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We examine the fracture mechanics of tearing graphene. We present a molecular dynamics simulation of the
propagation of cracks in clamped, free-standing graphene as a function of the out-of-plane force. The geometry is
motivated by experimental configurations that expose graphene sheets to out-of-plane forces, such as back-gate
voltage. We establish the geometry and basic energetics of failure and obtain approximate analytical expressions
for critical crack lengths and forces. We also propose a method to obtain graphene’s toughness. We observe that
the cracks’ path and the edge structure produced are dependent on the initial crack length. This work may help
avoid the tearing of graphene sheets and aid the production of samples with specific edge structures.
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I. INTRODUCTION

Fracture mechanics provides an ingenious framework by
which to assemble experimental information and calculations
from continuum elasticity into a theory of material failure. This
theory is particularly important for structures that are subject to
many design constraints but must be protected against failure
at all costs, for example, aircraft [1]. Graphene is a single-layer
two-dimensional (2D) honeycomb lattice of carbon atoms. It is
light, flexible, and thermally stable (in a nonoxidizingenviron-
ment) and has a high electrical conductivity (the Fermi velocity
of electrons in graphene is 106 m/s [2]). Many experiments
have used graphene in the free-standing experimental setup,
mostly in an effort to improve electronic properties through
absence of a substrate [3–7]. Graphene is very stiff against
in-plane distortions, with a Young modulus on the order of
≈1 TPa [8]. Because it is so thin, it is very floppy, and the
bending energy is of the order of 1 eV [9]. The large value of
Young’s modulus gives graphene a very high ideal breaking
stress of around 130 GPa, leading to the assertion that it
is the strongest material known [8]. This statement is true
for defect-free samples. However, in practical applications,
sample defects are almost inevitable on some scale, and
therefore the toughness of graphene is important to determine.
Previous studies of fractures of graphene have employed in-
plane geometry [10–12]. The energy cracks required to create
a new surface in graphene, the fracture toughness, should not
be expected to depend on the precise path by which atoms pull
apart around the crack tip, except to the extent that dissipative
processes such as generation of phonons is involved [13].
Thus in-plane calculations should not be appreciably worse
than the out-of-plane calculations we will perform to obtain
the fracture toughness of graphene. However, when it comes
time to compare with experiment, details of the geometry do
matter. Empirical atomic potentials are not necessarily very
reliable when it comes to the details of surface energies [13].
Toughness is better obtained from experiment than from
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theory. To make this determination possible, one needs a
geometrical setting where theory and experiment coincide
and fracture toughness is the only unknown parameter. Then
toughness can be obtained from critical values of force or initial
crack length where cracks begin to run. In some experimental
configurations, free-standing graphene samples show cracks
and holes, and sometimes the samples break [6,10,14–16].
The back-gate voltage experimental setup is an example. In this
case, the free-standing graphene sheet is pinned at its edges and
suspended between two shelves. The graphene experiences a
downward force because the substrate has a voltage that differs
from the graphene itself. We perform molecular dynamics sim-
ulations in this geometry, employing nanometer-scale samples.
From these simulations, we deduce the basic geometry of
the failure process. With the understanding of the geometry
in hand, we develop analytical approximations that can be
employed on samples of any size where failure occurs in the
same mode. We verify that our simulations are in satisfactory
accord with these approximations. The structure of this article
is as follows: In Sec. II we describe our simulations and
point out the essential way that sheets deform in the presence
of uniform downward forcing to drive crack motion. In
Sec. III we develop analytical expressions to correspond to this
geometry. In Sec. IV we compare our analytical expressions
with our simulations and the available experimental evidence
to estimate fracture toughness of graphene. Section V contains
a final discussion and conclusions.

