
Copyright

by

Truman Everett Ellis

2016

The Dissertation Committee for Truman Everett Ellis
certifies that this is the approved version of the following dissertation:

Space-Time Discontinuous Petrov-Galerkin Finite

Elements for Transient Fluid Mechanics

Committee:

Leszek F. Demkowicz, Supervisor

Robert D. Moser, Co-Supervisor

Thomas J.R. Hughes

Clint N. Dawson

Tan Bui

Space-Time Discontinuous Petrov-Galerkin Finite

Elements for Transient Fluid Mechanics

by

Truman Everett Ellis, B.S.; M.S.; M.S.C.S.E.M.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2016

Dedicated to my grandpa, George Lowell Ellis.

Acknowledgments

The past six years have been some of the most significant and mean-

ingful of my life. Foremost I need to thank my advisor Leszek Demkowicz.

Your passion for research and dedication to following the math have been an

inspiration and a revolution to how I view scientific computing. Thank you

and Stasia for your incredible hospitality. I’ve always told people that I lucked

out by finding an advisor who genuinely cares about the well-being of his stu-

dents. To my co-advisor Robert Moser, thank you for always being ready to

discuss the deeper details of fluid dynamics while inspiring me to consider the

larger context of how computational science fits into society.

This work could not have been completed without the frequent help and

expertise of Nathan Roberts, who is largely responsible for the development of

the Camellia DPG library which was instrumental to obtaining the results

in this thesis. Jesse Chan, your mathematical insights made possible the

proofs contained here. Thank you for your patience when I wanted to run

something by you. I thoroughly enjoyed our conversations on philosophy,

theology, politics, mathematics, relationships, and much less serious topics.

I am grateful to my committee – Tom Hughes, Clint Dawson, and Tan

Bui-Thanh – for suggesting interesting lines of research and offering perspec-

tives on how my research fits into the larger world of computational science.

v

I owe a great debt of gratitude to Robert Rieben and Tzanio Kolev at

Lawrence Livermore National Laboratory for seeing promise in a young gradu-

ate student and entrusting me with a project of real consequence and interest.

My four summers at LLNL had a most profound influence on my career and

perhaps more importantly, my appreciation for craft beers. Seriously, I have

you to blame for my obsession with sour ales.

To my friends at ICES who made this such an enjoyable journey, thank

you. Matthias Taus, I couldn’t have passed Methods of Applied Math without

you. Hanging out with you and Olivia was always fun. Prosit! Lindley

Graham, you’ve been a good friend. Omar Al Hinai, despite the terrible

business ideas, we had some great lunch discussions. Jesse and Jenny (and

Liz), thank you for watching Charis so many times, she loves you guys. To

Mike, Kathryn, Nick and Jade, John and Christa, Nora and Mat, Brendan,

Federico, Sriram, Socratis, and so many others, thank you for my time in

Austin so rewarding.

To new friends who have provided support and encouragement during

a very challenging period of my life, you probably don’t know how much you

meant to me. Molly Mae Potter, thank you for the counseling and for opening

your home to me when I needed it. You are an inspiring woman. Melissa, I

enjoyed all the beers and adventures. Emily, you are such a good person. I

grew a lot through my association with you.

To an old friend for many years – Lauren, thank you for the memories.

I wish you peace and happiness in your new life.

vi

This work is dedicated to my grandpa, George Lowell Ellis. Without

his support and encouragement, I never would have started this work. To

my parents – John and Vicki-Lynn – I enjoyed our weekly conversations, you

two are awesome. To my brothers Kendrick and Morgan, thanks for all the

California adventures. I love you all.

vii

Space-Time Discontinuous Petrov-Galerkin Finite

Elements for Transient Fluid Mechanics

Publication No.

Truman Everett Ellis, Ph.D.

The University of Texas at Austin, 2016

Supervisor: Leszek F. Demkowicz

Co-Supervisor: Robert D. Moser

Initial mesh design for computational fluid dynamics can be a time-

consuming and expensive process. The stability properties and nonlinear con-

vergence of most numerical methods rely on a minimum level of mesh resolu-

tion. This means that unless the initial computational mesh is fine enough,

convergence can not be guaranteed. Any meshes below this minimum reso-

lution level are termed to be in the “pre-asymptotic regime.” This condition

implies that meshes need to in some way anticipate the solution before it is

known. On top of the minimum requirement that the surface meshes must

adequately represent the geometry of the problem under consideration, res-

olution requirements on the volume mesh make the CFD practitioner’s job

significantly more time consuming.

In contrast to most other numerical methods, the discontinuous Petrov-

Galerkin finite element method retains exceptional stability on extremely coarse

viii

meshes. DPG is also inherently very adaptive. It is possible to compute the

residual error without knowledge of the exact solution, which can be used to

robustly drive adaptivity. This results in a very automated technology, as

the user can initialize a computation on the coarsest mesh which adequately

represents the geometry then step back and let the program solve and adapt

iteratively until it resolves the solution features.

A common complaint of minimum residual methods by computational

fluid dynamics practitioners is that they are not locally conservative. In this

thesis, this concern is addressed by developing a locally conservative DPG for-

mulation by augmenting the system with Lagrange multipliers. The resulting

DPG formulation is then proved to be robust and shown to produce superior

numerical results over standard DPG on a selection of test problems.

Adaptive convergence to steady incompressible and compressible Navier-

Stokes solutions was explored in [18] and [65]. Space-time offers a natural ex-

tension to transient problems as it preserves the stability and adaptivity prop-

erties of DPG in the time dimension. Space-time also offers more extensive

parallelization capability than problems treated with traditional time stepping

as it allows multigrid concurrently in both space and time. A proof of concept

space-time DPG formulation is developed for transient convection-diffusion.

The robust test norms derived for steady convection-diffusion are extended to

the space-time case and proofs of robustness are provided. Numerical results

verify the robust behavior and near L2 optimality of the resulting solutions.

The space-time formulation for convection-diffusion is then extended

ix

to transient incompressible and compressible Navier-Stokes by analogy. Sev-

eral numerical experiments are performed, but a mathematical analysis is not

attempted for these nonlinear problems. Several side topics are explored such

as a study of the compressible Navier-Stokes equations under various variable

transformations and the development of consistent test norms through the

concept of physical entropy.

x

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xv

List of Figures xvi

Chapter 1. Introduction 1

1.1 Motivation . 1

1.1.1 A Robust Adaptive Method for CFD 2

1.1.2 Investigating a New Methodology 4

1.1.3 DPG + X . 5

1.1.4 DPG for HPC . 5

1.2 Literature Review . 7

1.2.1 Methods for Computational Fluid Dynamics 8

1.2.1.1 Finite Difference and Finite Volume Methods . 8

1.2.1.2 Stabilized Finite Element Methods 10

1.2.2 Space-Time Finite Elements 17

1.2.3 Discontinuous Petrov-Galerkin Method 21

Chapter 2. Conservation in Steady-State 27

2.1 Motivation . 27

2.2 Element Conservative Convection-Diffusion 29

2.2.1 Derivation . 30

2.2.2 Stability Analysis . 34

2.2.2.1 Robustness Analysis 37

2.2.3 Robust Test Norms . 41

2.2.3.1 Adaptation for a Locally Conservative Formulation 42

xi

2.2.3.2 Verification of Robust Stability Estimate 43

2.3 Application to Other Fluid Model Problems 44

2.3.1 Inviscid Burgers’ Equation 44

2.3.2 Stokes Flow . 45

2.4 Numerical Experiments . 46

2.4.1 Description of Problems 47

2.4.1.1 Eriksson-Johnson Model Problem 47

2.4.1.2 Vortex Problem 47

2.4.1.3 Discontinuous Source Problem 49

2.4.1.4 Inviscid Burgers’ Equation 52

2.4.1.5 Stokes Flow Around a Cylinder 52

2.4.1.6 Stokes Flow Over a Backward Facing Step . . . 54

2.4.2 Analysis of Results . 59

2.4.2.1 Convection-Diffusion Results 59

2.4.2.2 Burgers’ Results 62

2.4.2.3 Stokes Results 62

Chapter 3. Robust DPG Methods for Transient Convection-
Diffusion 64

3.1 Introduction . 64

3.2 Transient Convection-Diffusion 65

3.2.1 Relevant Sobolev Spaces 66

3.2.2 Variational Formulations 68

3.2.3 Broken Test Functions 70

3.3 Robust Test Norms . 71

3.3.1 Application to Transient Convection-Diffusion 76

3.4 Numerical Tests . 87

3.5 Summary . 89

xii

Chapter 4. Space-Time DPG for Incompressible Navier-Stokes 91

4.1 Nonlinear Form . 91

4.2 Linearization . 92

4.3 Robust Test Norms . 94

4.4 Numerical Experiments . 95

4.4.1 Taylor-Green Vortex . 95

Chapter 5. Space-Time DPG for Compressible Navier-Stokes 98

5.1 Nonlinear Form . 99

5.2 Linearization . 104

5.3 Robust Test Norms . 104

5.4 Numerical Experiments . 106

5.4.1 Sod Shock Tube . 107

5.4.2 Noh Implosion . 109

5.4.3 Piston Problem . 110

5.5 Summary of Compressible Results 111

Chapter 6. Conclusions and Future Directions 118

6.1 Accomplishments . 119

6.2 Future Work . 120

6.2.1 Improve Scaling . 121

6.2.2 Shock Capturing . 121

6.2.3 More Extensive 2D Results 122

6.2.4 Anisotropic Refinements 122

6.2.5 3D Results . 123

Appendices 124

Appendix A. Implicit Time Stepping with DPG 125

A.1 Backward Euler . 126

A.2 ESDIRK . 127

A.2.1 ESDIRK with DPG . 128

A.2.2 Case Study: 2D Burgers’ Equation 129

A.2.2.1 DPG Formulation 130

A.2.2.2 Numerical Example 131

xiii

Appendix B. Comparison of Primitive, Conservation, and En-
tropy Variables for Compressible Navier-Stokes 133

B.1 Primitive Variables . 134

B.1.1 Linearized Terms . 135

B.2 Conservation Variables . 136

B.2.1 Linearized Terms . 138

B.3 Entropy Variables . 139

B.3.1 Linearized Terms . 141

B.4 Numerical Experiments . 142

B.4.1 Sod Shock Tube . 143

B.4.2 Noh Implosion . 143

B.5 Conclusion . 144

Appendix C. Entropy Norms for Compressible Navier-Stokes 150

C.1 Motivation . 150

C.2 Entropy Scaled Test Norms . 151

Appendix D. Scaling Issues 156

D.1 Global Solvers . 156

D.1.1 Overview of Multigrid in Camellia 157

D.1.2 Scaling on Test Problems 158

D.1.2.1 Incompressible Flow Over a Cylinder 159

D.1.2.2 Taylor-Green Vortex 160

D.2 The Question of Space-Time Slabs 162

Bibliography 170

Vita 182

xiv

List of Tables

D.1 Solve time for transient flow over a cylinder 161

D.2 Solve time for the Taylor-Green vortex 162

xv

List of Figures

1.1 Multigrid in time with XBraid by LLNL[51] 20

2.1 Erickson-Johnson exact solution 48

2.2 Error in Erickson-Johnson solutions 48

2.3 Flux imbalance in Erickson-Johnson solutions 49

2.4 Vortex problem after 6 refinements 50

2.5 Flux imbalance in vortex solutions 50

2.6 Discontinuous source problem after 8 refinements 51

2.7 Flux imbalance in discontinuous source solutions 51

2.8 Burgers’ problem after 8 refinements 53

2.9 Flux imbalance in Burgers’ solutions 53

2.10 Stokes cylinder domain . 55

2.11 Initial mesh for Stokes flow over a cylinder 55

2.12 Stokes flow around a cylinder - velocity magnitude 56

2.13 Mass loss in Stokes flow around a cylinder of radius 0.6 57

2.14 Mass loss in Stokes flow around a cylinder of radius 0.9 58

2.15 Stokes step domain . 59

2.16 Stokes backward facing step - velocity magnitude 60

2.17 Mass loss in Stokes backward facing step 61

3.1 Graph norm optimal test functions for u = x− 1
2

. 74

3.2 Robust norm optimal test functions for u = x− 1
2

. 75

3.3 Coupled robust norm optimal test functions for u = x− 1
2

. . 76

3.4 Transient Eriksson-Johnson solution 89

3.5 u at t = 0.2 for ε = 10−2 and p = 2 after 4 adaptive refinements 89

3.6 Convergence to analytical solution 90

4.1 Taylor-Green vortex . 96

xvi

4.2 Convergence to Taylor-Green analytical solution 97

5.1 Sod solution with robust norm, initial mesh 112

5.2 Sod solution with robust norm, 6th refinement 113

5.3 Sod solution with robust norm, 12th refinement 114

5.4 Noh solution with robust norm 115

5.5 Piston solution with NSDecoupled norm after 8 adaptive refine-
ments . 116

5.6 Piston mesh with NSDecoupled norm after 8 adaptive refinements117

A.1 L2 convergence of u1 and u2 for the 2D Burgers’ equation . . . 132

B.1 Sod problem with primitive variables 145

B.2 Sod problem with conservation variables 146

B.3 Sod problem with entropy variables 147

B.4 Density at final time . 148

B.5 Noh meshes colored by ρ . 149

C.1 Sod solution after 12 refinements 155

D.1 Residual convergence for a simple convection-diffusion problem 157

D.2 Initial mesh for cylinder problem colored by velocity magnitude 160

D.3 Fourth adaptive mesh for cylinder problem colored by velocity
magnitude . 161

D.4 First time slab strategy . 164

D.5 Second time slab strategy . 165

D.6 Third time slab strategy . 166

D.7 Ratio of total element counts Etot3/Etot1 167

D.8 Total solve time using strategy 3 168

xvii

Chapter 1

Introduction

1.1 Motivation

Computational science has revolutionized the engineering design pro-

cess – enabling design analysis and optimization to be done virtually before

expensive physical prototypes need to be built. However, some fields of en-

gineering analysis lend themselves to a computational approach much easier

than others. Fluid dynamics has long been one of the most challenging en-

gineering disciplines to simulate via numerical techniques. Aside from the

inherent modeling challenges presented by fluid turbulence, many fluid flows

can be characterized as singularly perturbed problems – problems in which

the viscosity length scale is many orders of magnitude smaller than the large

scale features of the flow. This has necessitated the need for meshes with

large gradations in resolution to enable resolution of boundary layers while

being computationally efficient in the free stream. Traditionally, these meshes

would be custom designed by a domain expert who could predict which parts

of the domain would need more resolution than others. On top of this, many

numerical techniques would fail to converge unless the presented initial mesh

was in the “asymptotic regime”, i.e. the physics (viscous effects) could by

somewhat sufficiently represented. These requirements made mesh generation

1

a laborious and far from automated procedure.

1.1.1 A Robust Adaptive Method for CFD

The failure of many numerical methods in the “pre-asymptotic regime”

can be characterized mathematically as a loss of stability on coarse meshes.

Discrete stability and convergence for linear problems is guaranteed by the

famous discrete inf-sup condition of Babuška [5]. For mixed formulations, in-

cluding the classical variational formulation for the Stokes problem, the condi-

tion reduces to the celebrated Ladyženskaya-Babuška-Brezzi (LBB) condition

relating approximation spaces for velocity and pressure [26]. Leszek Demkow-

icz and Jay Gopalakrishnan first proposed the discontinuous Petrov-Galerkin

method in 2009[28, 29] in order to address stability issues for a very broad

class of problems. The DPG method automatically satisfies the discrete inf-

sup condition by computing on-the-fly optimal test functions. This enables

DPG simulations to remain stable and convergent even in the pre-asymptotic

regime. By nature, the DPG method also comes with a built-in error repre-

sentation function, effectively eliminating the need for other a posteriori error

estimators. Practically, this means that a simulation could start with just

the coarsest mesh necessary to represent the geometry of the solution and

adaptively refine toward a resolved solution in a very automatic way. Carried

to its logical conclusion, this capability could significantly cut down on the

time intensive manual mesh generation (and tweaking) that dominates a good

amount of simulation and analysis time. Where a current numerical method

2

might falter on a poorly designed mesh, necessitating an engineer to manually

enter the problem and fix the offending mesh nodes, a DPG simulation would

converge on the poor mesh, mark the offending cells, refine, and continue

toward a solution.

Another benefit to the enhanced stability properties of DPG is the abil-

ity to consider high order and hp-adaptive methods. Many popular numerical

methods for CFD (such as the discontinuous Galerkin method) are stable for

low polynomial orders, but require additional stabilizing terms for higher or-

ders. Additionally, one of the longstanding issues with hp-adaptive techniques

was that they suffered stability problems when the polynomial order rose to

high. Polynomial order presents no issue at all to DPG methods – allowing

us to recover the high order convergence rates of high uniform p methods or

even the exponential convergence rates of hp methods.

The biggest limitation to past explorations of the DPG method is that

they were all limited to steady state problems. Obviously this seriously limits

the variety of interesting problems we could consider. The easiest extension of

steady DPG to transient problems would be to do an implicit time stepping

technique in time and use DPG for only the spatial solve at each time step. We

did indeed explore this approach, but it didn’t seem to be a natural fit with

the adaptive features of DPG. Clearly the CFL condition was not binding

since we were interested in implicit time integration schemes, but the CFL

condition can be a guiding principle for temporal accuracy in this case. So if

we are interested in temporally accurate solutions, we are limited by the fact

3

that our smallest mesh elements (which may be orders of magnitude smaller

than the largest elements) are constrained to proceed at a much smaller time

step than the mesh as a whole. We can either restrict the whole mesh to

the smallest time step, or we can attempt some sort of local time stepping. A

space-time DPG formulation presents an attractive choice as we will be able to

preserve our natural adaptivity from the steady problems while extending it in

time. Thus we achieve an adaptive solution technique for transient problems

in a unified framework. The obvious downside to such an approach is that for

2D spatial problems, we now have to compute on a three dimensional mesh

while a spatially 3D problem becomes four dimensional.

1.1.2 Investigating a New Methodology

Much of science is driven by curiosity, and this especially holds for

computational science. There is inherent value in exploring new methodolo-

gies because they may hold the keys to solving new problems or old problems

in a better way. A new method may also help us to better understand exist-

ing methods. The variational multiscale approach to finite element analysis

helped to elucidate on some of the success of the much older streamline up-

wind Petrov-Galerkin method while generalizing and improving it. The DPG

method itself can be viewed as a generalization of least-squares finite elements

from a multiscale point of view[9] or even of mixed methods[25].

Curiosity similarly motivates the desire to explore a space-time DPG

formulation for computational fluid dynamics. Based on our past experience

4

with steady DPG, we anticipate space-time DPG to be a very interesting

technique that could extend the automaticity of DPG in very novel ways.

1.1.3 DPG + X

DPG is admittedly, a very costly method at present. We have ideas

about how to reduce the effective cost, but DPG may never be as fast as more

traditional methods designed explicitly for CFD. Ultimately, there is no reason

why we can’t combine DPG with another method to gain the benefits of both.

We could let DPG handle the initial coarse mesh and adaptively start refining

toward a mesh that is sufficiently fine for another method to take over. The

other method could then use traditional a posteriori error approximation to

arrive at a fully resolved solution. This leverages the benefits of using DPG

in an automated way on coarse meshes where the cost is less significant while

benefiting from the computational efficiency of whatever method is coupled

to it. If the other method is finite element based, this could possibly be done

as simply as swapping out the test functions being used – perhaps the mesh

is fine enough that we can do without the optimal test functions. We only

mention this as a possible use of DPG; we are not going to look into such

coupling in this research.

1.1.4 DPG for HPC

Many of the features inherent in the DPG method appear promising in

the context of high performance computing. Our goal is to design a method

5

that eliminates human intervention as much as possible. The superior sta-

bility of the method promises to prevent a simulation from crashing which

could eliminate expensive restarts on large systems. Preliminary studies on

convection-diffusion suggest exceptional robustness of the method in terms of

diminishing viscosity, promising successful application to a large class of flow

problems. The adaptivity lent by the error representation function provides a

reliable and automated way to start from a coarse mesh and only refine toward

solution features in need. This uses compute resources much more efficiently

than uniform refinements, allowing larger simulations with fewer resources.

These features combine to produce a high degree of automaticity. Ultimately,

it is desirable that an engineer could produce a rough mesh that just captures

the geometry of the problem and start a DPG simulation that automatically

picks up solution features without the user needing to jump back in and fix

things.

DPG is very compute intensive compared to the associated communi-

cation and memory costs. Most of the work is spent in embarrassingly parallel

local solves for the optimal test functions and local stiffness matrix assem-

bly. Additionally, the stability properties of DPG make high order stability a

triviality, and in general, high order methods tend to have a more attractive

compute/communication profile than low order methods. In our codes, we use

QR factorization for optimal test function solves, but this factorization is re-

cyclable as we essentially have many right hand sides. The division of degrees

of freedom into internal vs skeleton unknowns produces a global system which

6

can be statically condensed into a solve purely in terms of the skeleton degrees

of freedom. In addition to significantly cutting down on the size of the global

solve, this produces a embarrassingly parallel post-processing solve for the in-

ternal degrees of freedom. This property was one of the motivations behind the

development of the hybridized discontinuous Galerkin [22] method. No matter

what system of equations is being considered, DPG always produces a Hermi-

tian (symmetric if real) positive definite stiffness matrix for the global solve.

This property allows us to leverage the conjugate gradient algorithm as the

foundation for iterative global solvers. As compute resources scale up, many

more HPC simulations are increasingly becoming coupled in multiphysics sim-

ulations. Since the only requirement for a well-defined discrete DPG method

is a well-defined continuous problem, it is certainly possible that each different

part of the multiphysics simulation could be discretized with DPG – no need to

develop many different methods for each part of the simulation. Already DPG

has been successfully applied to a wide variety of problems in computational

mechanics, as noted below.

1.2 Literature Review

We start this literature review by looking at various numerical methods

that have been popular in the simulation of fluid dynamics problems. We then

branch out to discuss the development of space-time finite elements in for var-

ious application domains. Finally we explore some of the recent developments

in the discontinuous Petrov-Galerkin finite element method.

7

1.2.1 Methods for Computational Fluid Dynamics

Computational fluid dynamics has been one of the driving forces be-

hind numerical analysis since computers first became available for scientific

research and has followed the progression as simple methods give rise to more

sophisticated ones with the maturation of computational science as a disci-

pline. Finite difference methods were a popular choice in the early days of

CFD, but these slowly gave way to finite volumes as the dominant choice.

As the analysis techniques in computational science have matured, it has been

increasingly desirable to be able to prove certain properties of numerical meth-

ods. The solid mathematical foundation of the finite element method renders

it especially nice for analysis, and in recent years finite elements have been

developing a growing following among CFD practitioners.

1.2.1.1 Finite Difference and Finite Volume Methods

Finite difference methods approximate derivatives in the strong form

of the equation under consideration with finite difference approximations, but

proofs of convergence rely on a distributional understanding of the equations

(covering both differential equations and Rankine-Hugoniot conditions) and

various forms of entropy conditions. These methods were first popularized for

conservation laws by Lax who also introduced the idea of numerical flux and

ideal of a monotone scheme. For fluid dynamics applications, popular finite

difference schemes use numerical fluxes to reconstruct approximate derivatives

at certain mesh points.

8

Finite volume methods can be derived from applying finite difference

principles to the integral form of the conservation law under consideration.

They are often derived by reference to a control volume. The primary benefit

of finite volume methods over their finite difference counterparts is that they

are much easier to develop for general unstructured meshes. Finite difference

schemes typically require uniform or smoothly varying structured grids. Finite

volume methods are typically low order (maximum of second order), but the

emergence of discontinuous Galerkin finite element methods have provided a

natural higher order extension to finite volume methods.

The presence of shocks in compressible Navier-Stokes simulations presents

a difficult problem for any numerical method. The so called Gibbs phenomenon

causes polynomial representations of unresolved discontinuous fields to develop

undershoots and overshoots. The length scale of shocks in the solution of the

Navier-Stokes equations is often on the order of several mean free paths of the

fluid under consideration. So any simulation that does not resolve down to this

level is going to have to deal with Gibbs effects. This can be a problem when

the undershoots threaten to take density or energy negative which can quickly

cause the entire solution to lose stability and return garbage. The three clas-

sical techniques used to counter this possibility in finite difference and finite

volume schemes are artificial viscosity, total variation diminishing schemes,

and slope limiters. Each of these techniques has its own flaws, whether loss of

accuracy, limitations in multi dimensions, or numerous parameters that need to

be tuned on a problem specific basis. The weighted essentially non-oscillatory

9

(WENO) scheme[53] remains a popular solution among many CFD practi-

tioners and was itself an improvement on the earlier essentially non-oscillatory

(ENO) scheme of Harten, Enquist, Osher, and Chakravarthy[43]. Despite the

various implementation details, most of these methods for handling shocks

can be interpreted as adding some sort of artificial diffusion into the numerical

scheme. These means that the scheme is now solving a modified version of

the original equations under consideration – one with artificially introduced

diffusion terms.

1.2.1.2 Stabilized Finite Element Methods

Finite difference methods are very easy to implement, but remain lim-

ited to structured grids. Finite volume methods fix many of the limitations

of finite differences, but are much harder to generalize to higher order and

remain much more difficult to analyze mathematically. The rigorous math-

ematical foundation of finite element methods has lead to growing interest

from computational scientists. Additionally, the finite element framework al-

lows for weaker regularity constraints on the solution than implied by the

strong form of the equations and a natural way to solve on general physical

domains with arbitrarily high approximation order. Finite element methods

found early success in the field of computational solid mechanics where the

symmetric positive-definite nature of such problems allowed classical Bubnov-

Galerkin methods to produce optimal or near-optimal results. Unfortunately,

classical finite element methods perform poorly on singularly perturbed prob-

10

lems, and more general formulations had to be explored. Some of the early

pioneers of finite elements for CFD include Oden, Zienkiewicz, Karniadakis,

and Hughes[21].

Residual based stabilization has been a popular means of fixing the

loss of robustness on singularly perturbed problems. A given bilinear form

is modified by adding the strong form of the residual multiplied by a test

function and scaled by some stabilization parameter τ (possibly a function).

