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abstract: Density dependence and, therefore, K (carrying capacity,
equilibrium population size) are central to understanding and pre-
dicting changes in population size (N). Although resource levels
certainly fluctuate, K has almost always been treated as constant in
both theoretical and empirical studies. We quantified temporal var-
iation in K by fitting extensions of standard population dynamic
models to 16 annual censuses of a population of the perennial bunch-
grass Bouteloua rigidiseta. Variable-K models provided substantially
better fits to the data than did models that varied the potential rate
of population increase. The distribution of estimated values of K was
skewed, with a long right tail (i.e., a few “jackpot” years). The pop-
ulation did not track K closely. Relatively slow responses to changes
in K combined with large, rapid changes in K sometimes caused N
to be far from K. In 13%–20% of annual intervals, K was so much
larger than N that the population’s dynamics were best described by
geometric growth and the population was, in effect, unregulated.
Explicitly incorporating temporal variation in K substantially im-
proved the realism of models with little increase in model complexity
and provided novel information about this population’s dynamics.
Similar methods would be applicable to many other data sets.

Keywords: Bouteloua rigidiseta, carrying capacity, density dependence,
environmental stochasticity, population dynamics, population
regulation.

Introduction

Understanding the factors that determine population size,
always a core task of ecology, is becoming even more im-
portant as we are challenged to understand and to predict
the effects of climate change, invasive species, and other
anthropogenic impacts on natural ecosystems (Turchin
1999; Hixon et al. 2002; Sibly and Hone 2002; Boyce et
al. 2006). Density-dependent processes are often very im-
portant in determining population size (Sibly et al. 2005;
Brook and Bradshaw 2006), and the inclusion of density
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dependence in population dynamic models can be critical
to their utility in conservation and resource management
(Boyce 1992; Hixon et al. 2002; Lorenzen and Enberg 2002;
Morris and Doak 2002). A better understanding and better
models of density dependence are therefore desirable.

A common assumption of both empirical studies (e.g.,
Dennis and Otten 2000; Sæther et al. 2000; Todd et al.
2004; Zabel et al. 2006) and mathematical models (e.g.,
Lande 1993; Kendall 1998; Engen et al. 2005) is that density
dependence (usually modeled with K, the carrying capac-
ity) is constant in time. As a result of this assumption,
temporal variation in population size (N) has been mod-
eled separately from density dependence, often as additive
stochastic variation in N or as stochastic variation in one
or more vital rates. Here we test the assumption of con-
stant K and measure the improvement in model realism
gained by allowing K to vary in time, using data from a
plant population.

An improvement in model realism is not the only po-
tential benefit of allowing K to vary in time. Temporal
variation in K represents temporal variation in density
dependence and therefore in population regulation. In-
sights into otherwise inexplicable variation in N may be
gained if variation that would otherwise simply be con-
sidered environmental stochasticity is discovered to be due
to fluctuations in K. The estimates of K at time t (Kt) can
provide a description of the environment as experienced
by a particular species and can be used in tests of hy-
potheses about environmental causes of changes in N. Fi-
nally, estimates of Kt can be used to measure temporal
variation in the effectiveness of density-dependent pop-
ulation regulation, by quantifying how well population size
(N) tracks an ever-changing equilibrium population size
(K, in our models).

To our knowledge, no one has previously explicitly es-
timated temporal variation in K in a natural population.
However, temporal variation in K is a logical consequence
of variation in resource levels. Our data come from cen-
suses of a plant growing in a semiarid environment. Rain-
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fall, via its effect on available soil moisture, was an obvious
source of variation in a limiting resource, and we predicted
that K would track rainfall. Rainfall, mediated through
total plant biomass, is also an obvious limiting factor for
large herbivores in arid climates. The majority of models
that have implicitly incorporated variation in equilibrium
population size have done so by incorporating the effects
of rainfall into population models of large herbivores (e.g.,
Illius and O’Connor 2000; Davis et al. 2002; Owen-Smith
2002; Georgiadis et al. 2003; Chamaillé-Jammes et al.
2008). In most cases, the inclusion of rainfall-dependent
variation in resource levels has improved the prediction
of herbivore population sizes. Similar models have been
constructed for rodents (Lima et al. 2006, 2008), for mos-
quitoes (Yang et al. 2008), and for large herbivores in a
wet climate (Coulson et al. 2001; Hone and Clutton-Brock
2007). Stochastic variation in K is also implicit in some
plant population studies that have estimated related pop-
ulation parameters (e.g., Freckleton and Watkinson 1998;
Freckleton et al. 2000; Turnbull et al. 2004, 2007; Adams
et al. 2005). There have also been a few theoretical explo-
rations of the consequences of variation in K and in
density-dependent population parameters in general (Tur-
elli 1978; Gyllenberg et al. 1994; Ferriere et al. 2006).

