9.4). Surface colored by residue charge. 
Orange = neutral residues, Red = negatively charged residues, 
and Blue = positively charged residues. 
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described FRET assay. Crystal structures were obtained as previously described in 

Chapter 2. 

Scheme 4.1. Synthesis of compounds 4.17-4.19 

Reagents and conditions: (a) K2CO3, dioxane/H2O (1:1), rt (4.5, 94%; 4.6, 29%; 4.7, 
79%); (b) 1-iodo-2-methylpropane, K2CO3, DMF, rt (4.8, 59%; 4.9, 66%; 4.10, 56%)  (c) 
TFA/DCM (1:2, v/v) (4.11, 97%; 4.12, 98%; 4.13, 99%); (d) THPONH2, NMM, HOBt, 
EDC, DMF, rt (4.14, 30%; 4.15, 90%; 4.16, 97%); (e) TFA/DCM (1:2, v/v) (4.17, 50%; 
4.18, 31%; 4.19, 57%). 

4.4 RESULTS AND DISCUSSION 

4.4.1 Biochemical Evaluation and Structural Biology 

Both analogs of 4.17 (4.18 and 4.19) were co-crystallized with LF and show 

similar binding modes to 4.17 (Figures 4.2 and 4.3). Specifically, we can see that the 3-

methoxyphenyl group of 4.18 and the 3-methoxymethylphenyl group of 4.19 target our 

newly discovered, ligand-induced S1′* tunnel formation. 
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Table 4.1 presents FRET assay results for 4.17-4.19. Unfortunately, the potency 

of 4.18 and 4.19 did not improve compared to 4.17. This is because the 3-methoxy 

group of 4.18 and the 3-methoxymethyl group of 4.19 did not engage in H-bond 

interactions with residues in the S1′* tunnel. Nevertheless, this study shows that the S1' 

subsite is more flexible than previously thought and capable of accommodating relatively 

Figure 4.3. LF active site with co-crystallized 4.19 (PDB ID 4XM8). The circle 
denotes site of modification in 4.19. (Schrödinger Maestro Discovery Suite 9.4). 
Surface colored by residue charge. Orange = neutral residues, Red = negatively 
charged residues, and Blue = positively charged residues. 

 
 

Figure 4.2. LF active site with co-crystallized 4.18 (PDB ID 4XM7). The circle 
denotes site of modification in 4.18. (Schrödinger Maestro Discovery Suite 9.4). 
Surface colored by residue charge. Orange = neutral residues, Red = negatively 
charged residues, and Blue = positively charged residues. 
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large hydrophobic modifications. This ligand-induced conformational change in the S1′ 

subsite of LF had not been demonstrated before this study. The virtual screening of 

~11,000,000 compounds against 4XM6 will be described in the following chapter.  

Table 4.1. LF FRET assay results for 4.17-4.19. 

GPHR #a PDB ID Cpd # R 
LF IC50 
(μM)b 

00223405 4XM6 4.17 
 

90 

00227098 4XM7 4.18 
 

600 

00278888 4XM8 4.19 
 

740 

aGPHR # is a compound number in our in-house collection of compounds 
bIC50 is a half maximal inhibitory concentration   

4.5 CONCLUDING REMARKS 

In this study, we identified a ligand-induced binding pocket in the S1′ site of LF 

designated S1′*, which is created by the movement of Lys656 and Leu677. This 

conformational change results in a solvent exposed tunnel that we expect may be used 

to develop potent and novel LF inhibitors in future. To note, this was the first time this 

ligand-induced conformational change was reported with LF inhibitors. In order to take 

advantage of the S1′* site, we have synthesized two analogs of 4.17 bearing polar 

moieties at the 3-phenyl position. Co-crystal structures of these compounds were 

obtained and show that the modifications in both 4.18 and 4.19 occupy the newly 

discovered S1′* solvent exposed tunnel. The potency of these analogs did not increase 

compared to 4.17 due to the inability of the 3-methoxy group of 4.18 and the 3-

methoxymethyl group of 4.19 to engage in H-bond interactions with the residues in the 
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S1′* tunnel. Although we were unable to obtain more potent compounds, these studies 

show that the S1′* site may be used in future design to develop potent LF inhibitors with 

a novel binding mode.      

4.6 EXPERIMENTAL 

General Synthesis Information. Chemical reagents were purchased from commercial 

sources and used without additional purification. Bulk solvents were purchased from 

Fisher Scientific and anhydrous N,N’-dimethylformamide (DMF) was purchased from 

EMD Chemicals. Reactions were performed under an atmosphere of dry N2 unless 

otherwise noted. Silica gel chromatography was performed on self-packed columns with 

SiliaFlash 60Å silica gel (SiliCycle). Preparatory thin layer chromatography (TLC) was 

performed on plates with glass backed SiliaPlate 60Å silica gel (SiliCycle). HPLC 

analyses were performed on an Agilent 1100 series instrument equipped with a diode 

array detector and a Zorbax SB-C18 column (0.5 x 150 mm, 5 µm, Agilent 

Technologies). LC-MS analyses were performed on an Agilent 1100 series instrument 

equipped with an Agilent MSD SL Ion Trap mass spectrometer (positive-ion mode) and a 

Zorbax SB-C18 column (0.5 x 150 mm, 5 µm, Agilent Technologies). The analysis 

method (15 µL/min flow rate) involved isocratic 10% MeCN (containing 0.1% TFA) in 

ddH2O (containing 0.1% HCO2H; 0 to 2 mins) followed by a linear gradient of 10% to 

90% MeCN (containing 0.1% TFA) in ddH2O (containing 0.1% HCO2H; 2 to 24 mins), 

and isocratic 90% MeCN (containing 0.1% TFA) in ddH2O (containing 0.1% HCO2H; 24-

26 mins). The column was heated to 40 oC. Wavelengths monitored = 254 nm and 215 

nm. Nuclear magnetic resonance (NMR) spectra were recorded in CDCl3, CD3OD, or 

DMSO-d6 on a Varian instrument operating at 400 MHz (for 1H) and 100 MHz (for 13C) at 
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ambient temperature. Chemical shifts are reported in parts per million (ppm) and 

normalized to internal solvent peaks or tetramethylsilane (0 ppm). 

 

Representative Procedure for Synthesis of 4.5-4.7 

 

(R)-tert-Butyl 2-(4-fluoro-3-methylphenylsulfonamido)-3-methylbutanoate (4.5) 

 

D-Valine tert-butyl ester hydrochloride (4.1, 0.6 g, 2.9 mmol) was added to a solution of 

K2CO3 (0.8 g, 6.0 mmol) in dioxane/water (6 mL, 1:1, v/v). To this, a solution of 4-fluoro-

3-methylphenyl-sulfonylchloride (7, 0.5 g, 2.4 mmol) in dioxane (1 mL) was added 

immediately after with vigorous stirring. The mixture was stirred at rt overnight. Upon 

consumption of the starting material as determined by TLC, the solvent was reduced to 

one-third the reaction volume under reduced pressure. The aq. layer was extracted with 

EtOAc (3 × 20 mL). The combined organic layers were washed with sat. aq. NH4Cl (1 × 

20 mL) and brine (1 × 20 mL), dried over Na2SO4, filtered, and concentrated under 

reduced pressure. The crude product was purified over SiO2 using an eluent of 

EtOAc/hexane (1/5, v/v) to yield 4.5 as a white solid (0.8 g, 94%). 1H NMR (400 MHz, 

CDCl3) δ 7.77-7.72 (m, 2H), 7.10 (t, J = 8.4 Hz, 1H), 5.77 (d, J = 10.0 Hz, 1H, NH), 3.66 

(dd, J = 10.0 Hz, J = 4.4 Hz, 1H), 2.30 (s, 3H), 2.11-2.0 (m, 1H), 1.26 (s, 9H), 1.0 (d, J = 

6.8 Hz, 3H), 0.88 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 170.12, 163.46 (d, J 

= 251.2 Hz), 135.72 (d, J = 3.8 Hz), 130.91 (d, J = 6.8 Hz), 127.26 (d, J = 9.9 Hz), 

125.91 (d, J = 18.2 Hz), 115.43 (d, J = 23.5 Hz), 82.0, 61.31, 31.49, 27.46, 18.93, 17.02, 

14.24 (d, J = 3.8 Hz). 
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(R)-tert-Butyl 2-(4-fluoro-3-methoxyphenylsulfonamido)-3-methylbutanoate (4.6) 

 

White solid (202 mg, 29%). 1H NMR (400 MHz, CDCl3) δ 7.50-7.44 (m, 2H), 7.16 (t, J = 

8.8 Hz, 1H), 5.57 (d, J = 10.4 Hz, 1H, NH), 3.11 (s, 3H), 3.64 (dd, J = 10.0 Hz, J = 4.4 

Hz, 1H), 2.10-2.02 (m, 1H), 1.26 (s, 9H), 1.0 (d, J = 6.8 Hz, 3H), 0.87 (d, J = 7.2 Hz, 3H). 

13C NMR (100 MHz, CDCl3) δ 170.17, 154.73 (d, J = 252.8 Hz), 147.97 (d, J = 11.4 Hz), 

136.04 (d, J = 3.8 Hz), 120.61 (d, J = 8.4 Hz), 116.14 (d, J = 19.8 Hz), 112.41 (d, J = 3.0 

Hz), 82.28, 61.36, 56.37, 31.55, 27.58, 18.98, 17.02. 

  

(R)-tert-Butyl 2-(3-(methoxymethyl)phenylsulfonamido)-3-methylbutanoate (4.7) 

 

White solid (250 mg, 79%). 1H NMR (400 MHz, CDCl3) δ 7.84 (s, 1H), 7.78 (d, J = 7.6 

Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 5.54 (d, J = 10.0 Hz, 1H, NH), 

4.49 (s, 2H), 3.65 (dd, J = 9.6 Hz, J = 4.4 Hz, 1H), 3.39 (s, 3H), 2.08-2.01 (m, 1H), 1.22 

(s, 9H), 0.99 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.4 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 

170.12, 140.03, 139.77, 131.39, 128.99, 126.30, 126.02, 82.12, 73.47, 61.26, 58.22, 

31.58, 27.57, 18.99, 17.05.  
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Representative Procedure for N-Alkylation (4.8-4.10) 

 

(R)-tert-Butyl 2-(4-fluoro-N-isobutyl-3-methylphenylsulfonamido)-3-

methylbutanoate (4.8) 

 

To a solution of 4.5 (0.4 g, 1.0 mmol) and 1-iodo-2-methylpropane (0.3 mL, 3.0 mmol) in 

anhydrous DMF (2.0 mL) was added K2CO3 (0.7 g, 5.0 mmol). The reaction mixture was 

stirred at room temperature. After 48 h, the solvent was removed under reduced 

pressure and the resulting residue was taken up in H2O, extracted with EtOAc (3 × 15 

mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude 

product was purified over SiO2 using an eluent of EtOAc/hexane (1/10, v/v) to yield 4.8 

as a colorless oil (240 mg, 59%). 1H NMR (400 MHz, CDCl3) δ 7.72-7.68 (m, 2H), 7.09 

(t, J = 8.4 Hz, 1H), 4.0 (d, J = 10.4 Hz, 1H), 3.27CHA (dd, J = 14.8 Hz, J = 6.0 Hz, 1H), 

3.05CHB (dd, J = 14.8 Hz, J = 8.8 Hz, 1H), 2.33 (s, 3H), 2.14-2.05 (m, 2H), 1.32 (s, 9H), 

1.06 (d, J = 6.8 Hz, 3H), 0.93 (d, J = 6.8 Hz, 3H), 0.85 (t, J = 6.8 Hz, 6H). 13C NMR (100 

MHz, CDCl3) δ 169.27, 163.39 (d, J = 251.3 Hz), 136.58 (d, J = 3.8 Hz), 131.13 (d, J = 

6.0 Hz), 127.46 (d, J = 9.1 Hz), 125.73 (d, J = 18.2 Hz), 115.38 (d, J = 23.5 Hz), 81.72, 

67.15, 53.20, 29.1, 27.87, 27.74, 20.57, 20.26, 19.86, 19.40, 14.53 (d, J = 3.8 Hz).  
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(R)-tert-Butyl 2-(4-fluoro-N-isobutyl-3-methoxyphenylsulfonamido)-3-

methylbutanoate (4.9) 

 

Colorless oil (153 mg, 66%). 1H NMR (400 MHz, CDCl3) δ 7.49-7.43 (m, 2H), 7.16 (t, J = 

8.4 Hz, 1H), 3.99-3.96 (m, 4H), 3.26 CHA (dd, J = 14.4 Hz, J = 6.0 Hz, 1H), 3.05 CHB (dd, J 

= 14.4 Hz, J = 8.8 Hz, 1H), 2.13-2.04 (m, 2H), 1.30 (s, 9H), 1.06 (d, J = 6.8 Hz, 3H), 0.94 

(d, J = 6.8 Hz, 3H), 0.87 (d, J = 7.2 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 169.17, 

154.64 (d, J = 252.8 Hz), 147.68 (d, J = 11.4 Hz), 136.92 (d, J = 3.8 Hz), 120.85 (d, J = 

7.6 Hz), 116.14 (d, J = 19.0 Hz), 113.13 (d, J = 3.0 Hz), 81.9, 67.46, 56.53, 53.34, 29.16, 

28.0, 27.76, 20.6, 20.37, 19.93, 19.43.  

 

(R)-tert-Butyl 2-(N-isobutyl-3-(methoxymethyl)phenylsulfonamido)-3-

methylbutanoate (4.10) 

 

Colorless oil (163 mg, 56%). 1H NMR (400 MHz, CDCl3) δ 7.82-7.78 (m, 2H), 7.53 (d, J = 

8.0 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 4.50 (s, 2H), 4.03 (d, J = 10.8 Hz, 1H), 3.39 (s, 3H), 

3.26 CHA (dd, J = 14.8 Hz, J = 6.4 Hz, 1H), 3.07 CHB (dd, J = 14.0 Hz, J = 8.8 Hz, 1H), 

2.14-2.04 (m, 2H), 1.29 (s, 9H), 1.04 (d, J = 6.4 Hz, 3H), 0.93 (d, J = 6.8 Hz, 3H), 0.85 

(d, J = 6.4 Hz, 3H), 0.82 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 169.32, 

141.08, 139.45, 131.16, 128.82, 126.66, 126.30, 81.70, 73.62, 67.12, 58.23, 53.14, 

29.03, 27.79, 27.74, 20.59, 20.24, 19.84, 19.42. 
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Representative Procedure for tert-Butyl Deprotection (4.11-4.13) 

To an ice-chilled solution of 4.8 (0.2 g, 0.6 mmol) in DCM (2.0 mL) was added TFA (1.0 

mL) dropwise. The reaction mixture was stirred for 6 hours at rt. Upon consumption of 

the starting material as determined by TLC, the solvent was removed under reduced 

pressure, and the product was submitted to the next reaction without further purification. 

 

Representative Procedure for the Synthesis of 4.14-4.16 

 

(2R)-2-(4-Fluoro-N-isobutyl-3-methylphenylsulfonamido)-3-methyl-N-((tetrahydro-

2H-pyran-2-yl)oxy)butanamide (4.14) 

 

To a solution of 4.11 (130 mg, 0.38 mmol) in DMF (2 mL), HOBt (62 mg, 0.46 mmol), 

NMM (125 μL, 1.14 mmol), THPONH2 (137 mg, 1.17 mmol) and EDC (102 mg, 0.53 

mmol) were added. The mixture was stirred at rt overnight. Upon consumption of the 

starting material as determined by TLC, H2O (10 mL) was added. The aq. layer was 

extracted with EtOAc (3 × 20 mL).The combined organic layers were washed with 

saturated solution of NaHCO3 (1 × 20 mL), brine (1 × 20 mL), dried over Na2SO4, 

filtered, and concentrated under reduced pressure. The crude product was purified over 

SiO2 using an eluent of EtOAc/hexane (1/4, v/v) to yield a colorless oil (50 mg, 30%). 1H 

NMR (400 MHz, CDCl3) δ 9.43 (s, 1H), 7.72-7.68 (m, 2H), 7.09 (t, J = 8.4 Hz, 1H), 4.95 

(s, 1H), 4.0-3.90 (m, 1H), 3.69-3.54 (m, 2H), 3.30-3.21 (m, 1H), 3.01-2.96 (m, 1H), 2.33 

(s, 3H), 2.25-2.05 (m, 2H), 1.92-1.6 (m, 6H), 0.93-0.81 (m, 9H), 0.5-0.39 (m, 3H). 13C 

NMR (100 MHz, CDCl3) δ 167.10, 163.39 (d, J = 251.3 Hz), 136.58 (d, J = 3.8 Hz), 
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131.13 (d, J = 6.0 Hz), 127.46 (d, J = 9.1 Hz), 125.73 (d, J = 18.2 Hz), 115.38 (d, J = 

23.5 Hz), 102.1, 63.67, 62.13, 52.74, 27.83, 27.35, 26.36, 24.99, 20.38, 20.15, 19.93, 

19.25, 18.28, 14.53 (d, J = 3.8 Hz). 

 

(2R)-2-(4-Fluoro-N-isobutyl-3-methoxyphenylsulfonamido)-3-methyl-N-

((tetrahydro-2H-pyran-2-yl)oxy)butanamide (4.15) 

 

Colorless oil (160 mg, 90%). 1H NMR (400 MHz, CDCl3) δ 9.43 (s, 1H), 7.72-7.68 (m, 

2H), 7.09 (t, J = 8.4 Hz, 1H), 4.95 (s, 1H), 4.01-3.94 (m, 4H), 3.72-3.62 (m, 2H), 3.33-

3.27 (m, 1H), 3.03-2.98 (m, 1H), 2.24-2.05 (m, 2H), 1.92-1.6 (m, 6H), 0.93-0.81 (m, 9H), 

0.62-0.52 (m, 3H). 13C NMR (100 MHz, CDCl3) δ 167.10, 163.39 (d, J = 251.3 Hz), 

136.58 (d, J = 3.8 Hz), 131.13 (d, J = 6.0 Hz), 127.46 (d, J = 9.1 Hz), 125.73 (d, J = 18.2 

Hz), 115.38 (d, J = 23.5 Hz), 102.1, 63.67, 62.13, 56.54, 52.74, 27.83, 27.35, 26.36, 

24.99, 20.38, 20.15, 19.93, 19.25, 18.28. 

