
Performance, Power Modeling and Optimization for
High-Performance Computing Systems

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Chi Xu

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

John Sartori

Oct, 2016

© Chi Xu 2016

ALL RIGHTS RESERVED

Acknowledgements

There are many people that have earned my gratitude for their contribution to my time

in graduate school.

I wish to thank my committee members who were more than generous with their

expertise and precious time. A special thanks to Dr. John Sartori, my advisor for his

countless hours of reflecting, reading, encouraging, and most of all patience throughout

the entire process.

I would like to acknowledge and thank my school division for allowing me to conduct

my research and providing any assistance requested. Special thanks goes to the members

of staff development and human resources department for their continued support.

Finally I would like to thank the beginning teachers, mentor-teachers and admin-

istrators in our school division that assisted me with this project. Their excitement

and willingness to provide feedback made the completion of this research an enjoyable

experience.

i

Dedication

I dedicate my dissertation work to my family and many friends. A special feeling of

gratitude to my loving parents, Xinzhi Xu and Yingjie Zhao whose words of encourage-

ment and push for tenacity ring in my ears. My cousin Fan Xu, who has never left my

side and is very special.

I also dedicate this dissertation to my many friends who have supported me through-

out the process. I will always appreciate all they have done, especially during those hard

times in my school life.

ii

Abstract

Heterogeneity abounds in modern high-performance computing systems. Applications

are heterogeneous, containing time-varying unbalanced utilization for different resources,

and system architectures have become heterogeneous in order to achieve higher levels of

performance and energy efficiency. The most powerful, and also the most energy-efficient

high-performance computing systems today consist of many-core CPUs and GPGPUs

with a variety of specialize on-chip and off-chip memories. These heterogeneous sys-

tems provide a huge amount of computing resources, but it is becoming increasingly

challenging to use them effectively and efficiently to maximize their potential. This

becomes an even more pressing challenge as energy efficiency becomes the primary bar-

rier to achieving higher levels of performance. This thesis addresses the challenges of

performance modeling and optimization in heterogeneous high-performance computing

systems. Effective system optimization requires understanding of how performance and

power change in response to optimizations. Therefore, we begin by summarizing the

impact of modern architectural advances on performance and power modeling for chip

multiprocessors (CMPs). We present two models that estimate the performance and

power in such systems. The first model, CAMP, is a fast and accurate cache-aware per-

formance model that estimates the performance degradation due to cache contention

of processes running on cache-sharing cores. We then propose a system-level power

model for a multi-programmed CMP environment that accounts for cache contention.

We explain how to integrate the two models to enable power-aware process assignment.

Then, we propose an off-chip memory access-aware runtime DVFS control technique

that minimizes energy consumption subject to a constraint on application execution

time.

The second part of the dissertation focuses on improving performance for GPGPUs.

After a thorough analysis on CPI breakdown, we lay out all the key factors that govern

GPU throughput. In order to improve overall performance for GPGPUs, we propose

two approaches that address the key factors, without introducing extra congestion and

degradation to the system. We first propose a new two-level priority scheduling policy

to improve overall performance by optimizing effective degree of parallelism. Then,

iii

we propose ICMT, a full, detailed solution for intra-core multitasking for GPGPUs,

including architectural support and a contention-aware workload scheduling algorithm

that improves all the key factors in a balanced fashion. Furthermore, we propose a

new contention-aware analytical performance model that provides fine-grained workload

scheduling decisions for intra-core multitasking, including detailed resource allocation

from co-scheduled workloads.

iv

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Modeling High-Performance Computing Systems 2

1.2 Optimizing High-Performance Computing Systems 4

1.3 Scheduling High-Performance Computing Systems 5

1.4 Dissertation Overview . 5

2 Multi-core CPU Overview 7

2.1 Introduction . 7

2.2 Background . 8

2.3 Motivation . 8

3 Performance modeling on CMPs 10

3.1 Introduction . 11

3.2 Related Work . 12

3.3 Analytical Model . 13

3.3.1 Background . 14

v

3.3.2 Problem Formulation and Assumptions 15

3.3.3 Performance Model . 16

3.3.4 Estimating Effective Cache Size After n Accesses 17

3.3.5 Steady-State Conditions . 18

3.4 Automated Profiling . 19

3.4.1 Reuse Distance Profiling . 20

3.4.2 Automated Parameter Estimation 22

3.4.3 Potential Sources of Error . 23

3.5 Evaluation Methodology and Results . 24

3.5.1 Experimental Setup . 24

3.5.2 Pre-Characterization . 25

3.5.3 Model Validation . 27

3.5.4 Generality of Predictor For Different Machines 31

3.6 Conclusion . 32

4 Power Modeling for CMPs 33

4.1 Introduction and Motivation . 34

4.2 Related Work . 35

4.3 Power Modeling . 35

4.3.1 Problem Formulation . 36

4.3.2 Handling Context Switching and Cache Contention 37

4.4 Combining Performance and Power Models 38

4.5 Experimental Results . 40

4.5.1 Experimental Setup . 41

4.5.2 Power Model Validation . 41

4.5.3 Combined Model Validation . 43

4.6 Conclusions . 44

5 Memory access aware on-line voltage control for performance and en-

ergy optimization 45

5.1 Introduction and Related Work . 46

5.2 Motivation and Problem Formulation . 49

5.2.1 Trade-offs Between Performance and Energy 49

vi

5.2.2 Problem Formulation . 50

5.3 System Modeling . 51

5.3.1 Performance Modeling . 52

5.3.2 Power Modeling . 53

5.3.3 Cost Minimization . 54

5.3.4 System Architecture for P-DVFS 61

5.4 Experimental Results . 62

5.4.1 Experimental Setup . 62

5.4.2 Comparison with Prior Work . 63

5.4.3 Experimental Results . 64

5.5 Conclusions . 69

6 Overview for GPGPUs 71

6.1 Introduction . 71

6.2 Background . 73

6.2.1 Baseline CUDA and Fermi Architecture 73

6.2.2 Workload and Metrics . 74

6.3 Characterizing CPI Breakdown . 76

6.3.1 Analyzing CPI Breakdown . 77

6.4 GPU optimization overview . 81

7 Priority Scheduling for GPGPUs 82

7.1 Introduction . 82

7.2 Exploration of Scheduling Policies . 83

7.3 Implementation of Priority Scheduling Policies 84

7.3.1 Ranking Algorithm . 85

7.4 Result Analysis . 85

7.4.1 Overall Performance . 85

7.4.2 GTLS, LRR vs. GTO . 87

7.4.3 TAWS effects . 90

7.4.4 SPM . 91

7.5 Conclusion . 92

vii

8 Run-time intra-core multitasking for GPGPUs 93

8.1 Introduction . 94

8.2 Related Work . 98

8.3 Background . 99

8.3.1 High-Level View of Intra-Core Multitasking Framework 99

8.3.2 Evaluation Metric . 99

8.4 Detailed Analysis of TLP and PLP Stalls 100

8.4.1 Primary Performance Constraints 100

8.4.2 Investigating Memory Stalls . 103

8.4.3 Mitigating the Tail Effect . 104

8.4.4 Potential Benefits of Intra-core Multitasking 104

8.5 Architectural Design Space Exploration 105

8.5.1 Instruction Dispatch and Scheduling Bandwidth 105

8.5.2 Prioritized Memory Issue Queue 105

8.5.3 Hardware Overhead . 106

8.6 Methodology . 107

8.6.1 Scheduling Mechanisms . 108

8.7 Experimental Results . 109

8.7.1 Performance of ICMT . 109

8.7.2 Optimizing Instruction Dispatch and Scheduling Throughput . . 111

8.8 Conclusions . 114

9 Performance modeling for intra-core multitasking on GPUs 116

9.1 Background and Motivation . 117

9.1.1 Terminology . 117

9.1.2 Key Performance Bottlenecks in SMs 118

9.1.3 Motivational Example . 119

9.2 System Framework . 120

9.2.1 Fine-grained Multi-tasking within SMs 120

9.3 Analytical Performance Model . 121

9.3.1 Problem Formulation and Assumptions 121

9.3.2 Mean Value Based Performance Model 122

viii

9.3.3 IPC Model . 123

9.3.4 Active Warps Model . 125

9.4 Expressing E[Pinactive data(IPC)], E[W (IPC)] 128

9.4.1 Profiling Data Dependency . 128

9.4.2 Numerical Solution of the Complete Model 134

9.4.3 Limitations of the Analytical Model 134

9.5 Static Program Analysis . 134

9.6 Warp Scheduling against Pipeline Starvation 135

9.7 Experimental Methodology . 135

9.7.1 Performance and Throughput Metrics 136

9.7.2 Simulation Framework . 136

9.8 Results . 138

9.8.1 Benchmark Characteristics . 138

9.8.2 Throughput Prediction in Mixed Kernel Scenario 138

9.8.3 Execution Lane Starvation and Inter-warp Scheduling Results . . 139

9.8.4 Average Throughput Improvement 140

9.9 Related Work . 141

9.9.1 Simultaneous Multitasking for GPGPUs 141

9.9.2 Performance Modeling of GPU 142

9.10 Conclusion . 142

10 Conclusions 143

References 146

ix

List of Tables

3.1 Intel P8600 Specification . 24

3.2 API, α, and β for Different Benchmarks 25

3.3 Prediction Accuracy for Cache Misses and Performance Degradation . . 28

3.4 MPA and SPI Prediction when Processes Run with Art 29

4.1 Power Model Validation on a 2-Core Workstation 41

4.2 Power Model Validation on a 4-Core Server 41

4.3 Validating the Combined Model on a 4-Core Server 43

5.1 Performance Degradations of F-DVFS and P-DVFS 65

5.2 Deviation of Energy Consumptions from the Optimal Solution when using

using N-DVFS, F-DVFS, and P-DVFS 66

6.1 List of GPGPU kernels. 75

6.2 GPGPU-Sim Configuration for Baseline Architecture (Fermi GTX 480). 75

8.1 Die area breakdown for Fermi GTX 480, 40nm. 107

x

List of Figures

2.1 Impact of stressmark on performance of processes sharing case with it. 9

3.1 Cache line reuse distance histogram for mcf application. 15

3.2 Profiled cache miss rate corresponding to effective cache size. 26

3.3 Performance degradation for (a) <art, mcf> pair, (b) <art, vpr> pair,

and (c) <vpr, mcf> pair. 30

3.4 Profiled cache miss rate corresponding to effective cache size for different

cache configurations. 31

4.1 Algorithm for power estimation for process assignment. 39

4.2 Power model validation on 4-core server. 42

5.1 System architecture for P-DVFS. 61

5.2 Processor frequency as a function of the number of instructions retired

for (a) the optimal solution, (b) P-DVFS, and (c) F-DVFS during “mcf”

execution with a performance degradation ratio of 20%. 64

5.3 Processor frequency as a function of the number of instructions retired

for (a) the optimal solution, (b) P-DVFS, and (c) F-DVFS during “art”

execution with a performance degradation ratio of 20%. 67

6.1 Microarchitecture of a GPU core in Fermi GTX 480. 74

6.2 The CPI per warp breakdown for Parboil benchmarks with GTO schedul-

ing. 78

6.3 This figure shows the relationship between number of warps, CPI, and IPC 80

7.1 The average CPI breakdown of Parboil benchmarks with different schedul-

ing policies: 1. GTO; 2. GTO-TAWS; 3. LRR; 4. GTLS; 5. GTLS-TAWS. 86

7.2 The IPC speedup of Parboil benchmarks of different scheduling policies

compared with GTO. 87

xi

7.3 The CPI breakdown of LBM for 28 warps, 4 warps per CTA. 88

7.4 The instruction issue percentage of LBM according to warp ID 88

7.5 The CPI breakdown of TPA for 24 warps, 8 warps per CTA. 89

7.6 The instruction issue percentage of TPA according to warp ID. 89

7.7 The CPI breakdown of MRI for 40 warps, 5 warps per CTA. 90

7.8 The instruction issue percentage of MRI according to warp ID. 90

7.9 The CPI breakdown of SPM for 48 warps, 6 warps per CTA 91

7.10 The instruction issue percentage of SPM according to warp ID. 91

8.1 Kernels from different Parboil benchmarks exhibit significantly different

utilization of hardware resources and function units on a GPU core, pos-

sibly indicating that co-scheduling multiple kernels (with complementary

resource utilization) on the same GPU core might improve PLP. Occu.

and A.Occu. are short for Occupancy and Achieved Occupancy. 94

8.2 Average throughput speedup (G-Mean) and average memory stall rate

for existing inter-core and intra-core multitasking. Note MS and NMS

are short for MEM-S and Non-MEM-S. 97

8.3 High-level view of proposed intra-core multitasking technique. 100

8.4 Breakdown of average GPU stall rate for kernels executing on the baseline

architecture. TLP stalls occur when no active warp is available. PLP

stalls occur when active warps are available but the scheduler cannot issue

an instruction to a particular pipeline due to a structural hazard (e.g., the

pipeline is stalled due to excessive unresolved off-chip memory accesses

or a full pipeline is still busy executing previously-issued instructions). . 101

8.5 Average utilization of SP, SFU, and MEM in the baseline architecture. . 102

8.6 The tail effect results in reduced achieved occupancy and IPC for single

kernel execution and inter-core multitasking. 103

8.7 ICMT Architecture with increased frontend bandwidth and PMIQ. . . . 107

8.8 Average throughput speedup (G-Mean) of co-scheduled kernels with dif-

ferent scheduling mechanisms. 108

8.9 Average issue stall due to memory contention with different scheduling

mechanisms. 110

xii

8.10 Average issue stall due to limited TLP with different scheduling mecha-

nisms. 112

8.11 ICMT can mitigate the tail effect, resulting in sustained occupancy and

higher throughput. 112

8.12 IPC speedup by increasing front-end throughput with different scheduling

mechanisms. 113

8.13 Breakdown of IPC and utilization under intra-core multitasking of <STE,

SPM> with various CTA partitions. “S-” indicates memory stalls and

“U-” indicates effective utilization. 114

9.1 An example of multitasking within SMs w/ (HIS, BL) pair. (a)SIMT

pipeline utilization of two kernels running alone and within SMs multi-

tasking w/ 3 different kernel partitions. (b) Avg. pipeline utilization w/

different kernel partitions (c) Occupancy breakdown w/ different kernel

partitions (d) Avg. system performance improvement w/ different kernel

partitions . 119

9.2 (a) Overall System Framework of Fine-grained Kernel Mixing and Grid

Partitioning Technique, (b) Hardware Modification on Dual-Issue Scheduler121

9.3 Detailed Mean Value Based Performance Model 122

9.4 Determining throughput for mixed kernels: (a) Pipeline constrained sce-

nario; (b)Parallelism constrained scenario. 123

9.5 Flow of inactive warp through a queuing system 127

9.6 DAG Data Dependency Example: (a) Original DAG Graph; (b) DAG

Graph After Forward Trace; (c) Critical Data Dependency DAG Graph 128

9.7 (a) CD3 histogram of AES; (b) Pinactive data(x) of AES 131

9.8 Calculateing Tinactive data . 132

9.9 Pinactive data(x) of the Benchmarks . 137

9.10 Throughput Improvement of BL Mixing with Other Benchmarks 139

9.11 Throughput Improvement Different Kernel Partitions in (AES,BL) Pair 140

9.12 Average Throughput Improvement of Benchmarks 140

9.13 Effects of Inter-Warp Scheduling of MUM with Other Benchmarks . . . 141

xiii

Chapter 1

Introduction

High-performance computing systems are commonly seen. Typical high performance

computing systems include stationary desktop computers, workstations, and servers.

Often coupled with multi-core CPUs and GPUs with abundant on-chip and off-chip

memory, these modern computing systems have become immensely powerful platform

to handle an variety of heterogeneous applications and tasks simultaneously. However,

it is no easy task to formalize and solve the problem of optimizing performance and en-

ergy consumption for such heterogeneous, potentially data-intensive, workloads running

on modern high performance computing systems composed of heterogeneous complex

multi-core resources (CPUs and GPUs). To properly tackle this problem, we need a set

of optimizing techniques that can address the following challenges:

1. Shared resource allocation, wisely distribute resource shared among different work-

loads to avoid significant performance degradation relative to what they could

achieve running in a contention-free environment.

2. Workload scheduling, assign workload to different resource sharing clusters to

improve shared resource allocation within the resource sharing cluster.

3. Power delivery and voltage control, employ dynamic voltage and frequency scal-

ing to match workload behavior to required performance level for best energy

efficiency.

The advent of heterogeneous CPUs and GPUs system greatly complicates the three

1

2

challenges above, and they still remain unsolved despite significant research efforts ded-

icated to the problems. Our goal is to consider them together and provide a compre-

hensive analysis and technique that allows dynamic performance-aware, energy-efficient

management for heterogeneous workloads running in modern high-performance com-

puting system.

We take a holistic view of performance, power and resource management in modern

computing systems by considering managements at different levels: workload scheduling

among resource sharing clusters (Note that we refer to these resource-sharing clusters

as memory domains because the shared resources mostly have to do with the memory

hierarchy [1]), resource allocation within resource sharing clusters and DVFS-related

control within the same voltage/frequency domain.

Existing work in this area addressed the three levels and tried to solve them individ-

ually. To simplify the analysis, they usually ignore the impacts between different levels.

For instance, pre-core DVFS control without considering the impact of cache contention

that caused by the frequency scaling of the processes running concurrently [2] [3], man-

age cache partition for throughput optimization without considering local frequency/

voltage scaling [4] To the best of our knowledge, there is very no previous work handles

three levels together and very limited work considers the interdependency among each

other [1][5].

We believe the following technical contributions are necessary to accomplish the

goal of near optimal management of heterogeneous workloads (1) accurate modeling

to illustrate the impact of resource contention and indicate the cost of local control

policy; (2) efficient local control management and shared resource allocation for opti-

mization in energy consumption and performance; (3) performance- and power-aware

workload scheduling, jointly considering multiple metrics such as performance, energy

consumption, and fairness etc..

1.1 Modeling High-Performance Computing Systems

Modeling high-performance computer systems is a difficult task. Typically, there are

four major challenges when designing such models: (1) models need to be accurate.

Although model estimation errors are tolerable or addressable through proper guard

3

banding in many applications, inaccurate estimation results will reduce the usability of

such models. (2) Models need to be fast. Significant performance overhead prevents

them from being used during runtime, making them inapplicable to many scenarios.

In addition, when integrated with optimization techniques, slow models can lead to

diminishing returns, or in extreme cases, render the entire optimization technique unus-

able. (3) The model construction process should be easy and automatic. Ideally, such

modeling techniques should require no changes to the underlying hardware or operating

system (OS) so that they can be applied to a variety of systems with different architec-

tures. (4) The models should be scalable. The first requirement implies that the model

designers must carefully test the models to ensure that the model estimation errors

are small in all cases. A designer can improve model accuracy by incorporating more

details into the model and simulating the interactions among different model compo-

nents. However, this leads to higher computational complexity and therefore conflicts

with the second requirement. In addition, the amount of inter-component interactions

grows exponentially as more and more cores are integrated into the system. Hence,

this approach cannot scale and thus conflicts with the last requirement. Similarly, the

model performance can be improved by implementing it on hardware. However, this

conflicts with the third requirement. Therefore, designers need to think carefully about

the tradeoffs among the aforementioned attributes of the models to develop one that

satisfies all the requirements.

Although there are many challenges when designing the models, it is usually worth

the effort. Roughly speaking, models can be categorized into design-time models, assign-

time models, and run-time models. Design-time models such as power grid models and

IC thermal models can help designers to validate the correctness of their decisions

during chip design. For example, understanding the thermal implications is essential

because early-stage architectural decisions can significantly affect the design of cooling

solutions. Assign-time models can predict the impact of process assignment on system

metrics such as performance and power, helpful for designing intelligent assignment

algorithms. Run-time models such as performance and power models enable system

administrators and optimizers to dynamically monitor and predict changes in these

runtime parameters, usually with little or no changes to the underlying hardware or

applications. Furthermore, all these models have the potential to reveal the bottlenecks

4

in the system, thus motivating new software and hardware optimization techniques.

Finally, modeling techniques is usually the first step toward optimization. In fact, all

the optimization techniques proposed in this dissertation are motivated by the modeling

techniques, most of which also heavily rely on these models. The ongoing move from

single-core to heterogeneous architecture with CMPs and GPUs leads to more complex

system architecture and applications, further emphasizing the need for fast and accurate

models. In the future, processors are likely to integrate several tens or hundreds of cores

on a single chip and probably requires a network on chip. Intel’s recently unveiled 48-core

chip is one such example. Without modeling and techniques similar to those described in

this dissertation, it is very difficult, if possible at all, to develop optimization algorithms

for such systems.

1.2 Optimizing High-Performance Computing Systems

Optimization techniques for high-performance computers are equally, if not more, im-

portant than modeling techniques. There are numerous attributes in high-performance

computers designers attempt to optimize, e.g., performance, power consumption, tem-

perature, and energy. Therefore, optimization techniques have a direct impact on user

experience or system monetary cost by optimizing these attributes. It is usually possible

to optimize one metric at the cost of another. However, this requires that the designers

understand the trade-offs among various system metrics when developing such opti-

mization techniques. There has been extensive studies on system-level optimization

techniques for high-performance computing systems (see Chapter 5, Chapter 7, and

Chapter 8). However, a large number of existing techniques only optimizes one metric

and completely ignores other system metrics. Few algorithms that attempt to opti-

mize a metric while constraining others either make unsubstantiated claims without

resorting to accurate models, or rely on over-simplified models that produce inaccurate

predictions and degrade the quality of optimization results. In our research, we care-

fully evaluate the trade-offs among various system metrics and design the optimization

techniques based on accurate models when applicable.

5

1.3 Scheduling High-Performance Computing Systems

The emerging trend of multi-core CPUs and GPU systems allow more tasks running

simultaneously, it’s also getting more important to have some performance- and power-

aware workload scheduling techniques, jointly considering multiple metrics such as per-

formance, energy consumption, and fairness etc.. Such workload scheduling techniques

need an accurate performance model to effectively predict the congestion suffered by

running multiple tasks concurrently, and performance degradation from each individual

tasks. Moreover, moving to the GPU side, workload scheduling technique not only need

to determine which workload to scheduling together, but also need to figure out how

much resource to be allocated on each workload. Overall, combining a high level work-

load scheduling algorithm with a set of local optimization techniques, is the ultimate

solution to achieve a near optimal result given metrics such as throughput, energy etc..

1.4 Dissertation Overview

The rest of the dissertation is organized as follows.

Chapter 2–Chapter 5 focus on performance, power modeling and optimization tech-

niques for CMPs. Chapter 2 gives an overview of the parameters that influence per-

formance and power. We then describe the performance and power implications in

modern CMP system. Chapter 3 describes a shared cache aware performance model

for CMPs. We also provide an automated technique to collect process-dependent in-

formation needed by CAMP without resorting to simulation. Chapter 4 describes a

system-level shared cache aware power model and an integrated model for fast and ac-

curate power estimations during assignment in a multi-programmed CMP environment.

Chapter 5 describes a predictive on-line dynamic voltage and frequency control (DVFS)

algorithm that achieves close-to-optimal energy savings with a bounded performance

degradation ratio.

Chapter 6–Chapter 9 focus on performance modeling and optimization and schedul-

ing techniques for GPUs. Chapter 6 provides a thorough analysis on per-warp CPI

breakdown, and identifies out all the key factors that govern GPU throughput from a

single warp perspective. Chapter 7 proposes a new two-level priority scheduling policy

6

to improve performance in single kernel scenario. Chapter 8 proposes ICMT, a full, de-

tailed solution for intra-core multitasking for GPGPUs, including architectural support

and a contention-aware workload scheduling algorithm that improves TLP and PLP

in a balanced fashion. Chapter 9 proposes a new contention-aware analytical perfor-

mance model that can provides a fine-grain workload scheduling decision for intra-core

multitasking, including detailed resource allocation from co-scheduled workloads.

In the end, we summarize the contributions of the work presented in this dissertation

in Chapter 10.

Chapter 2

Multi-core CPU Overview

Performance and power issues are important challenges for the development of high-

performance processors. As the industry has shifted their focus from single-core proces-

sors to CMPs, new performance and power model are desired. This chapter examines

the impact of the current architecture paradigm shift on various modeling techniques

and provides insights and motivations for the techniques proposed in Chapter 3–5.

The rest of this chapter is organized as follows. Section 2.1 gives an overview of the

fundamental parameters that influences performance and power, many of which must

be accounted for in the models to generate accurate estimations. Section 2.2 briefly

summarizes CMP architecture background. Section 2.3 provides a motivation example.

2.1 Introduction

The performance of a computer can be defined as the amount of time required to accom-

plish one unit of work with one unit of resource. Not surprisingly, the performance of a

chip is closely related to its clock frequency, which largely depends on the propagation

delay of the transistors on the critical path, affected by supply voltage, temperature,

and technology [6]. However a computer’s performance cannot be solely determined

by its chip’s clock frequency; other factors such as instruction-level parallelism, thread-

level parallelism, off-chip memory access latency, resource contention all contribute to

the system performance.

The power consumption can be decomposed into dynamic power and static power.

7

8

Dynamic power consumption is caused by the charging and discharging events during

voltage transitions in transistors. It scales quadratically with the supply voltage and

linearly with the frequency of energy-consuming transitions. Static power, on the other

hand, is independent of the frequency of such transitions. However, it has an expo-

nential dependence on the supply voltage and temperature. Researchers have proposed

numerous techniques to reduce the soaring power of computer systems, among which

are dynamic voltage and frequency scaling and clock modulation [7, 8].

2.2 Background

CMP processor is composed of two or more independent CPU cores, thereby allowing

more parallelism than single-core architecture. Each CPU core has its own private L1

caches, with the last-level cache being shared among all the cores to improve perfor-

mance by supporting on-chip inter-process communication and allowing heterogeneous

allocation of cache to processes running on different cores. However, a process may evict

the data belonging to other processes with which it shares cache space, known as the

cache contention problem. Intuitively, simultaneously running processes may influence

each other’s performance through sharing the cache. Furthermore, the performance

(and indirectly power) impact is non-uniform, as the cache-sharing processes may have

distinct memory access patterns. This requires that the performance model and power

model for CMP systems explicitly account for the cache contention problem in addition

to the time sharing problem in single-core systems.

2.3 Motivation

Cache sharing among processes running on different cores of a CMP can hide inter-

process communication latency and improve cache utilization. This improvement is un-

dermined by cache contention among concurrently running processes. To illustrate this

effect, we wrote a synthetic stressmark that accesses the last-level cache very frequently.

The stressmark is intentionally designed to exhibit extreme memory access behavior,

for use in characterization. The stressmark is run concurrently with the process under

9

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Cache Misses per L2 Access

art
mcf

bzip2
swim

equake
mesa

vpr
ammp
mgrid
applu

Figure 2.1: Impact of stressmark on performance of processes sharing case with it.

evaluation, on another core sharing the same cache. By varying the memory access be-

havior of the stressmark, we can change the number of last-level cache misses per cache

access (MPA) for the stressmark, thereby controlling and measuring the performance

impact on the other concurrently running process.

Figure 2.1 illustrates the relationship between the execution time, normalized to

that when running the process alone, and MPA of the stressmark when it is run con-

currently with each of 10 SPEC CPU2000 benchmarks. The relationship between MPA

and execution time depends on the application. For example, with an MPA value of

0.35, the normalized execution time of art increased by 120% while that of mesa only

increased by 1.5%. This demonstrates that the impact of cache contention on per-

formance is application-dependent. Accurately predicting the performance and power

consumption implications of assigning a particular set of processes to a CMP therefore

requires a model that captures the variation in cache access and contention behavior

among processes.

Chapter 3

Performance modeling on CMPs

The ongoing move to chip multiprocessors (CMPs) permits greater sharing of last-level

cache by processor cores, but this sharing aggravates the cache contention problem,

potentially undermining performance improvements. Accurately modeling the impact

of inter-process cache contention on performance and power consumption is required

for optimized process assignment. However, techniques based on exhaustive consider-

ation of process-to-processor mappings and cycle-accurate simulation are inefficient or

intractable for CMPs, which often permit a large number of potential assignments.

In this chapter, we propose CAMP, a fast and accurate shared cache-aware perfor-

mance model for multi-core processors. CAMP estimates the performance degradation

due to cache contention of processes running on CMPs. It uses reuse distance his-

tograms, cache access frequencies, and the relationship between the throughput and

cache miss rate of each process to predict its effective cache size when running concur-

rently and sharing cache with other processes, allowing instruction throughput estima-

tion. We also provide an automated way to obtain process-dependent characteristics,

such as reuse distance histograms, without offline simulation, operating system (OS)

modification, or additional hardware. We tested the accuracy of CAMP using 55 dif-

ferent combinations of 10 SPEC CPU2000 benchmarks on a dual-core CMP machine.

The average throughput prediction error was 1.57%.

The rest of this chapter is organized as follows. Sections 3.1 and 3.2 motivate the

problem, summarize our contributions and present related work. section 2.3 describes

10

11

CAMP. section 3.4 introduces an automated way to characterize process memory ac-

cess behavior to permit later prediction of cache contention. section 3.5 presents and

discusses the experimental validation process and results. Finally, section 3.6 concludes

this chapter.

3.1 Introduction

In recent chip multiprocessor (CMP) architectures, last-level caches are often shared

among cores. This can improve performance by supporting on-chip inter-process com-

munication and allowing heterogeneous allocation of cache to processes running on dif-

ferent cores. However, a process may cause the eviction of data belonging to other pro-

cesses with which it shares cache space. This contention for shared cache space can cause

simultaneously running processes to influence each other’s performance. Moreover, the

performance impact is non-uniform: it depends on the memory access behaviors of all

processes with which it shares cache space.

The importance of inter-process cache contention for CMPs has been recognized in

prior work [9, 10, 11]. However, the problem of predicting the impact of cache sharing on

application performance during process assignment has been considered by only a few

researchers [12, 13]. Knowing the performance implications of alternative assignment

decisions can improve their quality. We therefore seek to build a cache contention model

that permits fast and accurate performance prediction of processes on CMPs.

The construction of such a model should be easy and automatic; it should not

require modifications to existing operating systems (OS) or hardware. Exhaustive offline

simulation of process combinations is computationally intractable and should therefore

be avoided. Moreover, prior work does not permit accurate prediction of the steady-

state cache partition among arbitrary combinations of processes, which is a prerequisite

for accurate performance prediction during assignment.

The chapter describes a fast and accurate shared cache aware performance model

for multi-core processors (called CAMP). This model uses non-linear equilibrium equa-

tions in a least-recently-used (LRU) or pseudo-LRU last-level cache, taking into account

process reuse distance histograms, cache access frequencies, and miss rate-aware perfor-

mance degradation. CAMP models both cache miss rate and performance degradation

12

as functions of process effective cache size, which in turn is a function of the memory

access behavior of other processes sharing the cache. CAMP can be used to accurately

predict the effective cache sizes of processes running simultaneously on CMPs, allow-

ing performance prediction with an average error of only 1.57%. We also propose an

easy-to-implement method of obtaining the reuse distance histogram of a process with-

out offline simulation or modification to commodity hardware or OS. In contrast with

existing techniques, the proposed technique uses only commonly available hardware per-

formance counters. Finally, we evaluate the generality of CAMP by profiling processes

on one CMP and using the resulting models to accurately predict process performance

when run on two other CMPs having different cache sizes. All the measurements are

performed on real processors.

3.2 Related Work

Past work [14, 15, 16, 17] has considered the problem of adjusting cache partitioning

during runtime after process assignment decisions have already been made. In contrast,

the goal of our work is to predict the performance implications of process assignment

decisions before execution. Other researchers have developed performance prediction

models to guide process assignment. However, most [18, 19] addressed cache contention

only for uniprocessors on which only a single process may run at a time. The move to

CMPs will aggravate the cache contention problem since multiple processes can run on

different cores simultaneously.

Resource contention models for simultaneous multithreading (SMT) uniprocessors

should be applicable to CMP systems due to the similarity in inter-process resource con-

tention. However, existing work on resource contention modeling for SMT processors

either suffers from large performance prediction error (20% of instruction throughput

predictions deviate by more than 20% from the actual instruction throughput) [20]

or requires modifications to the underlying hardware [21]. To the best of our knowl-

edge, existing performance models for SMT processors do not support accurate runtime

performance prediction. Although the similarity of cache effects for CMPs and SMT

processors suggests that the modeling technique described in this chapter might also be

accurate for SMT processors, we have not yet experimentally tested this hypothesis.

13

Researchers have also considered addressing the performance prediction problem

using offline simulation [22] or modifications to the existing hardware or operating sys-

tem [23]. For example, Suh et al. [16] proposed to add a hardware counter to each cache

way and use them to determine the reuse distance histogram. Our goal is runtime pre-

diction of the performance of a process concurrently running on a shared-cache CMP,

without requiring prior characterization.

Tam et al. [24] previously developed a technique to predict miss rate as a function

of cache size by using built-in hardware performance counters, with a primary goal of

supporting on-line optimization of cache partitioning among processes. They do not

explain how to use miss rate curves to predict instruction throughputs for processes

sharing cache space. Also, their approach relies on performance counters peculiar to

the POWER5 architecture.

Chandra et al. [13] proposed three analytical models to predict miss rates for pro-

cesses sharing the same cache. Their models use the reuse distances and/or circular

sequence profiles for each thread to predict inter-thread cache contention. These mod-

els require knowledge of the steady-state L2 cache access frequency of a process when

concurrently running with other processes. In reality, obtaining this information without

running or simulating all potential combinations of concurrent cache-sharing processes

is impractical.

Chen et al. [12] proposed a two-phase approach for performance prediction. In

the first phase, the access frequency of a process running alone is used to estimate

performance. In the second phase, the performance estimates from the first phase are

refined to consider the implications of cache contention. The models proposed in each

paper require processing circular memory access sequences, which must be obtained

by tracing execution with an instruction-set simulator or non-standard detailed access

tracing hardware.

3.3 Analytical Model

This section describes the main components in CAMP, namely its performance model,

effective cache size estimation technique, and steady-state condition estimator.

14

3.3.1 Background

In this section, we define some basic terms that will be used throughout this chapter.

Our study will consider an N -core processor with an L2 last-level on-chip cache. In the

rest of the chapter, we refer to “L2 cache” as “cache”. A set-associate cache is broken

into sets, each of which has space for multiple lines, i.e., the minimal unit of data fetched

by or evicted from a cache. The number of lines per set is the cache’s associativity, i.e.,

its number of ways. A line at a particular location in memory is associated with a set

and may be fetched into any line in the set.

Effective Cache Size

When multiple processes share a cache, they compete for limited space. The division of

cache space among processes is influenced by characteristics of the concurrently running

processes, such as cache access frequency and sequential data access patterns. We define

effective cache size of process i to be the average number of ways occupied by the process

in a set, denoted as Si. Therefore,

N∑
i=1

Si = A, (3.1)

where N is the total number of processes sharing the cache and A is the number of

ways in the cache. Note that Si is a real value in our model because it represents the

average number of ways process i occupies in a set during prolonged execution. If the

cache access behavior of all processes is static, then Si will be stable. We define this as

the steady-state condition.

