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Supervisor: Andreana P. Haley 

This set of projects focused on visceral fat, measured using proximal and direct 

methods. Specifically, I was interested in the effects of visceral fat on brain structure and 

integrity in middle age. Study 1 looked at waist to hip ratio (WHR) as a proximal measure 

of visceral fat and used statistical mediation to directly examine a possible mechanism 

behind the relationship between visceral fat and cognitive decline. Reductions in executive 

function seen in middle-aged adults with high visceral fat were found to occur in the 

context of lowered serum brain derived neurotrophic factor (BDNF) a key neurotrophin 

involved in synaptic plasticity as well as neuronal regeneration. Study 2 utilized Dual 

Energy X Ray Absorptiometry (DXA) to directly estimate visceral fat mass and volume as 

well as thickness of the cortical mantle in middle age. High-resolution Magnetization 

Prepared Rapid Acquisition Gradient Echo (MPRAGE) images were used. High visceral 

fat was found to predict increased thickness in the posterior cingulate cortex independently 

of age and cardiovascular risk in a cognitively intact middle-aged sample. Study 3 

examined changes in concentrations of crucial cerebral metabolites in the posterior 

cingulate cortex among individuals with high visceral fat. Results indicated that visceral 

fat predicted reduced concentrations of N Acetyl Asparate, a marker of neuronal viability 
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and increased concentrations of myo-inositol, a glial marker that is implicated in a number 

of disease states including prodromal Alzheimer’s Disease and Multiple Sclerosis. 

Collectively, the 3 studies highlight important evidence for early brain vulnerability even 

in cognitively intact middle- aged adults with high levels of cognitive reserve. An 

important next step would be to examine modifiable mediators of these relationships, such 

as inflammation and BDNF so that targeted interventions may be developed. 
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Central adiposity and brain vulnerability in midlife: Evidence for early risk 

The number of individuals who have been classified as overweight or obese has 

doubled in the past two decades, currently encompassing almost two thirds of the adult 

population in the United States (NCHS, 2006). Obesity has been implicated in several 

negative outcomes, including increased risk for stroke, gall bladder disease, cancer and 

overall mortality (Kopelman et al., 2000). Furthermore, recent evidence has shown a 

similar deleterious effect of obesity on the brain (Gustafson et al., 2004). Obesity at 

midlife leads to increased risk for dementia (Gustafson et al., 2003) and poorer 

performance in cognitive tasks, particularly those that measure executive function (Stingl, 

2012). Furthermore, obesity has been associated with reduced working memory related 

functional activation in the brain (Gonzales et al., 2014), perturbed concentrations of 

crucial cerebral metabolites (Gonzales et al., 2012), increased white matter volume 

(Haltia, 2007), lower grey matter density (Pannacciulli et al., 2006) and lower brain 

volumes in patients with Alzheimer’s Disease and mild cognitive impairment (Ho et al.,  

2010). Given the rising prevalence of obesity, coupled with the fact that 

neurodegeneration is irreversible, identification of the underlying mechanisms that drive 

the detrimental effect of obesity on the brain is a public health imperative.  

Published research has shown that the distribution of adiposity may be a more 

important predictor of cognitive vulnerability than body mass (Cereda et al., 2007). 

Adipose tissue that is distributed along the arms and legs of the body is composed of 

subcutaneous fat, which accumulates under the skin and represents approximately 80% of 

total body fat (Ibrahim, 2010). In contrast, adipose tissue that is distributed along the 
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waistline is indicative of visceral fat (Ibrahim, 2010), which is metabolically active and a 

more significant predictor of cognitive decline and dementia compared to body mass 

index (BMI) (Cereda et al., 2007; Kanaya et al., 2009; Kerwin et al., 2011; Whitmer et 

al., 2007; Whitmer et al., 2008). While some studies have examined the direct effect of 

central adiposity on cognition in older adults (Whitmer et al., 2008), there have been 

relatively few such studies with younger populations without concomitant age related 

cognitive decline and neurological disease comorbidity. The aim of this dissertation is to 

explore the relationship between visceral fat and brain vulnerability in middle age. The 

basic thesis is that visceral fat is associated with significant cognitive decline, changes in 

structural integrity of the brain, as well as reduced neuronal viability and that these 

changes are seen in cognitively intact, neurologically healthy middle-aged adults. This 

project includes three studies, each employing a unique methodology and investigating 

outstanding questions regarding the effect of visceral fat on the brain. Identification of 

these changes early in life is crucial, as clinically significant cognitive decline is often 

preceded by a period of latent degenerative changes that manifest in middle aged and 

younger adults (Gustafson et al., 2008). This body of research is intended as a first step in 

identifying possible mechanistic pathways through which central adiposity impinges 

upon central nervous system functioning. In this dissertation, a brief overview of 

common themes and mechanisms that lead to the hypotheses for the three studies will be 

provided. More detailed overviews and methodological descriptions specific to each 

study will follow. 

Prevalence and health impact of obesity 
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 In 2004, 71.1 percent of men and 61.4 percent of women aged between 20 and 74 

years in the United States met criteria for being overweight or obese according to 

globally established criteria (BMI ³ 30) (Ogden et al., 2007). Worldwide, the prevalence 

for overweight and obesity among adults rose by 27.5% between 1980 and 2013 (Ng et 

al., 2014). As obesity is associated with a host of adverse health outcomes including 

increased mortality, risk for cancer, diabetes and gall bladder disease (Kopelman et al., 

2000). The total estimated direct and indirect costs of obesity related health problems 

have been estimated at $117 billion (Wolf et al., 1998). Despite concerted governmental 

efforts to combat obesity in the United States (Khan et al., 2009), prevalence remains 

high (Ogden et al., 2014).  