 

((2R)-2-(N-Isobutyl-3-(methoxymethyl)phenylsulfonamido)-3-methyl-N-((tetrahydro-

2H-pyran-2-yl)oxy)butanamide (4.16) 

 

Colorless oil (173 mg, 97%). 1H NMR (400 MHz, CDCl3) δ 9.13 (s, 1H), 7.43-7.37 (m, 

2H), 7.16-7.11 (m, 2H), 4.57 (s, 1H),  4.12 (s, 2H), 3.71-3.52 (m, 1H), 3.35-3.23 (m, 2H), 

3.02 (s, 3H), 2.93-2.89 (m, 1H), 2.65-2.50 (m, 1H), 1.84-1.67 (m, 2H), 1.44-1.21 (m, 6H), 
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0.55-0.42 (m, 9H), 0.13-0.01 (3, H). 13C NMR (100 MHz, CDCl3) δ 167.06, 140.45, 

140.02, 131.63, 129.11, 126.33, 125.96, 101.98, 63.56, 62.0, 60.29, 58.24, 52.70, 27.83, 

27.35, 26.36, 24.99, 20.38, 20.15, 19.93, 19.25, 18.28. 

 

Representative Procedure for THP Deprotection (4.17-4.19) 

 

(R)-2-(4-Fluoro-N-isobutyl-3-methylphenylsulfonamido)-N-hydroxy-3-

methylbutanamide (4.17) 

 

To an ice-chilled solution of 4.14 (0.05 g, 0.11 mmol) in DCM (2.0 mL) was added TFA 

(1.0 mL) dropwise. The reaction mixture was stirred overnight at rt. Upon consumption of 

the starting material as determined by TLC, the solvent was removed under reduced 

pressure and the resulting residue was purified by preparatory TLC using DCM/MeOH 

(19/1, v/v) to yield a white solid (0.02 g, 50%). The HPLC retention time is 18.7 min. 

Compound purity is >99% as determined by two-wavelength HPLC analysis (254 nm 

and 215 nm). 1H NMR (400 MHz, CD3OD) δ 7.77-7.68 (m, 2H), 7.20 (t, J = 8.8 Hz, 1H), 

3.74 (d, J = 11.2 Hz, 1H), 3.45 CHA (dd, J = 14.4 Hz, J = 6.8 Hz, 1H), 3.0 CHB (dd, J = 14.8 

Hz, J = 8.0 Hz, 1H), 2.34 (s, 3H), 2.16-2.08 (m, 2H), 0.89-0.82 (m, 12H). 13C NMR (100 

MHz, CD3OD) δ 167.06, 163.56 (d, J = 250.4 Hz), 136.1 (d, J = 3.8 Hz), 130.79 (d, J = 

6.8 Hz), 127.24 (d, J = 9.9 Hz), 126.07 (d, J = 18.9 Hz), 115.18 (d, J = 23.5 Hz), 64.10, 

52.70, 27.96, 27.67, 19.49, 19.2, 18.83, 18.30, 12.99 (d, J = 3.8 Hz). MS (ESI) 361.20 

[M + H]+.  
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(R)-2-(4-Fluoro-N-isobutyl-3-methoxyphenylsulfonamido)-N-hydroxy-3-

methylbutanamide (4.18) 

 

White solid (40 mg, 31%). The HPLC retention time is 18.1 min. Compound purity is 

94% by 254 nm and 97% by 215 nm as determined by HPLC analysis. 1H NMR (400 

MHz, CD3OD) δ 7.50-7.43 (m, 2H), 7.25 (t, J = 8.4 Hz, 1H), 3.95 (s, 3H), 3.8 (d, J = 10.8 

Hz, 1H), 3.46 CHA (dd, J = 14.8 Hz, J = 6.8 Hz, 1H), 3.0 CHB (dd, J = 14.4 Hz, J = 8.0 Hz, 

1H), 2.18-2.1 (m, 2H), 0.91-0.80 (m, 12H). 13C NMR (100 MHz, CD3OD) δ 167.16, 

154.73 (d, J = 252.7 Hz), 148.13 (d, J = 10.6 Hz), 136.68 (d, J = 3.8 Hz), 120.71 (d, J = 

8.3 Hz), 115.78 (d, J = 19.8 Hz), 112.14 (d, J = 3.1 Hz), 64.19, 55.68, 52.75, 27.91, 

27.59, 19.54, 19.23, 18.83, 18.32. MS (ESI) 377.10 [M + H]+. 

 

(R)-N-Hydroxy-2-(N-isobutyl-3-(methoxymethyl)phenylsulfonamido)-3-

methylbutanamide (4.19) 

 

White solid (80 mg, 57%). The HPLC retention time is 15.5 min. Compound purity is 

97% by 254 nm and 86% by 215 nm as determined by HPLC analysis. 1H NMR (400 

MHz, CD3OD) δ 7.83 (s, 1H), 7.78 (d, J = 7.2 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.52 (t, J 

= 7.6 Hz, 1H), 4.53 (s, 2H), 3.78 (d, J = 10.4 Hz, 1H), 3.47-3.38 (m, 4H), 3.02 CHB (dd, J = 

14.4 Hz, J = 7.6 Hz, 1H), 2.16-2.10 (m, 2H), 0.91-0.80 (m, 12H). 13C NMR (100 MHz, 
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CD3OD) δ 167.14, 140.51, 139.79, 131.50, 128.81, 126.29, 125.99, 73.21, 64.06, 57.28, 

52.69, 27.88, 27.61, 19.59, 19.27, 18.85, 18.39. MS (ESI) 373.10 [M + H]+. 
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Chapter 5 

 

LARGE-SCALE VIRTUAL SCREENING TO IDENTIFY COMPOUNDS THAT TARGET 
THE NEWLY DISCOVERED S1′* SUBSITE OF ANTHRAX TOXIN LETHAL FACTOR 
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5.1 INTRODUCTION 

High-throughput screening (HTS) is defined as the rapid experimental evaluation 

of large chemical libraries (10,000-100,000 compounds tested per day) to identify 

modulators of a validated drug target. Many pharmaceutical and biotechnology 

companies use this approach to fuel their drug discovery programs.152 As a result, 

fourteen drugs that were approved between 1991 and 2008 were originally discovered 

through HTS.153 Nonetheless, there are several limitations associated with HTS, 

including the high cost of infrastructure, long screening times, high rates of false 

positives, low rates for actual hits, and the limited chemical space represented by 

commercially-available HTS libraries.154,155 Virtual screening, on the other hand, is 

devoid of such limitations (although it certainly demonstrates others) and can be used to 

screen large chemical libraries very efficiently. When a crystal structure is available for a 

protein of interest, the most common virtual screening strategy is docking and 

scoring.156,157 A comprehensive review by Kubinyi describes many successful examples 

of docking and scoring-based virtual screens that resulted in drug candidates and 

approved drugs.158  

Overview of Glide: In this study, we used Glide 5.9,114–117 available through the 

Schrödinger Maestro Discovery Suite 9.4 (Schrödinger, Inc.),118 to screen large 
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compound libraries with the intent of identifying novel inhibitors of anthrax toxin lethal 

factor. At the preprocessing stage, Glide computes and generates a receptor grid that 

represents the shape and properties of the protein target’s active site. In the next step, 

Glide generates exhaustive conformations of each ligand and prescreens the small 

molecules for promising ligand poses, eliminating conformations with high-energies not 

suitable for binding to a receptor. These initial ligand poses (100-400) are energy 

minimized in the active site of the protein using the OPLS-AA force field.121 Then, three 

to six of the lowest-energy poses for each ligand are subjected to the Monte Carlo 

procedure for nearby torsional minima exploration. Once minimized conformations for 

each molecule are obtained, affinity scoring functions are applied that are designed to 

predict biological activity through the evaluation of protein-ligand interactions. Binding 

affinities for the minimized ligand poses are calculated and rank-ordered using 

Schrӧdinger’s proprietary GlideScore scoring function. GlideScore estimates the free 

energy of binding (ΔG) of a ligand to a target, which is related to its binding affinity by 

ΔG=-RTlnKA, where binding affinity is represented by KA=1/Kd=
    

      
, and EI is an 

enzyme-inhibitor complex. The GlideScore function incorporates van der Waals energy, 

Coulomb energy, a lipophilic term, a hydrogen-bonding term, a metal-binding term, a 

polar-hydrophobic term, a penalty for freezing rotatable bonds, and solvation terms. The 

best pose for each ligand, however, is selected using an Emodel score, which gives 

more weighting to electrostatic and van der Waals energies. In other words, the Emodel 

score is used to identify the best pose of a ligand, whereas GlideScore ranks the best 

poses among ligands.115  

Ligands can be docked to protein targets using three modes: high - throughput 

virtual screening (HTVS) mode, standard precision (SP) mode, and extra-precision (XP) 
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mode. HTVS and SP modes use the same scoring function; however, SP mode samples 

ligand conformations more thoroughly than HTVS mode. As a result, SP mode is more 

accurate, but slower than HTVS mode. Primarily, HTVS mode is used in the docking and 

scoring of millions of compounds, whereas SP mode is used in the docking and scoring 

of thousands of compounds. The slowest and most accurate mode is XP mode.116 It 

uses even more extensive conformational ligand sampling than SP mode. XP mode also 

uses a more elaborate scoring function than SP GlideScore. XP GlideScore includes van 

der Waals energy, Coulomb energy, a lipophilic term, a hydrogen-bonding term, rewards 

for π-π stacking and π-cation interactions, for Cl or Br in a hydrophobic environment that 

pack against Asp or Glu, and for hydrophobic enclosure. The XP  GlideScore also 

penalizes polar atom burial, desolvation, intra-ligand contacts, ligands with large 

hydrophobic contacts but low H-bond scores, exposed hydrophobic ligand groups, and 

freezing rotatable bonds.114,116 Primarily, XP mode is used for docking hundreds of 

compounds, especially during the hit-to-lead optimization stage of a drug discovery 

program. 

In our previous work, we synthesized and co-crystallized 4.17, an analog of MK-

31, which shows a different binding mode than our other N-alkylated analogs. This 

crystal structure will be published in due course as PDB ID 4XM6. Instead of occupying 

the S2' subsite, the isobutyl substituent causes a conformational change in the S1' 

subsite, resulting in a solvent exposed tunnel (Figure 4.1). Using 4XM6, we docked and 

scored ~11 million drug-like compounds from the ZINC159 database in order to discover 

novel binders of the S1′* subsite. Compounds predicted to have high inhibitory potency 

while targeting the modified S1′ subsite were subsequently purchased and evaluated for 

LF inhibition. 
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5.3 MATERIALS AND METHODS 

5.3.1 Protein and Ligand Preparation 

4XM6 was prepared for docking studies using the protein preparation wizard in 

Schrödinger’s Maestro Discovery Suite 9.4 (Schrödinger, Inc.) as previously discussed. 

We selected the ZINC database compiled by Shoichet et al.159 for virtual screening due 

to the diversity and drug-like properties of these compounds, which were also pre-filtered 

to pass Lipinski’s160 rules. Compounds with PSA > 150 and > 7 rotational bonds were 

also excluded. Compounds that passed these filtering criteria were energy minimized 

and protonated at pH 7.0 by Shoichet group.161  

5.3.2 Docking Method Development  

To maximize accuracy while minimizing computational cost, we first docked all 

the compounds (~11 million) using Glide in HTVS mode and refined the top scoring 

compounds using the SP and XP modes. We evaluated two specific docking 

methodologies as outlined below using the 1YQY crystal structure.110 

For this study, we created database 1 (DB1) which included ten of the most 

potent LF inhibitors92,162 from published literature (Table 5.1) and 10,000 decoy 

compounds randomly picked from the ZINC159 database.  

Table 5.1. Ten known LF inhibitors for initial docking and scoring studies92,162 

Compound ID Structure IC50 (nM) 

5.1 

 

0.44 
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5.2 

 

0.3 

5.3 

 

0.47 

5.4 

 

0.41 

5.5 

 

0.25 

5.6 

 

0.13 

5.7 

 

0.36 
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5.8 

 

0.24 

5.9 

 

0.39 

5.10 

 

0.05 

In methodology I, we docked all 10010 compounds in DB1 to 1YQY in HTVS 

mode, then took the top 10% (1000) of the docked compounds and redocked them in SP 

mode. The top 1% (10) of the compounds were then docked in XP mode. In 

methodology II, we docked all 10010 compounds in HTVS mode, then took the top 10% 

(1000) of the compounds and docked them in SP mode. The top 10% (100) of those 

docked compounds were then docked in XP mode. The only difference between these 

two methods was the number of compounds evaluated in XP docking mode. To 

compare these two strategies, we calculated the enrichment factors163 (EF) for each 

methodology to compare docking accuracy.  EF values are computed as follows163:  

     
Hits                

Hits            
 

Methodology I was able to recover four active compounds with an EF of 400:  
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Methodology II also returned four active compounds with an EF of 400: 

     
    

        
     

For comparison, the HTVS docking mode was only able to recover one active compound 

with an EF = 100: 

     
    

        
     

The maximum possible EF for these methodologies is 1000 (perfect accuracy). 

As there was no difference in docking accuracy between the two methodologies, we 

chose to employ methodology I, for future studies, due to its lower computational cost.   

With methodology I, we docked and scored ~11 million compounds. Initially, the 

~11 million compounds were docked with the HTVS method. The top 10% of compounds 

identified in HTVS mode (~1.1 million compounds) were advanced to SP docking. 

Finally, the top 1% of compounds docked in SP mode (~11,000 compounds) were 

selected for XP docking.  

5.4 RESULTS AND DISCUSSION 

We analyzed the resulting ~11,000 compounds for binding to the S1′* site and 

selected 190 compounds with high predicted inhibitory potency. Of these 190 

compounds, only 65 were commercially available and of those, 23 were purchased. 

Table 5.2 illustrates the 23 purchased compounds. 
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Table 5.2. Twenty-three purchased compounds from Enamine, Ltd predicted to inhibit 
LF, with Glide docking scores. 

Structures Compound ID Docking score 

 

5.11 -10.5 

 

5.12 -10.4 

 

5.13 -10.4 

 

5.14 -10.3 

 

5.15 -10.2 

 

5.16 -10.1 

 

5.17 -10.1 

 

5.18 -10.0 
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5.19 -9.9 

 

5.20 -9.6 

 

5.21 -9.1 

 

5.22 -9.1 

 

5.23 -9.1 

 

5.24 -9.0 

 

5.25 -9.0 

 

5.26 -8.7 



 

124 

 

 

5.27 -8.5 

 

5.28 -8.4 

 

5.29 -8.4 

 

5.30 -8.4 

 

5.31 -8.3 

 

5.32 -8.3 

 

5.33 -8.1 

 

 We studied the docking poses of the purchased compounds and analyzed 

important protein-ligand interactions within the active site of LF. Details are shown in 

Table 5.3.  
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Table 5.3. Frequency counts of residues engaged in protein-ligand interactions with the 
23 purchased compounds. 

 

Asn679 
Backbone 
H-Bond 

Acceptor 

Gly674 
Backbone 
H-Bond 
Donor 

Glu687 
Sidechain 
H-Bond 

Acceptor 

Tyr728 
Sidechain 
H-Bond 
Donor 

Val675 
Backbone 
H-Bond 
Donor 

Lys656 
Backbone 
H-Bond 
Donor 

Gly657 
Sidechain 
H-Bond 

Acceptor 

23 
Compounds 

7 4 15 12 6 3 3 

 

One example of a top-scoring compound interacting with the LF active site is 

shown in Figures 5.1 and 5.2. Compound 5.11 is predicted to engage in H-bond 

donating interactions with the backbone of Asn679, which is located at the entrance of 

the S1′* channel. The carboxylic acid moiety chelates zinc and engages in H-bond 

interactions with the sidechain of Tyr728. The peptidic NH is engaged in H-bond 

donating interactions with the sidechain of Glu687 (Figures 5.1 and 5.2). 

 

Figure 5.1. 2D protein-ligand interaction map of 5.11, which is predicted to be active 
against LF (PDB ID 4XM6). (Schrödinger Maestro Discovery Suite 9.4).  
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The 23 purchased compounds were experimentally evaluated for LF inhibition 

using our previously discussed in vitro LF FRET assay.111 Only 5.33 showed LF 

inhibition, with an IC50 value of 126 μM and a ligand efficiency (LE, binding affinity 

measure as a function of size) of 0.24. LE is calculated using the following equation: LE 

= 1.4(-logIC50)/N, where N is the number of non-hydrogen atoms). The LE of 5.33 is 

superior to HTS hit 8.16, which has a LE = 0.20 (See Chapter 8). Figure 5.3 shows the 

predicted binding mode for 5.33 when docked to 4XM6. Compound 5.33 is predicted to 

chelate zinc through an o-hydroxybenzoic acid moiety, and the carboxylic acid is also 

engaged in H-bond interactions with the backbone of Tyr659. There are no predicted 

interactions with the sulfonamide moiety. The ethylphenyl moiety is occupying the S1′* 

subsite. 

Figure 5.2. Three-dimensional (3D) protein-ligand interaction image of 5.11 (green), 
which is predicted to be active against LF (PDB ID 4XM6). (Schrödinger Maestro 
Discovery Suite 9.4).  
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An alternative binding mode for 5.33 is shown in Figure 5.4 when 5.33 was 

docked into 1YQY. In this binding mode, the o-hydroxybenzoic acid moiety coordinates 

zinc as in Figure 5.3, whereas the ethylphenyl moiety occupies the S1-S2 subsite rather 

than the S1′* subsite. The sulfonamide functionality engages in H-bond interactions with 

the backbone of Tyr659. 

Interestingly, various o-hydroxybenzoic acid fragments were tested against LF by 

Cohen et al. and reported to be inactive.164 In this case, 5.33 is hypothesized to be active 

because of the electron withdrawing sulfonamide functionality on the phenyl ring, which 

can decrease the pKa of the phenol, making it more likely to bind zinc as O-. Phenoxides 

coordinate zinc more strongly than phenols. X-ray studies are underway to determine 

the experimental binding mode of 5.33. Once the binding mode is elucidated, structure-

based drug design can be employed to improve the activity of 5.33.  

Figure 5.3. 3D protein-ligand interaction image of 5.33 (yellow) with LF (PDB ID 
4XM6). (Schrödinger Maestro Discovery Suite 9.4). 
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5.5 CONCLUSION 

The goal of this study was to identify LF inhibitory compounds that bind to the 

newly identified S1′* subsite of LF. For that purpose, we developed and tested an 

accurate docking methodology that can be used to virtually screen large databases in a 

timely manner. Using this approach, ~11 million compounds from the ZINC database 

were docked and scored. Methodology I prioritized ~11,000 compounds out of ~11 

million to be docked and scored in XP mode. We have analyzed these compounds for 

binding to the S1′* site and purchased 23 compounds for further interrogation. We 

identified 5.33 as a novel LF inhibitor with an IC50 = 126 μM. The hit rate of this virtual 

screen was 1/23 (4.3%) versus 1/250,000 (0.0004%) in our large-scale experimental 

HTS campaign (See Chapter 8). X-ray studies are underway to determine the binding 

mode of 5.33.  