Reuse Distance

We define the reuse distance, Rj , of cache line j to be the number of distinct cache

lines within the same set accessed between two consecutive accesses to line j. A reuse

distance histogram represents the distribution of cache line reuse distances for an entire

shared cache. Given an A-way set-associative cache, Figure 9.7 shows a reuse distance

histogram for the mcf application (see section 3.5). The x-axis shows the reuse distance

and the y-axis shows the normalized frequencies of the associated reuse distances. The

first bar in the histogram, i.e., hist1, gives the probability that a most-recently-used

15

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10 11 12 13+

P
ro

b
a

b
ili

ty
 (

%
)

Reuse distance

Figure 3.1: Cache line reuse distance histogram for mcf application.

line will be accessed again, while the last bar, i.e., hist13+, gives the probability that

the data for the next cache access does not exist in the most-recently-used 12 lines,

which can be denoted as
∑∞

k=13 histk. Hist∞ is the probability that the data in the

line is never accessed again. Note that hist∞ can be very large for some streaming

applications. For process i with an effective cache size of Si, all accesses to the cache

lines with a reuse distance larger than Si result in cache misses. Hence, the probability

of a cache access resulting in a miss for process i with an effective cache size of Si can

be expressed as follows.

MPAi(Si) =

∫ ∞
Si

histi(x) dx. (3.2)

Note that histi(x) is a continuous function derived using linear interpolation of the

discrete histogram to support estimation for non-integer average reuse distances.

3.3.2 Problem Formulation and Assumptions

The cache contention prediction problem can be formulated as follows: given N pro-

cesses assigned to cores sharing the same A-way set-associative last-level cache, predict

the steady-state cache size occupied by each process during concurrent execution. Note

that the steady-state cache size can be directly translated to performance, as illustrated

by Equation 3.2. Solving this problem is helpful for process assignment and migration

in a CMP environment because it allows one to predict the consequences of tentative

process assignment and migration decisions. However, accurate prediction of process

16

performance is challenging because there are many combinations of processes that may

share the same cache.

We make the following assumptions.

1. For each process, we assume that data accesses are uniformly distributed across all

cache sets. The temporal cache access behaviors such as number of cache accesses

per second (APS) and the reuse distance histogram (see section 6.2) are assumed to

be stationary. In the case of multiple non-repeating phases with distinct memory

access patterns [25], non-repeating phases should be modeled separately.

2. We assume no hardware prefetching. Hardware prefetching predictively fetches

cache lines based on access patterns, potentially complicating the model. As such,

the model might be inaccurate for systems using prefetching. However, we argue

that prefetching is of limited value on CMPs with constrained processor-memory

bandwidth. For the 10 benchmarks used in this work, the average improvement

was 3.25%, and only equake benefitted significantly.

3. We do not explicitly model the effect of kernel thread and instruction accesses on

cache contention but note that the resulting technique remains accurate in the

presence of these accesses.

4. The cache uses an LRU replacement policy. Although most modern caches use

pseudo-LRU policies, assuming LRU still permits high prediction accuracy.

Although these assumptions simplify the explanation of our analysis, we do not rely

on them but instead “close the loop” by evaluating the resulting prediction technique

on real systems for which the assumptions may not hold. Finally, we consider a multi-

programmed environment and therefore neglect communication among processes. Our

analysis will hold for applications in which there is little communication among processes

assigned to separate cores.

3.3.3 Performance Model

The average number of cache accesses per second (APS) reflects how aggressively a

process competes for cache space. All other things being equal, a process with high

17

APS will generally take up more space in a shared cache than a process with low APS.

APS =
API

SPI
, (3.3)

where API is the number of cache accesses per instruction and SPI is the number of

seconds per instruction. API is a process property: given the same input data, the API

of a process is fixed. On the other hand, SPI is largely affected by the number of cache

misses per second (MPS). The latency per instruction, i.e., seconds per instruction,

can be decomposed into two parts: on-chip latency due to computation and off-chip

latency caused by main memory and disk accesses. When the CPU frequency remains

constant, the on-chip latencies per instruction are approximately constant for a process.

As shown in Figure 2.1 we experimentally determined that SPI can be expressed as a

linear function of MPA.

SPI = α ·MPA + β, (3.4)

where α and β are parameters that can be obtained during offline characterization.

3.3.4 Estimating Effective Cache Size After n Accesses

In this section, we use the reuse distance histogram of a process to derive its effective

cache size. Consider the number of distinct cache lines, s, (i.e., the effective cache size

of the process) after n accesses in one set. Note that s is essentially the effective cache

size, Si, as defined in section 3.3.1. Given that Ps,n is the probability of having s distinct

cache lines after n consecutive cache accesses, Phit ,s is the probability that a cache access

will result in a cache hit when the process already has s cache lines, and Pmiss,s is the

probability that a cache access will result in a miss when the process has s cache lines,

noting s can never be greater than n, the following recursive equation can be derived:

Ps,n = Ps,n−1 · Phit ,s + Ps−1,n−1 · Pmiss,s−1, 1 < s ≤ n. (3.5)

This can be explained as follows. The fact that n cache accesses result in an effective

cache size of s can only be the result of one of the following scenarios.

1. In scenario A, the first n− 1 cache accesses led to an effective cache size of s and

the nth access resulted in a cache hit. Since the nth access did not lead to an

18

increase in the effective cache size, it remains s. The probability of this scenario,

P (A), is Ps,n−1 · Phit ,s.

2. In scenario B, the first n− 1 cache accesses lead to an effective cache size of s− 1

and the nth access causes a cache miss. In this case, the effective cache size is

increased by one, relative to the s− 1 lines resulting from the first n− 1 accesses.

Thus, the effective cache size will be s after n cache accesses. The probability of

this scenario, P (B), is Ps−1,n−1 · Pmiss,s−1.

Noting that Ps,n = P (A) + P (B), we can derive Equation 3.5.

Given that MPA(s) is the probability of a cache access missing, given an effective

cache size of s, Equation 3.5 can be written as

Ps,n = Ps,n−1 · (1−MPA(s)) + Ps−1,n−1 ·MPA(s− 1). (3.6)

Note that P1,1 = 1 because the first cache access always causes a cache miss and re-

placement and 1 < s ≤ n. Assuming the process reaches steady state after n accesses,

and given that Gi(n) is the effective cache size for process i after n accesses, we have

Gi(n) =
n∑
s=1

(Ps,n · s). (3.7)

Note that Gi(n) is a monotonically increasing function of n. Therefore, given the effec-

tive cache size of process i, Si, we can deduce the number of cache accesses n needed for

the process to reach steady state using the inverse function of Gi(n), i.e., n = G−1
i (Si).

3.3.5 Steady-State Conditions

Given a cache with an LRU-like replacement policy, it is reasonable to assume that at

time t, we can always find a duration T such that data accessed before time t− T have

been evicted and data accessed during [t−T , t] are presently in the cache. To determine

the effective cache size, we are only interested in data accessed during [t− T , t]. Since

none of these accesses will evict any data lines accessed during [t− T , t], it is as if the

data were written to an empty cache with no cache misses during [t − T , t]. Thus,

Equations 3.6 and 3.7 hold. Note that these accesses may still evict cache lines accessed

before t − T . We assume the partition among processes resulting from data accesses

19

from all co-running processes within [t−T , t] is the same as that when all the processes

reach steady state. By computing the cache size of each process resulting from data

accesses within [t − T , t], we can determine process effective cache sizes. Hence, the

effective cache size of process i, denoted as Si, corresponds to the expected cache size

determined by the most recent APS · T cache accesses for process i. Thus, the effective

cache Si is written as Gi(APSi · T). Conversely, APSi can be expressed as G−1
i (Si)/T .

From Equation 3.3 and 3.4, we can derive the following equation:

APSi =
G−1
i (Si)

T
=

APIi
αi ·MPAi(Si) + βi

. (3.8)

Therefore,

T =
G−1
i (Si) · (αi ·MPAi(Si) + βi)

APIi
. (3.9)

Note that Equation 3.9 holds for any process i, where i ∈ {1, 2, · · · , N}, given that

N is the total number of processes. Combined with Equation 3.1, we have

G−1
1 (S1)

G−1
j (Sj)

− API1 · (αjMPAj(Sj) + βj)

APIj · (α1MPA1(S1) + β1)
= 0,∀Nj=1, (3.10)

and
N∑
i=1

Si −A = 0, (3.11)

where G−1
i (Si) and MPAi(Si) are application-dependent non-linear functions of Si. We

solve Equation 3.10 using Newton–Raphson iteration, a standard numerical method for

finding the roots of non-linear equations. Note that the number of ways in a cache (A)

and number of cores (N) are each fewer than 10. G−1
i (Si) and MPAi(Si) are monotonic

functions of Si, so we can solve Si for process i accurately within several iterations,

where i ranges from 1 to N . The initial guess also affects the computational cost. In

our experiments, we find that initially guessing that the effective cache size of a process

i is proportional to its APS allows quick convergence to an accurate solution.

3.4 Automated Profiling

In this section, we first explain how to obtain the reuse distance histogram of a process.

We then describe how to derive other parameters such as API and MPA. After that, we

20

give details about the automated profiling process. Finally, we indicate possible sources

of prediction error.

3.4.1 Reuse Distance Profiling

Process reuse distance histograms play a central role in the proposed performance mod-

eling technique. It would be possible to extract the reuse distance histograms of pro-

cesses via simulation, and CAMP would dramatically improve estimation speed even if

simulation were used for initial characterization; however, there is a faster alternative.

Most modern processors have built-in hardware performance counters (HPCs) that

record information about architectural events such as the number of instructions retired,

number of last-level cache accesses, and number of last-level cache misses [26]. Therefore,

we can gather information about parameters such as SPI and MPA accurately. However,

existing hardware or software resources do not directly provide reuse histogram data.

We now explain the process of deriving reuse histogram data from directly monitored

parameters.

Consider two processes running on separate cores sharing an A-way last-level cache.

We assume if one process occupies l ways in a cache set, the concurrently running

process will occupy A − l ways. Based on Equation 3.2, we can compute the effective

cache size of a stressmark with a controlled MPA and a known reuse distance histogram.

We obtain the reuse distance histogram of a process (denoted as B) as follows. Run the

stressmark along with B multiple times. In the lth run, we tune the parameters in the

stressmark to change the effective cache size, denoted as Sstress,l. Record B’s MPA in

each run, denoted as MPAB,l, where l ∈ {1, 2, · · · , A}. Given that SB,l is process B’s

effective cache size in the lth run, and considering the lth and the l+ 1st runs, we have

MPAB,l+1 =

∫ ∞
SB,l+1

histB(x)dx and

MPAB,l =

∫ ∞
SB,l

histB(x)dx. (3.12)

See the discussion after Equation 3.2 for the definition of hist(x). Hence, we can estimate

the probability of process B having an effective cache size of SB,l as

histB(SB,l) ≈MPAB,l+1 −MPAB,l. (3.13)

21

Algorithm 1 Stressmark with k-Way Occupation

1: Set is the number of cache sets.
2: Step is the number of integers per cache line.
3: S[Set · Step·k] is an array of integers.
4: Index ← {s1, s2, · · · , sn}
5: The following loop loads a predefined random sequence into Index.
6: for j = 0 : n− 1 do
7: flag ← Index [j]
8: T ← &S[flag · Set · Step]
9: for i = 0 : Set − 1 do

10: read T [i · Step]
11: end for
12: end for

By varying SB,l from 1 to A, we can estimate the probability at each effective cache size,

thus allowing us to construct the reuse distance histogram. Since we can not control

SB,l directly, in practice we adaptively tune the effective cache size of the stressmark

from run to run. SB,l + Sstress,l = A. Therefore, varying Sstress,l changes SB,l.

As indicated above, the stressmark should have the following properties.

1. High cache access frequency, i.e., high API. API is related to the degree to which

a process competes for cache space. In order to estimate the probability of a

process having a small effective cache size, the concurrently running stressmark

should occupy a large portion of the cache with few cache misses.

2. A uniform reuse distance histogram, i.e., the probability is the same across all

possible reuse distances. This makes it easy to compute the effective cache size

given an MPA value. In addition, given a pseudo-LRU cache replacement policy,

cache lines other than the least recently used will sometimes be evicted. Having

a uniform reuse distance histogram minimizes the impact of this potential prob-

lem because the replacement noise will affect cache lines with all reuse distances

equally.

The pseudo-code of the stressmark is shown in 1, where Set is the number of sets

in the cache, Step is the number of integers per cache line. Index[n] is an integer array

whose elements are uniformly distributed from [1, k], which contains a random access

location sequence. In order to maintain high cache access frequency for the stressmark,

22

we pre-generate these arrays. Note that in Line 10 in 1, two consecutive reads are Step

elements apart to ensure a 100% L1 cache miss rate. Since the stressmark randomly

accesses k cache lines within a cache set, the effective cache size of the stressmark is ex-

pected to be k. However, this may not be very accurate due to conflict misses between

the stressmark and the process of interest. In reality, we use Equation 3.2 to esti-

mate the effective cache size of the stressmark, i.e., Sstress = MPA−1(MPAstress), where

MPAstress is the MPA of the stressmark and MPA−1() is the inverse function for MPA in

Equation 3.2 that converts MPA to an effective cache size, i.e., MPA−1(MPA(x)) = x.

3.4.2 Automated Parameter Estimation

In this section, we describe how we calculate parameters such as API and SPI for a

process. Given an A-way associative cache, in order to get the reuse distance histogram

for a process, we run the stressmark concurrently with the process A times. In the lth

run, we set k to l for the stressmark in 1. Since API is fixed for a process with the same

input data, given that API l is the process’s API in the lth run, the average API of the

process can be estimated as

API =

∑A
l=1 API l
A

. (3.14)

Similarly, we can get A pairs of a process’ MPA and SPI values from the A runs. Given

that MPAl and SPIl are the average MPA and SPI of the process in the lth run, the

α and β in Equation 3.4 can be determined using linear regression, i.e.,

α =
A · (

∑A
l=1 MPAl · SPI l)− (

∑A
l=1 MPAl)(

∑A
l=1 SPI l)

A · (
∑A

l=1 MPAl
2)− (

∑A
l=1 MPAl)2

(3.15)

and β =
(
∑A

l=1 SPI l)− α · (
∑A

l=1 MPAl)

A
. (3.16)

Note that most programs have repeating phases with periods ranging from 200 ms to

2,000 ms [25]. Numerous works exist on phase detection, i.e., finding the time at which

the process switches from one phase to another. Since the process behavior is by defi-

nition similar within a phase, one set of parameters per phase is sufficient. In the rest

of the chapter, we will treat processes as having a single phase each to simplify expla-

nation. Note that the proposed technique is also suitable for multi-phase processes, for

which each phase may have a different set of extracted parameters.

23

Process characterization can be automated as follows. First, run the stressmark

along with the process A times, varying the effective cache size. After A runs, API, α,

β, and the reuse distance histogram can be estimated using Equations 3.13–3.16. These

four parameters form the feature vector of a process. Given the feature vectors of two

processes, we can predict their effective cache sizes when sharing a cache, which in turn

can be translated to SPI values using Equations 3.2 and 3.4. Note that the SPIs for

the two processes are predicted without actually running them concurrently. Hence,

given N processes for assignment to N cores, only N feature vectors are needed (O (N)

complexity). These vectors can be used to predict the performance of any subset of the

N processes during assignment (2N − 1 combinations). Thus, the proposed technique

is dramatically more efficient than one requiring simulation or execution of 2N − 1

combinations of processes.

3.4.3 Potential Sources of Error

There are two primary sources of error in the proposed technique: error in histogram

estimation and error in linear regression analysis. We will explain these error sources

now, but note that even with these error sources, the proposed technique is highly

accurate (see section 3.5).

When estimating the reuse distance histogram for a process, it is very difficult to

capture the probability corresponding to a reuse distance close to 0 because the con-

currently running stressmark cannot consume all of the cache space. Similarly, the

estimation for a reuse distance close to A may also have some error. In practice, we

assume a uniform distribution for reuse distances close to 0 or A. Linear interpolation,

given an assumed miss rate of 1 at an effective cache size of zero, is used for very small

effective cache sizes. In addition, the probability of reuse distances larger than A can-

not be captured by our technique. Hence, we extrapolate this probability based on the

derivative of the probability density function at a sample point close to A.

Error may also be introduced due to noise in sample parameters. When the <MPA,

SPI> pairs gathered during profiling are clustered within a small region, linear regres-

sion may lead to inaccurate estimation of coefficients due to noise. We addressed this

problem by bounding the step size during Newton–Raphson iteration when solving for

the effective cache size (see Equation 3.10), permitting convergence.

24

Table 3.1: Intel P8600 Specification
Item Specification
Number of chips 1
Number of cores per chip 2
Frequency 2.40 GHz
L1 ICache (Private) 32 KB, 64 B line, 8-way associative
L1 DCache (Private) 32 KB, 64 B line, 8-way associative
L2 Cache (Shared) 3 MB, 64 B line, 12-way associative

3.5 Evaluation Methodology and Results

In this section, we first describe our experimental setup. We then present the exper-

imental results for model validation. We contrast the proposed technique with other

potential methods of predicting CMP cache contention among processes and indicate

which features of the proposed approach permit high prediction accuracy.

3.5.1 Experimental Setup

We evaluated our technique on a computer equipped with an Intel Core 2 Duo P8600

processor and the Mac OS X 10.5 operating system. The system parameters are listed

in Table 3.1. We used Shark, a built-in profiling tool, to sample performance counters at

a period of 2 ms. The samples are used for calculating parameters (e.g., API, MPA, and

SPI) on each core. We used the SPEC CPU2000 benchmark suite, which contains 26

benchmarks. Since validating all 351 pairwise combinations would be costly, we instead

selected a subset containing five CPU-intensive and five memory-intensive benchmarks,

and considered all pairwise combinations of these ten. We recorded the program phase

information for each benchmark during pre-characterization. Experimental results in-

dicate that all but two benchmarks have only one significant phase, as defined by our

parameters of interest. The longest phases in art and mcf were used. We can thus

address the prediction problem one phase at a time using phase detection algorithms,

as described in subsection 3.4.2.

25

Table 3.2: API, α, and β for Different Benchmarks
Benchmark art mcf bzip2 swim equake mesa vpr ammp mgrid applu
API 0.0225 0.0733 0.0044 0.0116 0.0074 0.0013 0.0102 0.0092 0.0018 0.0018
α (×10−9) 446 134 99.9 -99.6 60.5 30.7 306 243 0.609 3.12
β (×10−7) 1.34 5.86 1.50 1.97 2.28 1.55 1.65 1.83 1.28 1.15

3.5.2 Pre-Characterization

As indicated in subsection 3.4.2, we first run the stressmark concurrently with each

benchmark on two different cores 12 times to derive various parameters such as API,

MPA, and SPI. Each run lasts 10 s, which has proven sufficient for characterizing these

parameters. Note that the working data set size of the stressmark is incremented by

1 way after each run to construct the reuse distance histogram for each benchmark, as

described in subsection 3.4.1.

Analyzing API, α, and β

Hardware performance counter readings are analyzed to determine API, α, and β in

Equations 3.3 and 3.4. Table 3.2 shows the value for each benchmark. API indicates

an application’s capability to compete for cache space. It also indicates whether an

application is memory-intensive because higher API is usually associated with more

misses per instruction, resulting in more off-chip memory transactions. As indicated in

Table 3.2, benchmarks such as art, mcf, vpr, swim, and ammp are memory-intensive.

Their APIs are significantly higher than those of the other benchmarks. α indicates

sensitivity to cache misses in terms of performance. Equation 3.4 implies that for the

same amount of change in MPA, a larger α indicates a larger change in SPI. As shown in

Table 3.2, the performance of memory-intensive applications tends to be more sensitive

to cache misses than that of CPU-intensive applications, with art being the most cache-

miss sensitive benchmark and mgrid being the least cache-miss sensitive benchmark.

Note that α is negative for swim. This is because cache contention has little impact on

this benchmark’s MPA value, resulting in inaccurate estimation during linear regression

when building the SPI model. However, this introduces little error in performance

estimation because, as we show later in Figure 3.2, both MPA and SPI are insensitive

to effective cache size for this benchmark.

26

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

art

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

mcf

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

vpr

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

mesa

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

mgrid

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

swim

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

ammp

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

applu

Figure 3.2: Profiled cache miss rate corresponding to effective cache size.

Analyzing Cache Miss Rate

We use the approach explained in subsection 3.4.1 to build the reuse distance histogram

for each benchmark, which is then used to predict its cache miss rate as a function of

effective cache size. Figure 3.2 illustrates the relationship between cache miss rate and

effective cache size for each benchmark. The cache miss rate curves for benchmarks

bzip2 and equake are not shown because they are similar to that of mgrid. The results,

from execution on hardware, are consistent with those obtained from simulation [27].

Note that linear approximation is used for leftmost segment of each miss rate curve, for

the reasons given in subsection 3.4.3. However, for the benchmarks with high APIs such

as swim and applu, the solutions of Equation 3.10 always lie outside this linear region.

Therefore, we do not consider this region when analyzing the sensitivities of the cache

miss rate curves for any benchmarks. As indicated in Figure 3.2, the cache miss rates of

benchmarks such as swim and applu are insensitive to their effective cache sizes in the

effective range. Therefore, their performance is only slightly affected when run together

with other benchmarks. However, cache miss rates of benchmarks such as art and vpr

are very sensitive to their effective cache sizes. Therefore, their performances will be

significantly affected by cache contention, although the impact on their performances

highly depends on the memory access patterns of the processes running concurrently

with them. This indicates the importance of considering application behavior and cache

contention during performance prediction on CMPs.

27

3.5.3 Model Validation

In this section, we validate our technique by using the feature vector, i.e., <API, α, β>,

and reuse distance histogram of a benchmark to predict the performance when run

concurrently with another benchmark. Note that feature vectors are determined during

pre-characterization. We compare the performances of the two benchmarks during

the evaluation period to the predicted performances using the feature vectors of the

benchmarks. Note that the approach proposed by Chandra et al. [13] requires the

steady-state cache access frequency of a process to be known a priori. We see no

practical way to accurately predetermine this value for concurrently running processes.

In contrast, our technique determines the steady-state cache access frequency using

analysis of performance counter readings, i.e., the proposed technique works correctly

using only inputs that are readily available in real systems.

In addition to the proposed technique, we considered and evaluated two alternatives.

The first, called Accesses Based (AB), assumes the effective cache size of a process is

proportional to APS. Given two processes running on two cores with effective cache

sizes of S1 and S2, the formula to determine effective cache sizes can be written as

APS1

APS2
=
S1

S2
=

API1 · (α2MPA2(S2) + β2)

API2 · (α1MPA1(S1) + β1)
. (3.17)

Note that this model only considers APS. It may be inaccurate if the concurrently

running processes have different MPAs or reuse frequencies. The second model, known

as Misses Based (MB), assumes that Si is proportional to MPS. Therefore, the equation

used to determine S1 and S2 is

MPS1

MPS2
=

MPA1(S1) ·API1 · (α2MPA2(S2) + β2)

MPA2(S2) ·API2 · (α1MPA1(S1) + β1)
. (3.18)

The model only considers MPS. Thus it may be also inaccurate if the concurrently

running processes have different reuse distance profiles.

Analysis of Results

We examined all 55 possible pairwise combinations of 10 benchmarks: each benchmark

is paired with every other benchmark (including another instance of itself) and assigned

to the two cache-sharing cores. The measured performance data are then compared to

28

Table 3.3: Prediction Accuracy for Cache Misses and Performance Degradation

CAMP AB MB
MPA SPI MPA SPI MPA SPI

Benchmark Error >5% Error >5% Error >5% Error >5% Error >5% Error >5%
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

art 1.61 0 3.68 40 4.60 50 10.26 80 5.88 70 18.09 90
vpr 0.88 0 1.48 0 4.70 40 7.67 60 5.89 30 9.24 50
mcf 2.10 10 3.70 20 2.82 10 3.97 40 6.79 40 7.72 70
ammp 2.82 20 3.04 20 4.03 30 4.16 30 5.89 60 6.78 90
bzip2 1.86 10 1.17 0 3.17 20 1.89 0 6.09 60 3.63 30
mesa 4.23 50 0.83 0 4.90 30 0.94 0 7.77 50 1.55 0
swim 0.28 0 0.86 0 0.23 0 0.81 0 0.27 0 0.78 0
equake 0.70 0 0.38 0 0.92 0 0.41 0 1.43 0 0.45 0
applu 1.13 0 0.32 0 0.86 0 0.31 0 1.79 10 0.33 0
mgrid 2.79 10 0.28 0 3.35 20 0.28 0 6.00 40 0.30 0
top 5 average 1.86 8 2.61 16 3.86 30 5.59 42 6.11 52 9.09 66
average 1.86 4 1.57 8 2.94 20 3.07 21 4.78 36 4.89 33

those predicted by AB, MB, and CAMP. AB and MB are not past work. They are in

fact alternative prediction models we considered.

Table 3.3 presents the average prediction error in cache miss rate and performance

for each benchmark when run simultaneously with each of the 10 benchmarks. The first

column lists the benchmarks. Columns 2, 6, and 10 show the average magnitudes of

cache miss estimation error for CAMP, AB, and MB. Columns 3, 7, and 11 show the

percentage of test cases with a cache miss estimation error larger than 5% among all

10 test cases. Similarly, Columns 4, 8, and 12 indicate the average relative estimation

error in performance for the three techniques, while columns 5, 9, and 13 indicate the

percentage of test cases with a relative performance estimation error larger than 5%

among all 10 test cases for the three techniques. The last two rows correspond to the

results for the 5 most memory-intensive benchmarks and all 10 benchmarks, respectively.

As indicated in Table 3.3, CAMP has an average of 1.57% performance estimation

error over all 10 benchmarks, compared to 3.07% for AB and 4.89% for MB. In addition,

only 8% of the cases for CAMP have estimation errors greater than 5%, compared to 21%

for AB and 33% for MB. Note that all three models have average performance estimation

errors below 5%. This is mainly because all the three models are based on predicting

the effective cache size of each benchmark when subject to cache sharing. If one of the

two co-running benchmarks are CPU-intensive, e.g., mesa, applu, or mgrid, at least one

29

Table 3.4: MPA and SPI Prediction when Processes Run with Art
Benchmark Extra Extra CAMP AB MB

MPA SPI Itera- MPA SPI MPA SPI MPA SPI
tions Error Error Error Error Error Error

(%) (%) (%) (%) (%) (%) (%) (%)
art 17.40 72.01 1 -1.96 +4.89 -1.96 +4.89 -1.96 +4.89
mcf 16.72 72.62 6 -1.52 +2.38 -7.16 +12.44 +13.60 -41.06
bzip2 6.13 31.48 5 +0.52 -0.13 -2.20 +6.82 +5.97 -17.71
swim 16.20 71.12 6 -4.12 +7.15 -9.35 +15.76 +6.58 -17.39
equake 10.92 48.03 8 +0.60 +0.19 -8.03 +17.47 +10.45 -31.18
mesa 2.33 13.93 4 -0.33 +5.60 -2.56 +11.50 -0.17 +5.18
vpr 8.41 42.24 5 +0.03 -0.66 -0.07 -0.41 +6.00 -18.72
ammp 5.42 32.84 5 -2.33 +4.45 -5.54 +11.80 +3.77 -13.48
mgrid 7.76 37.85 4 +2.17 -5.01 -3.29 +8.67 +5.26 -14.73
applu 9.40 44.74 6 +2.48 -6.38 -5.83 +12.79 +6.90 -20.46
average 10.07 46.69 5 1.61 3.68 4.60 10.26 6.07 18.48

of the two following conditions holds: (1) its cache miss rate is insensitive to its effective

cache size or (2) its performance is insensitive to its cache miss rate. Therefore, the large

cache miss estimation error may not be reflected in performance estimation error. This

also explains why memory-intensive benchmarks have larger estimation error than CPU-

intensive benchmarks. In Table 3.3, the bottom 5 benchmarks are either CPU-intensive

applications or streaming applications with constant high miss rates, e.g., swim. Their

performance estimation errors are below 1% for all three models. We thus also list the

average performance estimation error for the top 5 benchmarks, which are relatively

sensitive to the cache misses. CAMP has an average of 2.61% performance prediction

error, compared to 5.59% for AB and 9.09% for MB.

Analyzing One Benchmark–Art

We now examine the accuracy of the three models when a specific benchmark, namely

art, runs simultaneously with other benchmarks. Table 3.4 presents the estimation error

for MPA and SPI using CAMP, AB, and MB when art runs concurrently with each of

the 10 benchmarks. The first column lists the benchmarks. Columns 2 and 3 present

the increase in MPA and in SPI of each of the 10 benchmarks due to cache contention,

compared to those when it runs alone. Column 4 shows the number of iterations required

to solve for the effective cache size. Columns 5, 7, and 9 show the prediction errors for

MPA for each of the three models. Columns 6, 8, and 10 show the prediction errors

30

 0

 2

 4

 6

 8

 10

 12

M
e
a
su

re
d

C
A
M

P

A
B

M
B

M
e
a
su

re
d

C
A
M

P

A
B

M
B

N
o

rm
a

li
z
e

d
 S

P
I

mcfart

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

M
easured

C
AM

P

AB M
B

M
easured

C
AM

P

AB M
B

N
o

rm
a

liz
e

d
 S

P
I

vprart

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

M
easured

C
AM

P

AB M
B

M
easured

C
AM

P

AB M
B

N
o

rm
a

liz
e

d
 S

P
I

mcfvpr

Figure 3.3: Performance degradation for (a) <art, mcf> pair, (b) <art, vpr> pair, and
(c) <vpr, mcf> pair.

for SPI for each of the three models. The errors relative to measurements are reported.

A positive error indicates an over-prediction and a negative error indicates an under-

prediction. The last row shows the average results for all 10 cases.

Table 3.4 indicates that CAMP outperforms AB and MB in terms of both MPA

estimation error and SPI prediction error. AB over-predicts the effective cache size of

art, resulting all 10 under-predictions of cache miss rate and 9 over-predictions of SPI.

It achieves an average SPI prediction error of 10.26% and a maximum error of 17.47%.

MB under-predicts the effective cache size of art, resulting in 8 over-predictions of MPS.

It achieves an average SPI estimation error of 18.48%. and a maximum error of 41.06%.

In contrast, CAMP achieves an average estimation error of 3.68% and a maximum error

of 7.15%. Note that the computation overhead of CAMP is also lower than that of

AB and MB because it uses monotonic non-linear functions. This might significantly

reduce computational cost when the number of cores is large. In addition, since the

three models are based on estimating the effective cache sizes of two processes, they

give the same results when two instances of art are running together, as indicated in

the first row of Table 3.4.

We now explain why AB usually leads to over-prediction and MB usually leads to

under-prediction of the effective cache size. Figure 3.3 illustrates the predicted and mea-

sured normalized SPIs. The black portion shows the SPI when benchmark is run alone.

Figure 3.3(a) shows the results when benchmarks art and mcf share cache in a dual-

core system, with the left part corresponding to art and the right part corresponding to

mcf. We denote this scenario as <art, mcf>. Similarly, Figure 3.3(b) represents <art,

vpr>, and Figure 3.3(c) represents <vpr, mcf>. As indicated in Figure 3.3, CAMP

achieves the best accuracy in all three cases. We take the left figure as an example

31

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20 24

M
is

s
 R

a
te

Effective Cache Size

art

12-way 3M
16-way 4M
24-way 6M

Figure 3.4: Profiled cache miss rate corresponding to effective cache size for different
cache configurations.

to explain the reason for variation in accuracy. As indicated in Figure 3.2, given the

same effective cache size, mcf has a higher miss rate than art, resulting in larger SPI

than art. Therefore, the APS of art is approximately twice that of mcf when they run

concurrently, even though the API of mcf is larger than that of art. Thus, art has a

high APS with low MPS, which indicates that art can access the cache very frequently

with low reuse distances, resulting in few misses. In this case, MB tends to over-predict

the performance of mcf because it ignores factors such as APS. On the other hand,

AB overestimates mcf ’s performance due to ignoring its high reuse distances. Note

that when two processes share the cache in a dual-core system, under-predicting the

performance of one leads to over-predicting the performance of the other. CAMP takes

both APS and MPS into consideration, and therefore is most accurate.

3.5.4 Generality of Predictor For Different Machines

Figure 3.4 shows the cache miss rate of art corresponding to effective cache size profiled

under two other cache configurations differing from that in Figure 3.2. CAMP was

also validated on two other Intel Core 2 Duo Processors with 4 MB and 6 MB of L2

unified cache. The three cache miss rate curves closely match each other, suggesting

that process characterization data derived on one machine might be used to accurately

32

predict the performance of cache-sharing processes on different types of processors with

different cache structures.

3.6 Conclusion

Cache contention among processes running on different CMP cores heavily influences

performance. A cache-contention aware assignment algorithm can help improve system

throughput and reduce power consumption. However, this requires a model of cache

contention behavior that can quickly and accurately determine the impact of different

assignments on performance. This is challenging due to the large numbers of potential

assignments of processes to CMPs. We have described CAMP, a predictive model that

allows fast and accurate estimation of system performance degradation due to cache

contention. More specifically, it first determines a process-dependent feature vector

and reuse distance histogram via (potentially on-line) pre-characterization. The feature

vectors of cache-sharing processes are supplied into a group of non-linear equations that

determine the steady-state effective cache size and performance of each process. We also

described a method to automate the profiling and performance prediction process. We

evaluated the proposed technique on 55 different combinations of 10 SPEC CPU2000

benchmarks on a dual-core machine. The average performance prediction error is 1.57%.

We also tested the generality of the proposed technique by profiling processes on one

CMP and using the profiling information for performance prediction on two other CMPs

with different cache sizes. In contrast with existing work, the proposed approach requires

access only to information that is readily available from processor performance counters.

Chapter 4

Power Modeling for CMPs

In the previous chapter, we described CAMP, a shared cache aware performance model

for CMPs. By taking advantage of the hardware performance counters, which are avail-

able on most modern processors, we can automate the profiling process and gather

process-dependent characteristics such as reuse distance histograms, cache access fre-

quencies, and the relationship between the throughput and cache miss rate of each

process without exhaustive simulation or modification to the underlying hardware and

software infrastructure. CAMP uses those inputs to predict its effective cache size

when running concurrently and sharing cache with other processes, allowing instruction

throughput estimation. In addition, we demonstrated the generality of the proposed

technique by profiling processes on one CMP and using the profiling information for

performance prediction on two other CMPs with different cache sizes.

However, to permit an efficient power-aware scheduling and management scheme in

a multi-programmed multi-core computing platform, power modeling is another critical

building block. In addition, such power model can be easily integrated into our existing

performance model.

This chapter describes a fast, automated technique for accurate on-line estimation

of the power consumption of interacting processes in a multi-programmed, multi-core

environment. The proposed technique does not require modifying hardware or applica-

tions. The system-level power model is derived using multi-variable linear regression,

accounting for cache contention. We validated the power model on multiple real multi-

core systems using SPEC CPU2000 benchmarks to demonstrate the generality of the

33

34

proposed model. Finally, we integrate the power model with CAMP to estimate proces-

sor power for any tentative assignment without any runtime information. The combined

model is validated on a 4-core server using SPEC CPU2000 benchmarks, with an average

estimated error within 3.5%. This work is done in collaboration with other researchers.

In particular, Xi Chen was the leader on designing and evaluating the power model,

the author of the dissertation was responsible for combining the performance and power

model, and evaluating results on one of the evaluation platforms.

4.1 Introduction and Motivation

Power modeling in a multi-programmed single-core environment is challenging due to

issues such as time sharing among processes. The on-going move to chip multiprocessors

(CMPs) permits sharing the last-level cache among cores on the same die but this aggra-

vates the cache contention problem: processes running simultaneously on cache-sharing

cores contend for the limited space in the last-level cache, impacting performance and

power consumption, which further complicates the modeling problem. Accurately mod-

eling the performance and power consumption in a multi-programmed multi-core envi-

ronment is necessary for design-time architectural optimization and run-time dynamic

resource management [28, 29].

