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ABSTRACT

Context. Classical novae (CNe) have been found to represent the major class of supersoft X-ray sources (SSSs) in our neighbour
galaxy M 31.

Aims. We determine the properties and evolution of the two first SSSs ever discovered in the M 31 globular cluster (GC) system.
Methods. We have used XMM-Newton, Chandra and Swift observations of the centre region of M 31 to discover both SSSs and to
determine their X-ray light curves and spectra. We performed detailed analysis of XMM-Newton EPIC PN spectra of the source in
Bol 111 (SS1) using blackbody and NLTE white dwarf (WD) atmosphere models. For the SSS in Bol 194 (SS2) we used optical
monitoring data to search for an optical counterpart.

Results. Both GC X-ray sources were classified as SSS. We identify SS1 with the CN M31N 2007-06b recently discovered in the
M 31 GC Bol 111. For SS2 we did not find evidence for a recent nova outburst and can only provide useful constraints on the time of
the outburst of a hypothetical nova.

Conclusions. The only known CN in a M 31 GC can be identified with the first SSS found in a M 31 GC. We discuss the impact of

our observations on the nova rate for the M 31 GC system.

Key words. galaxies: individual: M 31 — novae, cataclysmic variables — stars: individual: Nova M31N 2007-06b —
globular clusters: individual: Bol 111 — globular clusters: individual Bol 194 — X-rays: galaxies

1. Introduction

Supersoft X-ray sources (SSSs) are a class of X-ray sources that
were first characterised based on ROSAT observations (see e.g.
Greiner et al. 1991). These sources show extremely soft X-ray
spectra, with little or no radiation at energies above 1 keV (see
e.g. Parmar et al. 1998), that can be described by blackbody tem-
peratures typically in the range of 15-80 eV (see Kahabka &
van den Heuvel 1997, and references therein). SSSs were origi-
nally believed to be hydrogen burning white dwarfs (WDs) in bi-
nary systems, where the WD steadily burns hydrogen rich matter
accreted from its companion star (Kahabka & van den Heuvel
1997). However, the class of SSSs is quite inhomogeneous.
Prototypical sources are, on the one hand, CAL 83 (see Parmar
et al. 1998, and references therein) and CAL 87 (see Parmar et al.
1997, and references therein), both of which are located in the

* Partly based on observations with XMM-Newton, an ESA Science
Mission with instruments and contributions directly funded by ESA
Member States and NASA.
** Current address: California Institute of Technology, Pasadena, CA
91125, USA.

Large Magellanic Cloud. These objects show eclipses (CAL 87)
or rare X-ray off states (CAL 83) (Kahabka & van den Heuvel
1997), but are rather permanent SSSs. On the other hand, Pietsch
et al. (2005a) found out that classical novae (CNe) represent the
major class of SSSs in our neighbour galaxy M 31 (distance
780 kpc, Holland 1998; Stanek & Garnavich 1998). CNe can ap-
pear as luminous (L ~ 10° ergs™') transient SSSs that seem to
go through a single outburst that can last from months to several
years (Pietsch et al. 2007b).

Classical novae (CNe) are thermonuclear explosions on the
surface of WDs in cataclysmic binaries that result from the trans-
fer of matter from the companion star to the WD. The trans-
ferred hydrogen-rich matter accumulates on the surface of the
WD until hydrogen ignition starts a thermonuclear runaway in
the degenerate matter of the WD envelope. The resulting expan-
sion of the hot envelope can cause the brightness of the WD
to rise by more than nine magnitudes within a few days, and
mass to be ejected at high velocities (see Hernanz 2005; Warner
1995, and references therein). However, a fraction of the hot
envelope can remain in steady hydrogen burning on the sur-
face of the WD (Starrfield et al. 1974; Sala & Hernanz 2005),
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powering a supersoft X-ray source that can be observed di-
rectly once the ejected envelope becomes sufficiently transparent
(Starrfield 1989; Krautter 2002).

The duration of the supersoft phase is related to the amount
of H-rich matter that is not ejected and also depends on the lu-
minosity of the white dwarf. More massive WDs need to ac-
crete less matter to initiate the thermonuclear runaway, because
of their higher surface gravity (Jose & Hernanz 1998). In gen-
eral, more massive WDs retain less accreted mass after the ex-
plosion, although this also depends on the accretion rate, and
reach larger luminosities (Yaron et al. 2005). Thus, the dura-
tion of the SSS state is inversely related to the mass of the WD
(Sala & Hernanz 2005; Tuchman & Truran 1998). In turn, the
transparency requirement mentioned above implies that the time
of appearance of the SSS is determined by the fraction of mass
ejected in the outburst (Hachisu & Kato 2006). X-ray lightcurves
therefore provide important clues on the physics of the nova out-
burst, addressing the key question whether a WD accumulates
matter over time to become a potential progenitor for a type Ia
supernova (SN-Ia).

Due to its proximity to the Galaxy and its moderate Galactic
foreground absorption (Ny = 0.7 x 102! cm™2, Stark et al. 1992),
M 31 is a unique target for CN surveys. Starting with Hubble
(1929) the majority of these surveys that were conducted in
the past (see e.g. Henze et al. 2008b, and references therein)
classified optical transients as novae just by their lightcurve.
Following the steep rise, the luminosity of different CNe declines
with different speed, which allows a phenomenological classifi-
cation of these objects by their speed class (Payne-Gaposchkin
1964). Eventually, novae in M 31 will fade back to invisibil-
ity, since the binary systems in quiescence are too faint to be
observed at the distance of M 31. Only recently, nova monitor-
ing programs for M 31 were established, that include fast data
analysis and that therefore provide the possibility to conduct
follow-up spectroscopy (see e.g. Henze et al. 2008a; Di Mille
et al. 2008) and to classify CNe within the system of Williams
(1992).

Almost all optical surveys for CNe in M 31 that were con-
ducted in the past searched for suddenly appearing objects that
have not been visible before and fade back to invisibility in days
to weeks. This condition is certainly not fulfilled by CNe in rela-
tively bright GCs, where the optical background light of the GC
itself makes a photometric discovery of a nova outburst much
more complicated. Therefore, the connection of CNe to SSSs in
X-rays provides a useful possibility to detect CNe in GCs. Novae
in GCs are rare. There were just two sources known so far that
likely fit this definition. One of them was seen in the Galactic GC
M 80 whereas the second nova was found in a GC of the galaxy
M 87 (see Shara et al. 2004, and references therein). According
to Shara et al. (2004) a third candidate (nova 1938 in the galactic
GC M 14) is less likely to be a GC nova. Recently, Shafter &
Quimby (2007) reported the very first nova found in a M 31 GC
(M31N 2007-06b).