Methods and Models

Data Set

Bouteloua rigidiseta (Steud.) Hitchc. is a bunchgrass (i.e.,
it has no vegetative reproduction). It is common in and
frequently dominates shortgrass communities in central
Texas grasslands and savannas. Seed is set in May and
June, and successful seedling establishment usually occurs
in October or November. We analyzed data from 16 annual
early-summer (May/June) censuses of permanent 0.5-m2

quadrats established as part of a long-running demo-
graphic study of B. rigidiseta in Pedernales Falls State Park,
Texas (30.33�N, 98.26�W; Fowler 1984, 1995; Fowler et al.
2006). For the present analyses, a data set was constructed
of 174 (Nt, ) pairs, each pair representing two con-Nt�1

secutive annual censuses of a given quadrat. The maximum
number of quadrats censused in a single year was 36 quad-
rats, and the minimum was six. Because the six control
quadrats were censused in each of the 16 consecutive years,
there are 15 annual intervals in the data set. Some of the
other quadrats received experimental manipulations of B.
rigidiseta density (Fowler et al. 2006). Added B. rigidiseta
plants were excluded from the calculation of of theNt�1

interval in which they were added, and removed B. rigi-
diseta plants were excluded from the calculation of Nt of
the interval in which they were removed. Limiting the
analyses to the control quadrats would not have changed

the qualitative results, with one exception (estimability of
K4), discussed below. The 174 (Nt, ) pairs were notNt�1

fully independent, as plants that survived for more than
1 year sometimes contributed to more than one (Nt,

) pair. Additional information about census methods,Nt�1

construction of the data set, and the numbers of plants
and tillers per quadrat each year is given in appendix A
in the online edition of the American Naturalist.

The measure of density (N) used in the analyses in this
article is the total number of tillers of B. rigidiseta in a
quadrat. We used total tiller number rather than the num-
ber of plants per quadrat because the former is a better
estimate of density than the latter for our purposes here.
As is usually true of plant populations (Harper 1977),
individual plants differed greatly in size (1–200 tillers),
with a few large and many small individuals in each quad-
rat. The effect of a plant on its neighbors is proportional
to its size (Fowler 1988). The number of tillers per quadrat
is therefore much more closely related to density as it is
perceived by a plant than is the number of plants per
quadrat. Compared to a size-class-based analysis, our ap-
proach is both more tractable (many fewer parameters)
and more accurate (because differences among quadrats
in the sizes of their largest individuals are not obscured
by pooling heterogeneous large plants into a single size
class). Using a size-class-based analysis, we had previously
discovered that this population experienced negative den-
sity-dependent population regulation in at least some
quadrats and years, shown by a significant negative rela-
tionship between l (the principal eigenvalue of each pop-
ulation projection matrix) and density (Fowler et al. 2006).

Alternative Models of Stochastic Population Dynamics

Using a maximum likelihood approach to estimate model
parameters, we fitted our data set of 174 (Nt, ) pairsNt�1

to several alternative population dynamic models of the
general form (fig. 1), where � isN p f(N , R, K) � �t�1 t

the difference between the predicted and observed values
of in each pair, is the potential finite rate ofN R � 1t�1

increase in N, K (carrying capacity) is equivalent to equi-
librium population size in these models, and R is the dif-
ference equation counterpart of r, the potential rate of
population growth. We used the discrete logistic (Ricker
1954), the v logistic (Gilpin and Ayala 1973; Sæther et al.
2002), and the full and reduced hyperbolic (Yoda et al.
1963; Watkinson 1980) population dynamic models (app.
B in the online edition of the American Naturalist). Fol-
lowing Ludwig (1975), we included an additional model
derived by transforming the coordinate system of the
above-mentioned general model to look at the dynamics
of small deviations from equilibrium density, N pt�1