II. NUMERICAL STUDY

Here we present a numerical study of the propagation of
cracks in clamped, free-standing graphene as a function of
the out-of-plane force. We use the modified-embedded-atom
method (MEAM) semiempirical potential [17], shown to
reproduce well the properties of graphene [18,19] and to
support crack propagation [20]. The energy minimization is
done through damped molecular dynamics. To better model
experimental conditions, all the simulations in this work are
of finite-sized graphene sheets, and no periodic boundary
conditions are used. The simulations were done at zero
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FIG. 1. (Color online) Constant downward force is applied on a 100 Å by 100 Å clamped, free-standing graphene sheet with an initial
crack of l ≈ 10 Å. Notice that the sheet wrinkles and bends before the crack runs.

temperature to focus on fracture mechanics. We saw no
indication during the investigation of phenomena such as
lattice trapping where thermal fluctuations would have been
important to overcome energy barriers. Cracks on graphene
sheets have been observed to come in multiple sizes and
shapes [6]. Most experiments focus on electronic properties,
and do not look at initial cracks on the samples. Consequently,
the shapes of the cracks are in general unknown. We consider
two possible initial conditions: a crack in the middle of the
sheet and a crack at the very edge of the sheet, the first because
it is a symmetrical problem and the second because defects
can occur where the graphene sheet meets the support that
suspends it. We start with a flat graphene sheet, where the
position of the atom i is represented by (xi

0,y
i
0,z

i
0). We consider

a straight crack that runs parallel to the x axis and has a length
of xcut. To provide a seed configuration we keep the x and y

positions of the atom and change z by

zi = zi
0 − PA

[
1 − exp

(
PB yi

0

)][
1 − exp

(
PB

( − xi
0 + xcut

))]
.

(1)

The parameters PA and PB determine the initial curvature of
the sheet. As an example of an initial condition, Fig. 1(a)
shows a crack of l ≈ 10 Å at the edge of a suspended graphene
sheet. The clamped edges are not allowed to move and where
chosen to have a width of ≈5 Å. During the initial molecular
dynamics time steps the sample relaxes, as shown in Fig. 1(b).
Given sufficient time in the absence of external forces, the
crack would zip back up and the sample would heal. This does
not happen because we apply a downward force to every atom
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FIG. 2. Potential energy vs time for an initial edge crack of l ≈
35 Å. The first large drop in potential energy happens while the sheet
ripples and bends. Then potential energy slowly decreases as the
ripples disappear and the sheet reaches its fully bent state. Another
fast drop in potential energy occurs when the crack starts running.

in the sheet. For samples where sufficient force is applied, the
crack starts running, as seen in Fig. 1(c). Short movies of crack
propagation are available at Ref. [21].

We do not know what creates cracks in graphene sheets in
actual experiments. They result from impurities, defects, or
details of sample preparation. We emphasize that in the theory
of fracture mechanics, crack propagation is independent of the
mechanism that initially creates the crack.

We encountered some difficulties in determining the period
of time that it takes for a crack to begin to run. The simulations
show that first the sheet ripples and bends and then the crack
runs. In terms of energy, what we see is an initial large drop in
potential and kinetic energy (Fig. 2). The sheet then reaches
an almost-stable state, where the energy almost plateaus,
decreasing very slowly. Finally, when the crack runs, another
drop in potential energy occurs together with a fast increase
in kinetic energy. If the force applied is not strong enough
for the crack to run, the sheet stays in the bent state forever.
Numerically, we have to set an acceptable period of time to
be considered “forever.” We observe that longer initial crack
lengths lead to longer periods of time spent in the almost-stable
state. After studying many simulations we decided that 600 000
time steps = 1.5 × 10−10 s is, in most cases, an acceptable
period of time to study the crack propagation (or lack of it).

The numerical simulations show the basic geometry of the
failure process. In both cases, cracks at the edge and in the
middle of the sheet, we observe that the sheet folds in a crease
(on both sides of the crack) before the crack runs (Fig. 3). In
the next section we use this geometry to obtain approximate
analytical expressions for critical crack lengths and forces.

III. ANALYTICAL APPROACH TO TEARING A
TWO-DIMENSIONAL SHEET

The system of interest is a two-dimensional sheet, such
as graphene, with an initial crack of length l. The sheet is

FIG. 3. (Color online) Clamped, free-standing graphene sheets
with an initial crack (at the edge and in the middle) under a downward
constant force. In both cases the sheet exhibits a crease before the
crack runs. The crease goes from the crack tip essentially all the way
to the fixed end.
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l

l + dl

FIG. 4. (Top) Clamped, free-standing two-dimensional sheet with
an initial crack of length l at the right-hand side. The sheet is clamped
at the left and right edges. (Bottom) Because of an external downward
force, the crack runs, a length dl, and the sheet bends diagonally.

suspended and exposed to a uniform downward force f . The
problem is to describe the propagation of a crack in such a
sheet and the minimum force required for the crack to run.
Here we follow a procedure similar to the one developed by
Marder [22] for the propagation of a crack in a 3D strip,
making the appropriate changes for our two dimensional
problem.