Power modeling in a multi-programmed multi-core environment presents several

challenges: (1) the models should be easy to construct without modifications to existing

software or hardware. Exhaustive off-line simulation of all process combinations is

computationally intractable and thus should be avoided; (2) the models should handle

time sharing among processes on the same core and resource contention among processes

on cache-sharing cores; and (3) to be useful in on-line process assignment, the models

must estimate power and throughput before processes are assigned. To the best of

our knowledge, no existing performance and/or power models satisfy the requirements

mentioned above.

This chapter makes the following contributions: (1) we propose a modeling frame-

work that generates fast, accurate, on-line estimates of power consumption for any

process-to-core mapping during runtime; (2) the system-level power model can handle

time sharing among processes on the same core and cache contention among processes

35

on cache-sharing cores; (3) this is the first work to estimate the processor power for

any tentative assignment without run-time information by integrating the performance

model and the power model; and (4) our models are general enough to accommodate

heterogeneous tasks and processors. Both models have been validated on different ma-

chines with different architectures and nominal power consumptions. Note that although

constructing a performance model requires profiling each process of interest, this does

not limit the generality of our approach because profiling can be done on-line. When a

new application makes up a significant percentage of the workload, we force it to run

alone on an idle machine and record profiling information. Therefore, the approach can

be used (in different ways) for both embedded and general-purpose computing systems.

4.2 Related Work

Researchers have also developed simulation-based power models [28]. However, such

models impose significant performance overhead and are therefore inappropriate to use

during runtime. Other researchers have proposed performance-counter-based power

models for on-line power estimation [30, 29]. However, such models only estimate

the power consumption of a single application; it is not straightforward to extend

them for power estimation in a multi-programmed, multi-core environment. Singh et

al.proposed a performance counter based power model in a multi-programmed CMP en-

vironment [31]. This work is related to ours. However, their power model construction

process is ad hoc and requires the user manually tune the model parameters and fitting

functions. In addition, their power model cannot handle time sharing among processes

on the same core. In contrast, the model building process for our power model can be

fully automated. As demonstrated in section 5.4, it can handle time sharing among

processes and applies to CMP systems with different architectures without any changes

to the model construction process.

4.3 Power Modeling

In this section, we first formulate the power modeling problem. We then explain the

model construction process. Finally, we describe how we handle time sharing among

36

processes sharing cores and cache contention among processes running on multiple cores.

4.3.1 Problem Formulation

The power modeling problem in a multi-programmed multi-core environment can be

formulated as follows: given k processes running on N cores with some of the cores

having multiple processes and some of them being idle, estimate the core and processor

power consumption during concurrent execution.

It is natural to decompose core power consumption into idle power consumption and

the active power consumptions of individual architectural blocks. Given that there are

M components in a system, the total power consumption is P = Pidle +
∑M

i=1 Pi, in

which Pidle is the idle power consumption when no process is actively using the core

and Pi is the power consumption of component i. In order to make online estimates

of Pi, we again use HPCs: by carefully choosing the HPC-detected hardware events

monitored, we can map an event rate, i.e., number of events per second, to the power

consumption of the corresponding architectural block. We first choose the HPC event

rates that are most correlated to core power consumption. We omit the details here

due to space limitations. The top 5 event rates with the highest correlation coefficients

are L1RPS, L2RPS, L2MPS, BRPS, and FPPS, which represent the number of L1 data

cache references per second, number of L2 cache references per second, number of L2

cache misses per second, number of floating point instructions retired per second, and

number of branch instructions retired per second, respectively.

It remains unclear how to map the event rates to the corresponding component

power: the power consumption of a component may be nonlinearly dependent on the

event rate associated with it. We first wrote a micro-benchmark with 6 phases, each

of which lasts 80 s. In the first phase, the core idle power is recorded, whereas one of

the aforementioned 5 architectural blocks are explicitly accessed in each of the following

5 phases. Note that the access frequency is the highest at the start of a phase and

reduced to a lower level every 10 s, i.e., there are 8 different access frequencies for one

component in one phase. We then use 8 SPEC CPU2000 benchmarks (see section 5.4)

and the micro-benchmark for model construction. Given an N -core processor, we run

N instances of one benchmark on N cores (one instance per core) and gather the HPC

values along with the processor power throughout the execution, assuming each core

37

has the same power and HPC values. We then evaluate the modeling results based

on two different algorithms, the multi-variable linear regression (MVLR) algorithm and

a three-layer sigmoid activation function neural network (NN). Experimental results

indicate that the MVLR-based model achieves an accuracy of 96.2% while the NN-

based model reaches an accuracy of 96.8%. Given an accuracy comparable to NN-based

model and the simplicity in model construction and evaluation, MVLR-based model is

chosen. Hence, the core power Pcore can be expressed as

Pcore = Pidle + c1 · L1RPS + c2 · L2RPS + c3 · L2MPS +

c4 · BRPS + c5 · FPPS, (4.1)

where Pidle and c1 through c5 are coefficients determined from MVLR.

4.3.2 Handling Context Switching and Cache Contention

The proposed power model can accurately estimate the core power consumption when

a single process is running. However, there are usually multiple processes running on

the same core in a multi-programmed environment, limiting the usability of the power

model. We define process power consumption as the core power consumption when this

process is running. Since we assume there are no data dependencies among processes,

the major interactions among processes on the same core are contention for resources

such as cache. We experimentally determined the average amount of time required to

fill the cache after a context switch is only 1% of the timeslice length given a 20 ms

timeslice, which indicates the impact of context switches on performance and power

is negligible. Therefore, the core power consumption is the linear weighted sum of all

process power consumptions with the timeslice length of each process being its weight.

In reality, we make the simplifying assumption that every process has the same weight.

Hence, assuming there are k processes running on the single core with process i’s power

consumption being Pi, the core power consumption is simply Pcore = 1
k

∑k
i=1 Pi.

We now define the processor power consumption as the sum of all core power con-

sumptions in a multi-core multi-programmed environment, in which cache contention

problem becomes more severe. On one hand, increased cache contention leads to lower

processor power consumption because c3 is negative in Equation 4.1. On the other hand,

increased resource utilization implies higher processor power consumption. The amount

38

of increase in processor power consumption depends on the balance between the two

factors. This is consistent with our experimental results (see section 5.4). Therefore,

the proposed power model can handle the multi-core environment without any modifi-

cations. If there is more than one process per core, given core 1 through core N share

the last-level cache and Si is the set of processes running on core i, the average power

consumption of these cores Pcore-set can be calculated as

Pcore-set =

∑
p1∈S1

· · ·
∑

pN∈SN
P (p1, p2, · · · , pn)∏N

i=1 |Si|
, (4.2)

where P (p1, p2, · · · , pn) is the sum of power consumptions of core 1 through core N

when processes p1, p2, · · · , pn run simultaneously.

4.4 Combining Performance and Power Models

In this section we describe how to combine the proposed performance and power mod-

els for use in optimization. One such application is power-aware assignment. More

specifically, if we can accurately estimate the processor power consumption for each

tentative assignment decision, we can choose the one that optimizes power or energy

usage. However, such power estimation is usually impossible because the HPC values

needed for power estimation are unknown until the processes are assigned. Nonetheless,

by integrating the performance model and the power model, we are able to estimate the

process power consumption for each assignment, as explained below.

Given the power model in Equation 4.1, we can decompose the process power Pprocess

into two parts:

P1 = Pidle + (c1 · L1RPI + c2 · L2RPI +

c4 · BRPI + c5 · FPPI)/SPI,

P2 = c3 · L2MPS = c3 · L2MPR · L2RPI/SPI, and

Pprocess = P1 + P2.

Here, Pidle is the power consumption of an idle core, L1RPI represents the number

of L1 data cache accesses per instruction, L2RPI represents the number of L2 cache

references per instruction, BRPI represents the number of branches per instruction,

FPPI represents the number of floating point instructions retired per instruction, and

39

Incoming task K,

Target core C

Core C

idle?

PSc idle?

No

Yes

No

PSc idle?
Compute the weighted average

of core C’s current power and

P_{k,alone}, update core C’s

power

Compute the average power of
process combinations including

K as P_{in}, use P_{in} to update

core C and PSc’s power

No

Yes

Yes

Performance

model and

power model

Process
profiles

Compute the average power of

process combinations including

K as P_{in}, use P_{in} to
update core C and PSc’s power

Set core C’s power to

P_{k,alone}

Figure 4.1: Algorithm for power estimation for process assignment.

L2MPR represents the number of L2 cache misses per L2 cache reference. We de-

fine a instruction-related event rate as the number of events per instruction. L1RPI,

L2RPI, BRPI, and FPPI in P1 are process properties: given the same input data, these

instruction-related event rates are fixed and not affected by the execution of other pro-

cesses. Therefore, the impact of cache contention is only reflected in the change of SPI.

However, P2 is not only influenced by SPI but also L2MPR. Fortunately, both SPI and

L2MPR can be determined by the performance model given enough profiling informa-

tion, as explained in section 3.3. Hence, if we record the instruction-related event rates

during profiling for each process and use performance model in section 3.3 to predict

SPI and L2MPR whenever cache contention exists, we can estimate P1, P2, and thus

the process power.

We first assume the performance and power model are built as described in sec-

tion 3.3 and section 4.3. We also assume for each process i, the profiling vector PFi,

i.e., (Pi,alone, L1RPIi, L2RPIi, BRPIi, FPPIi) is recorded during profiling. Note that

Pi,alone represents process i’s average power consumption when it runs alone with no

other active processes. Figure 4.1 illustrates how to combine the performance model,

power model, and process profiles for power estimation during assignment. Suppose

we want to evaluate the resulting power consumption by assigning process K to core

40

C. We denote the set of cores that share the last-level cache with core C as core C’s

partner set PSC . Depending on the states of core C and PSC , there are four differ-

ent outcomes: (1) both C and PSC are idle, (2) C is busy and PSC is idle, (3) C is

idle and PSC is busy, and (4) both C and PSC are busy. We only analyze scenario

(1) and scenario (4) since scenarios (2) and (3) are special cases of scenario (4). In

scenario (1), we set core C’s power consumption to PK,alone, fetched from profiling vec-

tor PFK . The processor power consumption is also increased by PK,alone. In scenario

(4), we assume there are N cores in PSC numbered from 1 to N , among which core

1 through core m have processes running on them and core m + 1 through core N

are idle. For convenience, we use Si to represent the set of processes running on core

i. We define a process combination as an ordered tuple (PCC , PC1, PC2, · · · , PCm)

where PCC ∈ SC , PC1 ∈ S1, · · · , PCm ∈ Sm, indicating processes PCC , PC1, PC2,

· · · , PCm run simultaneously on core C and its partners core 1 through core m. For the

set of process combinations that do not include process K, denoted as Sex, the average

power consumption, denoted by Pex, is the sum of current power consumptions of core

C and cores in PSC . On the other hand, if we use Sin to represent the set of process

combinations that include process K, for each item I in Sin, we use the performance

model to predict the SPI and L2MPS for each process that belongs to I, which are

then fed into the power model to calculate the corresponding power consumption for

the process combination I. We use Pin to denote the average power consumptions for all

combinations in Sin. Hence, the processor power consumption Pprocessor can be written

as

Pprocessor = (N −m) · Pidle +
Pex · |Sex|+ Pin · |Sin|

|Sex|+ |Sin|
+ Prest, (4.3)

where Prest is the current power consumption of cores that do not share cache with

core C. Therefore, by profiling each process individually, we are able to estimate the

processor power consumption for any process-to-core mapping, reducing the exponential

time complexity for a simulation based approach to linear time complexity.

4.5 Experimental Results

In this section, we first describe the experimental setup for model validation. We then

present the validation results for the performance model, the power model, and the

41

Table 4.1: Power Model Validation on a 2-Core Workstation
Scenarios

Number of Avg./max. error for Avg./max. error
assignments power samples (%) for avg. power (%)

1 proc./core 36 5.32 / 14.12 3.63 / 13.83
2 proc./core 24 6.65 / 8.84 2.47 / 4.05

Table 4.2: Power Model Validation on a 4-Core Server
Scenarios

Number of Avg./max. error for Avg./max. error
assignments power samples (%) for avg. power (%)

1 proc./core 24 4.09 / 8.52 3.26 / 7.71
2 proc./core 3 5.51 / 6.25 4.47 / 5.95
4 proc. with

10 3.39 / 4.73 2.54 / 4.14
unused cores

combined model.

4.5.1 Experimental Setup

We use PAPI 3.6.2 [32] to sample the HPCs. The sampling period is 30 ms. Our testsuite

includes 8 SPEC CPU2000 benchmarks that compiled on the test system using gcc 4.1.

This set contains both memory-intensive and CPU-intensive benchmarks. We record

the program phase information for each benchmark during profiling. Experimental

results indicate all but two benchmarks have only one significant phase, as defined by

our parameters of interest. The longest phases in art and mcf were used (refer to Tam

et al. [24] for details).

To determine power consumption, we use a Fluke i30 current clamp on one of the

12 V processor power supply lines, the output of which is sampled by an NI USB6210

data acquisition card. An on-chip voltage regulator converts this voltage to the actual

processor operating voltage. We assume a fixed regulator efficiency of 90%. Therefore,

P = 0.9V · I = 10.8 · I, where P is the processor power and I is the measured current.

The data acquisition card samples at a frequency of 10 kHz in our experiments.

4.5.2 Power Model Validation

We validated our power models on (1) a Pentium Dual Core E2220 processor with

1 MB L2 cache, which runs Linux 2.6.25 and (2) a 4-core server. For each machine, we

first build the power model using 8 SPEC CPU2000 benchmarks and the customized

micro-benchmark as explained in subsection 4.3.1. We then validate the power model

42

 40

 45

 50

 55

 60

 65

 70

 0 5 10 15 20 25 30 35 40 45

P
o

w
e

r
(W

)

Time (s)

Max_estimation
Max_measurement

Min_estimation
Min_measurement

Figure 4.2: Power model validation on 4-core server.

by assigning a combination of several SPEC CPU2000 benchmarks to some or all of the

cores and compare the real power consumption with the power estimations using HPC

values gathered during runtime. Note that we only analyze the duration in which all

processes assigned are running concurrently.

Figure 4.2 illustrates the sample-based power model validation on the 4-core server

for the assignments with the maximum and the minimum average power among all test

cases. The X axis is time and the Y axis is the power consumption. The solid lines

represent power estimations, while the dotted lines represent measured values. They

generally overlap, indicating good estimation accuracy. The average estimation errors

are 2.46% and 2.51% for the maximum-power scenario and the minimum-power scenario,

respectively.

Table 4.1 and Table 4.2 show the validation results for the power model on the 2-

core workstation and 4-core server, respectively. Column 1 shows the testing scenario,

e.g., “1 proc./core” refers to assignment schemes in which all cores are used with one

SPEC program per core. Column 2 represents the number of different assignments

evaluated given the testing scenario indicated in Column 1. Note that the processes

43

Table 4.3: Validating the Combined Model on a 4-Core Server

Scenarios
Number of Avg./max. error
assignments for avg. power (%)

1 proc./core 32 2.84 / 5.78
2 proc./core 10 1.92 / 6.29

4 proc., 1 core unused 16 2.68 / 5.48
4 proc., 2 core unused 16 2.53 / 5.99
4 proc., 3 core unused 9 0.49 / 1.95

in each assignment are chosen randomly in order to test the model on a wide range of

scenarios. Column 3 presents the average and maximum error resulting from compar-

ing the estimated processor power with the measured power for all power estimation

samples. Column 4 presents the average and maximum error resulting from comparing

the estimated average power with the measured average power.

On the 2-core workstation, we tested 36 different assignments with 1 process per

core and 24 assignments with 2 processes per core. For a sample-based comparison,

the average error for both scenarios are 5.32% and 6.65%, with maximum errors of

14.12% and 8.84%. For an average-power–based comparison, the average error for both

scenarios are 3.63% and 2.47%, with maximum errors of 13.83% and 4.05%.

On the 4-core server, we tested 24 different assignments with 1 process per core, 3

assignments with 2 processes per core, and 10 assignments with 1 or 2 cores unused.

For a sample-based comparison, the average error for the three scenarios are 4.09%,

5.51%, and 3.39%, with maximum errors of 8.52%, 6.25%, and 4.73%. For an average

power comparison, the average errors for the three scenarios are 3.26%, 4.47%, and

2.54%, with maximum errors of 7.71%, 5.95%, and 4.14%. Therefore, we conclude the

proposed power model is accurate and is sufficiently general to be used for different

architectures, although the limited number of architectures considered is not sufficient

to determine the were the limits on generality are located.

4.5.3 Combined Model Validation

We validated the combined performance and power model for average power estimation

during assignment on the 4-core server. We first built the performance model and

the power model as explained in sections 3.3 and 4.3. We then estimated the power

consumption of an assignment following the algorithm in Figure 4.1. Note that only

profiling information are used for estimation. The estimated average power is then

44

compared to the measured average power to determine the accuracy of the combined

model.

We tested 32 assignments with 1 process assigned to each core, 10 assignments with

2 processes assigned to each core, 16 assignments with 4 processes assigned to 3 cores,

16 assignments with 4 processes assigned to 2 cores, and 9 assignments with 4 processes

assigned to a single core. The average errors for the 5 scenarios were 2.84%, 1.92%,

2.68%, 2.53%, and 0.49%, while the maximum errors were 5.78%, 6.29%, 5.48%, 5.99%,

and 1.95%. We thus conclude that the combined model is effective in estimating the

processor power consumption during assignment.

4.6 Conclusions

Accurately modeling the performance and power consumption in a multi-programmed

multi-core environment is challenging but essential for optimizing process assignment

and migration. This chapter describes an on-line performance and power modeling

framework that rapidly and accurately estimates the power consumption and perfor-

mance implications of particular process-to-core mappings. This process requires no

changes to existing operating system or hardware. The individual models and the com-

bined model have been validated on multiple CMP machines with distinct architectures

and nominal power consumptions. We conclude that the proposed framework is effective

for performance and power estimation during both process assignment and execution.

Chapter 5

Memory access aware on-line

voltage control for performance

and energy optimization

In this chapter, we will explore the impact of the memory hieracrchy on one of the most

significant metric: energy. We proposed an off-chip memory access-aware runtime DVFS

control technique that minimizes energy consumption subject to a constraint on appli-

cation execution time. We consider application phases and the implications of changing

cache miss rates on the ideal power control state. We first propose a two-stage DVFS al-

gorithm that formulates the throughput-constrained energy minimization problem as a

multiple-choice knapsack problem (MCKP), assuming a priori (oracle or profiling-based)

knowledge to an application’s behavior. This algorithm builds on an application phase-

dependent power model, taking advantage of processor hardware performance counters.

Solutions to this problem provides an upper bound on the energy savings achievable

under a performance constraint. We then propose P-DVFS, an DVFS algorithm for on-

line minimization of energy consumption under a performance constraint during runtime

without requiring a priori knowledge to an application’s behavior. In addition to the

power model, P-DVFS also relies on a performance model that characterizes the per-

formance of a running application using hardware performance counters. It predicts

remaining execution time during runtime in order to optimize voltage and frequency for

45

46

the best application energy consumption and performance results. Like the two-stage

DVFS algorithm, P-DVFS supports formulation as a multiple-choice knapsack problem,

which can be efficiently and optimally solved online. We evaluated P-DVFS using direct

measurement of a real DVFS-equipped system. When bounding performance loss to at

most 20% of that at the maximum frequency and voltage, P-DVFS leads to energy con-

sumptions within 1.83% of the optimal solution on average with a maximum deviation

of 4.83%. The most advanced existing DVFS control algorithm results in energy con-

sumptions with 9.8% average deviation and 29.86% maximum deviation from optimal.

In addition to producing results approaching those of an oracle formulation, P-DVFS

reduces power consumption by 9.93% on average, and up to 25.64%, compared with the

most advanced existing work.

5.1 Introduction and Related Work

Energy consumption is important in both portable computer systems, due to its im-

pact on battery lifespan, and high-performance stationary computers, due to its impact

on energy and cooling costs. Prior work has considered minimizing processor energy

consumption. Chang et al.proposed a dynamic programming energy minimization tech-

nique for multiple supply voltage scheduling in both pipelined and non-pipelined dat-

apaths [33]. Zhang et al.developed a two-phase technique that integrates task assign-

ment, task scheduling, and voltage selection for energy minimization [34]. Varatkar et

al.proposed communication-aware task scheduling and voltage selection to minimize the

overall system energy consumption in a multiprocessor environment [35]. However, the

goal of these techniques is to minimize energy without affecting performance; trade-offs

between performance and energy consumption were not considered.

Other researchers have considered power management mechanisms that trade off

performance for power consumption. One of the most promising of these is dynamic

voltage and frequency scaling (DVFS). A well-designed DVFS control policy can reduce

system energy consumption while maintaining the same or better performance than al-

ternative control policies. This requires a policy with two important characteristics: (1)

a well-designed DVFS control policy must model and react to the dynamically chang-

ing trade-offs between application performance and power consumption. A reduction

47

in processor voltage and frequency has very different energy and performance impacts

on applications that are heavily accessing off-chip memory, and those that are consis-

tently hitting in cache, and therefore have performance constrained only by the current

frequency of the processor. A well-designed DVFS policy must continuously monitor

and adapt to the behavior of applications. (2) If a DVFS control policy is to guarantee

that a particular application consistently runs with adequate performance, e.g., adheres

to an instruction throughput constraint, it should maximize energy consumption sav-

ings by predicting the distribution of future instructions among different memory access

behaviors categories. This allows the control policy to increase processor voltage and

frequency when the performance benefit per lost energy unit is the highest and reduce

frequency and voltage when the energy benefit per lost performance unit is the highest.

A number of researchers have worked on DVFS-related control to optimize power

and energy consumption. Isci et al.proposed a runtime phase monitoring and predic-

tion technique to reduce power consumption using DVFS [36]. However, this technique

does not bound performance degradation. Wu et al.proposed dynamic compiler driven

DVFS for controlling microprocessor energy and performance [37]. However, their work

requires changes to the underlying compilation infrastructure. In addition, their tech-

nique cannot guarantee that performance requirements will be met. Liu et al.proposed

a technique to optimize peak temperature subject to a performance constraint using

DVFS in a real-time system [38]. However, their assumption that the execution time of

a task is inversely proportional to CPU frequency is incorrect, as we will demonstrate

in subsection 5.2.1. The technique proposed by Choi et al.is the closest to ours [39].

The goal of their technique is to minimize energy consumption under a constraint on

the total execution time of a program. Detailed comparisons with their work can be

found in subsection 5.4.2. Their DVFS policy considers the impact of application phases

and off-chip memory accesses. However, it considers only immediate application behav-

ior instead of adaptively controlling power state using predictions based on long-term

behavior history.

Our work differs from prior work in the following main ways.

1. We propose a two-stage DVFS algorithm that allows us to formulate the throughput-

constrained energy minimization problem as an MCKP problem, solve it optimally,

and use the solution to guide online frequency and voltage control. This algorithm

48

builds on an application phase-dependent power model, taking advantage of pro-

cessor hardware performance counters. The solutions obtained using the two-stage

algorithm determine the optimal energy savings under a performance degradation

ratio. However, it assumes access to oracle or profiling-based information about

application behavior.

2. We also propose P-DVFS, a predictive online DVFS algorithm that requires no a

priori knowledge of application behavior. P-DVFS uses power and performance

models that use hardware performance counters to adapt to the behaviors of

running application. It predicts remaining execution time online in order to control

voltage and frequency to minimize energy consumption under application-level

performance constraints. Like the two-stage oracle DVFS algorithm, P-DVFS is

also formulated as a multiple-choice knapsack problem. This formulation permits

rapid, optimal, on-line solution of real problem instances.

3. In contrast with all related work, except that of Choi et al. [39], we consider the

dependence of the power consumption performance tradeoffs available via DVFS

upon application memory access behavior, i.e., phase. By adapting to application

phase, our technique supports more aggressive power management settings when

doing so has the least negative performance impact. To this end, we describe

a method of modeling the performance and power consumption of the processor

using built-in hardware performance counters.

4. In contrast with all past work, our problem formulation supports application-level

throughput requirement, not instantaneous instruction throughput requirement.

This is supported by on-line monitoring of application behavior as well as predic-

tion of application run times.

We evaluated P-DVFS via direct measurement during operation on a real system. When

limiting performance loss to at most 20% of that possible at the maximum frequency

and voltage, P-DVFS leads to energy savings within 1.83% of the optimal solution

on average with a maximum deviation of 4.83%. It improves energy consumption by

9.8% on average, and up to 29.86%, compared to the most advanced existing DVFS

control technique. P-DVFS also reduces power consumption by up to 25.64% (9.93%

on average) compared with the most advanced prior work.

49

5.2 Motivation and Problem Formulation

In this section, we first describe how the trade-offs between performance and energy

consumption change depending on application off-chip memory access behavior. We

then present the problem formulation for energy minimization given a user-specified

constraint on application execution time. Finally, we present a dynamic power state

control policy that adjusts CPU frequency based on off-chip memory access patterns.

5.2.1 Trade-offs Between Performance and Energy

The execution time of a task can be decomposed into on-chip latencies and off-chip

latencies. On-chip resource use associated on-chip latencies scale linearly with CPU

frequency, because the on-chip resources share the same clock with the processor. In

contrast, off-chip latencies, caused by accesses to off-chip resources such as main memory

and disk, are independent of CPU frequency, because the off-chip resources have their

own clocks.

The power consumption of a task can be divided into dynamic power and static

power. Dynamic power consumption is caused by transistor switching activities. It gen-

erally scales superlinearly with the CPU clock frequency of the computing system [40].

Static power consumption is primarily due to the gate and subthreshold leakage currents

of transistors. It is independent of the CPU frequency but depends on the voltage. In

general, reducing frequency and voltage reduces both dynamic and static power con-

sumption.

Most modern processors are equipped with dynamic voltage and frequency scaling

(DVFS) capability. The typical voltage change overhead for our evaluation platform is

50 µs. Given an application with some phases in which instruction throughput is limited

largely by processor core performance and other phases in which instruction throughput

is limited largely by (processor frequency independent) off-chip memory access latency,

we can maximize energy consumption improvement and minimize performance overhead

by using a low CPU frequency during memory-bound application phases and a high CPU

frequency during core-bound application phases. What temporal granularity should

this control use? The DVFS switching overhead of 50 µs (see section 5.4) implies that

adjustments should happen no more frequently than once per hundreds of microseconds,

50

thus limiting overhead.

5.2.2 Problem Formulation

The performance-constrained energy minimization problem can be formulated as fol-

lows: Given that α is the user-specified performance degradation ratio relative to the

maximum performance of a given task and Tfmax is the execution time of the task run-

ning at the highest frequency, find the optimal CPU frequency as a function of time

t such that the total energy consumption of the task is minimized and the actual ex-

ecution time of the task subject to DVFS is no larger than (1 + α)Tfmax . Note that

this constraint is a soft timing constraint, i.e., it is highly desirable to meet the con-

straint. However, violating the constraint does not mean failure: a cost function may

be associated with difference between the constraint and the actual execution time.

As indicated in subsection 5.2.1, the energy saving potential directly relates to the

proportion of total execution time resulting from waiting on off-chip data access. In

our experiments, L2 cache misses are the dominant type of off-chip access. We assume

that each L2 cache miss takes the same amount of time. Hence, the number of L2 cache

misses per instruction (MPI), is a good indicator of the potential for saving energy.

Intuitively, it is beneficial to assign higher frequencies fir intervals with low MPIs to

improve performance and lower frequencies for intervals with high MPIs to save energy.

It is thus natural to use MPI distribution variation and assign different frequencies

depending on the MPIs.

In real operating systems, power control policies are usually implemented using

adjustments at discrete time intervals. We discretize the MPI values and pack them

into different MPI slots, each of which has a distinct nominal MPI value. We define

a control point as the time at which control decisions are made and a scaling point as

the time at which the CPU frequency is modified. The control period is the duration

between two consecutive control points and the scaling period is the duration between

two consecutive scaling points. Note that these periods need not be the same. In fact,

it is reasonable to use a much larger control period than scaling period to minimize

performance overhead incurred by the controller.

Given an MPI distribution within a control period, we denote the set of all MPI

slots with S and the set of all available frequency levels with F . Our goal is to find the

51

correct frequency level fi for each slot i ∈ S such that the total energy consumption

Etotal is minimized and the actual execution time Tact satisfies Tact ≤ (1 + α)Tfmax .

Therefore, assuming the distribution is independent of frequency, for each i ∈ S with

frequency fi, given that SPIi(fi) is the number of seconds per instruction at frequency

fi, Pi(fi) is the power consumption, and poi i is the percentage of instruction associated

with slot i, the objective function and the constraint can be expressed in terms of total

number of instructions Itotal and total energy consumption Etotal . The formulation thus

follow.

Etotal = Itotal ·
∑
i∈S

Pi(fi) · poi i · SPIi(fi) and (5.1)

Tact ≤ (1 + α)Tfmax . (5.2)

The problem is to minimize Er subject to Equation 5.2. Since the DVFS switching

overhead ranges from 50 µs to 200 µs, the performance (or energy) overhead due to a

switch in frequency is less than 0.7%, given a scaling period of 30 ms. Therefore, we

ignore its impact in our problem formulation. Note that Pi(fi) in Equation 5.1 depends

on both the CPU frequency and process behavior such as number of last-level cache

misses per second (see subsection 5.3.2).

5.3 System Modeling

In this section, we first explain our task performance and power models. We then

translate the energy minimization problem into a multiple-choice knapsack problem

(MCKP) and solve it optimally, assuming we know the average SPI at the maximum

frequency (SPIfmax) and the exact MPI distribution throughout the program execution.

We then relax our assumptions and propose an execution time predictor that is accurate

when running at the highest frequency. This allows us to formulate the online DVFS

problem again as an MCKP, which can be solved efficiently on-line. Finally, we explain

the software system architecture used to control DVFS in order to accurately adjust the

trade-off between performance and energy consumption.

52

5.3.1 Performance Modeling

Equation 5.2 requires a formula that accurately determines the relationship between SPI,

MPI, and CPU frequency. Intuitively, the amount of time consumed per instruction can

also be decomposed into on-chip latencies and off-chip latencies. On-chip latencies are

inversely proportional to frequency, while the off-chip latencies, captured by MPI, are

independent of frequency. Prior work has reached the same conclusion [36]. SPI can be

expressed as

SPI(MPI, f) = c1 ·MPI + c2/f, or equivalently, (5.3)

CPI(MPI) = c1 · f ·MPI + c2, (5.4)

where CPI is the number of cycles per instruction, f is the CPU frequency, and c1 and

c2 are constants to be determined.

Most modern processors have built-in hardware performance counters (HPCs) that

record information about architectural events, e.g., number of instructions retired and

cache misses [26]. By gathering these two event counts, we can compute SPI and MPI

during application execution. Therefore, given the last N data points reported by HPCs,

we can determine c1 and c2 using linear regression. The relevant formulæ follow.

c1 =
N · (

∑N
i=1 xi · yi)− (

∑N
i=1 xi) · (

∑N
i=1 yi)

N · (
∑N

i=1 x
2
i)− (

∑N
i=1 xi)

2
and (5.5)

c2 =

(
N∑
i=1

yi − c1 ·
N∑
i=1

xi

)
/N, (5.6)

where xi denotes the product of MPI and CPU frequency for the ith data point and yi

represents the CPI for the ith data point. Note that N should be carefully chosen such

that it can capture changes in memory access pattern quickly and still support accurate

regression-based modeling. In our experiments, varying N between 10 and 50 has in-

significant impact on total energy consumption (a variation of 0.5% in total energy was

observed). However, if N is smaller than 10, e.g., 4, we see an 4% energy consumption

increase due to inaccuracies in the linear regression model. In our experiments, we set

N to 20.

53

5.3.2 Power Modeling

Equation 5.1 indicates the necessity of having an accurate formula that describes the

dependency between power consumption and MPI. Since an L2 cache miss takes a rel-

atively long time to finish, intuitively the power consumption is higher for larger MPI

values and smaller for lower MPI values. However, the power consumption also depends

on other architectural events such as number of floating point instructions executed

and number of L1 data cache accesses. We experimented with different combinations

of HPC-detected architectural events. Experimental results indicate the following five

events were sufficient to permit accurate estimation of overall power consumption: num-

ber of L1 data cache references per second (L1DPS), number of L2 cache references

(L2PS), number of L2 cache misses per second (L2MPS), number of floating instruc-

tions executed per second (FPPS), and number of branch instructions retired per second

(BRPS). As a first-order approximation, we assume each access to system components

such as L1 caches and L2 cache consumes a fixed amount of energy. Therefore, the total

power consumption is linearly dependent on these five events. In addition, the dynamic

power consumption is nonlinearly dependent on CPU frequency [6]. Given that f is the

CPU frequency, the power consumption P can thus represented as

P = b0 + b1 · L1DPS + b2 · L2PS + b3 · L2MPS +

b4 · FPPS + b5 · BRPS + b6 · f1.5, (5.7)

where bi, i = 0, · · · , 6 are task-specific constants that can be determined during pre-

characterization. Note that the exponent 1.5 is determined empirically to ensure a good

modeling accuracy. It is worth mentioning that b0 accounts for system idle power and

leakage power. For example, the formula for mcf benchmark (see section 5.4) follows:

P = 4.778 + 2.2864× 10−9 · L1DPS + 6.517× 10−8 · L2PS

− 3.596× 10−7 · L2MPS + 0.6342 · FPPS

− 3.136× 10−9 · BRPS + 4.308 · f1.5. (5.8)

For all the benchmarks we evaluated, the application-dependent power models have an

average error of 6.67% and a maximum error of 12.2% across all four CPU frequen-

cies. Note that if the processor has built-in power sensors [41], the pre-characterization

54

phase can be eliminated and the constants can be determined during execution using a

regression-based approach such as that described in subsection 5.3.1.

5.3.3 Cost Minimization

This section describes the way in which the DVFS power management state control

problem is formulated as a multiple-choice knapsack problem (MCKP). Given multiple

sets, each containing multiple items, where each item is associated with a profit and a

weight, MCKP requires the selection of one item from each set. The selection is optimal

when the total profit is maximized and the total weight of the selected items is below a

constraint. The DVFS problem instance can be converted into an MCKP by considering

each potential frequency level to be an item. The weight of the item is the expected

throughput at the associated frequency level. The profit of the item is the associated

reduction in expected energy consumption compared to the highest energy at the highest

frequency level. Note that depending on whether we have a priori knowledge to SPIfmax

and the MPI distribution throughout program execution, the DVFS problem instance

can be formulated as different MCKP instances, as we explained in section 5.3.3 and

section 5.3.3.

Cost Function

Equation 5.3 and Equation 5.7 can be substituted into Equation 5.1. For each slot i ∈ S
within a control period where S is the set of all MPI slots, SPIi and Pi depend only

upon the frequency level assigned to MPI slot i. However, both are nonlinear functions

because both SPI and power consumption are nonlinear functions of CPU frequency. As

a result, we face a nonlinear optimization problem, which cannot be efficiently solved

online. Fortunately, the number of available frequencies in a processor is usually very

limited (4 in our case). Therefore, we select the frequency values associated with each

MPI slot from a small or moderate set F . Note that F may include any frequency

value between the minimum and the maximum available CPU frequency, which can be

approximated by switching between two adjacent available CPU frequency levels. For

simplicity, F only consists of the available frequency levels for the chip used in our

experiments.

55

We use a binary variable xij to indicate whether the frequency fj is assigned to MPI

slot i.

xij =

1, fj is assigned to MPI slot i and

0, otherwise.
(5.9)

Note that
∑

fj∈F xij = 1, ∀ slot i ∈ S. Therefore, for each slot i ∈ S, SPIi can be

expressed as follows.

SPIi =
∑
fj∈F

xij · (c1 ·MPIi + c2/fj)

= c1 ·MPIi +
∑
fj∈F

c2/fj · xij . (5.10)

Since constants c1, c2, and F are known at the control point, Equation 5.10 can be

simplified as follows.