, where and equilibrium′K(1 � b) � bN � � f (K) p bt
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Figure 1: Relationship between density (N) at the beginning (t) and end ( ) of an interval. Each point represents one of the 174 (Nt, )t � 1 Nt�1

pairs that comprise the data set. Lines are fitted for the Ludwig one-K/one-R model (excluding annual intervals 9 and 15), the reduced hyperbolic
one-K/one-R model (also excluding annual intervals 9 and 15), and geometric growth in annual intervals 9 and 15. The dashed line (one-to-one
line) represents constant population size. At the point where each of the fitted lines intersects the one-to-one line, the value of is equal to theNt�1

estimated value of K in the corresponding one-K/one-R model. The two estimated values of K are also shown as diamonds on the vertical axis.
Note that the Ludwig model does not pass through the origin.

density K is defined as the solution of the equation
. (Note that b and K do not correspond in af(K) p K

simple way to an intercept and slope, so a simple linear
regression is not a useful model; app. B.)

After fitting these six models with both K and R constant
(one-K/one-R models), we fitted models that allowed K,
R, or both (or comparable parameters) to take on a dif-
ferent value in each annual interval. The multi-K models
consistently failed to converge unless population growth
in intervals 9 and 15 was modeled as geometric (fig. 1).
For all models except the Ludwig, geometric-growth mod-
els were obtained by letting (app. B). Because theK r �
Ludwig model does not reduce to a sensible geometric-
growth model as , for it we used the geometric-K r �
growth model , where g is a new parameterN p gN � �t�1 t

not in the density-dependent Ludwig model. We verified
our identification of intervals best modeled with geometric
growth using a procedure that maximized likelihood for
each interval separately (app. B).

If the analyses had been limited to the control quadrats
( ; results not reported), interval 4 would also haveN p 90

required a geometric-growth model; K4 was so large that
it could be estimated only because data from quadrats with
very high densities (B. rigidiseta seed additions) were avail-
able from interval 4. Had we had density-manipulated
quadrats in intervals 9 and 15, we might have been able
to estimate K9 and K15.

We also fitted hierarchical (sensu Clark 2003) models
in which K was modeled as a random variable with a mean
and variance ( ) estimated at the same time and by the2jK

same maximum likelihood procedure as the other param-
eters of the model. Normal-K models fitted K to a normal
distribution in nongeometric-growth intervals. Because
the distribution of K obtained from the multi-K models
(see “Results”) suggested that the distribution of K had a
right tail, we also constructed lognormal-K models, which
fitted K to a lognormal distribution in nongeometric-
growth intervals.

For each version of each model, we estimated the values
of all parameters, including (the variance of �), using2j�

the maximum likelihood method implemented by the
NLMIXED procedure of SAS (ver. 9.1; SAS, Cary, NC).
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Table 1: Selected versions of the two population dynamic models that provided the best fits to Bouteloua rigidiseta census data

Model Algebraic form

BZIC value (no. parameters)

Model versions without
special treatment for

intervals 9 and 15
Model versions with geometric

growth in intervals 9 and 15

One-K,
one-R

One-K,
multi-R

One-K,
one-R

Lognormal-K,
one-R

Multi-K,
one-R

Ludwig N p K # (1 � b) � N # bt�1 t 115.7 (3) 103.8 (17) 87.1 (4) 46.7 (5) 29.4 (16)
Reduced hyperbolic N p (1 � R)N /(1 � N # R/K)t�1 t t 112.8 (3) 92.7 (17) 85.3 (3) 57.8 (4) 41.2 (15)

Note: The lower the Bozdogan’s Information Criterion (BZIC) score, the better the fit. The parameter count always includes . BZIC values include a2j�

small-sample-size correction (see “Methods and Models”).

In all cases, parameter values were such that intrinsic os-
cillatory or chaotic behavior would not occur (Case 2000).

Weight of Evidence for Alternative Models

We compared the relative ability of our alternative models
to describe our data using Bozdogan’s (2000) extension
of the Akaike Information Criterion (AIC; Akaike 1973).
We rename Bozdogan’s (2000) ICOMP(IFIM) as Bozdo-
gan’s Information Criterion (BZIC), defined as

, where L is the likelihood func-�2 log (L) � p # log (A/G)
tion evaluated at the parameter estimates, p is the number
of parameters estimated, A is the arithmetic average of the
eigenvalues of F�1 (where F �1 is the inverse of the Fisher
information matrix in Hessian form, i.e., the estimated
variance-covariance matrix of the parameter estimates),
and G is the geometric mean of the eigenvalues of F �1.
Like AIC, BZIC penalizes models with more parameters.
However, it also penalizes models that result in parameter
estimates with ill-conditioned variance-covariance matri-
ces, which proved to be important for certain models (app.
B). Following Burnham and Anderson (2004), we report
BZIC values corrected for small sample size: corrected

. This correctionBZIC p BZIC � 2p(p � 1)/(N � p � 1)
had little effect on BZIC values (app. B). For convenience,
we refer to the model with the lowest BZIC value as the
best model.