Independent from their connection to CNe, SSSs in GCs are
rare objects. There was just one SSS known in GC up to now: the
transient 1E 1339.8+2837 in the Galactic GC M 3 (NGC 5272)
(Dotani et al. 1999; Verbunt et al. 1995). 1E 1339.8+2837 was
first discovered with the Einstein satellite with a hard X-ray
spectrum and a low luminosity of 4 x 103 ergs™' (Hertz &
Grindlay 1983) but showed a very soft high luminosity state dur-
ing 1991-92 when observed with ROSAT (Dotani et al. 1999).
Dotani et al. (1999) give for 1E 1339.8+2837 a blackbody tem-
perature of kT ~ 36 eV and a luminosity of ~10*° ergs~!, which
is significantly lower than the observed peak luminosities of
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other SSS, including the two sources discussed in this work.
They discuss this object as a cataclysmic variable (CV) sys-
tem that may be a dwarf nova including a massive WD. The
CV interpretation is supported by Edmonds et al. (2004) who
used Hubble Space Telescope observations to discover an op-
tical counterpart to 1E 1339.8+2837. They suggest that mag-
netically channeled accretion could explain the peculiarities of
1E 1339.8+2837.

Recently, we reported, based on preliminary data analysis
(Pietsch et al. 2007a), the very first SSS (hereafter SS1) that was
found in a M 31 GC. During the same observing run where we
found this source we detected a second luminous and previously
unknown SSS (hereafter SS2) in another M 31 GC (Haberl et al.
2007a,b). Both sources are transients and will be examined in
detail in this work.

The structure of the paper is as follows: in Sect.2 we de-
scribe our X-ray observations and the properties of the two SSSs.
The optical data available for Bol 194 and the data analysis are
presented and interpreted in Sect. 3. Finally, in Sect. 4 we sum-
marise our results and discuss the impact that two GC novae
within one year would have on the nova rate for the M 31 GC
system.

2. X-ray observations and data analysis

In the context of the XMM-Newton/Chandra M 31 nova mon-
itoring project! we obtained five 20 ks Chandra HRC-I obser-
vations of M 31 starting in November 2007. We detected two
new sources in the M31 GCs Bol 111 and Bol 194 (Galleti
et al. 2004). For both sources follow-up ToO observations with
the Swift X-ray Telescope (XRT) were requested (e.g. Pietsch
et al. 2007a; Kong & Di Stefano 2007b) as well as addi-
tional Chandra ACIS-S observations by another group (Galache
et al. 2007). We also used two observations obtained within the
XMM-Newton M 31 large survey project’. Details on the ob-
servations used are given in Tables 1 and 2 for the sources in
Bol 111 and Bol 194, respectively. The tables list the telescopes
and instruments used, the observation identifications (ObsIDs),
the dates as well as source count rates and luminosities or upper
limits, respectively. X-ray light curves of both sources are shown
in Fig. 1. Figure2 shows the fields of view of Chandra and
XMM-Newton observations with representative positions.

We analysed all available observations using mission depen-
dent source detection software as well as the HEAsoft package
v6.3, including the spectral analysis software XSPEC v12.3.1.
In all our XSPEC models we used the Tiibingen-Boulder ISM
absorption (TBabs in XSPEC) model together with the pho-
toelectric absorption cross-sections from Balucinska-Church &
McCammon (1992) and ISM abundances from Wilms et al.
(2000). For the individual telescopes we applied the following
data reduction techniques:

The Swift XRT data were analysed using the HEAsoft
XIMAGE package (version 4.4) with the sosta command
(source statistics) for estimations of count rates. We took into
account the XRT PSF of the sources that we computed with
the command psf, as well as exposure maps that were created

' http://www.mpe.mpg.de/~m31novae/xray/index.php

2 XMM-Newton Large Program: the X-ray source population of the
Andromeda galaxy M 31; PI: W. Pietsch.

See
http://www.mpe.mpg.de/xray/research/normal_galaxies/
m31/1p.php
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Table 1. X-ray observations of SS1in Bol 111.

Telescope/Instrument® ObsID  Exp. time” Date°  Offset? Count Rate® Loo_10°

[ks] [UT] [d] [cts™'] lerg s™']
XMM-Newton EPIC PN 0505760201 49.2  2007-07-22.55 33 <1.1x 1073 <1.4 x 10%
Chandra HRC-1 8526 18.7 2007-11-07.64 141 >(1.9+04)x 1072 >(5.3+1.1)x 10%
Chandra HRC-I 8527 20.0 2007-11-17.76 151 (25+02)x 1072 (7.0 £ 0.7) x 1038
Chandra HRC-1 8528 20.0 2007-11-28.79 162 (22+0.2)x 1072 (6.0 £ 0.6) x 1038
Chandra HRC-1 8529 18.9  2007-12-07.57 171 (2.8 +0.3) x 1072 (7.7 £0.7) x 1038
Chandra HRC-I 8530 19.9 2007-12-17.49 181 (25+0.3)x 1072 (7.1 £0.7) x 1038
Swift XRT 00031017001/2 7.1  2007-11-18.40 152 (1.18 £0.15) x 107> (11.6 = 1.4) x 103
Swift XRT 00031017003 3.0 2007-11-13.02 177 (0.8 +£0.2) x 1072 (8.1 +£1.9)x10%
Swift XRT 00031017004 3.0 2007-12-14.02 178 (1.1 £02)x 1072 (10.6 +2.2) x 10
Swift XRT 00031017005 32  2007-12-15.03 179 (1.1+£02)x 1072 (11.1 £2.1) x 103
Swift XRT 00031017006 2.2 2007-12-20.25 184 (1.1+£03)x 1072 (11.1 £2.6) x 1038
Swift XRT 00031017007 2.1 2007-12-22.39 186 (0.5+0.2)x 1072 (5.1 £1.9)x 10%
Swift XRT 00031017008 2.3 2007-12-24.33 188 (0.9 +0.2) x 1072 (9.1 +2.4) x 10
Swift XRT 00031017009 2.3 2007-12-30.15 194 (1.0+02) x 1072 (10.0 +£2.4) x 1038
Swift XRT 00031017010 2.0 2008-01-03.44 198 (12+03)x 1072 (122 +2.8)x 10
Swift XRT 00031017011 1.9 2008-01-06.25 201 (0.4 +0.3)x 1072 (4.0 £2.8) x 103
Swift XRT 00031017012 1.7 2008-01-10.00 205 (1.1+03)x 1072 (I11.1 £ 1.3) x 1038
XMM-Newton EPIC PN 0511380201 23.0  2008-01-05.99 200 (82+02)x 1072  (10.6 £0.2) x 103
XMM-Newton EPIC PN 0511380601 24.0  2008-02-09.31 235 (7.5+02)x 1072 (122 +£0.4) x 103
Swift XRT 00037718001 4.8 2008-05-26.29 342 (0.5+0.1) x 1072 (4.6 £ 1.3) x 1038
XMM-Newton EPIC PN 0560180101 17.4  2008-07-18.26 395 (3.0+£0.2) x 1072 (8.9 +£0.5) x 1038

Notes:

¢ Start date of the observation.
¢ Time in days after the discovery of nova M31N 2007-06b in the optical (Shafter & Quimby 2007) on 2007 June 19.38.