Letting s0 = c1 ·MPIi,

sj = c2/fj , ∀fj ∈ F and

SPIi = s0 +

|F |∑
j=1

sjxij . (5.11)

where |F | denotes the number of elements in F . Similarly, the value of the five events

in Equation 5.7 are also known at the control point. It is worth mentioning that the

five event counts are also frequency dependent. We therefore normalize event count

to instruction count instead of time. For example, for L1 data accesses, we record the

number of L1 data cache accesses per instruction (L1DPI), which is independent of

frequency. Hence, for MPI slot i with frequency fj , we have

L1DPSi(fj) = L1DPIi/SPIi(fj) , mij,1. (5.12)

Similarly, we use mij,2, mij,3, mij,4, and mij,5 to represent L2PSi(fj), L2MPSi(fj),

FPPSi(fj), and BRPSi(fj), respectively. If we define w0 = b0 and wij =
∑5

k=1 bi ·
mij,k + b6 · f1.5

j , ∀fj ∈ F , the power consumption for MPI slot i can be expressed as

Pi = w0 +

|F |∑
j=1

wijxij . (5.13)

56

Combining Equations 5.11 and 5.13, Equation 5.1 can be rewritten as follows.

Etotal = Itotal
∑
i∈S

poi i · (w0 +

|F |∑
j=1

wijxij)(s0 +

|F |∑
k=1

skxik). (5.14)

Note that poi i is known at the control point. In addition,

xij · xik =

xij , if and only if j = k and

0, otherwise.
(5.15)

Therefore, Equation 5.14 can be simplified as follows.

Letting e0 = Itotal · w0s0,

eij = poi i(w0sj + wijs0 + wijsj) and

Etotal = e0 +
∑
i∈S

∑
fj∈F

eijxij . (5.16)

Performance Constraint – the Optimal Solution

We first assume that we have a priori knowledge of SPIfmax and the MPI distribu-

tion throughout the program execution and demonstrate we can solve this problem

optimally. This solution technique has two stages: profiling and evaluation. During

profiling stage, we record the necessary information, e.g., SPIfmax as well as the per-

centage of instructions and the hardware performance counter values for each MPI slot.

This allows an optimal solution to the problem. During evaluation, we use the optimal

solution obtained in the profiling stage to adjust the frequency dynamically to maximize

energy savings without violating the performance constraint. Although this technique

could be used directly if profiling-based application precharacterization were permitted,

it yields valuable information even for a problem formulation using no a priori knowl-

edge. The formulation we have just described can be viewed to compute the optimal

solutions an oracle would yield. It therefore allows us to determine an upper bound on

the energy savings given a particular performance constraint. We will later propose an

on-line DVFS technique requiring no application precharacterization. We will evaluate

the quality of this prediction-based technique, called P-DVFS, by comparing its results

with those of the optimal oracle formulation just described.

57

Assuming the number of instructions associated with MPI slot i is denoted as Ii,

Equation 5.2 can be rewritten as∑
i∈S

∑
fj∈F

Ii · SPIi(fj) · xij ≤ (1 + α)Tfmax . (5.17)

Dividing both sides by Itotal , we have∑
i∈S

∑
fj∈F

poi i · SPIi(fj) · xij ≤ (1 + α)SPIfmax . (5.18)

Although we can use Equation 5.3 to express SPI as a function of MPI and frequency, in

reality we recorded SPIi(fj) during profiling to eliminate the impact of linear regression

error on the quality of the optimal solution. More specifically, at each scaling point

during profiling, the frequency is reduced to the next lowest level. When the frequency

cannot be reduced further, we increase the frequency back to the highest level. This

process is repeated until the program under profiling finishes. We then compute the

average SPIi(fj) associated with each MPI slot i and each frequency fj . Hence, we can

treat SPIi(fj) as a constant kij here. Equation 5.18 thus becomes∑
i∈S

∑
fj∈F

poi i · kij · xij ≤ (1 + α)SPIfmax . (5.19)

Noticing that Itotal and e0 are constants, this problem can thus be formulated as follows.

Minimize
∑

i∈S
∑

fj∈F eijxij (5.20)

Subject to
∑

i∈S
∑

fj∈F poi i · kij · xij ≤ (1 + α)SPIfmax (5.21)

xij ∈ {0, 1},
∑

fj∈F xij = 1,∀i ∈ S (5.22)

Note that xij are binary integer variables and eij , poi i, and ki,j are positive constants.

Therefore, by scaling the constants with a large positive number, we can make the

coefficients eij , poi i, and ki,j and the right hand side of the constraint in Equation 5.21 all

positive integers. Thus, the formulation can be treated as an multiple-choice knapsack

problem (MCKP) [42]. We solve this problem optimally using “lp solve”, an existing

integer programming solver [43]. We record the frequencies assigned to each MPI value

in an |S| × |F | lookup table. During evaluation stage, we use the current MPI value to

look up and adjust the frequency at each scaling point.

58

Performance Constraint – P-DVFS

For this formulation, we assume that the MPI distribution is unknown. However, our

MPI distribution prediction technique relies on the similarity of present and future MPI

distributions. It is known that most programs have repeated phases with periods ranging

from 200 ms to 2 s [25]. Therefore, this assumption holds given a reasonable time span

for gathering MPI values to build the distribution. We also discuss our solutions when

used in two scenarios where the total number of instructions are (1) known and (2)

unknown. In the rest of the chapter, we will use P-DVFS (predictive DVFS) to indicate

the online predictive DVFS technique.

Since at each control point, information such as the number of instructions retired

is known, it is natural to use the remaining number of instructions Ir and remaining

energy consumption Er instead of Itotal and Etotal in our problem formulation. We first

note Equation 5.16 is still applicable, except that Etotal and Itotal should be replaced

with Er and Ir. Given that Telap is the amount of time elapsed and Tr is the remaining

execution time, Equation 5.2 can be written as

Tr = Ir ·
∑
i∈S

poi i · SPIi(fi) ≤ (1 + α)Tfmax − Telap . (5.23)

Equation 5.3 allows us to rewrite left side of Equation 5.23 as

Ir ·
∑
i∈S

poi i · SPIi(fi) = Ir ·
∑
i∈S

∑
fj∈F

dijxij , (5.24)

where dij = poi i/ (c1 ·MPIi + c2/fj) , ∀fj ∈ F . Therefore, Equation 5.23 can be simpli-

fied as ∑
i∈S

∑
fj∈F

dijxij ≤
(1 + α)Tfmax − Telap

Ir
. (5.25)

Execution Time Prediction: Equation 5.25 requires an accurate prediction of

Tfmax at each control point. By comparing Telap with (1 + α)Tfmax , we can roughly

estimate how aggressively we should adjust the CPU frequency during the remaining

execution time. Intuitively, if Telap << (1 +α)Tfmax , we can reduce the CPU frequency

to a much lower level than that if Telap >> (1 + α)Tfmax . However, it is challenging

to predict Tfmax accurately online because (1) the control algorithm changes the CPU

frequency very rapidly, thus resulting in fast and yet significant performance fluctuations

59

and (2) the prediction algorithm should be efficient enough to avoid imposing significant

overhead.

In order to derive a fast accurate prediction model, we fist decompose Tfmax into two

parts: the amount of time it takes to execute the instructions retired when running at

the highest frequency Telap,max and the remaining time to finish execution when running

at the highest frequency Tremain,max . We can derive Telap,max using Equation 5.27: given

that fk is the frequency used for scaling period k, Tk,fk is the amount of time elapsed

at frequency fk, fmax is the highest frequency, and MPIk is the average MPI value, the

amount of time required to execute the same number of instructions in period k when

the highest frequency is employed, i.e., Tk ,max can be written as

Tk ,max = Tk,fk ·
SPI(MPIk, fmax)

SPI(MPIk, fk)
. (5.26)

Therefore, Telap,max can be expressed as

Telap,max =
∑
k

Tk ,max =
∑
k

(
Tk,fk ·

SPI(MPIk, fmax)

SPI(MPIk, fk)

)
. (5.27)

In order to determine Tremain,max , we first assume the instruction count of the current

task is known a priori, e.g., by examining the input file size or history information. This

assumption holds for most data processing applications such as image encoding and

decoding, data compression, and placement and routing, whose run times are generally

functions of input file size. Given that Itotal is the total instruction count, Ielap is

the number of instructions retired, Ir is the remaining number of instructions to be

executed, and SPI(f) is the amount of time per instruction at frequency f , we can

express Tremain,max as follows.

Ir = Itotal − Ielap and (5.28)

Tremain,max = Ir · SPI(fmax) (5.29)

Combining Equations 5.27 and 5.29, Tfmax can be written as

Tfmax = Telap,max + Tremain,max . (5.30)

We also consider the scenario in which the total instruction count is unknown before

the task is executed. We use Ir to denote the remaining number of instructions to

60

execute, in billions. We start with an Ir of 1. At every scaling point, we subtract

the number of instructions retired since the last reset of Ir from the current Ir. If the

result is smaller than 1, we reset Ir to the number of instructions retired since the task

started. If the resulting Ir exceeds an upper bound Iup , we set Ir to Iup . Ir is then

substituted into Equation 5.29 to estimate the remaining execution time. Note that Iup

should be large enough to permit aggressive frequency control and yet small enough

to preserve accuracy. We use an Iup of 30 in our experiments. We experimentally

determined that the energy consumption is relatively insensitive to changes in Iup : a

variation of only 0.8% in total energy consumption is observed when varying Iup from

5 to 500. In our experiments, given a performance degradation ratio of 0.2, the energy

consumptions only deviate by 2% from those when Itotal is known beforehand, i.e.., from

precharacterization, file size based estimates, or assuming an oracle with knowledge of

future application behavior.

Given that Tfmax and Ir can be estimated online, the energy minimization problem

can then be formulated as an MCKP.

Minimize
∑

i∈S
∑

fj∈F eijxij (5.31)

subject to
∑

i∈S
∑

fj∈F dijxij ≤
(1+α)Tfmax−Telap

Ir
and (5.32)

xij ∈ {0, 1},
∑

fj∈F xij = 1,∀i ∈ S. (5.33)

Note that we can treat the right hand side of the constraint in Equation 5.32 as positive.

Otherwise, the constraint is trivially satisfied. Unlike the oracle scenario, the P-DVFS

technique requires solving the MCKP online. Although MCKP is NP-hard, there exist

algorithms that can solve it in pseudo-polynomial time [44, 42]. In our experiments,

we used “lp solve” to obtain the optimal solution online. We used 15 MPI slots and 4

frequency levels in our experiments. For each of the benchmarks we evaluated, it took

less than 1 ms to obtain the optimal solution, which is fast enough for online control.

Note that this also indicates the energy overhead of the MCKP solver is approximately

0.1%, given a control period of 1 s in our experiments. Pisinger’s efficient MCKP solver

implementation would permit an even more efficient solution in a production version of

the control software [44].

61

t1 = Tcontrol?

Analyze MPI -

related statistics

Performance
model

{ sj }

{ wij }

{ fj }

Yes

MCKP solver

{ eij }, { dij }

Tfmax estimator

Tfmax

t2 = Tscaling?

No

Store solution in

mapping table ,
set t1 and t2 to 0

Optimal
solution

Set CPU frequency

corresponding to
current MPI

Wait for the next
timer interrupt

Reset t2 = 0

Yes

No

Increment t1 and
t2 by the amount

of time elapsed

Update Tfmax

Power model

Available

frequencies

Figure 5.1: System architecture for P-DVFS.

5.3.4 System Architecture for P-DVFS

We have integrated the performance model, power model, execution time predictor,

and MCKP solver to accurately control the CPU frequency for a fine-grained trade-off

between performance and energy. Figure 5.1 illustrates the system architecture for the

P-DVFS technique. We use Tcontrol and Tscaling to represent the control and scaling

periods. As indicated in Figure 5.1, whenever a timer interrupt occurs, we increment

the time counters t1 and t2. We first determine whether t1 has reached Tcontrol . If so, we

analyze MPI-related statistics, i.e., dividing the range of MPI values into distinct MPI

slots and calculating the percentage of instructions (poi i) associated with each MPI slot

i. We also determine the values of coefficients such as {sj} in Equation 5.11 and {wij}
in Equation 5.13 using the performance and power models. We also gather information

about the available processors frequencies fj . These values are translated to {eij} and

{dij} in Equation 5.31 and Equation 5.32, which are then provided to the MCKP solver

62

along with estimations of Tfmax and Ir in Equation 5.28 and Equation 5.29. The optimal

solutions are then stored in a mapping table and time counters t1 and t2 are reset to

0. When t1 < Tcontrol, we continue to check whether t2 has reached Tscaling and if so,

we set the CPU frequency to that corresponding to the current MPI in the mapping

table and reset the time counter t2. Otherwise, the Tfmax estimate is updated. The task

then continues executing until the next timer interrupt occurs. Note that the DVFS

algorithm is implemented in software and has very low performance and energy overhead

(approximately 0.3%).

5.4 Experimental Results

In this section, we first describe the experimental setup and implementation details of

the proposed techniques. We then present the experimental results for both P-DVFS and

the optimal two-stage solution. Finally, we compare the results produced by P-DVFS

with those produced by the optimal oracle solution and the most advanced published

work [39].

5.4.1 Experimental Setup

We implemented our techniques on a Pentium Dual Core E2220 processor, which runs

Linux 2.6.25 and operates at 1.2, 1.6, 2.0, and 2.4 GHz. We use the cpufreq-utils Linux

kernel utility, to control CPU frequency. Experimental results indicate the switching

overhead ranges from 50 µs to 200 µs. We use PAPI 3.6.2 [32] for HPC measurement

and experimentally determined that the performance overhead for accessing HPCs is

negligible. Due to the hardware limitations of our processor, we can only sample two

architectural events at a time. Therefore, we time multiplex architectural event sampling

to obtain all the values needed for power calculation. The switching interval is 10 ms and

five architectural event counters are monitored, yielding a scaling period, (Tscaling) of

30 ms. The control period Tcontrol is set to 1 s, i.e., we solve the MCKP formulation every

1 s such that we can obtain a stable MPI distribution and capture changes in memory

access behavior quickly enough for accuracy. We use a sliding window of 2 s to build

the MPI distribution histogram. 15 MPI slots are used to permit different memory

access behaviors to be distinguished while controlling MCKP solver overheard. We

63

experimentally determined that energy consumption is relatively insensitive to changes

in the number of MPI slots: a variation of less than 0.5% in total energy was observed

when varying the number of slots from 5 to 30. We note that the same MPI slots are

used throughout the execution of a benchmark.

To determine power consumption, we use a Fluke i30 current clamp on one of the

12 V processor power supply lines, the output of which is sampled using a National

Instruments USB6210 data acquisition card. This approach permits processor power

consumption measurement without requiring printed circuit board rework or access to

internal metal layers. An on-chip voltage regulator converts this voltage to the actual

processor operating voltage. We assume a regulator efficiency 90%. and converted to

power consumption: P = V · I = 12 · I, where P is the processor power and I is the

measured current. Samples are taken at a frequency of 10 kHz.

5.4.2 Comparison with Prior Work

Choi et al. [39] proposed a fine-grained runtime DVFS technique that minimizes energy

consumption while meeting soft timing constraints. We will use “F-DVFS” to refer to

their technique. In order to take advantage of off-chip accesses, F-DVFS dynamically

constructs a performance model and uses it to calculate the expected workload for the

next slot; frequency and voltage levels are adjusted accordingly. F-DVFS has several

weaknesses. It ignores long-term behavior such as the total application execution time.

For example, at each scaling point, it considers only an immediate, local, user-specified

performance constraint. However, sometimes even setting the frequency to the lowest

level still results in a performance level higher than the user-specified constraint due

to large number of off-chip accesses, opening the opportunity to improve energy sav-

ings when the MPI becomes lower later during execution. Neglecting total execution

time makes it impossible to take advantage of such energy saving opportunities. Note

that this sort of time-varying application behavior is very common for scientific com-

puting applications, which commonly read a large amount of data into memory before

processing. Moreover, F-DVFS neglects the relationship between frequency and energy

consumption, assuming that reducing frequency is always beneficial to energy. However,

this is not true when leakage power consumption is significant or the overall optimiza-

tion goal is the system energy consumption instead of processor power consumption. In

64

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 20 40 60 80 100 120

F
re

q
u

e
n

c
y
 (

G
H

z
)

Instruction Count (Billion)

(a) Optimal solution

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 20 40 60 80 100 120

F
re

q
u

e
n

c
y
 (

G
H

z
)

Instruction Count (Billion)

(b) P-DVFS

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 20 40 60 80 100 120

F
re

q
u

e
n

c
y
 (

G
H

z
)

Instruction Count (Billion)

(c) F-DVFS

Figure 5.2: Processor frequency as a function of the number of instructions retired for
(a) the optimal solution, (b) P-DVFS, and (c) F-DVFS during “mcf” execution with a
performance degradation ratio of 20%.

contrast, P-DVFS automatically models and optimizes leakage power consumption and

can be easily extended to handle the energy consumptions of other components such as

main memory and disk.

5.4.3 Experimental Results

We evaluated P-DVFS on the 8 SPEC2000 benchmarks that compiled on our evaluation

platform and 3 ALPBench benchmarks [45]. We did not consider the remaining 2

benchmarks (“MPGenc” and “MPGdec”) in the ALPBench benchmark suite because

they are very disk I/O intensive: we are presently interested in evaluating the impact of

off-chip memory access on energy savings. We considered 3 floating point programs and

8 integer programs. The execution time of each benchmark ranges from 40 s to 425 s.

For each benchmark, we specify a performance degradation ratio (the maximum increase

in execution time relative to that at the maximum frequency and voltage) ranging from

5% to 20% with a step of 5%. The actual execution time and the average energy savings

are reported compared to a scheme without DVFS, denoted as N-DVFS, F-DVFS, and

the optimal oracle solution. We use the same window size for F-DVFS, P-DVFS, and

the optimal oracle solution to permit a fair comparison. Both techniques use 4 discrete

frequency levels.

Table 5.1 shows the actual performance degradation for both F-DVFS and P-DVFS

compared with the user-specified performance degradation ratio. The first column speci-

fies the benchmarks we evaluated. The “P-DVFS” and “F-DVFS” columns represent the

performance degradation ratios resulting from using the two techniques, with the user-

specified performance degradation constraint listed on the second “Goal” row. Given

65

Table 5.1: Performance Degradations of F-DVFS and P-DVFS
Benchmark F-DVFS (%) P-DVFS (%)

Goal 5% 10% 15% 20% 5% 10% 15% 20%

gzip 0.27 0.34 1.36 10.59 4.74 8.03 10.82 16.62
vpr 0.00 1.91 10.06 11.62 4.83 9.93 14.05 19.39
mcf 2.02 4.51 6.61 7.78 4.50 6.50 13.50 17.00

bzip2 0.51 0.62 0.67 17.9 3.11 6.09 10.76 15.36
twolf 0.0 1.87 16.31 17.9 4.13 7.92 12.40 17.23
art 0.0 4.47 5.20 5.85 3.09 6.85 13.16 16.83

equake 0.0 0.0 0.0 9.64 3.04 7.59 11.72 15.42
ammp 0.23 0.93 7.18 16.13 4.24 10.40 14.41 19.29
facerec 0.0 4.09 10.12 20.2 3.19 7.65 13.65 18.38
sphinx3 0.0 0.54 1.48 9.34 2.80 7.50 11.10 13.84
tachyon 0.0 5.91 6.83 16.4 3.22 8.41 13.57 18.43

Average 0.28 2.29 5.98 13.03 3.72 7.90 12.65 17.10

that the performance constraint is satisfied, a larger performance degradation usually

corresponds to larger energy savings; this was confirmed by our experiments. Experi-

mental results indicate that P-DVFS can approach the user-specified constraint more

closely than F-DVFS. More specifically, given a user-specified performance degradation

percentages ranging from 5% to 20%, P-DVFS can reach a performance degradation

percentages of 3.72%, 7.90%, 12.65%, and 17.10%, whereas F-DVFS can only achieve

percentages of 0.28%, 2.29%, 5.98%, and 13.03%. P-DVFS has finer-grained control

over the trade-offs between performance and energy given a user-desired performance

constraint. FDVFS does not reach the user-specified performance degradation ratio

partially because the number of available frequencies is limited: whenever the calcu-

lated frequency fcalc does not correspond to any available frequency, FDVFS uses the

closest frequency that is larger than fcalc to approximate it. This may reduce the energy

benefit when the number of available frequency is small. Switching between two closest

available frequencies may address this problem. However, there are more fundamental

reasons why FDVFS does not work as well as our techniques, as we explained later in

this section. Note that both techniques may violate the soft timing constraint due to

inaccuracies in the online performance model. However, for P-DVFS, the maximum

violation is less than 1%, which could be eliminated by using a 1% guard band for the

constraint.

We compared the energy savings of NDFS, F-DVFS, and P-DVFS with those of the

66

Table 5.2: Deviation of Energy Consumptions from the Optimal Solution when using
using N-DVFS, F-DVFS, and P-DVFS

Benchmark Eopt (J) N-DVFS (%) F-DVFS (%) P-DVFS (%)

gzip 804 7.88 6.88 0.12
vpr 1520 21.91 8.09 3.36
mcf 2401 71.10 29.86 4.83

bzip2 1345 8.18 1.93 0.30
twolf 5281 12.61 1.50 1.38
art 1810 52.49 23.20 4.42

equake 2736 14.58 7.20 1.90
ammp 7344 12.15 2.08 0.14
facerec 2621 12.59 6.37 0.04
sphinx3 1428 19.54 11.13 3.64
tachyon 2210 15.43 9.55 0.05

Average 2682 22.59 9.80 1.83

optimal oracle solution, which might be better than the actual optimal on-line solution.

For performance degradation percentages of 5%, 10%, and 15%, N-DVFS generates

solutions that deviate from the optimal solution by 9.31%, 12.81%, and 18.46%, with

maximum deviations of 22.29%, 33.72%, and 56.55%; F-DVFS leads to energy con-

sumptions that deviate from the optimal solution by 7.1%, 8.23%, and 9.51%, with

maximum deviations of 16.84%, 15.89%, and 29.8%; and P-DVFS results in energy con-

sumptions that deviate from the optimal solution by 1.43%, 1.16%, and 1.59%, with

maximum deviations of 2.80%, 3.88%, and 4.63%. Since the results are similar for differ-

ent performance degradation ratios, we only present the energy numbers for a maximum

performance degradation ratio of 20% in Table 5.2. The first column specifies the appli-

cation being evaluated. The second column indicates the optimal, i.e., minimum, energy

consumption for each benchmark with a performance degradation ratio of 20%. The

third, the fourth, and the fifth columns represent the deviation in energy consumption

from that of the optimal oracle solution when using N-DVFS, F-DVFS, and P-DVFS.

As indicated in Table 5.2, the energy consumption deviates from the optimal oracle

solution by 22.59% on average when no DVFS is used, with a maximum deviation of

71.1%. F-DVFS produces solutions that deviate 9.8% from the optimal oracle solution

on average, with a maximum deviation of 29.86%. Among the three candidates, P-

DVFS achieves the best solution quality, i.e., an average of 1.83% deviation from the

67

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 20 40 60 80 100 120 140 160

F
re

q
u

e
n

c
y
 (

G
H

z
)

Instruction Count (Billion)

(a) Optimal solution

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 20 40 60 80 100 120 140 160

F
re

q
u

e
n

c
y
 (

G
H

z
)

Instruction Count (Billion)

(b) P-DVFS

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 20 40 60 80 100 120 140 160

F
re

q
u

e
n

c
y
 (

G
H

z
)

Instruction Count (Billion)

(c) F-DVFS

Figure 5.3: Processor frequency as a function of the number of instructions retired for
(a) the optimal solution, (b) P-DVFS, and (c) F-DVFS during “art” execution with a
performance degradation ratio of 20%.

optimal oracle solution with a maximum deviation of 4.83%. Therefore, we conclude

that P-DVFS can very closely approximate optimal solutions. It is also worth noting

that for performance degradation ratios of 5%, 10%, 15%, and 20%, P-DVFS has aver-

age power savings of 8.3%, 11.31%, 12.3%, and 9.93% and maximum power savings of

15.94%, 12.69%, 27.36%, and 25.64% compared to F-DVFS.

It is interesting that for benchmarks such as “mcf” and “art”, F-DVFS leads to

solutions that are far worse than those using P-DVFS (25.03% and 18.78% difference,

respectively). We now analyze their results.

Analyzing Mcf Results

Figure 5.2 illustrates the dynamic processor frequency changes for the optimal oracle

solution, P-DVFS, and F-DVFS during execution of the “mcf” benchmark, given a

performance degradation ratio of 20%. The X-axis represents the number of billion

instructions retired and the Y-axis represents the frequency. Figure 5.2(a) suggests

that the optimal solution is to always set the frequency to the lowest level. While P-

DVFS yields a near-optimal solution, F-DVFS behaves very differently. We note that

“mcf” is a two-phase benchmark: the cache miss rate is very high during the first 20

billion instructions and alternates between a high value and a low value afterwards.

In both phases, F-DVFS leads to a higher frequency on average. Recall that F-DVFS

requires accurate model estimation and accurate individual coefficients so that it can

correctly estimate the ratio of off-chip to on-chip memory accesses. Although the former

is generally true for linear regression, the second assumption does not necessarily hold.

In this case, since the MPI and CPI values do not change much in the first phase,

68

the coefficients derived using linear regression can be inaccurate, causing F-DVFS to

significantly over-estimate the average on-chip latency and thus limit itself to a relatively

high frequency (2 GHz). We analyzed the results and observed this behavior. Note that

the output of the performance model, or CPI, is still accurate. In contrast, P-DVFS

only requires that the output of the model match the real CPI value: the individual

coefficients in the regression formula do not matter. Therefore, P-DVFS allows the CPU

frequency to be decreased to a lower level, alternating between 1.6 GHz and 1.2 GHz

most of the time. The frequency does not stay at the lowest level due to inaccuracies

in the online performance model and the remaining execution time predictor. In the

second phase, F-DVFS increases the frequency when the cache miss rate is lower and

decreases the frequency when the miss rate is higher. This happens because F-DVFS

considers only immediate application behavior and ignores long-term behavior such as

total execution time. However, this may result in sub-optimal solutions, as demonstrated

by Figure 5.2(b). P-DVFS takes history and long-term behavior into account, allowing

it to correctly determine that the frequency can be set to the lowest level even when

the cache miss rate is low. Therefore, P-DVFS achieves much larger energy savings in

this case, savings that approach those of the optimal oracle solution.

Analyzing Art Results

Figure 5.3 illustrates the dynamic processor frequency changes for the optimal oracle

solution, P-DVFS, and F-DVFS during the execution of the “art” benchmark, given

a performance degradation ratio of 20%. As shown in Figure 5.3, P-DVFS closely

approximates the optimal oracle solution and F-DVFS does not. This can be explained

as follows. “Art” has periodic cache access behavior with a period of approximately

300 ms at the highest frequency. In each period, the MPI value starts from a low value

(0.003 in our experiments) and gradually increases before it reaches the point with the

highest MPI (0.005 in our experiments). Then, the MPI value starts to decrease until

it returns to the previous value of 0.003. F-DVFS gathers the sampling points within

the most recent second to build the performance model. It is likely that the coefficients

in the regression formula will remain nearly constant due to the small period and large

window size; this was confirmed in our experiments. Therefore, the frequency was

set to a fixed number (2 GHz in our case) for all the sampling points in each period.

69

In contrast, P-DVFS builds the MPI distribution based on the sampling points from

the most recent second, translates the energy minimization problem into an MCKP

instance, and solve it to get the optimal solution, which indicates we should use high

frequency (2 GHz) for sampling points with low MPI and low frequency (1.2 GHz) for

sampling points with high MPI. As shown in the experimental results, the overall effect

is achieving significant reduction in energy compared to F-DVFS. Since F-DVFS is not

distribution-oriented, it cannot know how SPI and power consumption change with

MPI. Therefore, it is impossible for F-DVFS to take advantage of the distribution and

assign different frequencies to sampling points with different MPIs while still meeting

the performance constraint.

For the rest of the benchmarks, P-DVFS slightly outperforms F-DVFS. This is be-

cause both consider the effects of off-chip memory access latencies on energy. For bench-

marks with relatively few L2 cache misses, e.g., twolf and vpr, the energy consumptions

are similar. Therefore, the proposed technique will achieve the greatest energy savings

compared to past work for applications with phases during which the energy cost per

instruction differ.

5.5 Conclusions

This chapter describes a new power state control technique that adapts to the time-

varying memory access behaviors of applications. We first proposed a two-stage DVFS

algorithm based on formulating the throughput-constrained energy minimization prob-

lem as a multiple-choice knapsack problem (MCKP), assuming a priori characterization-

based or oracle knowledge of application behavior. This algorithm builds on an appli-

cation phase-dependent power model, which can be constructed offline using processor

hardware performance counters. We then present an online DVFS technique, called

P-DVFS, that predicts remaining execution time in order to control voltage and fre-

quency to minimize energy consumption subject to a performance constraint. P-DVFS

requires no information a priori knowledge of application behavior. In addition to the

power model, P-DVFS also uses a performance model that accurately captures the re-

lationship between performance and off-chip memory access rate. These two models,

70

combined with an execution time predictor, allow us to formulate the energy mini-

mization problem again as a multiple-choice knapsack problem, which can be efficiently

and optimally solved online. Experimental results indicate that given a performance

degradation ratio of 0.2, P-DVFS leads to energy consumptions within 1.83% of the

optimal oracle solution on average with a maximum deviation of 4.83%, whereas the

most advanced related DVFS control technique (F-DVFS) results in energy consump-

tions within 9.8% of the optimal oracle solution on average with a maximum deviation

of 29.86%. For the same performance constraint, we found that P-DVFS also reduces

power consumption by up to 25.64% (9.93% on average) compared to F-DVFS. These

energy and power savings are all directly measured on a real system.

Chapter 6

Overview for GPGPUs

The second part of the dissertation will focus on GPUs for general purpose computing.

The massive processing capability of GPUs has recently attracted growing attention

from general purpose parallel applications. Heterogeneous computing with multicore

CPUs and multicore GPUs is emerging as the best performance/cost combination for

high-performance computing (HPC) [46]. However, in spite of the great potential for

energy efficiency, as well as recent hardware performance improvements, GPUs are still

significantly underutilized in comparison with CPUs due to various architectural fea-

tures that are incompatible with some characteristics of general purpose parallel appli-

cations [47]. In this chapter, we will investigate modern GPU architecture, characterize

GPGPU applications, perform a thorough analysis on CPI breakdown and identify all

the key factors that govern GPU throughput from a single warp perspective.

6.1 Introduction

The design philosophy of GPUs aims to optimize for the execution of a massive number

of threads. GPUs are characterized by numerous simple yet energy-efficient compu-

tational cores that run thousands of simultaneously-active fine-grained threads, large

off-chip memory bandwidth, and simple control logic. However, as the execution re-

sources required by HPC tasks may not always match the characteristics of GPUs, the

problem of efficiently managing workloads on GPUs and leveraging their substantial

throughput potential has emerged as a significant research challenge.

71

72

Several constraints contribute to the inability of GPUs to achieve their peak through-

put. First, there is the issue of thread level parallelism. Each streaming multiprocessor

(SM) supports up to thousands of in-flight threads in order to hide long latencies from

arithmetic and memory operations. However, threads are scheduled to cores in units of

thread blocks and the amount of resources (register, shared memory, etc.) required by

each block sets a hard limit on how many blocks of threads can be scheduled simulta-

neously. An application that requires more resources per thread/thread block than are

available may suffer a significant throughput penalty. Second, underutilization in thread

schedulers can result in scheduling constraints. Each GPU core, or Streaming Processor

(SM), includes multiple Single-Instruction Multiple-Thread (SIMT) pipelines for ALU

computations, special functions, and memory operations. However, the throughput of

the scheduler and instruction dispatch unit often cannot keep all the pipelines busy,

resulting in some of the pipelines being underutilized. If we can judiciously issue more

than one instruction into different pipelines every cycle, we may gain throughput bene-

fits. Third, unbalanced utilization among different GPU function units results in uneven

usage on various pipelines. We use the term pipeline-level parallelism (PLP), to describe

the parallel utilization of different function units. An application may have a unique

performance bottleneck, e.g., it may be compute-bound or memory-bound, and this

leads to substantial underutilization in the rest of the pipelines.

The remainder of this chapter is organized as follows. Section 6.2 provides back-

ground on the state-of-the-art GPU architecture and describes the benchmarks suite,

application metrics, simulation environments we used for evaluation. Next, Section 6.3

motivates the whole GPU optimization problems by breakdown CPI into several key

components, and demonstrates how the number of warps along with CPI per warp

impact IPC. Finally, section 6.4 provides an overview of the rest of the dissertation,

and how the following chapters tackle the GPU optimization problem from different

perspectives.

73

6.2 Background

6.2.1 Baseline CUDA and Fermi Architecture

CUDA is a parallel computing architecture developed by Nvidia [48]. It abstracts the

thread-level parallelism of the GPU into a hierarchy of threads (grids of blocks of warps

of threads) [49]. These threads are then mapped onto a hierarchy of hardware resources.

The basic unit of execution flow, the warp, contains 32 threads that execute the same

instruction based on the single instruction, multiple thread (SIMT) paradigm.

Figure 6.1 illustrates the detailed microarchitecture of the warp scheduler and SIMT

pipelines inside a CUDA SM. Each SM features two warp schedulers and two dispatch

units with all the warps evenly divided according to the parity of the warp ID, as

shown in the box marked “Scheduler”. Each warp scheduler can function independently

without dependency checking across the schedulers. Each SM also contains 32 streaming

processors (SP) divided evenly into 2 pipelines, 4 special function units (SFU) and 16

load/store units (MEM), as shown in the box marked “SIMT Pipelines”. Considering

that each pipeline (excluding SFU) has 16 execution units, while a warp contains 32

threads, it takes at least 2 cycles for an instruction to be issued to the pipeline. As a

result, the dual warp schedulers run at half of the pipeline frequency, issuing a maximum

of one instruction every cycle.

The warp scheduler maintains the status of warps on a per-cycle basis. As shown in

Figure 6.1, the warp status in the scheduler can take on one of three values. A warp is

inactive with control hazards when the next instruction is not stored in the instruction

buffer, and thus cannot be issued immediately. This scenario only occurs when the

instruction is a branch or function call; in both cases, it is observed that the probability

that a warp turns inactive due to control hazards, Pinactive control, remains quite stable

and can be considered as a kernel-dependent constant. A warp is inactive with data

hazards when the next instruction of the warp has a data dependency on a previous

instruction which still resides in the pipelines. An active warp has no data dependency

issues and is ready to be issued immediately.

The scheduler picks an active warp from its own active warp pool in a loosely

round-robin fashion, sends the warp to its dedicated SIMT pipeline, and updates the

warp status and data dependencies. While inside the dedicated SIMT pipeline, the

74

Constant Cache

WritebackIssue QueueDual-Issue Scheduler

Odd Warps

Even Warps
D

is
p

at
ch

 U
n

it
D

is
p

at
ch

 U
n

it

Active warp
Inactive warp

2
3

MEM: 16 LD/ST Units, 2+ Stages

SIMT Pipelines

ICNT

SP2: 16 Units, 13 Stages

SP1: 16 Units, 13 Stages

SFU: 4 Units, 13 – 25 Stages

Shared Memory

Texture Cache

Data L1 Cache

3

MEM

SFU

SP2

SP1

Figure 6.1: Microarchitecture of a GPU core in Fermi GTX 480.

instructions are sent into an operand buffer while waiting for all the input registers to

be acquired. Once all inputs are ready, the operand buffer issues the instructions to

the execution pipeline in a first-in-first-out fashion. For each arithmetic SIMT pipeline,

there are over 20 pipeline stages [50]. Considering extra stalls caused by the dispatch

unit and potential registers bank conflicts, a significant amount of warps are needed to

avoid stalls in arithmetic pipelines, and particularly in the even more time-consuming

MEM pipeline. If no active warp is available, or the warp is issued to another SIMT

pipeline, a stall occurs and a bubble is inserted into the SIMT pipeline. At the write-

back stage, the instruction is considered finished and the warp status is updated.