The classical example of this technique is streamline upwind Petrov-Galerkin

(SUPG) method for convection-diffusion using piecewise linear continuous fi-

nite elements[14]. In addition to removing the spurious oscillations of Bubnov-

Galerkin methods, SUPG recovers the optimal approximation in the H1 norm

in 1D.

Streamline Upwind Petrov-Galerkin Method. In general, the trial (ap-

proximating) and test (weighting) spaces in the finite element method need

not the the same as they are in the Bubnov-Galerkin method. The term

Petrov-Galerkin refers to methods in which the two space differ. The origi-

nal motivation behind the method was that in 1D convection-diffusion, it is

possible to recover the exact solution at nodal points using a finite difference

method with “exact” artificial diffusion based on the mesh size h, the con-

vection magnitude β, and the viscosity ε. Tom Hughes, who developed the

method, adapted these ideas to a finite element framework be modifying the

test functions rather than by direct modification of the equations.

11

In the abstract, the convection-diffusion equation can be written as

Lu = (Ladv + Ldiff)u = f ,

where Ladvu := ∇ · (βu) is the advection operator and Ldiffu := −ε∆u is

the diffusion operator. If u is a linear combination of piece-wise linear basis

functions φi, i = 0, · · · , N , then within each element, the second order dif-

fusion operator is zero. Given b(u, v) and l(v) from as the bilinear form and

load from the standard Galerkin formulation, SUPG defines a new system

bSUPG(u, v) = lSUPG(v) where

bSUPG(u, v) = b(u, v) +
∑
K

∫
K

τ(Ladvv)(Lu− f)

lSUPG(v) = l(v) +
∑
K

∫
K

τ(Ladvv)f ,

where τ is the SUPG parameter selected to match “exact diffusion” on uniform

meshes, in which case SUPG gives the same results as the exact diffusion finite

difference method. However, unlike exact diffusion finite differences, SUPG

gives optimal H1
0 approximation and nodal interpolation of the exact solution

on nonuniform meshes and when f 6= 0. Unfortunately, SUPG loses this nodal

interpolation property in higher dimensions, but still remains close to the H1
0

best approximation. Though developed with first order elements in mind, the

method can be generalized to higher order elements with a modification of τ .

SUPG preserves consistency of the variational problem – since the stabilization

is based on the residual, the exact solution satisfies the stabilized variational

problem. This property does not hold for the exact diffusion finite difference

or finite volume methods.

12

We can interpret the residual based stabilization terms as modifying

the test functions from the original bilinear form:

b(u, ṽ)

where the SUPG test function ṽ is defined element-wise as

ṽ = φ+ τLadvφ .

That is, we perturb our original test functions by a scaled advection operator

applied to the original test function. For low order C0 test functions, this nat-

urally gives each test functions an upwind bias. This introduces an important

idea – that stability and optimal convergence can be achieved through suitable

choice of test functions.

Variational Multiscale Methods. The variational multiscale method gen-

eralized and systematized the ideas behind SUPG for a larger class of problems.

The motivation was that blind application of Bubnov-Galerkin does not pro-

duce robust results in the presence of multiscale physics[45]. The approach

is to decompose the solution into a coarse and fine scale: u = ū + u′. The

coarse scale, ū, is solved numerically, while attempting to solve for the fine

scales, u′, analytically. One issue that arises in this process is approximating

the fine-scale Green’s function for the operator under consideration which is

usually nonlocal. Similarly, the effect of the fine scales on the coarse scales

in nonlocal. The variational multiscale method gives a framework from which

13

stabilized methods can be derived for large classes of problems, but deep anal-

ysis of the problem at hand is required to derive the effect of the fine scales

on the coarse scales. Computationally, VMS methods allow for computation

with standard C0 finite elements which avoids the annoying propagation of

unknowns in discontinuous Galerkin methods.

Discontinuous Galerkin Methods. Discontinuous Galerkin finite elements

were first introduced by Reed and Hill in 1973 for neutron transport prob-

lems[61]. Early contributors included Babuška, Lions, Nitsche, and Zlamal,

but Arnold, Brezzi, Cockburn, and Marini put together a unified analysis of

DG methods for elliptic problems in [4]. Of particular interest to our work in

CFD is the work by Cockburn and Shu on DG for conservation laws starting

with [23]. The method combines attractive features of the finite element and

finite volume methods and has become hugely successful for fluid dynamics

simulations. DG is a finite element method with the same rigorous mathemat-

ical foundation and other benefits of FEM, but uses a nonconforming basis

such that basis functions are discontinuous across elements. In fact, the low-

est order DG method is identical to the first order finite volume method. There

is no explicit continuity between elements (though approximate conformity is

enforced in a weak sense). In the vein of finite volume methods, a numerical

flux is used to facilitate communication between neighboring elements. The

numerical flux also introduces stabilization to the method, allowing it to sim-

ulate convection dominated flows. The piecewise discontinuous nature of DG

14

allows for very simple h and p adaptivity and straightforward parallelization.

Like in finite volume methods, the numerical flux is some function of

the edge values from two neighboring elements, The numerical flux can also be

interpreted as a form of stabilization[13]. Consider the steady 1D advection

equation:

∂(β(x)u)

∂x
= f , u(0) = u0 .

Multiply by test function v and integrate by parts over each element K =

[xK , xK+1]:

−
∫
K

β(x)u
∂v

∂x
+ βuv|xK+1

xK
=

∫
K

fv .

The global formulation is formed by summing up each of the local contribu-

tions. Since our discretization is piece-wise discontinuous, boundary terms are

double-valued, and we need to make a choice about which ones to use. Let

u(x−K) denote the upwind value at point xK (left side for β positive), and u(x+
K)

the downwind side. Then for element K, u(x+
K) and u(x−K+1) refer to the values

local to that element while u(x−K) and u(x+
K+1) refer to the values from its two

neighboring elements. The stable choice is always choose the upwind value for

u while choosing the element local value for v. Choosing downwind values of

u will give an unconditionally unstable method, while choosing average val-

ues will result in something similar to an H1 conforming continuous Galerkin

discretization[13]. The upwind bilinear form for positive β on element K will

then be

−
∫
K

β(x)u
∂v

∂x
+ β(xK+1)u(x−K+1)v(x−K+1)− β(xK)u(x−K)v(x+

K) =

∫
K

fv .

15

DG methods have proven to be extremely successful in the field of

computational fluid dynamics (and many other fields) due to several properties

that are very important to fluid dynamicists. They are automatically locally

conservative since the test function span the space of constants. The lowest

order case is identical to first order finite volume methods. However, the most

audible criticism of the DG method is the proliferation of unknowns relative

to continuous finite elements. For linear elements in 1D, there will be twice

as many unknowns, for 2D quadrilateral elements, four times as many, and

with 3D hexahedral elements, eight times as many. This problem is assuaged

when higher order elements are used, in which case the ratio approaches one

as the element order goes to infinity. Another issue with DG is that there is

a pre-asymptotic regime where the solution may go unstable if the mesh is

not fine enough. This is a relevant issue when comparing to DPG, but most

other methods encounter this as well, so it is not vocalized as a DG specific

problem. DG methods are also critiqued for having bad conditioning and

optimal convergence in “weak norms.”

Hybridized Discontinuous Galerkin Methods. The hybridized discon-

tinuous Galerkin method was first introduced by Cockburn, Gopalakrishnan,

and Lazarov[22] as a way to address some of the issues with the standard DG

method – notably the proliferation of unknowns. HDG introduces numerical

traces (result of integrating a gradient by parts) and numerical fluxes (result

of integrating a divergence by parts) which are handled differently. New cou-

16

pling unknowns are introduced for the numerical trace that only live on the

mesh skeleton. The global problem can then be reframed exclusively in terms

of these numerical traces and interior degrees of freedom can be solved in a

fully parallel post-processing step. Numerical fluxes are treated in the same

fashion as standard DG and hence contribute the same stabilization needed

for convection dominated problems.

1.2.2 Space-Time Finite Elements

Most finite element simulations of transient phenomena use a semi-

discrete formulation. This means that the PDE is first discretized in space

using finite elements and then the leftover system of ordinary differential equa-

tions in time is usually solved by a finite difference method. The benefit of

this procedure is that it is simple to implement and well understood numer-

ically. Hughes[47] notes that “It is frequently argued that finite elements

represent a superior methodology to finite differences” and that it is not sur-

prising that many efforts have been made to apply finite element technologies

to the space-time domain. Some of the earliest proponents of this approach

were Kaczkowski[49], Argyris and Scharpf[3], Fried[40], and Oden[59]. These

techniques were built on the underlying concept of Hamilton’s principle. Bajer

and Bonthoux present a nice review in [6].

Space-time finite elements present an attractive way to handle meshes

with moving boundaries. Lesoinne and Farhat[52] studied several techniques

for solving on moving meshes including Arbitrary Lagrangian-Eulerian finite

17

volume and finte element schemes as well as space-time finite volume schemes.

The authors derived Geometric Conservation Laws (GCL) as important con-

straints that a scheme must satisfy for a time-accurate solution. They found

that except for the case of space-time finite elements, the GCLs imposed im-

portant constraints on the schemes under consideration.

Van der Vegt and van der Ven[74] motivate their space-time discontinu-

ous Galerkin method for 3D inviscid compressible moving boundary problems:

The separation between space and time becomes cumbersome

for time-dependent domain boundaries, which require the mesh to

follow the boundary movement. We will therefore not separate

space and time but consider the Euler equations directly in four

dimensional space and use basis functions in the finite element

discretization which are discontinuous across element faces, both

in space and time. We refer to this technique as the space-time

discontinuous Galerkin finite element method. The space-time DG

method provides optimal efficiency for adapting and deforming the

mesh while maintaining a conservative scheme which does not re-

quire interpolation of data after mesh refinement or deformation.

Klaij et al. [50] then extended the method to compressible Navier-Stokes while

Rhebergen et al. [63] developed the method for incompressible Navier-Stokes.

Rhebergen and Cockburn[62] also developed a space-time HDG method for

incompressible Navier-Stokes.

Tezduyar and Behr[72] develop a deforming-spatial-domain/space-time

18

procedure coupled with Galerkin/least-squares to handle incompressible Navier-

Stokes flows with moving boundaries and later Aliabadi and Tezduyar[2] apply

the procedure to compressible flows. Hughes and Stewart[48] develop a general

space-time multiscale framework for deriving stabilized methods for transient

phenomena.

The tent-pitcher algorithm of Üngör[73] has become a popular way

of mitigating the cost of space-time computations. The basic idea is that a

space-time DG method can be solved element-by-element if the space-time

mesh satisfies a cone constraint, i.e. the mesh faces can not be steeper in the

temporal direction than a specified angle generated by the characteristics of

the solution. In which case, each element is uncoupled from its neighbors,

significantly increasing the efficiency of a solver. Since the cone condition

evolves with the solution, the mesh must be generated on the fly based on the

most recent solution information. Abedi, Petracovici, and Haber[1] applied

this causal mesh generation to linear elastodynamics.

Space-time multigrid has been gaining attention lately as a means of ex-

tending the parallelism of simulations which are facing sequential bottlenecks.

According to the website for the XBraid Project at Lawrence Livermore[39, 51]:

Traditional sequential time-marching algorithms are a critical

part of most computer simulations of a time-dependent problem,

but these algorithms are currently facing a sequential bottleneck.

This bottleneck is driven by the broad trend that future perfor-

mance gains will come from greater concurrency, not faster clock

19

speeds. Previously, ever-increasing clock speeds decreased the com-

pute time for each time step, thus allowing more time steps to be

calculated without increasing the overall compute time. Now that

clock speeds are stagnant, further refinements in time (i.e., in-

creases in the number of time steps) will simply increase the sim-

ulations overall compute time. Many of these refinements in time

will be required to maintain balance between spatial and tempo-

ral accuracies. Additionally, some simulations are already fully

resolved in space, and it is unclear how such simulations will take

advantage of the coming increases in concurrency.

Figure 1.1: Multigrid in time with XBraid by LLNL[51]

Multigrid in time allows all times to be solved for simultaneously, dra-

matically improving parallelization opportunities within a simulation code, see

Figure 1.1. The practical downside is that this is a much more expensive proce-

dure on small to medium sized computer architectures. It’s only on very large

systems that have maxed out the strong scaling of a single timestep where this

approach starts to pay off. Thus, for the proof of concept problems solved on

moderate sized system in this dissertation, we only expect to reap the extra

20

cost without seeing the reward. However this concept has potential as we look

towards exascale simulations in the future.

1.2.3 Discontinuous Petrov-Galerkin Method

The discontinuous Petrov-Galerkin finite element method with opti-

mal test functions was first proposed by Demkowicz and Gopalakrishnan in

2009[29]. The basic ideas are fairly straight-forward; DPG minimizes the resid-

ual in a user defined energy norm. Consider a variational problem: find u ∈ U

such that

b(u, v) = l(v) ∀v ∈ V

with operator B : U → V ′ (V ′ is the dual space to V) defined by b(u, v) =

〈Bu, v〉V ′×V . This gives the operator equation:

Bu = l ∈ V ′ .

We wish to minimize the residual Bu− l in V ′:

uh = arg min
wh∈Uh

1

2
‖Bu− l‖2

V ′ .

This is a very natural mathematical framework based soundly in functional

analysis, but it is not yet a practical method as the V ′ norm is not especially

tractable to work with. The insight is that since we are working with Hilbert

spaces, we can use the Riesz representation theorem to find a complementary

object in V rather than V ′. Let RV : V 3 v → (v, ·) ∈ V ′ be the Riesz

map. Then the inverse Riesz map (which is an isometry) lets us represent our

21

residual in V :

uh = arg min
wh∈Uh

1

2

∥∥R−1
V (Bu− l)

∥∥2

V
.

Taking the Gâteaux derivative to be zero in all directions δu ∈ Uh gives,

(
R−1
V (Buh − l), R−1

V Bδu
)
V

= 0, ∀δu ∈ U,

which by definition of the Riesz map is equivalent to

〈
Buh − l, R−1

V Bδuh
〉

= 0 ∀δuh ∈ Uh ,

with optimal test functions vδuh := R−1
V Bδuh for each trial function δuh. This

gives a simple bilinear form

b(uh, vδuh) = l(vδuh),

with vδuh ∈ V that solves the auxiliary problem

(vδuh , δv)V = 〈RV vδuh , δv〉 = 〈Bδuh, δv〉 = b(δuh, δv) ∀δv ∈ V.

We might call this an optimal Petrov-Galerkin. We arrive at the same method

by realizing the supremum in the inf-sup condition, motivating the optimal

nomenclature. These optimal Petrov-Galerkin methods produce Hermitian,

positive-definite stiffness matrices since

b(uh, vδuh) = (vuh , vδuh)V = (vδuh , vuh) = b(δuh, vuh) .

We can calculate the energy norm (defined by ‖u‖E := ‖Bu‖V ′) of the Galerkin

error without knowing the exact solution by using the residual:

‖uh − u‖E = ‖B(uh − u)‖V ′ = ‖Buh − l‖V ′ =
∥∥R−1

V (Buh − l)
∥∥
V
,

22

where we designate R−1
V (Buh − l) the error representation function. This has

proven to be a very reliable a-posteriori error estimator for driving adaptivity.

Babuška’s theorem[5] says that discrete stability and approximability

imply convergence. That is, if M is the continuity constant for b(u, v) which

satisfies the discrete inf-sup condition with constant γh,

sup
vh∈Vh

|b(u, v)|
‖vh‖V

≥ γh ‖uh‖U ,

then the Galerkin error satisfies the bound

‖uh − u‖U ≤
M

γh
inf

wh∈Uh
‖wh − u‖U .

Optimal test functions realize the supremum in the discrete discrete inf-sup

condition such that γh ≥ γ, the infinite-dimensional inf-sup constant. If we

then use the energy norm for ‖·‖U , then M = γ = 1 and Babuška’s estimate

implies that the optimal Petrov-Galerkin method is the most stable Petrov-

Galerkin method possible.

There are still many features of the method that are left to be decided,

for example the U and V spaces. If V is taken to be a continuous space, then

the auxiliary problem becomes global in scope, something that we would like

to avoid. In order to ensure the auxiliary problem can be solved element-by-

element, we take V to be discontinuous between elements. (Technically, V

should also be infinite dimensional, but we have found it to be sufficient to

use an “enriched” space of higher polynomial dimension than the trial space.)

The downside to using discontinuous test functions is that it introduces new

23

interface unknowns. When the equations are integrated by parts over each

element, the jump in test functions introduces new unknowns on the mesh

skeleton that would have gone away with continuous test functions. Moro

et al. [54] handle the flux unknowns with a numerical flux in the hybridized

DPG method, but the standard DPG method treats these as new unknowns

to be solved for. We still haven’t specified our trial space U , but the rule

is that for every integration by parts, a new skeleton unknown is introduced.

Most DPG considerations break a second order PDE into a system of first order

PDEs which introduces a trace unknown (from the constitutive law) and a flux

unknown (from the conservation law), but Demkowicz and Gopalakrishnan

also formulated a primal DPG method for second order equations that does

not introduce a trace unknown. The overall number of interface unknowns in

the primal DPG method is the same, however, since the solution is required

to be H1 conforming and the trace unknowns are essentially hidden here.

The final unresolved choice is what norm to apply to the V space. This

is one of the most important factors in designing a robust DPG method as this

norm needs to be inverted to solve for the optimal test functions. If the norm

produces unresolved boundary layers in the auxiliary problem, then many of

the attractive features of DPG may fall apart. But elimination of boundary

layers in the auxiliary solve is not the only requirement at play. This choice

also controls what norm the residual is minimized in. Often we want this

norm to be equivalent to the L2 norm. Fortunately, we have found that it is

possible to design test norms such that the implied energy norm is provably

24

robust and equivalent to L2 for convection-diffusion which serves as the most

relevant model problem for our research. Norms for Navier-Stokes are derived

by analogy to the convection-diffusion norm.

DPG has been successfully applied to a wide range of physical prob-

lems. Early work on the Poisson equation was published in [30]. Demkowicz et

al. [34], Gopalakrishnan et al. [41], and Zitelli et al. [77] analyzed and solved

the Helmholtz equation with DPG. DPG was applied to linear elasticity and

plate problems in [10], [55], and [11]. A 2D Maxwell cloaking problem was

solved with DPG in [37] and a 3D DPG theory for Maxwell was developed

by Wieners and Wohlmuth[75]. DPG has been applied to various fluid prob-

lems including convection-diffusion[17, 19, 35, 36, 38], Stokes[38, 64], Burgers’

equation[16], incompressible Navier-Stokes[65, 67], and compressible Navier-

Stokes[18].

Camellia – A Library for Computing with DPG. DPG is a relatively

young technology and has some fairly unique implementation requirements.

In particular, the use of element interface unknowns, the computation of the

optimal test functions, and the use of the error representation function to

drive adaptivity are not common features in many finite element libraries.

Nathan Roberts began work on the Camellia[66] library the summer of 2011

at Sandia National Laboratory. Jesse Chan and I soon followed as active

contributors. Camellia is written in modern C++ on top of Trilinos[44] and

supports distributed computation with MPI. It currently supports 1D, 2D,

25

and 3D meshes with line, quadrilateral, triangle, hexahedral, and tetrahedral

elements as well as space-time in 1D and 2D and both h− and p−adaptivity.

Though Camellia has not undergone an official open source release yet and

many of the features are still experimental, the source code is available at [68].

Every numerical result in this dissertation was computed using Camellia.

26

Chapter 2

Conservation in Steady-State

2.1 Motivation

We summarize some of our completed work on a locally conservative

DPG formulation that was invented to address mass loss concerns for standard

DPG. Locally conservative methods hold a special place for numerical analysts

in the field of fluid dynamics. Perot[60] argues:

Accuracy, stability, and consistency are the mathematical concepts

that are typically used to analyze numerical methods for partial

differential equations (PDEs). These important tools quantify how

well the mathematics of a PDE is represented, but they fail to say

anything about how well the physics of the system is represented

by a particular numerical method. In practice, physical fidelity of

a numerical solution can be just as important (perhaps even more

important to a physicist) as these more traditional mathematical

concepts. A numerical solution that violates the underlying physics

(destroying mass or entropy, for example) is in many respects just

as flawed as an unstable solution.

0This chapter is largely based on the journal article Locally Conservative Discontinuous
Petrov-Galerkin Finite Elements for Fluid Problems which appeared in Computers & Math-
ematics with Applications Volume 68, Issue 11 in December 2014. Co-authors Jesse Chan
and Leszek Demkowicz assisted with the mathematical proofs contained herein.

27

There are also some mathematically attractive reasons to pursue local conser-

vation. The Lax-Wendroff theorem guarantees that a conservative numerical

solution to a system of hyperbolic conservation laws will converge to a weak

solution.

The discontinuous Petrov-Galerkin finite element method has been de-

scribed as least squares finite elements with a twist. The key difference is that

while least squares methods seek to minimize the residual of the solution in

the L2 norm, DPG seeks the minimization in a dual norm realized through

the inverse Riesz map. Exact mass conservation has been an issue that has

long plagued least squares finite elements. Several approaches have been used

to try to adress this. Bochev et al. [8] accomplish local conservation by using

a pointwise divergence free velocity space in the Stokes formulation. Chang

and Nelson[20] developed the restricted LSFEM [20] by augmenting the least

squares equations with Lagrange multipliers explicitly enforcing mass conser-

vation element-wise. Our conservative formulation of DPG takes a similar

approach and both methods share a similar negative of transforming a mini-

mization method to a saddle point problem. In the interest of crediting Chang

and Nelson’s restricted LSFEM, we could call the following locally conser-

vative DPG method the restricted DPG method, but we prefer to the term

conservative DPG. Note that conservation is preserved with respect to fluxes

rather than field variables as we explain later.

28

2.2 Element Conservative Convection-Diffusion

We now proceed to develop a locally conservative formulation of DPG

for convection-diffusion type problems, but there are a few terms that we need

to define first. If Ω is our problem domain, then we can partition it into finite

elements K such that

Ω =
⋃
K

K̄, K open,

with corresponding external boundary Γ, skeleton Γh and interior skeleton Γ0
h,

Γh :=
⋃
K

∂K Γ0
h := Γh − Γ.

We define broken Sobolev spaces element-wise:

H1(Ωh) :=
∏

K H
1(K),

H(div,Ωh) :=
∏

KH(div, K).

We also need the trace spaces:

H
1
2 (Γh) :=

{
v̂ = {v̂K} ∈

∏
K

H1/2(∂K) :

∃v ∈ H1(Ω) : v|∂K = v̂K

}
,

H−
1
2 (Γh) :=

{
σ̂n = {σ̂Kn} ∈

∏
K

H−1/2(∂K) :

∃σ ∈H(div,Ω) : σ̂Kn = (σ · n)|∂K
}
,

which are developed more precisely in [64].

29

2.2.1 Derivation

Now that we have briefly outlined the abstract DPG method, let us

apply it to the convection-diffusion equation. The strong form of the steady

convection-diffusion problem with homogeneous Dirichlet boundary conditions

reads {
∇ · (βu)− ε∆u = f in Ω

u = 0 on Γ ,

where u is the property of interest, β is the convection vector, and f is the

source term. Nonhomogeneous Dirichlet and Neumann boundary conditions

are straightforward but would add technicality to the following discussion. Let

us write this as an equivalent system of first order equations:

∇ · (βu− σ) = f

1

ε
σ −∇u = 0 .

If we then multiply the first equation by some scalar test function v and the

bottom equation by some vector-valued test function τ , we can integrate by

parts over each element K:

−(βu− σ,∇v)K + 〈(βu− σ) · n, v〉∂K = (f, v)K

1

ε
(σ, τ)K + (u,∇ · τ)K − 〈u, τn〉∂K = 0 .

(2.1)

The discontinuous Petrov-Galerkin method refers to the fact that we are using

discontinuous optimal test functions that come from a space differing from the

trial space. It does not specify our choice of trial space. Nevertheless, many

versions of DPG in the literature (convection-diffusion [30], linear elasticity

30

[10], linear acoustics [34], Stokes [64]) associate DPG with the so-called “ultra-

weak formulation.” We will follow the same derivation for the convection-

diffusion equation, but we emphasize that other formulations are available (in

particular, the primal DPG[31] method presents an alternative with continuous

trial functions). Thus, we seek field variables u ∈ L2(K) and σ ∈ L2(K).

Mathematically, this leaves their traces on element boundaries undefined, and

in a manner similar to the hybridized discontinuous Galerkin method, we define

new unknowns for trace û and flux t̂. Applying these definitions to (2.1)

and adding the two equations together, we arrive at our desired variational

problem.

Find u := (u,σ, û, t̂) ∈ U := L2(Ωh)×L2(Ωh)×H1/2(Γh)×H−1/2(Γh)

such that

−(βu− σ,∇v)K +
〈
t̂, v
〉
∂K

+
1

ε
(σ, τ)K + (u,∇ · τ)K − 〈û, τn〉∂K︸ ︷︷ ︸

b(u,v)

= (f, v)K︸ ︷︷ ︸
l(v)

in Ω

û = 0 on Γ
(2.2)

for all v := (v, τ) ∈ V := H1(Ωh)×H(div,Ωh).

We note that for convection-diffusion problems we are particularly in-

terested in designing a robust DPG method. Specifically, we are interested in

designing methods whose behavior does not change as the diffusion parameter

ε becomes very small. Naive Galerkin methods for convection-diffusion tend to

suffer from a lack of robustness; specifically, the finite element error is bounded

by a constant factor of the best approximation error, but the constant is often

proportional to ε−1. Our aim is to design a DPG method with this in mind.