Obesity and cognitive function  

 In addition to documented detrimental effects of obesity on physical health, recent 

evidence has shown obesity exerts similarly deleterious effects on brain health 

(Gustafson et al., 2004). Obesity at midlife results in increased risk for dementia 18 -24 

years later (Fitzpatrick et al., 2009; Gustafson et al., 2004; Gustafson D, 2003; Kivipelto 

et al., 2005; Whitmer et al., 2005) and poorer performance in cognitive tasks, particularly 

those that measure executive function (Stingl et al., 2012). Data from the Baltimore 

Longitudinal Study of Aging revealed declines in performance on global cognition, 

memory and executive function tasks in non demented individuals with baseline obesity 

(Gunstad, 2010). Furthermore, obesity is associated with poorer performance in memory 

and executive function tasks 4-6 years later (Elias et al., 2003). As cognition is the most 

useful predictor of late life functional independence and quality of life (Banaszak-Hall et 
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al., 2004; Gaugler et al., 2009), it is imperative to identify the mechanisms through which 

these obesity related changes occur. 

Obesity and brain integrity  

 It is possible to hypothesize that obesity driven changes in cognitive function are 

the result of changes to structural integrity of the brain. Obesity has been associated with 

alterations across multiple indices of brain health including working memory related 

functional activation in the brain (Gonzales et al., 2014), perturbed concentrations of 

crucial cerebral metabolites (Gonzales et al., 2012), increased white matter volume 

(Haltia, 2007), lower grey matter density (Pannacciulli et al., 2006) and lower brain 

volumes in patients with Alzheimer’s Disease and mild cognitive impairment (Ho et al., 

2010). Higher BMI is also linked with neuronal and myelin abnormalities in the frontal 

lobes of cognitively intact elderly participants (Gazdzinski et al., 2010). Furthermore, 

BMI is negatively correlated with white matter integrity in the fornix and corpus 

callosum (Stanek et al., 2011; Xu et al., 2013) among otherwise healthy younger adults. 

However, despite these well established and well regarded findings, some researchers 

have reported no association between midlife obesity and structural indices of brain 

health in old age (Albanese et al., 2015). The relationship between being 

overweight/obese in midlife and brain health is thus complex and warrants further 

investigation. 

Obesity and adipose tissue distribution 

 Adipocytes, the primary component of adipose tissue, may directly impact 

cerebral integrity. Adipocytes are metabolically active and are able to modulate 
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inflammatory and growth factor pathways that affect central nervous system functioning 

(Gustafson et al., 2010). Adipose tissue increases production of pro-inflammatory 

cytokines (Fried et al., 1998) that are known to affect brain functioning (Eagan et al., 

2012). However, the distribution of adipose tissue appears to be a pertinent predictor of 

subsequent metabolic and cardiovascular disease than is total adipose mass (Janssen et 

al., 2004). Adipose tissue distributed around the arms and legs of the body contains 

subcutaneous fat, which comprises approximately 80% of total body fat (Ibrahim et al., 

2010). In contrast, adipose tissue that accumulates around the waistline is indicative of 

visceral fat, which is metabolically active and may be more detrimental to physical and 

neuronal health (Ibrahim et al., 2010). 
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Central adiposity and brain function 

 It has been suggested that central adiposity is a stronger predictor of subsequent 

neurocognitive decline than body mass index, or measures of subcutaneous fat (Whitmer 

et al., 2008). High central adiposity is associated with reduced amounts of circulating 

leptin (Al Hazzouri et al., 2012), a hormone that is critical in preventing lipotoxicity 

(Shimabukura et al., 1998). Lipotoxicity is a phenomenon that occurs when lipid 

intermediates accumulate in non-adipose tissue, resulting in cellular dysfunction and 

death (Garbarino et al., 2009; Schaffer et al., 2003). In addition, central adiposity and 

thus visceral fat is associated with established peripheral risk factors for brain 

vulnerability such as insulin resistance (McKeigue et al., 1991; Raji et al., 2001), 

inflammation (Fontana et al., 2007) and oxidative damage (Pou et al., 2007). 

Central adiposity and insulin resistance  

Visceral fat has been correlated with insulin resistance (Raji et al., 2001), a 

phenomenon that occurs as a result of abnormally inefficient secretion of insulin in 

response to elevations in blood glucose (de Luca et al., 2008). Insulin resistance is 

ameliorated by leptin (Cortes et al., 2014), a hormone that is secreted in reduced amounts 

among individuals with high visceral fat (Cortes et al., 2014). Insulin resistance is known 

to impinge upon cerebral glucose metabolism (Doyle et al., 1995) and mediate the 

relationship between BMI and working memory related brain activation (Gonzales et al., 

2010). Furthermore, insulin resistance has been demonstrated in Alzheimer’s Disease 

patients (Talbot et al., 2012) and been correlated with amyloidosis in mouse models of 

Alzheimer’s Disease (Ho et al., 2004). Additionally, intranasal insulin administration has 
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led to improved memory, attention and global cognition in Alzheimer’s Disease patients 

(Craft et al., 2012; Reger et al., 2008). Thus, there appears to be a link between cognition 

and insulin regulation mechanisms. Taken together, the literature supports a strong 

correlation between central adiposity driven insulin resistance and later cognitive decline.  

Central adiposity and inflammation  

 Central adiposity is also highly correlated with systemic inflammation in obese 

adults (de Luca et al., 2008; Fontana et al., 2007). Higher levels of pro-inflammatory 

cytokines such as interleukin 1 (IL-1) cause activation of inducible nitric oxide synthase 

astrocytes, which could indirectly potentiate N-Methyl-D-aspartate (NMDA) induced 

neurotoxicity (Hewett et al., 1994), ultimately manifesting in neuronal death. In fact, it 

has been hypothesized that late life cognitive decline in individuals with the metabolic 

syndrome occurs primarily in the context of systemic inflammation (Yaffe et al., 2004). 

Furthermore, inflammation has also been associated with changes in concentrations of 

crucial cerebral metabolites (Eagan et al., 2012) and cortical thinning in middle aged 

adults (Kaur et al., 2014). It is thus reasonable to suggest that visceral fat could lead to 

changes in neuronal structure and viability and eventually cognitive decline by fostering 

neuroinflammation.  