  

Figure 5.4. 3D protein-ligand interaction image of 5.33 (yellow) with LF (PDB ID 
1YQY). (Schrödinger Maestro Discovery Suite 9.4). 
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Chapter 6 

 

LARGE-SCALE VIRTUAL DATABASE SCREENING TOWARDS THE 
IDENTIFICATION OF NOVEL LF INHIBITOR SCAFFOLDS 
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6.1 INTRODUCTION 

In the previous chapter, LF crystal structure 4XM6 was used to screen 

~11,000,000 compounds from the ZINC159 database and a novel LF inhibitory scaffold 

was discovered. Despite the success of this presented strategy, its general use for other 

enzymatic targets may be limited due to its high computational cost. Here, I present a 

new protocol that was designed to lower the computational cost of virtual screening for 

metalloprotein drug targets by selecting only drug-like compounds with zinc binding 

groups (ZBGs) for docking and scoring studies. In this study, we used Glide 5.9,114–117 

available through the Schrödinger Maestro Discovery Suite 9.4 (Schrödinger, Inc.),118 to 

screen large compound libraries from eMolecules to identify novel potential inhibitors of 

LF. eMolecules is a search engine for chemicals that contains ~7,000,000 compounds 

from commercial suppliers like Enamine, ChemDiv, and ChemBridge to name a few.165 

The benefit of using the eMolecules database versus the ZINC database is that all 

compounds included in eMolecules are commercially available. One limitation of our 

previous study was that many compounds we identified using the ZINC database were 

not commercially available (out of 190 selected compounds, only 65 were commercially 

available). 

6.2 COMPUTATIONAL METHODS 

6.2.1 Selection of Appropriate LF Crystal Structure/s for Docking 

Preparation of Crystal Structures For Docking and Scoring: Prior to screening, we 

selected specific X-ray structures, out of the 16 extant in the PDB,166 that would yield the 

best screening results. By visual analysis, we removed 1JKY50 and 1PWV91 as they did 

not contain the active site zinc, 1J7N50 as it did not contain a bound ligand, and 1PWW91 
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as it contained a mutated active site residue (E687C). The twelve remaining crystal 

structures were aligned using the ‘ATLF’ overlay method developed by Finzel et al., 

which was described in Chapter 2.167 The overlaid structures were prepared using the 

protein preparation wizard122,123 in Maestro, and missing sidechains were added with 

Prime.124 These final structures were used in receptor grid generation for the subsequent 

docking studies. 

Initial Docking and Scoring: Before screening large compound databases, we performed 

a validation study using DB1 (introduced in chapter 5) to select LF structures that best 

retrieve known active compounds. Prepared DB1 was docked into the twelve 

aforementioned LF crystal structures using Glide 5.9114–117 with standard precision (SP) 

in the Schrödinger Maestro Discovery Suite 9.4 (Schrödinger, Inc.).118 Enrichment 

factors163 (EF) for each crystal structure were calculated to compare the screening 

performance by counting the number of known actives among the top ten scoring 

compounds (i.e. 0.1% of total DB1). We computed EF values as follows163:  

     
Hits                

Hits            
 

For example, 1YQY retrieves nine known actives among the top ten scoring compounds, 

hence EF for 1YQY is: 

      
    

        
     

 The maximum possible EF for these structures is 1000 (perfect accuracy). Table 

6.1 illustrates that 1YQY (bolded) best recovered the known actives from the decoys 

with an EF = 901, recovering 90% of actives in 0.1% of DB1. This test also shows that 

SP mode was sufficient to recover most of the actives when used in screening against 
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1YQY. Thus, we predicted that a strategy to virtually screen against 1YQY would 

translate to the identification of more experimentally active compounds than would be 

identified if virtual screening was performed against any of the other LF crystal 

structures.  

Table 6.1. Enrichment factors for docking and scoring of DB1 against twelve LF 

structures. 

Crystal Structures EF (0.1%) % of Actives Recovered 

1PWQ91 0 0 

4DV886 300 30 

1YQY110 901 90 

4PKR125 501 50 

4PKS125 501 50 

4PKT125 601 60 

4PKU125 200 20 

4PKV125 100 10 

1PWU91 200 20 

4WF6 400 40 

1PWP100 0 0 

1ZXV81 0 0 

 

6.2.2 Development of Docking and Scoring Protocol 

 Described below is the protocol we developed to prepare, filter, and dock drug-

like compounds into the crystal structure of 1YQY. 

1. Download ~7 million commercial compounds from eMolecules database.165 
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2. Remove reactive molecules using Schrӧdinger’s Canvas.15–17 Canvas removes 

compounds with specific reactive functional groups that are known to be problematic 

and interfere in biological assays. The list of such groups was first reported by Baell 

et al.112 

3. Use Ligprep and Epik to prepare compounds as previously described. Compounds 

were prepared using LigPrep (Schrӧdinger),120 which generates 3D-minimized 

structures at pH 7.0. Because LF is a zinc metalloprotein, Epik (Schrӧdinger)168 was 

used to generate “metal binding states” of the ligands, which are ligand ionization 

states that are more likely to bind active site metals. For example, hydroxamic acids 

are protonated at pH 7.0, as in –CONHOH. However, we know that hydroxamic 

acids bind to zinc as –CONHO-. Epik recognizes hydroxamic acids as metal binding 

groups and alternatively prepares the ligand as –CONHO-. Thus, Epik is an essential 

step of ligand preparation, enabling us to appropriately screen compounds with zinc-

binding groups. 

4. Filter compounds by drug-likeness: 

a. Remove compounds with MW ≥ 500, ClogP ≥ 5, H-bond acceptors ≥ 10, and H-bond 

donors ≥ 5 (Lipinski’s Rules).160 

b. Use QikProp169 to calculate polar surface area (PSA or FISA in QikProp) for each 

ligand, and remove compounds with FISA > 140 Å2 and rotatable bonds > 10.170 

5. Filter compounds to retain only zinc-binders. 

6. Dock compounds that pass all the aforementioned filters using SP mode. 

7. Select and re-dock the top 1% using XP mode. 

Rationale for Enriching Zinc Binders: Because LF is a zinc-containing enzyme, we 

incorporated filtering step 5 to retain only compounds capable of binding zinc. The 
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retained compounds can be characterized as having negative charges (-1 or -2), metal 

binding states that were generated by Epik, or carboxylic acids (1-2 groups). We 

hypothesized that docking only compounds that passed this filter would be as accurate 

as docking the entire compound library because zinc-binding ligands would be predicted 

as the highest scoring binders. Using this strategy, we were able to drastically improve 

our time-efficiency, which is crucial in settings with limited or shared computational 

resources. We tested this hypothesis by filtering a ~200,000 compound library from 

eMolecules using the proposed method. After selecting for zinc-binders, ~30,000 

compounds remained. We then docked and scored both the filtered and unfiltered 

versions of this library with SP mode. The top 292 compounds identified from the two 

libraries were identical. Thus, by instituting one additional filter we were able to enrich 

the library for LF binders and reduce our computing time ~10-fold. This method offers a 

“smart and fast strategy” for virtually screening large libraries against zinc 

metalloproteins by reducing the library size to include only those with high predicted 

zinc-binding affinities. We believe that this protocol can also be used for other metal-

containing active sites. 

6.3 RESULTS AND DISCUSSION 

From the ~7,000,000 compounds downloaded from eMolecules, ~1,000,000 

were removed by Canvas. Moreover, using drug-like filters (steps 4a/b), we removed 

~2,000,000 compounds. Filtering to remove compounds that do not bind zinc reduced 

the library from ~4,000,000 compounds to ~540,000 compounds, all of which were 

docked and scored using SP mode. Only the top 4000 compounds (~1%) were 

prioritized and then re-docked using Glide’s XP mode. A large representation of top-

scoring compounds from the XP and SP docking modes were hydrazides, which are 
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bioisosteres of hydroxamic acids. Of the top-scoring hydrazide-containing compounds, 

we selected 21 to be purchased and tested for LF inhibition. Structures of the top-

scoring, purchased compounds are presented in Table 6.2. The extreme closeness of 

docking scores should be noted, and range from -11.0 to -12.2 kcal/mol. 

 Table 6.2. Twenty-one purchased compounds from Enamine, Ltd predicted to inhibit LF 
with Glide docking scores 

Structures Compound ID 
Docking Score  

(kcal/mol) 

 

6.1 -12.2 

 

6.2 -12.2 

 

6.3 -11.9 

 

6.4 -11.7 

 

6.5 -11.7 

 

6.6 -11.6 
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6.7 -11.6 

 

6.8 -11.5 

 

6.9 -11.4 

 

6.10 -11.3 

 

6.11 -11.2 

 

6.12 -11.2 

 

6.13 -11.2 

 

6.14 -11.2 
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6.15 -11.1 

 

6.16 -11.1 

 

6.17 -11.1 

 

6.18 -11.1 

 

6.19 -11.0 

 

6.20 -11.0 

 

6.21 -11.0 

 

 We have studied the docking poses of the purchased hydrazides and analyzed 

important protein-ligand interactions within the active site of LF. The details of the 
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frequency and types of these interactions for the 21 purchased compounds are shown in 

Table 6.3. 

Table 6.3. Frequency counts of residues engaged in protein-ligand interactions with the 
21 purchased hydrazides. 

Residues 
Tyr659 H-

Bond 
Donor 

Gly657 H-
Bond 
Donor 

His690 
π-π 

His686 
π-π 

Val675 H-
Bond 
Donor 

Glu687 
H-Bond 
Acceptor 

Lys656 
H-Bond 
Donor 

21 
Purchased 

Compounds 
19 15 8 12 7 9 7 

  

 An example of a top-scoring hydrazide interacting with the LF active site is 

shown in Figure 6.1. The hydrazide moiety of these compounds chelates zinc similarly 

to a hydroxamic acid (as in MK-702/LF1-B, which was co-crystallized with LF (PDB ID 

1YQY)) in a bidentate mode. However, compared to hydroxamic acids, hydrazide 

functional groups have an advantage. The hydrazide can be modified to engage in 

protein-ligand interactions with residues in the S1-S2 subsite, in addition to, the S1′ 

subsite. Essentially, the zinc binding hydrazide can act as a metal chelating bridge 

between two halves of the small molecule. For example, the carbonyl moiety of 6.1 is 

engaged in H-bond interactions with the backbone of Tyr659 in the S1-S2 subsite, while 

the phenyl group is occupying the hydrophobic S1′ subsite and is engaged in π-π 

interactions with His686 and π-cation interactions with active site zinc (Figures 6.1, 6.2). 

This mode of interaction is representative of this class of compounds (Table 6.4).  
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 Some of these compounds are also engaged in key hydrogen bond interactions 

with Gly657, Lys656, and Val675, which are crucial for the binding affinity of the 

compounds (Table 6.3).  

Biochemical evaluation of the 21 purchased compounds was performed using a 

previously published in vitro FRET assay.111 Unfortunately, none of the purchased 

compounds showed LF inhibition when tested up to 1 mM concentrations. This result 

can be rationalized by the difficulty in accurately predicting the absolute protein-ligand 

binding free energies of proteins that contain active site zinc metals through docking and 

scoring programs. The complex coordination environment, polarization, and charge 

transfer effects associated with zinc make ligand binding free energy calculations very 

challenging.171,172  

Figure 6.1. 2D protein-ligand interaction map of 6.1, which is predicted to be active 
against LF (PDB ID 1YQY). (Schrödinger Maestro Discovery Suite 9.4). 
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A number of methods have been reported to improve binding affinity calculations 

of ligands to zinc-containing metalloproteins. For example, it has been reported by 

Khandelwal et al. that QM/MM methods coupled with MD simulations can produce 

accurate estimations of binding affinities for 28 MMP-9 ligands.173 These methods, 

however, are not amenable for the virtual screening of large compound libraries. Glide, 

which uses only MM methods, is not nearly as accurate in calculating metalloprotein-

ligand binding free energies, but is amenable for the efficient screening of millions of 

compounds. The developers of Glide note that the errors in binding free energy 

calculations can be as high as 4 kcal/mol, and are likely much higher for zinc 

metalloproteins due to the aforementioned difficulties.174 They attribute this error to 

several factors, including the use of rigid protein structures, imperfect scoring functions, 

gridded potentials, and the complex coordination environment, polarization, and charge 

transfer effects due to zinc. Moreover, Glide is primarily intended for database 

enrichment, rather than accurate calculation of absolute protein-ligand binding free 

Figure 6.2. 3D protein-ligand interaction image of 6.1 (green) which is predicted to be 
active against LF (PDB ID 1YQY). (Schrödinger Maestro Discovery Suite 9.4).  
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energies.174 Knowing these limitations, it is not surprising, although disappointing, that 

none of the purchased hydrazides showed inhibitory activity.  

6.4 CONCLUSION 

Docking and scoring can be a very useful tool for screening large compound 

databases in an effort to discover novel inhibitors of protein targets. We have used this 

tool for efficient virtual screening of a large compound database against LF. Using 

multiple tests, we identified 1YQY as the crystal structure that best retrieves active 

compounds. Using this discovery, we employed 1YQY for the efficient virtual screening 

of a large compound library from eMolecules. Our research objectives were 1) to 

develop a virtual screening protocol that decreases computational cost without over-

looking any top-scoring hits and 2) to identify potential LF inhibitors by applying the 

developed protocol to eMolecules. Using the developed protocol, we have shown that 

we can enrich compound libraries for small molecules that have zinc binding capabilities, 

without losing any potential top-scoring hits. As a result, we were able to reduce the size 

of the compound library from ~7,000,000 to ~540,000. This reduced our computational 

requirements ~10-fold, allowing us to finish this project within a reasonable time frame. 

We achieved our primary objective of developing an efficient protocol that decreases 

computational cost while retaining accuracy. By analyzing the top-scoring compounds, 

we prioritized hydrazide-containing ligands for further interrogation. In docking studies, 

these ligands displayed bidentate zinc chelation similar to that of hydroxamic acids, and 

engaged in key protein-ligand interactions with active site residues such as Tyr659, 

Gly657, Lys656, Val675, and Glu687. We selected 21 hydrazides and tested them 

against LF. The observation that none of the purchased compounds inhibited LF likely 

results from the challenges associated with accurately calculating metalloprotein-ligand 
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binding free energies via docking and scoring methods. Hence, this result is due to the 

docking and scoring method not the protocol that we developed. Therefore, we believe 

that this virtual screening protocol offers an efficient strategy for screening large libraries 

against zinc metalloproteins by reducing the library size to include only those with high 

predicted zinc-binding affinities. This method can be applied to drug discovery efforts for 

any zinc-containing enzyme, and potentially, other metalloproteins. 
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Chapter 7 

 

ELECTROSTATICALLY EMBEDDED MANY-BODY EXPANSION OF THE ENERGY 
(EE-MB) AND THE CORRELATION ENERGY (EE-MB-CE) FOR ZN AND CD MODEL 

SYSTEMS INCLUDING A MODEL OF THE CATALYTIC SITE OF THE ZINC-
BEARING ANTHRAX TOXIN LETHAL FACTOR 

 

Adapted with permission from: 

 

 Kurbanov, E. K.; Leverentz, H. R.; Truhlar, D. G.; Amin, E. A. Electrostatically 

Embedded Many-Body Expansion for Neutral and Charged Metalloenzyme Model 

Systems. J. Chem. Theory Comput. 2012, 8 (1), 1–5 

 

Kurbanov, E. K.; Leverentz, H. R.; Truhlar, D. G.; Amin, E. A. Analysis of the 

Errors in the Electrostatically Embedded Many-Body Expansion of the Energy and the 

Correlation Energy for Zn and Cd Coordination Complexes with Five and Six Ligands 

and Use of the Analysis to Develop a Generally Successful Fragmentation Strategy. J. 

Chem. Theory Comput. 2013, 9 (6), 2617–2628. 

  



 

144 

 

7.1 ACKNOWLEDGEMENTS 

This chapter includes a description of work done in collaboration with Professor 

Donald G. Truhlar, Hannah R. Leverentz, and Bo Wang. In this work, Hannah R. 

Leverentz provided support in using MBPAC software that was developed in Professor 

Donald G. Truhlar’s group. Professor Donald G. Truhlar, Hannah R. Leverentz, and Bo 

Wang provided very useful comments and discussion points during this work.   

7.2 INTRODUCTION 

 In order to address some of the challenges regarding the accurate modeling of 

zinc metalloenzymes discussed in chapter 6, we employed quantum mechanical EE-MB 

and EE-MB-CE methods to obtain accurate bond dissociation energies for Zn and Cd 

model systems. Our methods can be used in future efforts to parameterize inorganic 

reactive force fields for use in studying zinc metalloenzymes, or could be used directly in 

QM-based simulations to obtain more accurate results that would otherwise be 

impossible for large systems (for example, systems with large ligands) where full 

quantum mechanical calculations on the whole complex with a reliable method are 

computationally unaffordable.  

Zinc is an essential transition metal required for the catalytic and structural 

activity of many enzymes,175 and it participates in a number of key biological processes 

in living systems, including immune function,176,177 protein synthesis,176,178 wound 

healing,179,180 DNA synthesis,176,181 and cell division.176,181 Zinc metalloenzymes carry out 

essential functions in a wide variety of biochemical pathways and have attracted much 

attention as drug design targets; examples include the anthrax toxin lethal factor,111 

insulin, phosphotriesterase, the matrix metalloproteinases, cytidine deaminase, histone 
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deacetylases, zinc-finger proteins, and human carbonic anhydrase.  In these enzymes 

zinc may play structural and/or catalytic roles, with catalysis taking place in the first 

coordination shell.182 In silico techniques have generally proven valuable for rational drug 

design and enzyme modeling; however, reliable representation of zinc and other 

transition metal centers in macromolecules is nontrivial due to the complexity of the 

coordination environment and charge distribution at the catalytic center. Hybrid density 

functional theory183 and post-Hartree–Fock correlated wave function methods, such as 

second-order Møller-Plesset perturbation theory, MP2,184 coupled cluster theory with 

single and double excitations, CCSD,185,186 and CCSD with quasiperturbative connected 

triple excitations, CCSD(T)187 are all able to calculate accurate energies for selected 

small and moderately sized systems, but they are often too computationally costly—

either because the system (or model system) to be studied is too large, or because a 

large number of calculations must be performed to achieve adequate sampling in a 

simulation. We note that in general the "expense" of a calculation depends on the 

program, the algorithm, the degree of parallelization, and the computer, and one should 

take account of such factors as computer time, memory requirements, communication 

among processors, input–output, human time, and other factors, but for discussion 

purposes we simply consider the number of arithmetic operations, and for convenience 

we call that the "expense". It is well known188 that if one keeps the average number of 

basis functions per atom fixed, the expenses of, for example, hybrid density functional 

theory, MP2, CCSD, and CCSD(T)—with conventional basis sets—nominally scale, in 

the large—N limit, as N4, N5, N6, and N7 respectively, where N is the number of atoms. 