31

We follow the methodology introduced by Heuer and Demkowicz in [36]: the

ultra-weak variational formulation for convection-diffusion can be refactored

as

b
((
u,σ, û, t̂

)
, (v, τ)

)
=
∑
K∈Ωh

〈
t̂, v
〉
∂K

+ 〈û, τn〉δK + (u,∇ · τ − β · ∇v)L2(K)

+

(
σ,

1

ε
τ +∇v

)
L2(K)

,

modulo application of boundary data. If we choose specific conforming test

functions satisfying the adjoint equations

∇ · τ − β · ∇v = u,

1

ε
τ +∇v = σ,

then evaluating b
((
u,σ, û, t̂

)
, (v, τ)

)
at these specific test functions returns

back ‖u‖2 +‖σ‖2, the L2 norm of our field variables. Multiplying and dividing

through by the test norm ‖v‖V , we have

‖u‖2
L2 + ‖σ‖2

L2 = b
((
u,σ, û, t̂

)
, (v, τ)

)
=
b
((
u,σ, û, t̂

)
, (v, τ)

)
‖v‖V

‖v‖V

≤
∥∥u,σ, û, t̂∥∥

E
‖v‖V ,

where ∥∥u,σ, û, t̂∥∥
E

= sup
v∈V \{0}

b
((
u,σ, û, t̂

)
, (v, τ)

)
‖v‖V

is the DPG energy norm. If we can robustly bound the test norm ‖v‖V .(
‖u‖2

L2 + ‖σ‖2
L2

)1/2
(i.e. derive a bound from above with a constant indepen-

dent of ε), then we can divide through to get(
‖u‖2

L2 + ‖σ‖2
L2

) 1
2 .

∥∥(u,σ, û, t̂)
∥∥
E
. (2.3)

32

In other words, the energy norm in which DPG is optimal bounds the L2 norm

uniformly in epsilon. So, as we drive our energy error down to zero, we can

expect that the L2 error will also decrease regardless of ε.

We note that the construction of the test norm ‖v‖V for a robust DPG

method depends on two things: the test norm, as well as the adjoint equation.

In [36], the standard problem with Dirichlet conditions enforced over the entire

boundary was considered; in [17], boundary conditions were chosen for the

forward problem such that the induced adjoint problem was regularized and

contained no strong boundary layers, allowing for the construction of a stronger

test norm on V . We adopt a slight modification of the test norm introduced

in [17] for numerical experiments here, which is motivated and explained in

more detail in [18].

Having reviewed and laid the foundation for DPG methods, we can

now formulate our conservative DPG scheme. Let Uh := Uh×Sh× Ûh× F̂h ⊂

L2(Ωh)×L2(Ωh)×H
1
2 (Γh)×H−

1
2 (Γh) be a finite-dimensional subspace, and let

uh := (uh,σh, ûh, t̂h) ∈ Uh be the group variable. The element conservative

DPG scheme is derived from the Lagrangian:

L(uh, λK) =
1

2

∥∥R−1
V (b(uh, ·)− (f, ·))

∥∥2

V
−
∑
K

λK(b(uh, (1K ,0))− l((1K ,0))) ,

(2.4)

where (1K ,0) is the test function in which v = 1 on element K and 0 elsewhere

and τ = 0 everywhere.

Taking the Gâteaux derivatives as before, we arrive at the following

33

system of equations:{
b(uh, T (δuh))−

∑
K λKb(δuh, (1K ,0)) = l(T (δuh)) ∀δuh ∈ Uh

b(uh, (1K ,0)) = l((1K ,0)) ∀K ,
(2.5)

where T := R−1
V B : Uh → V is the same trial-to-test operator as in the

original formulation.

Denote T (δuh) = (vδuh , τ δuh) ∈ H1(Ωh) ×H(div,Ωh). Then, putting

(2.5) into more concrete terms for convection-diffusion, we get:

−(βu− σ,∇vδuh) + 〈t̂, vδuh〉+ 1
ε
(σ, τ δuh) + (u,∇ · τ δuh)

−〈û, τ δuh · n〉 −
∑

K λK(δt̂, (1K ,0)) = (f, vδuh)

∀δuh ∈ Uh

〈t̂, (1K ,0)〉 = (f, 1K)

∀K .

(2.6)

2.2.2 Stability Analysis

In the following analysis we neglect the error due to the approximation

of optimal test functions. See [42] for a defense of this assumption. We follow

the classical Brezzi’s theory [12, 26] for an abstract mixed problem:
u ∈ U , p ∈ Q
a(u,w) + c(p,w) = l(w) ∀w ∈ U
c(q,u) = g(q) ∀q ∈ Q

(2.7)

where U , Q are Hilbert spaces, and a, c, l, g denote the appropriate bilinear

and linear forms. Note that a(u,w) = b(u, Tw) = (Tu, Tw)V in the notation

from the previous section.

34

Let the function ψ denote theH(div,Ω) extension of flux t̂ that realizes

the minimum in the definition of the quotient (minimum energy extension)

norm. The choice of norm for the Lagrange multipliers λK is implied by

the quotient norm used for H−1/2(Γh) and continuity bound for form c(p,w)

representing the constraint:

|c(
∑

K λK(1K ,0), (u,σ, û, t̂))| = |
∑

K λK〈t̂, 1K〉∂K |

= |
∑

K λK〈vn, 1K〉∂K |

= |
∑

K λK
∫
K

divψ 1K |

≤
∑

K λK ||divψ||L2(K)µ(K)1/2

≤ (
∑

K µ(K)λ2
K)1/2 (

∑
K ||divψ||2L2(K))

1/2

≤

(∑
K

µ(K)λ2
K

)1/2

︸ ︷︷ ︸
=:||λ||

||t̂||H−1/2(Γh)

≤ ‖λ‖ ‖u‖ ,
(2.8)

where µ(K) stands for the area (measure) of element K.

We proceed now with the discussion of the discrete inf-sup stability

constants. We skip index h in the notation.

Inf Sup Condition relating spaces U and Q reads as follows:

sup
w∈U

|c(p,w)|
||w||U

≥ β||p||Q . (2.9)

Let

R : L2(Ω) 3 q → ψ ∈H(div,Ω) ∩H1(Ω) = H1(Ω) (2.10)

35

be the continuous right inverse of the divergence operator constructed by

Costabel and McIntosh in [24]. Let ψh denote the classical, lowest order

Raviart-Thomas (RT) interpolant of the function

ψ = R(
∑
K

λK1K) . (2.11)

Note that divψh = divψ = λK in element K.

Classical h-interpolation interpolation error estimates for the lowest er-

ror Raviart-Thomas elements and continuity of operator R imply the stability

estimate:
||ψh|| ≤ ||ψh −ψ||+ ||ψ||

≤ Ch||ψ||H1 + ||ψ||

≤ C||divψ|| = C(
∑

K µ(K)λ2
K)1/2 .

(2.12)

Above, C is a generic, mesh independent constant incorporating constant from

the interpolation error estimate and the continuity constant of R. Let t̂ be the

trace of ψh. We have then,

sup
t̂∈H−1/2(Γh)

|
∑

K λK〈t̂, 1K〉∂K |
||t̂||H−1/2(Γh)

≥
|
∑

K λK
∫
K

divψh 1K |
||ψh||H(div,Ω)

≥ 1

C
(
∑
K

µ(K)λ2
K)1/2 ,

(2.13)

where C is the constant from stability estimate (2.12).

Notice that we have considered traces of lowest order Raviart-Thomas

elements for the discretization of flux t̂. The inf-sup condition for the lowest

order RT spaces implies automatically the analogous condition for elements of

arbitrary order; increasing the dimension of space U only makes the discrete

inf-sup constant bigger.

36

Inf Sup in Kernel Condition is satisfied automatically due to the use of

optimal test functions. First of all, we characterize the “kernel” space:

U 0 := {w ∈ U : c(q,w) = 0 ∀q ∈ Q}

= {(u,σ, û, t̂) : 〈t̂, 1K〉∂K = 0 ∀K} .
(2.14)

In other words, the kernel space contains only the equilibrated fluxes. With

u ∈ U 0, we have then:

sup
w∈U0

|a(u,w)|
||w||U

≥ |b(u, Tu)|
||u||

=
|b(u, Tu)|
||Tu||

||Tu||
||u||

= sup
(v,τ)

|b((u,σ, û, t̂), (v, τ))|
||(v, τ)||

||Tu||
||u||

≥ γ2||(u,σ, û, t̂)|| , (2.15)

where γ is the stability constant for the standard continuous DPG formulation.

The first inequality follows as we plug in the definition for a and pick w =

u. The second equality is trivial, while the next one follows by definition

of the optimal test functions given through the trial-to-test operator T . The

finally inequality springs from the fact that supv
|b(u,v)|
||v|| ≥ γ||u|| and ||Tu||V =

||R−1
V Bu||V = ||Bu||V ′ ≥ γ||u||.

With both discrete inf-sup constants in place, we have the standard

result: the FE error is bounded by the best approximation error in the con-

strained space. Notice that the exact Lagrange multipliers are zero, so the

best approximation error involves only the solution (u,σ, û, t̂).

2.2.2.1 Robustness Analysis

Recall the line of analysis leading to the construction of robust test

norms allowing us to bound the L2 error of the field variables by the energy

37

error, (2.3). With robust test norms, we have

(||u− uh||2 + ||σ − σh||2)
1
2 . ||(u− uh,σ − σh, û− ûh, t̂− t̂h||E

= inf(wh,ςh,ŵh,r̂h) ||(u− wh,σ − ςh, û− ŵh, t̂− r̂h||E .
(2.16)

The last equality follows from the fact that the DPG method delivers the best

approximation error in the energy norm (minimizes the residual). This is no

longer true for the conservative version. So, can we claim robustness in the

sense of the inequality above for the conservative version as well?

One possible way to attack the problem is to switch to the energy norm

in the Brezzi stability analysis. Dealing with the “inf-sup in kernel” condition

is simple. Upon replacing the original norm of solution u with the energy

norm, both constant γ and continuity constant become unity. In order to

investigate the robustness of inf-sup constant β, we need to realize first what

the energy norm of the flux t̂ is. Given an element K, we solve for the optimal

test functions corresponding to the flux t̂, vK ∈ H1(K), τK ∈H(div, K)

((vK , τK), (δv, δτ))V = 〈t̂, δv〉∂K ∀δv ∈ H1(K), δτ ∈H(div, K) .

(2.17)

The energy norm of t̂ is then equal to

||t̂||2E =
∑
K

||(vK , τK)||2V . (2.18)

We need to establish sufficient conditions under which the inf-sup and continu-

ity constants for the bilinear form representing the constraint are independent

of viscosity ε.

38

Let us start with the inf-sup condition,

sup
t̂

|
∑

K λK〈t̂, 1K〉∂K |
||t̂||E

≥ β

(∑
K

µ(K)λ2
K

)1/2

. (2.19)

As in the previous analysis, we select for t̂ the trace of Raviart-Thomas inter-

polant ψh of ψ = R(
∑

K λK1K) where R is the right-inverse of the divergence

operator constructed by Costabel and McIntosh. The only change compared

with the previous analysis, is the evaluation of the norm of t̂h. For this, we

need to solve the local problems:

((vK , τK), (δv, δτ))V = 〈t̂, δv〉∂K =

∫
K

divψh δv =

∫
K

divψ δv

=

∫
K

λKδv = λK(1K , δv)K ∀δv ∈ H1(K)∀δτ ∈H(div, K) .

(2.20)

We need then an upper bound of the energy norm of (vh, τ h):(∑
K

||(vK , τK)||2V

)1/2

.

Substituting (vK , τK) for (δv, δτ) in (2.20), we get,

||(vK , τK)||2V = λK(1K , vK)K . (2.21)

If we have a robust stability estimate:

|(1K , vK)K | ≤ Cµ(K)1/2||(vK , τK)||V (2.22)

(i.e. constant C is independent of ε), then

||(vK , τK)||V ≤ Cµ(K)1/2|λK | (2.23)

39

and, eventually as needed,

∑
K

||(vK , τK)||2V ≤ C2
∑
K

µ(K)λ2
K , (2.24)

which leads to the robust estimate of inf-sup constant β. For example, it is

sufficient if

||v||L2(K) ≤ ||(vK , τK)||V . (2.25)

Notice that the stability analysis with the energy norm was, in a sense, eas-

ier than with the quotient norm. Only the divergence of the interpolant ψh

enters (2.20) and it coincides with the divergence of ψ.

We arrive at a similar situation in the continuity estimate of

∑
K

λK〈t̂, 1K〉∂K .

Testing with (1K ,0) in the local problem (2.17), we obtain,

((v, τ), (1K ,0))V = 〈t̂, 1K〉∂K . (2.26)

If we have a robust estimate,

|((v, τ), (1K ,0))V | ≤ Cµ(K)1/2 ||(v, τ)||V , (2.27)

then

|
∑
K

λK〈t̂, 1K〉| ≤ C(
∑
K

µ(K)λ2
K)1/2 (

∑
K

||(v, τ)||2V)1/2 (2.28)

= C(
∑
K

µ(K)λ2
K)1/2||t̂||E ≤ C ‖λ‖ ‖u‖E ,

as needed.

40

For instance, condition (2.27) will be satisfied if the test inner product

in (2.26) reduces to the L2 term only,

((v, τ), (1K ,0))V = (v, 1K)L2(K) . (2.29)

With the robust stability and continuity constants for the mixed problem, the

energy error of solution (u,σ, û, t̂) (and Lagrange multipliers λK as well) is

bounded robustly by the best approximation error of (u,σ, û, t̂) measured in

the energy norm. We arrive thus at the same situation as in the standard

DPG method.

2.2.3 Robust Test Norms

The optimal test functions are determined by solving local problems

determined by the choice of test norm. There are several options to consider.

The graph norm [32] is one of the most natural norms to consider as it is

derived directly from the adjoint of the problem supplemented with (possibly

scaled) L2 field terms to upgrade it from a semi-norm. Chan et al. [17] derived

a more robust alternative norm for convection diffusion (dubbed the robust

norm). We recently developed a modification of the robust norm that produces

better results in the presence of singularities; for more details and motivation,

see [18].

‖(v, τ)‖2
V,K := min

{
1

ε
,

1

µ(K)

}
‖τ‖2

K + ‖∇ · τ − β · ∇v‖2
K

+ ‖β · ∇v‖2
K + ε ‖∇v‖2

K + ‖v‖2
K , (2.30)

where || · ||K signifies the L2 norm over element K.

41

2.2.3.1 Adaptation for a Locally Conservative Formulation

With this choice of test norm, our local problem now becomes:

Find vδuh ∈ H1(K), τ δuh ∈H(div, K) such that:

min

{
1

ε
,

1

µ(K)

}
(τ δuh , δτ)K + (∇ · τ δuh − β · ∇vδuh ,∇ · δτ − β · ∇δv)K

+ (β · ∇vδuh ,β · ∇δv)K + ε(∇vδuh ,∇δv)K + α(vδuh , δv)K = b(δuh, (δv, δτ))

∀δv ∈ H1(K), δτ ∈H(div, K) , (2.31)

where typically α = 1.

With a locally conservative formulation, we can take α = 0 in local

problem (2.31). The fact that the test functions will be determined then up to

a constant does not matter, for t̂ in equation (2.6)1 is orthogonal to constants.

Mathematically, we are dealing with equivalence classes of functions, but in

order to obtain a single function that we can deal with numerically, we replace

the alpha term with a zero mean scaling condition to obtain the new test norm,

min

{
1

ε
,

1

µ(K)

}
(τ δuh , δτ)K + (∇ · τ δuh − β · ∇v,∇ · δτ − β · ∇v)K (2.32)

+ (β · ∇vδuh ,β · ∇δv)K + ε(∇vδuh ,∇δv)K +
1

µ(K)

∫
K

vδuh

∫
K

δv ,

where the 1
µ(K)

coefficient is an arbitrary scaling condition that doesn’t make

a difference mathematically, but can affect the condition number of the ac-

tual solve. In practice, we use 1
µ(K)2

since
∫
K
vδuh and

∫
K
δv both scale like

µ(K), but 1
µ(K)

is more convenient for the analysis in the next section. It is

convenient to be able to take α = 0 as we will see in some later numerical

42

experiments. We’ve noticed that this particularly helps with conditioning of

the local problem as the mesh size decreases.

2.2.3.2 Verification of Robust Stability Estimate

In the robustness analysis in Section 2.2.2.1, we argued that if we have

robust stability estimates:

(1K , vK) ≤ Cµ(K)1/2||(v, τ)||K (2.22 revisted)

and

|((v, τ), (1K ,0))V | ≤ Cµ(K)1/2 ||(v, τ)||V . (2.27 revisted)

then the conservative DPG method is robust.

We now proceed to show that the robust norms we are using satisfy

this requirement. Consider the inner product from (2.31), with α = 1. We

wish to verify condition (2.22) with the norm derived from this inner product

on the right hand side. By Cauchy-Schwarz∫
K

v · 1 ≤ µ(K)1/2 ‖v‖L2(K) ≤ µ(K)1/2 ‖(v, τ)‖K , (2.33)

where ‖(v, τ)‖K is the norm derived from the inner product. Condition (2.27)

comes out the same since

|((v, τ), (1K ,0))| ≤
∑
K

|(1K , vK)| ≤
∑
K

µ(K)1/2 ‖(v, τ)‖K

element-wise.

43

Now we need to perform the same analysis for the modified inner prod-

uct in (2.32). In this case, condition (2.22) follows even more naturally as∫
K

v · 1 ≤ µ(K)1/2 1

µ(K)1/2

∣∣∣∣∫
K

v

∣∣∣∣ ≤ ‖(v, τ)‖K , (2.34)

where ‖(v, τ)‖ now refers to the norm generated by inner product (2.32).

Condition (2.27) follows by the same reasoning.

2.3 Application to Other Fluid Model Problems

Extension of these ideas to other fluid flow problems is relatively trivial.

For the following problems, we just use the graph norm for the local problems.

2.3.1 Inviscid Burgers’ Equation

We include the inviscid Burgers’ equation in our suite of tests because,

being a nonlinear hyperbolic conservation law, it falls under the scope of the

Lax-Wendroff theorem. The inviscid Burger’s equation is

∂u

∂t
+ u

∂u

∂x
= f .

Define the space-time gradient: ∇xt =
(
∂
∂x
, ∂
∂t

)T
. We can now rewrite this as

∇xt ·

(
u2/2

u

)
= f .

Multiplying by a test function v, and integrating by parts:

−

((
u2/2

u

)
,∇xtv

)
+
〈
t̂, v
〉

= (f, v) ,

44

where t̂ is the trace of

(
u2/2

u

)
· nxt on element boundaries, and nxt is

the space-time normal vector. As in convection-diffusion, local conservation

implies that
∫
∂K
t̂ =

∫
K
f for all elements, K.

In order to solve this nonlinear problem, we linearize and do a simple

Newton iteration until the solution converges. The linearized equation is

−

((
u

1

)
∆u,∇xtv

)
+
〈
t̂, v
〉

= (f, v) +

((
u2/2

u

)
,∇xtv

)
,

where u is the previous solution iteration and ∆u is the update. The results

follow in Section 2.4.1.4.

2.3.2 Stokes Flow

We start with the VGP (velocity, gradient pressure) Stokes formulation:

µ∆u+∇p = f

∇ · u = 0 ,

where u is the velocity vector field. As a first order system of equations, this

is

1

µ
σ −∇u = 0

∇ · σ +∇p = f

∇ · u = 0 ,

45

where σ is a tensor valued stress field. Multiplying by test functions τ (tensor

valued), v (vector valued), and q (scalar valued), and integrating by parts:(
1

µ
σ, τ

)
+ (u,∇ · τ)− 〈û, τ · n〉 = 0

− (σ,∇v)− (p,∇ · v) +
〈
t̂,v
〉

= (f ,v)

− (u,∇q) + 〈û · n, q〉 = 0 ,

where û is the trace of u, and t̂ is the trace of (σ + pI) · n. The solve for

p is only unique up to a constant, so we also impose a zero mean condition,∫
Ω
p = 0. Local conservation for Stokes flow means that over each element,∫

K
û · n = 0. Results follow in Sections 2.4.1.5 and 2.4.1.6.

2.4 Numerical Experiments

In 2.4.1 we define each numerical experiment, and in 2.4.2 we discuss

the solution properties in general. We solve with second order field variables

and flux (u, σ, and t̂), third order traces (û), and fifth order test functions (v

and τ).

We measure flux imbalance by looping over each element in the mesh

and integrating the flux over each side and summing them together. We then

integrate the source term over the volume of the element. The two should

match each other, and the remainder is the flux imbalance. We get the net

global flux imbalance by summing these quantities and taking the absolute

value. The max local flux imbalance is the maximum absolute value of these

flux imbalances.

46

2.4.1 Description of Problems

Unless otherwise noted, the problem domain is Ω = [0, 1]2 and f = 0.

Also note that unless otherwise noted, for all of the pseudo-color plots, blue

corresponds to 0 and red to 1 with a linear scaling in between. Also, all

convection-diffusion plots are of the field variable u. Inviscid Burgers’ and

Stokes results will be dealt with individually.

2.4.1.1 Eriksson-Johnson Model Problem

The Eriksson-Johnson problem is one of the few convection-diffusion

problems with a known analytical solution. Take β = (1, 0)T and boundary

conditions t̂ = β ·nu0 when βn ≤ 0, where u0 is the trace of the exact solution,

and û = 0 when βn > 0. For n = 1, 2, · · · , let λn = n2π2ε, rn = 1+
√

1+4ελn
2ε

, and

sn = 1−
√

1+4ελn
2ε

. The exact solution is

u(x, y) = C0 +
∞∑
n=1

Cn
exp(sn(x− 1))− exp(rn(x− 1))

rn exp(−sn)− sn exp(−sn)
cos(nπy) . (2.35)

The exact solution for ε = 10−2, C1 = 1, and Cn6=1 = 0 is shown in Figure 2.1.

Error convergence and flux imbalance are shown in Figure 2.2 and Figure 2.3.

2.4.1.2 Vortex Problem

This problem models a mildly diffusive vortex convecting fluid in a

circle. We deal with domain Ω = [−1, 1]2, with ε = 10−4, and β = (−y, x)T .

Note that β = 0 at the domain center. We have an inflow boundary condition

when β · n < 0, in which case we set t̂ = β · n · u0 where u0 =

√
x2+y2−1√

2−1

47

Figure 2.1: Erickson-Johnson exact solution

102 103 104 105

Degrees of Freedom

10-4

10-3

10-2

10-1

100

E
rr

o
r

L2 - Nonconservative
L2 - Conservative
Energy - Nonconservative
Energy - Conservative

Figure 2.2: Error in Erickson-Johnson solutions

48

102 103 104 105

Degrees of Freedom

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

Fl
u
x
 I
m

b
a
la

n
ce Max Local - Nonconservative

Net Global - Nonconservative
Max Local - Conservative
Net Global - Conservative

Figure 2.3: Flux imbalance in Erickson-Johnson solutions

which will vary from 0 at the center of boundary edges to 1 at corners. We

don’t enforce an outflow boundary. Results and flux imbalance are shown in

Figure 2.4 and Figure 2.5.

2.4.1.3 Discontinuous Source Problem

Here, β = (0.5, 1)T/
√

1.25, and we have a discontinuous source term

such that f = 1 when y ≥ 2x and f = −1 when y < 2x. We apply boundary

conditions of t̂ = 0 on the inflow and û = 0 on the outflow. Contrary to the

other problems discussed, the solution for this problem does not range from

zero to one. Rather, the colorbar in Figure 2.6 is scaled to [−1.110, 0.889].

Flux imbalance is shown in Figure 2.7.

49

(a) Nonconservative (b) Conservative

Figure 2.4: Vortex problem after 6 refinements

102 103 104 105 106

Degrees of Freedom

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Fl
u
x
 I
m

b
a
la

n
ce Max Local - Nonconservative

Net Global - Nonconservative
Max Local - Conservative
Net Global - Conservative

Figure 2.5: Flux imbalance in vortex solutions

50

(a) Nonconservative (b) Conservative

Figure 2.6: Discontinuous source problem after 8 refinements

102 103 104 105 106

Degrees of Freedom

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

Fl
u
x
 I
m

b
a
la

n
ce Max Local - Nonconservative

Net Global - Nonconservative
Max Local - Conservative
Net Global - Conservative

Figure 2.7: Flux imbalance in discontinuous source solutions

51

2.4.1.4 Inviscid Burgers’ Equation

This is a standard test problem for Burgers’ equation. The domain is

a unit square. We assign boundary conditions t̂ = −(1 − 2x) on the bottom,

t̂ = −1/2 on the left, while t̂ = 1/2 on the right. Since this is a hyperbolic

equation, there is no need to set a boundary condition on the top. Results

and flux imbalance are shown in Figure 2.8 and Figure 2.9.

2.4.1.5 Stokes Flow Around a Cylinder

This is a common problem used to stress-test local conservation prop-

erties of least squares finite element methods. Since DPG can be viewed as a

generalized least squares methods[32], we might expect it to struggle with this

problem as well. The problem domain is detailed in Figure 2.10 with inlet and

outlet velocity profiles

uin = uout =

(
(1− y)(1 + y)

0

)
,

and zero flow on the cylinder and at the top and bottom walls. We use µ =

with both Stokes problems and set velocity boundary conditions on û.

Bochev et al. [8] run this test with both r = 0.6 and r = 0.9; we repeat

the same experiments with standard and conservative DPG methods starting

from the very coarse meshes shown in Figure 2.11 while adaptively refining

toward a resolved solution. The extreme pressure gradient in the r = 0.9 case

obviously makes local conservation more challenging.

We measure mass loss more directly in these two Stokes problems. Be-

52

(a) Nonconservative (b) Conservative

Figure 2.8: Burgers’ problem after 8 refinements

102 103 104

Degrees of Freedom

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Fl
u
x
 I
m

b
a
la

n
ce Max Local - Nonconservative

Net Global - Nonconservative
Max Local - Conservative
Net Global - Conservative

Figure 2.9: Flux imbalance in Burgers’ solutions

53

cause fluid enters and leaves the domain only through the inlet and outlet

boundaries, we should be able to integrate the mass flux over any cross-section

of the mesh and get the same value. Unfortunately, it is not mathematically

well-defined to take line integrals of our field variables which only live in L2.

We can however integrate the trace and flux variables over element bound-

aries. This carries the unfortunate limitation that we can only measure mass

loss where there is a clear vertical mesh line. We therefore pick integration lines

from the initial coarse mesh and measure the mass flux after each adaptive

refinement step. The percent mass loss is thus

%mloss =

∫
Γin
u · nind`−

∫
S
u · nSd`∫

Γin
u · nind`

× 100,

where S is some vertical mesh line. Results and mass loss are shown in Fig-

ures 2.12 - 2.14.