Central adiposity and Brain Derived Neurotrophic Factor (BDNF)  

BDNF is a key neurotrophin responsible for neuronal regeneration and survival, 

as well as synaptic plasticity (Mattson, et al., 1997). Mouse models have depicted higher 

rates of obesity and hyperactivity as a result of conditionally deleted BDNF in the brain 

(Kernie et al., 2000; Kerwin et al., 2011). Presence of the met allele in Val66Met, a 
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genetic polymorphism associated with lower levels of BDNF, is also significantly 

associated with poorer performance on cognitive tests, particularly those that measure 

executive function in obese individuals (Marques-Iturra et al., 2014). High BDNF is also 

correlated with low insulin resistance (Levinger et al., 2008), a demonstrated 

consequence of high central adiposity (Raji et al., 2001). Infusion of BDNF into the 

lateral ventricles of diabetic mice also normalizes glucose regulation (Nakagawa et al., 

2002). The BDNF pathway is thus highly linked to cerebral insulin regulation 

mechanisms and it is possible that high central adiposity may disrupt BDNF proliferation 

in the central nervous system, resulting in structural brain changes and reduced cognitive 

function. 

Measuring central adiposity  

Indirect methods of measuring central adiposity include waist circumference 

(Gonzales et al., 2014) and the ratio of waist to hip circumference (WHR) (Brook et al., 

2001). Both of these measures have been shown to be more predictive of cognitive 

dysfunction and dementia than BMI (Cereda et al., 2007; Kanaya et al., 2009) or indices 

of cardiovascular disease (Brook et al., 2001; Terry et al., 1992). As these methods are 

noninvasive and inexpensive, they are widely used as an estimate of central adiposity in 

clinical research.  

  Researchers have also started to directly examine central adiposity through 

computed tomography (CT) (Yoshizumi et al., 1999), magnetic resonance imaging 

(MRI) (Janssen et al., 2002) and dual energy X-ray absorptiometry (DXA) (Kaul et al., 

2012). While indirect methods of measuring central adiposity have shown some 
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prognostic value, research has shown that more direct methods of measuring visceral fat 

have better utility in predicting neurodegeneration in elderly populations (Isaac et al., 

2011). In particular, DXA has proved a useful tool for accurately measuring visceral fat 

mass and volume (Clasey et al., 1999). As DXA is quick, relatively inexpensive and 

noninvasive with results comparable to that of CT (Kaul et al., 2012; Xia et al., 2014), it 

is a highly desirable method for the direct measurement of central adiposity.  

Measuring brain vulnerability  

Brain vulnerability has been assessed in the literature in a number of ways. 

Performance on cognitive tests is a direct way of examining brain behavior relationships 

(Lezak et al., 2004). Cognitive function is also the most salient predictor of quality of life 

and independence in late life (Banaszak-Hall et al., 2004; Gaugler et al., 2009). However, 

clinically significant cognitive decline is often preceded by a latent period of 

neurodegenerative changes in younger adults and middle age (Gustafson et al., 2008). As 

such, it is pertinent to examine other methods with higher sensitivity to detect early 

alterations in structural and functional capacity of the brain, so targeted interventions may 

be developed.  

Structural magnetic resonance imaging has been utilized as an intuitive tool to 

directly examine brain vulnerability. Structural changes in brain volume and volume of 

subcortical key structures are hallmarks of neurodegenerative conditions such as 

Alzheimer’s Disease (Fox et al., 1997). Previous work has highlighted changes in 

thickness of the cerebral cortex as a result of metabolic disorders including obesity 
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(Leritz et al., 2011) and in asymptomatic amyloid-positive adults (Dickerson et al., 

2009).  

 Rapidly developing improvements in magnetic resonance spectroscopy (MRS) 

imaging techniques has afforded researchers with the opportunity to examine 

neurochemicals and their metabolites in vivo (Ross et al., 2004). N-Acetyl Aspertate 

(NAA) for example, is a neurometabolite found only in the adult central nervous system 

(Simmons  et al., 1991; Urenjak et al., 1992). It is thus used as a marker of neuronal 

density, although it would be more accurately described as a marker of neuronal viability 

as changes in NAA are not always irreversible (De Stefano et al., 1995). NAA is reduced 

in disease states where neuronal loss is evident such as tumors (Falini et al., 1996) and in 

sedentary middle aged adults (Gonzales et al., 2013). NAA can be replenished in disease 

states such as multiple sclerosis (Mostert et al., 2006) and bipolar disorder (Moore et al., 

2000) through therapeutic infusion of drugs such as lithium and fluoxetine. Figure 1 

depicts the concentrations of NAA as well as other cerebral metabolites of 

neurobiological significance in the adult central nervous system. These concentrations are 

represented by the peaks, with residual variance being removed.   
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Figure 1: Example 1H MR Spectrum of adult brain.  

 

Overview of the proposed studies  

 This project includes three studies examining the effects of central adiposity as a 

proxy for visceral fat on brain structure and function, each employing a unique 

methodology. Central adiposity is measured using WHR as a proxy (Study 1) and DXA 

as a more direct measure (Studies 2 and 3). Brain function was assessed in study 1 using 

performance on cognitive assessment. Studies 2 and 3 examined the direct effect of 

visceral fat on brain structure, operationalized as cortical thickness measured through 

MRI and neuronal viability assessed through the concentrations of cerebral NAA using 
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MRS. All studies included neurologically healthy, middle aged participants (40-60 years) 

with no current cognitive impairment.  

 Data were drawn from two different projects: the Physical Fitness, Cardiovascular 

and Brain Health Study (FIT, Study 1) and the Neural Consequences of Metabolic 

Syndrome (MetS, Studies 2 and 3). Major strengths of both datasets include an ethnically 

representative sample comparable to that of the state of Texas (44.4 % Non-Hispanic 

Caucasian; 38.2% Hispanic) and comprehensive assessments of health, including body 

composition using DXA, cognitive function and neuroimaging.  

As the goal of this body of work is to detect and characterize early markers of brain 

vulnerability, outcome variables for each study were chosen in sequence of sensitivity to 

early adiposity driven changes. Study 1 examines adiposity related changes in cognitive 

performance, focusing on executive function measures. Previous research has shown that 

obese individuals are more likely to perform poorly on tests designed to measure 

executive function (Elias et al., 2003). Furthermore, we have previously demonstrated 

diminished working memory related functional activation in individuals with higher waist 

circumference (Gonzales et al., 2014). We also attempt to elucidate possible mechanisms 

driving adiposity related changes in executive function, using serum levels of BDNF as a 

mediator of the relationship between BDNF and executive function. We use both 

traditional causal steps and nonparametric bootstrapping to answer the following 

questions 1) Is central adiposity related to poorer performance on measures of executive 

function in middle age and 2) Does circulating BDNF mediate this relationship? 