Therefore, enabling accurate calculations on large systems including the active sites of 

Zn-containing enzymes with post-Hartree–Fock methods remains challenging due to the 

rapid scaling of the computational cost. To make the problem more tractable, localized 
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molecular orbitals189–193 and fragmentation194–212 methods have been designed. In our 

previous work, we developed and implemented the electrostatically embedded many-

body method202,213–219 (EE-MB) and the electrostatically embedded many-body 

expansion of the correlation energy214,220 (EE-MB-CE), which are fragment-based 

approaches for calculating the energies of large systems. These methods, with pairwise 

additive (PA) or three-body (3B) truncation of the many-body expansion, nominally scale 

as N3 or lower for EE-MB and as N4 or lower for EE-MB-CE (where N is now the number 

of monomers, see below), even if the individual dimer or trimer calculations scale less 

favorably because the cost of the individual oligomer calculations does not increase with 

N. 

 As described in our previous work,202,213–219 the EE-MB method tackles the 

challenge of system size by partitioning larger complexes into a series of fragments 

called monomers, and calculating the energies of monomers, dimers, and optionally 

trimers or higher oligomers by embedding them in a field of point charges representing 

the remaining N-1, N-2, N-3, ... monomers, and running calculations in parallel. (A 

monomer can be defined as a single molecule, a portion of a molecule, or a collection of 

molecules. For example, in the systems considered here, a monomer could be an 

ammonia molecule or Zn2+ with two ammonia ligands). There are two variations of the 

EE-MB method: the electrostatically embedded pairwise additive method (EE-PA), which 

is based on the energies of monomers and dimers, and the electrostatically embedded 

three-body method (EE-3B), which is based on the energies of monomers, dimers, and 

trimers. The EE-3B method is able to predict bond energies obtained by conventional 

full-system calculations done at the same level of theory to within 1.0 kcal/mol for 

cationic, neutral, and negatively charged Zn2+ complexes.218,219  
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 In EE-MB-CE, one applies the many-body expansion only to the correlation 

energy, that is, to the post-Hartree–Fock part of the energy calculation. Here we apply 

the EE-MB-CE method to predict MP2 correlation energies for a variety of 

pentacoordinate and hexacoordinate Zn2+ and Cd2+ systems, and we compare its 

performance to the EE-MB method. Most importantly, we present a new, simple, and 

unambiguous fragmentation strategy that maximizes the accuracy and efficacy of both 

the EE-MB and the EE-MB-CE calculations for Zn2+ and Cd2+ complexes studied in this 

paper. The number of computational operations in the EE-PA method scales as N2, the 

number for the EE-3B method scales as N3, and the numbers for the EE-PA-CE and 

EE-3B-CE methods scale as N4, where N is the number of monomers. 

7.3 THEORY 

7.3.1 EE-MB 

 For any level of theory (e.g., MP2 or CCSD(T) with a given basis) we can either 

perform full (i.e., conventional) calculations of the potential energy,  , or many-body 

expansions. In the EE-MB method202,213–218,220 the fragments into which a system is 

partitioned are called monomers. In the present study, we examine two variants of this 

method: the electrostatically embedded pairwise additive (EE-PA) approximation and the 

electrostatically embedded three-body (EE-3B) approximation. The EE-MB method 

approximates the energy of systems composed of monomers i, j, k, ... as 

  )()( ... NEEEEE  3(2)(1)   (1) 

where 
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where             are the energies of a monomer, dimer, and trimer, respectively, 

embedded in fields of point charges representing the other monomers; and the individual 

energies are obtained using any type of electronic structure theory. Then the EE-PA 

approximation is 

  )()()( 21PA EEE    (5) 

and the EE-3B approximation is 

  )()()( 3PA3B EEE    (6) 

   

7.3.2 EE-MB-CE 

 Many-body expansion methods examined in the present study are the EE-PA 

approximation, the EE-3B approximation, the electrostatically embedded pairwise 

additive approximation of the correlation energy (EE-PA-CE), and the electrostatically 

embedded three-body approximation of the correlation energy (EE-3B-CE) methods. 

The theory of the EE-MB method was previously discussed. The electronic energy at the 

MP2 level of theory can be written as 
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HFMP2 EEE    (7) 

where    
      is the Hartree–Fock energy of the system, and Δ          is the MP2 

correlation energy which can be rewritten as the many-body expansion of the correlation 

energy: 
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where   
   and   

   are respectively the Hartree–Fock and MP2 energies of a 

monomer i, and    
     is the MP2 correlation energy of a monomer i, 
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where     
   and    

   are the respectively the Hartree–Fock and MP2 energies of a 

dimer ij, and Δ   
     is the MP2 correlation energy for a dimer ij; therefore EE-PA-CE 

energy can be defined as 

  (2)
MP2corr,

1
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HF

CEPA EEEE  )(   (13) 

The EE-3B-CE energy can be written as 

  )(3
MP2corr,
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where      
   and     

   are respectively the Hartree–Fock and MP2 energies of a trimer ijk, 

and      
     is the MP2 correlation energy for a trimer ijk. The individual energies are 

obtained using the MP2 level of theory.  One can obtain the EE-MB-CE approximation of 

the CCSD(T) energy by replacing “MP2” with “CCSD(T)” in equations 7–16. 

 In the EE-PA and EE-3B calculations, one only performs MP2 or CCSD(T) 

calculations on the monomers, dimers, and (for 3B) the trimers. In the EE-PA-CE and 

EE-3B-CE approximations, one also carries out a Hartree–Fock calculation on the entire 

system. The electronic energy at the MP2 or CCSD(T) level of theory can be written as 

the Hartree–Fock energy plus the correlation energy. In the EE-PA-CE and EE-3B-CE 

approximations, one uses expansions only on the correlation energy, and adds the 

correlation energy to the directly calculated Hartree–Fock calculation of the entire 

system (eq. 13 and 14). Since Hartree–Fock theory formally scales as N4, where N is 

the number of atoms, it is less computationally demanding to carry out a Hartree–Fock 

calculation on the entire system than to carry out an MP2 or other correlated wave 

function calculation on the entire system, and the goal here is to obtain accuracy 

equivalent to a full MP2 or CCSD(T) calculation without the cost of the latter. 

 In past work,214,220 the EE-MB-CE method has been applied to large water 

clusters, ranging in size from 5 to 20 water molecules and water hexamers. Here, we 

examine the application of the EE-MB-CE method to metal-ligand bonding in various 

pentacoordinate and hexacoordinate Zn and Cd complexes and present a fragmentation 
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scheme that can be applied to all Zn and Cd systems studied in the paper. These metal-

ligand systems are more challenging than noncovalently bonded clusters because the 

electrostatic and induction effects are much larger, and there is some covalent character 

in the metal-ligand coordination bonds. 

 We also present an application where MP2 is replaced by CCSD(T). 

7.4 EE-MB 

7.4.1 METHODS 

 We have already shown that the EE-MB method can be used to calculate 

usefully accurate bond dissociation energies at low computational cost for positively 

charged Zn2+ systems; in particular the EE-3B method predicts bond energies obtained 

by conventional full-system calculations done at the same level of theory to within 1.0 

kcal/mol for those cationic Zn2+ complexes.218 In the present work, we recommend a set 

of specific fragmentation strategies to enhance the accuracy of EE-MB for coordination 

chemistry, and we assess the suitability of the EE-3B method for the more challenging 

neutral and negatively charged penta- and hexacoordinate Zn systems of biological 

importance; we also present EE-PA results for comparison. 

 Charges are calculated for each fragment at the geometry of that monomer in the 

overall system. For example, if we are calculating the energy of ZnABCDEF, where A, B, 

C, D, E, and F are ligands, and if one of the fragments is ZnBC, we calculate the partial 

atomic charges of ZnBC by removing A, D, E, and F from the system. Here we calculate 

charges using Merz-Kollman (MK) electrostatic fitting,221 as in previous work on Zn 

compounds.218 
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 All calculations were done with the M05-2X density functional222 and the B2 basis 

set,182 which is a polarized valence-triple-zeta basis set optimized and validated for use 

with Zn-containing complexes including biozinc coordination systems. Our earlier 

published work on a variety of Zn-ligand systems of importance in biology, 

nanotechnology and drug design182,223 showed that incorporating relativistic effects on 

core electrons significantly increased the accuracy of geometric and energetic 

calculations for Zn coordination complexes; in the current study we therefore replaced 

the innermost ten electrons of Zn with the (MEFIT, R) relativistic effective core 

potential.224,225 The M05-2X/B2 density functional/basis set combination was chosen 

because of previous evaluations182,223 that yielded very accurate results for zinc 

complexes. We note explicitly, however, that the main objective of using DFT in this 

study is to assess whether the EE-MB approximation can reproduce full (unfragmented) 

calculations.  If so, one could, for example, use the EE-MB approximation with coupled 

cluster calculations on the fragments to approximate full coupled cluster calculations that 

are currently unaffordable. 

 All unfragmented calculations were performed using Gaussian 09.226 All EE-MB 

calculations were carried out using MBPAC 2011–2,227 an in-house software package 

that allows the user to define a particular fragmentation scheme and then accesses a 

locally modified version of Gaussian 09 to perform the necessary monomer, dimer, and 

trimer calculations.  

 In the current work, we consider four pentacoordinate and two hexacoordinate Zn 

systems (Table 7.1). Table 7.1 shows the possible ligands of Zn2+ in a fragment for 

each studied system.  
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Table 7.1. Systems considered in this work and the largest fragment in each.a 

Full System The Largest Fragment 

[Zn(NH3)2(OH)3]– Zn(OH)2 (ZnBC) 

[Zn(NH3)2(OH)3]– Zn(OH)2 (ZnAB) 

[Zn(NH3)2(OH)3]– Zn(OH)2 (ZnBC, ZnAB) 

[Zn(NH3)2(OH)3]– Zn(OH)2 (ZnBC, ZnAB) 

[Zn(NH3)3(OH)2] Zn(OH)2 (ZnAB) 

[Zn(NH3)3(OH)2] Zn(OH)2 (ZnAB) 

[Zn(NH3)3(OH)2] Zn(OH)2 (ZnAB) 

[Zn(Imd)2(OH)3]– Zn(OH)2 (ZnBC) 

[Zn(Imd)2(OH)3]– Zn(OH)2 (ZnAB) 

[Zn(Imd)2(OH)3]– Zn(OH)2 (ZnBC, ZnAB) 

[Zn(Imd)2(OH)3]– Zn(OH)2 (ZnBC, ZnAB) 

[Zn(Imd)3(OH)2] Zn(OH)2 (ZnAB) 

[Zn(Imd)3(OH)2] Zn(OH)2 (ZnAB) 

[Zn(Imd)3(OH)2] Zn(OH)2 (ZnAB) 

fac isomer of [Zn(NH3)3(OH)3]– Zn(OH)2 (ZnBC) 

fac isomer of [Zn(NH3)3(OH)3]– Zn(OH)2 (ZnAC) 

fac isomer of [Zn(NH3)3(OH)3]– Zn(OH)2 (ZnAB) 

fac isomer of [Zn(NH3)3(OH)3]– Zn(OH)2 (ZnAB, ZnBC, ZnAC) 

fac isomer of [Zn(NH3)3(OH)3]– Zn(OH)2 (ZnAB, ZnBC, ZnAC) 

fac isomer of [Zn(NH3)3(OH)3]– Zn(OH)2 (ZnAB, ZnBC, ZnAC) 

mer isomer of [Zn(NH3)3(OH)3]– Zn(OH)2 (ZnBC) 

mer isomer of [Zn(NH3)3(OH)3]– Zn(OH)2 (ZnAB) 

mer isomer of [Zn(NH3)3(OH)3]– Zn(OH)2 (ZnAB, ZnBC) 

mer isomer of [Zn(NH3)3(OH)3]– Zn(OH)2 (ZnAB, ZnBC) 

mer isomer of [Zn(NH3)3(OH)3]– Zn(OH)2 (ZnAB, ZnBC) 
a When there is more than one row for a given system, it is because the 
largest fragment is not the same in all calculations on that system. 
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 The pentacoordinate complexes are model compounds based on experimental 

X-ray structures of two Zn metalloenzyme active sites relevant to biology and to the drug 

design process: the anthrax toxin lethal factor (LF) (PDB ID 1PWU)91 and the matrix 

metalloproteinase-3 (MMP-3) catalytic site (PDB ID 1SLN)228. In LF, the catalytic Zn is 

coordinated by two histidines and one glutamic acid, and in 1PWU, the zinc is also 

ligated by two oxygens in the hydroxamate zinc-binding group (ZBG) of the 

cocrystallized inhibitor, forming the complete pentacoordinate system. In MMP-3, the 

catalytic zinc is similarly coordinated by three histidine residues, and in 1SLN, the two 

remaining coordination sites are occupied by the carboxylate ZBG of the cocrystallized 

inhibitor.  We specifically chose pentacoordinate systems that include ligands from 

potential drug scaffold ZBGs, in order to test the ability of EE-MB to reproduce bond 

dissociation energies that would parallel the interactions of small molecules with drug-

target catalytic centers. 

 We created two simple and two extended models of each biocenter, where the 

simple models 7.1 and 7.2 (Figure 7.1) represent His residues by ammonias and Glu 

sidechains and ZBG oxygens by hydroxyls, yielding [Zn(NH3)2(OH)3]– as a model for the 

anthrax toxin lethal factor and [Zn(NH3)3(OH)2] as a model for MMP-3. 
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 In the extended models 7.3 and 7.4 (Figure 7.2), the ammonias are replaced by 

full imidazole moieties while the hydroxyls are retained.  

 

Figure 7.2. Structures of extended Zn biocenter complexes: (7.3) the anthrax toxin 

lethal factor active site (LF) (1PWU.pdb),26 [Zn(Imd)2(OH)3]–, and (7.4) matrix 
metalloproteinase-3 (MMP-3, stromelysin-1) (1SLN.pdb),27 [Zn(Imd)3(OH)2]. 

 

Figure 7.1. Structures of truncated model Zn biocenter complexes: (7.1) the anthrax 

toxin lethal factor active site (LF) (1PWU.pdb), [Zn(NH3)2(OH)3]–, and (7.2) matrix 
metalloproteinase-3 (MMP-3, stromelysin-1) (1SLN.pdb), [Zn(NH3)3(OH)2].   
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 The hexacoordinate complexes examined here are the fac and mer isomers of 

[Zn(NH3)3(OH)3]– (systems 7.5 and 7.6, respectively, Figure 7.3). In total, these systems 

comprise four negatively charged and two neutral complexes. For systems 7.1–7.4, all 

Zn–ligand distances were fixed at their experimental X-ray values. The hydrogen atoms 

on all NH3 and OH ligands, and all Zn–ligand distances in systems 7.5 and 7.6, were 

placed at standard distances and default orientations by the GaussView229 program. The 

default N-H bond length in NH3 is 1.00 Å, the default O-H distance is 0.96 Å, and for 

systems 7.5 and 7.6, the default Zn–NH3 bond length is 1.95 Å and the default Zn–OH 

distance is 1.91 Å. Default bond angles for ligand geometries in GaussView are obtained 

by AM1 optimizations. All structures are provided in Supporting Information. 

 

 The quantity we calculate is a relative bond dissociation energy, which is defined 

as the energy to remove one of the ligands from the coordination system. As discussed 

in previous work,218 this quantity is the sum of the energies of the two products 

(separated frozen fragments) minus the energy of the reactant, without including 

Figure 7.3. Structures of two octahedral, hexacoordinate Zn complexes 

([Zn(NH3)3(OH)3]–): (7.5) fac isomer, and (7.6) mer isomer. 
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vibrational energy (thus it is De, not D0). When calculating the energies of a given 

dissociation product, the embedding charges of the other product are not included 

because the other product is considered to be infinitely separated.  

 After performing extensive calculations with various fragmentation schemes on 

systems 7.1 and 7.2, we established four key fragmentation guidelines that, when 

applied, yielded the best results for all six systems in the current work. Next we present 

these four guidelines. 

7.4.2 RESULTS AND DISCUSSION 

 First, our calculations on neutral and negatively charged Zn systems 

demonstrate, consistently with our previous findings,218 that one must choose a 

fragmentation scheme where one of the monomers is Zn2+ coordinated to at least two 

ligands. We rationalize this rule in terms of partial atomic charges.  In particular, the 

charge on unligated or monoligated Zn and even on biligated Zn is much larger than the 

charge on polyligated Zn; thus fragments consisting of unligated, monoligated, or—to a 

lesser extent—biligated Zn would not be representative of a portion of a larger system. 

But if each fragment already has two ligands on Zn, then even in dimers there are three 

ligands on Zn. 

 Second, as a corollary to rule 1, we do not dissociate bonds within fragments, as 

that would result in a product with Zn connected to a single ligand.  

 Third, at most one fragment can be charged. We rationalize rule 3 as eliminating 

the longest-range electrostatic effects.  

 Finally, our fourth guideline allows no trans coordination, i.e., Zn2+ cannot be 

coordinated within a fragment with two ligands that are trans to each other. This rule can 
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be understood as requiring links to be compact, although its origin is purely empirical at 

present.  

 We use the labeling scheme defined by Figures 7.1–7.3, in which A, B, and C 

(when present) are negatively charged hydroxyl ligands, and D, E, and F (when present) 

are neutral ligands. A consequence of rule 3 for the present study is that Zn2+ coupled 

with two hydroxyl groups must be part of the fragmentation scheme in all six complexes.  