(JD =2454271).

@ Telescope and instrument used for observation.
b Dead time corrected exposure time of the observation.

¢ Source count rates, X-ray luminosities (unabsorbed, blackbody fit, 0.2-1.0 keV) and upper limits were estimated according
to Sect. 2.1. For Chandra ObsID 8526 the source is right on the detector edge, therefore we give lower luminosity limits.

Table 2. X-ray observations of SS2 in Bol 194.
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Telescope/Instrument® ObsID  Exp. time® Date¢  Offset? Count Rate® Luminosity®

(ks] (UT] [d] [ets™"] erg s™']
XMM-Newton EPIC PN 0505760201 49.2  2007-07-22.55 0 <29x% 107 <1.6 x 10%
Chandra ACIS-S 8186 5.0 2007-11-03.18 104 2.1x1072 3.4 x 1077
Chandra HRC-1 8526 18.7  2007-11-07.64 108 (3.55+0.25)x 1072 (8.41 £ 0.59) x 10¥
Chandra HRC-1 8527 20.0 2007-11-18.76 118 (295 +0.25)x 1072 (7.00 £ 0.60) x 10
Swift XRT 00031027001 7.3 2007-11-24.34 125 (8.0£1.2)x 107 (6.35 = 1.04) x 10%
Chandra ACIS-S 8187 5.0 2007-11-27.16 128 <6 x 107 <9.7 x 10%
Swift XRT 00031027002/3 4.7  2007-12-02.64 133 (32+1.0)x 1072 (3.92 £ 1.22) x 10¥
Swift XRT 00031027004 3.9 2007-12-16.77 147 <3.2x 107 <3.9 % 10%
Swift XRT 00031027005 4.0 2007-12-30.02 160 <2.0x 1073 <2.4 x 10%
XMM-Newton EPIC PN 0511380201 22.8  2008-01-05.99 167 <5.1x 1073 <3.5x 10%

Notes:

¢ Telescope and instrument used for observation. ACIS-S count rates are from Galache et al. (2007).

b Dead time corrected exposure time of the observation.
¢ Start date of the observation.

4 Time in days after the last X-ray non-detection of SS2 on 2007 July 22.55 (JD = 2454304).
¢ Source count rates, X-ray luminosities (unabsorbed, blackbody fit, 0.2-1.0 keV) and upper limits were estimated

according to Sect.2.2.

with the XRT software task xrtexpomap within XIMAGE.
Astrometry was done using the HEAsoft routine xrtcentroid.

For the XMM-Newton data we applied a background screen-
ing and used the XMMSAS v6.6 tasks eboxdetect and
emldetect to detect sources in the image and perform astrome-
try and photometry. For computing upper limits we added an ar-
tificial detection at the position of the source to the eboxdetect
list. This list was used as input for an emldetect run (with fixed

positions and likelihood threshold of zero) that derived the ob-
served flux and upper limit for all objects in the list. We give
3 times the background flux as the 30~ upper limit. To obtain
astrometrically-corrected positions we selected optical sources,
with proper-motion corrected positions, from the USNO-B1.0
catalogue (Monet et al. 2003), and checked that only one optical
source was in the error circle of the corresponding X-ray source.
We only accepted sources correlating with globular clusters from
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Fig. 1. X-ray light curves of SS1 and SS2 (0.2 - 1.0 keV) obtained from
XMM-Newton (black), Chandra HRC-I (red), Chandra ACIS-S (blue),
and Swift XRT (green) (see also Tables 1, 2). The upper limit for SS1 is
indicated by a down-pointing arrow, the upper limits for SS2 are marked
by open lozenges. An open square indicates the lower limit luminosity
for SS1 on Chandra ObsID 8526. Crosses symbolise luminosities of
detections. Error bars are not shown, since the (statistical) errors are
mostly smaller than the size of the symbols. There are no errors given by
Galache et al. (2007) for the ACIS-S observations. The vertical dotted
line indicates the day of the first detection of nova M31N 2007-06b in
the optical (Shafter & Quimby 2007).

the Revised Bologna Catalogue (V.3.4, January 2008; Galleti
et al. 2004, 2005, 2006, 2007) or with foreground stars, char-
acterized by their optical to X-ray flux ratio (Maccacaro et al.
1988) and their hardness ratio (see Sticle et al. 2008). We then
used the XMMSAS task eposcorr to derive the offset of the
X-ray aspect solution.

We reduced the Chandra observations with the CIAO v3.4
(Chandra Interactive Analysis of Observations) software pack-
age. The source detection was done with the CIAO tool
wavedetect. Similar to the procedure described by Elvis et al.
(2009) for the Chandra COSMOS survey, an adapted version of
the XMMSAS tool emldetect was used to estimate background
and exposure corrected fluxes and count rates for the detected
sources. Both sources are located near the edge of the HRC-
I field of view and therefore both, photometry and astrometry,
suffer from relatively large errors.

2.1. Supersoft source in Bol 111

In our first Chandra observation of the AO6 monitoring cam-
paign, starting on 2007-11-07.64 UT (ObsID 8526), we de-
tected a new source (SS1) at the very edge of the HRC-I field
of view (Pietsch et al. 2007a). SS1 remained active during the
following Chandra monitoring observations (ObsIDs 8527-30)
in 2007 November and December. We followed the light curve
of SS1 with Swift ToO observations (ObsIDs 00031017001-
12, 2007 November—2008 January) and also found the source
to be still visible in our XMM-Newton M 31 monitor-
ing observations (ObsIDs 0511380201 and 0511380601, 2008
January—February). In Table 1 we present details on all ob-
servations. Due to the location of SSI near the edge of the
Chandra HRC-I field of view during all observations (see Fig. 2
for the location of the Chandra field and the source), we used
the XMM-Newton observations to perform precise astrometry.
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Fig.2. ROTSE-III M 31 central field (see Sect.3). Overlaid are the
four Super-LOTIS fields (black squares), the Chandra HRC-I field for
ObsID 8527 (big blue square) and the XMM-Newton field for ObsID
0511380201 (big red square). Indicated are the position of Bol 111 (red
circle) and Bol 194 (green square).

L ]
= .
Y@ ®
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¥ S
-
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(a) Bol 111 (b) Bol 194

Fig.3. X-ray position error circles for SS1 and SS2 as described in
Sects. 2.1 and 2.2 with respect to Bol 111 and Bol 194. Blue/big:
Chandra HRC-I, red/medium: Swift XRT, green/small: XMM-
Newton PN. Underlying optical image: 5' x 5" DSS POSS-II Red.