Consider a system with an initial crack of length l and total
energy Utot(l) (Fig. 4). The crack can run a length dl if doing
so reduces the total energy of the system, that is,

Utot(l) > Utot(l + dl). (2)

The total energy of the system can be written as the energy
contained within the crack tip region plus the energy outside
of it, Uout. The energy to move the crack tip (region) is
proportional to the energy of the new surface opened up by
the crack. Therefore, the total energy of a 2D sheet, such as
graphene, with a crack of length l is given by

Utot(l) = �l + Uout(l), (3)

where � is the fracture toughness. The fracture toughness is
material dependent, and it can be measured experimentally
(and obtained numerically).

From Eqs. (2) and (3) we get Griffith’s criterion for a crack
to propagate in a 2D sheet,

dUout

dl
+ � < 0. (4)

This should be understood as a necessary but not sufficient
condition for crack motion. Atomic systems can exhibit lattice
trapping, where cracks become stuck between atoms and do
not propagate, even though there is enough energy available to
allow it [23]. This phenomenon leads to hysteresis depending
on whether the driving force for crack motion is increasing or
decreasing. As we ramped external forces both up and down
and saw cracks run forward or heal backward at very nearly the
same force, provided we waited long enough, we do not think
lattice trapping is very important in this case. We analyze the
fracture mechanics of the two geometries under consideration:
a crack at the very edge of the sheet and a crack in the middle
of the sheet.

s

y

θ

ds

dy

FIG. 5. One-dimensional strip of length L, fixed at one end, and
bending due to an external downward force.

A. Analytical study of a sheet with an edge crack

For an initial crack at the edge of the sheet the downward
force will tear the sheet at the edge, making it bend diagonally,
as seen in Fig. 4. The energy outside the crack tip, Uout, is then
equivalent to the energy required to bend a 2D sheet.

First, we consider the energy needed to bend a strip (Fig. 5).
Then we extend the result to the 2D case of a bending sheet.

1. Energy for a bending strip

The energy of a 1D strip of length L under a downward
force f is given by

U 1D =
∫ L

0
ds

[
kl

2

(
dθ

ds

)2

+ fl y(s)

]
, (5)

where kl is the bending modulus (times length). The θ term
refers to the bending energy and the fl term refers to energy
due to the external downward force (per length) applied to the
strip. From Fig. 5 we observe that

y(s) =
∫

sin(θ )ds. (6)

Therefore,

U 1D =
∫ L

0
ds

[
kl

2

(
dθ

ds

)2

+ fl

∫ s

0
sin(θ (s ′))ds ′

]
. (7)

To obtain the energy outside the crack tip in terms of the
minimum force required for the crack to run, we need to
minimize Eq. (7), which results in (see Appendix A for details)

U 1D = 2(2 −
√

2)
√

flklL − 1
2flL

2. (8)

The first term refers to the folding of the strip and the second
term to the potential energy. We note that the folding energy
depends, somewhat surprisingly, on the total length L of the
strip. This happens because as the strip length increases so
does the force on it, and the crease bends at a tighter and
tighter angle.

2. Energy for a bending sheet

Now we obtain approximate expressions for a sheet folding
from the crack tip all the way to the fixed end, forming a crease
as seen in Fig. 6. We consider the bending energy for a right
triangle, with one side of length l, the crack length, and another
side of length m, the horizontal width of the crease.
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n

m
l

FIG. 6. Suspended sheet with an initial crack of length l. The
triangle formed by the crease is the part of the sheet that is initially
free to bend, as it is not attached to the support.

In the previous section we obtained the energy of a bending
strip under a downward force. We can now integrate that result
over the right triangle to obtain the bending energy of a triangle.
We break the triangle into two parts (Fig. 7) and obtain

U 2D = U1 + U2, (9)

where

U1 =
∫ n1

0
dr1

∫ L(r1)

0
ds

[
k

2

(
dθ

ds

)2

+ fa

∫ s

0
sin(θ (s ′))ds ′

]
(10)

and

U2 =
∫ n2

0
dr2

∫ L(r2)

0
ds

[
k

2

(
dθ

ds

)2

+ fa

∫ s

0
sin(θ (s ′))ds ′

]
.