 Rules 3 and 4, taken together, forbid applying EE-MB to dissociation of monomer 

B in 7.1 or monomer B in 7.6 because rule 3 would then require Zn to be coordinated 

within a fragment to ligands A and C in 7.1 and to ligands A and C in 7.6, which in both 

cases would violate rule 4. After eliminating these processes that cannot be treated by 

the guidelines, we consider all the remaining processes, which may be classified as 

follows: 

  AZnBCDEZnABCDE-   (R1) 

  CZnABDEZnABCDE-   (R2) 

   DZnABCEZnABCDE --   (R3) 

                                   EZnABCDZnABCDE --   (R4) 

  DZnABEFZnABDEF   (R5) 

  EZnABDFZnABDEF   (R6) 

  FZnABDEZnABDEF   (R7) 

  AZnBCDEFZnABCDEF-   (R8) 

  BZnACDEFZnABCDEF-   (R9) 
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  CZnABDEFZnABCDEF-   (R10) 

  DZnABCEFZnABCDEF --   (R11) 

  EZnABCDFZnABCDEF --   (R12) 

  FZnABCDEZnABCDEF --   (R13) 

 Keeping the four guidelines in mind, we considered dissociation processes (R1)-

(R4) for systems 7.1 and 7.3, we considered processes (R5)-(R7) for systems 7.2 and 

7.4, and we considered processes (R8)-(R13) for systems 7.5 and 7.6, except for 

system 7.6, where process (R9) was not considered because it would result in a 

monomer with ligands A and C positioned trans to each other.   

 Benchmark values for bond dissociation energies were obtained by full single-

point calculations, i.e., without using the many-body approximation (see Table 7.2).  

Note that both the benchmark and the many-body calculations employ the same M05-

2X/B2/MEFIT,R method.  We measure “errors” as the deviation of the EE-MB results 

from the full calculations with the same method.  If the error is small, then we assume 

that the method could be used with confidence for systems where full calculations on the 

entire system are impractically expensive or undoable, either due to system size (larger 

ligands, entire metalloenzymes) or due to using a higher level of electronic structure 

theory, for example coupled cluster theory.  

Table 7.2. Benchmark bond energies (kcal/mol). 

Reaction System Dissociated Bond Bond Energy 
Largest Zn Fragment(s)  

in Rxn 

R1 7.1 Zn–A 35.12 ZnBC 

R2 7.1 Zn–C 70.22 ZnAB 
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R3 7.1 Zn–D 19.32 ZnBC, ZnAB 

R4 7.1 Zn–E 15.89 ZnBC, ZnAB 

R5 7.2 Zn–D -5.28 ZnAB 

R6 7.2 Zn–E -13.49 ZnAB 

R7 7.2 Zn–F 6.19 ZnAB 

R1 7.3 Zn–A 12.03 ZnBC 

R2 7.3 Zn–C 57.01 ZnAB 

R3 7.3 Zn–D 17.51 ZnBC, ZnAB 

R4 7.3 Zn–E 20.68 ZnBC, ZnAB 

R5 7.4 Zn–D 20.3 ZnAB 

R6 7.4 Zn–E -7.26 ZnAB 

R7 7.4 Zn–F 9.53 ZnAB 

R8 7.5 Zn–A 10.47 ZnBC 

R9 7.5 Zn–B 9.17 ZnAC 

R10 7.5 Zn–C 10.47 ZnAB 

R11 7.5 Zn–D -15.25 ZnAB, ZnBC, ZnAC 

R12 7.5 Zn–E -22.28 ZnAB, ZnBC, ZnAC 

R13 7.5 Zn–F -20.74 ZnAB, ZnBC, ZnAC 

R8 7.6 Zn–A 26.98 ZnBC 

R10 7.6 Zn–C 34.78 ZnAB 

R11 7.6 Zn–D -15.65 ZnBC, ZnAB 

R12 7.6 Zn–E -17.64 ZnBC, ZnAB 

R13 7.6 Zn–F -10.05 ZnBC, ZnAB 

 Tables 7.3-7.5 show the EE-MB bond-breaking energies and mean unsigned 

errors for all six systems. The systems are quite different, but the performance of the 

EE-3B method is uniformly good.  For example, for 7.1, the bond dissociation energies 

range from 16 to 70 kcal/mol, but the error of the EE-3B method is in the range 0.78–
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0.85 kcal/mol for all four cases. The EE-3B method has a mean unsigned error (MUE) in 

bond dissociation energy of 0.82 kcal/mol for system 7.1, 1.09 kcal/mol for system 7.2, 

1.03 kcal/mol for system 7.3, and 0.83 kcal/mol for system 7.4. It is encouraging that the 

EE-3B method performs very well for both the “truncated” model systems 7.1 and 7.2 

and the “extended” model systems 7.3 and 7.4. The MUEs in bond dissociation energies 

for the hexacoordinate systems 7.5 and 7.6 are comparable to those for the 

pentacoordinate systems, at 0.90 kcal/mol and 1.21 kcal/mol, respectively. As expected, 

the EE-PA method is less accurate, resulting in MUEs in bond dissociation energies 

ranging from 3.23 to 6.68 kcal/mol for the systems studied here. Altogether there are 25 

cases in Tables 7.3, 7.4, and 7.5, and averaging the unsigned errors over all 25 gives 

an overall mean unsigned error of 5.10 kcal/mol for the EE-PA method but only 0.98 

kcal/mol for the EE-3B method. 

Table 7.3. Unsigned errors in bond energies (kcal/mol) for systems 7.1 and 7.3 

 
EE-PA EE-3B 

7.1 7.3 7.1 7.3 

R1 6.47 4.60 0.85 0.85 
R2 6.81 8.71 0.78 1.24 
R3 4.62 1.67 0.82 1.01 
R4 1.38 4.01 0.81 1.04 

mean 4.82 4.75 0.82 1.03 

Table 7.4. Unsigned errors in bond energies (kcal/mol) for systems 7.2 and 7.4 

 
EE-PA EE-3B 

7.2 7.4 7.2 7.4 

R5 2.37 5.84 1.10 0.81 
R6 5.41 5.57 1.09 0.85 
R7 1.91 5.91 1.08 0.83 

mean 3.23 5.77 1.09 0.83 
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Table 7.5. Unsigned errors in bond energies (kcal/mol) for systems 7.5 and 7.6 

 
EE-PA EE-3B 

7.5 7.6 7.5 7.6 

R8 8.80 6.57 0.59 1.38 
R9 9.26  0.37  
R10 8.73 7.54 0.05 2.20 
R11 4.51 3.06 1.44 0.16 
R12 4.49 2.40 1.40 1.00 
R13 4.32 2.53 1.54 1.30 

meana 6.68 4.42 0.90 1.21 
a
mean unsigned error for the five or six cases in the given column 

7.4.3 CONCLUSION 

 The EE-3B method, when applied using our fragmentation guidelines, reliably 

yields bond dissociation energies within 1.21 kcal/mol of full-calculation DFT benchmark 

values, further demonstrating its utility and accuracy for neutral and negatively charged 

bio-inorganic structures, in addition to the positively charged systems evaluated in our 

previous work. Moreover, EE-MB exhibits high accuracy for “extended” active site 

models with His residues represented by full imidazole rings rather than ammonias, and 

for hexacoordinate Zn complexes, indicating its particular usefulness for larger 

metalloprotein active site systems for which full, high-level electronic structure 

calculations might be intractable or may incur a high computational cost. Finally, EE-MB 

is likely to find use in the drug discovery process; it performs very well for 

pentacoordinate systems representing a small-molecule drug lead coordinated to a 

catalytic metal center (which are otherwise quite challenging to model), and it can also 

be used to obtain key parameters such as bond dissociation energies that can be 

imported into molecular mechanics force fields to increase the accuracy of simpler and 

less costly calculations on macromolecular drug targets. 
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7.5 EE-MB-CE 

7.5.1 METHODS 

 Most of the calculations were done using the MP2 level of theory. The B2182 

basis set was used for the Zn calculations, and the def2-TZVP230 basis set was used for 

the Cd calculations.  Both B2 and def2-TZVP are polarized valence-triple-zeta basis sets 

for Zn and Cd, respectively. The MP2 level was chosen because it is the least expensive 

of the post-Hartree–Fock methods, allowing for direct comparison of the EE-MB and the 

EE-MB-CE energies to the full MP2 energies. Such direct comparison for all clusters and 

fragmentation schemes studied in this work would not be practical at a reasonable cost 

with more expensive post-Hartree–Fock methods such as CCSD(T). Nevertheless, we 

present a CCSD(T) calculation on the system 7.1 to test the performance of the methods 

with other correlated methods. Our earlier published work182,223 showed that 

incorporating relativistic effects on core electrons significantly increased the accuracy of 

geometric and energetic calculations for Zn coordination complexes; in the current study 

we therefore replaced the innermost ten electrons of Zn and 28 core electrons of Cd with 

the relativistic effective core potential (RECP).224,225,231 

 Charges are calculated for each fragment at the geometry of that monomer in the 

overall system. For example, if we are calculating the energy of ZnABCDEF, where A, B, 

C, D, E, and F are ligands, and if one of the fragments is ZnBC, we calculate the partial 

atomic charges of ZnBC by removing A, D, E, and F from the system. Here we calculate 

charges using Merz-Kollman (MK) electrostatic-potential fitting,221 as in previous work on 

Zn compounds.218,219 Charges for CCSD(T) calculations on system 7.1 were obtained 

using M05-2X level theory.222  
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 All benchmark calculations were performed using Gaussian 09.226 All EE-MB and 

EE-MB-CE calculations were carried out using MBPAC 2011–5,232 a freely available 

software package that allows the user to define a particular fragmentation scheme and 

then accesses Gaussian 09 to perform the necessary monomer, dimer, and trimer 

calculations.  

 In the current work, we consider seven pentacoordinate and three 

hexacoordinate Zn systems (see Table 7.6). Two pentacoordinate complexes are model 

compounds based on experimental X-ray structures of Zn metalloenzyme active sites 

relevant to the drug design process: the anthrax toxin lethal factor (LF) (PDB ID 

1PWU)91 active site, and the matrix metalloproteinase-3 (MMP-3) catalytic site (PDB ID 

1SLN)228 (systems 7.1 and 7.2, respectively, Figure 7.1). These model structures are 

the same as those reported in our previously published work.219,223 System 7.7 (Figure 

7.4) is a model compound based on the X-ray structure of the matrix metalloproteinase-7 

(MMP-7, also known as matrilysin) active site, co-crystallized with sulfodiimine (PDB ID: 

1MMR).233 In MMP-7, the catalytic Zn is coordinated by three histidines, and in 1MMR, 

the two remaining coordination sites are occupied by imine nitrogens in the co-

crystallized inhibitor.  
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 We use these systems to test the ability of the EE-MB-CE method to reproduce 

Zn-ligand bond dissociation energies of biological Zn-containing active sites. System 7.7 

is also used to demonstrate the advantage of our newly developed fragmentation 

strategy over previously published fragmentation guidelines.219 We also consider three 

other pentacoordinate systems: Zn(NH3)5
2+, Zn(H2O)5

2+, and Zn(H2O)4(OH)+ (systems 

7.8, 7.9, and 7.10, respectively, Figure 7.5). These are used to test the applicability of 

the EE-MB-CE method to positively charged systems. 

Figure 7.4. Structure of truncated model Zn biocenter complex: (7.7) matrix 
metalloproteinase-7) (MMP-7, matrilysin) (1MMR.pbs), ([Zn(NH3)5]

2+). 
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  Calculations on a Cd complex (system 7.11, Figure 7.6) were performed 

to test the applicability of our methods to a transition metal other than Zn. System 7.11 

(Figure 7.6) is a model compound based on the X-ray structure of the cadmium carbonic 

anhydrase active site (CDCA1-R2) (PDB ID 3BOB).234 In CDCA1-R2, the catalytic Cd is 

coordinated by two cysteine residues, a histidine residue, and two water molecules. 

Figure 7.5. (7.8, top left) Structure of ([Zn(NH3)5]
2+) (7.9, top right) structure of 

([Zn(H2O)5]
2+), and (7.10, bottom) structure of ([Zn(H2O)4(OH)]+). 
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 Two of the three hexacoordinate complexes examined here are the fac and mer 

isomers of [Zn(NH3)3(OH)3]– (systems 7.5 and 7.6, respectively, Figure 7.3), used here 

to evaluate the performance of the EE-MB-CE method with larger, hexacoordinate 

systems. We also use hexacoordinate [Zn(OH)6]
4- (system 7.12, Figure 7.7) to test the 

applicability of the methods to symmetric Zn complexes. Zn – ligand distances in system 

7.12 were placed at 2.10 Å. In order to make system 7.12 completely symmetric angles 

Zn – O – H were made equal to 180 degrees.  

Figure 7.6. Structure of truncated model Cd biocenter complex: (7.11) cadmium 
carbonic anhydrase (3BOB), [Cd(H2O)2(SH)2(NH3)].  
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 The labeling schemes of all systems are consistent with previously published 

work.218,219 In total, these systems comprise two neutral, four positively charged, and four 

negatively charged complexes. All structures are provided in Supporting Information. 

 We use the labeling scheme defined in Figures 7.4–7.7, in which A, B, and C 

(when present) are negatively charged hydroxyl ligands and D, E, and F (when present) 

are neutral ligands. Each of the coordination complexes in Figure 3 has the structure of 

an irregular trigonal bipyramid, with axial ligands A and B and equatorial ligands C, D, 

and E. If rX denotes the distance from the non-hydrogen atom of a ligand to Zn, we label 

the atoms so that rA ≤ rB and rC ≤ rD ≤rE. However, if rB = rA, then B is also called A´; if rD = 

rC, then D is also called C´, and if rE = rD, then E is also called D´.  

 The quantity we calculate is an instantaneous bond dissociation energy, which is 

defined as the energy to remove one of the ligands from the coordination system at a 

given predefined geometry (if this were the equilibrium geometry, and if the separated 

Figure 7.7. (7.12) Structure of ([Zn(OH)6]
4-). 
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subsystems were re-optimized after removal of the ligand whose bond is being broken, 

then the instantaneous bond dissociation energy would be the equilibrium bond 

dissociation energy). As discussed previously,218,219 the instantaneous bond dissociation 

energy is the sum of the energies of the two products (separated frozen fragments) 

minus the energy of the reactant, without reoptimization and without including vibrational 

energy. When calculating the energies of a given dissociation product, the embedding 

charges of the other product are not included because the other product is considered to 

be infinitely separated.  

 Our EE-MB-CE calculations on neutral, negatively, and positively charged Zn 

and Cd systems demonstrate, consistently with our previous findings,218,219 that one must 

choose a fragmentation scheme where one of the monomers is Zn2+ or Cd2+ 

coordinated to at least two ligands. We rationalize this rule in terms of partial atomic 

charges. In particular, the charge on unligated or monoligated Zn and even on biligated 

Zn is much larger than the charge on polyligated Zn; thus fragments consisting of 

unligated, monoligated, or—to a lesser extent—biligated Zn are not precisely 

representative of a portion of a larger system. But if each fragment already has two 

ligands on Zn, then even in dimers there are three ligands on Zn. Thus, we only consider 

fragmentation schemes where one of the fragments is Zn2+ or Cd2+ with two ligands 

and the other fragments are individual ligands. Therefore, for pentacoordinate systems, 

there are ten possible ways to fragment a system. For example, for pentacoordinate 

system 7.1, the largest fragments for all ten fragmentation schemes are: ZnAB, ZnAC, 

ZnAD, ZnAE, ZnBC, ZnBD, ZnBE, ZnCD, ZnCE, and ZnDE. However, there are fifteen 

different ways to fragment a hexacoordinate system. The largest fragments in each 

fragmentation for each hexacoordinate system are as follows: ZnAB, ZnAC, ZnAD, 
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ZnAE, ZnAF, ZnBC, ZnBD, ZnBE, ZnBF, ZnCD, ZnCE, ZnCF, ZnDE, ZnDF, and ZnEF. 

Table 7.6 shows the possible ligands of Zn2+ and Cd2+ in a fragment for each studied 

system. We performed calculations utilizing all possible fragmentation schemes for all 

systems. 

Table 7.6. Systems considered in this work and types of Zn2+ and Cd2+-containing 

fragments in each
a
 

Full system     types of largest fragments
a
 

7.1  ([Zn(NH3)2(OH)3]
–
)                                   Zn(OH)2, [Zn(OH)(NH3)]

+
, [Zn(NH3)2]

2+ 

7.2   [Zn(NH3)3(OH)2]    Zn(OH)2, [Zn(OH)(NH3)]
+
, [Zn(NH3)2]

2+ 

7.5   fac isomer of ([Zn(NH3)3(OH)3]
–
)  Zn(OH)2, [Zn(OH)(NH3)]

+
, [Zn(NH3)2]

2+ 

7.6  mer isomer of ([Zn(NH3)3(OH)3]
–
) Zn(OH)2, [Zn(OH)(NH3)]

+
, [Zn(NH3)2]

2+ 

7.7   ([Zn(NH3)5]
2+

)    [Zn(NH3)2]2
+
 

7.8   ([Zn(NH3)5]
2+

)    [Zn(NH3)2]2
+ 

7.9   ([Zn(H2O)5]
2+

)    [Zn(H2O)5]2
+ 

7.10   ([Zn(H2O)4(OH)]
+
)   [Zn(OH)(H2O)]

+
, [Zn(H2O)2]

2+ 

7.11  [Cd(H2O)2(SH)2(NH3)] [Cd(H2O)2]
2+

, [Cd(SH)2], [Cd(H2O)(SH)]
+
         

[Cd(H2O)(NH3)]
2+

, [Cd(SH)(NH3)]
+      

7.12 ([Zn(OH)6]
4-
)     Zn(OH)2

 

a
For example, for system 7.1, there are three possible fragmentations of the type 

Zn(OH)2, one of  the type  [Zn(NH3)2]2+, and six of the type [Zn(OH)(NH3)]+. In Table 
7.9, we average results over all ten possible fragmentations, whereas in Table 7.13, we 
give results for the single scheme selected by our new fragmentation strategy. 
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 Each fragmentation scheme included all possible bond dissociation processes. 

For pentacoordinate systems we consider breaking 5 bonds whereas for hexacoordinate 

systems we consider breaking 6 bonds. For example, consider system 7.1 where each 

fragmentation scheme was used within the EE-MB and EE-MB-CE approximations to 

compute each of the following instantaneous bond dissociation processes:  

  AZnBCDEZnABCDE-   (R1) 

  BZnACDEZnABCDE-   (R2)   CZnABDEZnABCDE-   (R3) 

   CZnABDEZnABCDE-   (R3) 

    DZnABCEZnABCDE --   (R4) 

                                 EZnABCDZnABCDE --   (R5) 

 For 10 systems there are a total of 53 bond dissociation processes labeled from 

R1 to R53. Benchmark values for R1-R53 bond dissociation energies were obtained by 

full single-point calculations, i.e., without using the many-body approximation (see Table 

7.7).  