6.2.2 Workload and Metrics

Application Suite:

We perform evaluations using the Parboil benchmark suite [51], which contains a wide

range of GPGPU applications optimized for CUDA architecture, as shown in Table 6.1,

including bimolecular simulation, fluid dynamics, image processing, astronomy, and

dense and sparse linear algebra.

Each application consists of one or more kernels. We observed that even kernels

from the same applications can exhibit different characteristics. We pick kernels based

75

Table 6.1: List of GPGPU kernels.

Bench. Abbr. Kernel Weight Avg. Kernel Invo- Avg. Launch
Cycles cations Overhead (µs)

bfs BFS BFS in GPU kernel 100% 22 1 -
cutcp CUT cuda cutoff potential 99.90% 5 26 71
histo HIS histo main kernel 51.30% 0.3 10000 3
lbm LBM performStreamCollide kernel 100% 3 1 -
mri-q MRI ComputeQ GPU 99.60% 4 2 73
sad SAD mb sad calc 52.50% 18 1 -
sgemm SGE mysgemmNT 100% 3 1 -
spmv SPM spmv jds 99.90% 0.4 50 3.3
stencil STE block2D hybrid coarsen x 99.80% 2 100 5.2
tpacf TPA gen hists 100% 7 1 -

Table 6.2: GPGPU-Sim Configuration for Baseline Architecture (Fermi GTX 480).
GPU config. 15 GPU cores, 2.0 Compute Capability
Frequency 1400MHz Core, 700MHz ICNT, 924MHz DDR5
GPU Core Config. SIMT Width: 16 (SP1, SP2 and MEM), 4 (SFU)
Resources/Core Max 1536 Threads, Max. 8 CTAs,

48KB Shared Memory, 32768 Registers
Caches/Core 16KB, 128B line, 4-way, 64 MSHR L1 Data Cache

12KB, 128B line, 24-way Texture Cache
8KB, 64B line, 2-way Constant Cache

Unified L2 Cache 768KB, 128B line, 16-way, 256 MSHR
Scheduling GTO (Greedy-then-Oldest Scheduling)
Interconnect 2D mesh (5x5, 15 cores+6 Memory Controller)
DRAM Model FR-FCFS, 6MC, Burst Length 8,

Buswidth 8B/MC, Total 384bits
GDDR5 Timing 924MHz, 16 Banks, tCCD = 2, tRRD = 6, tRCD = 12,

tRAS = 28, tRP = 12, tRC = 40, tCL = 12, tWL = 4,
tCDLR = 5, tWR = 12, tnbkgrp = 4, tCCDL = 4, tRTPL = 2

on their weight (ratio between kernel execution time and whole application time) in

each application and perform evaluations on both GTX 480 hardware and GPGPU-Sim

(version 3.2.0) [52]. We model our baseline architecture after Fermi GTX 480 [53] with

the configuration shown in Table 6.2.

Table 6.1 shows kernel performance characteristics captured through hardware pro-

filing. Invocation indicates how many times the kernel has been launched in the ap-

plication. From the kernels we evaluated, different invocations exhibit similar function

unit utilization. For simulation simplicity, if a kernel has hundreds of innovations, we

repeatedly simulate the kernel with the same input set. In addition, For kernels with

76

more than one invocation, we measured kernel launch overhead, the gap between when

the previous kernel finishes and a new kernel launches. Note that this does not include

memory copy time. The overhead is often in µs, but when kernels are very short, it

can have a significant performance impact, since the launch overhead becomes larger

relative to the kernel execution time. For example, in HIS, the kernel launch overhead

is over 1% of the kernel execution time.

Evaluation Metrics:

We use SM IPC, the average number of instructions issued per cycle in one SM,

as a performance metric. More specifically, SM IPC in this dissertation stands for the

average number of instructions issued from warp schedulers per cycle, which has a direct

relation to the pipeline utilization. For the rest of dissertation, IPC indicates SM IPC.

The average number of cycles per instruction, CPI per warp is also used to inves-

tigate the stalls each warp suffers due to various reasons. Note in theory, given the

number of warps, and the CPI per warp, SM IPC should equal to the number of warps

divided by CPI.

6.3 Characterizing CPI Breakdown

In every cycle, the warp scheduler selects a ready warp from the active warp pool for

execution. As long as one in-flight warp is ready in every cycle, throughput is maximized.

However, there are several reasons that a warp may not be ready [54]: instruction cache

misses, barriers, warp finished before the rest of the warps in the same CTA, control

hazards, data hazards, and structural hazards. To evaluate the effectiveness of the

GPU’s latency hiding ability and explore how it might be improved, we identify and

analyze all the significant sources of execution time delays for a warp.

Instruction cache misses: In order to avoid instruction fetch latency, each warp

has a two-entry instruction buffer. When no instruction is available in the buffer,

additional delay is added before the next instruction can be fetched. This is mainly

cased by instruction cache misses.

77

Barrier: Barrier synchronization allows all the threads within the same CTA to

wait for each other before moving forward. Once a warp hits a barrier, it stalls until

the rest of the warps within the same CTA reach the barrier. The more warps each

CTA has, the more likely a warp will stall at a barrier. So, it’s important to keep all

the warps within a CTA progressing at the same rate.

Function done This is similar to a barrier stall. When a warp finishes before the

rest of the warps in its CTA, it stalls until the CTA finishes, at which time a new CTA

is issued. When there are no more CTAs available, the stall due to function done is also

considered as tail effect.

Control hazards: Unlike CMPs that are often equipped with sophisticated branch

prediction logic, GPUs rely on massive parallelism to hide latency from control haz-

ards. However, from a single warp’s perspective, if a branch or function call instruction

executes, the warp stalls until the target address is calculated.

Structural hazards: Structural hazards are caused by the unavailability of func-

tional units when there are active warps ready to issue or unavailability of miss status

holding registers (MSHRs) in the memory system. In modern GPU architectures such

as Fermi [53], the memory pipeline is unavailable if it suffers stalls when MSHRs are full.

Structural hazards often occur in SFU or MEM pipelines in GPUs, as the throughput

of SP is usually much larger than the throughput of MEM and SFU. For instance, the

throughput ratio between SP, SFU and MEM is 16:1:8 in Fermi.

Data hazards: Data dependency can introduce stalls when the next instruction of

a warp depends on a result from a previous instruction. Currently, the GPU does not

support data forwarding, so a warp stalls until all data dependencies have been resolved.

If an instruction depends on a load instruction that goes to global memory (DRAM),

the warp might stall for hundreds of cycles before the dependency is resolved.

6.3.1 Analyzing CPI Breakdown

To illustrate how different stall factors can contribute to the CPI of a warp, we developed

an algorithm to count and categorize the cycles per instruction for each warp. In this

section, we use the latency characterization algorithm introduced by Lee et al. [54]. In

every cycle, profiling increments one of the stall counters for each warp if no instruction

is issued from the warp. If there is overlap among multiple stall factors, we increment

78

 0

 50

 100

 150

 200

LBM BFS SPM MRI HIS STE CUT TPA SAD SGE AVG.

C
y
c
le

s
 p

e
r

In
s
tr

u
c
ti
o
n

I$ Miss

Barrier

Function Done

Control Hazards

Structural Hazards-SP

Structural Hazards-SFU

Structural Hazards-MEM

EXE

Data Hazards-memop

Data Hazards-exe

Figure 6.2: The CPI per warp breakdown for Parboil benchmarks with GTO scheduling.

the first stall counter following the order in section 6.3, which defines the order that

stalls occur in the pipeline (e.g., and instruction cache miss would happen before other

types of stalls, etc.).

Figure 6.2 presents the average CPI breakdown for Parboil applications. Each bar

shows the CPI contributed by various stall factors described in section 6.3. To better in-

vestigate the CPI breakdown, we further break down structural hazards into structural

hazards due to SP, SFU, and MEM function units and data hazards into data hazards

due to load instructions and execution instructions. The CPI breakdown results are the

average across all the warps among all the SMs throughout the kernel execution. The

total CPI of each kernel indicates the effectiveness of its latency hiding ability when

we launch as many warps as possible, which also shows how many warps are needed to

completely hide the latencies of the kernel. Kernels toward the left do not hide latencies

well, whereas the kernels on the right have smaller latencies that can be easily hidden

with sufficient warps. We can derive the IPC of an SM by combining CPI with the

number of warps each kernel issued per SM. Figure 6.3 shows how CPI per warp and

the number of warps determines IPC for Parboil applications. The x-axis represents

the average IPC of each kernel, and the y-axis is the number of warps in-flight per SM

divided by per-warp CPI. The figure also list the number of warps each kernel issues per

SM. The data trend confirms that IPC = Nwarps/CPI. I.e., we can improve IPC by

79

reducing CPI per warp and improving warp occupancy. Since it is difficult to change

warp occupancy without modifying the GPU architecture or the existing scheduling

scheme, we first investigate how to reduce each component that contributes to CPI.

The most dominant CPI components in Figure 6.2 are structural hazards-MEM,

which contribute 35.09% of the total CPI, primarily due to contention in MSHRs and

other resources that can mark the MEM function unit unavailable. SPM and LBM

in particular experience a significant number of stalls from MSHRs. This is because

both kernels are memory bandwidth-intensive with many L1 cache accesses/misses. As

a result, the performance is degraded significantly due to structural hazards from MEM.

The structural hazards due to SP and SFU components are relatively small, contributing

3.62% and 3.30% of the total CPI, respectively. Note that structural hazards indicates

the unavailability of certain function units, so they cannot be improved by increasing the

degree of parallelism (adding more warps). In addition, if one kernel suffers significant

structural hazards due to one of the function units, it also indicates significant under-

utilization in the rest of the function units. Moreover, it’s also hard to improve the

utilization balance among different function units, since each kernel consists of many

identical threads, so execution characteristics remain relatively stable. It is worth noting

that the scheduling policy can sometimes impact structural hazards. The scheduler is

responsible for picking the right warp among the active warp pool in every cycle. If

there is a phase in which kernels are heavily utilizing one of the function units, a good

scheduling policy would be able to reduce structural hazards by keeping warps moving

at different paces so that different warp spread out their intensive utilization.

The next two most significant CPI components are data hazards due to mem and exe

operation stalls caused by waiting for data to be ready from previous load or arithmetic

instructions. Kernels, such as MRI, CUT , and TPA suffer from data hazards due to

arithmetic instructions. For SPM and HIS, this is due to data hazards from previous

load instructions. When there are sufficient warps, the scheduler can easily hide those

latencies because, unlike structural hazards, data hazard latency does not increase as

the degree of parallelism increases. Furthermore, note that scheduling policy cannot

reduce CPI portions due to data hazards.

Stalls due to barrier and function done correspond to 14.64% and 9.52% of the total

CPI in Figure 6.2. Despite having a high degree of parallelism, stalls due to barriers

80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2

#
 o

f
W

a
rp

s
 /
 C

P
I
p
e
r

w
a
rp

Normalized IPC

LBM-28

BFS-32

SPM-48

HIS-24

MRI-40

SAD-16

SGE-16

STE-32

TPA-24

CUT-32

Figure 6.3: This figure shows the relationship between number of warps, CPI, and IPC

and function done can greatly reduce the number of active warps, leaving warps waiting

for the rest of warps in the same CTA if the warps are in different pace. For instance,

in LBM and MRI, stalls due to function done contribute 24.31% and 13.61% of the

the total CPI, and BFS suffers 53.27% of the stalls due to barrier. Scheduling policy

might be able to keep different CTAs progressing differently to avoid an overlap of such

stalls from different CTAs, but the effect is very kernel-dependent, especially for those

kernels with bigger but fewer CTAs per SM. Furthermore, given kernels with the same

characteristics, the more warps each CTA has, the harder it is to keep all of them in

the same pace, so stalls due to barrier and function done could be longer. As a result,

the scheduling policy plays a key role here to reduce the CPI components due to barrier

and function done. By keeping all the warps in a similar pace throughput execution,

in theory, we can easily reduce this CPI portion. However, current scheduling policies

such as LRR and GTO do not have such awareness [54].

In this section, we laid out all the key factors that govern GPU throughput from

a single warp perspective. To sum up, in order to improve GPU throughput, we need

to improve the degree of parallelism, reduce structural and data hazards, and improve

stalls due to barrier and functions done. The following chapters are focus on approaches

that can tackle one or some of the aspects.

81

6.4 GPU optimization overview

The rest of the dissertation is organized as follows, In chapter 7, we proposed an priority

scheduling scheme that can reduce CPI stalls due to barrier and function, as long as

improve structural hazards.

chapter 8-9 present a new approach, intra-core multitasking, by allowing multiple

kernels running simultaneously, we tackle all the factors described in subsection 6.3.1.

chapter 8 proposes a run-time intra-core multitasking for GPGPUs, coupled with minor

architectural modification and new scheduling scheme, we can greatly improve GPU

throughput. Allowing multiple kernels running simultaneously brings new challenges,

we observe that it’s very costly to dynamically adjust the resource allocation between

kernels. Therefore, chapter 9 develops a contention-aware performance model for intra-

core multitasking. This allows us to find the optimal thread partition among kernels

before-hand, which further improves overall throughput when combining with intra-core

multitasking. Finally, we summarize the contributions of the GPU part in chapter 10.

Chapter 7

Priority Scheduling for GPGPUs

Chapter 6 lays out all the key aspects in order to improve GPU throughput, including

improve the degree of parallelism, and reduce per-warp CPI through some of the key

stall factors, such as structural hazards, data hazards, and function done et al.. Given

limited resource on each GPU SM, it’s hard to add more warps to the SM in a single

kernel scenario. This chapter focuses on proposing a new priority scheduling scheme

that is more sensitive to the key CPI components, and scheduling the active warps

wisely to avoid stalls such as barrier, function done, and structural hazards et al..

7.1 Introduction

The scheduler is responsible for picking the right warp among active warp pool every

cycle. From the CPI breakdown analysis in subsection 6.3.1, we know scheduling policies

can effectively optimize some of the key CPI components such as barrier, function

done, and structural hazards et al.. In this chapter, we explore multiple scheduling

policies that mainly focused on optimizing those CPI components. CPI due to structural

hazards, barrier and function done contribute 47.64%, 3.68% and 12.23% of the total

CPI, as shown in Figure 6.2, certainly we cannot eliminate all of them. In addition,

there might be overlaps among various CPI components, which means reducing one

type of the CPI can make the other CPI components larger. However, for CPIs due

to structural hazards, barrier and function done, we observed they are sensitive to

82

83

scheduling policies, and we can still get substantial benefits if our scheduling policy are

aware of those factors. As discussed in subsection 6.3.1, the key to reduce stalls due to

barrier and function done is to keep warps in the same thread block in the same pace,

such as LRR; and the key to improve structural hazards is to avoid all the warps in

the same pace, such as GTO. In this chapter, we propose GTLS-TAWS, a greedy and

thread block based, but also tail-aware warp scheduling policy that aims to improve

IPC by reducing stalls due to structural hazards, barrier and function done.

Related Work

Various warp scheduling techniques have been proposed to improve data hazards and

structural hazards. Rogers et al. [55] propose a cache-conscious warp scheduling policy

that aims to reduce cache contention. Jog et al. [56] propose OWL, a series of CTA-

aware warp scheduling techniques to reduce contention in both cache and DRAM. Jog et

al. [57] propose a prefetch-aware warp scheduling policy to improve memory tolerance.

The technique regroups threads according to their data spatial locality and pairs with

a prefetching mechanism to effectively reduce memory latency. Kayiran et al. [58]

propose DYNCTA – a runtime CTA modulation scheduling strategy to improve degree

of parallisim and reduce contention in the memory hierarchy. We observe that this

technique can effectively reduce structural hazards stalls due to memory contention.

However, CTA modulation also reduces degree of parallelism and results in an additional

10% data hazards stalls, resulting in limited overall improvement in system performance.

7.2 Exploration of Scheduling Policies

Loose Round-robin (LRR): as the name suggests, the round-robin policy sched-

ules the warp in equal portion and in circular order. Thus , all the warps are treated

equally, and all the warps are likely maintained in the similar progress.

Greedy-then-oldest (GTO): GTO runs a single warp until it stalls then picks

the oldest ready warp. The age of a warp is determined by the time it is assigned to the

core. For wavefronts that are assigned to a core at the same time (i.e. they are in the

same thread block), warps with the smallest threads IDs are prioritized. Other greedy

84

schemes (such as greedy-then-round-robin and oldest-first) were implemented and GTO

scheduling had the best results.

Greedy-then-least-scheduled (GTLS): GTLS runs a single warp until stalls

then picks the warp with longest waiting time. The waiting time of a warp is defined

as the number of cycles since last instruction of the warp is selected and issued by the

scheduler. Note different warps in the same thread block can have different waiting

time. This scheme is aimed to take advantage of both short-term data locality within a

warp (GTO) and long-term fairness among all warps throughout execution (LRR).

Thread block based Tail-aware warp scheduling (TAWS): this scheduling

policy aims to improve all the CPI stalls due to barrier and function done, by keeping

all the warps within the same thread block in the same pace. Meanwhile, with multiple

thread block assigned, we prioritize thread blocks based on the number of warps that

are currently stalled due to barrier and function done. By giving higher priority to

the thread block with the most warps stalls due to barrier and function done, we can

allow such thread block finishes faster, such that hardware resources become available

to other new thread blocks (initially without any barrier and function done warps).

Consequently, we can significantly reduce stalls due to barrier and function done, and

different thread blocks are maintained in separate pace, which alleviates contention.

TAWS is a scheduling scheme that focuses on prioritizing thread blocks, which after

our investigation, works best when combined with other scheduling policies that also

specifies the priorities of warps within a thread block. In this chapter, we combine

TAWS with both GTO and GTLS. To be more specific, GTO-TAWS runs a single warp

until stalls, then fetches the thread block according to TAWS ranking, while GTLS-

TAWS runs a single warp until stalls, then fetches the thread block according to TAWS

ranking, and issues the active warp with longest waiting time according to GTLS.

7.3 Implementation of Priority Scheduling Policies

We design a two-level per-warp priority counter that indicates the scheduling order.

Top level counter determines the issue priority between thread blocks, and the 2nd level

counter ranks the warps within a thread block. For example, given there are 48 active

warps in the pool from 6 thread blocks (8 warps per thread block), we first rank 6

85

thread blocks based on the thread block ranking algorithm, once the scheduling order

among thread blocks are determined, we apply our 2nd level ranking algorithm on the

warps within the same thread block. Note, every time the value of warps are updated

in the ranking algorithm, we need to update the priority counter and recalculate the

scheduling order. Therefore, we also want a simple yet effective ranking algorithm that

does not update the scheduling order unless necessary.

7.3.1 Ranking Algorithm

A ranking algorithm determines which warp is more important and should be issued

more often. For GTO-TAWS and GTLS-TAWS, we explore an absolute two-level pri-

ority ranking. First, we rank thread blocks based on the number of warps that are

currently stalled due to barrier and function done. If there are more than one thread

blocks having the same value, we further rank them based on the thread block id. Once

the thread block order is done, the order within thread block is determined in GTO or

GTLS fashion: we consider the last issued warp in the thread block, if not available, we

pick the warp with the oldest timestamp (GTO) or longest waiting time (GTLS). This

2-level ranking algorithm can effective reduce the cost in sorting the warps, as thread

block order only changes if a warp suffers/resolves a barrier/function done, which hap-

pens every hundreds cycles. and we only need to update the order within one thread

block every cycle if an instruction is issued.

7.4 Result Analysis

In this section, we evaluate five different scheduling policies on 9 Parboil benchmarks:GTO,

GTO-TAWS, LRR, GTLS, and GTLS-TAWS. We use the CPI breakdowns and IPC

speedup compared with GTO to represent the effectiveness of each scheduling scheme

in improving certain key stall factors and IPC.

7.4.1 Overall Performance

Figure 7.1 presents the average CPI breakdown for Parboil applications on five schedul-

ing schemes. The x-axis presents different kernels sorted by the sum of the CPI, and

five bars for each kernel represents 5 different scheduling policies, which are (from left

86

SPM LBM MRI HIS STE CUT TPA SAD SGE AVG.
0

20

40

60

80

100

120

140

160

180

200

C
P

I

I$ Miss

Barrier

Function Done

Control Hazard

Structural Hazard − SP

Structural Hazard − SFU

Structural Hazard − MEM

EXE

Data Hazard − memop

Data Hazard−EXE

Figure 7.1: The average CPI breakdown of Parboil benchmarks with different scheduling
policies: 1. GTO; 2. GTO-TAWS; 3. LRR; 4. GTLS; 5. GTLS-TAWS.

to right), GTO, GTO-TAWS, LRR, GTLS and GTLS-TAWS. The y-axis shows the

CPI breakdown attributed by various stall factors described in section 6.3. To better

investigate the CPI breakdown, we further breakdown structural hazards into three

parts: structural hazards due to SP, SFU and MEM function units; and data hazards

into two parts: data hazards due to previous load instruction and previous execution

instruction. The CPI breakdown results are the average across all the warps among

all the SMs throughout the kernel execution. In general, we observed that kernels

on the left exhibit bigger variation against different scheduling policies, and stalls due

to structural hazards and function done are most sensitive to scheduling policies, e.g.

in LBM , GTLS-TAWS effectively reduces stalls due to structural hazards-MEM from

117.94 cycles per instruction (GTO) to 81.23. Overall, the average CPI goes down from

following 5 scheduling schemes from left to right, resulting in 71.59, 70.56, 66.92, 66.48,

66.41, respectively. And the CPI portion due to barrier and function done from those

5 scheduling schemes are, 11.39, 10.42, 5.88, 8.56, 6.02. Thus most of the CPI improve-

ment from LRR and GTLS-TAWS, compared to GTO, comes from barrier and function

done stalls. Both LRR and GTLS based scheduling policies are significant better than

GTO based scheme, and most of the benefits come from improved stalls due to barrier

and function done. This is expected as both LRR and GTLS are designed to maintain

similar pace among threads from the same CTA, while GTO is less effective in keep-

ing those threads in the same pace. Furthermore, both TAWS based schemes perform

better in reducing stalls due to barrier and function done, and TAWS contributes an

87

SPM LBM MRI HIS STE CUT TPA SAD SGE AVG.

0.9

1

1.1

1.2

1.3

1.4

S
p

e
e

d
u

p
 o

v
e

r
th

e
 b

a
s
e

lin
e

 G
T

O

TAWS−GTO

LRR

GTLS

TAWS−GTLS

Figure 7.2: The IPC speedup of Parboil benchmarks of different scheduling policies
compared with GTO.

average of 8.52% and 19.67% improvement in barrier and function done stalls for GTO

and GTLS. Besides CPI breakdown, let’s look at IPC improvements.

Figure 7.2 shows the average IPC speedup of 9 Parboil benchmarks compared with

GTO. In general, GTO-TAWS, LRR, GTLS and GTLS-TAWS achieve an average of

0.62%, 3.89%, 4.13% and 4.92% IPC speedup compared with baseline GTO. Among all

the scheduling schemes, GTLS-TAWS is the best based on the benchmarks we evaluated,

it yields the highest average IPC speedup, and individually, it has only 3 benchmarks

with IPC slow down, with the biggest slowdown of 9.43% (SPM), all of those metrics

are the best among all the scheduling schemes we evaluated. Note it’s extremely hard to

come up a new scheduling policy that outperforms GTO on all benchmarks. In addition,

TAWS adds an additional 0.62% and 0.79% IPC speedup to GTO and GTLS. In the

following sections, we will further investigate the CPI breakdown and IPC speedup for

some kernels that respond well or badly to GTLS-TAWS.

7.4.2 GTLS, LRR vs. GTO

LBM has the best IPC speedup with GTLS-TAWS compared with GTO, resulting

in an average of 42.50% improvement. As shown in Figure 7.1, most of the speedup

comes from two CPI components: structural hazards due to MEM and function done.

To further investigate how CPI changes for each warp, we count the CPI breakdown

from each warp. Figure 7.3 presents the average CPI breakdown from a SM with 5

different scheduling schemes. We notice that the CPI decreases significantly in LRR

88

0 10 20 30
0

50

100

150

200

250

300

350
GTO

0 10 20 30
0

50

100

150

200

250

300

350
TAWS−GTO

0 10 20 30
0

50

100

150

200

250

300

350
LRR

0 10 20 30
0

50

100

150

200

250

300

350
GTLS

0 10 20 30
0

50

100

150

200

250

300

350
TAWS−GTLS

I$ Miss

Barrier

Function Done

Control Hazard

Structural Hazard − SP

Structural Hazard − SFU

Structural Hazard − MEM

EXE

Data Hazard − memop

Data Hazard−EXE

Figure 7.3: The CPI breakdown of LBM for 28 warps, 4 warps per CTA.

0 10 20
0

0.01

0.02

0.03

0.04

GTO

%
 o

f
to

ta
l
IN

S
T

0 10 20
0

0.05

0.1

0.15

0.2

TAWS−GTO

0 10 20
0

0.01

0.02

0.03

0.04

LRR

0 10 20
0

0.01

0.02

0.03

0.04

GTLS

0 10 20
0

0.02

0.04

0.06

0.08

TAWS−GTLS

Figure 7.4: The instruction issue percentage of LBM according to warp ID

and GTLS-based policies, this is mainly due to similar pace within CTA in LRR and

GTLS. LBM is a memory-intensive kernel that suffers substantial structural hazards due

to MEM from MSHRs congestion. Because of data locality among threads within the

same CTA, threads from the same CTA often have memory requests that result in the

same outstanding memory requests to lower memory hierarchy. If those warps progress

in a similar pace, all the memory requests from those warps tend to occur around the

same time, which results in a lot of hits in outstanding memory requests. This greatly

saves the limited memory bandwidth. On the other hand, if warps from the same CTA

process differently, and memory requests occur at different time, GPU has to address

the same outstanding memory requests repeatedly. As a result, this often leads to a

waste of memory bandwidth, and even introduces congestion. LBM is an ideal example

for this issue. From the CPI distribution in GTO and GTO-TAWS in Figure 7.3, we

can see one or two warps often suffer much bigger stalls due to function done, compared

to the rest of warps from the same CTA. This indicates warps within the same CTAs

are progressing significantly differently, thus resulting more structural hazards due to

89

0 10 20 30
0

5

10

15

20

25

30

35

40

GTO

0 10 20 30
0

5

10

15

20

25

30

35

40

TAWS−GTO

0 10 20 30
0

5

10

15

20

25

30

35

40

LRR

0 10 20 30
0

5

10

15

20

25

30

35

40

GTLS

0 10 20 30
0

5

10

15

20

25

30

35

40

TAWS−GTLS

I$ Miss

Barrier

Function Done

Control Hazard

Structural Hazard − SP

Structural Hazard − SFU

Structural Hazard − MEM

EXE

Data Hazard − memop

Data Hazard−EXE

Figure 7.5: The CPI breakdown of TPA for 24 warps, 8 warps per CTA.

0 10 20
0

0.01

0.02

0.03

0.04

0.05

GTO

%
 o

f
to

ta
l
IN

S
T

0 10 20
0

0.02

0.04

0.06

0.08

TAWS−GTO

0 10 20
0

0.01

0.02

0.03

0.04

0.05

LRR

0 10 20
0

0.01

0.02

0.03

0.04

0.05

GTLS

0 10 20
0

0.02

0.04

0.06

0.08

TAWS−GTLS

Figure 7.6: The instruction issue percentage of TPA according to warp ID.

MEM, and much lower overall IPC.

Another benefit of keeping warps within CTAs in the same pace is the ability to

improve stalls due to barrier and function done. Figures 7.5 and 7.6 show the average

CPI breakdown and instruction issue percentage from a SM with 5 different scheduling

schemes for TPA. In Figure 7.5, the CPI components due to barrier and function done

are very significant, contributes 21.32% of the total CPI in GTO, and even GTO-TAWS

only reduces such stalls to 20.21%. However, LRR and GTLS appear to be very effective

at keeping such stalls low: such stalls are only 4.68% and 5.47% of the total CPI in LRR

and GTLS-TAWS. Note we will not get that many improvement in performance here, as

TPA has a relatively high IPC already, then reducing one type of the CPI components

might increase some other stalls. For TPA, we observed more structural hazards and

control hazards instead, and the overall performance speedup is -1.97% (performance

loss) and 1.05% for LRR and GTLS-TAWS respectively.

90

0 20 40 60
0

10

20

30

40

50

60

70

80

90

100
GTO

0 20 40 60
0

10

20

30

40

50

60

70

80

90

100
TAWS−GTO

0 20 40 60
0

10

20

30

40

50

60

70

80

90

100
LRR

0 20 40 60
0

10

20

30

40

50

60

70

80

90

100
GTLS

0 20 40 60
0

10

20

30

40

50

60

70

80

90

100
TAWS−GTLS

I$ Miss

Barrier

Function Done

Control Hazard

Structural Hazard − SP

Structural Hazard − SFU

Structural Hazard − MEM

EXE

Data Hazard − memop

Data Hazard−EXE

Figure 7.7: The CPI breakdown of MRI for 40 warps, 5 warps per CTA.

0 20 40
0

0.005

0.01

0.015

0.02

0.025

0.03

GTO

%
 o

f
to

ta
l
IN

S
T

0 20 40
0

0.01

0.02

0.03

0.04

0.05

TAWS−GTO

0 20 40
0

0.005

0.01

0.015

0.02

0.025

0.03

LRR

0 20 40
0

0.005

0.01

0.015

0.02

0.025

0.03

GTLS

0 20 40
0

0.01

0.02

0.03

0.04

0.05

TAWS−GTLS

Figure 7.8: The instruction issue percentage of MRI according to warp ID.

7.4.3 TAWS effects

One more observation we get from figures 7.3 and 7.5, is that CPI breakdowns from

different warps IDs can be vastly different, this usually happens to TAWS-based schemes,

one or more CTAs are having much lower total CPI compared to the rest of CTAs,

this will keep different CTAs in different pace. Figure 7.4 shows the instruction issue

percentage from different warp ID. Clearly, warps with lower total CPI have much better

chance to get issued. However, LBM does not benefit from such characteristics, now we

will show how benchmarks get performance boost from such scheme.

As previously discussed, TAWS can effectively reduce the stalls due to barrier and

function done, and almost all of the CPI improvement comes from it. Besides, it will

keep different CTAs at different pace, we use MRI to evaluate the effect of that. Figures

7.7 and 7.8 show the average CPI breakdown and instruction issue percentage from a SM

with 5 different scheduling schemes for MRI. First of all, TAWS favors CTAs that suffer

more barrier and function done, and let them finish faster so new CTAs (without barrier

and function done stalls) can be issued. Ultimately, this increase the effective number

91

0 20 40 60
0

50

100

150

200

250

300
GTO

0 20 40 60
0

50

100

150

200

250

300
TAWS−GTO

0 20 40 60
0

50

100

150

200

250

300
LRR

0 20 40 60
0

50

100

150

200

250

300
GTLS

0 20 40 60
0

50

100

150

200

250

300
TAWS−GTLS

I$ Miss

Barrier

Function Done

Control Hazard

Structural Hazard − SP

Structural Hazard − SFU

Structural Hazard − MEM

EXE

Data Hazard − memop

Data Hazard−EXE

Figure 7.9: The CPI breakdown of SPM for 48 warps, 6 warps per CTA

0 20 40
0

0.005

0.01

0.015

0.02

0.025

GTO

%
 o

f
to

ta
l
IN

S
T

0 20 40
0

0.01

0.02

0.03

0.04

0.05

TAWS−GTO

0 20 40
0

0.005

0.01

0.015

0.02

0.025

LRR

0 20 40
0

0.005

0.01

0.015

0.02

0.025

GTLS

0 20 40
0

0.01

0.02

0.03

0.04

0.05

TAWS−GTLS

Figure 7.10: The instruction issue percentage of SPM according to warp ID.

of active warps per cycle. In Figure 7.7, GTLS-TAWS improves CPI portion due to

barrier and function done from 21.83% (GTLS) to 10.68%. Moreover, because different

CTAs are progressing at different pace, we improve structural hazards by spread out

the congestion more evenly throughput the execution time, GTLS-TAWS improves CPI

portion due to structural hazards from 49.30% (GTLS) to 46.36%. Of course, increased

stalls due to data hazards weaken the overall performance boost from TAWS, but TAWS

achieves 5.75% performance speedup overall.

7.4.4 SPM

SPM is the only benchmark suffers significant performance loss, resulting in 9.43%

slowdown with GTLS-TAWS compared with GTO. Figures 7.9 and 7.10 show the

average CPI breakdown and instruction issue percentage from a SM with 5 different

scheduling schemes for SPM. Both LRR and GTLS exhibit performance loss, mainly due

to increased stalls from structural hazards-MEM, and TAWS does little to improve that.

Under further investigation, such structural hazard stalls are not caused by congestion

92

in MSHRs, instead, they are due to reservation cache fail (RCFail) in L2 cache. RCFail

happens when all the slots in a cache set are marked “reserved” (waiting for data to be

served from lower memory hierarchy) and thus the cache fails to reserve a slot. Once

one cache set suffers this stall, the whole memory pipeline has to stall until it’s resolved.

Therefore, if the access pattern of the L2 cache from all SMs is not evenly distributed

to all cache sets, and one of the cache sets fails to reserve a new slot, we will suffer

structural hazards. Note this is directly related to the memory access pattern from

SMs. For MRI, the memory access patterns from GTLS and LRR are more likely to

saturate one cache set, resulting in longer stalls due to RCFail. To sum up, we believe

the slowdown of SMP in GTLS-TAWS is just a rare case: 1) very few structural hazard

stalls are caused by RCFails; 2) RCFail is access pattern dependent, there is no strong

link between longer RCFail stalls with GTLS and LRR.

7.5 Conclusion

In this chapter, we propose GTLS-TAWS, a new two-level priority scheduling scheme,

which ranks CTAs based on the number of warps suffering stalls due to barrier and func-

tion done, then prioritize warps within CTAs in a greedy then least scheduled fashion.

By keeping warps within the same CTA at similar pace, while different CTAs at differ-

ent progress, GTLS-TAWS can effectively improve stalls due to barrier, function done,

and structural hazards. Compared with baseline GTO scheduling policy, GTLS-TAWS

reduces CPI components due to barrier and function done by 47.15%, and achieves an

average IPC speedup of 4.92%.

Chapter 8

Run-time intra-core multitasking

for GPGPUs

In previous chapter, we propose a new two-level scheduling policy that can improve

stalls due to barrier and function done et al.. However, only limited speedup achieved

due to the fact that many applications cannot exploit this massive parallelism due to

various resource constraints. Meanwhile, allowing only one kernel running on SMs lacks

the ability to balance the availability of heterogeneous resources such as streaming pro-

cessors (SP), and special function units (SFU), as well as specific components within the

memory hierarchy. Analysis of a variety of highly-optimized GPU applications shows

that oversubscription of GPU resources limits performance, such that the applications

only achieve 35.5% of a GPU’s maximum throughput, on average. We observe that

since the resource requirements of different applications are different and often comple-

mentary, we can improve utilization, reduce contention, and improve performance by

simultaneously co-scheduling multiple applications on the same GPU core, i.e., intra-

core multitasking (ICMT). We present different ICMT microarchitectures and schedul-

ing mechanisms and demonstrate up to 28.1% average performance benefits for ICMT

with only 1.8% area overhead, compared to conventional single-kernel execution with

a greedy-then-oldest (GTO) scheduling mechanism. Furthermore, when co-scheduling

complementary workloads, the average speedup improves to 39.2%.