(11)

Here fa is the downward force per area and k is the bending
modulus (units of energy).

Notice that, in the two-dimensional case, the total bending
length, L(r), varies throughout the triangle and is written as
L(r1) = (h/n1)r1 for the first triangle and L(r2) = (h/n2)r2

for the second triangle. The height of the triangle is given
by h = ml/

√
m2 + l2 and the hypotenuse by n = n1 + n2 =√

m2 + l2 (see Fig. 7).
The first integral is the same as the one we solved for the

1D case of the bending strip. Therefore, in the case of U1, for
example,

U1 =
∫ n1

0
dr1

[
2(2 −

√
2)

√
kfaL(r1) − 1

2faL
2(r1)

]
. (12)

n1

n2

h l

m

r̂

ŝ

FIG. 7. Relabeling Fig. 6: right triangle formed by the crease,
n = n1 + n2, the crack length, l, and the horizontal width of the
crease, m. Note that the horizontal width of the crease, m, is essentially
the width of the sheet.

Substituting L(r1) = hr1/n1 and solving the integral in r1

we obtain

U1 = n1
[

4
3 (2 − √

2)
√

kfah − 1
6fah

2
]
. (13)

As U2 is analogous to U1, Eq. (9) results in

U 2D = U1 + U2 = (n1 + n2)
[

4
3 (2 − √

2)
√

kfah − 1
6fah

2
]
.

(14)

Substituting n = n1 + n2 = √
m2 + l2 and h = ml√

m2+l2 , we
obtain that the energy required to bend a right triangle is given
by

U 2D = C
√

kfanml − 1

6
fa

m2l2

n
, (15)

where C = 4
3 (2 − √

2), fa is the downward force per area, k is
the bending modulus, m is the horizontal width of the crease,
l is the crack length, and n = √

m2 + l2. Note that, the first
term refers to the folding of the sheet and the second term to
the potential energy.

B. Griffith point

In the beginning of Sec. III we presented Griffith’s criterion
for a crack to propagate on a 2D sheet,

dUout

dl
+ � = 0.

Substituting the energy outside the crack tip, Uout, for the
energy to bend a triangle U 2D, Eq. (15), and solving for the
minimum force (per area) for the crack to run, we obtain our
final expression for an edge crack,

f edge
a = 3(l2 + m2)3/2

2l3m3(l2 + 2m2)2
{3C2k(2l2 + m2)2

+ 4�l2m(l2 + 2m2) + C(2l2 + m2)

×
√

3k[3C2k(2l2 + m2)2 + 8�l2m(l2 + 2m2)]},
(16)

where k is the bending modulus [9,19,24,25], � is the fracture
toughness, C = 4

3 (2 − √
2), l is the crack length, and m is

the horizontal width of the crease (see Fig. 6). Note that the
horizontal width of the crease, m, is essentially the width of
the sheet.

For a crack in the middle of the sheet, as there are two folds,
the total energy outside the crack tip is

Uout = 2U 2D. (17)

Hence, our final expression for a crack in the middle of the
sheet is

f middle
a = 3(l2 + m̃2)3/2

2l3m̃3(l2 + 2m̃2)2
{3C2k(2l2 + m̃2)2

+ 2�l2m̃(l2 + 2m̃2) + C(2l2 + m̃2)

×
√

3k[3C2k(2l2 + m̃2)2 + 4�l2m̃(l2 + 2m̃2)]},
(18)

where m̃ is essentially half the width of the sheet for a sheet
with crack in the middle.

032405-4



TEARING OF FREE-STANDING GRAPHENE PHYSICAL REVIEW E 88, 032405 (2013)

0.0 4 × 10−9 8 × 10−9

l (m)

0.0

2 × 10−11

4 × 10−11
F

(N
/a

to
m

)

(a) m̃ = 50 × 10−10m

0.0 5 × 10−9 1 × 10−8

l (m)

0.0

4 × 10−12

8 × 10−12

F
(N

/a
to

m
)

(b) m̃ = 500 × 10−10m

FIG. 8. Plot of force (in newtons per atom) versus initial crack length (in meters), Eq. (18). The half width of the sheet, m̃, in (b) is 10 times
larger than the one in (a). Note how the minimum force decreases with increasing initial crack length and width of the sheets.

