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(57) ABSTRACT

Systems, methods and devices for paired training include

timing controls so thattraining and neural stimulation can be
provided simultaneously. Paired trainings may includethera-

pies, rehabilitation and performance enhancementtraining.

Stimulations of nerves such as the vagus nerve that affect
subcortical regions such as the nucleus basalis, locus coer-

uleus or amygdala induceplasticity in the brain, enhancing
the effects of a variety oftherapies, such as those used to treat

tinnitus, stroke, traumatic brain injury and post-traumatic
stress disorder.
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1
SYSTEMS, METHODS AND DEVICES FOR

TREATING TINNITUS

PRIORITY CLAIM

This application is a continuation application ofU.S. Util-

ity patent application Ser. No. 12/485,040,filed Jun. 15, 2009

and claims priority benefits under 35 U.S.C. §119(e) from

USS. Provisional Application No. 61/077,648,filed on Jul. 2,

2008 andentitled “Treatment of Tinnitus with Vagus Nerve

Stimulation”; U.S. Provisional Application No. 61/078,954,

filed on Jul. 8, 2008 and entitled “Neuroplasticity Enhance-

ment”; U.S. Provisional Application No. 61/086,116, filed on

Aug. 4, 2008 and entitled “Tinnitus Treatment Methods and

Apparatus”; and U.S. Provisional Application No. 61/149,

387, filed on Feb. 3, 2009 and entitled “Healing the Human

Brain: The Next Medical Revolution.” The present applica-

tion incorporates the foregoing disclosures herein by refer-

ence.

BACKGROUND

The present disclosure relates generally to therapy, reha-

bilitation and training including inducedplasticity. More par-

ticularly, the disclosure relates to methods and systems of

enhancing therapy, rehabilitation and training using nerve

stimulation paired with training experiences.

SUMMARY

For purposes of summarizing the invention, certain
aspects, advantages, and novelfeatures ofthe invention have

been described herein.It is to be understood that not neces-

sarily all such advantages may be achieved in accordance
with any particular embodimentof the invention. Thus, the

invention may be embodiedor carried out in a mannerthat
achieves or optimizes one advantage or group of advantages

as taught herein without necessarily achieving other advan-
tages as may be taught or suggested herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosed inventions will be described with reference
to the accompanying drawings, which show important

sample embodiments ofthe invention and whichare incorpo-
rated in the specification hereof by reference, wherein:

FIG. 1 is a block diagram depicting a paired training sys-
tem, in accordance with an embodiment;

FIG.2 is a block diagram depicting a paired training sys-

tem affecting a subcortical region, in accordance with an
embodiment;

FIG.3 is a block diagram depicting a paired training sys-
tem affecting the nucleus basalis, in accordance with an

embodiment;
FIG.4 is a block diagram depicting a paired training sys-

tem affecting the locus coeruleus, in accordance with an

embodiment;
FIG. 5 is a block diagram depicting a paired training sys-

tem affecting the amygdala, in accordance with an embodi-
ment;

FIG.6 is a block diagram depicting a paired training sys-
tem affecting the nucleusofthe solitary tract (NTS), in accor-

dance with an embodiment;

FIG.7 is a block diagram depicting a paired training sys-
tem affecting the cholinergic system, in accordance with an

embodiment;
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2
FIG.8 is a block diagram depicting a paired training sys-

tem affecting the noradrenergic system, in accordance with

an embodiment;

FIG. 9 is a simplified diagram depicting a stimulator, in
accordance with an embodiment;

FIG. 10 is a simplified diagram depicting a wireless stimu-
lator, in accordance with an embodiment;

FIG. 11 is a simplified diagram depicting a dual stimulator

configuration, in accordance with an embodiment;
FIG. 12 is a simplified diagram depicting a multi-stimula-

tor configuration, in accordance with an embodiment;
FIG.13 is a graph depicting a constant current stimulation

pulse, in accordance with an embodiment;
FIG. 14 is a graph depicting an exponential stimulation

pulse, in accordance with an embodiment;

FIG. 15 is a graph depicting a train of constant current
stimulation pulses, in accordance with an embodiment;

FIG.16 is a block diagram depicting a synchronizing con-
trol system, in accordance with an embodiment;

FIG. 17 isa graph depicting synchronized pairing,in accor-
dance with an embodiment;

FIG. 18 is a block diagram depicting a response control

system, in accordance with an embodiment;
FIG. 19 is a graph depicting response pairing, in accor-

dance with an embodiment;
FIG. 20 is a block diagram depicting a manual control

system, in accordance with an embodiment;
FIG.21 is a graph depicting manual pairing, in accordance

with an embodiment;

FIG.22 is a block diagram depicting a closed loop control
system, in accordance with an embodiment;

FIG.23 is a graph depicting closed loop pairing, in accor-
dance with an embodiment;

FIG. 24 is a block diagram depicting an initiated control

system, in accordance with an embodiment;
FIG. 25 is a graph depicting initiated pairing, in accordance

with an embodiment;
FIG. 26 is a block diagram depicting a delayed response

timing control system, in accordance with an embodiment;
and

FIG. 27 is a graph depicting delayed response pairing, in

accordance with an embodiment.
FIG. 28 depicts a tinnitus therapy, in accordance with an

embodiment; and
FIG. 29 depicts a schematic illustration of the proposed

tinnitus pathology andtreatment.