2.4.1.6 Stokes Flow Over a Backward Facing Step

Similarly, least squares methods have historically performed very poorly

when calculating Stokes flow over a backward facing step shown in Figure 2.15.

The stress singularity at the reentrant corner seems to destroy local conserva-

tion. We assign parabolic inlet and outlet velocity boundary conditions

uin =

(
8(y − 0.5)(1− y)

0

)
and uout =

(
y(1− y)

0

)
and zero velocity on all other boundaries. In this problem, we solve with fourth

order field and flux variables, fifth order traces, and sixth order test functions.

Results and mass loss are shown in Figure 2.4.1.6 and Figure 2.17.

54

r

-1.0

1.0

uin ucyl

3.0

uout

uwall

uwall

Figure 2.10: Stokes cylinder domain

(a) Mesh for r = 0.6

(b) Mesh for r = 0.9

Figure 2.11: Initial mesh for Stokes flow over a cylinder

55

(a) Nonconservative on initial mesh
with r = 0.6

(b) Conservative on initial mesh with
r = 0.6

(c) Nonconservative after 6 refine-
ments with r = 0.6

(d) Conservative after 6 refinements
with r = 0.6

(e) Nonconservative after 1 refine-
ment with r = 0.9

(f) Conservative after 1 refinement
with r = 0.9

(g) Nonconservative after 6 refine-
ments with r = 0.9

(h) Conservative after 6 refinements
with r = 0.9

Figure 2.12: Stokes flow around a cylinder - velocity magnitude

56

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x location

0

5

10

15

20

25

30

p
e
rc

e
n
t

m
a
ss

 l
o
ss

1844 DOFs
7088 DOFs
18728 DOFs
27968 DOFs
96272 DOFs
171398 DOFs
425276 DOFs

(a) Nonconservative

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x location

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p
e
rc

e
n
t

m
a
ss

 l
o
ss

1e 9

1844 DOFs
6578 DOFs
17174 DOFs
27968 DOFs
96272 DOFs
171398 DOFs
425276 DOFs

(b) Conservative

Figure 2.13: Mass loss in Stokes flow around a cylinder of radius 0.6

57

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x location

0

20

40

60

80

100

p
e
rc

e
n
t

m
a
ss

 l
o
ss

1844 DOFs
4526 DOFs
17552 DOFs
66056 DOFs
92084 DOFs
195674 DOFs
339545 DOFs

(a) Nonconservative

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x location

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

p
e
rc

e
n
t

m
a
ss

 l
o
ss

1e 8

1844 DOFs
3980 DOFs
12380 DOFs
33272 DOFs
75326 DOFs
183326 DOFs
358739 DOFs

(b) Conservative

Figure 2.14: Mass loss in Stokes flow around a cylinder of radius 0.9

58

0.5

1.0

2.0 10.0

uin
uout

uwall

uwall

Figure 2.15: Stokes step domain

2.4.2 Analysis of Results

2.4.2.1 Convection-Diffusion Results

The general trend we observe from the results is that the solution qual-

ity of the standard and conservative formulations is nearly identical once suf-

ficiently resolved.

It is clear when comparing the refinement patterns that the two meth-

ods appear to calculate slightly different error representation functions (which

determine which elements to adaptively refine). Standard DPG minimizes the

error in the energy norm, but the Lagrange multipliers in the conservative

formulation shift the solution slightly, so we should see somewhat higher er-

ror and different elements will get chosen for refinement. The choice of test

norm also plays into this calculation of the error representation function. As

discussed earlier, the conservative formulation allows us to throw away the

L2 term on v. The inclusion of this term required certain assumptions on β

[17] that break down for the vortex problem, where |β| → 0 in the center of

the domain. Here, we see the standard method needlessly refines in the cen-

ter of the domain where the solution is constant. The conservative scheme is

59

(a) Nonconservative on initial mesh

(b) Conservative on initial mesh

(c) Nonconservative after 8 refinement steps

(d) Conservative after 8 refinement steps

Figure 2.16: Stokes backward facing step - velocity magnitude

60

0 2 4 6 8 10
x location

0

5

10

15

20

25

30

35

40

p
e
rc

e
n
t

m
a
ss

 l
o
ss

8110 DOFs
12084 DOFs
14760 DOFs
16757 DOFs
18754 DOFs
20751 DOFs
22748 DOFs
24745 DOFs
26742 DOFs

(a) Nonconservative

0 2 4 6 8 10
x location

0.0

0.5

1.0

1.5

2.0

p
e
rc

e
n
t

m
a
ss

 l
o
ss

1e 12

8110 DOFs
10107 DOFs
12104 DOFs
14101 DOFs
16098 DOFs
18095 DOFs
20092 DOFs
22089 DOFs
24086 DOFs

(b) Conservative

Figure 2.17: Mass loss in Stokes backward facing step

61

more discerning about refinements and focuses them where solution features

are changing. In general, though, both methods appear to follow very similar

refinement patterns.

It should not come as a surprise that the standard and conservative

solutions match each other so closely. The conservative formulation enforces

local conservation more strictly, but if we examine the flux imbalance plots,

the standard DPG formulation is nearly conservative on its own – and appears

to become more conservative with refinement. The flux imbalance of the con-

servative methods appears to bounce around close to the machine epsilon (plus

a few orders of magnitude). The level of enforcement appears to creep up with

more degrees of freedom, indicating possible accruement of numerical error.

2.4.2.2 Burgers’ Results

Standard and conservative DPG perform nearly identically for the in-

viscid Burgers’ problem. It is obvious that the Lax-Wendroff condition of

local conservation is a sufficient, but not necessary condition for numerical

solutions to hyperbolic conservation laws. We see the same behavior with the

flux imbalance plots that was so common with convection-diffusion.

2.4.2.3 Stokes Results

The two Stokes problems are the first ones we encounter that stress the

local conservation property of standard DPG. With a cylinder radius of 0.6,

standard DPG loses nearly 30% of the mass post-cylinder, but quickly recovers

62

most of that with further refinement. As we increase the cylinder radius to

0.9, the problem only exacerbates. Nearly 100% of the mass is lost in the

constricted region on coarse meshes. It takes a much higher level of resolution

to recover the mass loss. The stress singularity at the reentrant corner of the

backward facing step causes issues for standard DPG on coarse meshes. It

seems that the error in approximating the singularity outweighs the error of

missed mass conservation. If we focus refinements at the singularity, the error

eventually drops far enough for the method to become nearly conservative.

The small amount of mass loss for the conservative method is clearly due to

accumulation of floating point error.

The most significant benefit of enforcing local conservation for these

problems is that it allows us to recover the essential flow features with much

coarser meshes. On the r = 0.6 cylinder problem, the peak velocity magnitude

of the conservative solution is fairly close on the coarsest mesh, while the

nonconservative solution severely underpredicts the peak. With the r = 0.9

cylinder, this problem is only worse. After just one adaptive refinement, the

conservative solution nails the peak velocity. The nonconservative solution is

completely useless at this point. We see the same thing with the backward

facing step problem. The conservative solution preserves qualitative features

even on the coarsest mesh, while standard DPG requires far higher resolution

to achieve a similar solution.

63

Chapter 3

Robust DPG Methods for Transient

Convection-Diffusion

3.1 Introduction

The process of developing robust DPG methods for steady convection-

diffusion was explored in [17, 36]. In the sense, the main challenge is to come

up with a correct test norm. The residual is measured in the dual test norm,

and the DPG method minimizes the residual. The residual can be interpreted

as a special energy norm. In other words, the DPG method delivers an or-

thogonal projection in the energy norm. The task is especially challenging

for singular perturbation problems. Given a trial norm, we strive to deter-

mine a quasi-optimal test norm such that the corresponding energy norm is

robustly equivalent to the trial norm of choice. An additional difficulty comes

from the fact that the optimal test functions should be easily approximated

with a simple enrichment strategy. For convection dominated diffusion, this

means that the test functions should not develop boundary layers. The task

of determining the quasi optimal test norm (we call it a robust test norm leads

0This chapter is largely based on the journal article Robust DPG Methods for Transient
Convection-Diffusion which appeared as ICES Report 15-21 in 2015. Co-authors Jesse Chan
and Leszek Demkowicz assisted with the mathematical proofs contained herein.

64

then to a stability analysis for the adjoint equation which is the subject of

this chapter. For a more general discussion on the subject, see [33]. In this

chapter, two new robust norms are derived and numerical verifications of the

theory are presented.

3.2 Transient Convection-Diffusion

In order to better illustrate choice of the U and V spaces, we introduce

the transient convection-diffusion problem. Consider spatial domain Ω and

corresponding space-time domain Q = Ω × [0, T] with boundary Γ = Γ− ∪

Γ+ ∪ Γ0 ∪ ΓT where Γ− is the inflow boundary (β · nx < 0, where β is the

convection vector and nx is the outward spatial normal), Γ+ is the outflow

boundary (β · nx ≥ 0), Γ0 is the initial time boundary, and ΓT is the final

time boundary. Let Γh :=
⋃
∂K denote the entire mesh skeleton, where ∂K

denotes the boundary of element K. Γhx denotes any parts of the skeleton

with a nonzero spatial normal and Γht have a nonzero temporal normal.

The transient convection-diffusion equation is

∂u

∂t
+∇ · (βu)− ε∆u = f ,

where u is the quantity of interest, often interpreted to be a concentration of

some quantity, ε is the diffusion coefficient, and f is the source term.

We apply flux boundary conditions on the inflow and trace boundary

65

conditions on the outflow

tr (β · u− ε∇u) · nx = t− on Γ−

tr (u) = u+ on Γ+

tr (u) = u0 on Γ0 .

We note that Dirichlet boundary conditions also induce Dirichlet boundary

conditions for the adjoint problem. Since the direction of convection is reversed

for the adjoint convection-diffusion problem, this results in boundary layer

adjoint solutions, which must be controlled using special weighted norms [36,

69]. However, since the convection-diffusion operator is not self-adjoint, the

Cauchy inflow boundary condition induces a Neumann boundary condition

for the adjoint problem. As a result, the adjoint solution does not contain

boundary layers, simplifying the construction of a robust DPG method.

3.2.1 Relevant Sobolev Spaces

We begin by defining operators∇xtu :=

(
∇u
∂u
∂t

)
and∇xt ·u := ∇·ux+

∂ut
∂t

, where u = (ux, ut). We will need the following Sobolev spaces defined on

our space-time domain.

H1(Q) =
{
u ∈ L2 (Q) : ∇u ∈ L2 (Q)

}
H1
xt(Q) =

{
u ∈ L2 (Q) : ∇xtu ∈ L2 (Q)

}
H(div, Q) =

{
σ ∈ L2 (Q) : ∇ · σ ∈ L2 (Q)

}
H(divxt, Q) =

{
σ ∈ L2 (Q) : ∇xt · σ ∈ L2 (Q)

}

66

We will also need the corresponding broken Sobolev spaces.

H1(Qh) =
{
u ∈ L2 (Q) : u|K ∈ H1(K), K ∈ Qh

}
=
∏
K∈Qh

H1(K)

H1
xt(Qh) =

{
u ∈ L2 (Q) : u|K ∈ H1

xt(K), K ∈ Qh

}
=
∏
K∈Qh

H1
xt(K)

H(div, Qh) =
{
σ ∈ L2 (Q) : u|K ∈H(div, K), K ∈ Qh

}
=
∏
K∈Qh

H(div, K)

H(divxt, Qh) =
{
σ ∈ L2 (Q) : u|K ∈H(divxt, K), K ∈ Qh

}
=
∏
K∈Qh

H(divxt, K)

Consider the following trace operators:

trKgradu = u|∂Kx u ∈ H1(K)

trKdivxtσ = σ|∂Kxt · nKxt σ ∈H(divxt, K)

where ∂Kx refers to spatial faces of element K, ∂Kxt to the full space-time

boundary, and nKxt is the unit outward normal on ∂Kxt. The operators trgrad

and trdivxt perform the same operation element by element to produce the

linear maps

trgrad : H1(Qh)→
∏
K∈Qh

H1/2(∂Kx)

trdivxt : H(divxt, Qh)→
∏
K∈Qh

H−1/2(∂Kxt)

Finally, we define spaces of interface functions. In order that our functions be

single valued, we use the following definitions.

H1/2(Γhx) = trgradH
1(Q) ,

H
−1/2
xt (Γh) = trdivxtH(divxt, Q) .

For more details on broken and trace Sobolev spaces, see [15].

67

3.2.2 Variational Formulations

There are many possible manipulations that could be performed before

arriving at a variational formulation. We begin by reformulating the problem

in terms of the first order system:

1

ε
σ −∇u = 0

∇xt ·

(
βu− σ

u

)
= f .

(3.1)

Multiplying (3.1) by test functions τ ∈ L2 (Q) and v ∈ L2 (Q), we obtain the

following “trivial” variational formulation equivalent to the strong form:

u ∈ H1
xt(Q) u = u+ on Γ+

u = u0 on Γ0

σ ∈H(div, Q) (βu− ε∇u) · n = t− on Γ−(
1

ε
σ, τ

)
− (∇u, τ) = 0 ∀τ ∈ L2 (Q)(

∇xt ·

(
βu− σ

u

)
, v

)
= f ∀v ∈ L2 (Q) .

(3.2)

We can now choose either to relax (integrate by parts and build in

the boundary conditions) or strongly enforce each equation. The steady state

case and resulting options are explored and analyzed in further detail in [27]

and are termed the trivial formulation (don’t relax anything), the classical

formulation (relax the second equation), the mixed formulation (relax the

first equation), and the ultra-weak formulation (relax both equations). The

stability constants for the four formulations are related, but the functional

68

settings and norms of convergence change. Early DPG work emphasized the

ultra-weak formulation since in many ways it was the easiest to analyze, though

recently the classical formulation has been under very active consideration. In

the interests of simpler analysis, we focus on the ultra-weak formulation in

this chapter.

u ∈ L2(Q) , σ ∈ L2 (Q)(
1

ε
σ, τ

)
+ (u,∇ · τ) = 0 ∀τ ∈H(div, Q) : τ · nx = 0 on Γ−

−

((
βu− σ

u

)
,∇xtv

)
= f ∀v ∈ H1

xt(Q) : v = 0 on Γ+ ∪ Γ0 ,

(3.3)

We can remove the conditions on the test functions by introducing trace un-

knowns

û = tr(u) on ∂Qx

t̂ = tr

(
βu− σ

u

)
· nxt on ∂Qxt .

Our new ultra-weak formulation with conforming test functions is

u ∈ L2(Q) , σ ∈ L2 (Q)

û ∈ H1/2(∂Qx) , û = u+ on Γ+

t̂ ∈ H−1/2
xt (∂Q) , t̂ = t− on Γ− , t̂ = −u0 on Γ0(

1

ε
σ, τ

)
+ (u,∇ · τ)− 〈û, τ · nx〉 = 0 ∀τ ∈H(div, Q)

−

((
βu− σ

u

)
,∇xtv

)
+
〈
t̂, v
〉

= f ∀v ∈ H1
xt(Q) .

(3.4)

69

3.2.3 Broken Test Functions

One of the key insights that led to the development of the DPG frame-

work was the process of breaking test functions, that is testing with func-

tions from larger broken Sobolev spaces, replacing H1
xt(Q) with H1

xt(Qh) and

H(div, Q) with H(div, Qh). Discretizing such spaces is much simpler than

standard spaces which require enforcement of global continuity conditions.

The cost of introducing broken spaces is that we have to extend our interface

unknowns û and t̂ to live on the mesh skeleton. Our ultra-weak formulation

with broken test functions looks like

u ∈ L2(Q) , σ ∈ L2 (Q)

û ∈ H1/2(Γhx) , û = u+ on Γ+

t̂ ∈ H−1/2
xt (Γh) , t̂ = t− on Γ− , t̂ = −u0 on Γ0(

1

ε
σ, τ

)
+ (u,∇ · τ)− 〈û, τ · nx〉 = 0 ∀τ ∈H(div, Qh)

−

((
βu− σ

u

)
,∇xtv

)
+
〈
t̂, v
〉

= f ∀v ∈ H1
xt(Qh) .

(3.5)

The main consequence of breaking test functions is that it reduces the cost of

solving for optimal test functions from a global solve to an embarrassingly par-

allel solve element-by-element. Now that we’ve derived a suitable variational

formulation, we are left with the task of selecting a test norm with which to

compute our optimal test functions.

70

3.3 Robust Test Norms

The final unresolved choice is what norm to apply to the V space. This

is one of the most important factors in designing a robust DPG method as the

corresponding Riesz operator needs to be inverted to solve for the optimal test

functions. If the norm produces unresolved boundary layers in the auxiliary

problem, then many of the attractive features of DPG may fall apart. This

is the primary emphasis of this chapter. The problem of constructing stable

test norms for steady convection-diffusion was addressed in [17, 36]. In this

chapter, we extend that work to transient convection-diffusion in space-time.

We define a robust test norm such that the L2 norm of the solution is

bounded by the energy norm of the solution with a constant independent of ε.

We can rewrite any ultra-weak formulation with broken test functions as the

following bilinear form with group variables:

b ((u, û) , v) = (u,A∗v)L2 + 〈û, [[v]]〉Γh

where A∗ represents the adjoint. In the case of convection-diffusion, u :=

{u,σ}, û :=
{
û, t̂
}

, v := {v, τ}.

Note that for conforming v∗ satisfying A∗v∗ = u

‖u‖2
L2 = b(u, v∗) =

b(u, v∗)

‖v∗‖V
‖v∗‖V

≤ sup
v∗ 6=0

|b(u, v∗)|
‖v∗‖

‖v∗‖ = ‖u‖E ‖v
∗‖V .

This defines a necessary condition for robustness, namely that

‖v∗‖V . ‖u‖L2 . (3.6)

71

If this condition is satisfied, then we get our final result:

‖u‖L2 . ‖u‖E .

So far, we’ve assumed that our finite set of optimal test functions are

assembled from an infinite dimensional space. In practice, we have found it

to be sufficient to use an “enriched” space of higher polynomial dimension

than the trial space [42]. This adds an additional requirement when assem-

bling a robust test norm, namely that our optimal test functions should be

adequately representable within this enriched space. We illustrate this point

by considering three norms which satisfy the above conditions for 1D steady

convection-diffusion. The graph norm is
(
‖A∗v‖2

L2 + ‖v‖2
L2

) 1
2 :

‖(v, τ)‖2 = ‖∇ · τ − β · ∇v‖2 +

∥∥∥∥1

ε
τ +∇v

∥∥∥∥2

+ ‖v‖2 + ‖τ‖2 .

Remark 3.3.1. In the DPG technology, the test norm must be localizable,

i.e.,

‖v‖2
V =

∑
K

‖v‖2
V (K)

where ‖v‖V (K) denotes a test norm (and not just a seminorm) for the element

test space. In practice this means the addition of properly scaled L2-terms.

Without those terms, we could not invert the Riesz operator on the element

level. Addition of the L2 terms does not necessarily contradict the robustness of

the norm, see the discussion in [33] on bounded below operators. An alternate

strategy was explored in the previous chapter where we enforce the element

conservation property by securing the presence of a constant function in the

72

element test space. The residual is then minimized only over the orthogonal

complement to the constants which eliminates the need for adding the L2-term

to the test norm.

The robust norm was derived in [17]:

‖(v, τ)‖2 = ‖β · ∇v‖2 + ε ‖∇v‖2 + min
(ε
h2
, 1
)
‖v‖2

+ ‖∇ · τ‖2 + min

(
1

h2
,
1

ε

)
‖τ‖2 .

The case for the coupled robust norm was made in [18]:

‖(v, τ)‖2 = ‖β · ∇v‖2 + ε ‖∇v‖2 + min
(ε
h2
, 1
)
‖v‖2

+ ‖∇ · τ − β · ∇v‖2 + min

(
1

h2
,
1

ε

)
‖τ‖2 .

The argument for the coupled norm was that in certain cases we noticed pol-

lution of u from errors in σ, for example at singularities in σ, u also exhibited

degraded quality with the robust norm. The coupled robust norm seemed to

relax this behavior, i.e. errors in u appear more independent of errors in σ.

The bilinear form and test norm define a mapping from input trial

functions to an optimal test function:

T = R−1
V B : U → V .

In Figures 3.1 - 3.3, we plot the optimal test functions produced given ε = 10−2,

a representative trial function u = x− 1
2
, and either the graph norm, the robust

norm, or the coupled robust norm. Note that the optimal test functions will

73

be different for any other trial function. In the left column, we see the fully

resolved ideal optimal test function that DPG theory relies on. On the right,

we see the approximated optimal test function using a enriched cubic test

space.

0.0 0.2 0.4 0.6 0.8 1.0
0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06
v

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
τ

(a) Ideal

0.0 0.2 0.4 0.6 0.8 1.0
0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06
v

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
τ

(b) Approximated

Figure 3.1: Graph norm optimal test functions for u = x− 1
2

Mathematically, the graph norm satisfies the necessary condition to be

a robust norm, but the ideal optimal test functions contain strong boundary

layers which can not be realistically approximated with the provided enriched

space. If the approximated optimal test functions can not come sufficiently

close to the ideal, then the whole DPG theory falls apart. See [42] for more

74

0.0 0.2 0.4 0.6 0.8 1.0
0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06
v

0.0 0.2 0.4 0.6 0.8 1.0
0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10
τ

(a) Ideal

0.0 0.2 0.4 0.6 0.8 1.0
0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06
v

0.0 0.2 0.4 0.6 0.8 1.0
0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10
τ

(b) Approximated

Figure 3.2: Robust norm optimal test functions for u = x− 1
2

discussion. This provides an additional condition on a test norm before we

can truly call it robust: the ideal test functions must be adequately repre-

sentable within the provided enriched space. This ultimately comes down to

an analysis of the relative magnitudes of individual terms within the test norm,

usually attempting to bound reactive or convective terms by diffusive terms.

The coupled robust norm satisfies condition (3.6) and also produces relatively

smooth optimal test functions that can be sufficiently approximated with a cu-

bic polynomial space. Niemi et al. attempted to approximate boundary layers

in optimal shape functions with Shishkin meshes [56, 57].

75

0.0 0.2 0.4 0.6 0.8 1.0
0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015
v

0.0 0.2 0.4 0.6 0.8 1.0
0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10
τ

(a) Ideal

0.0 0.2 0.4 0.6 0.8 1.0
0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015
v

0.0 0.2 0.4 0.6 0.8 1.0
0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10
τ

(b) Approximated

Figure 3.3: Coupled robust norm optimal test functions for u = x− 1
2

3.3.1 Application to Transient Convection-Diffusion

Now we present the analysis leading to two robust norms for transient

convection-diffusion. Consider the problem with homogeneous boundary con-

76

ditions

1

ε
σ −∇u = 0

∂u

∂t
+ β · ∇u−∇ · σ = f

βnu− ε
∂u

∂n
= 0 on Γ−

u = 0 on Γ+

u = u0 on Γ0.

Let β̃ :=

(
β

1

)
, then we can rewrite this as

1

ε
σ −∇u = 0

β̃ · ∇xtu−∇ · σ = f

βnu− ε
∂u

∂n
= 0 on Γ−

u = 0 on Γ+

u = u0 on Γ0.

The adjoint operator A∗ is given by

A∗(v, τ) =

(
1

ε
τ +∇v,−β̃ · ∇xtv +∇ · τ

)
.

We decompose now the continuous adjoint problem

A∗(v, τ) = (f , g)

77

into two cases a continuous part with forcing term g

1

ε
τ 1 +∇v1 = 0

−β̃ · ∇xtv1 +∇ · τ 1 = g

τ 1 · nx = 0 on Γ−

v1 = 0 on Γ+

v1 = 0 on ΓT ,

and a continuous part with forcing f

1

ε
τ 2 +∇v2 = f

−β̃ · ∇xtv2 +∇ · τ 2 = 0

τ 2 · nx = 0 on Γ−

v2 = 0 on Γ+

v2 = 0 on ΓT .

(The boundary conditions can be derived by taking the ultra-weak formulation

and choosing boundary conditions such that the temporal flux and spatial flux

terms 〈û, [[τn]]〉Γout and
〈
t̂n, [[v]]

〉
Γin

are zero.)

We can then derive that the test norms

‖(v, τ)‖2
V,K :=

∥∥∥β̃ · ∇xtv
∥∥∥2

K
+ ε ‖∇v‖2

K + ‖v‖2
K (3.7)

+ ‖∇ · τ‖2
K +

1

ε
‖τ‖2

K ,

78

and

‖(v, τ)‖2
V,K :=

∥∥∥β̃ · ∇xtv
∥∥∥2

K
+ ε ‖∇v‖2

K + ‖v‖2
K (3.8)

+
∥∥∥∇ · τ − β̃ · ∇xtv

∥∥∥2

K
+

1

ε
‖τ‖2

K ,

respectively designated the robust test norm and the coupled robust test norm,

provide the necessary bound ‖v∗‖V . ‖u‖L2(Q).

Remark 3.3.2. We haven’t developed a mathematical theory for it, but we’ve

also had numerical success with a norm that we’ve dubbed the NSDecoupled

norm because we first stumbled on it during experiments with compressible

Navier-Stokes:

‖(v, τ)‖2
V,K :=

∥∥∥∥β · ∇v +
∂v

∂t

∥∥∥∥2

K

+ ‖∇v‖2
K + ‖v‖2

K

+ ‖∇ · τ‖2
K +

1

h2
‖τ‖2

K .

We mention it because it appeared to be the most successful in simulations of

the moving piston problem in 5.4.3.

In the following lemmas we establish the following bounds:

• Bound on ‖(v1, τ 1)‖V . Lemma 3.3.2 gives
∥∥∥β̃ · ∇xtv1

∥∥∥ ≤ ‖g‖. Since

∇ · τ 1 = g + β̃ · ∇xtv1,

‖∇ · τ 1‖ ≤ ‖g‖+
∥∥∥β̃ · ∇xtv1

∥∥∥ ≤ 2 ‖g‖ .