Study 2 examines the effect of central adiposity on thickness of the cortical mantle.  
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Central adiposity was measured using DXA to accurately measure visceral fat mass and 

volume (Clasey et al., 1999; Kaul et al., 2012). We used an exploratory, whole brain 

approach to examine the effect of central adiposity on thickness at each vertex of the 

cortical mantle. This study addresses the question: is central adiposity related to structural 

changes in the cortical mantle in middle age? 

 Study 3 explores the effect of central adiposity on neuronal viability. Proton 

magnetic resonance spectroscopy (1H-MRS) will be used to answer the question: is 

central adiposity related to reductions in cerebral concentrations of NAA? Taken 

together, the three studies will elucidate different aspects of central nervous system 

functioning potentially disrupted by abdominal obesity.  
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STUDY 1: SERUM BRAIN-DERIVED NEUROTROPHIC FACTOR MEDIATES 

THE RELATIONSHIP BETWEEN ABDOMINAL OBESITY AND EXECUTIVE 

FUNCTION IN MIDDLE AGE 

The number of people being classified as obese or overweight has increased 

exponentially in the last 20 years in the United States, encompassing approximately two 

thirds of the adult population (NCHS, 2006). Obesity has been implicated in several 

adverse health outcomes, including diabetes, cardiovascular and gall bladder diseases, 

cancer and overall mortality (Kopelman, 2000). Recent evidence has shown similar 

detrimental effects of obesity on the brain (Gustafson et al., 2004; Whitmer et al., 2008). 

Being classified as obese is linked to increased risk of dementia (Gustafson et al., 2003; 

Whitmer et al., 2007) and poorer performance on cognitive tasks (Stingl et al., 2012), 

particularly tasks that evaluate executive function (Elias et al., 2003). Data from the 

Framingham heart study highlights deficits in working memory and verbal fluency in 

obese middle-aged and older men (Elias et al., 2003). However, the mechanisms that lead 

to this cognitive decline are poorly understood. As neurodegeneration is irreversible, it is 

crucial to identify the mechanisms underlying this relationship early in life such that 

targeted preventative measures may be developed and implemented.  

 The distribution of adipose tissue appears to selectively impact cognitive function 

(Cereda et al., 2007). In particular, abdominal adiposity is a more salient predictor of 

cognitive decline and dementia compared with whole-body adiposity as assessed by body 

mass index (BMI) (Cereda et al., 2007; Kanaya et al., 2009; Kerwin et al., 2011). Higher 

levels of abdominal fat have been correlated with insulin resistance (Raji et al., 2001), a 



 15 

phenomenon that has been shown to affect cerebral glucose metabolism (Doyle et al., 

1995) and mediate the relationship between BMI and working memory-related functional 

activation (Gonzales et al., 2010). Insulin resistance is also positively correlated with 

levels of circulating brain-derived neurotropic factor (BDNF) (Levinger et al., 2008), a 

key neurotrophin crucial for neuronal regeneration and survival (Mattson et al., 2004). 

Infusion of BDNF into the lateral ventricles of diabetic mice normalizes glucose 

regulation (Nakagawa et al., 2002). Mouse models have also depicted higher levels of 

obesity and hyperactivity as a result of conditional deletion of BDNF in the brain (Kernie 

et al., 2000; Rios et al., 2001). The BDNF and insulin regulation mechanisms are thus 

highly linked and central adiposity could cause disruption in BDNF production and 

distribution in the central nervous system.  

 BDNF has been correlated consistently to poorer performance in executive 

function tasks. Serum BDNF levels mediate the positive effects of exercise interventions 

on task switching in older adults(Leckie et al., 2014). Presence of the Met allele in the 

val66met polymorphism, a genetic marker linked with lower levels of peripheral and 

cortical BDNF (Chen et al., 2004; Ozan et al., 2010), is associated with poorer 

performance on tasks of processing speed (Miyajima et al., 2008) in older adults and 

higher levels of perseveration responses on the Wisconsin Card Sorting Test (Marques-

Iturra et al., 2014) in participants aged between 12-40 years. Thus, it is reasonable to 

hypothesize that adiposity-related cognitive decline occurs in the context of lower BDNF. 

However, to our best knowledge, no studies have directly addressed this hypothesis. As 

BDNF levels can be modified through dietary restriction (Duan et al, 2001) and regular 
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exercise (Wrann et al., 2013), it is vital to tease out the impact of BDNF on central 

nervous system functioning prior to neurodegeneration. This knowledge could promote 

the development of targeted interventions involving BDNF infusion and incorporation of 

non-pharmacological interventions on the BDNF into existing cognitive rehabilitation 

programs.  

 In the present study, we used a ratio of waist circumference to hip circumference 

(WHR) as a proxy for central adiposity. Based on published research from the 

Framingham heart study (Elias et al., 2003; Wolf et al., 2007) , we hypothesized that 

individuals with higher abdominal adiposity would demonstrate poorer performance on 

cognitive tests that evaluate different aspects of executive function. We further 

hypothesized that these relationships would be accounted for (statistically mediated by) 

serum levels of BDNF. A successful statistical mediation would imply that central 

adiposity-related declines in executive functioning occur primarily in the context of lower 

levels of circulating BDNF.  
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Method  

Participants 

Sixty-one adults between the ages of 40-60 years were recruited from the 

community through electronic and print advertisements. All potential participants 

underwent a telephone screening and completed a medical history questionnaire to 

establish eligibility. Exclusionary criteria (Gonzales et al., 2013) included a positive 

medical history for overt coronary artery disease, neurological disease (e.g., stroke, 

Parkinson’s disease, clinically significant traumatic brain injury), major psychiatric 

illness (e.g. schizophrenia, bipolar disorder) and substance abuse (i.e., diagnosed abuse 

and/or previous hospitalization for substance abuse). All participants were nonsmokers. 