DETAILED DESCRIPTION OF THE DRAWINGS

The numerousinnovative teachingsofthe present applica-

tion will be described with particular reference to presently
preferred embodiments (by way ofexample, and not of limi-

tation). The present application describes several inventions,
and noneofthe statements below should be taken as limiting

the claims generally. Where block diagrams have been used to
illustrate the invention,it should be recognizedthat the physi-

cal location where described functions are performedare not

necessarily represented by the blocks. Part of a function may
be performed in one location while anotherpart of the same

function is performed at a distinct location. Multiple func-
tions may be performedat the same location.

With referenceto FIG.1, a pairedtraining system is shown.
A timing control system 106 is communicably connected to a

neural stimulator system 108 and a training system 110.

Receiving timing instruction from the timing control system
106, the neural stimulator system 108 provides stimulation to

a nerve 104. Similarly receiving timing instruction from the
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timing control system 106, or providing timing instruction to
the timing control system 106, the training system 110 gen-

erates desired mental images, ideas, formations, or states in

the brain 102. The stimulation of the nerve 104 affects the
brain 102 by inducing plasticity. The temporally paired com-

bination oftraining and stimulation generates manifestations
of plasticity in the brain 102 that may be measured by a

plasticity measure system 112.
The timing controls system 106 generally provides the

simultaneous nature of the pairing. The stimulation and the

training are simultaneousin that they occur at the same time,
that is, there is at least some overlap in the timing. In some

embodiments, the stimulation mayleadthe start of the train-
ing while in other embodiments, the stimulation may follow

the start of the training. In many cases, the stimulation is
shorter in duration than the training, suchthat the stimulation

occurs near the beginning ofthetraining.Plasticity resulting

from stimulation has been shownto last minutes or hours, so
a single stimulation pulse may suffice for the whole duration

of extendedtraining.
In the treatmentof tinnitus, for example, the training may

consist ofbriefaudible sounds including selected therapeutic
frequencies, paired with stimulations. Because the duration

ofthe sounds maybeshort, the timing may be controlled very

precisely so that the sound coincides temporally with the
stimulation. This kind of precision may typically require

some form of computer control. In other forms of rehabilita-
tion or education, the timing ofthe training and/orthe stimu-

lation may be controlled manually. Further therapies and
training may include training triggered timing or physical

condition feedback to provide a closed-loop system. Repeat-

edly paring vagus nerve stimulation with a single frequency
tone can generate plasticity in the primary auditory cortex.

Accordingly, exemplary embodiments can include a method
including selecting therapeutic sounds based on the measured

tinnitus symptoms, wherein each therapeutic sound consists

ofonly one frequency, and whereinthe frequency is audible to
the patient, and providing a repeated paired training therapy

by providing a series of the therapeutic sounds paired with a
vagus nerve stimulation pulse train by presenting the vagus

nerve stimulation pulse train during presentation ofthe thera-
peutic sounds, wherein the vagus nerve stimulation pulse

train is generated by a subcutaneous device that provides

electrical stimulation of the patient’s vagus nerve.
The neural stimulation system 108 may provide stimula-

tion of the nerve 104 using electrical stimulation, chemical
stimulation, magnetic stimulation, optical stimulation,

mechanical stimulation or any other form of suitable nerve
stimulation. In accordance with an embodiment, an electrical

stimulation is provided to the left vagus nerve. In anelectrical

stimulation system, suitable stimulation pulses may include a
variety ofwaveforms, including constant current pulses, con-

stant voltage pulses, exponential pulses or any other appro-
priate waveform.An electrical stimulation system may use a

single stimulation pulse or a train of stimulation pulses to
stimulate the nerve 104. Stimulation parameters are selected

to affect the brain 102 appropriately, with reference to the

affected brain regions or systems,plasticity measures, desyn-
chronization or any other appropriate stimulation parameter

measure. A half second train of biphasic stimulation pulses,
with a pulse width of 100 microseconds,at 0.8 milliamps and

at 30 Hz has been usedeffectively in the treatmentoftinnitus.
Paired stimulation could be accomplished using deep brain

stimulation, cortical stimulation, transcranial magnetic

stimulation and any other suitable neural stimulation.
One indication of appropriate stimulation may be desyn-

chronization of the cortical EEG. A 0.8 milliamp pulse has
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4
been shown to cause cortical desynchronization at frequen-

cies between 30 and 150 Hz.0.4 milliamp pulses desynchro-

nizethe cortex at higher frequencies of 100 to 150 Hz. Desyn-

chronization has been showntolast for at least four seconds

in responseto stimulation of the vagus nerve.

The simultaneous training system 110 generates the sen-

sory input, motor sequences, cognitive input, mental images,

ideas, formationsorstates that are to be retained by the brain

102. A training system 110 may provide sensory information,

such as visual, auditory, olfactory, tactile or any other suitable

sensory information. Training system 110 mayinclude physi-

cal therapies, cognitive therapies, emotional therapies,

chemical therapies, or any other suitable therapies. Training

system 110 may present educational information. Training

system 110 may include the subject, physically, mentally,

emotionally or in any other suitable fashion. Training system

110 may include teachers, doctors, therapists, counselors,

instructors, coaches or any other suitable training provider.

Training system 110 may evoke specific patterns of neural

activity by direct brain stimulation, for example byelectrical,

magnetic, optical, or any other suitable pattern evocation
systems. Training system 110 mayinactivate specific brain

regions via chemical agents, cooling, magnetic stimulation,

or other suitable methods.
The paired training system of FIG. 1 affects the brain 102

to generate plasticity that can be measured by aplasticity
measure system 112. In the treatment of tinnitus, a cortical

map maybe used to measure the map distortion and correc-
tion that accompanies the successful treatment of tinnitus.