The offset-corrected XMM-Newton position of the source
was determined to be RA(J2000) 00:42:33.21, Dec(J2000)
+41:00:26.1 with a 30 error of 1”6, including the uncertainty of
the offset correction. These coordinates are in good agreement
(distance = 0"’5), within the errors, with the position of the M 31
GC Bol 111 (Galleti et al. 2004, 00:42:33.16, +41:00:26.1).
Therefore, we assume that SS1 is situated within the globular
cluster. Note, that no X-ray source was previously known in this
GC. See Fig.3 for a visualisation of the agreement of optical
(DSS POSS-II Red) and X-ray positions.

To perform spectral analysis of SS1 we used XMM-
Newton observations obtained on 2008-01-05.99 UT and 2008-
02-09.31 UT (ObsIDs 0511380201 and 0511380601). We ex-
tracted the spectra of SS1 from both observations and fitted them
simultaneously in order to increase statistics. We used data from
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Fig. 4. XMM-Newton EPIC PN spectra of SS1 (crosses) from obser-

vations 0511380201 (black) and 0511380601 (blue) fitted with an ab-
sorbed blackbody (solid lines).

XMM-Newton’s PN detector because of the better sensitivity of
PN in the soft band compared to both MOS detectors. The spec-
tra were extracted using XMMSAS task evselect. For both
spectra only single-pixel events (PATTERN = 0) were selected.

We fitted the spectra in XSPEC using an absorbed black-
body approach. Temperature and foreground Ny were both as-
sumed to be the same during the two observations and only the
respective normalisations were allowed to vary independently
from each other. The relative stability of the spectral parame-
ters is confirmed by a XMM-Newton observation on 2008-07-
18.26 UT (160 days later than 051138601), from which we ex-
tracted a spectrum of SS1 that can be fitted by a model with
similar parameters (see below). The blackbody approach yields
an acceptable y? = 1.39 for the best fit values of k7' = 48*2 eV
and Ny = 2.3 + 0.1 x 102! cm™2. This fit is shown in Fig.4
and the associated contour plot is given in Fig.5. We com-
puted the unabsorbed EPIC PN X-ray luminosities, in the range
0.2—-1.0 keV, from the best fit model in XSPEC and used the best
fit values to create in XSPEC fake spectra (command fakeit)
to infer the energy conversion factors (ecf) for the Swift XRT
(ecfxrr) and the Chandra HRC-I (ecfyrc_1). The ecf values are
given in Table3 and were used to convert our Swift XRT and
Chandra HRC-I count rates to unabsorbed luminosities. All lu-
minosities assume a distance to M 31 of 780 kpc (Holland 1998;
Stanek & Garnavich 1998) and are presented in Table 1. Note,
that for our first detection of SS1 in the Chandra HRC-I obser-
vation 8526 no photometry is possible due to the location of the
source on the edge of the detector. The blackbody fit parameters
and derived values, like luminosities for ObsID 0511380201, are
given in Table 3.

The unabsorbed X-ray luminosities inferred from the black-
body fit are in the order of 10°° ergs™!, and therefore signifi-
cantly exceed the Eddington luminosity of the hydrogen rich at-
mosphere of a WD: Lggq = 1.3 x 108 (M%) erg s~!. The fact that
blackbody fits to SSS spectra produce in general too high values
of Ny and too low temperatures, and therefore too high lumi-
nosities, is well known (see e.g. Greiner et al. 1991; Kahabka
& van den Heuvel 1997, and references therein), thus the values

given in Table 1 define upper limits on the actual luminosity of
SS1.
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Fig. 5. Column density (Ny ) — temperature (k') contours inferred from
the blackbody fit to the XMM-Newton EPIC PN spectra of SS1 (see
Fig. 4). Normalisation has been adjusted. Indicated are the formal best
fit parameters (cross) and the lines of constant X-ray luminosity (0.2—
1.0 keV, dotted lines).

Table 3. Comparison of SS1 spectral best fit parameters and derived
parameters for blackbody and WD atmosphere models with halo and
solar abundances.

Model Blackbody WD halo WD solar
(energy range [keV]) (0.2-0.8) (0.2-0.6) (0.2-0.6)
KT (eV) 48+ 61 +1 70 + 1
Ny (10*' cm™) 23+0.1 1.0+0.2 1.0+0.2
% 1.39 1.01 1.06
d.o.f. 53 44 48
L, (10¥ ergs™) 10.6 £0.2 1.00+0.02 0.88 +£0.02
Lyor (1038 erg s7) 28.7f8ﬁ 2.7+0.1 1.5+0.1
R (10° cm) 70756 121£0.07 070 +0.04
ecfpy (ct cm? erg™!) 50x10° 55x10'° 6.1 x10"
ecfyrc_1 (ct cm? erg™!) 2.6 x 10° 3.2 x 10" 3.7 x 10'°
ecfxgr (ct cm? erg™!) 7.4 %108 8.7 x 10° 9.9 x 10°

Notes:  Luminosities and WD radii refer to the XMM-Newton ob-
servation 0511380201. The unabsorbed X-ray luminosity L, is for the
0.2-1.0 keV range. Bolometric luminosities and WD radii for the WD
atmosphere model are upper limits (see Sect. 2.1 for details).

Blackbody fits are very simple approximations for SSS emis-
sion of novae and allow to compare parameters like effective
temperature for different novae. However, as mentioned above,
these fits are physically not realistic. Therefore, we tested fitting
our low-resolution spectra with WD atmosphere models, that are
based on more physical assumptions. We used a grid of syn-
thetic ionizing spectra for hot compact stars from NLTE model
atmospheres computed by Rauch (2003). These NLTE models
are plane-parallel, in hydrostatic and radiative equilibrium and
contain all elements from H to Ca (Rauch 1997). The models
were computed using the Tiibingen Model-Atmosphere Package
(TMAP, Rauch & Deetjen 2003). Elemental abundances are
fixed to either galactic halo ([X]® = [Y] = 0, [Z] = —1) or so-
lar ([X] = [Y] = [Z] = 0) ratios. The grids of model atmosphere
fluxes, as well as FITS tables which can be used in XSPEC, are

300 log(abundance/solar abundance).
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Fig.6. XMM-Newton EPIC PN spectra of SS1 from observations

0511380201 (black) and 0511380601 (blue) fitted with an WD atmo-
sphere model with galactic halo abundances (solid lines).

available on-line*. The XSPEC tables contain temperatures and
fluxes (binned to 0.1 A intervals) for fixed surface gravity (log )
and elemental abundances. In our case, the available grid param-
eter space was restricted to models with logg = 9.0, since only
these tables include temperatures high enough to fit our spectra.
This restriction clearly limits the significance of our best fits,
since models with different surface gravity may have provided
equally good fits with different parameters. Also note, that the
assumptions of plane parallel and static are not physically real-
istic for a nova atmosphere. Furthermore, the spectral analysis
is limited by the low energy resolution of the EPIC PN spectra,
which are, due to the faintness of the source, the only available
spectra with sufficient signal to noise ratio. Great caution should
therefore be applied when interpreting the results of our test fits.