Table 7.7. MP2 benchmark bond dissociation energies (kcal/mol) for bonds in each 
model complex  

Reaction System Dissociated bond Bond energy 

R1 7.1 Zn–A 33.70 

R2 7.1 Zn–B 28.14 

R3 7.1 Zn–C 67.19 

R4 7.1 Zn–D 17.06 

R5 7.1 Zn–E 14.12 

R6 7.2 Zn–A 116.45 
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R7 7.2 Zn–B 53.31 

R8 7.2 Zn–D 7.66 

R9 7.2 Zn–E -11.54 

R10 7.2 Zn–F 8.38 

R11 7.5 Zn–A 9.67 

R12 7.5 Zn–B 9.81 

R13 7.5 Zn–C 9.67 

R14 7.5 Zn–D -14.69 

R15 7.5 Zn–E -22.45 

R16 7.5 Zn–F -20.91 

R17 7.6 Zn–A 25.89 

R18 7.6 Zn–B 11.66 

R19 7.6 Zn–C 32.37 

R20 7.6 Zn–D -14.96 

R21 7.6 Zn–E -16.91 

R22 7.6 Zn–F -8.85 

R23 7.7 Zn–A 51.27 

R24 7.7 Zn–B 51.19 

R25 7.7 Zn–C 45.12 

R26 7.7 Zn–D 27.18 

R27 7.7 Zn–E 2.03 

R28 7.8 Zn–A 33.06 

R29 7.8 Zn–B 32.86 

R30 7.8 Zn–C 45.35 

R31 7.8 Zn–D 45.35 

R32 7.8 Zn–D´ 45.28 

R33 7.9 Zn–A 34.34 

R34 7.9 Zn– A´ 33.38 



 

173 

 

R35 7.9 Zn–C 45.27 

R36 7.9 Zn–C´ 39.52 

R37 7.9 Zn–E 43.87 

R38 7.10 Zn–A 23.25 

R39 7.10 Zn–A´ 23.25 

R40 7.10 Zn–C 260.83 

R41 7.10 Zn–D 26.05 

R42 7.10 Zn–E 8.66 

R43 7.11 Cd–A 147.65 

R44 7.11 Cd–B 12.51 

R45 7.11 Cd–C 144.68 

R46 7.11 Cd–D 1.08 

R47 7.11 Cd–E 9.11 

R48 7.12 Zn–A -257.79 

R49 7.12 Zn–B -257.79 

R50 7.12 Zn–C -257.79 

R51 7.12 Zn–D -257.79 

R52 7.12 Zn–E -257.79 

R53 7.12 Zn–F -257.79 

     

 Table 7.8 shows CCSD(T) benchmark bond energies for system 7.1. We 

measure “errors” as the absolute deviation of the EE-MB and EE-MB-CE results from 

the full calculations with the same method.  
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Table 7.8. CCSD(T) benchmark bond dissociation energies (kcal/mol) for every bond in 
system 7.1 

Reaction System 
Dissociated 

bond 
Bond energy 

R1 7.1 Zn–A 34.98 

R2 7.1 Zn–B 29.20 

R3 7.1 Zn–C 67.48 

R4 7.1 Zn–D 16.60 

R5 7.1 Zn–E 14.08 

 

7.5.2 RESULTS AND DISCUSSION 

 For each method, we consider 350 bond dissociation energy calculations for 

pentacoordinate systems 7.1, 7.2, 7.7, 7.8, 7.9, 7.10, 7.11 (seven systems, each with 

five bonds and ten different fragmentation schemes) and 270 bond dissociation energy 

calculations for hexacoordinate systems 7.5, 7.6, and 7.12 (three systems, each with six 

bonds and 15 fragmentation schemes). And we compute final errors averaged over a 

total of 620 bond dissociation energies for each method. Table 7.9 shows the EE-MB 

and the EE-MB-CE mean signed errors (MSEs) and mean unsigned errors (MUEs) in 

the instantaneous bond energies (kcal/mol) averaged over the 620 cases of bond 

dissociation.  

Table 7.9. EE-MB and EE-MB-CE mean signed and unsigned errors in bond energies 
(kcal/mol) for all ten Zn and Cd complexes averaged over 10-to-15 fragmentation 

schemes and averaged over all five or six bonds being broken
a
 

System 
EE-PA EE-3B EE-PA-CE EE-3B-CE 

MSE MUE MSE MUE MSE MUE MSE MUE 

7.1 -1.26 7.28 0.64 2.07 -1.35 3.16 0.34 0.95 

7.2 0.94 14.97 0.70 6.85 -1.86 8.06 1.14 3.94 

7.5 2.41 4.82 -0.53 2.08 0.12 2.64 -0.24 1.54 
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7.6 0.95 2.73 0.42 1.65 -0.48 1.80 0.17 0.98 

7.7 -2.88 4.10 0.49 0.78 -0.39 1.48 0.02 0.42 

7.8 -3.71 4.20 0.47 0.74 -0.68 1.75 0.05 0.47 

7.9 -0.06 2.69 -0.33 1.30 -0.17 1.10 -0.09 0.45 

7.10 0.31 5.31 -0.85 2.64 0.16 2.33 -0.34 0.82 

7.11 -17.07 18.69 -0.89 1.40 -1.99 2.39 -0.53 0.65 

7.12 6.50 6.52 -1.74 2.16 3.12 3.12 -0.59 0.82 

meanb -0.48 6.66 -0.25 2.13 -0.08 2.73 -0.05 1.10 
a
MSE is mean signed error; MUE is mean unsigned error. 

b
averaged over the 620 combinations of system, bond, and fragmentation 

scheme, not over the ten rows 

 The EE-3B MUEs range from 0.74 to 2.64 kcal/mol except system 7.2, which has 

a MUE of 6.85 kcal/mol. Note that the EE-3B MUE for all ten systems is 2.13 kcal/mol. 

The EE-3B MUEs in bond dissociation energies of the hexacoordinate systems 7.5 and 

7.6, at 2.08 kcal/mol and 1.65 kcal/mol, are comparable to those of the pentacoordinate 

systems, which is an encouraging result. Note that the EE-3B MUE for Cd2+ system 

7.11 is 1.40 kcal/mol. As expected, the EE-PA method is less accurate, resulting in 

MUEs in bond dissociation energies ranging from 2.69 to 18.69 kcal/mol for the systems 

studied here. Averaging the MUEs over all ten Zn2+ and Cd2+ systems gives an overall 

MUE of 6.66 kcal/mol for the EE-PA method. 

 Now let us consider the EE-MB-CE method. Table 7.9 also shows the EE-MB-

CE MSEs and MUEs for bond-breaking energies for all possible fragmentation schemes 

for all ten Zn2+ and Cd2+ systems. As expected, the EE-3B-CE approximation is more 

accurate, resulting in MUEs in bond dissociation ranging from 0.42 to 1.54 kcal/mol for 

all pentacoordinate and hexacoordinate systems except 7.2, which has a MUE of 3.94 

kcal/mol. The EE-3B-CE MUE for Cd2+ system 7.11 is 0.65 kcal/mol, which is 
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comparable to those for the Zn – containing pentacoordinate systems. The EE-3B-CE 

MUEs in bond dissociation energies for the hexacoordinate systems 7.5 and 7.6 are 

comparable to those for the pentacoordinate systems, at 1.54 kcal/mol and 0.98 

kcal/mol, respectively. As expected, the EE-PA-CE method is less accurate, resulting in 

MUEs in bond dissociation energies ranging from 1.10 to 3.16 kcal/mol for the systems 

studied here except system 7.2, which has a MUE of 8.06 kcal/mol. Averaging the MUEs 

over all ten Zn2+ and Cd2+ systems including 7.2 gives an overall MUE of 2.73 kcal/mol 

for the EE-PA-CE method, but only 1.10 kcal/mol for the EE-3B-CE method.  

 Based on the results in Table 7.9, the many-body methods can be ranked in 

order of increasing MUE as EE-3B-CE, EE-3B, EE-PA-CE, and EE-PA. Overall, both the 

EE-MB and the EE-MB-CE methods perform well, even for the hexacoordinate Zn 

complexes, indicating their usefulness for larger metalloprotein systems for which high-

level electronic structure calculations on the entire system might not be feasible.  

 Table 7.10 provides a more detailed view of the results for system 7.2, with 

MSEs and MUEs in bond energies for system 7.2 for all ten possible fragmentations. 

The ZnFE, ZnDE, and ZnDF fragmentation schemes have the largest errors, with MUEs 

of 12.47, 10.94, and 9.07 kcal/mol respectively for EE-3B and 6.71, 6.19, and 5.23 

kcal/mol respectively for EE-3B-CE. Thus, any combination of Zn with ammonia ligands 

in a fragment yields poor results. In contrast, the ZnAB fragmentation scheme, where Zn 

is combined with two hydroxyl ligands in a fragment, yields the best results; note that for 

this fragmentation, the MUE of EE-3B-CE is only 0.84 kcal/mol, whereas that of the EE-

3B is a reasonable 3.28 kcal/mol (Table 7.10). Our analysis suggests that the ZnAB 

fragmentation yields better results than the other fragmentation schemes because there 

is a large interatomic Coulomb interaction between the O atom of A and the O atom of B, 
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and the ZnAB fragmentation treats these interactions entirely by quantum mechanics 

without using point charges because it places the A and B groups in a single fragment. 

This observation was corroborated by additional calculations (not reported in detail here) 

that resulted in a lower error when the distance between ligands A and B was increased 

in system 7.2 without altering any other distances when the ZnAB fragmentation scheme 

was not used, and that resulted in an larger error when decreasing the distance between 

the ligands A and B when the ZnAB fragmentation scheme was not used. This is 

consistent with the major part of the error coming from the A–B interaction when A and B 

are not in a single fragment.  

Table 7.10. EE-MB and EE-MB-CE mean signed and unsigned errors in bond energies 
(kcal/mol) for system 7.2, for all ten fragmentation schemes 

largest fragment 
EE-PA EE-3B EE-PA-CE EE-3B-CE 

MSE MUE MSE MUE MSE MUE MSE MUE 

ZnFE -7.38 17.38 1.22 12.47 -4.21 10.56 1.63 6.71 

ZnDE -5.81 18.19 0.70 10.94 -3.58 11.77 0.84 6.19 

ZnDF -7.10 17.21 2.70 9.07 -4.26 13.17 2.42 5.23 

ZnAD -11.12 12.36 4.88 6.87 -7.30 7.84 3.31 4.54 

ZnBD 17.45 17.45 -3.31 3.31 3.81 5.51 -0.46 1.37 

ZnAE -7.93 11.90 1.99 7.92 -4.41 6.35 1.29 4.77 

ZnBE 5.74 10.21 0.87 5.54 1.11 8.28 0.17 3.79 

ZnAF -8.05 10.99 3.62 6.62 -5.03 6.32 2.44 4.21 

ZnBF 14.62 14.98 -2.43 2.43 4.09 6.85 -0.75 1.76 

ZnAB 19.01 19.01 -3.28 3.28 1.15 3.99 0.49 0.84 

meanc 0.95 14.97 0.70 6.85 -1.86 8.06 1.14 3.94 
c
mean signed and unsigned errors for the ten rows in the given column, where each 

row contains an average over five bond dissociation energies 
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 Following these observations, we developed a fragmentation strategy designed 

to minimize the error. In order to obtain accurate energies for Zn systems with the EE-

MB and EE-MB-CE methods, one should locate the two ligands in a system that have 

the strongest Coulomb interaction with each other, and combine them with Zn2+ or 

Cd2+ in a single fragment. In order to quantify "the strongest Coulomb interaction" we 

used the monomer embedding charges to calculate Coulomb interactions of the partial 

atomic charges in one ligand with those in another. For example, consider ligands A, B, 

D, E, F of system 7.2. First, we calculate the monomeric partial atomic charges using the 

method described above (that is, we perform an MK partial charge analysis on each 

isolated ligand in the geometry it has in the cluster). Then those charges are used to 

calculate absolute maximum atom-atom Coulomb interaction between each pair of 

ligands. We define the absolute atom-atom Coulomb interaction (   
AB) between atom i of 

ligand A and atom j of ligand B as 

   
AB   

  
   

 

   
      A and     B, A  B 

        
  is the charge on i, and   

  is the charge on j, and     is the distance from i to j.  

 The maximum Coulomb interaction between two fragments is defined as the 

largest of all of the absolute atom-atom Coulomb interaction energies between a partial 

atomic charge in one fragment and a partial atomic charge on an atom of a different 

fragment. For system 7.2, ligands A and B have the largest absolute maximum Coulomb 

interaction out of all of the possible pairs of ligands in the complex. Therefore, our 

strategy places these two ligands together with Zn2+ in a fragment; this leaves the other 

ligands as individual fragments. This strategy produces a preferred fragmentation 
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scheme for each of the ten complexes. Note that our prescription can be stated in a way 

that suggests even greater generality: of all possible fragmentation schemes that 

combine two ligands in the same fragment with the transition metal, one should apply 

the fragmentation scheme that minimizes the absolute maximum Coulomb interaction 

between any two remaining ligands that are treated as individual fragments. 

 Table 7.11 presents maximum Coulomb interactions between every ligand in all 

ten systems. For example, ligands A and B in system 7.1 have the maximum absolute 

Coulomb interaction for that system, which is 0.56 e (where e is the charge on a proton). 

Thus, ligands A and B in system 7.1 should be combined with Zn2+ in a fragmentation. 

However, in hexacoordinate system 7.5, there are three identical maximum Coulomb 

interactions: A and C, A and B, and B and C. Any of those ligands can be combined with 

Zn2+ in a fragment. In Table 7.13 we report the average of the three (ZnAB, ZnAC, and 

ZnBC) fragmentations for system 7.5. In system 7.6, ligands A and B, and B and C have 

identical maximum Coulomb interactions. Thus, the average of the two (ZnAB and 

ZnBC) fragmentations was reported in Table 7.13 for system 7.6.  

Table 7.11. Absolute Coulomb interactions between fragments in all ten systems (in e) 

System Ligand B or A or A’ C or C’ D or C E or D’ F 

7.1 A 0.56 0.33 0.36 0.33  

 B  0.48 0.28 0.40  

 C   0.35 0.35  

 D    0.27  
7.2 A 0.70  0.40 0.45 0.43 

 B   0.37 0.27 0.32 

 D    0.35 0.34 

 E     0.35 

 

 

7.5 A 0.57 0.57 0.45 0.32 0.45 
 B  0.57 0.45 0.45 0.32 
 C   0.32 0.45 0.45 
 D    0.36 0.36 
 E     0.36 

7.6 A 0.57 0.40 0.45 0.45 0.45 
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 B  0.57 0.32 0.45 0.45 
 C   0.45 0.45 0.45 
 D    0.36 0.36 
 E     0.25 

7.7 A 0.30 0.29 0.29 0.25  
 B  0.30 0.26 0.28  
 C   0.33 0.21  
 D    0.41  

7.8 A 0.22 0.3221 0.3178 0.3180  
 B  0.3174 0.3218 0.3219  
 C   0.27 0.27  
 D    0.27  

7.9 A’ 0.1125 0.1593 0.1593 0.1614  
 A  0.1657 0.1654 0.1626  
 C’   0.1352 0.1356  
 C    0.1354  

7.10 A 0.14 0.316 0.19 0.16  
 A’  0.320 0.19 0.16  
 C   0.22 0.30  
 D    0.18  

7.11 A 0.31 0.27 0.23 0.18  
 B  0.32 0.14 0.21  
 C   0.18 0.18  
 D    0.15  

7.12 A 0.52 0.36 0.52 0.52 0.52 
 B  0.52 0.52 0.36 0.52 
 C   0.52 0.52 0.52 
 D    0.52 0.36 
 E     0.52 

 

 System 7.12 is a unique symmetric system where only two fragmentation types 

are possible: trans and cis. Trans fragmentation schemes are those where Zn2+ is 

paired with ligands that are directly across from each other, and cis fragmentations are 

those where Zn2+ is paired with ligands that are adjacent to one another.  In system 

7.12, ZnAC, ZnBE, and ZnDF are trans fragmentations whereas ZnAB, ZnAD, ZnAE, 

ZnAF, ZnBC, ZnBD, ZnBF, ZnCD, ZnCE, ZnCF, ZnDE, and ZnEF are cis 

fragmentations. Table 7.12 presents MUEs for trans fragmentation ZnAC and cis 
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fragmentation ZnAB. The EE-3B-CE MUEs for trans and cis fragmentations are 0.58 

kcal/mol and 0.88 kcal/mol, respectively. 

Table 7.12. EE-MB and EE-MB-CE mean signed and unsigned errors in bond 
dissociation energies (kcal/mol) for system 7.12  

System Largest fragment 
EE-PA EE-3B EE-PA-CE EE-3B-CE 

MSE MUE MSE MUE MSE MUE MSE MUE 

7.12 ZnAB (cis) 7.14 7.14 -2.44 2.44 3.45 3.45 -0.88 0.88 

7.12 ZnAC (trans) 3.92 4.02 1.06 1.06 1.80 1.80 0.58 0.58 

meand  6.50 6.52 -1.74 2.16 3.12 3.12 -0.59 0.82 

    dmean signed and unsigned errors for the 15 fragmentation schemes, where 12 are 
cis and 3 are trans fragmentations. 

   Table 7.13 shows results for all ten systems where, for each complex, we apply 

the new strategic fragmentation scheme rather than averaging over all possible 

fragmentations. We see that the MUE for the EE-3B method decreases from 2.13 to 

1.42 kcal/mol, and the MUE for the EE-3B-CE method decreases from 1.10 to 0.59 

kcal/mol, when we use the preferred fragmentation. Note that the EE-PA-CE MUE 

decreases from 2.73 kcal/mol to 1.93 kcal/mol. The EE-PA MUE decreases from 6.66 

kcal/mol to 6.14 kcal/mol.  