Less invasively, the plasticity can be measured by behavior-

ally reactions to stimuli, such as astartle test for tinnitus.
Further, plasticity can be measured by inquiring about the

subjective experience of a subject. If a tinnitus patient no
longer experiencesa persistent noise, plasticity has beenmea-

sured.

With reference to FIG.2, a paired training system affecting
a subcortical region 114 of the brain 102, in accordance with

an embodiment is shown. The stimulation of nerve 104
affects a subcortical region 114. The subcortical region 114,

in turn, affects the brain to induce plasticity. Stimulation of
nerves 104 such as the trigeminal nerve and other cranial

nerves are knownto affect the subcortical region 114.

With reference to FIG.3, a paired training system affecting
the nucleus basalis 116, in accordance with an embodiment,

is shown. The stimulation of nerve 104 affects the nucleus
basalis 116. The nucleus basalis, in turn, affects the brain 102

to induceplasticity.
With reference to FIG.4, a paired training system affecting

the locus coeruleus 118, in accordance with an embodiment,

is shown. The stimulation of nerve 104 affects the locus
coeruleus 118. The locus coeruleus 118, in turn, affects the

brain 102 to induceplasticity.
With reference to FIG.5,a paired training system affecting

the amygdala 120, in accordance with an embodiment, is
shown. The stimulation of nerve 104 affects the amygdala

120. The amygdala 120, in turn, affects the brain 102 to

induceplasticity.
With reference to FIG.6, a paired training system affecting

the NTS 122, in accordance with an embodiment, is shown.
Thestimulation of nerve 104 affects the NTS 122. The NTS

122, in turn, affects the brain 102 to induceplasticity.
With reference to FIG.7, a paired training system affecting

the cholergenic system 124, in accordance with an embodi-

ment, is shown. The stimulation of nerve 104 affects the
cholergenic system 124. The cholergenic system 124 releases

acetylcholine (ACh) into the brain 102 inducingplasticity.
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With referenceto FIG.8, a paired training system affecting

the noradrenergic system 126, in accordance with an embodi-

ment, is shown. The stimulation of nerve 104 affects the

noradrenergic system 126. The noradrenergic system 126
releases noradrenaline (NE) into the brain 102 inducingplas-

ticity.
With reference to FIG. 9, a neural stimulator system, in

accordance with an embodiment, is shown. A neural stimu-
lator control 109 is communicably connected to a neuro-

stimulator 128. Neurostimulator 128 provides a stimulation

pulse to a nerve 104 via a pair of electrodes 130a and 1305.
Electrodes 130a and 1306 could be cuff electrodes, conduc-

tive plates or any other suitable neural stimulation electrode.
The neurostimulator 128 may be powered by a piezoelectric

powering system as well as near field inductive powertrans-
fer, far-field inductive power transfer, battery, rechargeable

battery or any other suitable neurostimulator power system.

When neural stimulator control 109 receives timing instruc-
tions from a timing control system (not shown), the neural

stimulator control 109 initiates a stimulation pulse from the
neurostimulator 128 via electrodes 130a and 1308.

With reference to FIG. 10, a wireless neural stimulator
system, in accordance with an embodimentis shown. Neuro-

stimulator 128 communicates with the neural stimulation

system 109 using an inductive transponder coil 132. The
neural stimulator system 109 includes an external coil 134.

Information may be communicated betweenthe neural stimu-
lator system 109 and the neurostimulator 128. Power may be

transferred to the neurostimulator 128 by the neural stimula-
tor system.

With reference to FIG. 11, a dual neurostimulator system,

in accordance with an embodiment, is shown. Two neuro-
stimulators 128 may stimulate nerve 104. The neurostimula-

tors 128 may be controlled to reinforce each other, as redun-
dancy, or to prevent efferent signals from projecting away

from the brain.

With reference to FIG. 12, a multi-neurostimulator system,
in accordance with an embodiment, is shown. A plurality of

neurostimulators 128 may stimulate nerve 104. The neuro-
stimulators may be controlled to reinforce each other, as

redundancy, or to prevent efferent signals from projecting
away from the brain.

With reference to FIG. 13, a graph shows a constant current

stimulation pulse, in accordance with an embodiment.
With reference to FIG. 14, a graph shows an exponential

stimulation pulse, in accordance with an embodiment.
With reference to FIG. 15, a graph showsa train ofconstant

current stimulation pulses, in accordance with an embodi-
ment.

With reference to FIG. 16, a synchronized timing control

system, in accordance with an embodiment, is shown. The
synchronized timing control system includes a synchronizing

timing control 186. The synchronizing timing control 136 is
communicably connected to the neural stimulation system

108 and the training system 110. The synchronizing timing
control 136 provides timing instructions to the neural stimu-

lation system 108 and the training system 110 so that the

stimulation and training occur simultaneously. In the treat-
ment of tinnitus, the stimulation of the nerve may slightly

precede each training sound, to give the stimulation time to
affect the brain whenthe training soundis presented. Further

embodiments may include other suitable timing variations.
With reference to FIG. 17, a graph showsa possible timing

relationship between event and stimulation for a synchro-

nized timing control system.
With reference to FIG. 18, a response timing control sys-

tem, in accordance with an embodiment, is shown. The
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6
response timing control system includes a response timing
control 138. The response timing control 138 is communica-

bly connected to the neural stimulation system 108 and a

simultaneous event monitor 140. The response timing control
138 receives timing instructions from the event monitor 140

and provides timing instructions to the neural stimulation
system 108, so that the stimulation and training occur simul-

taneously. Becausethe stimulation is generated in response to
an event, the stimulation will generally lag the event by some

finite time delta t. In cases where there is an event precursor

that can be monitored, the timing can be made moreexact.
With reference to FIG. 19, a graph showsa possible timing

relationship between a monitored event and a nerve stimula-
tion.