Or, the fact that ∇ · τ − β̃ · ∇xtv1 = g clearly gives∥∥∥∇ · τ − β̃ · ∇xtv1

∥∥∥ = ‖g‖ .

79

Lemma 3.3.1 gives ‖v1‖2 + ε ‖∇v1‖2 ≤ ‖g‖2. Since ε1/2∇v1 = −ε−1/2τ 1,

1

ε
‖τ 1‖2 ≤ ‖g‖2 .

Thus, all (v1, τ 1) terms in (3.7) and (3.8) are accounted for, guaranteeing

at least robust control of u.

• Bound on ‖(v2, τ 2)‖V . The fact that ∇ · τ − β̃ · ∇xtv = 0 clearly gives∥∥∥∇ · τ − β̃ · ∇xtv2

∥∥∥ = 0 ≤ ‖f‖ .

Lemma 3.3.1 gives ‖v2‖2 + ε ‖∇v2‖2 ≤ ε ‖f‖2. Since ε1/2∇v2 = f −

ε−1/2τ 2,

1

ε
‖τ 2‖2 ≤ (1 + ε) ‖f‖2 .

We have not been able to develop bounds on
∥∥∥β̃ · ∇xtv2

∥∥∥ and ‖∇ · τ‖

which means that we can not guarantee robust control of σ with with

provided test norms.

We proceed now with the technical estimates.

Lemma 3.3.1. For the duration of this lemma, let v := v1 + v2. Assuming

the advection field β is incompressible, i.e. ∇ · β = 0,

‖v‖2 + ε ‖∇v‖2 ≤ ‖g‖2 + ε ‖f‖2 .

Proof. Define w = etv and note that ∂w
∂t

=
(
∂v
∂t

+ v
)
et while all spatial deriva-

tives go through. Multiplying the adjoint by w and integrating over Q gives

−
∫
Q

β̃ · ∇xtvw − ε∆vw =

∫
Q

gw − ε
∫
Q

∇ · fw

80

or

−
∫
Q

etvβ̃ · ∇xtv − ε
∫
Q

etv∆v =

∫
Q

etgv − ε
∫
Q

etv∇ · f

Integrating by parts:∫
Q

∇xt ·
(
etβ̃v

)
v −

∫
Γ

etβ̃ · nv2 + ε

∫
Q

et∇v · ∇v − ε
∫

Γx

etv · ∇v · nx

=

∫
Q

etgv + ε

∫
Q

et∇v · f − ε
∫

Γx

etvf · nx

Note that ∇xt · etvβ̃ = et(β̃ · ∇xtv + v) if ∇ · β = 0. Moving some terms to

the right hand side, we get∫
Q

etv2 +

∫
Q

εet∇v · ∇v

=

∫
Q

etgv + ε

∫
Q

et∇v · f − ε
∫

Γx

etvf · nx

−
∫
Q

etβ̃ · ∇xtvv +

∫
Γ

etβ̃ · nv2 + ε

∫
Γx

etv · ∇v · nx

81

Note that 1 ≤ ‖et‖∞ = eT . Then

‖v‖2 + ε ‖∇v‖2

≤ eT

∫
Q

gv + ε

∫
Q

∇v · f − ε
∫

Γ−

v f · nx︸ ︷︷ ︸
=��*

0
τn+ ∂v

∂nx

−ε
∫

Γ+

v︸︷︷︸
=0

f · nx

−
∫
Q

β̃ · ∇xtvv +

∫
Γ

β̃ · nv2 + ε

∫
Γ−

v · ∇v · nx + ε

∫
Γ+

v︸︷︷︸
=0

∂v

∂nx

)
Note: boundary conditions give τn = 0 on Γ− and v = 0 on Γ+

= eT

(∫
Q

gv + ε

∫
Q

∇v · f
���

���
���

���
��

−ε
∫

Γ−

v
∂v

∂nx
+ ε

∫
Γx

v
∂v

∂nx

−1

2

∫
Q

β̃ · ∇xtv
2 +

∫
Γ

β̃ · nv2

)
Note: Γx = Γ− ∪ Γ+ and v = 0 on Γ−

= eT
(∫

Q

gv + ε

∫
Q

∇v · f +
1

2

∫
Q

���
��:0

∇xt · β̃v2 − 1

2

∫
Γ

β̃ · nv2 +

∫
Γ

β̃ · nv2

)
Note: Integration by parts of − 1

2

∫
Q

β̃ · ∇xtv
2 and ∇ · β = 0

= eT
(∫

Q

gv + ε

∫
Q

∇v · f

+
1

2

∫
Γ0

−v2︸︷︷︸
≤0

+

∫
ΓT

���
0

v2 +

∫
Γ−

β · nxv2︸ ︷︷ ︸
≤0

+

∫
Γ+

β · nx���
0

v2


Note: Split boundary term into components, v = 0 on Γ+ and ΓT

≤ eT
(∫

Q

gv + ε

∫
Q

∇v · f
)

≤ eT

(
‖g‖2

2
+ ε
‖f‖2

2
+
‖v‖2

2
+ ε
‖∇v‖2

2

)
.

Note: Young’s inequality

82

Lemma 3.3.2. If
∥∥∇β − 1

2
∇ · βI

∥∥
L∞
≤ Cβ we can bound∥∥∥β̃ · ∇xtv1

∥∥∥ . ‖g‖ .

Proof. Multiply −β̃ · ∇xtv1 = g −∇ · τ 1 by −β̃ · ∇xtv1 and integrate over Q

to get ∥∥∥β̃ · ∇xtv1

∥∥∥2

= −
∫
Q

gβ̃ · ∇xtv1 +

∫
Q

β̃ · ∇xtv1∇ · τ 1 . (3.9)

83

Note that

1

ε

∫
Q

β̃ · ∇xtv1∇ · τ 1 = −
∫
Q

β̃ · ∇xtv1∇ · ∇v1

Note: τ 1 = ε∇v1

= −
∫

Γx

β̃ · ∇xtv1∇v1 · nx +

∫
Q

∇(β̃ · ∇xtv1) · ∇v1

Note: Integration by parts

= −
∫

Γx

β̃ · ∇xtv1∇v1 · nx +

∫
Q

(∇β̃ · ∇xtv1) · ∇v1

+

∫
Q

β̃ · ∇∇xtv1 · ∇v1

= −
∫

Γx

β̃ · ∇xtv1∇v1 · nx +

∫
Q

(∇β · ∇v1) · ∇v1

+
1

2

∫
Q

β̃ · ∇xt(∇v1 · ∇v1)

Note: ∇∇xtv1 · ∇v1 = ∇xt∇v1 · ∇v1 =
1

2
∇xt(∇v1 · ∇v1)

= −
∫

Γx

β̃ · ∇xtv1∇v1 · nx +

∫
Q

(∇β · ∇v1) · ∇v1

+
1

2

∫
Γ

β̃ · n(∇v1 · ∇v1)− 1

2

∫
Q

∇xt · β̃(∇v1 · ∇v1)

Note: Integration by parts

= −
∫

Γx

β̃ · ∇xtv1∇v1 · nx +

∫
Q

(∇β · ∇v1) · ∇v1

+
1

2

∫
Γ

β̃ · n(∇v1 · ∇v1)− 1

2

∫
Q

∇ · β(∇v1 · ∇v1)

Note: ∇xt · β̃ = ∇ · β

= −
∫

Γx

β̃ · ∇xtv1∇v1 · nx +
1

2

∫
Γ

β̃ · n(∇v1 · ∇v1)

+

∫
Q

∇v1(∇β − 1

2
∇ · βI)∇v1 .

Note: (∇β · ∇v1) · ∇v1 −
1

2
∇ · β(∇v1 · ∇v1) = ∇v1(∇β − 1

2
∇ · βI)∇v1

84

Plugging this into (3.9), we get∥∥∥β̃ · ∇xtv1

∥∥∥2

= −
∫
Q

gβ̃ · ∇xtv1 + ε

∫
Q

∇v1(∇β − 1

2
∇ · βI)∇v1

− ε
∫

Γx

β̃ · ∇xtv1∇v1 · nx +
ε

2

∫
Γ

β̃ · n(∇v1 · ∇v1)

= −
∫
Q

gβ̃ · ∇xtv1 + ε

∫
Q

∇v1(∇β − 1

2
∇ · βI)∇v1

− ε
∫

Γ−

β̃ · ∇xtv1∇v1 · nx︸ ︷︷ ︸
=0

−ε
∫

Γ+

 ∂v1

∂t︸︷︷︸
=0

+β · ∇v1

∇v1 · nx

Note: ∇v1 · nx = τ1n = 0 on Γ−, v1 = 0 on Γ+

+
ε

2

∫
Γ−

β · nx︸ ︷︷ ︸
<0

(∇v1 · ∇v1) +
ε

2

∫
Γ+

β · nx(∇v1 · ∇v1)

+
ε

2

∫
Γ0

nt︸︷︷︸
<0

(∇v1 · ∇v1) +
ε

2

∫
ΓT

nt (∇v1 · ∇v1)︸ ︷︷ ︸
=0

Note: v1 = 0 on ΓT

≤ −
∫
Q

gβ̃ · ∇xtv1 + ε

∫
Q

∇v1(∇β − 1

2
∇ · βI)∇v1

+ ε

∫
Γ+

(
− ∂v1

∂nx
β +

1

2
β · nx∇v1

)
· ∇v1

Note: Dropped negative terms from RHS

= −
∫
Q

gβ̃ · ∇xtv1 + ε

∫
Q

∇v1(∇β − 1

2
∇ · βI)∇v1

+ ε

∫
Γ+

(
− ∂v1

∂nx
β +

1

2
β · nx

∂v1

∂nx
nx

)
· ∂v1

∂nx
nx

Note: ∇v1 · ∇v1 = ∇v1 · ∇v1nx · nx = (∇v1 · nxnx) · (∇v1 · nxnx)

= −
∫
Q

gβ̃ · ∇xtv1 + ε

∫
Q

∇v1(∇β − 1

2
∇ · βI)∇v1 .

− ε
2

∫
Γ+

(
∂v1

∂nx

)2

β · nx︸ ︷︷ ︸
<0

85

≤ −
∫
Q

gβ̃ · ∇xtv1 + ε

∫
Q

∇v1(∇β − 1

2
∇ · βI)∇v1

≤ ‖g‖
2

2
+

∥∥∥β̃ · ∇xtv1

∥∥∥2

2
+ ε

∫
Q

∇v1(∇β − 1

2
∇ · βI)∇v1

Note: Young’s inequality

≤ ‖g‖
2

2
+

∥∥∥β̃ · ∇xtv1

∥∥∥2

2
+ εCβ ‖∇v1‖2

Note: Assumption on β

≤
(

1

2
+ Cβ

)
‖g‖2 +

∥∥∥β̃ · ∇xtv1

∥∥∥2

2
.

In conclusion, with either robust test norm, we can claim the following

stability result,

‖u− uh‖ . ‖(u,σ, û, t̂)− (uh,σh, ûh, t̂h)‖E

= inf(uh,σh,ûh,t̂h) ‖(u,σ, û, t̂)− (uh,σh, ûh, t̂h)‖E .

Notice that, contrary to the steady-state case, we have not been able to secure

a robust L2 bound for the stress. The best approximation error in the en-

ergy norm can be estimated locally, i.e. element-wise, see [17, 36]. This leads

to an ultimate, final h estimate but not necessarily with robust constants.

The loss of robustness in the best approximation error estimate is the conse-

quence of rescaling the L2-terms to avoid boundary layers in the optimal test

functions. However, similarly to the steady-state case, with refinements, the

mesh-dependent L2-terms converge to the optimal ones so we hope to regain

86

robustness in the limit. We do not attempt to analyze the best approximation

error in this contribution and restrict ourselves to numerical experiments only.

3.4 Numerical Tests

The norms given in (3.7) and (3.8) are robust, but the reaction (0th or-

der) terms still dominate the diffusion terms which produces boundary layers

in optimal test functions and prohibits their resolution with a simple enrich-

ment strategy. We can mitigate this by introducing mesh-dependent norms:

‖(v, τ)‖2
V,K :=

∥∥∥β̃ · ∇xtv
∥∥∥2

K
+ ε ‖∇v‖2

K + min
(ε
h2
, 1
)
‖v‖2

K (3.10)

+ ‖∇ · τ‖2
K + min

(
1

ε
,

1

h2

)
‖τ‖2

K ,

and

‖(v, τ)‖2
V,K :=

∥∥∥β̃ · ∇xtv
∥∥∥2

K
+ ε ‖∇v‖2

K + min
(ε
h2
, 1
)
‖v‖2

K (3.11)

+
∥∥∥∇ · τ − β̃ · ∇xtv

∥∥∥2

K
+ min

(
1

ε
,

1

h2

)
‖τ‖2

K .

Note that any version of (3.7) and (3.8) with smaller coefficients also satisfies

the criteria for robustness. The mesh dependent coefficients were chosen in

an attempt to balance the relative size of “reaction” terms like ‖v‖ which

scale like hd with “diffusive” terms like ε ‖∇v‖ which scale like hd−2. This is

also the mechanism by which we avoid creating sharp boundary layers in our

optimal test functions – by correctly balancing reactive and diffusive terms. In

the following numerical experiments, we compute with these mesh dependent

norms.

87

We verify robust convergence of our transient coupled robust norm on

an analytical solution (shown in Figure 3.4) that decays to a steady state

Eriksson-Johnson problem:

u = exp(−lt) [exp(λ1x)− exp(λ2x)] + cos(πy)
exp(s1x)− exp(r1x)

exp(−s1)− exp(−r1)
,

where l = 4, λ1,2 = −1±
√

1−4εl
−2ε

, r1 = 1+
√

1+4π2ε2

2ε
, and s1 = 1−

√
1+4π2ε2

2ε
. The

problem domain is [−1, 0]× [−0.5, 0.5] and β =

(
1

0

)
. We show robustness

for ε = 10−2, 10−4, 10−6, 10−8 for linear, quadratic, and quartic polynomial

trial functions. Flux boundary conditions were applied based on the exact

solution at x = −1 and t = 0 while trace boundary conditions were set at

y = −0.5, y = 0.5, and x = 0. An adaptive solve was undertaken using a

greedy refinement strategy in which any elements with at least 20% of the

energy error of highest energy error element were refined at each step. See [35]

for details on adaptivity within the DPG context.

In the plot legends, L2 indicates
(
‖u− uexact‖2

L + ‖σ − σexact‖L2

) 1
2 while

V ∗ indicates the energy error reported by the method. Despite a lack of guar-

anteed control σ by norms (3.10) and (3.11), ‖σ − σexact‖L2 is included in the

L2 error computation and does appear to be under control in the problems

considered here. When plotted in isolation, the L2 error in σ was usually

orders of magnitude smaller than ‖u− uexact‖L2 .

We provide surface plots of temporal slices of the solution at t = 0.2

for the two norms with ε = 10−2, and p = 2 after 4 adaptive refinements. The

results conform to our previous experience with steady convection-diffusion

88

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0

Figure 3.4: Transient Eriksson-Johnson solution

where the coupled robust norm tends to produce smoother results in regions

with sharp gradients.

(a) Robust norm (b) Coupled robust norm

Figure 3.5: u at t = 0.2 for ε = 10−2 and p = 2 after 4 adaptive refinements

3.5 Summary

As expected, convergence of the energy error appears to be a reliable

predictor of convergence of the L2 error. This relation is especially tight for

moderate values of ε. We’ve developed two robust test norms for transient

89

102 103 104 105 106 107

DOFs

10-5

10-4

10-3

10-2

10-1

100

E
rr

o
r

L2 p=1 Robust

V ∗ p=1 Robust

L2 p=2 Robust

V ∗ p=2 Robust

L2 p=4 Robust

V ∗ p=4 Robust

L2 p=1 CoupledRobust

V ∗ p=1 CoupledRobust

L2 p=2 CoupledRobust

V ∗ p=2 CoupledRobust

L2 p=4 CoupledRobust

V ∗ p=4 CoupledRobust

(a) ε = 10−2

102 103 104 105 106 107

DOFs

10-2

10-1

100

E
rr

o
r

L2 p=1 Robust

V ∗ p=1 Robust

L2 p=2 Robust

V ∗ p=2 Robust

L2 p=4 Robust

V ∗ p=4 Robust

L2 p=1 CoupledRobust

V ∗ p=1 CoupledRobust

L2 p=2 CoupledRobust

V ∗ p=2 CoupledRobust

L2 p=4 CoupledRobust

V ∗ p=4 CoupledRobust

(b) ε = 10−4

102 103 104 105 106 107

DOFs

10-3

10-2

10-1

100

E
rr

o
r

L2 p=1 Robust

V ∗ p=1 Robust

L2 p=2 Robust

V ∗ p=2 Robust

L2 p=4 Robust

V ∗ p=4 Robust

L2 p=1 CoupledRobust

V ∗ p=1 CoupledRobust

L2 p=2 CoupledRobust

V ∗ p=2 CoupledRobust

L2 p=4 CoupledRobust

V ∗ p=4 CoupledRobust

(c) ε = 10−6

102 103 104 105 106 107

DOFs

10-3

10-2

10-1

100

E
rr

o
r

L2 p=1 Robust

V ∗ p=1 Robust

L2 p=2 Robust

V ∗ p=2 Robust

L2 p=4 Robust

V ∗ p=4 Robust

L2 p=1 CoupledRobust

V ∗ p=1 CoupledRobust

L2 p=2 CoupledRobust

V ∗ p=2 CoupledRobust

L2 p=4 CoupledRobust

V ∗ p=4 CoupledRobust

(d) ε = 10−8

Figure 3.6: Convergence to analytical solution

convection-diffusion, though neither one guarantees robust control over σ as

we had with their steady analogs.

90

Chapter 4

Space-Time DPG for Incompressible

Navier-Stokes

DPG for steady incompressible Navier-Stokes was studied by Roberts

in [65]. We choose a variational formulation more consistent with our work

on transient convection-diffusion where the fluxes are related to the conser-

vation law. The equations are trivial for one spatial dimension so space-time

incompressible Navier-Stokes requires either 3D or 4D solves. We derive a

space-time DPG formulation for spatially 2D Navier-Stokes and show prelim-

inary convergence results for the Taylor-Green vortex problem.

4.1 Nonlinear Form

The 2D incompressible Navier-Stokes equations are:

∂u

∂t
+∇ · (u⊗ u− ν∇u+ pI) = f

∇ · u = 0 ,

where u is the velocity, p is the pressure, ν is the kinematic viscosity, and f

contains any momentum source terms. As a first order system in space-time

91

divergence form, this is

1

ν
D−∇u = 0

∇xt ·

(
u⊗ u− D + pI

u

)
= f

∇ · u = 0 .

Multiplying by test functions S ∈ H(div, Q), v ∈ H1
xt(Q), q ∈ H1(Q), and

integrating by parts, we get(
1

ν
D,S

)
+ (u,∇ · S)− 〈û,S · nx〉 = 0

−

((
u⊗ u− D + pI

u

)
,∇xtv

)
+
〈
t̂,v
〉

= (f ,v)

− (u,∇q) + 〈û · n, q〉 = 0 ,

where D ∈ L2(Q), u ∈ L2(Q), p ∈ L2(Q), and

û = tr(u) ∈H1/2(Γhx)

t̂ = tr (u⊗ u− D + pI) · nx + tr(u) · nt ∈H−1/2
xt (Γh) .

4.2 Linearization

We split our residual into volume and trace terms:

R(u, p,D, û, t̂) = R(u, p,D) +R(û, t̂) .

92

where

R(u, p,D) =

(
1

ν
D,S

)
+ (u,∇ · S)

−

((
u⊗ u− D + pI

u

)
,∇xtv

)
− (f ,v)− (u,∇q)

and

R(û, t̂) = −〈û,S · n〉+
〈
t̂,v
〉

+ 〈û · n, q〉 .

Note that R(û, t̂) is already linear, so we only need to linearize terms de-

pendent on the volume variables. Let {u, p,D} =
{
ũ, p̃, D̃

}
+ {∆u,∆p,∆D},

where {ũ, p̃,D} is the previous solution in the Newton iteration and {∆u,∆p,D}

is the update. We linearize about
{
ũ, p̃, D̃

}
so that our linear problem be-

comes

∂R(ũ, p̃, D̃)

∂(u, p,D)

 ∆u

∆p

∆D

+R(û, t̂) = −R(ũ, p̃, D̃)

where

∂R(ũ, p̃, D̃)

∂(u, p,D)

 ∆u

∆p

∆D

 =

(
1

ν
∆D,S

)
+ (∆u,∇ · S)

−

((
∆u⊗ ũ+ ũ⊗∆u−∆D + ∆pI

∆u

)
,∇xtv

)
− (∆u,∇q) .

Note that for the steady state case, the pressure is only uniquely defined

up to a constant, so in order to obtain a unique solution it is sufficient to set

93

either a zero mean condition or to constrain the pressure to a certain value at

a point. In the transient case, pressure is unique up to any arbitrary function

of t. This issue disappears for problems with boundary conditions on t̂ as the

definition of the flux contains a pressure term, but for problems with pure û

boundary conditions, we choose a spatial point and constrain the pressure to

a specific value at that point for all time.

4.3 Robust Test Norms

We develop test norms for the incompressible Navier-Stokes equations

by drawing analogies to our robust norms for transient convection-diffusion.

If we group the test terms according to their interaction with trial variables,

the left hand side of the convection-diffusion bilinear form looks like:

(σ,
1

ε
τ +∇v) + (u,∇ · τ − β · ∇v − ∂v

∂t
) .

Doing the same thing for incompressible Navier-Stokes yields:(
∆D,

1

ν
S +∇v

)
+

(
∆u,∇ · S−∇q −

(
ũ · ∇v + ũ · (∇v)T +

∂v

∂t

))
+ (p,−∇ · v) .

Recall the robust (3.10) and coupled robust (3.11) test norms:

‖(v, τ)‖2
V,K :=

∥∥∥∥β · ∇v +
∂v

∂t

∥∥∥∥2

K

+ ε ‖∇v‖2
K + min

(ε
h2
, 1
)
‖v‖2

K

+ ‖∇ · τ‖2
K + min

(
1

ε
,

1

h2

)
‖τ‖2

K ,

94

and

‖(v, τ)‖2
V,K :=

∥∥∥∥β · ∇v +
∂v

∂t

∥∥∥∥2

K

+ ε ‖∇v‖2
K + min

(ε
h2
, 1
)
‖v‖2

K

+

∥∥∥∥∇ · τ − β · ∇v − ∂v

∂t

∥∥∥∥2

K

+ min

(
1

ε
,

1

h2

)
‖τ‖2

K .

This leads us to define the respective norms for incompressible Navier-Stokes:

‖(v,D, q)‖2
V,K :=

∥∥∥∥ũ · ∇v + ũ · (∇v)T +
∂v

∂t

∥∥∥∥2

K

+ ν ‖∇v‖2
K + min

(ν
h2
, 1
)
‖v‖2

K

+ ‖∇ · S−∇q‖2
K

+ min

(
1

ν
,

1

h2

)
‖S‖2

K + ‖∇ · v‖2
K + ‖q‖2

K ,

and

‖(v,D, q)‖2
V,K :=

∥∥∥∥ũ · ∇v + ũ · (∇v)T +
∂v

∂t

∥∥∥∥2

K

+ ν ‖∇v‖2
K + min

(ν
h2
, 1
)
‖v‖2

K

+

∥∥∥∥∇ · S−∇q − (ũ · ∇v + ũ · (∇v)T +
∂v

∂t

)∥∥∥∥2

K

+ min

(
1

ν
,

1

h2

)
‖S‖2

K + ‖∇ · v‖2
K + ‖q‖2

K .

4.4 Numerical Experiments

4.4.1 Taylor-Green Vortex

The problem domain is [0, 2π] × [0, 2π] with a final time of π and the

analytical solution is

u = e−
2
Re
t

(
sinx cos y

− cosx sin y

)
,

a vector plot of which is shown in Figure 4.1. We apply spatial boundary

conditions on û and at t = 0 we apply boundary conditions on t̂ according to

95

Figure 4.1: Taylor-Green vortex

the initial conditions. Plots of L2 and energy (V ∗) error for various polynomial

orders and Reynolds numbers are shown in Figure 4.2 for the coupled robust

norm. As expected from our results for convection-diffusion, energy error and

L2 error follow each other. An attempt at solving transient flow over a cylinder

is outlined in Appendix D.1.2.1.

96

103 104 105 106 107

Degrees of Freedom

10-6

10-5

10-4

10-3

10-2

10-1

100

E
rr

o
r

Coupled Robust Norm

L2 Re=101 p=1

L2 Re=101 p=2

L2 Re=101 p=4

L2 Re=103 p=1

L2 Re=103 p=2

L2 Re=103 p=4

L2 Re=105 p=1

L2 Re=105 p=2

L2 Re=105 p=4

V ∗ Re=101 p=1

V ∗ Re=101 p=2

V ∗ Re=101 p=4

V ∗ Re=103 p=1

V ∗ Re=103 p=2

V ∗ Re=103 p=4

V ∗ Re=105 p=1

V ∗ Re=105 p=2

V ∗ Re=105 p=4

Figure 4.2: Convergence to Taylor-Green analytical solution

97

Chapter 5

Space-Time DPG for Compressible

Navier-Stokes

DPG for steady compressible Navier-Stokes was studied by Jesse Chan

in [18]. He observed that a pseudo-time stepping technique was necessary to

get the Gauss-Newton solve to converge to a quality solution. This suggested

that space-time approach which naturally includes the transient terms might

achieve such results with a simpler Newton iteration.

We derive an ultra-weak space-time divergence formulation of the tran-

sient compressible Navier-Stokes equations, linearizing and developing robust

test norms in a similar manner as was done in the previous chapter. We focus

our numerical results on shock tube problems for which analytical solutions

are known for the inviscid Euler equations. Despite the absence of any sophis-

ticated shock capturing, we are able to resolve the shocks with adaptivity and

produce some decent numerical results.