We fitted the EPIC PN spectra with both halo and solar
abundance ratios. Galactic halo abundances are more represen-
tative of the metallicity of the M 31 GCs (Barmby & Huchra
2000). Figure 6 gives the fit for halo abundances and shows that
the atmosphere model fits the spectrum well only up to an en-
ergy of about 600 eV (y* d.o.f.~! = 1.01) but predicts too high
flux at energies above, which is clearly indicated by the resid-
uals. This is true for solar and halo abundances. However, this
is no surprise since recent detailed X-ray spectroscopy of the
SSS phase of galactic novae shows that these spectra are com-
plex (see e.g. Ness et al. 2007, who used spectra obtained with
the XMM-Newton Reflection Grating Spectrometer (RGS) and
the Chandra Low Energy Transmission Gratings Spectrometer
(LETGS)). Spectral models currently available may be not suit-
able for a correct fitting of SSS spectra of novae, especially
with respect to the elemental abundances of a hot post-nova
atmosphere.

In Table3 we compare the parameters of the WD atmo-
sphere model fits (fitted to the 0.2-0.6 keV range) to the pa-
rameters of the blackbody fit described above. We give unab-
sorbed X-ray luminosities(L,), that were computed for the range
0.2-1.0 keV in XSPEC, and bolometric luminosities (Lyo) as
well as WD radii (R), inferred from the bolometric luminosi-
ties. The bolometric luminosity for the blackbody fit was directly
computed from the normalisation of the spectra in XSPEC. For
the WD atmosphere model we used an absorbed blackbody fit

4 http://astro.uni-tuebingen.de/~rauch/
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with the same temperature and foreground Ny to compute bolo-
metric luminosity and WD radius. These values overestimate
the actual luminosity and radius and are therefore upper limits.
Energy conversion factors (ecf) for the Swift XRT (ecfxgr) and
the Chandra HRC-I (ecfyrc-1) detectors were again computed in
XSPEC, using fake spectra as for the blackbody fit, and are listed
in Table 3 together with the ecf for the XMM-Newton EPIC PN
(ecfpn).

The comparison of the fits shows that the WD atmosphere
models give physically more plausible results. The high value
of Ny which was required for the blackbody fit (three times
the foreground absorption) is significantly reduced to a value
which is just slightly above the foreground level of Ny =
0.7 x 102" cm™2. As a consequence, the super-Eddington lumi-
nosity derived from the blackbody fits is reduced to more realis-
tic values for the atmosphere models. The connection of Ny and
effective temperature can be seen in the confidence contours
shown in Fig.5. The effective temperature for the WD atmo-
sphere is higher than the blackbody temperature and is revealing
the H-burning hot layer. Still, one has to be cautious interpreting
these models, because the elemental abundances are fixed and
may be not realistic to describe abundances in a burning WD
atmosphere. However, the consideration of model substructures,
like absorption edges, already causes a reduction of the Ny nec-
essary to adjust the model to the spectra. Truly physical mod-
els for supersoft emission from novae are strongly needed and
should be validated using high resolution spectra obtained with
current and future missions.

We checked recent Swift (ObsID 00037718001, starting at
2008-05-26.29 UT) and XMM-Newton (ToO 0560180101, start-
ing at 2008-07-18.26 UT) data and found that SS1 is still visible
in both observations (see also Table 1 for details). Preliminary
data analysis was published in Pietsch et al. (2008a,b). For
Swift we used the blackbody fit described above and in Table 3
to convert the XRT count rate to unabsorbed luminosity. For
XMM-Newton we extracted an EPIC PN spectrum of SS1 as
described above for the two earlier XMM-Newton observations.
The spectrum can be fitted with an blackbody fit with best fit val-
ues of kT = 43+8 eV and Ny =2.2°39 x 10*! cm™ (7 = 1.52).
These parameters are consistent with the blackbody fit described
above and result in an unabsorbed X-ray luminosity (range of
0.2-1.0 keV) of (8.9 + 0.5) x 10°® ergs~'. Both observations
show that the X-ray luminosity of SS1 is slowly declining.

Supersoft spectra like the one of SS1 are typical for counter-
parts to optical novae and indicate that after the outburst there
is hydrogen burning going on in the remaining envelope of the
WD (see Pietsch et al. 2005a, and references therein). Therefore,
we identify the supersoft X-ray transient in the globular cluster
Bol 111 with the nova M31N 2007-06b reported by Shafter &
Quimby (2007). This optical nova was first detected on 2007
June 19.38 and was detected in X-rays the first time 141 days
later on 2007 November 07.64. SS1 was not visible on 2007 July
22.55, which is 33 days after the first detection in the optical (see
Table 1).

2.2. Supersoft source in Bol 194

A second supersoft source (SS2) was detected in the same
Chandra HRC-I observation as SS1 (ObsID 8526) as a new,
bright X-ray transient (Haberl et al. 2007a). In the following
observation (ObsID 8527) SS2 was again detected with sim-
ilar brightness close to the edge of the HRC-I field of view
(see Fig.2). For the remaining three Chandra observations of
the monitoring campaign the position of SS2 was outside the
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Fig.7. Swift XRT spectrum of SS2 in Bol 194 from observation
00031027001 (7.3 ks exposure time) fitted with an absorbed blackbody
fit (solid line).

field of view due to the changing roll angle of the observations.
Therefore, we used our Swift XRT ToO follow up observations
(starting with ObsID 00031027001) to constrain the spectrum
of SS2 and follow the X-ray light curve. The X-ray luminosi-
ties given in Table2 show that this source faded much faster
than SS1. Therefore, no XMM-Newton observations of SS2 are
available and we could use our XMM-Newton data only to com-
pute upper limits. Since SS2 also has a large off-axis position in
the HRC-I field, we used the Swift observation 00031027001 to
compute the position of the source. We found the following coor-
dinates: RA(J2000) 00:43:45.3, Dec(J2000) +41:06:08.15. With
a lo position error of 4”76 and a distance of 1”1 to the GC Bol
194 (Galleti et al. 2004, 00:42:45.20, +41:06:08.3) these coor-
dinates are in good agreement with the position of Bol 194. See
Fig. 3 for a comparison of optical (DSS POSS-II Red) and X-ray
positions.