With reference to FIG. 20, a manualtiming control system,
in accordance with an embodiment, is shown. The manual

timing control system includes a response timing control 138.

The response timing control 138 is communicably connected
to the neural stimulation system 108 and a manualinput 142.

The response timing control 138 receives timing instructions
from the manualinput 142 and providestiming instructions to

the neural stimulation system 108,so that the stimulation and
training occur simultaneously.

With reference to FIG. 21, a graph showsa possible timing

relationship between an event, a manual input and a neural
stimulation.

With reference to FIG. 22, a closed loop timing control
system, in accordance with an embodiment, is shown. The

closed loop timing control system includes a closed loop
timing control 144. The closed loop timing control is com-

municably connected to the neural stimulation system 108

and a sensor 146. The closed loop timing control 144 receives
timing instructions from the sensor 146 and provides timing

instructions to the neural stimulation system 108, so that the
stimulation and training occur simultaneously.

With reference to FIG. 23, a graph showsa possible timing

relationship between an sensed training event and a neural
stimulation is shown.

Sensor 146 may monitor externalor internal events, includ-
ing heart-rate, blood pressure, temperature, chemical levels

or any other parameter that may indicate a training event.
With reference to FIG. 24, a initiated timing control sys-

tem, in accordance with an embodiment, is shown. Theiniti-

ated timing control system includes an initiated timing con-
trol 148. The initiated timing control 148 is communicably

connected to a neural stimulation system 106 and an event
generator 150. Theinitiated timing control 148 receives tim-

ing information from the neural stimulation system 106, indi-
cating that a nerve has been stimulated. The initiated timing

control 148 provides timing instructions to the event genera-

tor 150, such as a therapeutic sound generator connected by
Bluetooth, such that the event generator 150 generates an

event during the stimulation pulse.
With reference to FIG. 25, a graph showsa possible timing

relationship between a neural stimulation and an event gen-
eration.

With reference to FIG. 26, a delayed response timing con-

trol system, in accordance with an embodiment, is shown.
The delayed response timing control system includes a

delayed response timing control 152. The delayed response
timing control 152 is communicably connected to a neural

stimulation system 106 and a preliminary event sensor 154.
The preliminary event sensor 154 detects a preliminary event

that anticipates a pairing event. The delayed response timing

control 152 receives timing information from the preliminary
event sensor 154,indicating that a preliminary event has been

detected. The delay response timing control 152 provides
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timing instructions to the neural stimulation system 106 to
initiate nerve stimulation. In the depicted embodiment, the

timing control 152 initiates the stimulation before the begin-

ning of the pairing event, giving a negative delta t. A delay
response timing system mayinitiate stimulation at the same

time as the beginning ofthe pairing event, or after the begin-
ning of the pairing event.

With reference to FIG. 27, a graph showsa possible timing
relationship between a neural stimulation, a preliminary

event and a pairing event.

Human and animal studies have shown that neurons
deprived of auditory input begin to respond to frequencies

adjacent to the region of cochlear damage. This plasticity
results in a dramatic increase in the number of neurons that

respond to the frequencies that order the region of hearing
loss. After noise trauma, spontaneousactivity in those neu-

rons becomes highly synchronized due to abnormally high

input overlaps. This synchronousactivity is likely responsible
for the subjective tinnitus experience. The severity oftinnitus

is highly correlated (r=0.82) with cortical map reorganization
caused by hearing loss. In this way, tinnitus is similar to the

phantom limb pain after amputation as well as chronic pain
syndromes after peripheral nerve damage. The severity of

phantom limb pain in amputees is also strongly correlated

(r=0.87) with the extent ofmap reorganization and synchro-
nized spontaneousactivity is believed to give rise to ongoing

pain. Targeted neural plasticity provides a clear opportunity
to restore normal operation to dysfunctional circuits.

VNSmaybepaired with tonesto treat tinnitus. VNS may
be paired with touchto treat chronic pain. VNS maybepaired

with skilled movementto treat motor impairments. VNS may

be paired with cognitive therapy to treat cognitive impair-
ments. VNS may be paired with desensitization therapy to

treat PTSD or anxiety. VNS may be paired with speech
therapy to treat communication disorders.

FIG. 28 depicts a tinnitus therapy, in accordance with an

embodiment. A patient has a VNS system implanted so that
the vagusnerve electrode contacts a portion of a vagus nerve.

The vagus nerve electrode is connectedbya flexible wire lead
to a pulse generator.

A VNStinnitus therapy may include a 2.5-hour tinnitus
therapy during a single day. During the 2.5 hour tinnitus

therapy, a 50 dB tone andpaired stimulation train is presented

every thirty seconds, effectively presenting the pairs 300
times. Each 50 dB tone and stimulationtrain lasts for about

0.5 seconds. The stimulation train may be a series of 0.8 mA,
30 Hzstimulation pulses.

FIG. 29 depicts a schematic illustration of the tinnitus
pathology and treatment. Cochlear damageat high frequen-

cies results in map reorganization in the auditory cortex,

which givesrise to the tinnitus sensation. Pairing VNS with
adjacent low tones, the non-tinnitus frequencies, restores the

distorted map.
As shown in FIG.29, under normal conditions each neuron

in the auditory cortex is tuned to a small range of tone fre-
quencies (vertical lines) represented on the y-axis. Each line

type represents the tone range to which the corresponding

part of the auditory cortex responds. This tonotopic mapping
of the auditory cortex is shown along the x-axis. The fre-

quencypreferences of auditory cortex neurons are ordered to
form a topographic map from low to high in the posterior to

anterior direction (FIG.29,left). As shown in the center panel
ofFIG. 29, when cochlear damage wasinduced that removed

the part ofthe cochleathat send signals ofhigh frequencies to

the auditory cortex, the anterior regionsofthe auditory cortex
began to respondto the middle frequencies from the cochlea.