98

5.1 Nonlinear Form

The compressible Navier-Stokes equations are

∂

∂t

 ρ

ρu

ρe0

+∇ ·

 ρu

ρu⊗ u+ pI− T
ρue0 + up+ q − u · T

 =

 fc

fm
fe

 , (5.1)

where ρ is the density, u is the velocity, p is the pressure, I is the identity

matrix, T is the deviatoric stress tensor or viscous stress, e0 is the total energy,

q is the heat flux, and fc, fm, and fe are the source terms for the continuity,

momentum, and energy equations, respectively. Assuming Stokes hypothesis

that λ = −2
3
µ,

T = 2µS∗ = 2µ

[
1

2

(
∇u+ (∇u)T

)
− 1

3
∇ · uI

]
,

where S∗ is the trace-less viscous strain rate tensor. As we are using Navier-

Stokes as a stand-in for the Euler equations, it is sufficient to use a constant

µ rather than something more physical like Sutherland’s formula. In order to

work with standard finite element spaces, we introduce a new variable D =

µ∇u, so that T =
(
D + DT − 2

3
tr(D)I

)
. The heat flux is given by Fourier’s

law:

q = −Cp
µ

Pr
∇T ,

where Cp is the specific heat at constant pressure and Pr is the laminar Prandtl

number: Pr := Cpµ

λ
. We need to close these equations with an equation of

state. An ideal gas assumption gives

γ :=
Cp
Cv

, p = ρRT , e = CvT , Cp − Cv = R ,

99

where γ is the ratio of specific heats, Cv is the specific heat at constant volume,

R is the gas constant, e is the internal energy, T is the temperature, and γ,

Cp, Cv, and R are constant properties of the fluid. The total specific energy

is defined by

e0 = e+
1

2
u · u .

We can write our first order system of equations in space-time as follows:

1

µ
D−∇u = 0

(5.2a)

Pr

Cpµ
q +∇T = 0

(5.2b)

∇xt ·

(
ρu

ρ

)
= fc

(5.2c)

∇xt ·

(
ρu⊗ u+ ρRT I−

(
D + DT − 2

3
tr(D)I

)
ρu

)
= fm

(5.2d)

∇xt ·

(
ρu
(
CvT + 1

2
u · u

)
+ uρRT + q − u ·

(
D + DT − 2

3
tr(D)I

)
ρ
(
CvT + 1

2
u · u

))
= fe ,

(5.2e)

where our solution variables are ρ, u, T , D, and q, each in a scalar, vector, or

tensor version of L2(Q).

We can simplify the following discussion by introducing the following

100

notation. The conserved quantities for each equation are:

Cc := ρ

Cm := ρu

Ce := ρ(CvT +
1

2
u · u) ,

while the Euler fluxes are:

F c := ρu

Fm := ρu⊗ u+ ρRT I

F e := ρu

(
CvT +

1

2
u · u

)
+ uρRT ,

and the viscous fluxes are:

Kc := 0

Km :=

(
D + DT − 2

3
tr(D)I

)
Ke := −q + u ·

(
D + DT − 2

3
tr(D)I

)
.

The constitutive terms are:

MD := D

Mq :=
Pr

Cp
q ,

and the constitutive relations are:

GD := u

Gq := −T .

101

Multiplying (5.2) by test functions S ∈ H(div, Q), τ ∈ H(div, Q),

vc ∈ H1
xt(Q), vm ∈ H1

xt(Q), ve ∈ H1
xt(Q) and integrating by parts, we get(

1

µ
MD,S

)
+ (GD,∇ · S)− 〈û,Snx〉 = 0 (5.3a)(

1

µ
Mq, τ

)
+ (Gq,∇ · τ) +

〈
T̂ , τn

〉
= 0 (5.3b)

−

((
F c −Kc

Cc

)
,∇xtvc

)
+
〈
t̂c, vc

〉
= (fc, vc) (5.3c)

−

((
Fm −Km

Cm

)
,∇xtvm

)
+
〈
t̂m,vm

〉
= (fm,vm) (5.3d)

−

((
F e −Ke

Ce

)
,∇xtve

)
+
〈
t̂e, ve

〉
= (fe, ve) , (5.3e)

where
û = tr(u) ∈H1/2(Γhx)

T̂ = tr(T) ∈ H1/2(Γhx)

t̂c = tr (F c −Kc) · nx + tr (Cc)nt ∈ H−1/2
xt (Γh)

t̂m = tr (Fm −Km) · nx + tr (Cm)nt ∈H−1/2
xt (Γh)

t̂e = tr (F e −Ke) · nx + tr (Ce)nt ∈ H−1/2
xt (Γh) .

102

We can further simplify this by introducing group terms and group variables:

C := {Cc , Cm , Ce}

F := {F c , Fm , F e}

K := {Kc , Km , Ke}

M := {MD ,Mq}

G := {GD , Gq}

f := {fc , fm , fe}

W := {ρ , u , T}

Ŵ :=
{
û , −T̂

}
Σ := {D, q}

t̂ :=
{
t̂e , t̂m, , t̂e

}
Ψ := {S , τ}

V := {vc , vm, , ve} .

Our final nonlinear variational formulation looks very similar to what we had

for convection-diffusion:(
1

µ
M,Ψ

)
+ (G,∇ ·Ψ)−

〈
Ŵ ,Ψ · nx

〉
= 0

−

((
F −K
C

)
,∇xtV

)
+
〈
t̂, V
〉

= (f, V) .

With appropriate change of variables, we could use this same form

to consider a solution in terms of either conservation variables or entropy

variables, a topic we briefly consider in Appendix B.

103

5.2 Linearization

We again begin by splitting our residual into trace and volume terms:

R(W,Ψ, Ŵ , t̂) = R(W,Ψ) +R(Ŵ , t̂) ,

where

R(W,Ψ) =

(
1

µ
M,Ψ

)
+ (G,∇ ·Ψ)−

((
F −K
C

)
,∇xtV

)
− (f, V) ,

and

R(Ŵ , t̂) = −
〈
Ŵ ,Ψ · nx

〉
+
〈
t̂, V
〉
.

Again R(Ŵ , t̂) is already linear, so we only need to linearize terms dependent

on W . Let {W,Ψ} = {W̃ , Ψ̃} + {∆W,∆Ψ}, where {W̃ , Ψ̃} is the previous

solution in a Newton iteration and {∆W,∆Ψ} is the update. We linearize

about {W̃ , Ψ̃} so that our linear problem becomes

∂R(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
+R(Ŵ , t̂) = −R(W̃ , Ψ̃) ,

with unknowns ∆W , ∆Ψ, Ŵ , and t̂. The full definitions for these linearized

terms can be found in Appendix B.

5.3 Robust Test Norms

The adjoint equations are:

1

µ
M∗(Ψ) +K∗(∇V) =

(
1
µ
M∗D(S)

1
µ
M ∗

q(τ)

)
+

(
K∗D(∇V)

K∗q(∇V)

)

−

(
F ∗

C∗

)
(∇xtV) +G∗(∇Ψ) = −

 F ∗c (∇V) + C∗c (V,t)

F ∗m(∇V) +C∗m(V,t)

F ∗e (∇V) + C∗e (V,t)

+

 G∗c(∇Ψ)

G∗m(∇Ψ)

G∗e(∇Ψ)

 ,

104

where these terms can be developed by analyzing the bilinear form and group-

ing terms according to trial variable:

M∗
DS = S

M∗
qτ =

Pr

Cp
τ

K∗D∇V = ∇vm + (∇vm)T − 2

3
∇ · vmI

+ ũ⊗∇ve + (ũ⊗∇ve)T −
2

3
ũ · ∇veI

K∗q∇V = −∇ve

F ∗c · ∇V = ũ · ∇vc + ũ⊗ ũ : ∇vm +RT̃∇ · vm + CvT̃ ũ · ∇ve

+
1

2
ũ · ũũ · ∇ve +RT̃ ũ · ∇ve

C∗c · V,t = vc,t + ũ · vm,t + (CvT̃ +
1

2
ũ · ũ)ve,t

F ∗m · ∇vm = ρ̃∇vc + (∇vm + (∇vm)T)ρ̃ũ+ CvT̃ ρ̃∇ve

+
1

2
ρ̃ũ · ũ∇ve + ρ̃ũũ · ∇ve +RT̃ ρ̃∇ve

− D̃∇ve − (D̃)T∇ve +
2

3
tr(D̃)∇ve

C∗m · V,t = ρ̃vm,t + ρ̃ũve,t

F ∗e · ∇V = Rρ̃∇ · vm + Cvρ̃ũ · ∇ve +Rρ̃ũ · ∇ve

C∗e · V,t = Cvρ̃ve,t

G∗c∇Ψ = 0

G∗m∇Ψ = ∇ · S

G∗e∇Ψ = −∇ · τ .

105

We develop the analogous robust norm:

‖(V,Ψ)‖2
V,K := ‖F ∗ + C∗‖2

K + µ ‖K∗‖2
K + min

(µ
h2
, 1
)
‖V ‖2

K

+ ‖G∗‖2
K + min

(
1

µ
,

1

h2

)
‖M∗‖2

K ,

coupled robust norm:

‖(V,Ψ)‖2
V,K := ‖F ∗ + C∗‖2

K + µ ‖K∗‖2
K + min

(µ
h2
, 1
)
‖V ‖2

K

+ ‖G∗ − F ∗ − C∗‖2
K + min

(
1

µ
,

1

h2

)
‖M∗‖2

K ,

and NSDecoupled norm:

‖(V,Ψ)‖2
V,K := ‖F ∗ + C∗‖2

K + ‖K∗‖2
K + ‖V ‖2

K

+ ‖G∗‖2
K +

1

h2
‖M∗‖2

K .

5.4 Numerical Experiments

We consider three 1D test problems as verification1. The Sod shock

tube, Noh implosion, and piston problem all have analytical solutions derived

based on an inviscid flow assumption (Euler’s equations). However, in the

absence of viscosity, Euler’s equations can have multiple solutions and most

1We attempted the 2D analog of the Noh problem and decay to steady state of supersonic
flow over a flat plate but our naive shock capturing strategy did not work very well with
these 3D space-time solves. For 2D Noh, the Newton iterations immediately took the density
negative. Attempts to correct this by scaling back the Newton update to enforce positivity
of density only resulted in a nonconvergent Newton iteration. Carrying on with negative
density eventually caused the iterations to diverge. Initial flat plate results were slightly
more encouraging, but we ran into serious scaling issues explored in Appendix D and were
unable to sufficiently resolve any solution features to obtain publishable results.

106

numerical methods introduce a certain amount of artificial viscosity in order to

select a unique solution. Such schemes usually require the artificial viscosity to

scale in some sense with mesh size so that they can effectively handle shocks.

We run our simulations without any artificial viscosity, but in order to get a

well-posed problem, we do introduce a small amount of physical viscosity. We

apply a continuation in viscosity trick in order to achieve cleaner refinement

patterns, setting

µ = max

(
µfine, min

(
µcoarse,

1

2r+k

))
,

where µfine is the final viscosity we want, µcoarse is the desired viscosity on coarse

meshes, r is the refinement number and k is a problem dependent parameter

that determines how rapidly µ ramps down to µfine. Essentially we are just

simulating low viscosity Navier-Stokes as a stand-in for the unsolvable pure

Euler equations.

5.4.1 Sod Shock Tube

The Sod shock tube problem was developed by Gary Sod in 1978[71],

and has proven to be a popular problem for verification of compressible Navier-

Stokes and Euler solvers. It serves to verify that a numerical method can

effectively handle a rarefaction wave, material discontinuity, and shock wave

all in one domain. The domain of interest is a shock tube of length 1 with a

material interface in the middle. The material on the left has initial conditions

of (ρL, pL, uL) = (1, 1, 0) while the material on the right has (ρR, pR, uR) =

(0.125, 0.1, 0); both materials have γ = 1.4. At t = 0 the interface between

107

the materials is broken, and shock wave propagates into the right material,

while a rarefaction wave moves left. The analytical solution is self-similar,

but it is common to take t = 0.2 as a final time. At this time the shock

wave and rarefaction waves have not hit the boundaries, so it is sufficient

to set boundary conditions corresponding to the initial conditions. In our

case, we set t̂c = t̂e = 0 on the left and right boundaries, t̂m = −ρLRTL on

the left, and t̂m = ρRRTR on the right, while the fluxes are set equal to the

discontinuous initial conditions on the t = 0 boundary. No boundary condition

is required on the t = 0.2 boundary since the equations are hyperbolic in

time. We solve this with p = 2, ∆p = 2, and one continuous time slab

starting with only 4 space-time elements. It is possible to solve this problem

by setting µfine = µcoarse = 10−4, but we get cleaner refinement patterns by

setting µcoarse = 100 and k = 4.

The results are plotted in Figures 5.1 - 5.3 for three different refinement

levels: the initial coarse mesh, 6 adaptive refinements, and 12 refinements. The

coarsest mesh is obviously not sufficient to resolve the features of the flow, but

it is at least somewhat representative of the exact solution. We see significant

overshoots and undershoots as we start to pick up on the shock, but these die

away as we resolve to the viscous length scale. The contact discontinuity is

never fully resolved because the energy error never registers strongly enough

to drive further refinement. We predict that once the shock is sufficiently

resolved, this would be the next priority for the refinement strategy.

108

5.4.2 Noh Implosion

The Noh implosion problem[58] is another standard test for Euler solvers.

The initial conditions are of an ideal gas with γ = 5/3, zero pressure, uniform

initial density of 1, and uniform velocity toward the center of the domain. An

infinitely strong shock propagates outward at a speed of 1/3. For 1D flow,

the post shock density jumps to 4. The domain is [−1, 0] × [0, 1]. We apply

boundary conditions t̂c = t̂m = −1, t̂e = 0 on the left boundary, symmetry

conditions û = t̂c = t̂e = 0 on the right boundary, and flux conditions on t = 0

according to the initial conditions. We solve with p = 1, ∆p = 2, µfine = 103,

µcoarse = 10, and k = 0. The continuation in viscosity strategy makes a signif-

icant difference keeping the refinement pattern clean on this problem. If we

jump straight to the final viscosity, we get a lot of spurious shock behavior

on coarse meshes which eventually go away, but leave a lot of unnecessary

refinements.

The results for the initial mesh, an intermediate mesh, and the final

mesh are plotted in Figure 5.4. We see an unnecessary refinement pattern

that appears in the 10th refinement mesh. We hypothesize that this might be

related to poor resolution of the error representation function in these parts

of the domain. One notable feature of the final solution is that we don’t

see a drop in the density near the symmetry boundary. This phenomena is

known as wall heating and, though unphysical, appears to be nearly universal

in simulations of this problem. We don’t perfectly match the solution, there

are some wiggles at the shock front that could be resolved better, but the fact

109

that we don’t see any noticeable wall heating is significant.

5.4.3 Piston Problem

In the piston problem, we have a compressible gas with γ = 5/3 initially

at rest with zero pressure. At t = 0, the left wall of the domain (initially [0, 1])

starts moving inward at a velocity of 1. This triggers a shock which precedes

the moving piston and collides with the stationary right wall at t = 0.8. The

initial density is 1, but jumps to 4 after the first shock, and 10 after the second.

By the final time of t = 0.85 the second shock has traversed half the remaining

distance from the right wall to the piston. The symmetry conditions from the

Noh problem are applied on the right wall. The left boundary has normal

nxt = (−
√

2,
√

2) which means that fluxes at our disposal are:

t̂c =
√

2(−ρu+ ρ)

t̂m =
√

2(−ρu2 − ρRT + ρu)

t̂e =
√

2(−ρu(CvT +
1

2
u2)− uρRT + ρ(CvT +

1

2
u2)) ,

and since u = 1 at the left wall

t̂c = 0

t̂m = −
√

2ρRT

t̂e = −
√

2ρRT .

Therefore we set the following boundary conditions at the left boundary:

û = 1, t̂c = 0, and t̂m − t̂e = 0 implemented as a penalty condition. We

110

solve using p = 2, ∆p = 2, a fixed µ = 100, and an initial 4 × 4 space-time

mesh. Unfortunately, the robust and coupled robust norms did not produce

the cleanest solutions on this problem, and we were forced to use the NS-

Decoupled norm which has less mathematical justification but seems to work

very well on shock problems. Final results and mesh are shown in Figure 5.5

and Figure 5.6.

5.5 Summary of Compressible Results

The chief strength of the DPG method is in its stability and adaptivity

properties. It makes no claims of being a robust technique for handling shocks

and in fact we ran into a lot of shock related difficulties in arriving at these

solutions. The continuation in viscosity strategy, though avoidable, was an

attempt at mitigating these challenges. What is notable is that we were able

to initialize each simulation from very coarse meshes and adaptively resolve

the solution features.

111

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

Exact
0 Refinements

(a) Density

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

ve
lo

ci
ty

Exact
0 Refinements

(b) Velocity

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

pr
es

su
re

Exact
0 Refinements

(c) Pressure

(d) Mesh

Figure 5.1: Sod solution with robust norm, initial mesh

112

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

Exact
6 Refinements

(a) Density

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

ve
lo

ci
ty

Exact
6 Refinements

(b) Velocity

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

pr
es

su
re

Exact
6 Refinements

(c) Pressure

(d) Mesh

Figure 5.2: Sod solution with robust norm, 6th refinement

113

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

Exact
12 Refinements

(a) Density

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

ve
lo

ci
ty

Exact
12 Refinements

(b) Velocity

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

pr
es

su
re

Exact
12 Refinements

(c) Pressure

(d) Mesh

Figure 5.3: Sod solution with robust norm, 12th refinement

114

(a) Initial Mesh (b) After 5 refinements (c) After 10 refinements

1.0 0.8 0.6 0.4 0.2 0.0
x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

de
ns

ity

Exact
Initial 4 Elements
5 Refinements
10 Refinements

(d) Density at final time

Figure 5.4: Noh solution with robust norm

115

(a) Density

(b) Velocity

Figure 5.5: Piston solution with NSDecoupled norm after 8 adaptive refine-
ments

116

Figure 5.6: Piston mesh with NSDecoupled norm after 8 adaptive refinements

117

Chapter 6

Conclusions and Future Directions

The goal of this work has been to develop a proof of concept for a space-

time discontinuous Petrov-Galerkin finite element method with applications to

fluid flow applications. Chapter 1 provided motivations for applying DPG to

transient fluid problems and explored some of the alternatives in the field.

Local conservation is an important property to computational fluid dynamics

practitioners. In Chapter 2 we developed a variant of DPG that is locally

conservative through the addition of Lagrange multipliers to the system. This

locally conservative DPG method was proved to be stable and robust and

shown to dramatically improve coarse mesh numerical results on several test

problems.

In Chapter 3 we develop a theory for space-time DPG applied to

convection-diffusion type problems. We use an ultra-weak formulation where

the conservation equation is placed in a space-time divergence form. This

allows us to define physically meaningful fluxes related to conservation prin-

ciples and eases the transition to Navier-Stokes. We propose new test norms

for space-time convection-diffusion and prove that they provide near optimal

convergence of the primary variable. Numerical results confirm the theory,

118

showing that the energy norm in which the solution is optimal robustly bounds

the L2 norm.

Chapter 4 and Chapter 5 develop space-time DPG methods for tran-

sient incompressible and compressible Navier-Stokes by drawing analogies to

transient convection-diffusion. This includes the analogous ultra-weak for-

mulations in space-time divergence form and robust test norms. Numerical

verifications of the theory show the expected behavior.

Several side projects are explored in the appendices. An implicit Runge-

Kutta time stepping strategy for DPG is described in Appendix A and shown

to converge at the expected rates. We developed space-time DPG implemen-

tations of compressible Navier-Stokes under three popular variable transfor-

mations in Appendix B. Physically meaningful test norms for compressible

Navier-Stokes inspired by entropy were then proposed in Appendix C, though

numerical experiments seemed to prefer the standard non-entropy scaled test

norms.

6.1 Accomplishments

On the theoretical side, I have developed and proven robustness of

both locally conservative and space-time discontinuous Petrov-Galerkin finite

element methods for convection-diffusion problems. This included the devel-

opment of robust test norms for both of these formulations. I also used the

concept of entropy to derive new test norms for compressible Navier-Stokes

such that the residual is minimized in a physically consistent way.

119

On the numerical and computational side, I confirmed numerically the

robustness of my test norms for locally conservative and space-time DPG. I

also demonstrated convergence of space-time DPG for incompressible Navier-

Stokes and obtained various shock tube results for compressible Navier-Stokes.

I implemented space-time DPG for various variable transformations of the

compressible Navier-Stokes equations and compared the numerical results.

Within the primitive variable formulation, I implemented entropy scaled test

norms and compared to the standard test norms inspired by convection-diffusion.

I also implemented an ESDIRK (explicit first step singly diagonal implicit

Runge-Kutta) time stepping strategy for DPG. Finally, I’ve been an active con-

tributor to the parallel hp-adaptive DPG code base Camellia[66] from which

all of these results were generated.

This dissertation includes applications of both locally conservative and

space-time DPG to problems in convection-diffusion, Burgers’ equation, Stokes

flow, incompressible Navier-Stokes, and compressible Navier-Stokes. Of par-

ticular note are simulations of Stokes flow over a cylinder and a backward fac-

ing step, incompressible Navier-Stokes simulations of Taylor-Green vortices,

and several shock tube simulations of compressible Navier-Stokes including a

problem with a moving boundary.

6.2 Future Work

This work was really a proof of concept and much work remains in

order to make this a competitive numerical method for transient fluid flow

120

problems.

6.2.1 Improve Scaling

The most pressing issue before pursuing further work on space-time

DPG is to improve the scaling of our global solve. Past explorations of DPG

were primarily focused on two dimensional solves. In space-time this two

spatial dimensions requires a full 3D solve. Much to our chagrin after working

to implement a 3D adaptive code, we discovered that our global solvers did

not scale nearly as well as we expected on these higher dimensional problems.

We further explore this issue and some possible solutions in Appendix D.

6.2.2 Shock Capturing

The strength of DPG lie in its stability and adaptivity properties.

Shock capturing for the Euler and compressible Navier-Stokes equations has

more to do with limiting Gibbs phenomenon of overshoots and undershoots

around shocks on meshes coarser than the viscous length scale. As such, if we

were serious about applying DPG to shock problems, we would want to aug-

ment it with some sort of shock capturing strategy, preferably a consistent one

that reduces to the original equations in the limit as we fully resolve solution

features.

Another possible solution that we’ve begun exploring is the develop-

ment of DPG for non-Hilbert Lp Banach spaces. Gibbs phenomenon is well

known to be less pronounced in L1 spaces than the L2 spaces at the foun-

121

dation of most finite element theory. The downside to this approach is that

any finite element theory built around Hilbert spaces is no longer applicable

and previously linear problems like convection-diffusion become nonlinear in

non-Hilbert spaces.

6.2.3 More Extensive 2D Results

With the implementation of the previous two topics, we open the door

to many more interesting 2D transient problems. The issue of scaling prevented

us from producing meaningful results for unsteady incompressible flow over

a cylinder as we originally planned. This would also allow us to consider

classical problems like vortex shedding off of an oscillating airfoil. It would be

worthwhile to see if our lack of wall heating on the 1D Noh problem carries

over to the 2D case as well. In the current state of things, undershoots around

shocks cause the density to dip negative which causes the equations to be ill

posed for the next Newton iterate. If we perform a line search on the Newton

update to keep density positive, the line search drops below 10−6, effectively

stalling the Newton iteration. We believe that shock capturing could regularize

the solution and allow us to converge to a solution.

6.2.4 Anisotropic Refinements

Anisotropic refinements in space-time are a necessary first step in order

to make time slabs a more attractive option, a point that is illustrated in

Appendix D. Jesse Chan developed an anisotropic refinement strategy for 2D

122

computations in Camellia, but this process gets significantly more difficult in

3D or higher space-time meshes.

6.2.5 3D Results

We’ve implemented space-time as a tensor product of a spatial mesh

and a temporal line. In theory this means that 3D space-time shouldn’t be

significantly more complicated to implement, but we expect the costs to blow

up even more than they did from 2D to 3D, as we would now be performing

4D global solves. Additionally, the mesh partitioning libraries we leverage

to distribute elements across processors are not set up to handle 4D meshes.

The pursuit of 3D problems would force us to fundamentally rethink how we

implement space-time DPG.

123

Appendices

124

Appendix A

Implicit Time Stepping with DPG

The proposed research into space-time DPG does not imply that DPG is

incompatible with other time integration techniques. We did spend some time

exploring popular alternatives such as some ESDIRK (explicit first step singly

diagonal implicit Runge-Kutta) methods before we ultimately concluded that a

space-time formulation might more naturally fit with our adaptive techniques.

In this chapter, we briefly outline some of our exploratory work on implicit

time integrators with DPG.

There are two different ways of coupling a spatial solver and a tem-

poral solver. The method of lines first discretizes the spatial variables, which

converts the original initial-boundary-value problem into a system of ordinary

differential equations (ODEs) which are then discretized in time. It is unclear

whether this approach is possible for DPG since the semi-discrete residual is

not well defined and DPG is a minimum residual method. The alternative,

sometimes called the method of discretization in time or Rothe’s method re-

verses the order of discretization. The first temporal discretization converts

the problem into a sequence of boundary-value (-like) problems. In this case,

it is possible to build a DPG method since it is much clearer how to define a

125

residual. It is worth noting that spatial and temporal discretization in general

do not commute[70].

Finally, there is the choice between explicit and implicit time-stepping

versions of the method of discretization in time. We wish to solve the system

∂U

∂t
+ f(U) = 0 .

It is not immediately clear how one could perform explicit time-stepping with

DPG since an explicit system has f(U) on the right hand side, but the DPG

traces and fluxes are included in the f(U) term and thus need to be solved for.

So moving forward, we focus on implicit techniques which also have superior

stability properties.

A.1 Backward Euler

The simplest implicit time stepping method would be backward Euler,

for which we get the following system to solve at each time step n:

Un

∆t
+ f(Un) =

Un−1

∆t
, (A.1)

where Un−1 is known data from the previous time step, and ∆t is the time

step. In general, f(Un) could be nonlinear, in which case we define a residual

R(Un) =
Un

∆t
+ f(Un)− Un−1

∆t
. (A.2)

Given an approximate solution Ũn, we wish to solve for an increment ∆U

such that Un = Ũn + ∆U is a better approximation of the true solution.