For initial cracks that are much smaller than the width of
the sheet (l � m) we find

f
edgel�m
a = 3

�

ml
+ 3C

8l3

[
3Ck +

√
3k

(
3C2k + 16�

l2

m

)]
(19)

and

f middlel � m̃

a = 3

2

�

m̃l
+ 3C

8l3

[
3Ck +

√
3k

(
3C2k + 8�

l2

m̃

)]
.

(20)

It is intuitive that the force required for a crack to run will
depend on the initial crack length. For sheets of paper, for
example, it is easier to tear a sheet with a long crack than to
tear one with a short crack. Note that the expressions for the
minimum force required for a crack to run, Eqs. (16) and (18),
depend not only on the crack length, l, but also on the width of
the sheet, m (or the half-width, m̃). Figure 8 shows two graphs
of force versus initial crack length for a sheet with a crack
in the middle. The half width of the sheet, m̃, in Fig. 8(b) is
10 times larger than the one in Fig. 8(a). Notice that longer
initial crack lengths lead to lower minimum forces. Moreover,
wider sheets lead to lower minimum forces. As a result, the
minimum force approaches zero with increasing initial crack
length and width of the sheets.

IV. COMPARISON BETWEEN NUMERICAL AND
ANALYTICAL RESULTS

To compare the numerical results with the analytical
expression, Eqs. (16) and (18), we need the values of the
bending modulus k and the fracture toughness � for graphene.

The experimental value of the bending modulus of graphene
is kexp = 1.2 eV [9]. In previous numerical work on ripples
in graphene we found k = 1.77 eV [19]. Another numerical
study, by Fasolino et al. [24], obtained k = 1.1 eV.

We have not been able to find an experimental measurement
of graphene’s fracture toughness in the literature. From our

simulations we obtained

�numerical ≈ 3.82 × 10−9 J/m. (21)

For the full numerical calculation of graphene’s fracture
toughness, see Appendix B.

The uniform downward force is applied to every atom on
the sheet, therefore, numerically, we use force per atom fatom,
and not force per area fa , as in the analytical calculations. The
relationship between force per atom and force per area is

fatom = fa

η
= fa

38.17 × 1018 m−2
, (22)

where η = 38.17 × 1018 m−2 is the number of atoms per area
in graphene.

A. Numerical study of a sheet with a crack in the middle

A graph of force per atom versus initial crack length for
a crack in the middle of the sheet is shown in Fig. 9. The
line is the theoretical expression, Eq. (18), and the dots are
the numerical results. The horizontal error bars are estimated
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FIG. 9. Graph of force (in newtons per atom) vs initial crack
length (in meters) for a crack in the middle of the sheet. The line is
the theoretical expression, Eq. (18), the dots are the numerical results
for a sheet of 100 Å by 100 Å, and the open circles are the numerical
results for a sheet of 200 Å by 100 Å.
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FIG. 10. Log-log graph of force (in newtons per atom) vs initial
crack length (in meters) for a wide-open middle crack. The line is the
theoretical expression, Eq. (18), the dots are the numerical results for
a sheet of 100 Å by 100 Å, and the open circles are the numerical
results for a sheet of 200 Å by 100 Å.

uncertainties of the initial crack length due to the fact that the
crack tip is not perfectly well defined. The vertical error bars
reflect the precision of our numerical simulations.

Figure 9 shows good agreement between the theory and the
simulations, except for some of the longer cracks in systems
of overall size 100 Å by 100 Å. Discrepancies between theory
and numerics should be expected as crack lengths approach
system dimensions. To verify that system size effects were
responsible, we simulated the same initial crack lengths in a
sheet of 200 Å by 100 Å; that is, we kept the same width, m,
and changed only the sheet’s length, a parameter that does not
appear in the theory. The results are shown in Figs. 9 and 10.
The line is the theoretical expression, Eq. (18), the dots are the
numerical results for a sheet of 100 Å by 100 Å, and the open
circle are the numerical results for a sheet of 200 Å by 100 Å.
Notice that for short initial cracks both results fall exactly on
top of each other. For longer initial cracks the force plateaus
for the 200 Å by 100 Å sheet, as in the theory, while for the
100 Å by 100 Å sheet the force decreases due to edge effects.