This pathological reorganization of the auditory cortex in
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response to damage is accompanied by an increase in syn-

chronousactivity in the primary auditory cortex.

VNSis paired with low frequency tones to reorganize the

auditory cortex as shown in the far right panel of FIG. 29.

Note that neuronsstill do not respond to high frequencies, as

those inputs have been destroyed. However, the tonotopic

mapofthe auditory cortex has now beenredistributed so that

no part ofthe cortex exhibits the type ofpathological plastic-

ity that leads to increased synchronousactivity.

Theplasticity induced by neural stimulation can be paired

with a variety of therapies, rehabilitation, training and other

formsofpersonal improvement. Each therapyacts asa train-

ing source. The specific timing requirements associated with

each therapy are derived from the specifics of the therapy,

such thatthe stimulation occurs during the training, and most

effectively near the beginning of the training. Somepossible

therapies may include behavioral therapies such as sensory

discrimination for sensory deficits, motor training for motor

deficits, with or without robotic assistance and cognitive

training/rehabilitation for cognitive deficits. Exercise and

motor therapy could be paired to treat motor deficits arising
from traumatic brain injury, stroke or Alzheimer’s disease

and movement disorders. Constraint induced therapy could

be paired to help prevent the use of alternative strategies in
order to force use ofimpaired methods. Speech therapy could

be paired for speech and language deficits. Cognitive thera-
pies could be paired for cognitive problems.

Sensory therapies, such as tones, could be paired to treat
sensory ailments such as tinnitus. In treating tinnitus, the

paired tones maybeat frequencies distinct from the frequen-

cies perceived by the tinnitus patient.
Exposure or extinction therapy could be paired to treat

phobiasor post-traumatic stress disorder.
Computer-based therapies such as Fastforward for dys-

lexia, Brain Fitness Program Classic or Insight, could be

paired to enhance their effects. Psychotherapy could be
paired, as well as other therapeutic activities in the treatment

of obsessive-compulsive disorder, depression or addiction.
Biofeedback therapy could be paired. For example, tem-

perature readingsor galvanic skin responses could be paired
to treat anxiety or diabetes. An electromyograph could be

paired to improve motor control after brain spinal or nerve

damage. A pneumographcould be paired to improvebreath-
ing control in a paralyzed patient. A real-time functional

magnetic resonance image (f(MRIJ)could be paired to improve
pain control or treat obsessive-compulsive disorder (OCD).

An electrodermograph, electroencephalograph (EEG), elec-
tromyograph (EMG), or electrocardiograph could be paired

to treat disorders such as anxiety. An electroencephalograph

could be paired to treat epilepsy. A hemoencephalography
could be paired to treat migraines. A photoplethysmograph

could be paired to treat anxiety. A capnometer could be paired
to treat anxiety. Virtual reality therapy could be paired to treat

disorders such as addiction, depression, anxiety, or posttrau-
matic stress disorder. Virtual reality therapy could also be

paired to enhance cognitive rehabilitation or performance.

Drug therapies could be pairedto treat a variety ofconditions.
Amphetamine-like compounds could be paired to enhance

neuromodulators and plasticity. SSRI’s could be paired to
enhance neuromodulators and plasticity. MOA inhibitors

could be paired to enhance neuromodulators andplasticity.
Anti-coagulants could be paired to act as clot busters during

acute stroke. Various drugs could be paired to stop spasm after

nerve or brain damage such as Botulinum toxin, Lidocaine,
etc. Small doses of drugs of abuse could be paired to extin-

guish cravings in addicts.
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Hormonetherapy could be paired. For example, progest-

erone, estrogen,stress, growth, or thyroid hormone,etc. could

be paired to treat traumatic brain injury or Alzheimer’sdis-

ease. Glucose therapy could be pairedto treat anxiety. Elec-
trical or magnetic stimulation of the central or peripheral

nervous system could be paired. For example, transcranial
magnetic stimulation could be used to enhance or reduce

activity in a specific brain area and thereby focus the directed
cortical plasticity. Transcutaneous electrical nerve stimula-

tion could be paired to treat chronic pain, tinnitus and other

disorders. Subcutaneouselectrical nerve stimulation could be
paired to treat chronic pain. Stem cell therapy could be paired

to treat disorders such as Parkinson’s disease. Gene therapy
could be paired to treat conditions such as Down’s syndrome,

Huntington’s disease orfragile X syndrome. Hyperbaric oxy-
gen therapy could be pairedto treat carbon monoxide poison-

ing

Multiple therapies could be paired simultaneously or
sequentially.

Noneofthe description in the present application should be
read as implying that any particular element, step, or function

is an essential element which must be included in the claim
scope: THE SCOPE OF PATENTED SUBJECT MATTERIS
DEFINED ONLY BY THE ALLOWED CLAIMS. More-
over, none of these claims are intended to invoke paragraph
six of35 USC section 112 unless the exact words “meansfor”

are followed bya participle.
Theclaimsas filed are intended to be as comprehensive as

possible, and NO subject matter is intentionally relinquished,
dedicated, or abandoned.