Proponents of information-theoretic approaches argue
that it is better not to employ null hypothesis testing and
information-theoretic analyses on the same data but rather
to characterize the relative strength of evidence for alter-
native model I as compared to best model B. Where BZIC
scores differ by more than 10, there is essentially no sup-
port for the poorer (higher BZIC score) model (Burnham
and Anderson 2002).

We recognize that readers may prefer to compare models
using other approaches (Burnham and Anderson 2004;
Richards 2005; Stephens et al. 2005; Link and Barker 2006).
For these readers, appendix B provides (a) values of the
Bayes Information Criterion (BIC), BIC weights, and

Bayes factors (Link and Barker 2006) and (b) a significance
test of the null hypothesis that K is constant. Uncorrected
and corrected AIC values are also provided in appendix
B. The use of any of these alternative approaches does not
materially affect the conclusions of this article.

Results

Model Comparisons

Among all the versions of all six population dynamic mod-
els tested, the Ludwig multi-K model with intervals 9 and
15 fitted with geometric growth provided the best descrip-
tion of the data (lowest BZIC value; table 1). The reduced
hyperbolic multi-K model with intervals 9 and 15 fitted
with geometric growth provided the second-best descrip-
tion (table 1); we retain it because it provides better es-
timates of K (see below). Both estimate a separate value
of K (carrying capacity) for each of the 13 annual intervals
not modeled by geometric population growth.

Further support for temporal variation in K is provided
by the finding that for each of the six models (Ludwig,
Ricker, etc.) its multi-K version outperformed both its one-
K/one-R version and its multi-R version. A complete set
of BZIC values, differences in BZIC values, and evidence
ratios is provided in appendix B for each version of each
model.

Temporal variation in K was also modeled as a random
variable in a hierarchical model. In all instances, the multi-
K version of a model provided a better fit to the data
(lower BZIC value) than did the version of the same model
that treated K as a normally or lognormally distributed
random variable. Because BIC imposes a much more se-
vere penalty for parameter number than do AIC and BZIC,
the Ludwig lognormal-K model with geometric growth in
intervals 9 and 15 had the lowest BIC value (app. B).

Distribution of K

The distribution of values of K was skewed, with a long
right tail (fig. 2). The largest values of K were not estimable
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Figure 2: Distribution of the estimated values of K, for the Ludwig multi-
K model and the reduced hyperbolic multi-K model; K was not estimable
(NE) in two of the 15 intervals.

because they occurred in annual intervals in which geo-
metric growth provided the best fit to the data. Even during
the annual intervals in which K was estimable, the distri-
bution of K was quite skewed, as evidenced by the better
fit of the lognormal-K versions of models than the normal-
K versions of models (app. B) and inspection of figure 2.
In other words, most years were poor years, some were
better years, and a few were excellent years for this species.
The variation in K was large relative to N: .j � 0.5NK

Relative Magnitude of Variation in K
versus Other Variation in N

Our estimate of from the multi-K Ludwig model pro-2j�

vides an upper bound for the density-independent annual
variation in reproduction and survival since it includes all
sources of variation not otherwise explicitly included in
the model. Under it we estimated tillers/quadratj p 247�

(t/q), whereas the 13 estimated Kt values of the Ludwig
model yielded t/q (reduced hyperbolic:j p 752 j pK �

vs. t/q), so jK was at least three times larger259 j p 632K

than density-independent variation in N. Had we been

able to estimate K9 and K15, the estimated annual variation
in carrying capacity would likely have been even larger.

Tracking of K by N

Population size, N, was larger than K at least half the time
(fig. 3), primarily because K dropped more quickly than
did N. One measure of the strength of density dependence
is , which takes values from 1 (weakest density(K � N)/K
dependence, ) to 0 (when ) to K0 (whenN r 0 N p K

). Because under the Ludwig model estimated val-N k K
ues of K are related to estimated Y-axis intercepts (which
are equal to in this model; fig. 1), the reducedK # (1 � b)t

hyperbolic model provides better estimates of K for this
purpose. Under the reduced hyperbolic model, the median
value of , where is density at the end(K � N )/K Nt t�1 t t�1

of the (t, ) annual interval and Kt is the value of Kt � 1
estimated for the (t, ) interval, in the 13 intervals int � 1
which K was estimable, was �0.07, indicating on average
strong density dependence in these intervals. In these 13
intervals, density dependence was weaker in intervals 4,
13, and 14 ( , 0.36, and 0.38, respec-(K � N)/K p 0.41
tively) and stronger in intervals 1–3, 5–8, 10, and 11.