The Swift XRT spectrum of SS2 (ObsID 00031027001)
only shows photons with energies below 750 eV (see Fig.7).
Therefore, we classified this source as a SSS. Since we have
not many spectral counts for this source, we use Cash statis-
tics for spectral modelling. The best spectral fit is an absorbed
blackbody with best fit values of kT = 743% eV and Ny =

(I.Of('):g) x 102! cm™2. The best fit parameters differ from the
preliminary data analysis published in Haberl et al. (2007b),
where we used a different abundance table in XSPEC (angr;
Anders & Grevesse 1989) and y? statistics. Using the best
fit values we computed the X-ray luminosity of SS2 to be
(6.4 + 1.0) x 10% ergs™!, the bolometric luminosity to be
107 x 10°7 ergs™ and therefore the radius of the WD to
be 5:%1 x 108 cm. Unfortunately, the low count Swift XRT spec-
trum does not provide enough degrees of freedom to test the WD
atmosphere model that we fitted to the XMM-Newton EPIC PN
spectra of SS1.

After our discovery, Galache et al. (2007) reported that they
found SS2 to be present in a Sks Chandra ACIS-S observation
taken on 2007-11-03.18 UT, which is four days earlier than our
first Chandra HRC-I detection. They confirm our classification
of SS2 as a SSS and further report that the source is not vis-
ible anymore in a 5ks Chandra ACIS-S observation on 2007-
11-27.16 UT (~24 days after the previous ACIS observation)
with an 95% upper detection limit of ~6 x 10~ cts~!. Note,
that this observation was taken just three days after our Swift
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observation on 2007-11-24.34 UT. Additional Swift XRT obser-
vations by Kong & Di Stefano (2007a) showed a re-brightening
of the source on 2007-12-02.64. However, the source faded
quickly again and was not found in follow-up Swift observa-
tions and our XMM-Newton monitoring data. We re-analysed
the Swift and Chandra HRC-I data, computed upper limits for
the XMM-Newton observations and present all available data on
SS2 in Table 2. We took the count rates for detections and upper
limits from Kong & Di Stefano (2007a) to compute luminosi-
ties in XSPEC using our spectral model. For the Swift obser-
vations 00031027004/5 we give 95% upper limits on the SS2
luminosity. These values are comparable to actual luminosities
obtained for earlier Swift observations, an effect which is due to
longer effective source exposure times for the earlier observa-
tions. X-ray luminosities for the three instruments were com-
puted using XSPEC and the blackbody fit inferred from the
Swift spectrum.

Analogous to SS1 and its possible connection to
M31IN 2007-06b in Bol 111, the supersoft spectrum and
the transient light curve could indicate that SS2 is the X-ray
counterpart of a recent optical nova in the GC Bol 194. The
following section describes the optical data analysis and the
constraints that we can put on a possible counterpart nova in
Bol 194.

3. Search for an optical nova counterpart
of the supersoft source in Bol 194

As there was no optical nova reported in Bol 194 we searched the
recent optical data available to us for indications of a nova out-
burst in the GC. Note, that the constant background light from
the GC makes it difficult to detect nova outbursts. However, dif-
ference imaging is a successful method in this context and was
used to analyse a big part of our optical data set. In the follow-
ing we describe the observational setup and the analysis of the
optical data.

3.1. Optical observations

The majority of our optical data was obtained in the context
of the Texas Supernova Search (TSS; Quimby 2006). The TSS
employed the 0.45-m ROTSE-IIIb telescope at the McDonald
observatory in Texas, and the data presented here are supple-
mented by its twin, the ROTSE-IIId telescope, which is lo-
cated at the Turkish National Observatory at Bakirlitepe, Turkey.
The ROTSE-III system is described in Akerlof et al. (2003).
The 1985 x 1285 field of view covered by the unfiltered, 2kx2k
Marconi CCD encompasses practically all of M 31’s light in a
single exposure (see Fig. 2), and additional overlapping fields
to the northeast and southwest add to the haul. Beginning in
November 2004, these 3 fields were imaged several times nightly
as weather and season allowed.

Our second monitoring program for optical novae uses the
robotic 60 cm telescope with an E2V CCD (2kx2k) Livermore
Optical Transient Imaging System (Super-LOTIS, Williams
et al. 2008) located at Steward Observatory, Kitt Peak, Arizona,
USA. Starting in October 2007 the telescope was used in ev-
ery good night to monitor the bulge of M 31. Using four Super-
LOTIS fields (field of view: 17" X 17’) these observations cover
an area of ~34’ x 34’ centered on the core of M 31 with a
pixel scale of 0.496”/pixel and a typical limiting magnitude of
19.0 mag, using a Johnson R filter. The reduction of the data
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is done by a semi-automatic routine and the astrometric and
photometric calibration uses the M 31 part of the Local Group
Survey (LGS, Massey et al. 2006). Typical values of Super-
LOTIS astrometric and photometric 1o accuracies are 0725
and 0.25 mag, respectively, averaged over the whole magnitude
range. The southeast Super-LOTIS field covers Bol 194 and the
astrometric and photometric 10 accuracies for this particular ob-
ject (~16.8 mag) are 0”11 and 0.06 mag, respectively.
Additionally, in this research our optical data set is supple-
mented by archival data from K. Hornoch obtained at telescopes
in Lelekovice (Newtonian focus of 350/1658 mm telescope,
CCD camera G2CCD-1600, Kron-Cousins R filter, 1.12"/pixel,
FOV 28.7'x19.1") and Ondfejov (primary focus of 650/2342 mm
telescope, CCD camera G2CCD-3200, Kron-Cousins R filter,
1.20”/pixel, FOV 21.8’x 14.7"). Standard reduction procedures
for raw CCD images were applied (dark and bias subtraction
and flat-field correction) using SIMS® and Munipack® programs.
Reduced images of the same series were co-added to improve the
S/N ratio (total exposure time varied from 600s up to 1800s). The
gradient of the galaxy background of co-added images was flat-
tened by the spatial median filter using SIMS. These processed
images were used for aperture photometry, carried out in GAIA”.
Relative photometry was done using brighter field stars which
were calibrated using standard Landolt fields. The 10~ measure-
ment uncertainties were low (~0.03 mag), thanks to the long ex-
posure times, the brightness of Bol 194, and its location far from
the high surface brightness levels found near the center of M 31.

3.2. Optical data analysis

We searched the optical data of Bol 194 obtained by the moni-
toring programs described above for a significant optical excess
that could indicate a nova outburst in the GC. The significance
for the Super-LOTIS data and for Hornoch’s data is defined by
applying a 3o clipping to the light curves of Bol 194 and judging
every two neighboured data points that lie outside the final +30
range as possible indications of a nova outburst.

For the ROTSE-III data, we used the PSF-matched im-
age subtraction code developed by the Supernova Cosmology
Project (Perlmutter et al. 1999) to search for residual light
from an optical nova. With this method the outburst of nova
M31N 2007-06b in Bol 111 was detected (Shafter & Quimby
2007). We first constructed a deep reference image by co-adding
100 ROTSE-IIIb images obtained between December 2004 and
June 2006. We then convolved this image to match the PSF of
each ROTSE-III image, subtracted off this template light, and
searched for any point sources coincident with Bol 194. We
attempted to measure any residuals at this location with the
DAOPHOT PSF-fitting routines (Stetson 1987; ported to IDL
by Landsman 1989).