93

94

Figure 8.1: Kernels from different Parboil benchmarks exhibit significantly different
utilization of hardware resources and function units on a GPU core, possibly indicating
that co-scheduling multiple kernels (with complementary resource utilization) on the
same GPU core might improve PLP. Occu. and A.Occu. are short for Occupancy and
Achieved Occupancy.

8.1 Introduction

General Purpose GPUs (GPGPUs) are a powerful and energy-efficient computing plat-

form for data parallel applications. GPGPUs can accommodate thousands of threads

running simultaneously. As such, instead of minimizing latency for an individual thread,

GPGPUs exploit thread level parallelism (TLP), and allow execution of other threads

when some threads stall [58]. To facilitate massively-parallel general purpose com-

putation on hardware designed for graphics processing, programming models such as

CUDA [59] and OpenCL [60] have been developed. In these programming models,

GPGPU applications are typically divided into several kernels that execute sequentially,

each of which is composed of many threads that execute in parallel. When kernels are

executed, threads are grouped into basic scheduling units called Cooperative Thread

Arrays (CTAs) and assigned to available GPU cores. CTAs are subdivided into groups

of 32 threads called warps or wavefronts, the basic unit of execution flow. All threads in

a warps execute the same instruction stream based on the single instruction, multiple

thread (SIMT) paradigm [61].

Despite the massive parallelism of modern GPGPUs [62], their throughput often falls

far short of their peak capabilities for many parallel computing applications. There are

95

three primary reasons for this. First, an application may exhibit inadequate paral-

lelism due to limited threads spawned by the application or over-subscription of limited

per-core hardware resources such as registers or shared memory. Second, contention

in GPU-wide shared resources (especially in the memory hierarchy) can create a per-

formance bottleneck for parallel execution. Third, even if TLP is maximized, different

applications/kernels have different instruction mixes and may not fully utilize all the

function units (e.g., ALUs, special function units, and memory units) in the GPU. We

use the term pipeline-level parallelism (PLP), to describe the parallel utilization of dif-

ferent function units. While insufficient TLP may cause all the function units on a GPU

core to be idle, insufficient PLP can occur when one of the function units is underuti-

lized due to an unbalanced instruction mix in an application. For many applications,

these limitations result in a sizable gap between actual and peak GPU throughput. For

example, for the set of applications that we studied (see Section 6.2.2), we observed

that the GPU achieved only 35.5% of its peak throughput, on average.

Researchers have considered co-scheduling kernels concurrently in GPGPUs to im-

prove TLP and PLP [63, 64, 65, 66]. For instance, Adriaens et al. [63] propose inter-core

multitasking to statically launch multiple kernels on separate GPU cores. Inter-core mul-

titasking can improve TLP, giving a GPU more threads to execute; however, it lacks

the capability to improve PLP within GPU cores and primarily improves throughput

only when the TLP of one kernel is insufficient to fill the GPU to capacity.

A better approach than launching multiple kernels across different GPU cores might

be to co-schedule multiple kernels on the same GPU cores. This approach would not

only have the potential to increase TLP but could also improve PLP by balancing the

mix of instructions on a GPU core.

Figure 8.1 shows the utilization of the various hardware resources and function units

on an Nvidia GTX 480 GPU for different kernels in the Parboil benchmark suite [51].

The figure shows that different kernels can have substantially different utilization pro-

files. Thus, it might be possible to improve PLP by co-scheduling kernels with comple-

mentary resource utilization on the same GPU core.

Previous work explores intra-core kernel co-scheduling on real hardware via offline

kernel merging in software [67, 68, 64]. While the work indicates potential for increased

parallelism with intra-core co-scheduling, a static approach based on offline software

96

merging can limit a GPU core’s ability to extract PLP. While work on inter-core and

intra-core co-scheduling exists, all the previous co-scheduling techniques are based on

existing GPGPU architectures and scheduling mechanisms that are designed for homo-

geneous simultaneous multithreading within a GPU core, where all warps on a core

are from the same kernel and exhibit similar behavior, with relatively stable resource

requirements.

Evaluating existing proposals for inter-core and intra-core multitasking reveals that

existing approaches are unable to significantly improve performance, primarily because

they introduce substantial extra contention in shared resources, and partly due to in-

efficient scheduling mechanisms. Limited memory bandwidth is the main reason for

GPU underutilization [58]. Figure 8.2, which characterizes all possible pairings of the

10 kernels listed in Table 6.1 (details in Section 8.6), shows that intra-core multitask-

ing leads to more memory stalls, resulting in 3.38% performance loss on average. The

problem is not as significant in inter-core multitasking, where average performance im-

proves by 7.50%. Due to the prominent impact of increased memory contention when

co-scheduling kernels, for the results in Figure 8.2, we group kernels into two sets based

on whether they experience significant memory stalls (MEM-S) or few memory stalls

(Non-MEM-S), according to the classification in subsection 8.4.1. Intra-core multitask-

ing introduces 27.72% more memory stalls, on average, than inter-core multitasking

when co-scheduling MEM-S with Non-MEM-S and 6.67% more memory stalls when

co-scheduling MEM-S with MEM-S. Essentially, co-scheduling a MEM-S kernel with a

Non-MEM-S kernel results in a pairing that is memory-constrained (MEM-S). The ex-

isting intra-core multitasking only improves performance for 64.0% of the kernel pairs,

while 16.7% of the pairs actually suffer over 30% performance degradation.

Based on the results above, co-scheduling different kernels on the same GPU cores

exhibits potential to increase TLP and PLP; however, a static approach that does

not provision for the extra resource contention introduced by co-scheduling may not

effectively exploit the potential benefits and may in fact degrade performance. In this

work, we propose an architectural solution for intra-core multi-tasking on GPU cores

and explore how to optimize the GPU microarchitecture to enhance the benefits of

kernel co-scheduling. This chapter makes the following contributions.

• We perform thorough performance analysis for a set of applications in a modern

97

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

NMS
+

NMS

NMS
+

MS

MS
+

MS

ANY
+

ANY

A
v
g

.
IP

C
 S

p
e

e
d

u
p

Inter-Core

Intra-Core

 0

 0.2

 0.4

 0.6

 0.8

 1

NMS MS
NMS

+
NMS

NMS
+

MS

MS
+

MS

ANY
+

ANY

A
v
g

.
M

E
M

 I
s
s
u

e
 S

ta
ll

Solo Inter-Core

Intra-Core

Figure 8.2: Average throughput speedup (G-Mean) and average memory stall rate for
existing inter-core and intra-core multitasking. Note MS and NMS are short for MEM-S
and Non-MEM-S.

GPGPU environment, identify their key performance bottlenecks, and demon-

strate the potential for throughput improvement from intra-core multitasking.

• We propose architectural support for intra-core multitasking in GPGPUs which

alleviates the extra memory contention introduced and show how it can be imple-

mented with minimal changes (1.79% area overhead) to existing microarchitecture.

• We observe 26.01% performance benefits from intra-core multitasking (ICMT) in

the baseline microarchitecture. We also show that average speedup can improve

to 36.11% with more intelligent co-scheduling (from complementary workloads).

• We perform a simulation-based design space exploration to determine the GPU

microarchitecture that maximizes throughput for ICMT-based execution. We find

that increasing the front-end by 100% results in an average speedup of 28.07% for

ICMT with an area cost of 1.79% with respect to the baseline (GTO).

To the best of our knowledge, this is the first work to propose a complete solution

(including hardware and scheduling algorithm) for intra-core multitasking for GPGPUs

that is compatible with all GPGPU applications without software modification.

98

8.2 Related Work

Multitasking in GPGPUs:

The GPU spatial multitasking technique proposed by Adriaens et al. [63] alleviates

system bottlenecks and improves TLP by partitioning GPU cores among multiple ap-

plications, with each core executing in the normal single-kernel fashion. This strategy

does not address underutilization (e.g., low PLP) within GPU cores and still applies ho-

mogeneous simultaneous multithreading per core. In our work, most of the performance

improvement comes from the improved TLP, PLP, and memory contention afforded by

intra-core co-scheduling.

Gregg et al. [67] and Guevara et al. [68] first demonstrate the throughput potential of

intra-core kernel co-scheduling on real hardware via off-line kernel merging in software.

Such software-based approaches are not applicable to all workloads and suffer high

overhead. Pai et al. [64] implement concurrent kernel execution on real hardware by

merging two instruction traces of kernels running alone. Due to the in-order-issue feature

of GPUs, merging two instruction traces serializes two kernels with pre-determined

instruction ordering. Such merged traces cannot accurately reflect how two kernels

interact given different CTA partitions. Lee et al. [65] also illustrate the benefit of

intra-core multitasking, but their detailed hardware implementation and CTA partition

is unclear. Our work is closest to interleaved thread block scheduling proposed in [66],

but we offer a complete solution, including hardware modification, and show significant

performance improvement over their approach (see INTRA in Section 8.7).

Simultaneous Multithreading:

ICMT in GPGPUs shares some characteristics with simultaneous multithreading

(SMT) in CPUs [69, 70, 71]. Like SMT, ICMT has the potential to increase throughput

by co-scheduling multiple independent threads of execution onto the execution resources

of a single core. In the case of SMT, the main motivation is that independent threads

of execution exhibit fewer dependencies, and thus, more ILP. For ICMT, the main mo-

tivation is that threads from different kernels may have different and complementary

99

resource usage such that co-scheduling can improve utilization of varied execution re-

sources (PLP) and also allow threads from one kernel to make progress while threads

from another kernel are stalled due to oversubscription of resources.

8.3 Background

This section provides an overview of the framework for intra-core multitasking (ICMT).

8.3.1 High-Level View of Intra-Core Multitasking Framework

Figure 8.3 provides a high-level view of ICMT, showing the changes that are made on

top of the baseline GPU architecture. For simplicity, we only consider the scenario of

co-scheduling two kernels in this chapter. In principle, though, the proposed approach

could be extended to three or more kernels.

When a new kernel is assigned to the GPU, it is placed in the active kernel pool. The

kernel management unit determines which kernels should be co-scheduled together and

decides how many CTAs of each kernel to mix to optimize system throughput. Once

the scheduling decision is made, the GPU allocates the CTAs to each core, just as in

the single-kernel case. No additional hardware is required to issue CTAs from differ-

ent kernels, compared to issuing CTAs from the same kernel. However, simultaneous

multitasking may place more pressure on device resources, such as the memory system.

We investigate the impact of ICMT on microarchitecture and system throughput in

Section 8.7.

8.3.2 Evaluation Metric

We use IPC speedup and utilization for the various function units to evaluate the per-

formance of kernels in different GPU configurations.

We use geometric mean (G-Mean) of IPC speedup to measure throughput improve-

ment. G-Mean has been used in previous works on SMT, since it does not favor unfair

system configurations in which a kernel with high-throughput is allowed to monopolize

system resources at the expense of a low-throughput kernel [72]. For baseline config-

urations, we consider the performance of two workloads running alone. For function

units, we define utilization as the fraction of total execution cycles that a unit is not

100

Figure 8.3: High-level view of proposed intra-core multitasking technique.

idle or stalled. We characterize the utilization of the scheduler and all three pipelines

(SP, SFU, and MEM).

8.4 Detailed Analysis of TLP and PLP Stalls

8.4.1 Primary Performance Constraints

As discussed previously, underutilization of GPGPUs can be caused by inadequate TLP

(i.e., inadequate active warps) and/or PLP. To evaluate the impact of these two factors,

we characterize both TLP stalls and PLP stalls for the benchmarks in Table 6.1. We

further break down PLP stalls based on the type of function unit (SP, SFU or MEM)

that causes the stall. Figure 8.4 shows the breakdown of average stall rate for kernels

executing on the baseline architecture, where all the kernels use the maximum number

of CTAs allowed per core, with the goal of maximizing TLP. We observe significant

variation in performance, TLP stalls, and PLP stalls across the set of kernels. Even

kernels from the same application can exhibit significant variation. On average, GPU

cores are stalled 43.5% of the time, and PLP stalls contribute 54.0% of the total stalls,

primarily due to limited on-chip and/or off-chip memory bandwidth (MEM stalls).

These results agree with findings of previous work [56]. As MEM stalls is the primary

101

 0

 0.2

 0.4

 0.6

 0.8

 1

LBM BFS SPM HIS MRI SAD SGE STE TPA CUT AVG.

N
o

rm
a

liz
e

d
 S

ta
ll

R
a

te Pipe Busy-SP
Pipe Busy-SFU

Pipe Busy-MEM

Data Dependency
Issue

Figure 8.4: Breakdown of average GPU stall rate for kernels executing on the baseline
architecture. TLP stalls occur when no active warp is available. PLP stalls occur
when active warps are available but the scheduler cannot issue an instruction to a
particular pipeline due to a structural hazard (e.g., the pipeline is stalled due to excessive
unresolved off-chip memory accesses or a full pipeline is still busy executing previously-
issued instructions).

performance constraints in GPGPUs, for future reference, we categorize all the kernels

into two groups: kernels experience significant memory stalls (MEM-S) or few memory

stalls (Non-MEM-S). We consider kernels suffering over 40% MEM stalls as MEM-S.

Thus we have LBM, BFS, and SPM in that category. In addition, five kernels suffer

stalls due to warp data dependency for over 10% of the cycles (BFS, HIS, SAD, SGE,

TPA). All five have less than 0.66 warp occupancy due to GPU resource constraints (e.g.,

registers, shared memory, thread contexts). It is also worth mentioning that having a

large number of warps is not always enough to prevent stalls when there are too many

outstanding long-latency operations. E.g., SPM achieves the maximum number of

warps that the GPU permits but still experience substantial PLP stalls, since LD/ST

unit stalls due to memory congestion. We also observed that even if afforded unlimited

TLP and memory bandwidth, the average stall rate in the scheduler is still 17.26%, due

to oversubscription of a certain type of function units by some of the benchmarks. For

example, kernels such as LBM, BFS, and SPM suffer a stall rate of over 50%, due to

significant utilization imbalance among different function units.

Figure 8.5 shows the average utilization of all three types of function units – ALU,

SFU, and MEM, as well as MEM stalls. Surprisingly, for certain workloads that do

102

 0

 0.2

 0.4

 0.6

 0.8

 1

LBM BFS SPM HIS MRI SAD SGE STE TPA CUT AVG.

U
ti
liz

a
ti
o

n

SP
SFU

MEM-onchip
MEM-stalls

Figure 8.5: Average utilization of SP, SFU, and MEM in the baseline architecture.

not experience significant TLP and PLP stalls (e.g., CUT, TPA), utilization of different

SIMT function units is far from the maximum. Average utilization of ALU, SFU, and

MEM are only 66.7%, 39.9%, and 28.8%, respectively, for the above 2 kernels. This is

mainly caused by two factors. 1) Poor PLP: The instruction mix in a kernel favors one

type of instruction and leaves other function units underutilized. In Figure 8.5, the SP

pipeline utilization dominates in 5 kernels, while utilization in SFU and MEM dominate

in 1 and 4 kernels, respectively. 2) The GPU scheduler only issues one instruction per

cycle and is thus incapable of keeping all the SIMT pipelines fully utilized. For the

kernels on the left side of Figure 8.5, performance is primarily limited by scheduler

throughput, while on the right side, one particular type of function unit becomes the

key constraint on system performance.

While scheduler constraints can be removed by increasing the instruction dispatch

and writeback throughput, this microarchitectural change would only be advisable if

it results in commensurate performance improvement. We observe that in the base-

line architecture, doubling and tripling instruction dispatch/writeback throughput only

improves performance by an average of 0.85% and 0.97%, respectively, and incurs an

extra 1.79% and 2.70% overhead, respectively, in area. Thus, the limited utilization

is not only due to limited dispatch/writeback throughput but is primarily due to the

fact that any single kernel does not contain an appropriately diverse mix of

instructions to fully utilize available function units. The motivational results

103

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 2M 4M 6M (cycles)

A.O.
IPC

 0.6

 0.7

 0.8

 0.9

 1

 1.1

C
U
T
H
IS

LBM
M

R
I
SAD

SG
E
SPM

STE
TPA

AVG
.

B
o

d
y
/T

a
il

R
a

ti
o

body tail

 0

 0.2

 0.4

 0.6

 0.8

 1

C
U
T

H
IS

LBM
M

R
I

SAD
SG

E
SPM

STE
TPA

AVG
.

IP
C

body tail

Figure 8.6: The tail effect results in reduced achieved occupancy and IPC for single
kernel execution and inter-core multitasking.

above do suggest, however, that an appropriate mix of kernels may provide ade-

quate instructions to more fully utilize available execution resources. We will

later show that co-scheduling kernels with complementary resource requirements on the

same GPU core can significantly improve utilization and performance.

8.4.2 Investigating Memory Stalls

Unlike in ALUs, where structural hazards are only caused by unavailable execution

pipelines, structural hazards in the memory can happen at different resources across

the multiple levels of the memory hierarchy. First, inside GPU cores, LD/ST units are

connected to four different caches. When too many cache misses occur, the memory

unit can stall for hundreds of cycles due to a cache reservation failure, unavailability

of MSHRs, or a full miss queue. Due to the nature of in-order issue in existing SIMT

architectures, once a stall occurs, the entire memory unit issue queue is stalled, pre-

venting any new memory instructions from issuing until the stall is resolved. This is

unfortunate, considering that for the benchmarks we studied, stalls account for over

40% of the overall memory pipeline utilization (see Figure 8.5).

Since memory stalls can result from a number of different sources and since different

kernels utilize memory system resources differently, we observe an opportunity to re-

duce memory stalls and improve memory bandwidth efficiency by co-scheduling kernels

that are complementary in their utilization of different memory system resources, more

details in subsection 8.5.2

104

8.4.3 Mitigating the Tail Effect

In addition to improved TLP and PLP, another potential benefit of ICMT is mitigation

of the tail effect encountered when most of a kernel’s CTAs have finished executing and

the kernel experiences reduced TLP until the remaining CTAs finish. The left sub-figure

of Figure 8.6 illustrates the tail effect for the kernel TPA, showing how occupancy and

IPC are degraded during the tail end (18.8%) of the kernel’s execution. The middle

sub-figure of Figure 8.6 shows the percentage of execution time kernels from the Parboil

benchmark suite spend in the tail portion of execution. On average the tail accounts for

8.7% of the execution time. The right sub-figure of Figure 8.6 compares the IPC of each

kernel during the body and tail portions of its execution. On average, IPC during the

tail portion is 44.3% lower than IPC during the body portion. For one kernel (SPM),

IPC is higher during the tail because the IPC of the kernel is significantly higher at the

end of execution. Over the entire execution of these kernels, the tail effect results in

3.9% performance reduction, on average.

Conventional single kernel execution and inter-core multitasking cannot avoid the

tail effect. ICMT, on the other hand, has the potential to mitigate the tail effect,

since CTAs from one kernel can fill in to maintain higher occupancy while another

kernel experiences its tail. ICMT cannot completely eliminate the tail effect, but it can

significantly reduce the impact of the tail effect, as we will demonstrate in section 8.7.

8.4.4 Potential Benefits of Intra-core Multitasking

To summarize, the results in Figures 8.4 and 8.5 for a mix of 10 kernels show that a

current GPU core only utilizes 35.55% of its massive throughput potential due to inade-

quate TLP, scheduler constraints, and insufficient PLP. Ideally, with increased schedul-

ing throughput, intra-core multitasking can address all of these bottlenecks and signif-

icantly improve average aggregate throughput. Also, unlike existing approaches [58],

since it considers both TLP and PLP stalls, intra-core multitasking has the potential

to ameliorate performance bottlenecks without causing another bottleneck to arise.

105

8.5 Architectural Design Space Exploration

In this section, we explore architectural modifications that may improve the performance

of a GPU that supports intra-core multitasking. We primarily focus our exploration

on architectural resources that may become bottlenecks in a multi-kernel execution

environment.

8.5.1 Instruction Dispatch and Scheduling Bandwidth

One motivation for ICMT is that kernels with complementary resource usage can be co-

scheduled on the same GPU core to increase utilization of varied execution resources and

subsequently enhance throughput. When complementary kernels are co-scheduled, the

dispatch unit in the baseline architecture (Figure 6.1), which only issues one instruction

per cycle, may impose a bottleneck to exploiting the additional PLP exposed by ICMT.

Consequently, we explore the impact of doubling the fetch, decode, and dispatch band-

width (all processing logic before issue queue, including doubling the number of I-cache

ports), while keeping the SIMT pipelines unchanged. To match the increased dispatch

bandwidth, we also increase the scheduling bandwidth such that up to one instruction

of each type (SP, SFU, MEM) can be dispatched per cycle to its dedicated pipeline,

provided there is sufficient TLP and the corresponding issue queue is not full. I.e., in-

stead of picking one active warp to issue per cycle in the warp scheduler, we tag active

warps based on the type of their next instruction (SP, SFU, MEM), and the scheduler

picks up to one instruction of each type using an existing scheduling mechanism, like

GTO.

8.5.2 Prioritized Memory Issue Queue

As discussed in Section 8.4.2, the baseline architecture has only one issue queue to

the memory pipeline. When stalls occur due to limited memory bandwidth, the entire

LD/ST unit is stalled until the congestion is resolved, potentially for hundreds of cycles.

This could limit the benefits of ICMT, since a stalled LD/ST unit can stall both ker-

nels, even if one of the kernels does not require the congested memory resource. E.g.,

a memory-intensive kernel co-scheduled with an ALU-intensive kernel could congest

available memory bandwidth, forcing both kernels to suffer long stalls in the LD/ST

106

unit.

Kernels often exhibit diverse memory bandwidth requirements and are affected by

different types of memory stalls. Therefore, we explore using a prioritized memory issue

queue (PMIQ) that allows kernels with complementary memory resource requirements

to interleave memory instructions and avoid stalls when a resource required by only

one kernel is congested. For instance, if one kernel is stalled by the memory due to

insufficient MSHRs, we can still issue from threads of another kernel that is accessing

shared memory.

Prioritization function of PMIQ: In the PMIQ, memory instructions are tagged

with their kernel number, and one kernel is designated as having priority. Every cycle,

the arbiter picks up to one memory instruction from the kernel with priority and updates

the priority designation. The kernel priority toggles in the next cycle if: 1) the high

priority kernel suffers a memory stall, or 2) neither kernel stalls on its latest memory

instruction. When a memory stall occurs due to one kernel, memory accesses from

the other kernel can proceed if they do not require the same type of resource causing

the stall. Note that this arbitration mechanism maintains fairness among kernels when

neither stalls. If stalls occur, the arbiter favors the un-stalled kernel until the stall is

resolved.

Figure 8.7 shows how the microarchitectural modifications discussed in Sections 8.5.1

and 8.5.2 fit into the baseline architecture.

8.5.3 Hardware Overhead

We use McPAT 0.8 [73] integrated with gpgpu-sim 3.20 and GPUWattch [74] to es-

timate the area overhead of different architectural design points. Based on the area

breakdown, shown in Table 8.1, the overhead of incorporating the architectural modifi-

cations described in Sections 8.5.1 and 8.5.2 (2X instruction fetch unit, L1 instruction

cache ports, and warp scheduler) is 0.7576mm2 per core (at 40nm) or 11.364mm2 for

the entire processor. This represents a 1.79% area increase for GTX480.

107

Constant Cache

Writeback

33

MEM: 16 LD/ST Units, 2+ Stages

SIMT Pipelines

ICNT

SP2: 16 Units, 13 Stages

SP1: 16 Units, 13 Stages

SFU: 4 Units, 13 – 25 Stages

Shared Memory

Texture Cache

Data L1 Cache

34
2

Active warp from K0
Active warp from K1
Inactive warp

SFU

SP

MEM

SFU

SP

MEM

Odd Warps

Even Warps

Issue QueueDual-Issue Scheduler

2

SP1

SP2

SFU

MEM

MEM

K0

K1

1

D
is

p
at

ch
 U

ni
t

D
is

p
a

tc
h

 U
n

it

A
rb

it
er

Figure 8.7: ICMT Architecture with increased frontend bandwidth and PMIQ.

Table 8.1: Die area breakdown for Fermi GTX 480, 40nm.
Processor Core

Module Area (mm2) Module Area (mm2)

Total Cores (16) 636.207 Instruction Fetch Unit 0.72424
L2 Cache 9.88038 –L1 Instruction Cache 0.366372
NoCs 0.08929 Load Store Unit (L1 Caches) 2.45388
MCs 28.9458 –Shared Memory 0.6635
Total 675.123 -Execution Unit 35.2924

-Register Files 2.3079
–Warp Scheduler 0.01517

8.6 Methodology

We evaluate 9 kernels using GPGPU-Sim 3.2.0 modified to support ICMT. The modified

simulator has the capability to co-schedule any two kernels with a CTA allocation that

fits within the GPU’s resource limitations. Out of the 36 possible kernel pairs that

are possible from pairwise combinations of 9 kernels, we simulate all pairs for each

scheduling mechanism. One kernel in Parboil benchmark is ruled out to support ICMT,

BFS only has one CTA, ICMT with BFS appears similar to inter-core multitasking.

All initial CTA partitions allocate threads evenly from each kernel. Each kernel pair is

simulated until both kernels finishes at least once. A kernel is reissued immediately if

108

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

LBM SPM HIS MRI SAD SGE STE TPA CUT AVG.A
v
g
.
T

h
ro

u
g
h
tp

u
t
S

p
e
e
d
u
p
s

INTER
INTRA

ICMT-MAX
ICMT-EVEN

Figure 8.8: Average throughput speedup (G-Mean) of co-scheduled kernels with different
scheduling mechanisms.

it finishes early, as if there are multiple invocations from the kernel. This models a real

application environment. The simulation period is long enough to capture the entire

execution of all kernels, including tail effects.

8.6.1 Scheduling Mechanisms

We simulate all kernel pairs with the following scheduling mechanisms. For the single-

kernel baseline we use for comparison against multi-kernel configurations, each of the

kernels is executed individually and the performance of each kernel is weighted by half

to determine the combined performance.

Unless noted otherwise, all scheduling mechanisms use the greedy-then-oldest (GTO)

policy [55]. GTO performs poorly when co-scheduling multiple kernels, especially when

warps from different kernels have different lengths. GTO favors kernels with longer

warps, as warps that last longer are seen as “older”. Therefore, in order to maintain

fairness among co-scheduled kernels, we propose a two-level GTO scheduling policy.

In any given cycle, one kernel has priority over the other kernel, and the scheduler

swaps the priorities of the two kernels every cycle. Among warps within the same

kernel, instructions are selected according to GTO.

When co-scheduling kernels on the same GPU core, we must implement a policy for

selecting the ratio of CTAs to allocate from each kernel. In this chapter, we use heuristics

for CTA allocation, as described below. Conventionally, a goal for CTA allocation is to

maximize occupancy to provide increased TLP. Therefore, we evaluate one allocation

strategy that maximizes the number of warps that can be allocated to each GPU core

(ICMT-MAX). We also evaluate an allocation strategy that attempts to balance the

number of warps from each kernel while still remaining within a threshold (6 warps)

109

of the maximum occupancy (ICMT-EVEN). For this strategy, we choose the allocation

that is closest to even allocation between kernels and has occupancy within 6 warps of

maximum for a given kernel pair. In section 8.7 we test how our heuristics perform with

respect to the optimal CTA allocation. However, we leave optimal CTA partitioning

for co-scheduled kernels as a topic for future work.

• INTER: Inter-core multitasking technique described in [63] – We assign one kernel

on 7 cores and the other on the remaining 8 cores.

• INTRA: Intra-core multitasking technique described in [66] – Kernels are allo-

cated evenly per core and scheduled with a two-level GTO scheduling mechanism.

• ICMT-MAX: Default intra-core multitasking on our proposed architecture in-

cluding prioritized memory issue queue (PMIQ) described in section 8.5 – Kernels

are allocated to maximize occupancy and scheduled with a two-level GTO schedul-

ing mechanism.

• ICMT-EVEN: Same as ICMT-MAX, except kernels are allocated evenly per

core.

8.7 Experimental Results

8.7.1 Performance of ICMT

Figure 8.8 presents the G-Mean of the speedup achieved with different co-scheduling

approaches, relative to single kernel execution. Each bar shows the average speedup

of one kernel co-scheduled in pairs with all other kernels. ICMT-EVEN performs best,

achieving a 26.01% average speedup, with only one pair suffering a slowdown of merely

0.21%. Note that this average speedup even includes co-scheduling all memory-intensive

kernels together, as well as co-scheduling kernels that suffer from the same source of

contention. So, results confirm that ICMT does not degrade performance even when

only poor co-scheduling choices are available, and in most cases, improves performance

considerably. The results also confirm that higher system throughput is possible if

co-scheduling pairs are selected more intelligently, such that co-scheduled kernels have

complementary resource utilization. INTER and ICMT-MAX achieve average speedups

110

 0

 0.2

 0.4

 0.6

 0.8

 1

NMS+NMS NMS+MS MS+MS ANY+ANY

A
v
g

.
M

E
M

 I
s
s
u

e
 S

ta
ll

INTER
INTRA

ICMT-MAX
ICMT-EVEN

Figure 8.9: Average issue stall due to memory contention with different scheduling
mechanisms.

of 7.05% and 14.6%, respectively, while INTRA results in a 3.38% performance loss due

to the added contention it introduces. This indicates that performance improvement

stems from architectural modifications to support ICMT, like PMIQ, and is enhanced

by prudent co-scheduling decisions, like selecting a good CTA partition between co-

scheduled kernels.

As noted above, co-scheduling kernels can actually reduce performance if the co-

scheduling approach is not designed to account for the resource limitations and potential

performance bottlenecks of the architecture. We evaluate how various co-scheduling ap-

proaches fare with respect to two major potential system bottlenecks – memory pipeline

stalls due to contention in the memory system and TLP stalls due to limited parallelism.

Figure 8.9 shows issue stalls resulting from memory contention for different types of

kernel pairings. For these pairings, we group kernels into two sets – workloads with

significant memory stalls (MEM-S) and those with few memory stalls (Non-MEM-S),

based on the issue stall rate breakdown described in subsection 8.4.1. The figure shows

the average issue stall rate of co-scheduling all possible pairs between two groups. The

results confirm that an approach like INTRA, which does not account for system bottle-

necks results in greater memory contention. ICMT-EVEN, on the other hand, exhibits

the lowest stall rate.

Figure 8.10 shows issue stalls caused by limited parallelism. ICMT-MAX minimizes

stalls due to limited TLP, since it chooses the CTA partition with maximum occupancy.

111

ICMT-EVEN and INTRA achieve similar stall rates, due to enhanced TLP provided

by co-scheduling multiple kernels on a GPU core. INTER achieves a similar stall rate

(12.9%) to single kernel execution (14.9%), since both techniques only execute one kernel

per core, and INTER primarily has benefit when a kernel is not able to fill the GPU

cores with CTAs.

Tail Effect Mitigation

As described in subsection 8.4.3, ICMT can mitigate the tail effect encountered when a

kernel experiences waning parallelism as it runs out of CTAs to issue by supplementing

with CTAs from a co-scheduled kernel. Figure 8.11 characterizes the impact of ICMT

on the tail effect. The left sub-figure shows achieved occupancy and IPC for two co-

scheduled kernels, demonstrating that as the occupancy of one kernel decreases, the

other kernel covers the gap, maintaining high throughput.

The middle sub-figure in subsection 8.4.3 compares the percentage of execution time

spent in the tail segment for different kernels running alone (Solo) and in ICMT. ICMT

results are averaged for a kernel co-scheduled in all possible pairs. On average, ICMT

reduces the tail by 23%. In one case (HIS), the tail is slightly longer for ICMT than Solo.

This is possible if the tails of two kernels coincide; however, this case also mitigates the

tail effect since the kernel tails overlap.

The right sub-figure of subsection 8.4.3 compares kernels running alone and in all

possible ICMT pairs in terms of IPC degradation introduced by the tail effect. The

metric used is tail IPC/body IPC, so less IPC degradation during the tail results in a

higher metric value. On average, ICMT reduces IPC degradation by 38%. There is one

case (SPM) that shows opposite results. This is because the IPC of SPM spikes at the

end of the kernel.

8.7.2 Optimizing Instruction Dispatch and Scheduling Throughput

As discussed in Section 8.4.1, the instruction dispatch and scheduling unit can po-

tentially become the primary performance bottleneck once inadequate TLP, PLP, and

memory stalls are reduced by intra-core multitasking. Figure 8.12 illustrates how perfor-

mance changes when front-end throughput is varied from 1× to 2× and 3× in different

112

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

NMS+NMS NMS+MS MS+MS ANY+ANY

A
v
g

.
T

L
P

 I
s
s
u

e
 S

ta
ll INTER

INTRA
ICMT-MAX

ICMT-EVEN

Figure 8.10: Average issue stall due to limited TLP with different scheduling mecha-
nisms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10M 13M 16M (cycles)

A.O. TPA
A.O. CUT

IPC TPA
IPC CUT

Total IPC

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

C
U
T

H
IS

LBM
M

R
I
SAD

SG
E

SPM
STE

TPA
AVG

.

T
a

il
P

e
rc

e
n

ta
g

e

Solo
ICMT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

C
U
T

H
IS

LBM
M

R
I

SAD
SG

E
SPM

STE
TPA

AVG
.

T
a

il
IP

C
 D

e
g

ra
d

a
ti
o

n
 R

a
te

Solo
ICMT

Figure 8.11: ICMT can mitigate the tail effect, resulting in sustained occupancy and
higher throughput.

co-scheduling approaches. The figure shows speedup relative to single kernel GTO

with single issue per cycle. ICMT achieves 28.1% and 24.4% performance speedup,

on average, for 2x and 3x frontend throughput, respectively. Surprisingly, 3x front-end

throughput does not improve speedup at all and is even slower than the 26.01% speedup

achieved by single-issue ICMT. This is because GTO is not good at maintaining fairness

between multiple kernels. A simple CTA partition here is less efficient once more warps

can be issued at the same time, and contention increases for system resources making

even CTA partitioning far from optimal. With greater front-end throughput, the perfor-

mance improvement of ICMT can be enhanced further by more intelligent co-scheduling.

Complementary workload pairs can achieve 39.2% speedup with 2X throughput, and

36.1% speedup with 1X throughput. Based on the analysis above, we find the optimal

design point to be 2X front-end throughput, which incurs a 1.79% area overhead.

113

 0.4

 0.6

 0.8

 1

 1.2

 1.4

NMS+NMS NMS+MS MS+MS ANY+ANY

A
v
g

.
IP

C
 S

p
e

e
d

u
p

INTER 1X

INTER 2X

INTER 3X

INTRA 1X

INTRA 2X

INTRA 3X

ICMT 1X

ICMT 2X

ICMT 3X

Figure 8.12: IPC speedup by increasing front-end throughput with different scheduling
mechanisms.

Limitations of ICMT

We observe that two types of workloads tend to not benefit from ICMT. 1) Workloads

that suffer excessive memory stalls that are not alleviated by issuing fewer CTAs – ICMT

can benefit from alleviated memory stalls since fewer CTAs are assigned from each

kernel. However, if one kernel is extremely memory intensive, the kernel can still cause

too much memory contention when co-scheduled with another kernel. 2) Workloads

with very low occupancy – If a kernel has low occupancy due to oversubscription of

system resources, it can also limit the resource utilization of other kernels sharing the

same SM.

More Intelligent CTA Partitioning

In addition to the increased resource contention imposed by previous co-scheduling ap-

proaches, we also observe the detriment of a naive CTA partition between co-scheduled

kernels, and by contrast, the importance of finding a “good” CTA partitioning strategy.