Whatis claimed is:

1. A methodoftreating tinnitusin a patient, comprising:
measuring a patient’s tinnitus symptoms;

selecting therapeutic sounds based on the measuredtinni-
tus symptoms, wherein each therapeutic sound consists

of only one frequency, and wherein the frequency is

audible to the patient;
providing a repeated pairedtraining therapy by providing a

series of the therapeutic sounds paired with a vagus
nerve stimulation pulse train by presenting the vagus

nerve stimulation pulse train during presentation of the
therapeutic sounds, wherein the vagus nerve stimulation

pulse train is generated by a subcutaneous device that

provides electrical stimulation of the patient’s vagus
nerve;

repeatedly presenting the series of paired therapeutic
sounds; and

reducing the patient’s perception of tinnitus.
2. The method ofclaim 1, wherein the frequencyis outside

of one or more tinnitus frequencies characterizing the

patient’s tinnitus symptoms.
3. The method of claim 2, wherein the vagus nerve stimu-

lation pulse train lasts 500 milliseconds and comprises 15
pulses 100 microseconds long, and wherein the vagus nerve

stimulation occurs at 30 Hertz, has a current amplitude of 0.8
milliamps, and starts 150 milliseconds after the therapeutic

sound.

4. The method of claim 2, wherein the vagus nerve stimu-
lation pulse train starts within 15 seconds ofthe presentation

of the therapeutic tone.
5. The method of claim 4, wherein the frequency for each

paired training therapy is identical.
6. The method of claim 4, wherein the frequency for each

paired training therapy is unique with respect to each other.

7. The method of claim 1, wherein the vagus nerve stimu-
lation generates electroencephalogram (EEG) desynchroni-

zation.
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8. The method of claim 1, wherein the vagus nerve stimu-

lation has a current amplitude of 0.8 milliamps.

9. The method of claim 1, wherein the vagus nerve stimu-

lation pulse train has a duration of 500 milliseconds.
10. The method of claim 1, wherein the paired therapeutic

sounds are repeated 300 times.
11. The method of claim 1, wherein the paired therapeutic

sounds are repeated 300 times per day for twenty days.
12. The method of claim 1, wherein the paired therapeutic

sounds are repeated 300 times in 150 minutes.

13. The method of claim 1, wherein the presentation of
paired therapeutic sounds is random.

14. The methodofclaim 1, wherein the therapeutic sounds
are tones.

15. The method of claim 1, wherein the paired training
therapy generates manifestationsofplasticity in a brain ofthe

patient, and wherein the reduction ofthe patient’s perception

oftinnitusis due to the generated manifestationsofplasticity.
16. A methodoftreating tinnitus in a patient, comprising:

assessing a patient’s tinnitus symptoms;
selecting a therapeutic sound basedonthe assessedtinnitus

symptoms, wherein the therapeutic sound consists of
only one frequency, and wherein the frequency is

audible to the patient;

pairing the therapeutic sound with a vagus nerve stimula-
tion pulse train originating from a device that provides

electrical stimulation to the vagus nerve by presenting
the vagus nerve stimulation pulse train during presenta-

tion of the therapeutic sound;
repeating the step of selecting a therapeutic sound;

repeating the step of pairing the therapeutic sound; and

reducing the patient’s perception oftinnitus.
17. The method of claim 16, wherein the frequency is

outside ofone or more tinnitus frequencies characterizing the
patient’s tinnitus symptoms.

18. The method of claim 16, wherein presentation of the

therapeutic soundis 500 milliseconds.
19. The method of claim 16, wherein the vagus nerve

stimulation generates electroencephalogram (EEG) desyn-
chronization.

20. The method of claim 16, wherein the vagus nerve
stimulation has a current amplitude of 0.8 milliamps.

21. The method of claim 16, wherein the vagus nerve

stimulation pulse train has a duration of 500 milliseconds.
22. The method ofclaim 16, wherein thepaired therapeutic

sound is repeated 300 times.
23. The method ofclaim 16, wherein the paired therapeutic

sound is repeated 300 times per day for twenty days.
24. The method ofclaim 16, wherein the paired therapeutic

sound is repeated 300 times in 150 minutes.

25. The method ofclaim 16, wherein the therapeutic sound
is a tone.

26. The method of claim 16, wherein the device is a sub-
cutaneous device that provides electrical stimulation of the

patient’s vagus nerve.

27. The method ofclaim 16, wherein the paired therapeutic

sound with the vagus nerve stimulation pulse train generates

manifestations of plasticity in a brain of the patient, and
wherein the reduction ofthe patient’s perception oftinnitus is

due to the generated manifestationsof plasticity.
28. A methodoftreating tinnitus in a subject, comprising:

assessing a subject’s tinnitus symptoms;
selecting a plurality of therapeutic sounds based on the

assessed tinnitus symptoms, wherein each therapeutic

sound consists of only one frequency;
repeatedly presenting a plurality of paired therapeutic

sounds where one ofthe therapeutic soundsis paired by
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presenting a vagus nerve stimulation pulse train during
presentation of the one therapeutic sound, wherein the

vagus nerve stimulation pulse train is generated by a

subcutaneousdevice that provides electrical stimulation
of the subject’s vagus nerve; and

reducing the subject’s perception oftinnitus.
29. The method of claim 28, wherein presentation of the

therapeutic sounds are 500 milliseconds.
30. The method of claim 28, wherein the frequency is

outside of tinnitus frequencies characterizing the subject’s

tinnitus symptoms, and wherein the vagus nerve stimulation
generates electroencephalogram (EEG) desynchronization.