126

Approximating R(Un) = 0 by R(Ũn) + R′(Ũn)∆U = 0, where R′(Ũn) is the

Jacobian of R at Ũn, we obtain a linear equation

∆U

∆t
+ f ′(Ũ)∆U =

Un
∆t
− Ũ

∆t
− f(Ũ) . (A.3)

Note that f(Ũ) only contains terms that had to be linearized. In general, we

do not need to linearize our flux and trace terms in DPG, and hence those

terms are excluded from f(Ũ).

A.2 ESDIRK

After a literature search, ESDIRK time stepping schemes were identi-

fied as a potentially attractive high order time integration technique to couple

with DPG. From an implementation point of view, ESDIRK schemes are much

simpler to implement than full implicit Runge-Kutta schemes since each stage

may be computed in sequence rather than as a fully coupled system. This cuts

down on the number of unknowns to keep track of, reducing memory require-

ments. The “explicit first stage” is completely trivial, requiring no work at

all. This reduces a formally s-stage scheme to s − 1 stages of actual compu-

tational work. Finally, the final stage coincides with the desired value at the

nth time step, eliminating the need to have a final reconstruction step. A 6

127

stage ESDIRK algorithm has the following Butcher tableau:

0 0 0 0 0 0 0

c1 a10 a11 0 0 0 0

c2 a20 a21 a22 0 0 0

c3 a30 a31 a32 a33 0 0

c4 a40 a41 a42 a43 a44 0

c5 a50 a51 a52 a53 a54 a55

b0 b1 b2 b3 b4 b5 .

From a stability point of view, ESDIRK schemes provide both A-

stability and L-stability. The more classical backwards differentiation formula

are not A-stable above second order. ESDIRK schemes enforce a “stiffly ac-

curate” assumption that asj = bj which makes the solution at the next time

step Un independent of any explicit process within the integration step. There

is also precedence for using ESDIRK schemes with fluid dynamics simulations

(see [7], where ESDIRK schemes were found to be more efficient than BDF

schemes for laminar flow over a cylinder).

A.2.1 ESDIRK with DPG

For an s stage ESDIRK scheme, we solve a series of equations for k =

0, · · · , s− 1

Uk

akk∆t
+ f(Uk) =

Un
akk∆t

−
k−1∑
j=0

akj
akk

f(U j) .

From the first equation we see that U0 = Un. And we have that Un+1 = U s.

For a nonlinear system, define residual

R(Uk) =
Uk

akk∆t
+ f(Uk)− Un

akk∆t
+

k−1∑
j=0

akj
akk

f(U j)

128

Utilizing the same linearization as above, we arrive at our linearized system

∆U

akk∆t
+ f ′(Ũk)∆U =

Un
akk∆t

− Ũk

akk∆t
− f(Ũk)−

k−1∑
j=0

akj
akk

f(U j) , (A.4)

which is to be solved iteratively at each stage until R(Ũk) is smaller than

some tolerance. Note that contrary to the f(Ũ) term which comes from the

linearization and excludes flux and trace terms, f(U j) will need to keep the flux

and trace terms from the DPG bilinear form. It is worth noting that terms

necessary to construct f(U0) might not available from the initial condition

because they include traces and fluxes. It is certainly possible to initialize the

fluxes and traces for the initial condition, but it is not quite as convenient as

setting the field variables. Thus in the following numerical experiment, we kick

start the simulation with a backward Euler solve on a time step one thousandth

the size of requested time step before switching fully to the ESDIRK scheme.

A.2.2 Case Study: 2D Burgers’ Equation

We consider the 2D Burger’s equations and accompanying problem out-

lined in [76]. The 2D Burgers’ equations are:

∂u1

∂t
+ u1

∂u1

∂x
+ u2

∂u1

∂y
− 1

R
∆u1 = 0

∂u2

∂t
+ u1

∂u2

∂x
+ u2

∂u2

∂y
− 1

R
∆u2 = 0 ,

(A.5)

where R is the effective Reynolds number.

129

A.2.2.1 DPG Formulation

As a first order system, this is

Rσ1 −∇u1 = 0

Rσ2 −∇u2 = 0

∂u1

∂t
+R

(
u1

u2

)
· σ1 −∇ · σ1 = 0

∂u2

∂t
+R

(
u1

u2

)
· σ2 −∇ · σ2 = 0 .

(A.6)

Multiplying by test functions τ 1, τ 2, v1, v2, and integrating by parts:

(Rσ1, τ 1) + (u1,∇ · τ 1)− 〈û1, τ1n〉 = 0

(Rσ2, τ 2) + (u2,∇ · τ 2)− 〈û2, τ2n〉 = 0(
∂u1

∂t
, v1

)
+

(
R

(
u1

u2

)
· σ1, v1

)
+ (σ1,∇v1)−

〈
t̂1, v1

〉
= 0

(
∂u2

∂t
, v2

)
+

(
R

(
u1

u2

)
· σ2, v2

)
+ (σ2,∇v2)−

〈
t̂2, v2

〉
= 0 ,

(A.7)

where it is clear that v1, v2 ∈ H1(K), and τ 1, τ 2 ∈ H(div, K). In order to

plug this into (A.4), we need to identify f(U j), f(Ũ), and f ′(Ũ)∆U . We can

identify f(U j) as the sum of the left hand terms in (A.7) at Runge-Kutta stage

j, and f(Ũ) is the same thing except for the boundary terms in angle brackets

evaluated at the previous nonlinear iteration. Finally, f ′(Ũ)∆U is simply the

130

linearization around Ũ :

(R∆σ1, τ 1) + (∆u1,∇ · τ 1)− 〈û1, τ1n〉+

(R∆σ2, τ 2) + (∆u2,∇ · τ 2)− 〈û2, τ2n〉+(
R

(
ũ1

ũ2

)
·∆σ1, v1

)
+

(
R

(
∆u1

∆u2

)
· σ̃1, v1

)
+ (∆σ1,∇v1)−

〈
t̂1, v1

〉
+(

R

(
ũ1

ũ2

)
·∆σ2, v2

)
+

(
R

(
∆u1

∆u2

)
· σ̃2, v2

)
+ (∆σ2,∇v2)−

〈
t̂2, v2

〉
,

(A.8)

where the fluxes and traces are simply solved for at each nonlinear iteration

rather than updated like the field variables. Now that we have identified the

various pieces, we can just plug this system into (A.4) and time step toward a

transient solution.

A.2.2.2 Numerical Example

An exact solution to the 2D Burgers’ equations is[76]

u1(x, y, t) =
3

4
− 1

4(1 + eR(−t−4x+4y)/32)

u2(x, y, t) =
3

4
+

1

4(1 + eR(−t−4x+4y)/32)
.

(A.9)

We solve on a unit square domain from t = 0 to 0.5 with initial condition given

by (A.9) at t = 0 and boundary conditions that evolve with the exact solu-

tion. We use a 6 stage ESDIRK scheme (which should be 4th order accurate)

with the time step equal to the mesh size. We also use a 4th order accurate

DPG scheme for the spatial solve at each Runge-Kutta stage. If our temporal

and spatial schemes are implemented correctly, we should expect overall 4th

131

order convergence. And, in fact, we do achieve the desired convergence rate

according to Figure A.1.

10-2 10-1 100

h, dt

10-7

10-6

10-5

10-4

10-3
e
rr

o
r

slope = 3.93

Figure A.1: L2 convergence of u1 and u2 for the 2D Burgers’ equation

132

Appendix B

Comparison of Primitive, Conservation, and

Entropy Variables for Compressible

Navier-Stokes

In this appendix we discuss some work we did exploring a compari-

son between three formulations of the compressible Navier-Stokes equations:

primitive variables, conservation variables, and entropy variables. Primitive

variables are the natural, physically intuitive variables in which the Navier-

Stokes equations are usually presented: density, velocity, and temperature.

Conservation variables are popular as they simplify time stepping algorithms.

The independent variables are density, momentum, and total energy. Entropy

variables were proposed by Tom Hughes in [46] and are selected such that

the stiffness matrix in a Bubnov-Galerkin finite element discretization is sym-

metric. However the independent variables do not correspond to any intuitive

physical quantity and the resulting equations are the most nonlinear of the

three. Recalling the definitions from Chapter 5, we define the necessary linear

and nonlinear terms that fit within that framework.

133

B.1 Primitive Variables

We begin by recalling the definitions for primitive variables:

Cc := ρ

Cm := ρu

Ce := ρ(CvT +
1

2
u · u)

F c := ρu

Fm := ρu⊗ u+ ρRT I

F e := ρu

(
CvT +

1

2
u · u

)
+ uρRT

Kc := 0

Km :=

(
D + DT − 2

3
tr(D)I

)
Ke := −q + u ·

(
D + DT − 2

3
tr(D)I

)
MD := D

Mq :=
Pr

Cp
q

GD := u

Gq := −T .

134

B.1.1 Linearized Terms

Let W = {ρ,u, T}. The linearized terms are:

∂Cc(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:= ∆ρ

∂Cm(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:= ∆ρũ+ ρ̃∆u

∂Ce(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:= Cv∆ρT̃ + Cvρ̃∆T +

1

2
(∆ρũ · ũ+ ρ̃∆u · ũ+ ρ̃ũ ·∆u)

∂F c(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:= ∆ρũ+ ρ̃∆u

∂Fm(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:= ∆ρũ⊗ ũ+ ρ̃∆u⊗ ũ+ ρ̃ũ⊗∆u+R

(
∆ρT̃ + ρ̃∆T

)
I

∂F e(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:= Cv∆ρũT̃ + Cvρ̃∆uT̃ + Cvρ̃ũ∆T

+
1

2
∆ρũũ · ũ+

1

2
ρ̃∆uũ · ũ+

1

2
ρ̃ũ∆u · ũ+

1

2
ρ̃ũũ ·∆u

+R∆uρ̃T̃ +Rũ∆ρT̃ +Rũρ̃∆T

∂Kc(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:= 0

∂Km(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:=

(
∆D + ∆DT − 2

3
tr(∆D)I

)
∂Ke(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:= −∆q + ∆u ·

(
D̃ + D̃T − 2

3
tr(D̃)I

)
+ ũ ·

(
∆D + ∆DT − 2

3
tr(∆D)I

)

135

∂MD(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:= ∆D

∂Mq(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:=

Pr

Cp
∆q

∂GD(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:= ∆u

∂Gq(W̃ , Ψ̃)

∂{W,Ψ}

(
∆W

∆Ψ

)
:= −∆T .

B.2 Conservation Variables

The definition of conservation variables is as follows:

ρ = ρ

m = ρu

E = ρ

(
CvT +

1

2
u · u

)
.

136

This gives us new definitions for our nonlinear terms:

Cc := ρ

Cm := m

Ce := E

F c := m

Fm =
m⊗m

ρ
+ (γ − 1)

(
E − m ·m

2ρ

)
I

F e = γE
m

ρ
− (γ − 1)

m ·m
2ρ2

m

Kc := 0

Km :=

(
D + DT − 2

3
tr(D)I

)
Ke := −q +

m

ρ
·
(
D + DT − 2

3
tr(D)I

)
MD := D

Mq :=
Pr

Cp
q

GD :=
m

ρ

Gq := −

(
E − 1

2ρ
m ·m

Cvρ

)
.

137

B.2.1 Linearized Terms

Let U = {ρ,m, E}. After linearizing, we get the following:

∂Cc(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:= ∆ρ

∂Cm(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:= ∆m

∂Ce(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:= ∆E

∂F c(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:= ∆m

∂Fm(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:=

∆m⊗ m̃
ρ̃

+
m̃⊗∆m

ρ̃
− m̃⊗ m̃

ρ̃2
∆ρ

+ (γ − 1)

(
∆E − ∆m · m̃

2ρ̃
− m̃ ·∆m

2ρ̃
+
m̃ · m̃

2ρ̃2
∆ρ

)
I

∂F e(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:= γ

(
∆E

m̃

ρ̃
+ Ẽ

∆m

ρ̃
− Ẽ m̃

ρ̃2
∆ρ

)
+ (γ − 1)

(
−∆mm̃ · m̃

2ρ̃2
− m̃∆m · m̃

2ρ̃2

−m̃m̃ ·∆m
2ρ̃2

+
m̃m̃ · m̃

ρ̃3
∆ρ

)
∂Kc(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:= 0

∂Km(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:=

(
∆D + ∆DT − 2

3
tr(∆D)I

)
∂Ke(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:= −∆q +

(
∆m

ρ̃
− m̃
ρ̃2

∆ρ

)
·
(
D̃ + D̃T − 2

3
tr(D̃)I

)
+
m̃

ρ̃
·
(

∆D + ∆DT − 2

3
tr(∆D)I

)

138

∂MD(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:= ∆D

∂Mq(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:=

Pr

Cp
∆q

∂GD(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:=

∆m

ρ̃
− m̃
ρ̃2

∆ρ

∂Gq(Ũ , Ψ̃)

∂{U,Ψ}

(
∆U

∆Ψ

)
:= −

(
∆E − 1

2ρ̃
∆m · m̃− 1

2ρ̃
m̃ ·∆m+ 1

2ρ̃2
m̃ · m̃∆ρ

Cvρ̃

−
Ẽ − 1

2ρ̃
m̃ · m̃

Cvρ̃2
∆ρ

)
.

B.3 Entropy Variables

Now we wish to do a change of variables to entropy variables:

Vc =

−E + (E − 1
2ρ
m ·m)

(
γ + 1− ln

[
(γ−1)(E− 1

2ρ
m·m)

ργ

])
E − 1

2ρ
m ·m

V m =
m

E − 1
2ρ
m ·m

Ve =
−ρ

E − 1
2ρ
m ·m

,

with reverse mapping:

ρ = −αVe

m = αV m

E = α

(
1− 1

2Ve
V m · V m

)
,

139

where

α(Vc,V m, Ve) =

[
γ − 1

(−Ve)γ

] 1
γ−1

exp

[
−γ + Vc − 1

2Ve
V m · V m

γ − 1

]
.

The nonlinear terms are:

Cc := −αVe

Cm := αV m

Ce := α

(
1− 1

2Ve
V m · V m

)
F c = αV m

Fm = α

(
−V m ⊗ V m

Ve
+ (γ − 1)I

)
F e = α

V m

Ve

(
1

2Ve
V m · V m − γ

)
Kc := 0

Km :=

(
D + DT − 2

3
tr(D)I

)
Ke := −q +

V m

Ve
·
(
D + DT − 2

3
tr(D)I

)
MD := D

Mq :=
Pr

Cp
q

GD := −V m

Ve

Gq :=
1

CvVe
.

140

B.3.1 Linearized Terms

Let V = {Vc,V m, Ve}. And the linearized terms for entropy variables

are:

∂Cc(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:= −Ṽe

∂α(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
− α(Ṽ , Ψ̃)∆Ve

∂Cm(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:= Ṽ m

∂α(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
+ α(Ṽ , Ψ̃)∆V m∆ρũ+ ρ̃∆u

∂Ce(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:=

(
1− 1

2Ṽe
Ṽ m · Ṽ m

)
∂α(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
− α(Ṽ , Ψ̃)

1

Ṽe
Ṽ m ·∆V m + α(Ṽ , Ψ̃)

1

2Ṽ 2
e

Ṽ m · Ṽ m∆Ve

∂F c(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:= Ṽ m

∂α(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
+ α(Ṽ , Ψ̃)∆V m

∂Fm(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:=

(
−Ṽ m ⊗ Ṽ m

Ṽe
+ (γ − 1)I

)
∂α(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)

+ α(Ṽ , Ψ̃)

(
−∆V m ⊗ Ṽ m

Ṽe
− Ṽ m ⊗∆V m

Ṽe
+
Ṽ m ⊗ Ṽ m

Ṽ 2
e

∆Ve

)
∂F e(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:=
Ṽ m

Ṽe

(
1

2Ṽe
Ṽ m · Ṽ m − γ

)
∂α(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)

+ α(Ṽ , Ψ̃)

(
∆V m

Ṽe

(
1

2Ṽe
Ṽ m · Ṽ m − γ

)
−Ṽ m

V 2
e

(
1

2Ṽe
Ṽ m · Ṽ m − γ

)
∆Ve

+
Ṽ m

Ṽe

(
1

Ṽe
Ṽ m ·∆V m −

1

2Ṽ 2
e

Ṽ m · Ṽ m∆Ve

))

141

∂Kc(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:= 0

∂Km(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:=

(
∆D + ∆DT − 2

3
tr(∆D)I

)
∂Ke(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:= −∆q +

(
∆V m

Ṽe
− Ṽ m

Ṽ 2
e

∆Ve

)
·
(
D̃ + D̃T − 2

3
tr(D̃)I

)
+
Ṽ m

Ṽe
·
(

∆D + ∆DT − 2

3
tr(∆D)I

)
∂MD(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:= ∆D

∂Mq(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:=

Pr

Cp
∆q

∂GD(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:= −

(
∆V m

Ṽe
− Ṽ m

Ṽ 2
e

∆Ve

)
∂Gq(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
:= − 1

CvV 2
e

∆Ve

∂α(Ṽ , Ψ̃)

∂{V,Ψ}

(
∆V

∆Ψ

)
=

[
γ − 1

(−Ṽe)γ

]−1

γ(−Ṽe)−(γ+1)α(Ṽ , Ψ̃)∆Ve

+
α(Ṽ , Ψ̃)

γ − 1

(
∆Vc −

1

Ṽe
Ṽ m ·∆V m +

1

2Ṽ 2
e

Ṽ m · Ṽ m∆Ve

)
.

B.4 Numerical Experiments

We perform a couple numerical experiments to compare the different

formulations. In Chapter 5 we used a incrementally decreased µ with every

refinement step as this approach was found to produce cleaner refinement

patterns; here we hold µ constant for each problem to show that it is still

142

possible to arrive at a converged solution, but we end up with a less desirable

final refinement pattern.

B.4.1 Sod Shock Tube

We repeat the Sod shock tube problem described in Chapter 5 with

µ = 10−5, p = 2, ∆p = 2, and the NSDecoupled norm. We omit plots

of velocity and pressure as they don’t really contribute anything new to the

comparisons. Comparing Figures B.1 - B.3, it seems that primitive and con-

servation variables are of similar quality, at least by the eyeball norm. Entropy

variables, on the other hand, suffer from much more extreme overshoots and

undershoots compared to the other formulations.

B.4.2 Noh Implosion

We repeat the Noh problem from before with µ = 10−3, p = 2, ∆p = 2,

and the NSDecoupled norm. In Chapter 5 we simulated a half domain with a

symmetry boundary condition at the origin; here we compute the full domain.

The other difference is that this simulation was computed as a series of four

time slabs rather than as one monolithic computation. This means that the

[0, 1
4
] time slab was computed for 8 adaptive refinement steps then the final

solution was projected onto the [1
4
, 1

2
] time slab as an initial condition. This

was repeated until we arrived at the [3
4
, 1] time slab, where the density traces in

Figure B.4 are taken. We see more unwanted refinements in this computation

compared to Chapter 5 due to the spurious shock patterns that develop on

143

coarse meshes. We are not able to compare the entropy formulation for this

problem since the initial conditions contain infinities under this formulation.

Again, primitive and conservation variables produce similar results.

B.5 Conclusion

The conclusion then is that since DPG already produces a symmetric,

positive-definite stiffness matrix, there is no reason to prefer entropy variables.

The choice between primitive and conservation variables depends on which one

is easier to implement as they will both give similar results. We decided to

stick with primitive variables as they were slightly simpler and less nonlinear.

144

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

de
ns

ity

Exact
Refinement 0
Refinement 4
Refinement 9
Refinement 14

(a) Density

(b) Final mesh colored by ρ

Figure B.1: Sod problem with primitive variables

145

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

de
ns

ity

Exact
Refinement 0
Refinement 4
Refinement 9
Refinement 14

(a) Density

(b) Final mesh colored by ρ

Figure B.2: Sod problem with conservation variables

146

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

de
ns

ity

Exact
Refinement 0
Refinement 4
Refinement 9
Refinement 14

(a) Density

(b) Final mesh colored by Vc

Figure B.3: Sod problem with entropy variables

147

0.4 0.2 0.0 0.2 0.4
x

0

1

2

3

4

5

6

d
e
n
si

ty

Exact
Primitive
Conservation

Figure B.4: Density at final time

148

(a) Final mesh with primitive variables

(b) Final mesh with conservation variables

Figure B.5: Noh meshes colored by ρ

149

Appendix C

Entropy Norms for Compressible

Navier-Stokes

C.1 Motivation

From the previous appendix, let W , U , and V denote the set of prim-

itive, conservation, and entropy variables respectively. It is well known that

the entropy function

H = −ρ log(pρ−γ) .

provides a natural residual for the system of equations. The Hessian of H is

known as the symmetrizer of the Navier-Stokes system: A0 = H,UU . The inner

product (U,A0U) provides a natural measure (metric) for the Euler equations.

By definition of the entropy variables (see [46]) V,U = H,UU , where

V,U(U) =


4γρ2E2−4γρEm·m+(1+γ)(m·m)2

ρ(m·m−2ρE)2
− 2mm·m

(m·m−2ρE)2
−4ρ(ρE−m·m)

(m·m−2ρE)2

2ρ(2ρE+m·m)

(m·m−2ρE)2
− 4ρ2m

(m·m−2ρE)2

Symm. 4ρ3

(m·m−2ρE)2

 .

Since our previous comparison of Navier-Stokes formulations showed

no strong reason to prefer anything over primitive variables, we will choose to

work with primitive variables in this appendix. As such, we need to perform a

change of variables to find the symmetrizer for the set of primitive variables:

150

U = U,WW . Our entropy metric is then

(U,WW,V,UU,WW) =
(
W,UT

,WV,UU,WW
)

Then

U,W =

 1 0 0

u ρ 0

CvT + 1
2
u · u ρu Cvρ


where V,U in primitive variables is

V,U(W) =


γ
ρ

+ (u·u)2

4ρC2
vT

2 −
1
2
u·uu

ρC2
vT

2 − (CvT− 1
2
u·u)

ρC2
vT

2

CvT+u·u
ρC2

vT
2 − u

ρC2
vT

2

Symm. 1
ρC2

vT
2


and

A0(W) = UT
,WV,UU,W =


γ−1
ρ

0 0

0 ρ
CvT

0

0 0 ρ
T 2

 .

As a check, (W,A0(W)W) has consistent units of density.

C.2 Entropy Scaled Test Norms

We repeat the argument to develop the necessary condition for a robust

norm, but where we replace the bound on ‖u‖ with
∥∥∥A 1

2
0 u
∥∥∥. Let u represent

all volume variables, û all interface variables, and v all test variables. We can

write our ultra-weak formulation as

b ((u, û) , v) = (u,A∗v)L2 + 〈û, [[v]]〉Γh ,

151

where A∗ represents the adjoint. For conforming v∗ satisfying A∗v∗ = A0u:∥∥∥A 1
2
0 u
∥∥∥2

=
b(u, v∗)

‖v∗‖V
‖v∗‖V

≤ sup
v∗ 6=0

|b(u, v∗)|
‖v∗‖

‖v∗‖ = ‖u‖E ‖v
∗‖V .

This defines a necessary condition for robustness, namely that

‖v∗‖V .
∥∥∥A 1

2
0 u
∥∥∥
L2
. (C.1)

If this condition is satisfied, then we get our final result:∥∥∥A 1
2
0 u
∥∥∥
L2

. ‖u‖E .

We begin by loading our compressible Navier-Stokes adjoint equations

with A0W :

1

µ
M∗(Ψ) +K∗(∇V) = 0

−

(
F ∗

C∗

)
(∇xtV) +G∗(∇Ψ) = A0W .

Without proof, we suggest the existence of analogous lemmas 3.3.1 and 3.3.2

for this case, namely that there exist bounds∥∥∥A− 1
2

0 V
∥∥∥2

+ µ
∥∥∥A− 1

2
0 ∇V

∥∥∥2

≤
∥∥∥A 1

2
0W

∥∥∥2

(C.2)∥∥∥∥∥A− 1
2

0

(
F ∗

C∗

)
(∇xtV)

∥∥∥∥∥ .
∥∥∥A 1

2
0W

∥∥∥ . (C.3)

These would hypothetically be derived by substituting the first adjoint equa-

tion into the second then multiplying both sides by

A
− 1

2
0 etV

152

and

−A−
1
2

0

(
F ∗

C∗

)
(∇xtV) ,

respectively for each desired bound, then integrating over Q and following

similar manipulations as were done in said lemmas. Assuming the existence of

said bounds, the analogous entropy scaled robust and coupled robust norms

for compressible Navier-Stokes would be

‖(V,Ψ)‖2
V,K :=

∥∥∥A− 1
2

0 (F ∗ + C∗)
∥∥∥2

K
+ µ

∥∥∥A− 1
2

0 K∗
∥∥∥2

K
+ min

(µ
h2
, 1
)∥∥∥A− 1

2
0 V

∥∥∥2

K

+
∥∥∥A− 1

2
0 G∗

∥∥∥2

K
+ min

(
1

µ
,

1

h2

)∥∥∥A− 1
2

0 M∗
∥∥∥2

K
,

and

‖(V,Ψ)‖2
V,K :=

∥∥∥A− 1
2

0 (F ∗ + C∗)
∥∥∥2

K
+ µ

∥∥∥A− 1
2

0 K∗
∥∥∥2

K
+ min

(µ
h2
, 1
)∥∥∥A− 1

2
0 V

∥∥∥2

K

+
∥∥∥A− 1

2
0 (G∗ − F ∗ − C∗)

∥∥∥2

K
+ min

(
1

µ
,

1

h2

)∥∥∥A− 1
2

0 M∗
∥∥∥2

K
.

Note that in practice, ρ and T may get very close to 0 which can make the

Gram matrix for the test space inner product singular. In order to avoid this,

we bound the ρ and T terms in A0 such that they are always greater than or

equal to 0.01.

We attempted two comparisons of the robust norm and the entropy

scaled robust norm. The results for the Sod shock tube are very comparable,

but the Newton iterations failed to converge on the Noh problem. We chalk

this up as an interesting mathematical investigation, but a little disappointing

numerically. Besides, the equations have already been nondimensionalized,

153

so it seems slightly superfluous to additionally use the concept of entropy to

develop consistent test norms.