These procedures did not lead to the discovery of an optical
nova counterpart of SS2 in Bol 194. However, our optical moni-
toring data of the M 31 bulge region allows us to put strong con-
straints on the outburst date of any nova that may have occurred
in Bol 194. Figure 8 includes all our optical data of Bol 194 from
November 2004 until 2007-11-08, which is 5 days after the first
detection of SS2 in X-rays on 2007-11-03. We show the mini-
mum detectable magnitude of a possible optical nova occurring
in Bol 194 during this period.

5 http://ccd.mii.cz/
% http://munipack.astronomy.cz/
7 http://www.starlink.rl.ac.uk/gaia
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Fig.8. Top: Limiting magnitudes of all optical data since 2004
November. Bottom: simulated detection (upper points) or non detec-
tion (lower points) for novae with indicated peak magnitudes. In both
panels the vertical dashed line shows the date of the first detection of
SS2 in X-rays.

To calculate the limiting magnitudes of the ROTSE-III obser-
vations, we measured the noise on the subtracted frames in an-
nuli centered on the location of Bol 194. The limits reported here
correspond to the flux required of a point source to be detected
at the 40 level. The magnitude scale was calibrated against the
USNO-B1.0 R2 measurements (Monet et al. 2003).

In contrast to this procedure, the limiting magnitude for the
Super-LOTIS data and for Hornoch’s data is computed as fol-
lows. At the distance of M 31 the light of a nova in a GC would
blend with the light of the GC itself. Therefore, we have to take
into account the intrinsic magnitude of the cluster (~16.8 mag
in the Super-LOTIS data) and compute the resulting magnitude
using

Ry = =2.510g((10704e 4 10704%n),

with R, Ry, and R, being the total magnitude, the magnitude
of the GC, and the magnitude of the nova, respectively. Thus,
for the Super-LOTIS data and for Hornoch’s data, the minimum
detectable magnitude R; of a nova is defined as the magnitude
that leads to a significantly brighter R. The significance criterion
used here is:

R < Rgc - 30—Rgc’

with 307g,, being the 30~ photometric standard error for Bol 194
(~0.16 mag for the Super-LOTIS data reduction and ~0.09 mag
for Hornoch’s data). These measurement errors are mean values
derived from our light curves of Bol 194. Since we used a 3o
clipping method to search for a nova outburst in Bol 194, we
assume that the mean photometric errors given for both instru-
ments would correspond to the final 30 range in the case of a
nova outburst-modified light curve. Therefore, we compute R
as follows:

Ry = —2.5l0g, (10704 Reem30hee) _ 1704 Ree,
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In order to judge the time coverage of our data set, we simu-
lated the outburst of novae with different peak magnitudes and
decay times in Bol 194 on any day between 2004 October and
2007 November and checked whether we would have detected
the outburst according to the limiting magnitudes, or not. We
simulated novae with peak magnitudes of 15.5, 16.0, 16.9, 18.0,
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Table 4. Optical constraints on a nova in Bol 194.
Datel [UT] Date2 [UT]* RIDI[d]® RID2[d]® Delay [d]
2005-02-15  2005-05-12 3417 3503 990-904
2006-02-19  2006-05-09 3786 3865 621-542
2007-02-18  2007-05-20 4150 4241 257-166
Notes: ¢ Start date (datel) and end date (date2) of the non-

18.5 and 19.0 mag in the R band and decay times of 6, 15,
29, 63, 102 and 164 days, respectively. The peak magnitude of
nova M31N 2007-06b in Bol 111 as given in Shafter & Quimby
(2007) is 16.9 mag. The decay time #, is defined as the time in
days the nova luminosity needs to drop 2 mag below peak lu-
minosity (Payne-Gaposchkin 1964). To compute this value, we
used the maximum magnitude versus rate of decline (MMRD)
relationship given by Della Valle & Livio (1995), for , < 50 d:

1.32—logt2)

Mymax = =7.92-0.81 arctan( 023

and by Cohen (1988), for #, > 50 d:
My max = 2.411ogt, — 10.70.

We used this combination of the two different MMRDs accord-
ing to Shafter (1997) in order to compensate for the breakdown
of the MMRD from Della Valle & Livio (1995) at large values
of t,. Both MMRDs give the relation of the decay time of a nova
to its maximum magnitude in the V band. The color relation for
novae at maximum lightis (B—V)y = 0.23+£0.06 (van den Bergh
& Younger 1987). This fact implies for novae at maximum light
a spectral type close to FO and therefore a (V — R)y ~ 0.30 (see
e.g. Allen 1976) which we used to match both MMRDs to our R
band data.

For our simulations we used a M 31 extinction free dis-
tance modulus of gy = 24.38 mag (Freedman et al. 2001).
We applied a reddening towards M 31 of E(B — V) = 0.062
(Schlegel et al. 1998) and a foreground extinction in the R
band of A}e = 0.17 mag, obtained via the NASA Extragalactic
Database (NED). We estimated the internal absorption of M 31
to be AiR ~ 0.11 mag, using A;g ~ 0.20 mag (Capaccioli et al.
1989) and assuming that A, ~ Ap.

The results of these simulations are shown in the top panel of
Fig. 8, with the upper parts of the curves indicating the periods
over which each simulated nova would have been detected. The
figure visualises the fact that our monitoring is efficient in the
sense that the only periods in which we would not have been able
to detect the most novae, are the periods when M 31 is not ob-
servable due to its annual visibility. These periods, computed for
a nova with parameters of M31N 2007-06b, and the estimated
constraints on the delay time between optical outburst and detec-
tion in X-rays are shown in Table 4. Note also, that a bright nova
(peak luminosity = 15.5 mag) would have been missed more
likely than a fainter nova. This is due to the faster decline of lu-
minosity for the brighter novae and good detection limits of our
observations down to ~19 mag.

4, Discussion
4.1. Summary of observational data

We present in this paper the first two SSSs found in M 31 GCs.
The source SS1 in Bol 111 can be identified with M31N 2007-
06b, the very first nova found in a M 31 GC in June 2007
(Shafter & Quimby 2007). After 137 days (November 2007) we
detected supersoft X-ray emission from this source and it was
still active in our last XMM-Newton observation in July 2008.

detection periods.

b The same as in ¢ but in RJD = JD — 2450 000.

¢ Periods of possible delay time between nova outburst
and first detection in X-rays.