In these simple one-dimensional population dynamic
models, the eigenvalue, b, associated with the stable in-
ternal equilibrium characterizes the linearized dynamics
near K. A population originally at density willK � DK
approach K with dynamics . We esti-bN p K � DKt�1

mated (Ludwig model) andˆ ˆ ˆb p 0.79 b p 1/(1 � R) p
(reduced hyperbolic model), implying that each year0.71

the population traversed only 21%–29% of the distance
from N to K.

Correlations with Precipitation

Climate data from Johnson City, Texas, 16 km from the
site (National Climatic Data Center, NOAA), were used.
Average July and August temperatures there are 28�C; av-
erage January temperature is 9�C. Annual precipitation
there averaged 860 mm during the study. Average density
of Bouteloua rigidiseta in the control quadrats in a given
census was positively correlated with total precipitation
during the 12 months preceding that census, that is, from
June to May ( , ; fig. 4). Total precipitationr p 0.18 N p 15s

from June to the following May was also positively cor-
related with the value of Kt during that interval (reduced
hyperbolic model: ; Ludwig model: ;r p 0.48 r p 0.26s s

intervals).N p 15

Discussion

Density dependence varied over the 16 years of this study
of a perennial grass population. Models that incorporated
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Figure 3: Observed average density at the end of the interval ( ) and estimated Kt of that interval; K was too large to be estimated (NE p KNt�1

not estimable) in two of the 15 intervals.

temporal variation in K (carrying capacity; equilibrium
population size in our models) provided better fits to an-
nual census data than did models that incorporated tem-
poral variation only as variation in N (i.e., in �) or models
that incorporated temporal variation only in R (the po-
tential finite rate of increase in N). As far as we are aware,
an explicit comparison of these modeling approaches has
not been made, so this may be the first explicit test of
temporal variation in K and hence in density dependence.

Stochastic population dynamic models are central to
many studies of population dynamics and are used to
guide conservation (e.g., estimates of extinction proba-
bilities of endangered species) and resource management
(e.g., of fisheries; Sibly and Hone 2002; Lande et al. 2003).
We suggest that the inclusion of temporal variation in K
might improve the realism of these population dynamic
models without increasing their complexity, as it did in
this study. The methods we used to quantify variation in
K require only spatial replication of estimates of N each
census (spatially replicated time series), not estimates of
individual survival and reproduction, and therefore are
potentially widely applicable (Saitoh et al. 1997; Bjørnstad
et al. 1999).

Inclusion of temporal variation in K is not dependent
on the particular density-dependent model (discrete lo-

gistic, Ricker, etc.) used and could be easily adapted for
any similar population dynamic model. In this study, the
best fit was provided by the Ludwig model, followed by
the hyperbolic model (table 1). We are uncertain of the
reason why the Ludwig model performed better than the
hyperbolic model. However, note that the Ludwig model
includes a constant term and therefore is the only model
under which can be positive when (fig. 1;N N p 0t�1 t

table 1). Density-independent immigration of seeds, per-
haps from areas immediately adjacent to the study quad-
rats, may have been frequent enough for the inclusion of
this constant term to improve model fit. Alternatively, the
success of the Ludwig model may have arisen from the
fact that it characterized low- and high-density behavior
with separate parameters (g for geometric growth and b

for the rate of approach to K, respectively).
Because of the relatively low maximum finite rate of

increase in population size (estimated to be ∼40% per
year), all of the models we tested predicted that had K
been constant, there would have been a smooth approach
to K over time. Oscillations or chaos would be possible
under some of our models if R were larger (Case 2000),
although constantly changing values of K would likely pre-
vent this behavior from being apparent.