31. The method of claim 28, wherein the vagus nerve
stimulation has a current amplitude of 0.8 milliamps.

32. The method of claim 28, wherein the vagus nerve
stimulation pulse train has a duration of 500 milliseconds.

33. The methodofclaim 28, wherein the paired therapeutic

sounds are repeated 300 times.
34. The methodofclaim 28, wherein the paired therapeutic

sounds are repeated 300 times per day for twenty days.
35. The methodofclaim 28, wherein thepaired therapeutic

sounds are repeated 300 times in 150 minutes.
36. The method of claim 28, wherein the presentation of

paired therapeutic sounds is random.

37. The method of claim 28, wherein the therapeutic
soundsare tones.

38. The methodofclaim 28, wherein the paired therapeutic
sound with the vagus nerve stimulation pulse train generates

manifestations of plasticity in a brain of the subject, and
wherein the reduction ofthe subject’s perception oftinnitusis

due to the generated manifestationsof plasticity.

39. A methodoftreating tinnitus in a subject, comprising:
assessing a subject’s tinnitus symptoms;

selecting a plurality of therapeutic sounds based on the
assessed tinnitus symptoms, wherein each therapeutic

sound consists of only one frequency;

pairing the therapeutic sounds with a plurality of vagus
nerve stimulation pulse trains originating from a device

that provideselectrical stimulation to the vagus nerve by
presenting one of the vagus nerve stimulation pulse

trains during presentation of one of the therapeutic
sounds;

repeatedly presenting the paired therapeutic sounds; and

reducing the subject’s perception oftinnitus.
40. The method of claim 39, wherein presentation of each

therapeutic soundis 500 milliseconds.
41. The method of claim 39, wherein the vagus nerve

stimulation generates electroencephalogram (EEG) desyn-
chronization.

42. The method of claim 39, wherein the vagus nerve

stimulation has a current amplitude of 0.8 milliamps.
43. The method of claim 39, wherein the vagus nerve

stimulation pulse train has a duration of 500 milliseconds.
44. The method ofclaim 39, wherein the paired therapeutic

sounds are repeated 300 times.
45. The methodofclaim 39, wherein the paired therapeutic

sounds are repeated 300 times per day for twenty days.

46. The methodofclaim 39, wherein the paired therapeutic
sounds are repeated 300 times in 150 minutes.

47. The method of claim 39, wherein the presentation of
paired therapeutic sounds is random.

48. The method of claim 39, wherein the therapeutic
soundsare tones, wherein the device is a subcutaneous device

that provides electrical stimulation of the subject’s vagus

nerve.
49. The methodofclaim 39, wherein the paired therapeutic

sounds with the vagus nerve stimulation pulse trains results in
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a plasticity based remapping of an auditory cortex of the

subject, and wherein the reduction ofthe subject’s perception

oftinnitus is due to the remapping.

50. A methodoftreating tinnitus in a patient, comprising:

determining a patient’s tinnitus symptoms;

selecting therapeutic sounds based on the determinedtin-

nitus symptoms, wherein each therapeutic sound con-

sists of only one frequency;

pairing a plurality of therapeutic sounds with a plurality of

vagus nerve stimulation pulse trains originating from a

device that provides electrical stimulation to the vagus

nerve by presenting one of the vagus nerve stimulation

pulse trains during presentation ofoneofthe therapeutic

sounds;

repeatedly presenting the plurality of paired therapeutic

sounds; and

reducing the patient’s perception oftinnitus.

51. The methodof claim 50, wherein presentation of each

therapeutic soundis 500 milliseconds.

52. The method of claim 50, wherein the vagus nerve

stimulation generates electroencephalogram (EEG) desyn-
chronization.

53. The method of claim 50, wherein the vagus nerve

stimulation has a current amplitude of 0.8 milliamps.
54. The method of claim 50, wherein the vagus nerve

stimulation pulse train has a duration of 500 milliseconds.
55. The method ofclaim 50, wherein thepaired therapeutic

sounds are repeated 300 times.
56. The method ofclaim 50, wherein thepaired therapeutic

sounds are repeated 300 times per day for twenty days.

57. The method ofclaim 50, wherein thepaired therapeutic
sounds are repeated 300 times in 150 minutes.

58. The methodof claim 50, wherein the presentation of
paired therapeutic sounds is random.

59. The method of claim 50, wherein the therapeutic

soundsare tones, wherein the device is a subcutaneous device
that provides electrical stimulation of the patient’s vagus

nerve, wherein each therapeutic sound consists of only one
frequency.

60. The method ofclaim 50, wherein the paired plurality of
therapeutic sounds with the plurality of vagus nerve stimula-

tion pulse trains results in a plasticity based remapping of an

auditory cortex of the patient, and wherein the reduction of
the patient’s perception of tinnitus is due to the remapping.

61. A methodoftreating tinnitus in a subject, comprising:
determining a subject’s tinnitus symptoms;

selecting therapeutic sounds based on the determinedtin-
nitus symptoms, wherein each therapeutic sound con-

sists of only one frequency, wherein the frequencies are

audible to the subject, and wherein the frequencies are
outside of one or more tinnitus frequencies characteriz-

ing the subject’s tinnitus symptoms;
presenting the therapeutic sounds paired with vagus nerve

stimulation by presenting a vagus nerve stimulation
pulse train during presentation of an individual thera-

peutic sound, wherein the vagus nerve stimulation pulse

train is generated by a subcutaneousdevice that provides
electrical stimulation of the subject’s vagus nerve;

repeating the presentation ofthe plurality of paired thera-
peutic sounds; and

reducing the subject’s perception oftinnitus.
62. The method of claim 61, wherein presentation of each

therapeutic soundis 500 milliseconds.