Figure 8.13 shows IPC and utilization for co-scheduling of the kernel pair <SPM, STE>

with various CTA partitions. The right sub-figure shows that without multi-tasking,

SPM is characterized as memory bound and STE is computation bound. STE alone

(< 8, 0 >) has high SP utilization; SPM alone (<0,8>) has low MEM utilization but

suffers from long off-chip memory stalls. Mixtures of SPM and STE complement one

114

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

<8:0><6:2><4:4><2:6><0:8>

IP
C

STE

SPM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

SP MEM SP MEM SP MEM SP MEM SP MEM

<8:0> <6:2> <4:4> <6:2> <8:0>

U
ti
li
z
a

ti
o

n

STE-U

SPM-U

STE-S

SPM-S

Figure 8.13: Breakdown of IPC and utilization under intra-core multitasking of <STE,
SPM> with various CTA partitions. “S-” indicates memory stalls and “U-” indicates
effective utilization.

another in the memory pipeline. Fewer SPM threads help to alleviate off-chip mem-

ory contention while STE helps hide long latencies via on-chip memory accesses. The

right sub-figure demonstrates that some intelligence is needed in determining the CTA

partition of co-scheduled kernels that maximizes performance. A naive <4,4> parti-

tion has significantly lower IPC than a <6,2> partition. With an optimal partition

between co-scheduled kernels, we can achieve substantially higher utilization of execu-

tion resources. While we recognize the potential benefits of selecting an optimal CTA

partition, we leave optimal CTA partitioning in ICMT as future work, relying for now

on our heuristic, which demonstrates good performance.

8.8 Conclusions

Modern GPUs seldom reach their massive throughput potentials due to inadequate TLP

and oversubscription of system resources. Co-scheduling of different kernels within or on

different GPU cores has been proposed as a means of improving utilization and through-

put. However, previous co-scheduling approaches had limited impact on throughput

because of their tendency to increase contention for limited resources, as well as their

naive approach to co-scheduling. In this chapter, we proposed a full, detailed solution

for intra-core multitasking (ICMT), including architectural support and a contention-

aware approach to co-scheduling that improves TLP and PLP in a balanced fashion.

115

We demonstrated 28.07% average performance benefits for ICMT with only 1.79% area

overhead, compared to conventional single kernel execution.

Chapter 9

Performance modeling for

intra-core multitasking on GPUs

In the previous chapter, we proposed ICMT, a full, detailed solution for intra-core multi-

tasking for GPGPUs, including architectural support and a contention-aware approach

to co-scheduling that improves TLP and PLP in a balanced fashion. We also observed

the detriment of a naive CTA partition between co-scheduled kernels, and by contrast,

the importance of finding a “good” CTA partitioning strategy. However, making a de-

sirable static scheduling decisions including which applications to be combined and the

exact thread partition among those applications is challenging. Dynamic interactions

between the co-scheduled kernels when contending for resources inside SMs must be

taking into consideration.

In this chapter, we propose a computationally-efficient static analytical prediction

model that determines thread partitions in fine-grained spatial multitasking to achieve

optimal GPU throughput. A key feature of our technique is a novel fine-grained kernel

mixing algorithm that determines a pairing of kernels that provides optimal or near-

optimal throughput enhancement. Then we propose a new warp scheduling algorithm

for mixing applications that further improves performance by avoiding local starvation

in SIMT pipelines.

The remainder of the chapter is organized as follows. section 9.1 provides background

116

117

and motivation. section 9.2 describes the framework of our proposed architecture en-

hancements and our overall approach. section 9.3 describes the analytical performance

model used to make optimal kernel partitions. Static analysis requirements of the model

are explained in section 9.5. section 9.6 proposes an inter-warp scheduling policy that

avoids local execution pipeline starvation while mixing kernels. Sections 9.7, 9.8, and

9.9 present our evaluation methodology, results, and related work. Finally, section 9.10

summarizes and concludes the chapter.

9.1 Background and Motivation

9.1.1 Terminology

We define some basic terms that will be used throughout this chapter.

Issue interval, denoted as Cp, represents the average number of cycles it takes for

one instruction being issued to pipeline p. Pipeline latency, denoted as latencyp, is

the the average number of cycles of one instruction executing in the pipeline p before

write back stage. Note latencyp is much longer than Cp, and both Cp and latencyp vary

across different SIMT pipelines and are determined by the instruction mix of the kernel.

Thus, Cp and latencyp are considered kernel parameters that can be obtained through

profiling.

Pipeline utilization, denoted as U , is represented by the probability of the pipeline

executing without stalls throughout the execution. As all the cores of the same pipeline

have the same utilization due to SIMT paradigm, the utilization of pipeline p can be

expressed as Up = IPCp × Cp, where IPCp is the IPC corresponding to pipeline p.

Note by definition, the maximum utilization, denoted as Umax, is 1 as the pipeline is

occupied 100%. Considering system utilization of a SM as the sum of the utilization

of SP , MEM and SFU units, thus the system utilization, denoted as Usystem, can be

derived as follows,

Usystem =
∑

p∈{SP,MEM,SFU}

Up ×# of cores in pipeline p. (9.1)

In this chapter, we use Usystem as the throughput metric to evaluate our kernel mixing

technique.

118

9.1.2 Key Performance Bottlenecks in SMs

To optimize the system utilization in Equation 9.1, we explore the existing constraints in

current architecture that limits the shader performance or IPC. As discussed in previ-

ous chatper, there are three key performance bottlenecks that can potentially determine

IPC:

• Parallelism constraints. Every cycle, the scheduler can only issue an instruction

if there is at least one active warp. Poor parallelism leads to substantial stalls in

the pipelines.

• Dispatch unit constraints. Every cycle, the dispatch unit can only issue limited

instructions to dedicated SIMT pipelines, thus IPC is no large than dispatch unit

throughput.

• Pipeline constraints. For each individual SIMT pipeline, the pipeline utilization

can never exceed 100%.

In any cycle t, one of three constraints becomes the critical bottleneck that determines

the system performance IPC(t). Therefore, given Nactive(t) is the number of active

warp in cycle t and Umax dispatch denotes the maximum dispatch unit throughput, the

above three constraints of the IPC can be formulated as follows,
IPC(t) ≤ Nactive(t),

IPC(t) ≤ Umax dispatch,

IPCp(t)× Cp ≤ Umax,

(9.2)

where p ∈ {SP,MEM,SFU}. Assuming the behavior of the kernel is relatively stable

over the whole execution, only one bottleneck in Equation 9.2 is dominant and thus can

be used as the critical constaints to determine the shader performance, the rest of the

constraints are thus considered non-critical.

Note within SMs multitasking technique can boost the system throughput as it

improves both parallelism and pipeline constraints to some extent. However, those

two constraints often affect each other, overly improving the critical constraints can

sometimes make the non-critical constraints become critical. Therefore, it is challenging

to find the optimal scheduling decision that can balance all the constraints.

119

 0

 0.2

 0.4

 0.6

 0.8

 1

SP M
EM

SFU
AVG

SP M
EM

SFU
AVG

.

SP M
EM

SFU
AVG

.

SP M
EM

SFU
AVG

.

SP M
EM

SFU
AVG

.

S
IM

T
 P

ip
e
lin

e
 U

ti
liz

a
ti
o
n

(a)

BL

HIS
BL

MIX: BalanceMIX: OccupancyMix: OptimalSOLO: BLSOLO: HIS

 0

 0.2

 0.4

 0.6

 0.8

 1

O
PT.

O
C
C
.

BAL.

S
IM

T
 P

ip
e
lin

e
 U

ti
liz

a
ti
o
n

(b)

HIS
BL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

O
PT.

O
C
C
.

BAL.

O
c
c
u
p
a
n
c
y

 (c)

HIS
BL

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

O
PT.

O
C
C
.

BAL.

S
y
s
te

m
 P

e
rf

o
rm

a
n
c
e

 I
n
c
re

a
s
e

(d)

Figure 9.1: An example of multitasking within SMs w/ (HIS, BL) pair. (a)SIMT
pipeline utilization of two kernels running alone and within SMs multitasking w/ 3
different kernel partitions. (b) Avg. pipeline utilization w/ different kernel partitions
(c) Occupancy breakdown w/ different kernel partitions (d) Avg. system performance
improvement w/ different kernel partitions .

9.1.3 Motivational Example

To illustrate how scheduling decision affects the system performance by changing paral-

lelism and pipeline constraints, we simulate two kernels in a kernel mixing scheme under

different thread partitions. We pick two kernels with extremely different characteristics.

BlackScholes (BL) is a compute-bound kernel with good parallelism while Histogram

(HIS) is a memory-bound kernel that is significantly underutilized due to poor paral-

lelism. Two intuitive thread partition policies are picked here, with the aim to improve

parallelism and pipeline constraints of the shader.

• “occupancy” (OCC) tries to improve parallelism constraints by picking the thread

partition that maximizes the occupancy of the shader.

• “balance” (BAL) aims to balance the ALU and MEM utilization. Given the

steady-state pipeline utilization partition unknown, it assumes the pipeline uti-

lization in steady state is proportional to the number of threads initially assigned

from each kernel.

For comparison, “optimal” (OPT) is the thread partition with the highest system

throughput improvement, where system throughput improvement is compared with ker-

nel running individually under the same workload.

Figure 9.1(a) shows the pipeline utilization breakdown in 5 scenarios: 2 kernel (HIS

and BL) running alone, and kernel pair (HIS, BL) mixing under 3 different partitions.

As indicated in Figure 9.1(a), OCC has very good parallelism, but low utilization in

120

MEM pipeline limits the system performance. While poor parallelism from BAL parti-

tion leads to substantial performance loss from a shader with balanced SIMT pipelines.

Figure 9.1(b, c, d) illustrate the comparison of OCC, BAL and OPT partitions in

pipeline utilization, occupancy and system performance improvement respectively when

mixing (HIS, BL). There is at least 20% system performance increase when multitasking

within SMs under different thread partitions, as shown in Figure 9.1(d). However, there

is still an significant gap between the two initiative partition policies and OPT. Such

underutilization is mainly due to overly improving one constraints, causing other con-

straints become critical. Therefore, to fully take advantage the within SMs multitasking

technique, we need to address both pipeline and parallelism constraints together. As

indicated in Equation 9.2, it requires the prediction of Nactive and pipeline utilization

of each kernel in steady state. As shown in Figure 9.1(b) and (c), initial thread parti-

tion ratio is not sufficient enough to indicate the steady-state performance/ utilization

partition. Therefore, to have a within SMs multitasking technique that can always

permit optimal or near-optimal scheduling decisions, we need to develop an analyti-

cal performance model that can predict kernel IPC in steady state given any thread

partition.

9.2 System Framework

9.2.1 Fine-grained Multi-tasking within SMs

The top level framework for the proposed partitioning technique is presented in Fig-

ure 9.2(a), showing changes that are made on top of the current GPU structure. When

a new kernel is assigned to the GPU, we place it in the kernel pool. The kernel man-

agement unit determines the optimal pair of kernels from the kernel pool that can run

concurrently, as well as the detailed grid allocation among the kernels that optimizes the

system throughput. This determination is made by gathering certain kernel-dependent

information during static program analysis. All possible kernel mixes, along with their

characterized profiles, are fed into the performance model, and the optimal kernel mix

and grid partitions are determined. This solution is sent to kernel distributor, which

allocates the kernel grids from multiple kernels to each SM, as if they are from the same

kernel.

121

Kernel Pool

...

Kernel Management Unit

SM SM SM ... SM

Performance
Model

Tentative
Kernel

Allocation

Kernel-dependent
Parameters

Kernel DistributorKernel Distributor

Kernel partition
with optimal throughput

Top Level Workflow Dual-Issue Scheduler

Odd Warps

Even Warps

Active

Inactive w/ control hazards

SP

SP

MEM

SFU

MEM

SFU

D
is

p
at

ch
 U

n
it

D
is

p
at

ch
 U

n
it

Inactive w/ data hazards

Static Program Analysis

(a) (b)

Figure 9.2: (a) Overall System Framework of Fine-grained Kernel Mixing and Grid
Partitioning Technique, (b) Hardware Modification on Dual-Issue Scheduler

9.3 Analytical Performance Model

We consider the situation where two kernels, k1 and k2, are mixed together. We use

the subscript k1 or k2 to refer to the value of a parameter in the corresponding kernel.

The subscript p is used to refer to a specific pipeline. For example, IPCk1,prefers to

the IPC of pipeline p with respect to instructions from kernel k1. Clearly, IPCk1 =∑
p∈{SP,MEM,SFU} IPCk1,p.

9.3.1 Problem Formulation and Assumptions

With the scheduler modification, the performance prediction problem can be formulated

as follows. Let Nk be the number of warps initially assigned per SM from kernel k.

Predict the steady-state IPCk of each kernel during concurrent execution.

We make the following assumptions:

1. For each kernel, with a fixed scheduling policy, IPC is considered stable through-

out the kernel’s execution. In the case of multiple non-repeating phases with dis-

tinct patterns and instruction classification behavior, non-repeating phases should

be modeled separately.

122

=
=

+ +
+ +

Kernel1:

Kernel2:

Initial Warp Allocation = Inactive Warps
w/ Control Hazards

Inactive Warps
w/ Data Hazards

Active Warps+ +

IPC Model Active Warps

Model

IPCk1

IPCk2

Nactive_k1, Nactive_k2

Figure 9.3: Detailed Mean Value Based Performance Model

2. In the steady state, the number of warps issued to each SIMT pipeline in the

time interval (0, T] is a Poisson process with an arrival rate of IPCp × T , where

p ∈ {SP,MEM,SFU}. If the SM has multiple kernels running concurrently,

IPC of each kernel also remains stable.

As a result, a mean value based prediction model is good enough to provide decisions

that result in optimal or near-optimal throughput for mixed kernel partitions. Given

that parallelism and pipeline constraints are the only two performance bottlenecks,

Equation 9.2 can be written as follows.
∑

p∈{SP,MEM,SFU} IPCk,p ≤ Nactive,k,∑
k∈{k1,k2} IPCk,p × Ck,p ≤ Umax,

(9.3)

Note that Nactive,k,p is the number of active warps from kernel k with next instruction

to be issued in pipeline p right before the warp scheduler issues the next instruction. We

refer to the total number of active warps as Nactive,k =
∑

p∈{SP,MEM,SFU}Nactive,k,p.

Nactive,k reflects how aggressively one kernel can utilize SIMT pipelines during con-

tention. Therefore, as shown in Equation 9.3, if we can find the Nactive,k in each pipeline,

we can derive IPCk. On the other hand, Nactive,k can be derived by Ninact,k subtracted

from Nk, and Ninactvie,k can also be derived from IPCk, as IPCk has a direct impact

on how many warps become inactive due to data hazards.

9.3.2 Mean Value Based Performance Model

The goal of the performance model is to predict the steady-state IPCk and Nactive,k.

Figure 9.3 illustrates the performance model for a given kernel pair with detailed warp

status distribution in steady state. The figure shows a warp status distribution during

123

Avg. active warps

active warp of k1
D

is
p

a
tc

h
 U

n
it

Pipeline utilization

(a)

IdleUtilization w/ k1

D
is

p
a

tc
h

 U
n

it

0.125 0.125

3 2

active warp of k2

Avg. active warps

Utilization w/ k2

0.05 0.025

0.375 0.25

0.125 0.063

SP

MEM

SFU

SP

MEM

SFU

(b)

Pipeline utilization

Figure 9.4: Determining throughput for mixed kernels: (a) Pipeline constrained sce-
nario; (b)Parallelism constrained scenario.

execution from an individual kernel’s perspective. The kernel consists of inactive warps

with control hazards, inactive warps with data hazards, and the rest are active warps.

In our presentation below, we

This model integrates two sub-models:

• The IPC model, described in subsection 9.3.3, estimates the steady state IPC

for the two kernels as a function of the number of active warps of each kernel.

• The Active Warps model, described in subsection 9.3.4, derives Nactive,k1 and

Nactive,k2 as a function of IPCk.

The two sub-models together form a simple nonlinear equation that does not admit a

closed-form solution but can be solved iteratively in a few iterations using a standard

root-finding method.

9.3.3 IPC Model

We now develop an analytical model that calculates IPCk1, IPCk2 from the number of

active warps of each kernel. To explain how performance is determined with multiple

active warps in the scheduler, we consider two scenarios, shown in Figure 9.4. For both

scenarios, the figure shows two kernels being co-issued to an SM by a single dispatch

unit1 . The numbers within the scheduler box indicate the average number of active

warps in the steady state for each of the three pipelines. We use Pk,p to denote the

1 Recall that an SM has two dispatch units, each of which can feed an SP pipeline (exclu-
sively) and the MEM and SFU pipelines (on a shared basis). The figure shows these three pipelines
(SP, SFU,MEM) being fed by a single dispatch unit.

124

probability that an instruction will be issued to pipeline p from kernel k. This quantity

reflects the degree of balance in the way kernel k utilizes the available pipelines, and

can be obtained by profiling the kernel and its instruction mix. Individual pipeline

utilization is shown to the right of the dispatch unit, with a solid bar representing

utilization of kernel k1, a hashed bar representing utilization of kernel k2, and an empty

bar representing idleness in the pipeline.

Determining Shader IPC

When multiple kernels are running concurrently in an SM, as shown in Equation 9.3,

the mixed kernels are in one of two scenarios.

Parallelism constrained scenario: When there are not enough warps to keep any

of the pipelines fully utilized, the SM suffers extra stalls, as illustrated in Figure 9.4(b).

Many factors can lead to insufficient active warps, including low occupancy due to

large resource requirements such as registers, shared memory, or grid size, or frequent

thread block synchronizations that lead to invalid warps. In general, we say the SM

is parallelism constrained, as the SM cannot provide sufficient active warps to keep at

least one of the pipelines fully utilized. In the steady state, an equilibrium is reached

where a warp is issued as soon as it turns active. Hence, for ∀p ∈ {SP,MEM,SFU},
we have:

IPCk,p = Nactive,k,p,∀k ∈ {k1, k2}. (9.4)

From the definition of Pk,p, it can be assumed that Nactive,k,p = Nactive,k × Pk,p, where

Nactive,k is the number of active warps in kernel k. Considering that none of the pipelines

are fully utilized, the following condition must be satisfied for ∀p ∈ {SP,MEM,SFU}:

Nactive,k1 × Pk1,p × Ck1,p +Nactive,k2 × Pk2,p × Ck2,p < 1 (9.5)

Pipeline constrained scenario: In this scenario, the SM has sufficient active

warps ready to issue from the scheduler; however, one of the pipelines is fully utilized

and becomes the performance bottleneck of the SM. Figure 9.4(a) illustrates a fully

utilized SP pipeline.

IPCk1,p × Ck1,p + IPCk2,p × Ck2,p = Umax = 1 (9.6)

125

When the pipeline p is fully utilized, not all the active warps can be issued immediately.

Thus IPCk,p should be smaller than Nactive,k,p, combining with Equation 9.6, the left

side of Equation 9.5 must be greater than one when the shader is in the pipeline con-

strained scenario. Therefore, Equation 9.5 can be used as the boundary between the

two scenarios.

When pipeline constrained, the warp scheduling policy determines how the pipeline

utilization breaks down among two kernels in steady state. In this chapter, we assume

the scheduler uses a loosely round-robin scheduling policy. As each active warp is equally

likely to be issued in a round-robin warp scheduler, it is reasonable to assume that when

pipeline p is fully utilized, the IPC of kernel k with respect to pipeline p (IPCk,p) is

proportional to the number of active warps of the kernels (Nactive,k,p). Furthermore, as

only p is fully utilized, Equation 9.4 also works for the rest of the pipelines. Therefore,

we have:
IPCk1,p

IPCk2,p
=
Nactive,k1,p

Nactive,k2,p
=
Nactive,k1 − IPCk1 × (1− Pk1,p)

Nactive,k2 − IPCk2 × (1− Pk2,p)
(9.7)

From the assumption that kernel behavior is stable over its execution, a kernel that

reaches the steady state must either be limited by parallelism constraints or pipeline

constraints; one of the constraints is always dominant over the other when determining

the performance of the shader. This is also verified through our experiments: each

benchmark suffers primarily from either single pipeline congestion or from insufficient

warps, with the effect of other factors such as branch divergence being less than 5% for

GPU applications.

Therefore, with Equation 9.5 serving as the boundary condition of the two scenarios,

from Equation 9.4, 9.6 and 9.7, the performance of individual kernel IPCk can be derived

as a piecewise linear function of Nactive,k.

9.3.4 Active Warps Model

As shown in Figure 9.3, the Active Warps model estimates the number of inactive

warps in the steady state based on IPCk and certain kernel-dependent information.

Ninact control,k and Ninact data,k of kernel k reflect the impacts of control hazards and

data hazards during execution, both of which are determined by the behavior of its

own instruction sequence of the kernel, and thus are independent from the other kernels

126

running simultaneously. Therefore, we can calculate Nactive,k considering only its own

IPCk and the kernel characterization parameters. Note with Nk warps initially assigned

to each SM from kernel k, Nactive,k can be calculated as follows.

Nactive,k = Nk −Ninact control,k(IPCk)−Ninact data,k(IPCk). (9.8)

The following two sections will consider control hazards and data hazards, respec-

tively.

Control Hazards

Inactive warps due to control hazards are mainly caused by branch prediction and

grid synchronization, both of which are kernel-dependent characteristics under a round-

robin scheduler. In the steady state, the fraction of inactive warps with control hazards

typically remains stable. Thus, for a kernel k, Ninact control,k can be written as Nk ×
Pinact control,k, where Pinact control,k is the probability of a warp turning inactive due to

control hazards and Nk is the total number of warps assigned from the kernel. This

probability is obtained through profiling.

Data Hazards

Data hazards occur when instructions which exhibit data dependence modify data

in different stages of the pipelines. As an in-order SIMT processor, CUDA prevents

data hazards by making a warp inactive when there is a read-after-write (RAW) or

write-after-write (WAW) dependence between the next instruction of the warp and pre-

vious instructions of the warp which still reside in the pipelines. The warp returns

to the active pool and resumes when there is no longer such data-dependencies in the

pipelines. Given the scheduler modification with three individual dispatch units pro-

posed in subsection 8.5.1, we further break down active warps into three categories

based on the pipelines next instruction will be issued to (SP, SFU,MEM). For each

pipeline, the behavior of warps that turn inactive due to data hazards can be modeled

as an independent queuing system.

Figure 9.5 shows the schematic of the queuing system. We say that an inactive

warp arrives to the system when the warp turns inactive due to a data hazard. Each

inactive warp remains in the system until the data hazard is resolved and the warp

127

Arrivals:
Warp turns inactive
due to data hazards

Departures:
Warp turns back

active

Queuing system:
 inactive warps in the

pipeline p

Figure 9.5: Flow of inactive warp through a queuing system

becomes active. According to Little’s Law [75], in the steady state, the average number

of items in a queuing system equals the average rate at which items arrive multiplied

by the average time that an item spends in the system. Considering each pipeline as an

independent queuing system,

L = λW (9.9)

where L is the average number of inactive warps in the queuing system, W is the average

waiting time before a warp returns to the active pool, and λ is the average number of

inactive warps arriving per cycle.

To solve the problem, we define the following two key concepts. Considering pipeline

p of kernel k as the queuing system, data hazards probability, denoted as Pinact data,k,p,

is the probability of one instruction of kernel k turning the warp inactive due to a

data hazard in pipeline p. Data hazard inactive time, denoted as Tinact data,k,p, rep-

resents the average waiting time before the warp in kernel k becomes active again in

pipeline p. Therefore, we have λ = IPCk,p×Pinact data,k,p and W as Tinact data,k,p. From

Equation 9.9, Ninact data,k,p can be calculated as:

Ninact data,k,p =

IPCk,p × Pinact data,k,p(IPCk,p)× Tinact data,k,p(IPCk,p). (9.10)

As denoted in Equation 9.10, both Pinact data,k,p and Tinact data,k,p are functions of

IPCk,p.

128

i2

i4

i5

i6

i7

i2

i4

i5

i6

i7

5

5

2

2

2

5,1

2,2

2,0

2

5,2

2,0

5

2

2,1

(b) (c)

i2

i4

i5

i6

i7

5
5

5

2

2

2

2

2

2

(a)

2

5

i1 i1 i1

i3 i3 i3

sp Inst

mem Inst

Figure 9.6: DAG Data Dependency Example: (a) Original DAG Graph; (b) DAG Graph
After Forward Trace; (c) Critical Data Dependency DAG Graph

9.4 Expressing E[Pinactive data(IPC)], E[W (IPC)]

In this section, we show how the two functions on the right-hand side of Equation 9.10,

Pinactive data,k,p and Wk,p can be written as functions of IPCk,p. For notational sim-

plicity, we will drop the k subscript in this section. We begin by showing how data

dependency is profiled in each kernel, and then show how this information is used to

build the required models.

9.4.1 Profiling Data Dependency

For local data dependency analysis [76], based on run-time profiling where all loops

are unrolled, instructions and their data dependencies are often represented using a

directed acyclic graph (DAG) [77]. A graph node represents an instruction with a index

number indicating instruction execution order. Each node has a type (SP, SFU,MEM)

and a corresponding execution latency. A graph edge from node i to node j denoted

as (i, j) represents a data dependency between node i and j with a weight equal to

the execution latency of node i. This weight is the minimal number of cycles that must

129

elapse between the issue of i and the issue of j. For example, Figure 9.6(a) shows a DAG

of 7 instructions. There are two types of instructions with different latencies. Nodes i1

and i3 have a latency of 5 and the remaining instructions have a latency of 2.

Not all the edges in a DAG will cause data hazards due to the nature of in-order

nature of CUDA. As shown in Figure 9.6(a), (i1,i3) will never cause a data hazard as

transitivity implies that meeting (i1, i2) and the in-order precedence between i2 and i3

imply that (i1, i3) will always be met. Thus it is possible to refine the DAG with each

edge indicating critical data dependency information that resulting a stall.

We define an edge (i, j) as critical edge if the warp turns inactive at node j due

to data dependency between (i, j) when node i still resides in the pipelines and turns

active right after node i exits the pipelines. A two-step algorithm is introduced to find

all the critical edges of a DAG as follows, given a data dependency DAG,

1. Forward trace: for each edge (i, j), keep the edge if j is the first node in execution

order that has a edge with i, otherwise, remove it.

2. Backward trace: for each remaining edge (i, j), keep the edge if node i is the last

instruction that exits the pipelines before node j.

Figure 9.6(a) and Figure 9.6(b) are the DAG after forward trace and backward trace

respectively.

The pruning operations due to forward trace are exact since all edges emanating

from a node have equal weight. The implementation of the backward trace depends on

the ability to identify the last instruction that exits the pipeline. We use an approximate

heuristic here, using the highest numbered instruction for this purpose, unless one or

more of the preceding instructions is a memory instruction, in which case we use the

highest numbered memory instruction. Note that this approximation is acceptable

since we are trying to build a performance predictor where some degree of inaccuracy

is acceptable.

A critical edge not only determines if an instruction will turn the warp inactive,

but also indicates how long this inactive period can be. Given a critical edge (i, j) we

know that node i will cause the warp turn inactive if node i still resides in the pipeline

when node j is about to be issued. The warp turns active again after node i exits the

pipeline. This inactive period determined by the execution latency of node i and number

130

of instructions from the same warp between node i and j. Moreover, the latter has a

impact on the inactive probability for a instruction: the more instructions between i

and j, the better chance that i will finishes execution before j is about to be issued.

After the forward and backward traces, each node has at most one predecessor and

at most one successor. For a node ij , let us refer to its successor node, if any, as ik.

We define the critical data dependency distance for node ij , denoted CD3(ij), as the

number of instructions between ij and ik, i.e., |k − j|. If ij has no successor, its CD3

value is defined to be zero.

Applying this definition to Figure 9.6(c), CD3(i1) = CD3(i6) = 1, CD3(i2) = 2,

CD3(i3) = 3, and CD3(i4) = CD3(i5) = CD3(i7) = 0.

Calculating Pinactive data

Intuitively, CD3 captures the most critical data dependency associated with an

instruction. If x consecutive instructions of the same warp reside within the pipelines,

thus all the nodes with CD3 less than x will result in an inactive warp. The CD3 for all

instructions can be obtained through profiling, and a CD3 histogram is used to represent

the distribution of CD3 of the entire kernel. Note that different types of instructions

usually have diverse data dependency characteristics hence are considered separately.

Figure 9.7(a) shows the CD3 histogram of SP and MEM instructions of kernel

AES. The x-axis is the CD3 value and the y-axis is the probability of occurence, i.e.,

the fraction of total instructions that have this CD3 value, in AES. In other words,

histp,x represents the probability of an instruction from pipeline p ∈ {SP, SFU,MEM}
having a CD3 of x. For example, the first bar in the figure, i.e., histsp,1 is the probability

that an instruction associated with SP has a CD3 value of 1, i.e., that the warp turns

inactive immediately after a SP instruction being issued.

Therefore, if x is the total number of instructions issued from the same warp since

Inst, before Inst exits the last stage (write back stage) of the pipeline p, the probability

of inactivity of instruction Inst can be expressed as:

Pinactive data,p(x) =

x∑
j=1

histp,j (9.11)

131

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10 11 12 13+

P
ro

b
a

b
ili

ty
 (

%
)

Reuse distance

Figure 9.7: (a) CD3 histogram of AES; (b) Pinactive data(x) of AES

This is simply the cumulative probability of CD3 being no larger than x. Next, we must

find the expected value of the LHS of this expression, based on the distribution of x.

Figure 9.7(b) shows computed Pinactive data(x) of SP and MEM instructions for

kernel AES. Considering that the behavior of issuing instructions to pipeline p can be

described as a Poisson process with an arrival rate of IPCp, given N warps available

in the scheduler with round robin scheduling, each warp is equally likely to be issued.

The arrival rate of instructions to pipeline i from the same warp is IPCp/N . If x is the

number of instructions issued from the same warp to pipeline p, and the latency of the

pipeline is latencyp cycles, then x is modeled as a discrete stochastic variable x that has

a Poisson distribution with parameter λ that is the product of the arrival rate and the

time interval, i.e.,

λ =
IPCp × latencyp

N
. (9.12)

The probability mass function of x is given by

f(k;λ) = Pr(x = k) =
λke−λ

k!
, (9.13)

132

D
is

p
at

ch
 U

n
it

i1

WB

WB

Case 1:

Case 2:
(a)

(b)i Warp inactive w/ data hazards of instruction i

SP

MEM

i5

D
is

p
at

ch
 U

n
it

i3

WB

WB

SP

MEM

i2

i4

i5

i6

i7

Tinactive = Pipeline_Latency

Tinactive = Pipeline_Latency – [Tissue(i5) – Tissue(i3)]

(c)

i4

i2

i1

i3

Warp
Scheduler

i6

Warp
Scheduler

Figure 9.8: Calculateing Tinactive data

Therefore, the mean of Pinactive data,p(x) can be derived as the following kernel-

dependent nonlinear function of IPCp:

E[Pinactive data,p(IPCp)] =

N∑
i=1

f(i;
IPCp × latencyp

N
)× Pinactive data,p(i). (9.14)

From Equation 9.14, we know the more frequently the scheduler issues instructions

from the same warp, more likely it is that a stall occurs. However, the issue rate of the

same warp not only has an impact on how often one warp is inactive, but also affects

how long the inactive period lasts.

Calculating W

When a stall occurs, the warp stays inactive until data hazard is resolved. To explain

how data dependency affects W , we illustrate two scenarios in Figure 9.8. There are

only two pipelines shown in the example and the the numbers inside the pipeline stages

indicate instruction index number from the same warp. The right DAG in Figure 9.8

shows the CD3 graph of the kernel sample.

For case 1 in Figure 9.8(a), instruction i1 has a CD3 value of 1. Thus the warp turns

inactive right after i1 is issued to the pipeline and will turn back active when i1 exits

the pipeline. As a result, W here equals to the execution latency of i1.

133

For case 2 in Figure 9.8(b), there are three instructions, (i3, i4 and i5) from the

targeting warp executing in the pipeline. Due to the data dependency between i3 and

i6, the warp turn inactive right after i5 being issued, since i6 may not be issued until i3

exits the pipeline and the data dependency regarding i6 is resolved. Therefore, W here

equals to the time interval between i5 being issued and i3 exiting the pipeline. If T (i)

is the issue time of instruction i, we have W = latency − (T (i5)− T (i3)).

For both cases, if an instruction with a CD3 value of i causes the warp stall, W can

be summarized as latency minus the issue time interval of i−1 instructions. If there are

x instructions that currently reside in the pipelines, the average issue interval between

each instruction from the same warp is considered as latency
x+1 .

According to the CD3 histogram, considering x as the number of instructions from

the same warp that reside in the pipelines, the probability of a warp turning inactive

due to an instruction with CD3 value of i (i ≤ x), denoted as P [CD3 = i|x], is given

by

P [CD3 = i|x] =
histp,i∑x
j=1 histp,j

=
histp,i

Pinactive data,p(x)
(9.15)

Therefore, the average inactive waiting time of pipeline p, Wp can be expressed as a

function of x,

Wp(x) = latencyp −
x∑
i=1

P [CD3 = i|x]×
(
latencyp
x+ 1

)
(i− 1)

= latencyp

(
1−

∑x
i=1 histp,i ×

i−1
x+1

Pinactive data,p(x)

)
, (9.16)

where latencyp is the average execution latency of pipeline p, and is considered a kernel-

dependent constant.

Similar to Equation 9.14, we can write the mean of the LHS of Equation 9.16 as a

function of IPCp as follows,

E[Wp(IPCp)] ==
N∑
i=1

f(i;
IPCp × latencyp

N
)×Wp(i). (9.17)

Combining Equations 9.10, 9.12, 9.14, and 9.17, Nactive of each kernel in stable state

can be expressed as a nonlinear function of IPCp .

134

9.4.2 Numerical Solution of the Complete Model

From section 9.3.3, IPC is a piecewise linear function of Nactive. Combining the IPC

model, which provides the left hand side of Equation 9.8, and the Active Warps model,

which provides the right-hand side, we numerically solve this nonlinear equation Nactive.

Both Nactive and Ninact are monotonic increasing functions of IPC by definition, and

therefore, only one positive solution exists. Since the solution for IPC is unique, we

can solve the performance model using a standard root-finding algorithm, such as the

bisection method [78] or the false position method [79]. In practice, this is a simple

numerical computation that typically converges in four or five iterations.

9.4.3 Limitations of the Analytical Model

Our analysis does not consider the impact that kernel mixing has on cache misses

and memory access latency. The tendency of the model is to balance memory-bound

and computation pipeline utilization. There is little chance that our model decides to

pair two memory-bound kernels together, which would create extra memory contention.

Branch divergence is not handled explicitly in our model; however, our model is aware

of Pinact control, and mixing kernels effectively alleviates the impact of insufficient warps

caused by frequent branch divergence.

9.5 Static Program Analysis

All the parameters that fed to performance model can be obtained either from an

automated characterization or by running PTX or assembly level code analysis[]. In

this chapter, we choose hardware based automated characterization aiming for fast

online response.

Once a new kernel comes to the pool, before mixing it with any other kernels, we

assign the kernel alone for a sampling period, while during the execution, hardware

performance counters on the SM are triggered to measure the following 5 behaviors:

number of instructions issued to each pipeline, number of cycles that each pipeline is

occupied, number of invalid warps in warp scheduler in each cycle, execution latency

and the input /output registers of each instruction.