The effect of variation in K on population dynamics
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Figure 4: A, Average number of tillers per quadrat versus total precip-
itation in the 12 months preceding each census (June–May). B, Estimated
values of K for each annual interval versus precipitation during the in-
terval. Triangles p Ludwig multi-K model; inverted triangles p reduced
hyperbolic multi-K model; diamonds p K not estimable.

has been investigated theoretically. Depending on as-
sumptions about its distribution, random variation in K
can reduce long-term average population size (Chesson
1991). Variable-K populations exhibit growth-catastrophe
dynamic behavior (rapid population growth followed by
a crash; Gyllenberg et al. 1994; Fagerholm and Högnäs
2002; Ferriere et al. 2006). Variable-K populations tend to
be either small or large, rather than spending long time
periods at intermediate densities (Ferriere et al. 2006).
Though this perennial grass did not exhibit growth-
catastrophe behavior, we can see its skeleton. Had the
population quickly tracked K in one of the years when it
was growing geometrically, it would have crashed the fol-
lowing year when K returned to a more normal level. Its
failure to track K closely prevented dramatic crashes. Var-
iation in K in annual species, a category that includes

most insects, would be more likely to produce growth-
catastrophe population dynamics.

When K represents equilibrium population size, as it
does in our models, temporal variation in K represents
variation in the equilibrium size of a population over time.
Variation in K may provide insights into mechanisms un-
derlying population regulation, especially if variation in K
accounts for a substantial portion of the variation in N,
as it did here (jK was at least three times the variation in
N from all other sources). Previous models that have im-
plicitly incorporated variation in K have done so by mak-
ing resource levels a function of one or more climatic
variables, often rainfall, usually with good success (e.g.,
Illius and O’Connor 2000; Davis et al. 2002; Owen-Smith
2002; Georgiadis et al. 2003; Lima et al. 2006, 2008; Hone
and Clutton-Brock 2007; Chamaillé-Jammes et al. 2008;
Yang et al. 2008). Bouteloua rigidiseta readily adds tillers
in response to rain and dies back in response to drought
(N. L. Fowler, personal observation). We therefore ex-
pected rainfall to be a good predictor of variation in K.
As expected, precipitation during a 12-month interval was
positively correlated with the value of K calculated for that
interval (fig. 4). The correlations were lower than we ex-
pected, however (hyperbolic model: ; Ludwigr p 0.48s

model: ). The positive direct effects of rainfall onr p 0.26s

B. rigidiseta may have been partially countered by negative
effects due to greater interspecific competition in wetter
years (Adler and HilleRisLambers 2008; Lima et al. 2008).
Visual inspection did not indicate greater rates of disease
in wetter years, but we cannot rule it out. We also cannot
rule out complex relationships with rainfall that were not
captured by our simple analyses.

Fitting models that included temporal variation in K
provided quantitative estimates of the distribution of K.
Variation in K when it was estimable was substantial
( ) and highly skewed with a very long right tailj � 0.5NK

(fig. 2); K was even larger but not estimable during the
annual intervals in which the population was best de-
scribed as growing geometrically and therefore effectively
unregulated. This occurred 13%–20% of the time (two of
15 intervals; three of 15 intervals in the control quadrats).
Geometric growth could, in theory, also occur when a
merely good year (moderate K) begins with a very low N;
however, the values of N we observed were not particularly
low preceding geometric-growth intervals (fig. 2). Because
K is necessarily inestimable in geometric-growth intervals,
it is not possible to quantify how fat-tailed the distribution
of K was. Nevertheless, it is clear that K was usually rel-
atively low, with some good years and an occasional jack-
pot year. Because the distribution of rainfall is often
skewed in arid and semiarid regions, similarly skewed dis-
tributions of K may be common among species in those
places.
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Variation in K can increase the amount of time that a
population is either substantially larger or substantially
smaller than K, as it did for this grass population. We were
aware before this analysis that N varied widely from year
to year and suspected that this was due to variation in K.
However, it surprised us to learn how poorly N had been
tracking K (fig. 2). Mathematically, this appears in the
estimated magnitude of the parameter b, which revealed
that N moved only 21%–29% of the distance to K each
year. The combination of ineffective tracking and the tem-
poral variation in K made both overshoots ( ) andN 1 K
lags ( ) common; K changed so much faster than NN ! K
that the size of this population (N) was like a slow soccer
(football) player, trundling up and down the field after a
rapidly moving ball (K) but never reaching it except when,
by happenstance, the ball came flying past. We are not
aware of comparable data but suspect that this may not
be uncommon in natural populations. In general, poor
tracking will tend to reduce temporal variation in popu-
lation size, including the likelihood of large overshoots
and crashes. It will also tend to make observed population
sizes rather poor guides to resource levels and to other
factors that determine equilibrium population size and will
therefore increase the value of estimating K explicitly.
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