  

Table 7.13. EE-MB and EE-MB-CE mean signed and unsigned errors in bond energies 
(kcal/mol) for Zn and Cd systems using the fragmentation strategy selected by our new 
criterion 

System 
Largest 

fragment 

EE-PA EE-3B EE-PA-CE EE-3B-CE 

MSE MUE MSE MUE MSE MUE MSE MUE 

7.1 ZnAB 0.44 4.63 0.31 1.41 -0.56 1.74 0.24 0.50 

7.2 ZnAB 19.01 19.01 -3.28 3.28 1.15 3.99 0.49 0.84 

7.5 
Zn(AB, AC, 

BC) 
5.79 5.79 -1.77 2.11 0.82 2.11 -0.28 0.97 
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7.6 Zn(AB, BC) 3.70 3.80 -1.14 1.83 0.46 1.65 -0.27 0.82 

7.7 ZnDE -3.77 3.99 -0.07 0.58 0.47 1.34 -0.54 0.70 

7.8 ZnAC 0.15 2.06 0.40 0.52 -0.07 1.57 -0.14 0.55 

7.9 ZnAC’ 0.04 2.69 -0.53 1.32 -0.09 1.04 -0.16 0.47 

7.10 ZnA’C 0.37 1.34 -0.03 0.62 -0.19 0.65 0.03 0.18 

7.11 CdBC -9.24 11.15 0.09 0.24 -1.45 1.75 0.03 0.03 

7.12 ZnAB(cis) 7.14 7.14 -2.44 2.44 3.45 3.45 -0.88 0.88 

meane  2.36 6.14 -0.86 1.42 0.40 1.93 -0.15 0.59 
e
mean signed and unsigned errors for the ten systems in the given column 

 Table 7.14 shows MSEs and MUEs for both EE-MB and EE-MB-CE methods 

obtained by CCSD(T) level calculations on system 7.1. As expected, the EE-3B-CE 

approximation is more accurate, resulting in a MUE for bond dissociation of 0.30 

kcal/mol, whereas the EE-3B MUE is 1.26 kcal/mol.  

Table 7.14. EE-MB and EE-MB-CE mean signed and unsigned errors in bond energies 
(kcal/mol) for Zn system 7.1 using CCSD(T) level theory and the fragmentation strategy 
selected by our new criterion 

System 
Largest 

fragment 

EE-PA EE-3B EE-PA-CE EE-3B-CE 

MSE MUE MSE MUE MSE MUE MSE MUE 

7.1 ZnAB 8.54 8.73 0.31 1.26 7.52 7.52 0.21 0.30 

 Previously,219 we reported four fragmentation guidelines for Zn systems. 

According to those rules, Zn should be combined with at least two ligands in a fragment 

in order to have a representative charge distribution at the Zn center, and three other 

rules were proposed: one should not dissociate Zn–ligand bonds that are in the same 

fragment as Zn, one should not include more than one charged fragment, and Zn should 

not be in a fragment with ligands that are trans to each other. In the present work, the 
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final three of these rules are superseded by one new, more general guideline, i.e., of all 

possible fragmentation schemes under consideration, one should use the one that 

minimizes the maximum Coulomb interaction between atoms in two different fragments. 

Since here we consider only schemes that combine two ligands with Zn2+ or Cd2+ in 

one of the fragments and then treat all other ligands as individual fragments, the rule 

reduces for the present case to: in order to calculate accurate metal-ligand bond 

dissociation energies, one should find two ligands that exhibit the strongest Coulomb 

interaction with each other, and combine them with Zn or Cd into a single fragment.  

 In addition to yielding lower errors, the fragmentation prescription advanced here 

allows the treatment of systems for which our previous guidelines were ambiguous. For 

example, consider system 7.7 (see Figure 7.4), which features five ammonia ligands 

and for which none of our previous guidelines offers an optimal fragmentation strategy. 

Applying our more general rule as described above results in an EE-3B MUE of 0.58 

kcal/mol and an EE-3B-CE MUE of 0.70 kcal/mol.  

7.5.3 CONCLUSIONS 

 The EE-MB and the EE-MB-CE calculations were carried out on pentacoordinate 

and hexacoordinate Zn and Cd complexes, and the results were compared to full 

calculations at the same correlated level of theory. Both the EE-MB and the EE-MB-CE 

methods perform well. By using our new prescription for cluster fragmentation, the MUE 

for the EE-3B method for all 53 bond dissociation energies in all ten complexes is only 

1.42 kcal/mol. Also, notably, the MUE for the EE-3B-CE method for all bond energies in 

all ten complexes was reduced to 0.59 kcal/mol. The average absolute error for the EE-

3B-CE method is only 0.93% of the average absolute bond dissociation energy, which is 
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63.29 kcal/mol. These results show that our newly developed fragmentation strategy can 

be used for various Zn-containing systems representing other zinc-dependent enzyme 

active sites as well. The fact that EE-3B-CE MUE for Cd2+ system 7.11 is 0.03 kcal/mol 

supports our fragmentation strategy and shows the transferability of the findings to other 

metals such as Cd. The EE-3B-CE MUE of 0.30 kcal/mol obtained by CCSD(T) 

calculations on system 7.1 shows the transferability of the findings to other correlated 

methods. The new fragmentation prescription improves upon our previously published 

work by replacing four fragmentation guidelines with one simple and unambiguous rule, 

namely, in order to calculate accurate Zn-ligand or Cd-ligand bond dissociation energies 

with EE-MB and EE-MB-CE methods, one should find the two ligands that have the 

strongest Coulomb interaction with each other and combine them with Zn or Cd in one 

fragment. 

 The EE-3B-CE method is able to capture most of the correlation energy, 

requiring only a Hartree–Fock calculation for the full system and correlated calculations 

only for dimers and trimers of the fragments. It can also be used to obtain instantaneous 

bond dissociation energies, which are an important indicator of how well a method can 

capture the wide variety of energetic interactions that occur in a coordination complex, 

including both electrostatic interactions and electron-electron correlation. The fact that 

the EE-3B-CE approximation captures bond dissociation energies to within 0.93% of 

conventionally calculated values when the new fragmentation scheme is used 

demonstrates that it is possible to apply a relatively simple fragment-based method to 

obtain an accurate picture of the potential energy surface of a quite complicated system 

involving coordinate covalent bonds. One could therefore use the EE-MB-CE 

approximation to parameterize inorganic reactive force fields for use to study 
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macromolecular drug targets, or one could use it directly without force fields to obtain 

more accurate results that would otherwise be impossible for large systems (for 

example, systems with large ligands) where full calculations on the whole complex with a 

reliable method are unaffordable. 

7.6 COMPARISON TO OTHER FRAGMENTATION METHODS 

In this section we add more discussion of other fragment methods in order to 

place the EE-MB-CE method and the present work in perspective. Fragment methods 

may be classified in various ways,212,235–238 each of which focuses on a different aspect. 

In discussing these classifications, the language we use is that the smallest subsystems 

considered (the groups of atoms that are together at all stages of the calculation) are the 

monomers, the fragments are any group of one or more monomers on which a 

calculation is carried out, and the extended system is called the entire system (other 

notation sometimes encountered in the literature is to call the monomers groups, to call 

the fragments monomers, and to call the entire system the supersystem). 

One possible classification is into single-level methods and multi-level methods.  

In the former, all fragment calculations are carried out at the same level. In the latter, 

either fragment calculations are carried out with more than one level, or—as here—

fragment calculations carried out at a higher level are combined with entire-system 

calculations carried out at a lower level. 

Another possible classification is to distinguish fragment approximations from 

divide-and-conquer methods.  In the latter, one uses fragments as an intermediate part 

of the calculation, but the goal is to converge to a particular unfragmented calculation. In 

such methods fragmentation is an algorithmic choice, not an approximation.  In fragment 

approximations, the results converge to a high-level, entire-system result only in the limit 
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where one of the fragments treated at the high level is so large that it is the same as the 

entire system. The EE-MB-CE method is a fragment approximation. The rest of this 

discussion is concerned only with fragment approximations, i.e., with attempts to make 

useful calculations on larger systems feasible by introducing safe levels of approximation 

rather than by breaking the full calculation into smaller, more manageable parts without 

approximations. 

Another possible classification is between inclusion–exclusion methods and 

many-body methods, but this is not unique since an inclusion−exclusion method can be 

thought of as an untruncated many-body method (with a distance cutoff), and many-

body methods can also be thought of as an inclusion−exclusion based method.236 A 

more unique classification is to ask whether a given part of the system occurs in one and 

only fragment (fragments do not overlap) or whether it occurs in more than one fragment 

(fragments do overlap); this is one way to classify fragment methods into overlapping 

and nonoverlapping methods (also sometimes called intersecting and non-intersecting). 

In this sense, many-body methods are overlapping methods because a given monomer 

occurs in many dimers, many trimers, and so forth. This contrasts with methods like the 

fragment molecular orbital (FMO) method239 or the variational explicit polarization (X-Pol) 

method,206 which have nonoverlapping fragments, except for a boundary atom in X-Pol. 

It is easily understood238 that overlapping methods have faster convergence than 

nonoverlapping methods with respect to the size of fragments needed to obtain accurate 

results. 

Another possible classification is whether a given fragment is embedded in the 

electrostatic field of the rest of the entire system.  Including this embedding effect leads 

to more accurate results or to equally accurate results with smaller fragments. 
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In terms of the above classifications, the EE-MB-CE method is a multilevel, 

overlapping, embedded fragment approximation, and, since it dates to 2007,220 it may be 

the first fragment approximation to actually combine all three of these advantages into a 

single algorithm.210 Combining these three features makes it very powerful. We note 

though that the EE-MB method may be considered to be a special case of the 

electrostatically embedded238 molecular tailoring240 approach (EE-MTA), which allows 

more flexibility in the choice of fragments. We also note that the general energy-based 

fragment (GEBF) method241 also shares some of the advantages of EE-MTA.  Thus a 

multilevel version of EE-MTA or GEBF could be more flexible than EE-MB-CE, and a 

multilevel version of EE-MTA could include EE-MB-CE as a special case. One 

interesting possible way to make a multilevel extension of the GEBF method has been 

proposed recently by Li.242 

Further classification is possible if one uses capping methods on bonds broken at 

the boundaries of fragments,243 but we will not discuss that here since no caps are 

employed in the present work. In particular, even though we do break bonds in forming 

fragments, these are coordination bonds, and one of the goals of the present work is to 

show that we can obtain good results for coordination bonds without capping them. 

One could also make classifications at a finer level; for example, we do not 

iterate the background charges to self-consistency (which makes the method simpler 

and less expensive202) whereas several other proposed methods do iterate the 

background electrostatics. 

Discovering the most efficient way to carry out fragmentation calculations is 

certainly one of the most important challenges in current quantum chemical research, 

and the answer will almost surely depend on the problem. Further explanation of the 

accuracies that can be achieved on various kinds of problems by various fragmentation 
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approaches is therefore very important. The problem treated here is a very hard one. We 

have fragments that contain only one side of a metal–ligand bond.  This shows the 

advantage of overlapping fragment methods, in that the bond can be split in this way, 

and yet represented intact in other fragments. Furthermore the electrostatics of the 

systems treated here are very challenging because the partial atomic charge on the 

metal atom depends on the number of ligands attached to it in the fragment, but we treat 

background electrostatics without iterations. The good results achieved here for this very 

difficult problem are encouraging.  
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Chapter 8 

 

SYNTHESIS AND SAR OF HIGH-THROUGHPUT SCREENING (HTS) HITS 
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Rodney L. Johnson and Michael A. Walters. 

8.2 INTRODUCTION 

High-throughput screening (HTS) is an efficient drug discovery method that 

allows for rapid experimental evaluation of large chemical libraries to identify modulators 

of a validated drug target. In the past, this approach has been used by many 

pharmaceutical and biotechnology companies to fuel their drug discovery programs.152 

To discover novel small molecule inhibitors of LF, we have screened ~250,000 

compounds for LF inhibition at the University of Minnesota ITDD. From this effort, we 

prioritized two hits, HTS Hits 8.16 and 8.23 (Figure 8.1), for further investigation. This 

chapter will describe the synthesis and biological evaluation of HTS Hits 8.16 and 8.23 

and series of analogs of 8.16. 

Figure 8.1. Chemical Structures of HTS Hits 8.16 and 8.23. 
 

 

  



 

191 

 

8.3 MATERIALS AND METHODS 

8.3.1 Synthesis and Biochemical Evaluation 

The synthesis of 8.16 and analogs was accomplished as outlined in Scheme 8.1.  

Compounds 8.5-8.8 were readily synthesized from commercially available anilines 8.1-

8.2 and commercially available chloroquinolines 8.3-8.4 through nucleophilic 

substitution.  

Scheme 8.1. Synthesis of compound 8.16 and its analogs. 

 

Reagents and Conditions: (a) HCl, Acetone/H2O, reflux (8.5, 99%; 8.6, 100%; 8.7, 60%; 
8.8, 97%);  (b) Pd2(dba)3, xantphos, Cs2CO3, 1,4-dioxane, 95 °C (8.12, 98%; 8.13, 86%); 
(c) Fe dust, HCl, EtOH/H2O, reflux (8.14, 73%; 8.15, 71%); (d) 8.5 or 8.6, NMM, HOBt, 
EDC, DMF, rt (8.16, 12%; 8.17, 82%; 8.18, 81%; 8.19, 64%). 
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Intermediates 8.12-8.13 were synthesized from commercially available starting 

materials 8.9-8.11 through Buchwald-Hartwig amination in 86-98% yield. Intermediates 

8.12-8.13 were reduced to the amine using Fe dust to give 8.14-8.15 in 71-73% yield. 

Finally, carboxylic acids 8.5-8.6 were submitted to EDC coupling with amines 8.14-8.15 

to yield 8.16-8.19 in 12-82% yield. Activities of the synthesized compounds were 

evaluated using the previously described in vitro LF FRET assay. 

The synthesis of HTS Hit 8.23 was accomplished as outlined in Scheme 8.2. Hit 

8.23 was synthesized in a single step from commercially available 8.21 and 8.22 using 

EDC coupling in 67% yield. 

 

Scheme 8.2. Synthesis of compound 8.23. 

Reagents and Conditions: (a) NMM, HOBt, EDC, DMF, rt, 67%. 

 

8.4 RESULTS AND DISCUSSION 

8.4.1 Biochemical Evaluation 
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Table 8.1. LF FRET assay results for 8.23, 8.16, and fragments and analogs of 8.16.  

GPHR #a 
Cpd 

# 
Structure 

LF IC50 
(μM)b 

00225284 8.5 

 

>100 

00227097 8.6 

 

>100 

00227096 8.7 

 

>100 

00227095 8.8 

 

>100 

00220772-
05 

8.16 

 

9.3 

00278862 8.17 

 

>100 
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00278859 8.18 

 

>100 

00278861 8.19 

 

9.3 

00278860 8.20 

 

>100 

00194983-
04 

8.23 

 

>100 

aGPHR # is a compound number in our in-house collection of compounds 
bIC50 is a half maximal inhibitory concentration   

To our surprise, re-synthesized 8.23 showed no inhibitory activity against LF. To 

further investigate this observation, we re-purchased 8.23 from the original commercial 

supplier (ChemDiv) and purified it using column chromatography. Both purified and 

unpurified batches of 8.23 were evaluated using the FRET assay. The unpurified batch 

of 8.23 inhibited the enzyme, whereas the purified batch did not. These results indicate 

that compound 8.23 is likely a false positive as the commercial material contains a 

number of impurities, one or more of which may be responsible for LF inhibition. 

Additional investigations to confirm this hypothesis are ongoing. 
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The re-synthesized HTS Hit 8.16 inhibited the LF enzyme, confirming that it is a 

true hit. To further investigate the SAR of 8.16, we have synthesized several fragments 

and analogs of 8.16 (Table 8.1). Fragments 8.5-8.8 and analogs 8.17, 8.18, and 8.20 do 

not show any improvement in activity over that of 8.16. However, analog 8.19 shows 

similar activity to 8.16 with an IC50 of 9.3 μM. This means that the nitro functionality may 

not be important for the observed activity of 8.16, whereas the pyridine ring is likely 

crucial for the observed activity. 

8.5 CONCLUSION 

In this chapter, we have synthesized HTS Hits 8.16 and 8.23, and several 

fragments and analogs of 8.16. We demonstrated that 8.23 is likely a false positive, 

whereas 8.16 is a true positive. For preliminary SAR, we synthesized several fragments 

and analogs of 8.16. Fragments 8.5-8.8 and analogs 8.17, 8.18, and 8.20 did not show 

any improvement in activity over 8.16. However, analog 8.19 showed similar LF 

inhibitory activity to 8.16 with an IC50 of 9.3 μM. These results suggest that the nitro 

functionality may not be important for the observed activity of 8.16, whereas the pyridine 

ring is likely crucial for the observed activity of 8.16.  
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8.6 EXPERIMENTAL 

General Synthesis Information. Chemical reagents were purchased from commercial 

sources and used without additional purification. Bulk solvents were purchased from 

Fisher Scientific and anhydrous N,N’-dimethylformamide (DMF) was purchased from 

EMD Chemicals. Reactions were performed under an atmosphere of dry N2 unless 

otherwise noted. Silica gel chromatography was performed on self-packed columns with 

SiliaFlash 60Å silica gel (SiliCycle). Compounds used in biological testing were no less 

than 95% pure as determined by two-wavelength HPLC analysis (254 and 215 nm). 

HPLC analyses were performed on an Agilent 1100 series instrument equipped with a 

diode array detector and a Zorbax SB-C18 column (0.5 x 150 mm, 5 µm, Agilent 

Technologies). LC-MS analyses were performed on an Agilent 1100 series instrument 

equipped with an Agilent MSD SL Ion Trap mass spectrometer (positive-ion mode) and a 

Zorbax SB-C18 column (0.5 x 150 mm, 5 µm, Agilent Technologies). The analysis 

method (15 µL/min flow rate) involved isocratic 10% MeCN (containing 0.1% TFA) in 

ddH2O (containing 0.1% HCO2H; 0 to 2 mins) followed by a linear gradient of 10% to 

90% MeCN (containing 0.1% TFA) in ddH2O (containing 0.1% HCO2H; 2 to 24 mins), 

and isocratic 90% MeCN (containing 0.1% TFA) in ddH2O (containing 0.1% HCO2H; 24-

26 mins). The column was heated to 40 oC. Wavelengths monitored = 254 nm and 215 

nm. Nuclear magnetic resonance (NMR) spectra were recorded in CDCl3, CD3OD, or 

DMSO-d6 on a Varian instrument operating at 400 MHz (for 1H) and 100 MHz (for 13C) at 

ambient temperature. Chemical shifts are reported in parts per million (ppm) and 

normalized to internal solvent peaks or tetramethylsilane (0 ppm). 
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4-((6-Nitroquinolin-4-yl)amino)benzoic acid (8.5) 

 

A mixture of 8.1 (0.1 g, 1.1 mmol), 8.3 (0.2 g, 1.0 mmol), and conc. HCl (cat.) in 

acetone/H2O (15 mL, 1/2, v/v) was refluxed for 45 min and then cooled to rt. The crude 

reaction mixture was filtered to yield the desired product as a yellow solid (0.3 g, 99%). 