Another issue is that it is hard to produce short initial
cracks in the middle of the sheet. They close easily and the
uncertainty of the crack tip plays an important role. Therefore,
the uncertainties for the first two points on the graphs (initial

FIG. 11. (Color online) Nonstraight crack propagation in a 100
Å by 100 Å graphene sheet with an initial crack of l ≈ 25 Å. Note
that the initial zigzag crack propagates as armchair.

FIG. 12. (Color online) Nonstraight crack propagation in a 100 Å
by 100 Å graphene sheet with an initial crack of l ≈ 30 Å. Note that
the initial zigzag crack propagates along the “armchair” direction and
then turns along the “zigzag” direction.

cracks of 10 Å and 15 Å) perhaps should be higher than the
values presented on Fig. 9.

B. Numerical study of sheet with an edge crack

Cracks at the edge of the sheet present some interesting
characteristics, not seen in cracks in the middle of the sheet.
The simulations show that, depending on the initial condition,
a crack will not run straight through the sheet, as initially
expected (see Figs. 11 and 12). Short initial cracks run straight,
while longer cracks do not.

Another interesting result is that, depending on the ini-
tial crack length and orientation (zigzag or armchair), the
propagation pattern will differ (see Figs. 11 and 12). Similar
dynamics have been seen in simulations of tearing graphene
nanoribbons [26].

Figure 13 shows a log-log graph of force per atom
versus initial crack length. The dotted line is the theoretical
expression, Eq. (16), and the disks are the numerical results.
Theory and numerical results do not agree very well.
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FIG. 13. Log-log graph of force vs initial crack length for an edge
crack. The dotted line shows Eq. (16), taking m to be the width of
the sheet minus the clamped region; the solid line is the best fit for
theoretical expression, Eq. (16), assuming m to be a fitting parameter
and the disks are numerical results. The width of the sheet minus the
clamped region is 90 Å and the best fit value for m is 64 Å.
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FIG. 14. (Color online) Clamped, free-standing graphene sheets
with an initial edge crack under a downward constant force. The
sheets exhibits a crease before the crack runs. The crease starts at the
crack tip and ends before the fixed end.

Looking at the simulations of sheets with an initial edge
crack, we notice that the crease seems to end before the fixed
end; see Fig. 14. This means that the value for m should
be smaller than the width of the sheet (minus the width of
both fixed ends). The best fit for the theoretical expression
Eq. (16) with the numerical results, assuming m to be a fitting
parameter, is shown as the solid line in Fig. 13. The width of the
sheet minus the clamped region is ≈90 Å and the best fit value
for m is 64 Å. It was difficult to determine the crease length
from the simulations, so we treated it as a fitting parameter,
obtaining very reasonable results.

V. CONCLUSION

We presented a numerical and an analytical study of the
propagation of cracks in clamped, free-standing graphene as a
function of the out-of-plane force. The geometry is motivated
by experimental configurations that expose graphene sheets to
out-of-plane forces, such as the back-gate voltage. We studied
two different initial conditions: a crack at the edge of the sheet
and a crack in the middle of it.

We obtained approximate analytical expressions for the
minimum force required for a crack to run. These expressions
depend on the initial crack length, as expected, but also on the
width of the graphene sample. The minimum force decreases
with increasing initial crack length and increasing width of the
sheets.

FIG. 15. SEM image of free-standing CVD graphene (top view).
Note the crack runs from the edge to the middle of the sheet, making
sharp turns, similar to our simulations. Image courtesy of the Bolotin
Research Group.

FIG. 16. SEM image of free-standing CVD graphene. Note the
crack at the left edge and the crease that runs all the way to the right
edge, similar to what we observe in our simulations. Image courtesy
of the Bolotin Research Group.

The numerical fracture forces show good agreement
with the analytical fracture forces for cracks in the middle
of the sheet. For cracks at the edge the numerical results and
the theory do not agree as well, unless we consider crease
configurations that do not reach all the way to the edge of the
sample. The simulations show that depending on the initial
condition a crack will not run straight through the sheet, as
initially expected. Initial cracks in the middle of the sheet
always run straight, while initial cracks at the edge do not.