135

Note that the first three can be achieved in existing hardware performance counters

by performance sampling. The last two require modifications to existing performance

counter. For our purposes, we aim to determine the average execution latency and

data dependency information of the kernel, which requires only targeting be behavior

of one warp instead of the whole SM. This can be implemented by adding a module

to compare warp id prior the sampling each cycle. Assuming the kernel have uniform

behavior among the warps, then we can obtain such parameters through some simple

calculation. Once the sampling process is completed, we can switch back to normal

execution, and the migration overheard is negligible given fast context switch capability

of GPU.

9.6 Warp Scheduling against Pipeline Starvation

When an instruction is dispatched in MEM pipeline, the memory controller will submit

the corresponding memory transactions to interconnection network. Once all transac-

tions are submitted, the MEM pipeline will start dispatch the next instruction per-

mitting there is any. However, if the memory instruction is non-coalesced, it might

potentially take hundreds of cycles until all memory transactions are fully submitted.

Ultimately, if it takes too long that there will be no active warp left for the rest of the

pipelines as all active warps are stuck in MEM pipeline, we call this pipeline starvation.

New warp scheduling policy can improve pipeline starvation by setting low issue priority

to non-coalesced memory instructions. Heuristically, we adjust the priority so that the

number of memory transactions from kernel k is proportional to Nactive,k,MEM .

9.7 Experimental Methodology

We have modeled our proposed architectural enhancement using a cycle-accurate GPU

simulator, GPGPU-Sim [52]. The evaluation benchmarks are selected from the CUDA

SDK [59], Rodinia [80], and GPGPU-Sim benchmark suites [81]. We include results on

18 benchmarks with a wide variety of behaviors – compute-bound vs. memory-bound;

sufficient warps vs. insufficient warps due to resource constraints; barrier synchroniza-

tion vs. barrier-free; and branch divergence vs. branch divergence free. For benchmarks

136

that contain multiple kernels, we only evaluate the first kernel.

9.7.1 Performance and Throughput Metrics

Our fined grained kernel scheduling and partitioning mechanism is based on two metrics,

the SM IPC and the throughput ratio.

We use speedup in execution time under the same workloads to represent the

throughput improvement. The throughput ratio is the number of cycles when kernels

run alone, divided by the number of cycles when they run concurrently under the same

workload. To understand the metric, consider the case where two kernels are assigned

together, where the workloads, in terms of number of instructions, are denoted as Lk,

k ∈ {k1, k2}. If one workload is significantly more than the other, we should deliberately

assign more grids from this kernel in order to further take advantage of kernel mixing.

This will change the objective function that we try to optimize and is dependent on the

workload ratio.

In this chapter, we do not consider the problem of predicting the number of instruc-

tions of each kernel. In order to focus on the effect of improvement in throughput, we

assume all the workloads are running indefinitely or throughout the duration of the

evaluation period. Under this assumption, the throughput ratio can be described as

follows. If we consider kernels running concurrently with a certain partition, long after

the SM reaches steady state, after cycle T , then

Throughput Ratio =

∑
k∈{k1,k2} Lk(T)/T

IPCsolo,k
, (9.18)

where IPCsolo,i is the SM IPC of kernel k when running alone on the SM.

9.7.2 Simulation Framework

Our simulator is modified from GPGPU-Sim v3.0.1 and is configured to model a GPU

similar to NVIDIA’s GTX480. The warp scheduling module is configured as a dual-

scheduler, and we increase the throughput to support up to 3 instructions per cycle

as mentioned in subsection 8.5.1. The dual-schedulers operate alternately, leaving only

one scheduler active each cycle. GPGPU-Sim configures the SM frequency to half to

compensate 16 execution units with a warp size of 32. We keep the original clock but

137

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
in

a
c
ti
v
e

_
d

a
ta

(x
)

of instructions in pipelines

AES

SP MEM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
in

a
c
ti
v
e

_
d

a
ta

(x
)

of instructions in pipelines

BAC

SP MEM SFU

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
in

a
c
ti
v
e

_
d

a
ta

(x
)

of instructions in pipelines

BFS

SP MEM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
in

a
c
ti
v
e

_
d

a
ta

(x
)

of instructions in pipelines

HIS

SP MEM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
in

a
c
ti
v
e

_
d

a
ta

(x
)

of instructions in pipelines

HOT

SP MEM SFU

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
in

a
c
ti
v
e

_
d

a
ta

(x
)

of instructions in pipelines

LIB

SP MEM SFU

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
in

a
c
ti
v
e

_
d

a
ta

(x
)

of instructions in pipelines

NQ

SP MEM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
in

a
c
ti
v
e

_
d

a
ta

(x
)

of instructions in pipelines

NQ

SP MEM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
in

a
c
ti
v
e

_
d

a
ta

(x
)

of instructions in pipelines

SOB

SP MEM

Figure 9.9: Pinactive data(x) of the Benchmarks

modify the pipeline stages, throughput and latency based on the type of the instructions.

The numbers come from the measurement on real hardware by [50]. As stated earlier,

for simplicity, only two kernels are allowed to issued concurrently in our experiments.

The simulator has the capability to co-schedule any two kernels with a specified grid

partition within the resource limit. 147 (out of the 153 kernel mix pairs that are possible

from pairwise combinations of 18 kernels) are simulated with at least 5 different grid

partitions on each pair. The remaining 6 kernel pairs cannot be co-issued due to resource

limitations. Each kernel pair with given grid partition is simulated for 200,000 cycles,

and the kernel is reissued immediately if it finishes early. However, it is rare for a kernel

to finish early: most of the kernels last longer than the simulation time.

The maximum thread blocks and warps allowed per SM is configured as 16 and 48.

138

Table 6.2 shows the major configuration parameters of GPGPU-Sim.

9.8 Results

9.8.1 Benchmark Characteristics

Automated characterization is described in section 9.5 by profiling certain hardware

performance counters. We access the same information in GPGPU-Sim as if they are

sampled from the performance counters, the sampling period being set to less than 2s

for each kernel. Figure 9.9 illustrates the Pinactive data of three pipelines corresponding

to the number of instructions reside in the pipelines from the same warp. For some

kernels, only two pipelines are shown as there is no SFU instructions from the kernels.

As shown in Figure 9.9, for most of the kernels, different pipelines display diverse data

dependencies. This further proves the correlation between the data dependency pattern

and instruction type, which matches our assumption. It is worth pointing out that

the rising rate in Figure 9.9 indicates the likelihood of a kernel suffering from resource

constraints. If a curve increases rapidly and this type of instruction is heavily used by

the kernel, e.g., the SP pipeline of SOB, this kernel is more likely to suffer from resource

constraints.

9.8.2 Throughput Prediction in Mixed Kernel Scenario

Figure 9.10 shows the prediction accuracy of the model under kernel mixing. The y-axis

demonstrates the throughput improvement of kernel BL when it is mixed with each of

the other 17 kernels. Each pair picks the grid allocation from the performance model

that provides the highest throughput improvement. Except MUM, the predictions of all

the other benchmarks match well with the simulation results with an average of 5.7%

error. The figure also shows an average throughput improvement of 23.4% when other

kernels are mixed with BL.

For a specific pair of mixed kernels, AES and BL, Figure 9.11 shows the predicted vs.

measured throughput improvement for different grid partitions. The x-axis indicates the

number of grids issued from AES and BL respectively. All possible grid partitions ratios

are evaluated to find the optimal throughput. Overall, there is significant throughput

139

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

AES
BAC

BFS
C
FH

FW
T
H
IS

H
O
T
LIB

LPS
M

U
M
N
N

N
Q

N
W

PAT
R
AY

SO
B

STR

T
h

ro
u
g
h

p
u
t

Im
p
ro

v
e
m

e
n
t

Measured

Predicted

Figure 9.10: Throughput Improvement of BL Mixing with Other Benchmarks

improvement as AES is pipeline-constrained in MEM while BL is pipeline-constrained

in SP. The mix of AES and BL allows a more balanced pipeline utilization between

MEM and SP, and hence sees a significant throughput boost.

The prediction model failed to find the optimal grid allocation decision, correspond-

ing to the optimal partition is (2,4) with 50.99% throughput improvement. However,

the choice that the prediction model makes, (2,5), has a similar (46.15%) increase, cor-

responding to the second best partition. In fact, over evaluations of all 147 kernel pairs,

our prediction model successfully predicts the optimal grid partition in 75 pairs, and

for 95 pairs it is very close to the optimal partition (within 5% in terms of throughput

improvement) while only 21 pairs go beyond 10%. Therefore, the performance model

can accurately capture how throughput changes over a wide range of grid partitions,

providing optimal or near optimal grid partition of each kernel mixes from a throughput

perspective.

9.8.3 Execution Lane Starvation and Inter-warp Scheduling Results

Figure 9.13 shows the effect of inter-warp scheduling discussed in section 9.6 for pipeline

starvation. MUM is the only one of the 18 kernels that we evaluated with Cmum,MEM

over 40, which is 10 times larger than the rest of the kernels. For each kernel mix,

we heuristically set the issue priority in the MEM pipeline, as 0.1 to MUM and 0.9 to

140

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

(2,8)

(2,7)

(2,6)

(2,5)

(2,4)

(2,3)

(2,2)

(2,1)

(1,10)

(1,9)

(1,8)

(1,7)

(1,6)

(1,5)

T
h
ro

u
g
h

p
u
t

Im
p
ro

v
e
m

e
n
t

Measured

Predicted

Figure 9.11: Throughput Improvement Different Kernel Partitions in (AES,BL) Pair

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

AES BAC BFS BL CFH FWT HIS HOT LIB LPS MUM NN NQ NW PAT RAY SOB STR Avg.

T
h
ro

u
g
h
p
u
t
Im

p
ro

v
e
m

e
n
t

Across SM Multitasking
EVEN + IWS

Our Model + IWS
Optimal Kernel Partition

Figure 9.12: Average Throughput Improvement of Benchmarks

the other kernel. As a result, in every cycle in the scheduler, if there are Nactive,MEM

from both MUM and the other kernel, there is 10% chance the scheduler will issue a

instruction of kernel MUM to pipeline MEM. With inter-warp scheduling, the average

throughput is improved from 26.14% loss to 15.13% increase.

9.8.4 Average Throughput Improvement

To our knowledge, there is no other technique that provides throughput-wise optimal

grid partition. For comparison purposes, we considered and evaluated a heuristic parti-

tion technique that we call EVEN. EVEN aims to maximize the number of threads can

issued on the SM, which potentially can alleviate the impact of resource constraints.

In addition, EVEN tries to allocate threads evenly between two kernels that are mixed

141

-0.5

 0

 0.5

 1

 1.5

AES
BAC

BFS
BL C

FH
FW

T
H
IS

H
O
T
LIB

LPS
N
N

N
Q

N
W

PAT
R
AY

SO
B
STR

Avg.

T
h
ro

u
g

h
p
u

t
Im

p
ro

v
e
m

e
n
t

Our Model

Our Model + IWS

Figure 9.13: Effects of Inter-Warp Scheduling of MUM with Other Benchmarks

together, which in general, will improve the balance of the utilization in pipelines. Fig-

ure 9.12 presents the effects of our model and the EVEN model on finding the optimal

grid partition. To sum up, mixing multiple kernels on the SM can achieve an average

of 42.12% throughput improvement and our mean value based prediction model can

accurately predict the near optimal kernel partition, averaging 39.15% in throughput

improvement, better than the results of EVEN.

9.9 Related Work

9.9.1 Simultaneous Multitasking for GPGPUs

The GPU spatial multitasking technique proposed by Adriaens et al. [63] alleviates

system bottlenecks and improves TLP by partitioning GPU cores among multiple ap-

plications with each core executing in the normal single-kernel fashion. This strategy

does not address underutilization (e.g., low PLP) within GPU cores and still applies

homogeneous simultaneous multithreading per core. Gregg et al. [67] and Guevara et

al. [68] first demonstrate the throughput potential of intra-core kernel co-scheduling on

real hardware via off-line kernel merging in software. Such software-based approaches

are not applicable to all workloads and suffer high overhead. Pai et al. [64] implement

concurrent kernel execution on the real hardware, by merging two instruction trace of

142

the kernels running alone. Due to in-order-issue feature of GPUs, merging two instruc-

tion trace serializes two kernels with pre-determined instruction order. Such merged

trace cannot accurately reflect how two kernels interact given different CTA partitions.

Lee et al. citelee14hpca also illustrate the benefit of simultaneous multitasking within

SMs, but the detailed hardware implementation and CTA partition unclear. Our work

is mainly focused on SIMT efficiency due to scheduler, resource and pipeline constraints,

and is thus orthogonal to prior work and can be integrated with above approaches to

further improve SIMT efficiency.

9.9.2 Performance Modeling of GPU

Our performance model is strongly related with our fine-grained kernel partition tech-

nique. However, there is no analytical model that can predict how two kernels reach an

equilibrium, and how the individual kernel performance is impacted by the other kernel

when sharing the SM pipelines. The closest work is by Hong et al.[82], who proposes

an analytical performance model with memory bandwidth and thread-level parallelism

awareness in the single kernel scenario. However, their work assumes a uniform data

dependency, as a warp always stalls before the previous issued instruction of the warp

exits the pipeline, which introduces significant inaccuracy under changing pipeline and

resource constraints. Furthermore, their work cannot predict the performance break-

down in steady state and therefore cannot provide accurate kernel mix decision for our

fine-grained kernel partition technique.

9.10 Conclusion

We have presented an approach for fine-grained kernel mixing, based on a new analytical

performance model. The approach is demonstrated to provide large improvements in

the throughput over existing methods as well as an intuitive kernel mixing heuristic.

Its performance is further enhanced using our inter-warp scheduling algorithm, and the

combined result of these methods show that our mean value based prediction model can

accurately predict the near optimal kernel partition: it achieves an average of 39.15%

in throughput improvement, compared to the optimal 42.12% throughput improvement

possible via our exhausted kernel mixing test.

Chapter 10

Conclusions

In this dissertation, we have presented a comprehensive set of modeling and scheduling

techniques for design-time validation and run-time monitoring and optimization for high

performance computing systems such as CMPs and GPUs.

We have designed and evaluated a shared cache aware performance model named

CAMP for CMPs in a multi-programmed environment. CAMP is capable of accurately

and quickly predicting the effective cache sizes of cache-sharing processes on a CMP

machine using last-level cache access related information. Thanks to the hardware per-

formance counters that are built into most modern high-performance computers, CAMP

does not require modifications to applications, operating system, or the underlying hard-

ware. We also describe an automated way of gathering process-dependent information

for using CAMP online. CAMP has been validated on multiple CMP machines with

different architectures. The average performance prediction error is 3.38% across 36 dif-

ferent process combinations on a quad-core server and 1.57% across 55 different process

combinations on a dual-core workstation, respectively.

We presented a system-level power model for processor power estimation during

run-time in a multi-programmed CMP environment, account for core-wise time sharing

and chip-wise cache contention. Similar to CAMP, the power model makes use of

hardware performance counters, thus requiring no changes to the underlying hardware

or software. We validated the power model on a dual-core workstation and a four-

core server. Experimental results indicate the average error is 3.17% for the dual-core

workstation across 60 different process-to-core mappings and 3.16% for the four-core

143

144

server across 37 different process-to-core mappings, respectively. We also explain how

to integrate CAMP with the power model for power estimation during assignment. We

validated the combined model on the four-core server. The average error is 2.38% across

83 different process-to-core mappings.

Both CAMP and the system-wide power model indicates the last-level cache miss

rate is a good indicator of energy saving opportunities. Therefore, we proposed an off-

chip memory access-aware runtime DVFS control technique for performance-constrained

energy minimization problem. We first proposed an oracle algorithm to determine the

best case energy savings achievable under a performance constraint, assuming a priori

knowledge about application behavior. We then proposed a practical on-line predictive

DVFS algorithm that is capable of generating close-to-optimal results without requiring

a priori knowledge of application behavior. Both algorithms have been evaluated on

a real system. When compared with the most advanced related work (F-DVFS), P-

DVFS leads to energy consumptions within 1.83% of the optimal oracle solutions on

average with a maximum deviation of 4.83%, whereas the F-DVFS results in energy

consumptions within 9.80% of the optimal oracle solution on average with a maximum

deviation of 29.86%. In addition, P-DVFS also reduces power consumption by 9.93%

on average and up to 25.64% compared to F-DVFS.

Moving to the GPU side, after a thorough analysis on per-warp CPI breakdown, we

laid out all the key factors that govern GPU throughput from a single warp perspective.

In order to improve GPU throughput, we need to improve the degree of parallelism,

reduce structural and data hazards, and improve stalls due to barrier and functions

done.

We proposed and evaluated GTLS-TAWS, a new two-level priority scheduling scheme,

which ranks CTAs based on the number of warps suffering stalls due to barrier and func-

tion done, then prioritize warps within CTAs in a greedy then least scheduled fashion.

By keeping warps within the same CTA at similar pace, while different CTAs at differ-

ent progress, GTLS-TAWS can effectively improve stalls due to barrier, function done,

and structural hazards. Compared with baseline GTO scheduling policy, GTLS-TAWS

reduces CPI due to barrier and function done by 47.15%, and achieves an average IPC

speedup of 4.92%.

145

We proposed ICMT, a full, detailed solution for intra-core multitasking for GPG-

PUs, including architectural support and a contention-aware co-scheduling approach

that improves TLP and PLP in a balanced fashion. We demonstrated 28.07% average

performance benefits for ICMT with only 1.79% area overhead, compared to conven-

tional single kernel execution.

Finally, to coupled with intra-core multitasking on GPGPUs, we proposed a new

contention-aware analytical performance model for GPUs. The approach is demon-

strated to provide large improvements in the throughput over existing methods as well

as an intuitive kernel mixing heuristic. Its performance is further enhanced using our

inter-warp scheduling algorithm, and the combined result of these methods show that

our mean value based prediction model can accurately predict the near optimal kernel

partition: it achieves an average of 39.15% in throughput improvement, compared to

the optimal 42.12% throughput improvement possible via exhausted kernel mixing test.

References

[1] Alexandra Fedorova, Sergey Blagodurov, and Sergey Zhuravlev. Managing con-

tention for shared resources on multicore processors. Queue, 8(1), January 2010.

[2] W Kim, M Gupta, G Wei, and David Brooks. System level analysis of fast, per-

core dvfs using on-chip switching regulators. Proc. Int. Symp. High-Performance

Computer Architecture, January 2008.

[3] C Isci, A Buyuktosunoglu, C Chen, P Bose, and Margaret Martonosi. An analysis

of efficient multi-core global power management policies: Maximizing performance

for a given power budget. Proc. Int. Symp. Microarchitecture, pages 347 – 358,

December 2006.

[4] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared caches. In

Proc. Int. Symp. Microarchitecture, pages 423–432, Washington, DC, USA, 2006.

IEEE Computer Society.

[5] S Zhuravlev, S Blagodurov, and A Fedorova. Addressing shared resource contention

in multicore processors via scheduling. Proc. Int. Conf. Architectural Support for

Programming Languages and Operating Systems, March 2010.

[6] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A Design

Perspective. Prentice-Hall, second edition, 2003.

[7] L. Mummert and M. Satyanarayanan. Long term distributed file reference tracing:

Implementation and experience. Software–Practice and Experience, pages 705–736,

1996.

146

147

[8] Hiroshi Sasaki, Yoshimichi Ikeda, Masaaki Kondo, and Hiroshi Nakamura. An

intra-task DVFS technique based on statistical analysis of hardware events. In

Proc. Int. Conf. Computing frontiers, May 2007.

[9] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. Improving performance

isolation on chip multiprocessors via an operating system scheduler. In proc. int.

conf. parallel architectures and compilation techniques, pages 25–38, September

2007.

[10] Lisa R. Hsu, Steven K. Reinhardt, Ravishankar Iyer, and Srihari Makineni. Com-

munist, utilitarian, and capitalist cache policies on CMPs: caches as a shared

resource. In proc. int. conf. parallel architectures and compilation techniques, pages

13–22, September 2006.

[11] T. Qiming, P. F. Sweeney, and E. Duesterwald. Understanding the cost of thread

migration for multi-threaded Java applications running on a multicore platform. In

proc. int. conf. performance analysis of systems and software, pages 123–132, April

2009.

[12] Xi E. Chen and Tor M. Aamodt. A first-order fine-grained multithreaded through-

put model. In proc. int. symp. high-performance computer architecture, pages 329–

340, March 2009.

[13] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting inter-

thread cache contention on a chip multi-processor architecture. In proc. int. symp.

high-performance computer architecture, pages 340–351, February 2005.

[14] Ravi Iyer. CQoS: A framework for enabling QoS in shared caches of CMP platforms.

In proc. annual international conference on supercomputing, pages 257–266, June

2004.

[15] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair cache sharing and parti-

tioning in a chip multiprocessor architecture. In proc. int. conf. parallel architectures

and compilation techniques, pages 111–122, September 2004.

148

[16] G. Edward Suh, Srinivas Devadas, and Larry Rudolph. A new memory monitoring

scheme for memory-aware scheduling and partitioning. In proc. int. symp. high-

performance computer architecture, pages 117–128, February 2002.

[17] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared caches. In

proc. int. symp. microarchitecture, December 2006.

[18] G. Edward Suh, Srinivas Devadas, and Larry Rudolph. Analytical cache models

with applications to cache partitioning. In proc. annual international conference

on supercomputing, pages 1–12, June 2001.

[19] Basilio B. Fraguela, Ramon Doallo, and Emilio L. Zapata. Automatic analytical

modeling for the estimation of cache misses. In proc. int. conf. parallel architectures

and compilation techniques, pages 221–231, October 1999.

[20] Tipp Moseley, Joshua L. Kihm, Daniel A. Connors, and Dirk Grunwald. Methods

for modeling resource contention on simultaneous multithreading processors. In

proc. int. conf. computer design, pages 373–380, October 2005.

[21] Joshua L. Kihm and Daniel A. Connors. Implementation of fine-grained cache

monitoring for improved SMT scheduling. In proc. int. conf. computer design,

pages 326–331, October 2004.

[22] Dinero IV trace-driven uniprocessor cache simulator. http://www.cs.wisc.edu/

~markhill/DineroIV.

[23] Li Zhao, Ravi Iyer, Ramesh Illikkal, Jaideep Moses, Srihari Makineni, and Don

Newell. CacheScouts: Fine-grain monitoring of shared caches in CMP platforms.

In proc. int. conf. parallel architectures and compilation techniques, pages 339–352,

September 2007.

[24] David K. Tam, Reza Azimi, Livio B. Soares, and Michael Stumm. RapidMRC:

Approximating L2 miss rate curves on commodity systems for online optimizations.

In proc. int. conf. architectural support for programming languages and operating

systems, pages 121–132, March 2009.

http://www.cs.wisc.edu/~markhill/DineroIV
http://www.cs.wisc.edu/~markhill/DineroIV

149

[25] C. Isci, A. Buyuktosunoglu, and M. Martonosi. Long-term workload phases: Du-

ration predictions and applications to DVFS. IEEE Micro, (25):39–51, October

2005.

[26] Intel 64 and IA-32 Architectures Software Developer’s Manual. http://www.

intel.com/products/processor/manuals/.

[27] Aj Kleinosowski, John Flynn, Nancy Meares, and David J. Lilja. Adapting the

SPEC 2000 benchmark suite for simulation-based computer architecture research.

In Proc. Int. Wkshp. Workload Characterization, pages 83–100, September 2000.

[28] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In proc. int. symp. computer

architecture, pages 83–94, June 2000.

[29] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Margaret

Martonosi. An analysis of efficient multi-core global power management policies:

Maximizing performance for a given power budget. In proc. int. symp. microarchi-

tecture, pages 78–88, December 2006.

[30] Gilberto Contreras and Margaret Martonosi. Power prediction for Intel XScale

processors using performance monitoring unit events. In proc. int. symp. low power

electronics & design, pages 221–226, August 2005.

[31] K. Singh, M. Bhadhauria, and S.A. McKee. Real time power estimation and thread

scheduling via performance counters. acm sigarch computer architecture news,

pages 46–55, May 2008.

[32] PAPI 3.6.2. http://icl.cs.utk.edu/papi/.

[33] Jui-Ming Chang and Massoud Pedram. Energy minimization using multiple sup-

ply voltages. ieee trans. computer-aided design of integrated circuits and systems,

(4):436–443, December 1997.

[34] Yumin Zhang, Xiaobo S. Hu, and Danny Z. Chen. Task scheduling and voltage

selection for energy minimization. In proc. design automation conf., pages 183–188,

June 2002.

http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/
http://icl.cs.utk.edu/papi/

150

[35] G. Varatkar and R. Marculescu. Communication-aware task scheduling and voltage

selection for total systems energy minimization. In proc. int. conf. computer-aided

design, pages 510–517, November 2003.

[36] Canturk Isci, Gilberto Contreras, and Margaret Martonosi. Live, runtime phase

monitoring and prediction on real systems with application to dynamic power man-

agement. In proc. int. symp. microarchitecture, pages 359–370, November 2003.

[37] Qiang Wu, Margaret Martonosi, Douglas W. Clark, V. J. Reddi, Dan Connors,

Youfeng Wu, Jin Lee, and David Brooks. A dynamic compilation framework for

controlling microprocessor energy and performance. In proc. int. symp. microar-

chitecture, November 2005.

[38] Yongpan Liu, Huazhong Yang, R. P. Dick, H. Wang, and Li Shang. Thermal vs

energy optimization for DVFS-enabled processors in embedded systems. In proc.

int. symp. quality of electronic design, pages 204–209, January 2007.

[39] Kihwan Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage and fre-

quency scaling for precise energy and performance tradeoff based on the ratio of

off-chip access to on-chip computation times. In ieee trans. computer-aided design

of integrated circuits and systems, pages 18–28, December 2004.

[40] A. R. Chandrakasan and R. W. Brodersen. Low Power Digital CMOS Design.

Kluwer Academic Publishers, MA, 1995.

[41] C. Poirier, R. McGowen, C. Bostak, and S. Naffziger. Power and temperature

control on a 90 nm Itanium–family processor. In proc. int. solid-state circuits conf.,

pages 304–305, February 2005.

[42] Prabhakant Sinha. The multiple-choice knapsack problem. Operations Research,

27(3), 1979.

[43] lpsolve 5.5. http://lpsolve.sourceforge.net/5.5/.

[44] David Pisinger. A minimal algorithm for the multiple-choice knapsack problem.

European J. of Operational Research, pages 394–410, 1995.

http://lpsolve.sourceforge.net/5.5/

151

[45] John L. Henning. SPEC CPU2000: Measuring CPU performance in the new mil-

lennium. Computer, pages 28–35, July 2000.

[46] The Green500 List - June 2015.

[47] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,

Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,

Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100X GPU

vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In

Proc. Int. Symp. Computer Architecture, pages 451–460, 2010.

[48] E Lindholm, J Nickolls, S Oberman, and J Montrym. NVIDIA Tesla: A unified

graphics and computing architecture. Proc. Int. Symp. Microarchitecture, 28:39–55,

2008.

[49] NVIDIA. The CUDA compiler driver NVCC.

[50] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demys-

tifying GPU microarchitecture through microbenchmarking. In Proc. Int. Conf.

Performance Analysis of Systems and Software, pages 235 –246, March 2010.

[51] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,

Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu. The Parboil technical

report.

[52] GPGPU-Sim.

[53] NVIDIA. NVIDIA’s next generation CUDA compute architecture: Fermi.

[54] Shin-Ying Lee and Carole-Jean Wu. Caws: Criticality-aware warp scheduling for

gpgpu workloads. PACT ’14, 2014.

[55] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. Cache-conscious wave-

front scheduling. In Proc. Int. Symp. Microarchitecture, pages 72–83, 2012.

[56] Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R. Das.

OWL: cooperative thread array aware scheduling techniques for improving GPGPU

152

performance. In Proc. Int. Conf. Architectural Support for Programming Languages

and Operating Systems, pages 395–406, 2013.

[57] Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu,

Ravishankar Iyer, and Chita R. Das. Orchestrated scheduling and prefetching for

gpgpus. In Proc. Int. Symp. Computer Architecture, pages 332–343, 2013.

[58] O. Kayiran, A. Jog, M.T. Kandemir, and C.R. Das. Neither more nor less: Optimiz-

ing thread-level parallelism for gpgpus. In Proc. Int. Conf. Parallel Architectures

and Compilation Techniques, pages 157–166, 2013.

[59] NVIDIA Corporation. NVIDIA CUDA SDK 4.0.

[60] A. Munshi. The OpenCL specification. 2011.

[61] NVIDIA. CUDA C programming guild.

[62] NVIDIA. NVIDIA’s next generation CUDA compute architecture: Kepler GK110.

[63] J.T. Adriaens, K. Compton, Nam Sung Kim, and M.J. Schulte. The case for

GPGPU spatial multitasking. In Proc. Int. Symp. High-Performance Computer

Architecture, February 2012.

[64] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. Improving

gpgpu concurrency with elastic kernels. In Proc. Int. Conf. Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’13, pages 407–418,

2013.

[65] Minseok Lee, Seokwoo Song, Joosik Moon, J. Kim, Woong Seo, Yeongon Cho, and

Soojung Ryu. Improving gpgpu resource utilization through alternative thread

block scheduling. In Proc. Int. Symp. High-Performance Computer Architecture,

pages 260–271, Feb 2014.

[66] M. Awatramani, J. Zambreno, and D. Rover. Increasing gpu throughput using

kernel interleaved thread block scheduling. In Proc. Int. Conf. Computer Design,

pages 503–506, Oct 2013.

153

[67] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron. Fine-grained

resource sharing for concurrent gpgpu kernels. In Presented as part of the 4th

USENIX Workshop on Hot Topics in Parallelism, Berkeley, CA, 2012. USENIX.

[68] Marisabel Guevara, Chris Gregg, Kim Hazelwood, and Kevin Skadron. Enabling

task parallelism in the cuda scheduler.

[69] D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simultaneous multithreading: Maximiz-

ing on-chip parallelism. In Proc. Int. Symp. Computer Architecture, pages 392–403,

1995.

[70] S.J. Eggers, J.S. Emer, H.M. Leby, J.L. Lo, R.L. Stamm, and D.M. Tullsen. Si-

multaneous multithreading: a platform for next-generation processors. volume 17,

pages 12–19, 1997.

[71] Jack L. Lo, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Rebecca L. Stamm,

and Dean M. Tullsen. Converting thread-level parallelism to instruction-level paral-

lelism via simultaneous multithreading. ACM Transactions on Computer Systems,

15:322–354, 1997.

[72] P. Michaud. Demystifying multicore throughput metrics. Computer Architecture

Letters, 12(2):63–66, July 2013.

[73] Sheng Li, Jung-Ho Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and N.P.

Jouppi. Mcpat: An integrated power, area, and timing modeling framework for

multicore and manycore architectures. In Microarchitecture, 2009. MICRO-42.

42nd Annual IEEE/ACM International Symposium on, pages 469–480, Dec 2009.

[74] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung

Kim, Tor M. Aamodt, and Vijay Janapa Reddi. Gpuwattch: Enabling energy op-

timizations in gpgpus. In Proceedings of the 40th Annual International Symposium

on Computer Architecture, ISCA ’13, pages 487–498, 2013.

[75] John D. C. Little and Stephen C. Graves. Little’s Law. Springer US, 2008.

154

[76] P. G. Emma and E. S. Davidson. Characterization of branch and data dependencies

on programs for evaluating pipeline performance. IEEE Trans. Comput., 36(7):859–

875, July 1987.

[77] Steven S. Muchnick. Advanced compiler design and implementation. Morgan Kauf-

mann Publishers Inc., 1997.

[78] B. Bradie. A Friendly Introduction to Numerical Analysis. Pearson Prentice Hall,

2006.

[79] Michael T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill

Higher Education, 2nd edition, 1996.

[80] Shuai Che, Jeremy W. Sheaffer, Michael Boyer, Lukasz G. Szafaryn, Liang Wang,

and Kevin Skadron. A characterization of the Rodinia benchmark suite with com-

parison to contemporary CMP workloads. In Proc. Int. Symp. Workload Charac-

terization, pages 1–11, 2010.

[81] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.

Aamodt. Analyzing CUDA workloads using a detailed GPU simulator. In Proc.

Int. Conf. Performance Analysis of Systems and Software, 2009.

[82] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture with

memory-level and thread-level parallelism awareness. In Proc. Int. Symp. Computer

Architecture, 2009.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Modeling High-Performance Computing Systems
	Optimizing High-Performance Computing Systems
	Scheduling High-Performance Computing Systems
	Dissertation Overview

	Multi-core CPU Overview
	Introduction
	Background
	Motivation

	Performance modeling on CMPs
	Introduction
	Related Work
	Analytical Model
	Background
	Problem Formulation and Assumptions
	Performance Model
	Estimating Effective Cache Size After n Accesses
	Steady-State Conditions

	Automated Profiling
	Reuse Distance Profiling
	Automated Parameter Estimation
	Potential Sources of Error

	Evaluation Methodology and Results
	Experimental Setup
	Pre-Characterization
	Model Validation
	Generality of Predictor For Different Machines

	Conclusion

	Power Modeling for CMPs
	Introduction and Motivation
	Related Work
	Power Modeling
	Problem Formulation
	Handling Context Switching and Cache Contention

	Combining Performance and Power Models
	Experimental Results
	Experimental Setup
	Power Model Validation
	Combined Model Validation

	Conclusions

	Memory access aware on-line voltage control for performance and energy optimization
	Introduction and Related Work
	Motivation and Problem Formulation
	Trade-offs Between Performance and Energy
	Problem Formulation

	System Modeling
	Performance Modeling
	Power Modeling
	Cost Minimization
	System Architecture for P-DVFS

	Experimental Results
	Experimental Setup
	Comparison with Prior Work
	Experimental Results

	Conclusions

	Overview for GPGPUs
	Introduction
	Background
	Baseline CUDA and Fermi Architecture
	Workload and Metrics

	Characterizing CPI Breakdown
	Analyzing CPI Breakdown

	GPU optimization overview

	Priority Scheduling for GPGPUs
	Introduction
	Exploration of Scheduling Policies
	Implementation of Priority Scheduling Policies
	Ranking Algorithm

	Result Analysis
	Overall Performance
	GTLS, LRR vs. GTO
	TAWS effects
	SPM

	Conclusion

	Run-time intra-core multitasking for GPGPUs
	Introduction
	Related Work
	Background
	High-Level View of Intra-Core Multitasking Framework
	Evaluation Metric

	Detailed Analysis of TLP and PLP Stalls
	Primary Performance Constraints
	Investigating Memory Stalls
	Mitigating the Tail Effect
	Potential Benefits of Intra-core Multitasking

	Architectural Design Space Exploration
	Instruction Dispatch and Scheduling Bandwidth
	Prioritized Memory Issue Queue
	Hardware Overhead

	Methodology
	Scheduling Mechanisms

	Experimental Results
	Performance of ICMT
	Optimizing Instruction Dispatch and Scheduling Throughput

	Conclusions

	Performance modeling for intra-core multitasking on GPUs
	Background and Motivation
	Terminology
	Key Performance Bottlenecks in SMs
	Motivational Example

	System Framework
	Fine-grained Multi-tasking within SMs

	Analytical Performance Model
	Problem Formulation and Assumptions
	Mean Value Based Performance Model
	IPC Model
	Active Warps Model

	Expressing E[Pinactive_data(IPC)], E[W(IPC)]
	Profiling Data Dependency
	Numerical Solution of the Complete Model
	Limitations of the Analytical Model

	Static Program Analysis
	Warp Scheduling against Pipeline Starvation
	Experimental Methodology
	Performance and Throughput Metrics
	Simulation Framework

	Results
	Benchmark Characteristics
	Throughput Prediction in Mixed Kernel Scenario
	Execution Lane Starvation and Inter-warp Scheduling Results
	Average Throughput Improvement

	Related Work
	Simultaneous Multitasking for GPGPUs
	Performance Modeling of GPU

	Conclusion

	Conclusions
	References