1H NMR (400 MHz, DMSO) δ 13.16, (s, 1H), 11.49 (s, 1H), 9.83 (s, 1H), 8.77-8.7 (m, 

2H), 8.28 (d, J = 9.2 Hz, 1H), 8.15 (d, J = 8.8 Hz, 2H), 7.66 (d, J = 8.8 Hz, 2H), 7.16 (d, J 

= 6.4 Hz, 1H); 13C NMR (100 MHz, DMSO) δ 167.0, 156.0, 145.5, 145.4, 141.8, 141.3, 

131.5, 129.9, 127.9, 125.1, 122.7, 121.8, 117.5, 102.5. 

 

4-(Quinolin-4-ylamino)benzoic acid (8.6) 

 

Synthesized according to the procedure reported for 8.5. Yellow solid (82 mg, 100%). 1H 

NMR (400 MHz, DMSO) δ 13.11, (s, 1H), 11.09 (s, 1H), 8.83 (d, J = 8.4 Hz, 1H), 8.59 (d, 

J = 6.8 Hz, 1H), 8.12-8.04 (m, 4H), 7.84 (t, J = 7.6 Hz, 1H), 7.64 (d, J = 8.8 Hz, 2H), 7.05 

(d, J = 6.8 Hz, 1H); 13C NMR (100 MHz, DMSO) δ 167.1, 154.8, 143.6, 142.0, 138.8, 

134.5, 131.5, 129.4, 127.8, 125.0, 124.2, 120.9, 118.1, 101.1. 

 

  



 

198 

 

N-phenylquinolin-4-amine (8.7) 

 

Synthesized according to the procedure reported for 8.5. The crude material was purified 

over SiO2 using an eluent of DCM/MeOH (10/1, v/v) to yield the desired product as a 

white solid (40 mg, 60%). 1H NMR (400 MHz, DMSO) δ 9.0 (brs, 1H), 8.44 (d, J = 5.6 Hz, 

1H), 8.38 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.68 (t, J = 7.2 Hz, 1H), 7.52 (t, J 

= 8.0 Hz, 1H), 7.43-7.35 (m, 4H), 7.13 (t, J = 7.2 Hz, 1H), 6.92 (d, J = 5.6 Hz, 1H); 13C 

NMR (100 MHz, DMSO) δ 150.9, 149.2, 148.2, 140.9, 129.8, 129.8, 129.4, 125.1, 124.2, 

122.8, 122.6, 120.2, 101.9. 

 

6-Nitro-N-phenylquinolin-4-amine (8.8) 

 

Synthesized according to the procedure reported for 8.5.The crude material was purified 

over SiO2 using an eluent of DCM/MeOH (20/1, v/v) to yield the desired product as a 

yellow solid (60 mg, 97%). 1H NMR (400 MHz, DMSO) δ 9.62 (s, 1H), 9.48 (s, 1H), 8.55 

(d, J = 5.2 Hz, 1H), 8.35 (d, J = 9.2 Hz, 1H), 7.97 (d, J = 9.6 Hz, 1H), 7.47-7.38 (m, 4H), 

7.2 (t, J = 7.6 Hz, 1H), 6.96 (d, J = 5.6 Hz, 1H); 13C NMR (100 MHz, DMSO) δ 154.6, 

152.0, 150.3, 143.9, 134.0, 131.3, 130.0, 125.2, 123.6, 123.1, 120.7, 118.8, 102.8. 
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N-(4-Nitrophenyl)pyridin-4-amine (8.12) 

 

4-Aminopyridine (1.0 g, 10.9 mmol), 1-bromo-4-nitrobenzene (2.0 g, 9.9 mmol), Cs2CO3 

(8.1 g, 24.8 mmol), xantphos (0.6 g, 1.0 mmol), and Pd2(dba)3 (0.5 g, 0.5 mmol) were 

added to a flame dried vial, and the vial was flushed with N2 for 5 min. After, anhydrous 

1,4-dioxane (40.0 mL) was added and the reaction was stirred at 95 °C for 40 h. Upon 

consumption of the starting material as determined by TLC, the reaction was 

concentrated under reduced pressure. The resulting solid residue was triturated with 

diethyl ether (5 × 20 mL), EtOAc (3 × 20 mL), and H2O (3 × 20 mL) to yield an orange 

solid (2.1 g, 98%). 1H NMR (400 MHz, DMSO) δ 9.62 (s, 1H), 8.35 (d, J = 5.6 Hz, 2H), 

8.15 (d, J = 8.8 Hz, 2H), 7.29 (d, J = 9.2 Hz, 2H), 7.12 (d, J = 5.2 Hz, 2H); 13C NMR (100 

MHz, DMSO) δ 151.1, 148.3, 148.0, 140.6, 126.2, 117.1, 112.4. 

 

4-Nitro-N-phenylaniline (8.13) 

 

Aniline (0.30 mL, 3.29 mmol), 1-bromo-4-nitrobenzene (0.61 g, 3.00 mmol), Cs2CO3 

(2.44 g, 7.50 mmol), xantphos (0.17 g, 0.30 mmol), and Pd2(dba)3 (0.14 g, 0.15 mmol) 

were added to a flame dried vial, and the vial was flushed with N2 for 5 min. After, 

anhydrous 1,4-dioxane (15.00 mL) was added and the reaction was stirred at 95 °C for 

40 h. Upon consumption of the starting material as determined by TLC, H2O (10 mL) 

was added and the resulting layers were separated. The aq. layer was extracted with 

EtOAc (3 × 20 mL), and the combined organic layers were washed 1 M HCl (1 × 10 mL), 
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and brine (1 × 20 mL), dried over MgSO4, filtered, and concentrated under reduced 

pressure. The crude product was purified over SiO2 using an eluent of DCM/hexanes 

(1/2, v/v) to yield the product as a yellow solid (0.55 g, 86%). 1H NMR (400 MHz, CDCl3) 

δ 8.09 (d, J = 8.8 Hz, 2H), 7.37 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.15 (t, J = 

7.6 Hz, 2H), 6.93 (d, J = 9.6 Hz, 2H), 6.46 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 150.3, 

139.6, 130.5, 129.7, 126.2, 124.6, 121.9, 113.7. 

 

N-(Pyridin-4-yl)benzene-1,4-diamine hydrochloride (8.14) 

 

A solution of 8.12 (0.4 g, 2.0 mmol) in EtOH/H2O (9.0 mL, 2/1, v/v) was heated to reflux 

and Fe dust (0.4 g, 7.9 mmol) and conc. HCl (0.2 mL) were added. The reaction was 

refluxed for 30 min, then cooled to rt, and filtered to remove solids. The filtrate was 

concentrated under reduced pressure to yield 8.14 (0.3 g, 73%), which was submitted to 

the next reaction without further purification. 

 

N1-Phenylbenzene-1,4-diamine (8.15) 

 

A solution of 8.13 (0.41 g, 1.90 mmol) in EtOH/H2O (9 mL, 2/1, v/v) was heated to reflux 

and Fe dust (0.43 g, 7.63 mmol) and conc. HCl (0.20 mL) were added. The reaction was 

refluxed for 30 min, then cooled to rt, and filtered to remove solids. The filtrate was 

concentrated under reduced pressure, and the crude product was purified over SiO2 

using an eluent of DCM/MeOH (25/1, v/v) to yield the desired product as a dark red oil 
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(0.25 g, 71%).1H NMR (400 MHz, CD3OD) δ 7.09 (t, J = 8.8 Hz, 2H), 6.9 (d, J = 6 Hz, 

2H), 6.84 (d, J = 8.0 Hz, 2H), 6.68 (t, J = 7.6 Hz, 1H), 6.4 (d, J = 6.4 Hz, 2H); 13C NMR 

(100 MHz, CD3OD) δ 146.3, 141.6, 134.8, 128.9, 122.1, 118.4, 116.6, 114.9.  

 

4-((6-Nitroquinolin-4-yl)amino)-N-(4-(pyridin-4-ylamino)phenyl)benzamide (8.16) 

 

To a solution of 8.5 (0.06 g, 0.18 mmol) in DMF (2.00 mL) was added HOBt (0.03 g, 0.22 

mmol), NMM (0.20 mL, 1.80 mmol), 8.14 (0.17 g, 0.90 mmol) and EDC (0.05 g, 0.25 

mmol). The mixture was stirred at rt for 48 h. Upon consumption of the starting material 

as determined by TLC, H2O (10 mL) was added. The resulting ppt was removed by 

filtration and purified by reverse phase HPLC on an Agilent 1200 series instrument 

equipped with a diode array detector and Zorbax SB-C18 column (21.2 x 250 mm, 7 μm, 

Agilent Technologies). The purification method (4.5 mL/min flow rate) involved isocratic 

25% MeCN in ddH2O (both containing 0.1% TFA; 0 to 2 mins) followed by a linear 

gradient of 25% to 95% MeCN in ddH2O (both containing 0.1% TFA; 2 to 35 mins). The 

wavelengths monitored were 215 nm and 254 nm. The desired product was collected as 

a yellow solid (0.01 g, 12%). 1H NMR (400 MHz, CD3OD) δ 9.72 (s, 1H), 8.78 (d, J = 9.2 

Hz, 1H), 8.56 (d, J = 6.8 Hz, 1H), 8.2-8.14 (m, 5H), 7.9 (d, J = 8.8 Hz, 2H), 7.7 (d, J = 8.4 

Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 6.8 Hz, 1H), 7.11 (d, J = 7.2 Hz, 2H); 13C 

NMR (100 MHz, CD3OD) δ 166.1, 161.6, 157.6, 156.6, 145.8, 144.6, 141.6, 139.9, 
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137.5, 134.1, 133.0, 129.4, 127.4, 124.7, 124.2, 122.1, 122.0, 120.3, 117.3, 101.6. MS 

(ESI) 477.0 [M + H]+. 

 

N-(4-(Phenylamino)phenyl)-4-(quinolin-4-ylamino)benzamide (8.17) 

 

To a solution of 8.6 (0.03 g, 0.12 mmol) in DMF (2.00 mL) was added HOBt (0.02 g, 0.14 

mmol), NMM (0.14 mL, 1.2 mmol), 8.15 (0.09 g, 0.46 mmol) and EDC (0.03 g, 0.17 

mmol). The mixture was stirred at rt for 24 h. Upon consumption of the starting material 

as determined by TLC, H2O (10 mL) was added. The aq. layer was extracted with EtOAc 

(3 × 20 mL), and the combined organic layers were washed with brine (1 × 20 mL) and 

concentrated under reduced pressure. The crude product was purified over SiO2 using 

an eluent of DCM/MeOH (4/1, v/v) to yield the desired product as a yellow solid (0.04 g, 

82%). 1H NMR (400 MHz, CD3OD) δ 8.48 (d, J = 6 Hz, 1H), 8.42 (d, J = 8.8 Hz, 1H), 

8.05 (d, J = 8.8 Hz, 2H), 7.95 (d, J = 8.4 Hz, 1H), 7.86 (t, J = 8.4 Hz, 1H), 7.68 (t, J = 8.4 

Hz, 1H), 7.57-7.54 (m, 4H), 7.24-7.19 (m, 3H), 7.13-7.06 (m, 4H), 6.83 (t, J = 7.2 Hz, 

1H); 13C NMR (100 MHz, CD3OD) δ 166.3, 150.8, 147.2, 144.8, 143.9, 142.7, 140.9, 

131.3, 131.1, 130.8, 128.9, 128.7, 126.1, 125.0, 122.4, 122.0, 121.9, 119.6, 119.5, 

117.3, 116.7, 101.9. MS (ESI) 431.1 [M + H]+. 
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4-((6-Nitroquinolin-4-yl)amino)-N-(4-(phenylamino)phenyl)benzamide (8.18) 

 

To a solution of 8.5 (0.05 g, 0.14 mmol) in DMF (2.00 mL) was added HOBt (0.02 g, 0.17 

mmol), NMM (0.05 mL, 0.43 mmol), 8.15 (0.08 g, 0.43 mmol) and EDC (0.04 g, 0.20 

mmol). The mixture was stirred at rt for 24 h. Upon consumption of the starting material 

as determined by TLC, H2O (10 mL) was added. The aq. layer was extracted with EtOAc 

(3 × 20 mL), and the combined organic layers were washed with sat. aq. NaHCO3 (1 × 

20 mL) and brine (1 × 20 mL), dried over Na2SO4, filtered, and concentrated under 

reduced pressure to ~10% the original volume. The precipitate that formed was removed 

by filtration to yield the product as a yellow solid (56 mg, 81%). 1H NMR (400 MHz, 

DMSO) δ 10.05 (s, 1H), 9.8 (s, 1H), 9.49 (s, 1H), 8.66 (s, 1H), 8.4 (d, J = 9.2 Hz, 1H), 

8.03 (t, J = 8 Hz, 4H), 7.62 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.22-7.16 (m, 

3H), 7.06-7.0 (m, 4H), 6.75 (t, J = 7.2 Hz, 1H); 13C NMR (100 MHz, DMSO) δ 164.7, 

154.4, 1151.9, 149.5, 144.5, 144.1, 139.6, 132.5, 131.1, 130.3, 129.6, 129.4, 123.3, 

122.2, 122.1, 121.3, 121.1, 119.6, 119.4, 117.9, 116.3, 104.4. MS (ESI) 476.1 [M + H]+. 

 

N-(4-(Pyridin-4-ylamino)phenyl)-4-(quinolin-4-ylamino)benzamide (8.19) 
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To a solution of 8.6 (0.04 g, 0.16 mmol) in DMF (2.00 mL) was added HOBt (0.03 g, 0.19 

mmol), NMM (0.18 mL, 1.6 mmol), 8.14 (0.09 g, 0.49 mmol) and EDC (0.04 g, 0.22 

mmol). The mixture was stirred at rt for 24 h. Upon consumption of the starting material 

as determined by TLC, H2O (10 mL) was added. The precipitate that formed was 

removed by filtration to yield the product as a yellow solid (0.05 g, 64%). 1H NMR (400 

MHz, CD3OD) δ 8.49 (d, J = 5.2 Hz, 1H), 8.30 (d, J = 7.6 Hz, 1H), 8.08 (d, J = 6.0 Hz, 

2H), 8.0 (d, J = 9.2 Hz, 2H), 7.92 (d, J = 8.8 Hz, 1H), 7.76-7.69 (m, 3H), 7.57 (t, J = 8.0 

Hz, 1H), 7.50 (d, J = 8.8 Hz, 2H), 7.26-7.22 (m, 3H), 6.89 (d, J = 6.4 Hz, 2H); 13C NMR 

(100 MHz, CD3OD) δ 165.1, 152.3, 150.9, 149.2, 148.2, 147.0, 144.8, 135.7, 135.4, 

130.0, 129.6, 129.5, 129.0, 125.5, 122.8, 122.1, 121.8, 120.8, 120.2, 109.1, 104.1. MS 

(ESI) 432.1 [M + H]+. 

 

4-((6-Nitroquinolin-4-yl)amino)-N-phenylbenzamide (8.20) 

 

To a solution of 8.5 (0.05 g, 0.16 mmol) in DMF (2.00 mL) was added HOBt (0.03 g, 0.19 

mmol), NMM (0.06 mL, 0.48 mmol), aniline (0.05 mL, 0.48 mmol) and EDC (0.04 g, 0.22 

mmol). The mixture was stirred at rt for 24 h. Upon consumption of the starting material 

as determined by TLC, H2O (10 mL) was added. The aq. layer was extracted with EtOAc 

(3 × 20 mL), and the combined organic layers were washed with sat. aq. NaHCO3 (1 × 

20 mL) and brine (1 × 20 mL), dried over Na2SO4, filtered, and concentrated under 

reduced pressure. The crude product was purified over SiO2 using an eluent of 
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DCM/MeOH (20/1, v/v) to yield the desired product as a yellow solid (0.03 g, 44%). 1H 

NMR (400 MHz, DMSO) δ 10.17 (s, 1H), 9.82 (s, 1H), 9.49 (s, 1H), 8.67 (d, J = 5.2 Hz, 

1H), 8.4 (d, J = 8.8 Hz, 1H), 8.06-8.02 (m, 3H), 7.76 (d, J = 7.6 Hz, 2H), 7.52 (d, J = 8.8 

Hz, 2H), 7.33 (t, J = 8.0 Hz, 2H), 7.23 (d, J = 5.2 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H); 13C 

NMR (100 MHz, DMSO) δ 165.2, 154.8, 152.0, 149.1, 144.2, 143.6, 139.7, 131.5, 130.3, 

129.7, 129.0, 124.0, 123.3, 121.4, 120.8, 120.7, 119.4, 104.5. 

 

2-((5-(benzo[d][1,3]dioxol-5-yl)isoxazol-3-yl)methoxy)-N-(2-(4-(5-chloro-2-

methylphenyl)piperazin-1-yl)ethyl)acetamide (8.23)  

 

To a solution of 8.21 (0.10 g, 0.36 mmol) in DMF (2.00 mL) was added HOBt (0.06 g, 

0.43 mmol), NMM (0.12 mL, 1.1 mmol), 8.22 (0.27 g, 1.10 mmol) and EDC (0.10 g, 0.50 

mmol). The mixture was stirred at rt overnight. Upon consumption of the starting material 

as determined by TLC, H2O (10 mL) was added. The aq. layer was extracted with EtOAc 

(3 × 20 mL), and the combined organic layers were washed with sat. aq. NaHCO3 (1 × 

20 mL) and brine (1 × 20 mL), dried over Na2SO4, filtered, and concentrated under 

reduced pressure. The crude product was purified over SiO2 using an eluent of 

DCM/MeOH (33/1, v/v) to yield the desired product as a white solid (0.12 mg, 67%). 1H 

NMR (400 MHz, CDCl3) δ 7.21 (d, J = 8.0 Hz, 1H), 7.13 (s, 1H), 7.10-7.05 (m, 1H), 7.0 

(d, J = 8.0 Hz, 1H), 6.88-6.83 (m, 2H), 6.76 (d, J = 7.6 Hz, 1H), 6.39 (s, 1H), 5.95 (s, 

2H), 4.64 (s, 2H), 4.04 (s, 2H), 3.39 (q, J = 6.0 Hz, 2H), 2.82-2.8 (m, 4H), 2.56-2.51 (m, 

6H), 2.17 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.4, 168.7, 160.9, 152.4, 149.4, 



 

206 

 

148.2, 131.9, 131.6, 130.7, 122.8, 121.1, 120.5, 119.3, 108.8, 106.0, 101.6, 97.5, 70.2, 

64.8, 56.4, 53.2, 51.5, 35.4, 17.5. MS (ESI) 513.10 [M + H]+. 
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