Participants who passed the initial screen were enrolled in the study after providing 

written consent. The ethnic distribution of the participants was: 82.0% - Caucasian, 6.6% 

- Hispanic, 4.9% - African-American and 6.5% - Other/Did Not Specify. 

Procedures 

 This study was conducted in accordance with the Helsinki Declaration and with 

approval from the local Institutional Review Board. All volunteers provided written 

informed consent before enrollment. Participants underwent three separate study visits, a 

general health assessment, a neuropsychological assessment and a cardiorespiratory 

fitness assessment.  

General health assessment 

 Participants abstained from caffeine and fasted for at least 12 hours prior to 

assessment. Waist circumference was measured at the midpoint between the iliac crest 
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and lower rib during exhalation as recommended by the World Health Organization 

(W.H.O., 2008) . Hip circumference was measured at the broadest portion around the 

buttocks. Brachial systolic and diastolic blood pressure was assessed with a semi-

automated device (VP-1000plus, Omron Healthcare, Bannockburn, IL) after 15 minutes 

of rest. A fasting blood sample was also collected from the antecubital vein by 

venipuncture. Serum was separated within 2 hours of the collection and aliquots were 

stored at -80°C until later analysis. Fasting levels of glucose, total cholesterol and 

triglycerides were measured using the standard enzymatic technique. Serum 

concentration of BDNF was measured using high sensitivity enzyme linked 

immunosorbent assay (ELISA) kits (R & D Systems Inc, Minneapolis, MN). 

Neuropsychological assessment 

 Participants completed a battery of standard clinical neuropsychological 

assessments with established reliability and validity (Lezak et al., 2004), details of which 

have been described elsewhere (Gonzales et al., 2013). Based on published literature 

linking obesity (Gonzales et al., 2012) and BDNF (Marques- Itarra et al., 2014) to 

executive function decline, several tests that tap specific domains of executive function 

were selected for this analysis: Trail Making Test Part B (TMT) time to completion 

(Reitan, 1958) – a measure of working memory, Controlled Oral Word Associations test 

(COWA) (Ruff, 1996) – a measure of verbal fluency and Wechsler Adult Intelligence 

Scale III Digit Span Subtest (Weschler, 1997). Global cognitive function was screened 

using the Weschler Test of Adult Reading (WTAR) and the Mini Mental State 

Examination (MMSE) (Lezak, 2004). 
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Cardiorespiratory fitness assessment 

 Participants abstained from caffeine and physical exercise for 24 h and fasted for 

at least 12 h prior to the visit. Maximal oxygen consumption (VO2 max) was assessed 

with a graded treadmill exercise test during a modified Bruce protocol. Following a 5-

min warm up period, participants ran or walked at a speed that corresponded to 60–70% 

of their age-predicted maximal heart rate. The treadmill slope was increased 2% every 2 

min until volitional exhaustion. Oxygen consumption (indirect calorimetry via respiratory 

gas measurements; Physio-Dyne, Quogue, NY) and heart rate were measured throughout 

the protocol. At the end of each stage, participants rated their perceived exertion using the 

original Borg scale.  

 Statistical analyses 

 Statistical analyses were conducted in three steps: first, associations between 

WHR and performance on each executive function test were examined using linear 

regressions. Clinically relevant covariates (age, years of education, systolic and diastolic 

blood pressure, total concentrations of glucose, total cholesterol and cardiovascular 

fitness) were included in these analyses. To control for multiple comparisons, a Sidak-

adjusted two-tailed a-level of 0.01 was used (Sidak, 1967) here. Associations between 

performance on the one executive function test with significant adiposity effects 

(COWA) and serum BDNF levels were then assessed using linear regression. Finally, a 

mediation analysis was performed to test if the association between central adiposity and 

performance on the COWA is attenuated when considering the role of serum BDNF. For 

the single mediation analysis, a less conservative a-level of 0.05 was used. 
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 Mediation was assessed using both the traditional causal steps approach and non-

parametric bootstrapping procedures (Preacher et al., 2004). The causal steps approach 

posits that four conditions must be met to determine mediation: 1) a significant 

relationship between the independent variable (WHR) and the dependent variable 

(executive function), a significant relationship between the independent variable and the 

potential mediator (BDNF), 3) a significant relationship between the potential mediator 

and the dependent variable and 4) a non-significant relationship between the independent 

variable and the dependent variable after controlling for the potential mediator. An 

additional assessment on the significance of the mediation model was conducted by using 

confidence intervals obtained through Preacher and Hayes bootstrapping method for 

assessing indirect effects (Preacher, 2004). A 95% confidence interval that does not 

include 0 was used as the criterion for significance. All statistical analyses were carried 

out using IBM SPSS 22.0 software (SPSS Inc.).  
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Results 
Mean values for demographic and physiological characteristics as well as 

standard deviations are presented in Table 1.  

Table 1: Selected demographic and physiological characteristics for study 1  

Characteristic Mean (SD) 
N, (men and women) 60 (40 and 20) 
Age, years 52.3 (5.61) 
Education, years 16.9 (2.1) 
BMI, kg/m2 24.9 (4.6) 
Systolic blood pressure, mm Hg 119 (12) 
Diastolic blood pressure, mm Hg 72 (6) 
Blood glucose, mg/dl 91.1 (10.7) 
Total cholesterol, mg/dl 199.2 (35.3) 
Maximal oxygen consumption, ml/kg/min 36.8 (11.8) 
Waist to Hip Ratio, U 0.85 (0.08) 
Serum BDNF, ng/mL 25.0 (5.9) 

 

All the values were within the clinically normal range. Neuropsychological test scores are 

presented in table 2.  
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Table 2: Raw neuropsychological test scores for study 1 

Measure Mean (SD) 
Global cognition  
Mini Mental State Examination (MMSE)  29.0 (1.2) 
Weschler Test of Adult Reading (WTAR) predicted FSIQ 112.1 (6.3) 
Memory  
California Verbal Learning Test- II (CVLT-II)  
Long Delay Free Recall 11.6 (3.0) 
Recognition Discriminability 2.9 (0.8) 
Executive Function  
Trail Making Test (TMT)  
Part A (s) 29.8 (8.6) 
Part B (s) 60.0 (17.4) 
Part B – Part A (s) 30.16 (15.12) 
Controlled Oral Word Association (COWA) (number of words) 45.4 (10.5) 
Wechsler Adult Intelligence Scale III (WAIS-III)   
Digit Span Forwards 11.3 (2.04) 
Digit Span Backwards 7.4 (2.5) 

 

Descriptive statistics revealed a highly educated and cognitively intact sample (mean 

education = 16.87 years, SD = 2.1); mean estimated FSIQ = 112.11, S.D = 6.25). 