Depending on the initial crack orientation (zigzag or arm-
chair), the propagation pattern will differ. Similar dynamics
have been seen in simulations of tearing graphene nanoribbons
[26] and in experiments; see Fig. 15. The edge orientation of a
graphene sheet determines its electronic properties, therefore
it will be most useful to be able to predict the edge orientation
of produced samples.

Another interesting numerical result is that the sheet folds
in a crease before the crack runs, both for sheets with a
crack in the middle (on both sides of the crack) and at the
edge (Fig. 3). In experiments, folds, scrolls, and creases are
commonly observed in free-standing graphene samples; see
Fig. 16.

It has been difficult to gather experimental data on this
problem, because the fracture of free-standing graphene sheets
is, in general, an undesirable occurrence. Therefore, most
experiments do not report or take measurements of such
events. Preliminary results [16] show that, for initial crack
lengths of about 10% of the graphene sample’s length, our
expression for the minimum force required for a crack to run,
Eqs. (16) and (18), results in forces comparable to the forces a
free-standing graphene is subjected to in a back-gate voltage
experiment.

In particular, for samples of roughly 2 μm by 2 μm, fracture
was sometimes observed with back-gate voltages of 2–3 V
with the sample at a height of 150 nm above the substrate. We
estimate an electric field of 20 × 106 V/m, leading to a force
per atom of 10−16 N/atom. According to our calculations, this
force is too small to cause fracture for seed cracks of reasonable
length. For this value of the force per atom, we would need a
seed crack of length 1.5 μm. Alternatively, for seed cracks
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of length 0.2 μm, we would not expect fracture until the
force reached 8 × 10−16 N/atom. While this discrepancy is
admittedly large, we note that we are working without an
experimental value for fracture toughness and that classical
potentials can easily lead to inaccurate values for this quantity.

The analytical expressions for the minimum force required
to tear a two-dimensional sheet, such as graphene, in terms
of the initial crack length, offer insight into the tearing of
graphene and suggest the order of magnitude for the forces
to be used or avoided in experiments. Also, experiments can
obtain the value for the tearing fracture toughness of graphene
(a quantity we have not been able to find in the literature)
by combining our theory with measurements of initial crack
length and applied force.
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APPENDIX A: ENERGY FOR BENDING A 1D STRIP

The energy of a 1D strip of length L under a downward
force fl is given by [Eqs. (5) and (6)]

U 1D =
∫ L

0
ds

[
kl

2

(
dθ

ds

)2

+ fl

∫ s

0
sin (θ (s ′))ds ′

]
. (A1)

Note that s ′ is just a variable (not a derivative of s).
We need to minimize Eq. (7) to obtain the energy outside

the crack tip in terms of the minimum force required for the
crack to run. To find the minimum (or the maximum) of U 1D

we take the functional derivative and make it equal to zero,

lim
ε−>0

U 1D(θ + εφ) − U 1D(θ )

ε
= 0. (A2)

This results in

lim
ε−>0

1

ε

∫ L

0
ds

{
kl

2

[
2ε

dφ

ds

dθ

ds
+ ε2

(
dφ

ds

)2 ]

+ fl

∫ s

0
[sin (θ (s ′) + εφ(s ′)) − sin (θ (s ′))]ds ′

}
= 0.

(A3)

Expanding the sine function in a Taylor series we obtain

lim
ε−>0

1

ε

∫ L

0
ds

{
kl

2

[
2ε

dφ

ds

dθ

ds
+ ε2

(
dφ

ds

)2 ]

+ fl

∫ s

0
[εφ(s ′) cos (θ (s ′)) + O(ε2)]ds ′

}
= 0. (A4)

Dividing by ε and taking the limit as it goes to zero,∫ L

0
ds

{
kl

2
2
dφ

ds

dθ

ds
+ fl

∫ s

0
φ(s ′) cos (θ (s ′))ds ′

}
= 0. (A5)

Using integration by parts on the first term and the fact that φ

vanishes at 0 and L,∫ L

0
ds

{
−klφ

d2θ

ds2
+ fl

∫ s

0
φ(s ′) cos (θ (s ′))ds ′

}
= 0. (A6)

The result should be independent of the test function φ.
Here we choose φ = δ(s − s ′′),∫ L