154

(a) Final mesh with robust norm

(b) Final mesh with entropy scaled robust norm

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

Exact
Robust Norm
Entropy Scaled Robust Norm

(c) Density at final time

Figure C.1: Sod solution after 12 refinements

155

Appendix D

Scaling Issues

D.1 Global Solvers

The one challenge which we most significantly underestimated before

undertaking this work was how our solver would scale on these space-time prob-

lems. Preliminary 1D results (2D in space-time), were computable with stan-

dard direct solvers, but as we moved to 2D (3D in space-time), direct solvers

proved to be a major bottleneck to larger solves, not least of which because

they tend to take up more memory than iterative solvers. Fortunately, my

collaborator Nathan Roberts at Argonne National Lab has been implement-

ing flexible multigrid strategies within Camellia. Unfortunately, multigrid is

well known to perform poorly on convection-dominated diffusion problems. In

fact, we can easily construct a case for convection-diffusion with ε = 10−2 on a

64× 64 mesh solved with Camellia’s default multigrid strategy outlined below

that exhibits the convergence history in Figure D.1 for the iterative solve.

The details of this simulation aren’t important, the point is that it is

fairly trivial to contrive a test problem where multigrid performs very poorly

for convection-diffusion. This behavior appears to be especially bad on uni-

form meshes and seems to be somewhat mitigated on adaptive meshes. Ideally

156

0 500 1000 1500 2000
iteration

10-5

10-4

10-3

10-2

10-1

100
re

si
du

al

Figure D.1: Residual convergence for a simple convection-diffusion problem

we would like to implement a line smoother which is known to improve per-

formance on convection-dominated diffusion problems, but that is outside the

scope of this thesis.

D.1.1 Overview of Multigrid in Camellia

Conjugate gradient is a natural choice for iteratively solving DPG prob-

lems because they are always symmetric (Hermitian) positive definite. How-

ever a good preconditioner is necessary for efficiency. Nathan Roberts, im-

plemented a geometric multigrid preconditioner that has allowed us to solve

157

larger problems than we could with direct solvers. I’ve served as more of a

user and tester of the multigrid strategies than as a developer, so I’ll only

briefly describe an overview of the strategy we settled on that were used for

the simulations in this thesis.

After exploring the various options of additive or multiplicative two-

cycle, V-cycle, W-cycle, or full multigrid, we settled on a multiplicative V-cycle

strategy. We’ve chosen to employ an overlapping additive Schwarz smoother.

In constructing the mesh hierarchy for the multigrid, going from a high order

fine mesh, we first start with p-coarsening followed by h-coarsening. More

details on multigrid within Camellia will appear in an upcoming technical

report by Nathan Roberts.

D.1.2 Scaling on Test Problems

Both space-time and multigrid are fairly recent, experimental features

within Camellia and the combination of the two has not scaled as well as we

initially expected. In the following tables we illustrate the ballooning cost of

these space-time solves for 2D incompressible Navier-Stokes. A 2D space-time

solver was implemented for compressible Navier-Stokes as well, but the scaling

issues illustrated here for incompressible Navier-Stokes were significantly worse

in the presence of shocks. Despite significant effort, we were not able to obtain

publishable results for any 2D shock problems.

158

D.1.2.1 Incompressible Flow Over a Cylinder

Table D.1 refers to a space-time solve of transient flow over a flat plate.

Listed times are in seconds. The domain is [−3, 9] × [−4.5, 4.5] with a 0.5

radius cylinder in at the origin and a final time of 4. The Reynolds number

is 100, the flow is initialized to the solution of potential flow over a cylinder.

Velocity conditions are applied to the inflow, zero slip to the cylinder, and zero

traction to every other boundary. The initial mesh has 80 space-time elements

and with quadratic trial functions has 31304 DOFs and looks like Figure D.2.

After 4 adaptive refinements, the problem is up to 11742 elements, 4144674

DOFs, and looks like Figure D.3. This problem was excluded from the main

set of incompressible results in Chapter 4 because we don’t achieve nearly

enough resolution to observe any interesting flow features.

The cost per solve increases dramatically with every adaptive refine-

ment step. We compare three runs done on the Lonestar system at the Texas

Advanced Computing Center. In the first, we use 1 node with 24 processors

and then compare this to 4 nodes with 96 processors and 32 nodes with 768

total processors. Strong scaling results are computed relative to the previous

solve with ideal values being 4× and 8× for the 4 node and 32 node runs,

respectively. It is clear that increasing the number of processors does acceler-

ate the solve, but we are not very close to the ideal speedup. We hypothesize

that load balancing on this problem is sub-optimal as not every processor has

to deal with curvilinear element computations around the cylinder. With 768

processors, it takes more than 2 hours to complete 10 Newton iterations on

159

Figure D.2: Initial mesh for cylinder problem colored by velocity magnitude

the fourth refinement step with just over 4 million DOFs. We estimate it

would take about 6 refinement steps before we start resolving the viscous flow

features.

D.1.2.2 Taylor-Green Vortex

We also consider the Taylor-Green vortex problem described in Chap-

ter 4. The timings for the case of Re = 1000 and p = 2 are shown in Table D.2.

We see better scaling for this problem as there are not any curvilinear elements

160

Figure D.3: Fourth adaptive mesh for cylinder problem colored by velocity
magnitude

Table D.1: Solve time for transient flow over a cylinder

1 Node 4 Nodes 32 Nodes

Ref Elems DOFs Time Time Scaling vs 1 Time Scaling vs 4

0 80 31304 1772 453 3.91 451 1.01

1 605 225908 8190 3574 2.29 717 4.98

2 3013 1081598 32008 12076 2.65 2648 4.56

3 9726 3429384 28744 6319 4.54

4 11742 4144674 8510

161

to deal with but the time to solve still blows up considerable with every re-

finement step.

Table D.2: Solve time for the Taylor-Green vortex

1 Node 4 Nodes

Ref Elems DOFs Time Time Scaling vs 1

0 60 21302 331.0 140.6 2.35

1 312 108410 945.2 290.6 3.25

2 2020 691834 4880.2 1363.5 3.58

3 9244 3043024 6171.6

D.2 The Question of Space-Time Slabs

Here we briefly explore the benefits of splitting a computation into

space-time slabs under the following assumptions.

1. The maximum required spatial resolution is much finer than the required

temporal resolution.

2. Regions requiring high spatial resolution are concentrated in relatively

compact parts of the domain.

3. Only isotropic refinements are permitted.

4. The number of time slabs is a power of 2.

The first and second conditions are representative of the boundary layer and

shock problems considered in this thesis. The third condition is necessary

162

as Camellia does not currently support anisotropic refinements in space-time.

The fourth assumption simplifies the analysis and is at least representative of

a common sense time slab strategy.

Our test case is a steady boundary layer problem with exact solution

u = 1− e
x
ε

solved on a space-time domain [−1, 0]× [0, 1]. We choose this problem because

it is easy to analyze the optimal refinement strategy, but it should be possible

to generalize this analysis to more complicated patterns. The optimal refine-

ment pattern (while h > ε) just keeps refining toward the right side of the

domain. We consider three possible time slab strategies and illustrate each

with the same spatial resolution around the boundary layer. The first is to

solve the problem as a single space-time slab starting with a single element.

This is represented in Figure D.4. The second strategy is to split the domain

into a sequence of time slabs each starting with a single space-time element,

represented in Figure D.5. The third is to uniformly pre-refine each time slab

slab so that it has as many spatial elements as the total number of time slabs,

represented in Figure D.6. Theoretically we could design more optimal initial

meshes for each time slab, but that would require a priori knowledge of the

location of solution features.

In each strategy, we wish to refine until we reach a desired spatial

resolution of the boundary layer; the figures show a resolution of h = 1/16.

We can now count the total number of elements for each approach. Let N be

163

t

x

Figure D.4: First time slab strategy

164

t

x

Figure D.5: Second time slab strategy

165

t

x

Figure D.6: Third time slab strategy

166

0 2 4 6 8 10
k

100

101

102

103

El
em

en
t C

ou
nt

 R
at

io

Figure D.7: Ratio of total element counts Etot3/Etot1

the total number of refinements to achieve the desired spatial resolution, i.e.

h = 1
2N

for the smallest mesh elements. Let 2k be the number of time slabs in

approaches 2 and 3. The first strategy has a final mesh of Etot1 = 2N +
∑N

r=1 2r

elements. The second approach has the same number of elements per time

slab and is thus not an attractive alternative (at least without anisotropic

refinements). The third approach has Eslab3 = 2k − 1 + 2N−k +
∑N−k

r=1 2r

elements in each time slab, or Etot3 = 2k · Eslab3. Obviously, the total number

of elements summed over every time slab will be higher for this approach, (as

demonstrated in Figure D.7) but each individual time slab will have fewer

elements than the first approach.

There are two possible reasons we might want to use approach 3 over

167

100 101 102 103 104

Number of Space-Time Slabs

102

103

104

105

To
ta

l S
ol

ve
 T

im
e

Figure D.8: Total solve time using strategy 3

approach 1. The first is speed, if the sum of the solve times for each individual

time slab is less than the solve time for a single solve done with approach 1, this

might be an attractive option. In fact, for this test problem, we can directly

compute this for various numbers of time slabs. For the sake of comparison,

the solve time is defined to be the total time to solve all time slabs while

adaptively refining to a resolution of h = 1/210 with the default geometric

multigrid settings in Camellia (discussed above). We plot these results in

Figure D.8. There does appear to be a sweet spot for this problem at 16

time slabs, but the potential speedup alone isn’t enough to justify the more

complicated implementation.

A more compelling reason has to do with memory. It is possible that

168

for certain problems we might consider the solution of the entire space-time

domain might require more memory than is available. By splitting the solve

into smaller time slabs, you could mitigate produce smaller global solves that

do fit into memory. So far, the memory constraint has not been a significant

concern for the problems under consideration here, so we opted to stick with

the simplest approach, the first strategy.

169

Bibliography

[1] R. Abedi, B. Petracovici, and R.B. Haber. A space-time discontinuous

Galerkin method for linearized elastodynamics with element-wise momen-

tum balance. Comput. Methods in Appl. Mech. Eng., 195(2528):3247 –

3273, 2006.

[2] S.K. Aliabadi and T.E. Tezduyar. Space-time finite element computa-

tion of compressible flows involving moving boundaries and interfaces.

Comput. Methods in Appl. Mech. Eng., 107(12):209 – 223, 1993.

[3] J.H. Argyris and D.W. Scharpf. Finite elements in time and space. Nucl.

Eng. Des., 10(4):456 – 464, 1969.

[4] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis

of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer.

Anal., 39(5):1749–1779, May 2001.

[5] I. Babuška. Error-bounds for finite element method. Numer. Math, 16,

1970/1971.

[6] C. Bajer and C. Bonthoux. State-of-the-art in the space-time method.

Shock Vib. Dig., 23:3 – 9, May 1991.

170

[7] H. Bijl, M.H. Carpenter, V.N. Vatsa, and C.A. Kennedy. Implicit time in-

tegration schemes for the unsteady compressible NavierStokes equations:

Laminar flow. J. Comp. Phys., 179(1):313–329, June 2002.

[8] P. Bochev, J. Lai, and L. Olson. A locally conservative, discontinuous

least-squares finite element method for the Stokes equations. Int. J.

Numer. Methods Fluids, 68:782–804, 2010.

[9] C. Bottasso, S. Micheletti, and R. Sacco. A multiscale formulation of the

discontinuous Petrov-Galerkin method for advective-diffusive problems.

Comput. Methods in Appl. Mech. Eng., 194:2819–2838, 2005.

[10] J. Bramwell, L.F. Demkowicz, J. Gopalakrishnan, and W. Qiu. A locking-

free hp DPG method for linear elasticity with symmetric stresses. Numer.

Math., 122(4):671–707, 2012.

[11] J. Bramwell, L.F. Demkowicz, and W. Qiu. Solution of dual–mixed elas-

ticity equations using Arnold–Falk–Winther element and discontinuous

Petrov Galerkin method. A comparison. Technical Report 23, ICES,

2010.

[12] F. Brezzi. On the existence, uniqueness, and approximation of saddle

point problems arising from Lagrangian multipliers. R.A.I.R.O., Anal.

Numér., 2:129–151, 1974.

[13] F. Brezzi, B. Cockburn, L.D. Marini, and E. Sli. Stabilization mecha-

nisms in discontinuous Galerkin finite element methods. Comput. Meth-

171

ods in Appl. Mech. Eng., 195(2528):3293 – 3310, 2006.

[14] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin

formulations for convection dominated flows with particular emphasis on

the incompressible Navier-Stokes equations. Comput. Methods Appl.

Mech. Eng., pages 199–259, September 1990.

[15] C. Carstensen, L. Demkowicz, and J. Gopalakrishnan. Breaking spaces

and forms for the DPG method and applications including Maxwell equa-

tions. Comput. Math. Appl., 2015. revised version under review.

[16] J. Chan, L. Demkowicz, and R. Moser. A DPG method for steady vis-

cous compressible flow. Comput. Fluids, 98(0):69 – 90, 2014. 12th US-

NCCM mini-symposium of High-Order Methods for Computational Fluid

Dynamics - A special issue dedicated to the 80th birthday of Professor

Antony Jameson.

[17] J. Chan, N. Heuer, T. Bui-Thanh, and L. Demkowicz. A robust DPG

method for convection-dominated diffusion problems II: Adjoint bound-

ary conditions and mesh-dependent test norms. Comp. Math. Appl.,

67(4):771 – 795, 2014.

[18] J.L. Chan. A DPG Method for Convection-Diffusion Problems. PhD

thesis, University of Texas at Austin, 2013.

[19] J.L. Chan, J. Gopalakrishnan, and L.F. Demkowicz. Global properties

of DPG test spaces for convection-diffusion problems. Technical report,

172

ICES, 2013.

[20] C.L. Chang and J.J. Nelson. Least-squares finite element method for the

Stokes problem with zero residual of mass conservation. SIAM J. Num.

Anal., 34:480–489, 1997.

[21] T.J. Chung. Computational Fluid Dynamics. Cambridge University

Press, 1st edition, 2002.

[22] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization

of discontinuous Galerkin, mixed, and continuous Galerkin methods for

second order elliptic problems. SIAM J. Numer. Anal., 47(2):1319–1365,

February 2009.

[23] B. Cockburn and C. Shu. The Runge-Kutta discontinuous Galerkin

method for conservation laws V: Multidimensional systems. J. Comp.

Phys., 141(2):199 – 224, 1998.

[24] M. Costabel and A. McIntosh. On Bogovskĭi and regularized Poincaré

integral operators for de Rham complexes on Lipschitz domains. Math.

Z., 265(2):297–320, 2010.

[25] W. Dahmen, C. Huang, C. Schwab, and G. Welper. Adaptive Petrov-

Galerkin methods for first order transport equations. SIAM J. Numer.

Anal., 50(5):2420–2445, 2012.

[26] L.F. Demkowicz. Babuška ↔ Brezzi? Technical report, ICES, 2006.

173

[27] L.F. Demkowicz. Various variational formulations and closed range the-

orem. Technical Report 15-03, ICES, January 2015.

[28] L.F. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-

Galerkin methods. Part I: The transport equation. Comput. Methods

Appl. Mech. Engrg., 2009.

[29] L.F. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-

Galerkin methods. Part II: Optimal test functions. Numer. Meth. Part.

D. E., 2010.

[30] L.F. Demkowicz and J. Gopalakrishnan. Analysis of the DPG method

for the Poisson equation. SIAM J. Numer. Anal., 49(5):1788–1809,

September 2011.

[31] L.F. Demkowicz and J. Gopalakrishnan. A primal DPG method without

a first order reformulation. Comp. Math. Appl., 66:1058–1064, 2013.

[32] L.F. Demkowicz and J. Gopalakrishnan. Recent Developments in Discon-

tinuous Galerkin Finite Element Methods for Partial Differential Equa-

tions (eds. X. Feng, O. Karakashian, Y. Xing), volume 157, chapter An

Overview of the DPG Method, pages 149–180. IMA Volumes in Mathe-

matics and its Applications, 2014.

[33] L.F. Demkowicz and J. Gopalakrishnan. Discontinuous Petrov-Galerkin

(DPG) method. Technical Report 15-20, ICES, December 2015.

174

[34] L.F. Demkowicz, J. Gopalakrishnan, I. Muga, and J. Zitelli. Wavenumber

explicit analysis of a DPG method for the multidimensional Helmholtz

equation. Comput. Methods in Appl. Mech. Eng., 213216(0):126 – 138,

2012.

[35] L.F. Demkowicz, J. Gopalakrishnan, and A.H. Niemi. A class of discon-

tinuous Petrov-Galerkin methods. Part III: Adaptivity. Appl. Numer.

Math., 62(4):396–427, April 2012.

[36] L.F. Demkowicz and N. Heuer. Robust DPG method for convection-

dominated diffusion problems. SIAM J. Numer. Anal., 51(5):1514–2537,

2013.

[37] L.F. Demkowicz and J. Li. Numerical simulations of cloaking problems

using a DPG method. Comput. Mech., 51(5):661–672, 2013.

[38] T.E. Ellis, L.F. Demkowicz, and J.L. Chan. Locally conservative discon-

tinuous Petrov-Galerkin finite elements for fluid problems. Comp. Math.

Appl., 68(11):1530 – 1549, 2014.

[39] R.D. Falgout, S. Friedhoff, Tz.V. Kolev, S.P. MacLachlan, and J.B. Schroder.

Parallel time integration with multigrid. SIAM J. Sci. Comput., 36(6):C635C661,

2014.

[40] I. Fried. Finite-element analysis of time-dependent phenomena. AIAA

J., 7(6):1170–1173, 1969.

175

[41] J. Gopalakrishnan, I. Muga, and N. Olivares. Dispersive and dissipative

errors in the DPG method with scaled norms for Helmholtz equation.

SIAM J. Sci. Comput., 36(1):A20–A39, 2014.

[42] J. Gopalakrishnan and W. Qiu. An analysis of the practical DPG

method. Math. Comp., 83(286):537–552, March 2014.

[43] A. Harten, B. Engquist, S. Osher, and S.R. Chakravarthy. Uniformly

high order accurate essentially non-oscillatory schemes, III. J. Comp.

Phys., 131(1):3 – 47, 1997.

[44] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G.

Kolda, R.B. Lehoucq, K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G.

Salinger, H.K. Thornquist, R.S. Tuminaro, J.M. Willenbring, A. Williams,

and K.S. Stanley. An overview of the Trilinos project. ACM Trans.

Math. Softw., 31(3):397–423, 2005.

[45] T.J.R. Hughes, G.R. Feijo, L. Mazzei, and J.-B. Quincy. The variational

multiscale method – a paradigm for computational mechanics. Comput.

Methods in Appl. Mech. Eng., 166(1 - 2):3 – 24, 1998.

[46] T.J.R. Hughes, L.P. Franca, and M. Mallet. A new finite element for-

mulation for computational fluid dynamics: I. Symmetric forms of the

compressible Euler and Navier-Stokes equations and the second law of

thermodynamics. Comput. Methods Appl. Mech. Engrg., 54:223–234,

1986.

176

[47] T.J.R. Hughes and G.M. Hulbert. Space-time finite element methods for

elastodynamics: Formulations and error estimates. Comput. Methods in

Appl. Mech. Eng., 66(3):339 – 363, 1988.

[48] T.J.R. Hughes and J.R. Stewart. A space-time formulation for multiscale

phenomena. J. Comput. Appl. Math., 74(12):217 – 229, 1996.

[49] Z. Kaczkowski. The method of finite space-time elements in dynamics of

structures. J. Tech. Phys., 16(1):69 – 84, 1975.

[50] C.M. Klaij, J.J.W. van der Vegt, and H. van der Ven. Space-time discon-

tinuous Galerkin method for the compressible Navier-Stokes equations.

J. Comp. Phys., 217(2):589 – 611, 2006.

[51] Lawrence Livermore National Laboratory. XBraid: Parallel Time Inte-

gration with Multigrid, 2016. http://computation.llnl.gov/projects/

parallel-time-integration-multigrid.

[52] M. Lesoinne and C. Farhat. Geometric conservation laws for flow prob-

lems with moving boundaries and deformable meshes, and their impact

on aeroelastic computations. Comput. Methods in Appl. Mech. Eng.,

134(1 - 2):71 – 90, 1996.

[53] X. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory

schemes. J. Comp. Phys., 115(1):200 – 212, 1994.

177

[54] D. Moro, N.C. Nguyen, and J. Peraire. A hybridized discontinuous

Petrov-Galerkin scheme for scalar conservation laws. Int. J. Num. Meth.

Eng., 2011.

[55] A.H. Niemi, J.A. Bramwell, and L.F. Demkowicz. Discontinuous Petrov-

Galerkin method with optimal test functions for thin-body problems in

solid mechanics. Comput. Methods in Appl. Mech. Eng., 200(9-12):1291–

1300, February 2011.

[56] A.H. Niemi, N.O. Collier, and V.M. Calo. Automatically stable dis-

continuous Petrov-Galerkin methods for stationary transport problems:

Quasi-optimal test space norm. Comput. Math. Appl., 66(10):2096–2113,

December 2013.

[57] A.H. Niemi, N.O. Collier, and V.M. Calo. Discontinuous Petrov-Galerkin

method based on the optimal test space norm for steady transport prob-

lems in one space dimension. J. Comput. Sci., 4(3):157–163, 2013.

[58] W.F. Noh. Errors for calculations of strong shocks using an artificial

viscosity and an artificial heat flux. J. Comp. Phys., 72(1):78 – 120,

1987.

[59] J.T. Oden. A general theory of finite elements. II. Applications. Int. J.

Numer. Meth. Eng., 1(3):247–259, 1969.

[60] J.B. Perot. Discrete conservation properties of unstructured mesh schemes.

Annu. Rev. Fluid Mech., 43:299–318, 2011.

178

[61] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron

transport equation. Technical Report LA-UR-73-479, Los Alamos Na-

tional Laboratory, 1973.

[62] S. Rhebergen and B. Cockburn. A space-time hybridizable discontinuous

Galerkin method for incompressible flows on deforming domains. J.

Comp. Phys., 231(11):4185 – 4204, 2012.

[63] S. Rhebergen, B. Cockburn, and J.J.W. Van Der Vegt. A space-time dis-

continuous Galerkin method for the incompressible Navier-Stokes equa-

tions. J. Comput. Phys., 233:339–358, January 2013.

[64] N. Roberts, T. Bui-Thanh, and L. Demkowicz. The DPG method for the

Stokes problem. Comp. Math. Appl., 67(4):966 – 995, 2014.

[65] N.V. Roberts. A Discontinuous Petrov-Galerkin Methodology for Incom-

pressible Flow Problems. PhD thesis, University of Texas at Austin,

2013.

[66] N.V. Roberts. Camellia: A software framework for discontinuous Petrov-

Galerkin methods. Comp. Math. Appl., 68(11):1581 – 1604, 2014.

[67] N.V. Roberts, L.F. Demkowicz, and R.D. Moser. A discontinuous Petrov-

Galerkin methodology for adaptive solutions to the incompressible Navier-

Stokes equations. J. Comput. Phys., 301:456 – 483, 2015.

179

[68] N.V. Roberts, T.E. Ellis, and J.L. Chan. Camellia: A Software Toolbox

for Discountinuous Petrov-Galerkin (DPG) Methods, 2016. https://

github.com/CamelliaDPG/Camellia.

[69] H. G. Roos, M. Stynes, and L. Tobiska. Robust Numerical Methods for

Singularly Perturbed Differential Equations, volume 24 of Springer Series

in Computational Mathematics. Springer-Verlag, Berlin, 2nd edition,

2008.

[70] A. Safjan, L. Demkowicz, and J.T. Oden. Adaptive finite element meth-

ods for hyperbolic systems with application to transient acoustics. Int.

J. Numer. Meth. Eng., 32:677–707, September 1991.

[71] G.A. Sod. A survey of several finite difference methods for systems of

nonlinear hyperbolic conservation laws. J. Comp. Phys., 27(1):1 – 31,

1978.

[72] T.E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite el-

ement computations involving moving boundaries and interfaces – The

deforming-spatial-domain/space-time procedure: I. The concept and the

preliminary numerical tests. Comput. Methods in Appl. Mech. Eng.,

94(3):339 – 351, 1992.

[73] A. Üngör. Tent-Pitcher: A meshing algorithm for space-time discon-

tinuous Galerkin methods. pages 111–122. 9th Internat. Meshing

Roundtable, 2000.

180

[74] J.J.W. van der Vegt and H. van der Ven. Space-time discontinuous

Galerkin finite element method with dynamic grid motion for inviscid

compressible flows: I. General formulation. J. Comp. Phys., 182(2):546

– 585, 2002.

[75] Ch. Wieners and B. Wohlmuth. Robust operator estimates. Technical

report, Oberwolfach Reports, 2013.

[76] H. Zhu, H. Shu, and M. Ding. Numerical solutions of two-dimensional

Burgers’ equations by discrete Adomian decomposition method. Comp.

Math. Appl., 60(3):840–848, August 2010.

[77] J. Zitelli, I. Muga, L.F. Demkowicz, J. Gopalakrishnan, D. Pardo, and

V. Calo. A class of discontinuous Petrov-Galerkin methods. Part IV:

Wave propagation problems. J. Comp. Phys., 230:2406–2432, 2011.

181

Vita

Truman Ellis received Bachelor of Science and Master of Science degrees

from California Polytechnic State University in 2010. In the fall of 2010 he

began a doctoral program in Computational Science, Engineering, and Math-

ematics at the University of Texas at Austin under the supervision of Drs.

Leszek Demkowicz and Robert Moser. During his graduate career, he com-

pleted four summers of research at Lawrence Livermore National Laboratory

under the supervision of Drs. Tzanio Kolev and Robert Rieben developing a

high order curvilinear finite element solver for shock hydrodynamics. Upon

completion of his doctoral degree, he will work as a postdoctoral researcher at

Sandia National Laboratory.

Email: truman.e.ellis@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

182