Participants had a mean WHR of 0.848 (S.D 0.076) and mean serum BDNF of 24.99 

ng/mL (S.D 5.91).  

 Linear regression models examining the association between WHR and scores on 

each executive function neuropsychological test were completed, with age, years of 

education, systolic and diastolic blood pressure, blood concentrations of glucose and total 

cholesterol and cardiovascular fitness entered as covariates. Higher WHR was only 

significantly associated with poorer performance on the COWA (b=-0.489, p=0.003). As 

age (t=1.46, p=0.15), education (t=1.22, p=0.22), systolic blood pressure (t=1.03, 

p=0.31), diastolic blood pressure (t=-0.75, p=0.45), total cholesterol (t=0.34, p=0.73) and 
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cardiorespiratory fitness, as measured by maximal oxygen consumption (t=-0.31, p=0.76) 

were not significantly associated with performance on the COWA, these variables were 

not included in subsequent analyses. Blood glucose concentration was significantly 

linked with better performance on the COWA (t=2.16, p=0.036). However, since this 

association did not survive correction for multiple comparisons (Z, 1967), it was also 

excluded from subsequent analyses.  

 Higher WHR was significantly associated with lower levels of serum BDNF (b=-

0.345, p=0.006). Lower levels of serum BDNF successfully predicted poorer scores on 

the COWA (b=0.41, p=0.001). The relationship between higher WHR and poorer 

performance on the COWA was completely attenuated when serum BDNF was included 

in the model (b=-0.20, p=0.099), thus fulfilling the requirements of Baron and Kenny’s 

traditional causal steps approach for statistical mediation (Baron RM, 1986). The results 

of these analyses are depicted in Figure 2.  
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Figure 2: Multiple linear regression analyses for statistical mediation

The significance of the mediation model was further confirmed by the 95% confidence 

interval range (95% CI= -3.79 - -0.26) derived by Preacher and Hayes bootstrapping 

procedure for detecting indirect effects (Preacher et al., 2004).  
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Discussion 

 To our knowledge, this is the first study to highlight BDNF as a possible mediator 

for the relationship between abdominal adiposity and a classic executive function task. 

Verbal fluency performance has been consistently linked with cardiovascular risk factors 

(Brady et al., 2001) and in cases of post-stroke cognitive decline and vascular dementia, 

verbal fluency is disproportionately impaired compared with other cognitive functions 

such as memory (Lafosse et al., 1997; Starkstein et al., 1996; Wolfe et al., 1990). Verbal 

fluency thus appears to be an area of executive functioning uniquely burdened by high 

cardiovascular risk.  

 The BDNF pathway is a plausible mechanism through which abdominal adiposity 

impinges upon the cognitive function. BDNF stimulates cell differentiation and 

proliferation by reducing inhibitor proteins and increasing the expression of neuronal 

nitric oxide synthase (nNOS) in adult mice (Cheng et al., 2003). BDNF infusion has also 

resulted in neurogenesis in mouse hippocampi (Rossi et al., 2006) as well as 

improvements in long-term memory in mice (Bekinschtein et al., 2007), thus further 

highlighting BDNF as a credible target for intervention. However, small studies 

involving BDNF infusion in humans with neurologic conditions like Parkinson’s Disease 

and Amyotrophic Lateral Sclerosis have not reported significant effects on cognition thus 

far (Kordower et al., 2001; Ochs et al., 2000). Thus, BDNF is likely to act in synergy 

with other disease states in humans and the interaction between BDNF and adiposity 

hormones likely drives the results of our study. 
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 BDNF can also act on central nervous system functioning through N-methyl-d-

aspartate (NMDA) receptors. BDNF infusion induces NMDA-dependent long-term 

potentiation in the insular cortices of adult mice (Escobar et al., 2003). The NMDA 

receptor is the primary molecular device for controlling synaptic plasticity as well as a 

variety of neurocognitive declines, including verbal fluency (Krystal et al., 1994). Thus, 

BDNF could have a significant effect on cortical activity by acting on NMDA receptors 

in the left prefrontal cortex, resulting in higher performance on verbal fluency.  

A critical next step would be to determine the moderators of BDNF expression in 

the central nervous system in order to develop useful targeted interventions. In addition to 

abdominal adiposity, BDNF levels are modulated by acute and chronic stress (Murakami 

et al., 2005). Pharmacological interventions aimed at acute stress reduction such as 

sertraline increased BDNF levels and promoted neurogenesis in Huntington’s disease 

mouse models (Qi Peng, 2007). Furthermore, chronic stress is associated with higher 

levels of oxidative stress (Aschbacher et al., 2013), which interacts with BDNF to 

ameliorate the deleterious cognitive effects of high fat diet in mice (Wu et al., 2004). 

Direct examination of stress-related brain vulnerability mechanisms is beyond the scope 

of the current study but would be a critical next step in understanding how BDNF affects 

cognitive function in humans.  

 The main limitation of this study was the small sample size (N = 61), which 

limited the number and types of analyses. Larger sample sizes would allow us to examine 

the possible synergistic effects of stress, insulin resistance and BDNF on cognitive 

function via moderated mediation or mixed models. The reported effect represents the 
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effect of a statistical mediation procedure and may not be indicative of cause and effect. 