0
ds

{
−klδ(s − s ′′)

d2θ

ds2
+ fl

∫ s

0
δ(s ′ − s ′′) cos (θ (s ′))ds ′

}
= 0. (A7)

After some algebra we obtain

−kl

d2θ (s ′′)
ds ′′2 + fl cos (θ (s ′′))(L − s ′′) = 0. (A8)

Note that s ′′ is just a variable (not the second derivative of
s). At this point, an appropriate approximation needs to be
considered in order to solve this equation analytically.

a. One-dimensional crease energy

Here we consider the limit L → ∞, since by the time s ′′ is
comparable to L, θ = −π/2. Equation (A8) then simplifies to

−kl

d2θ (s ′′)
ds ′′2 + fl cos (θ (s ′′))L = 0. (A9)

After some manipulation we obtain

dθ (s ′′)
ds ′′ =

√
2
flL

kl

sin (θ (s ′′)) − C1, (A10)

where C1 is a constant, and it can be determined from the
following conditions:

dθ

ds ′′ (L) = 0, s ′′ → L, θ → −π

2
.

The result is

C1 = 2
flL

kl

sin (θ (L)) = 2
flL

kl

sin

(
− π

2

)
= −2

flL

kl

. (A11)

Inserting into Eq. (A10) one obtains

dθ (s ′′)
ds ′′ =

√
2
flL

kl

[sin (θ (s ′′)) + 1]. (A12)

Substituting

θ (s ′′) = π

2
− 	(s ′′) (A13)

and using trigonometric identities, we obtain

d	(s ′′)
ds ′′ = −2

√
flL

kl

cos (	(s ′′)/2). (A14)

After some manipulation we have

	(s ′′) = 2 arccos
(

sech

(√
flL

kl

s ′′ − C2

))
, (A15)

where C2 is a constant to be determined.
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FIG. 17. Graph of energy per length (in joules per meter) vs
downward distance (in meters).

Using Eq. (A13) we can go back to θ ,

θ (s ′′) = π

2
− 2 arccos

(
sech

(√
flL

kl

s ′′ − C2

))
. (A16)

Applying the condition that θ (0) = 0, we obtain the
expression for the bending function of a 1D strip,

θ (s ′′) = π

2
− 2 arccos

(
sech

(√
flL

kl

s ′′ + arccosh(
√

2)

))
.

(A17)

Now that we have θ , we insert it back in the expression for
the energy of a 1D strip, Eq. (A1), and find

U 1D = −2
√

2
√

flklL

+ 2kl

L
ln

[
cosh

(√
flL3

kl

)
+ 1√

2
sinh

(√
flL3

kl

)]

+ 2
√

flklL tanh

(√
flL3

kl

+ arccosh(
√

2)

)
− 1

2
flL

2.

(A18)

Looking at the asymptotic behavior for large L,

U 1D = 2(2 −
√

2)
√

flklL − 1
2flL

2, (A19)

we finally arrive to the result presented in Eq. (8).

APPENDIX B: NUMERICAL CALCULATION
OF GRAPHENE’S FRACTURE TOUGHNESS �

The growth of a crack requires the creation of two new
surfaces and, hence, an increase in the fracture toughness (i.e.,
surface energy). As graphene is a two-dimensional sheet, the
new surfaces are actually edges and the fracture toughness is
given by energy per length and not the usual energy per area.

Numerically, we can find the energy to create a new
surface by simply separating the sheet from its fixed edges.
This energy only depends on the interaction between atoms,
obtained from the MEAM potential. Therefore here we do
not apply a downward force, we do not have initial cracks,
and no molecular dynamics is done. We start by fixing two
sides of a graphene sheet. Then we move the rest of the sheet
downward. Every time step the atoms are moved down by the
same distance. The sheet moves farther and farther away from
its fixed ends until finally the new surfaces are created (Fig. 17).
The fracture toughness � is then given by the change in energy
divided by the length of the two edges created as follows:

�numerical = (Efinal − Einitial)

2 × edge length
≈ 3.82 × 10−9 J/m. (B1)

This calculation does not substitute an experimental mea-
surement of the fracture toughness. It is fundamental to the
theory of fracture that the fracture toughness be measured
experimentally. We have not been able to find experimental
values for this quantity in the literature.
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