The supersoft spectrum and the transient nature of SS2 in
Bol 194 could also indicate a recent nova outburst. However, we
could not find evidence for an nova counterpart in optical mon-
itoring data of this GC. We give constraints on a possible nova
outburst in Bol 194, based on the detection limits of our opti-
cal observations and simulated nova outbursts. The simulations
show that most novae would have been detected in Bol 194, ex-
cept in the times when M 31 could not be observed due to it’s an-
nual visibility. We computed the time spans in which a nova like
M31N 2007-06b in Bol 194 could have had an unobserved out-
burst. The associated delay times, given in Table 4, between op-
tical outburst and X-ray switch-on are physically feasible, since
similar delays have been observed in other supersoft nova coun-
terparts (see Pietsch et al. 2007b). Therefore, a nova outburst in
Bol 194, that is connected to SS2, cannot be ruled out.

4.2. Globular cluster nova rate — the optical point of view

The statistics of novae in GCs of other galaxies is still poor.
Tomaney et al. (1992) conducted a search in Ha of over 200
M 31 GCs for nova eruptions and found nothing over an effec-
tive survey time of one year. This results in an upper limit for the
M 31 GC nova rate of 0.005 novae yr~! GC~!. Another search
for novae in 54 M 31 GCs was done by Ciardullo et al. (1990b)
based on the M 31 Ha survey data of Ciardullo et al. (1987,
1990a). Over a mean effective survey time of approximately two
years no indications for a nova outburst in one of the GCs was
found. From one nova found in a GC of the giant elliptical galaxy
M 87 Shara et al. (2004) derive a rate of 0.004 novae yr~! GC~!
for the whole system of 1057 known M 87 GCs (4.2 novae yr™}).

There are about 500 GCs known that belong to M 31 (482
confirmed GCs, according to the Revised Bologna Catalogue®
(V.3.5, March 2008; Galleti et al. 2004, 2005, 2006, 2007)).
This corresponds approximately to a stellar mass of about
5 x 10° M. Given a rate of 2.2 novae yr~' (10' My)~!, which
is observed in old systems like elliptical galaxies (data derived
from Table 3 of Della Valle et al. 1994 and Eq. (1) of Mannucci
et al. 2005), we derive a rate of about 1.1 novae yr" for the
M 31 GC system, which corresponds to about 0.002 novae yr~!
GC~!. This figure is comparable (within a factor of 2) with the
observed rate (0.004) of the M 87 GC system obtained by Shara
et al. (2004) and suggests that the discovery of only one nova in
the M 31 GC system (Shafter & Quimby 2007) over about a cen-
tury of observations may be the result of a strong observational
bias (see Shafter & Quimby 2007).

4.3. Globular cluster nova rate — the X-ray point of view

While the detection of CNe in GC in the optical is strongly ham-
pered by the light from the GC itself, the detection of supersoft

8 http://www.bo.astro.it/M31/
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emission from a hydrogen-burning post-nova atmosphere is not
affected by this. However, the presence of other X-ray sources
in a GC, such as LMXBs, may create a similar problem for the
detection of a SSS in that GC. In the following, we discuss the
impact of our results on the rate of novae for the M 31 GCs.

If we assume that both SS1 and SS2 are post-novae and
assume the duration of the SSS phase to be of the order of
1 yr then we find a nova rate of 0.015 novae yr~! GC~! for
the ~130 GCs from Galleti et al. (2007) in the field of view
of our Chandra HRC-I observations (see also Fig.2 for the
Chandpra field). The duration of the SSS phase of novae is a crit-
ical parameter for a correct estimate of the nova rate. Although
there are some novae known to have much longer SSS phases
than 1 yr (see e.g. Ogelman et al. 1993) it is likely (see Pietsch
et al. 2007b) that novae with short SSS phases were just not
found in the past due to selection effects. Also note, that the SSS
phase of SS2 lasted only <4 months and therefore the assumed
duration of 1 yr may still be a quite conservative estimate.

The nova rate computed using the X-ray data on the SSSs
is about a factor 10 larger (after assuming the duration of the
SSS phase to be 1 yr) than the nova rate estimated by assuming
that GCs produce novae with a rate comparable to the old stellar
populations in Ellipticals. The match between the rates in X-ray
and in optical is obtained for a duration of the SSS phase of about
a decade. Such a long time has been observed indeed (Ogelman
et al. 1993), but it does not seem to be the rule (Pietsch et al.
2007b).

The results based on the small size of our sample of GC
SSSs are clearly dominated by Poissonian statistics. In this case,
the discovery of two GC novae would still be consistent with
a nova rate of ~0.002 novae yr~' GC™! (95% confidence level)
and ~0.004 novae yr~' GC~! (99.87% confidence level), respec-
tively. Both values are below the upper limit of 0.005 novae yr~!
GC~! estimated by Tomaney et al. (1992) from optical observa-
tions.

Furthermore, we want to emphasize the fact that not all op-
tical novae in the Galaxy and in M 31 were detected as SSSs.
Novae with supersoft X-ray emission are a subset, with yet un-
known size, of the whole nova population. The nova rates de-
duced from X-ray observations are therefore lower limits on the
actual nova rates.

4.4. Conclusions

The nova rate in the M 31 GC system may be larger by about
one order of magnitude than expected in old stellar systems like
giant ellipticals. This fact implies the existence of some other
(dynamical) mechanism which acts inside the GCs and is capa-
ble to raise the fraction of CN systems naturally produced by
stellar evolution. It is well known that LMXBs are highly over-
abundant in GCs, with respect to the rest of a galaxy (see e.g. Fan
et al. 2005, and references therein). This is explained by dynam-
ical effects like tidal captures of low-mass main-sequence stars
by neutron stars (see also Clark 1975; Fabian et al. 1975). One
would expect similar effects for WDs (Hut & Verbunt 1983),
but although large numbers of cataclysmic variables (CVs) have
been found in Galactic GCs, the number of novae detected in
GCs is still small (see Shara et al. 2004, and references therein).

Further, we note that novae with short SSS states seem to be
an important contributor to the SSS population of galaxies (see
also Pietsch et al. 2007b). XMM-Newton observations of M 31
in the past (Stiele et al. 2008; Pietsch et al. 2005b; Trudolyubov
& Priedhorsky 2004) did not detect SSS with positions that agree
with GC positions. This might in part be due to the fact that
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the individual observations of these monitorings were separated
by half a year or more. The discoveries of SS1 and SS2 are
the first results of a new monitoring strategy, that uses XMM-
Newton and Chandra observations that are separated just by
10 days. Future observations that follow this strategy may in-
crease the statistics for SSS in M 31 GCs. If future surveys of
M 31 will be able to find between six to eight new GC novae
per year, the existence of a nova rate excess, of the size reported
above, will be proven at 95% and 99.87% confidence level, re-
spectively.

Finally, given the possible link between SSS and type Ia su-
pernovae (SNe-Ia) (e.g. Della Valle & Livio 1994; Di Stefano &
Rappaport 1994) if a high rate for SSS in GCs will be confirmed
by future surveys, it may not be inconceivable to expect detec-
tion of SNe-Ia in GC systems around giant ellipticals or bulge
dominated galaxies.
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