While higher levels of BDNF may be responsible for better performance on the COWA, 

it is also possible that both may be driven by genetic factors or developmental factors not 

examined in the present study. Confidence in the reported mechanism can be gained 

through longitudinal studies where temporal precedence between elevated BDNF levels 

and improvement in performance on the COWA can be clearly established. Despite the 

above limitations, this study is a crucial first step in directly identifying a mechanistic 

pathway through which central adiposity uniquely impinges upon central nervous system 

functioning.  
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STUDY 2: CENTRAL ADIPOSITY AND CORTICAL THICKNESS IN MID-LIFE 

The number of individuals who have been classified as overweight or obese is 

increasing, currently encompassing almost 65 percent of the adult population in the 

United States (NCHS, 2006). Obesity has also been implicated in a host of negative 

health outcomes including increased risk for cardiovascular disease, gall bladder disease, 

cancer and overall mortality (Kopelman et al., 2000). Recent evidence has shown similar 

deleterious effects of obesity on the brain (Gustafson et al., 2004; R. Whitmer et al., 

2008). In particular, being classified as obese is associated with higher risk of dementia 

(Whitmer et al., 2007) and poorer performance in cognitive tasks, particularly those that 

measure executive function (Stingl et al., 2012). We have previously demonstrated 

reductions in working memory related functional activation in the brain (Gonzales et al., 

2010), alterations in cerebral metabolite concentrations (Gonzales et al., 2012) and 

thinning in the cortex of the cognitive control network (Hassenstab et al., 2012) as a 

result of obesity. Others have reported associations between obesity and increased white 

matter volume (Haltia et al., 2007), lower grey matter density (Pannacciulli et al., 2006) 

and lower brain volumes in patients with Alzheimer’s disease and mild cognitive 

impairment (Ho et al., 2010). Given that neurodegeneration is irreversible, it is crucial to 

identify the mechanisms behind this relationship early in life, so targeted preventative 

measures may be developed. 

Adipose tissue contains metabolically active cells that could impinge upon central 

nervous system functioning through metabolic or hormonal pathways (Gustafson et al., 

2010; Gustafson et al., 2007). The distribution of adipose tissue appears to selectively 
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impact cognitive function (Cereda et al., 2007). Central adiposity is indicative of visceral 

fat, which is metabolically active and a more significant predictor of increased risk for 

cognitive decline and dementia compared to body mass index (BMI) (Cereda et al., 2007; 

Kanaya et al., 2009; Kerwin et al., 2011; R. Whitmer et al., 2007). Higher levels of 

visceral fat has been correlated with insulin resistance (Raji et al., 2001), a phenomenon 

known to affect cerebral glucose metabolism (Doyle et al., 1995) and mediate the 

relationship between BMI and functional activation during a working memory task 

(Gonzales et al., 2010). Visceral fat is also independently associated with systemic 

inflammation in obese adults (de Luca et al., 2008; Fontana et al., 2007), which we have 

previously demonstrated to modulate concentrations of crucial cerebral metabolites 

(Eagan et al., 2012). Furthermore, increased waist circumference/central adiposity (a 

proxy measure for visceral fat) has been consistently linked to poorer performance on 

working memory and executive control in adolescents (Schwartz et al., 2013) and older 

adults (Wolf et al., 2007). It is thus highly plausible to suggest a deleterious effect of 

visceral fat on neuronal integrity and cortical thickness. Nonetheless, to the authors’ best 

knowledge, very little work has been done examining the direct effect of central adiposity 

on brain structure among younger, non-clinical populations. As clinically significant 

cognitive decline is often preceded by structural and functional indices of brain 

vulnerability (Dickerson et al., 2009; Gonzales et al., 2010), it is thus necessary to 

examine these associations early in life. 

We have previously described a deleterious effect of higher central adiposity (as 

measured by waist circumference) on working memory related task activation among 
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middle aged adults (Gonzales et al., 2014). However, research has shown that more direct 

measures of abdominal obesity, such as actual visceral adipose tissue mass and volume, 

have increased utility in predicting neurodegeneration in elderly populations (Isaac et al., 

2011). Higher levels of visceral fat has also been shown to correlate with lower total 

brain volumes in middle aged adults (Debette et al., 2010), although patterns of cortical 

atrophy as a result of higher central adiposity in this population have not been extensively 

studied. Here, we aimed to expand on this previous work by examining the direct effect 

of visceral fat mass and volume on the structural integrity of the cortical mantle in 

middle-aged adults. Changes in cortical thickness have been identified in cognitively 

intact older adults with high BMI (Leritz et al., 2011), asymptomatic amyloid positive 

adults (Dickerson et al., 2009) and in adults with multi-domain mild cognitive 

impairment (Seo et al., 2007). Change in thickness of the cortical mantle is thus being 

increasingly viewed as a marker for future cognitive decline and was chosen as the 

primary outcome for this study. Visceral fat was measured using dual energy X-ray 

absorptiometry (DXA), an X-ray scan used to accurately estimate regional fat mass and 

volume (Clasey et al., 1999; Kaul et al., 2012). This is the first study to utilize DXA 

technology to analyze of the effects of visceral fat on cortical thickness in healthy 

middle-aged adults. As we were interested in examining the early effects of visceral fat 

on cortical thickness, we also administered a cognitive screening battery to each 

participant. 
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Method 

Participants 

Adults between the ages of 40-60 years were recruited from the community 

through electronic and print advertisements. Individuals with a history of coronary artery 

disease, angina pectoris, myocardial infarctions, heart failure and cardiac surgery were 

excluded. Additional exclusion criteria comprised of history of neurological disease (e.g., 

Parkinson’s disease, neurodegenerative illness, clinically significant traumatic brain 

injury), major co-morbid psychiatric illness (schizophrenia, anxiety), substance abuse 

(i.e., diagnosed abuse and/or previous hospitalization for substance abuse), metabolic 

disorder (thyroid disorder), smoking (within the last 2 years) or MRI contraindications. 

Participants who passed the initial screen were enrolled in the study after providing 

written consent. 

Procedures 

The study was approved by the University of Texas Institutional Review Board 

and was completed in accordance with the declaration of Helsinki, 1975. Participants 

underwent two separate study visits, a general health assessment where DXA data were 

collected and a neuropsychological/brain imaging assessment. Data were collected over a 

period of approximately 17 months, from August 2012 to January 2014. 