63. The method of claim 61, wherein the vagus nerve
stimulation generates electroencephalogram (EEG) desyn-

chronization.
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64. The method of claim 61, wherein the vagus nerve

stimulation has a current amplitude of 0.8 milliamps.

65. The method of claim 61, wherein the vagus nerve

stimulation pulse train has a duration of 500 milliseconds.

66. The methodofclaim 61, whereinthe paired therapeutic

sounds are repeated 300 times.

67. The methodofclaim 61, whereinthe paired therapeutic
sounds are repeated 300 times per day for twenty days.

68. The method ofclaim 61, whereinthe paired therapeutic
sounds are repeated 300 times in 150 minutes.

69. The method of claim 61, wherein the presentation of
paired therapeutic sounds is random.

70. The method of claim 61, wherein the therapeutic

soundsare tones.
71. The method ofclaim 61, wherein the presentationofthe

therapeutic sounds paired with vagus nerve stimulation
results ina plasticity based remappingofan auditory cortex of

the patient, and wherein the reduction ofthe patient’s percep-
tion of tinnitus is due to the remapping.

72. A methodoftreating tinnitus in a subject, comprising:

assessing a subject’s tinnitus symptoms;
implementing a tinnitus treatment process on the subject

comprising:
selecting a therapeutic sound based on the assessedtin-

nitus symptoms, wherein the selected therapeutic
sound consists of only one frequency;

pairing the therapeutic sound with a vagus nerve stimu-

lation pulse train originating from a device that pro-
vides electrical stimulation to the vagus nerve;

repeating the tinnitus treatment process; and
reducing the subject’s perception oftinnitus.

73. The method ofclaim 72, wherein the therapeutic sound

comprises a frequency outside tinnitus frequencies character-
izing the subject’s tinnitus symptoms.

74. The method of claim 72, wherein presentation of the
therapeutic soundis 500 milliseconds.

75. The method of claim 72, wherein the vagus nerve
stimulation generates electroencephalogram (EEG) desyn-

chronization.

76. The method of claim 72, wherein the vagus nerve
stimulation has a current amplitude of 0.8 milliamps.

77. The method of claim 72, wherein the vagus nerve
stimulation pulse train has a duration of 500 milliseconds.

78. The method ofclaim 72, wherein the tinnitus treatment
process is repeated 300 times.

79. The method ofclaim 72, wherein the tinnitus treatment

process is repeated 300 times per day for twenty days.
80. The method ofclaim 72, wherein the tinnitus treatment

process is repeated 300 times in 150 minutes.
81. The method ofclaim 72, wherein the therapeutic sound

is a tone.
82. The method of claim 72, wherein the device is a sub-

cutaneous device that provides electrical stimulation of the

subject’s vagus nerve.
83. The method ofclaim 72, wherein the paired therapeutic

sound with the vagus nerve stimulation pulsetrain results in a
plasticity based remapping of an auditory cortex of the
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patient, and wherein the reduction ofthe patient’s perception
oftinnitus is due to the remapping.

84. A methodoftreating tinnitus in a patient, comprising:
assessing a patient’s tinnitus symptoms;
implementing a tinnitus treatment process comprising:

selecting a sound based on the assessed tinnitus symp-

toms, wherein the selected sound consists ofonly one

frequency; and
presenting the soundto the patient while stimulating the

patient’ s vagus nerve with a device that provideselec-
trical stimulation to the vagus nerve;

repeating the tinnitus treatment process; and
reducing the patient’s perception oftinnitus.

85. The method of claim 84, wherein the sound selected

when implementing the tinnitus treatmentprocessis the same
as the sound selected when the tinnitus treatment process is

repeated.
86. The methodofclaim 84, wherein repeating thetinnitus

treatment process comprises implementing the tinnitus treat-
ment processes with each of the therapeutic sounds at least

once.
87. The methodofclaim 84, wherein repeating thetinnitus

treatment process comprises implementing the tinnitus treat-

ment processesat least once for at least two different thera-
peutic sounds.

88. The methodofclaim 84, wherein repeating thetinnitus
treatment process comprises implementing the tinnitus treat-

ment processesa plurality of times for at least two different

therapeutic sounds.
89. The method ofclaim 84, wherein the soundis presented

for 500 milliseconds.
90. The method of claim 84, wherein the vagus nerve is

stimulated so that electroencephalogram (EEG) desynchro-
nization is generated.

91. The method of claim 84, wherein the vagus nerve is

stimulated with a current amplitude of 0.8 milliamps.
92. The method of claim 84, wherein the vagus nerve is

stimulated with a vagus nerve stimulation pulse train.
93. The method of claim 92, wherein the vagus nerve

stimulation pulse train has a duration of 500 milliseconds.
94. The method ofclaim 84, wherein the tinnitus treatment

process is repeated 300 times.

95. The method ofclaim 84, wherein the tinnitus treatment
process is repeated 300 times per day for twenty days.

96. The method ofclaim 84, wherein the tinnitus treatment
process is repeated 300 times in 150 minutes.

97. The method of claim 84, wherein the soundis a tone.

98. The method of claim 84, wherein the vagus nerve
stimulation pulse train is generated by a subcutaneous device

that provides electrical stimulation of the patient’s vagus
nerve.

99. The method ofclaim 84, wherein the presentation ofthe
sound to the patient while stimulating the patient’s vagus

nerve results in a plasticity based remapping of an auditory

cortex of the patient, and wherein the reduction of the
patient’s perception oftinnitus is due to the remapping.

* * * * *