General health assessment 

After an 8-hour fast, blood samples were collected from the antecubital vein by 

venipuncture. Fasting glucose and total cholesterol level were assessed using standard 

enzymatic techniques. Brachial systolic and diastolic blood pressure was assessed using a 
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semi-automated device (VP-2000, Omron Healthcare, Bannockburn, IL, USA) after a 15-

minute period of rest. Visceral fat mass and volume were estimated non-invasively via 

dual-energy X-ray absorptiometry (DXA) using a Lunar Dual Energy X-Ray 

Absorptiometry DPX (General Electric Medical Systems, Fairfield, Connecticut). This 

procedure required that the subject lay down on a padded table that emits energy for 

approximately five minutes while an arm passed overhead and involves a small amount 

of radiation, which is equivalent to less than 1/20 of a chest X-ray. While DXA was 

traditionally used to measure bone density, it has been well validated as a sensitive, 

relatively inexpensive tool for visceral fat measurement (Kaul et al., 2012; Xia, 2014) 

with results comparable to that of computed tomography (CT) (Kaul et al., 2012; Xia, 

2014); the gold standard for measuring visceral fat. 

Neuropsychological assessment 

Details of the neuropsychological assessment battery administered have been 

described elsewhere (Gonzales et al., 2014). Briefly, participants underwent a 1.5-hour 

battery of standard clinical instruments with established reliability and validity including 

the Mini Mental State Examination (MMSE), the Weschler Abbreviated Scales of 

Intelligence II (WASI-II), the California Verbal Learning Test-II (CVLT-II), Parts A and 

B of the Trail Making Test (TMT), the Controlled Oral Word Association Test (COWA), 

the Weschler Adult Intelligence Scale III (WAIS III) Digit Span subtest and the Stroop 

Color-Word Subtest (M. M. Gonzales et al., 2014). The battery was chosen to provide a 

comprehensive evaluation of memory, executive function and global cognitive ability. 
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Trained research assistants using standard administration and scoring criteria 

administered all assessments. 

Neuroimaging 

Magnetic resonance imaging was conducted using a 3T Siemens Skyra scanner 

equipped with a standard head coil. Anatomical scans of the entire brain were collected 

using high-resolution Magnetization Prepared Rapid Acquisition Gradient Echo 

(MPRAGE) sequences (256 × 256 matrix, flip angle = 7°, field of view (FOV) = 24 × 24 

cm2, 1 mm slice thickness, 0 gap, voxel size = 1.0 x 1.0 x 1.0 mm3, TR = 2530.0 ms). 

Neuroimaging data processing 

Structural images were processed using Freesurfer Image analysis suite, which is 

documented and freely available for download online 

(http://surfer.nmr.mgh.harvard.edu). Image processing involved first motion correction 

and averaging of two volumetric weighted images, computerized removal of non brain 

tissue using a hybrid watershed/surface deformation procedure, automated Talairach 

transformation, intensity normalization, tessellation of the gray matter, white matter 

boundary, automated topology correction and surface deformation following intensity 

gradients to optimally place the gray/white and gray/cerebrospinal fluid borders at the 

location where the greatest shift in intensity defines the transition to the other tissue class. 

Once the cortical models are complete, a number of deformable procedures can be 

performed for further data processing and analysis including surface inflation, 

registration to a spherical atlas, which utilized individual cortical folding patterns to 

match cortical geometry across participants and creation of a variety of surface based 
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data including maps of curvature and sulcal depth. This method uses both intensity and 

continuity information from the entire three dimensional MR volume in segmentation and 

deformation procedures to produce representations of cortical thickness, calculated as 

closest distance from the gray/white boundary to the gray/ cerebrospinal fluid boundary 

at each vertex in the tessellated surface. 

Statistical analysis 

The procedure employed by Leritz et. al (Leritz et al., 2011) was adopted here. 

Statistical comparisons of global data and surface maps were generated by computing a 

generalized linear model (GLM) of the effects of visceral fat mass and volume on 

thickness at each vertex in the cortical mantle using the Query Design Estimate Contrast 

(QDEC) interface of Freesurfer. QDEC is a single binary application included in the 

Freesurfer distribution that is used to perform group averaging and inference on cortical 

morphometric data produced by the Freesurfer processing stream. Maps were created 

using statistical thresholds of .05 and were smoothed to a full width half maximum 

(FWHM) of 20 mm. Since the QDEC analyses involved performing a GLM analysis at 

160,000 vertices, maps were corrected for multiple comparisons by means of a cluster 

wise procedure using the Monte Carlo Null-Z simulation method adapted for cortical 

surface analysis and incorporated into the QDEC processing stream. For these analyses, a 

total of 10,000 iterations of simulation were performed for each comparison, each using a 

threshold of p < .05. This procedure has been used in similar studies examining cortical 

thickness (Leritz et al., 2011). This method is primarily an exploratory, whole brain 

approach. Clinically relevant covariates such as age, blood pressure, fasting glucose level 
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and total cholesterol were selected based on published relationships with cortical 

thickness in older adults (Leritz et al., 2011) and included in the model. Thickness values 

from significant regions of interest were extracted and loaded into SPSS version 22.0 

(IBM SPSS Inc, Chicago, IL, USA) for analysis of orthogonal contrasts with cognitive 

test scores. Cognitive data were explored using multiple linear regression models for each 

of the cognitive scores with thickness in the ROI (the posterior cingulate cortex), 

controlling for age, years of education, systolic blood pressure, total cholesterol and 

blood glucose level. Adjusted Bonferroni levels of p<0.02, recommended for multiple 

intercorrelated outcomes were used as criteria for statistical significance. 
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Results 

Descriptive statistics 

One hundred and three participants were included in this study. Participants had a 

mean age of 49.63 years (S.D 6.45) with a mean BMI of 28.34 (S.D 5.78). Fifty-six 

participants identified as Caucasian, 28 identified as Hispanic/Latin American, 9 

identified as African American and 10 identified as Other/did not respond. Participants 

had a mean visceral fat volume of 1276.33 cm3 (S.D 1021.17 cm3) and a mean visceral fat 

mass of 1206.93g (S.D 961.73g), which is consistent with other published work with 

similar populations (Cereda et al., 2007; Kaul et al., 2012; Pou et al., 2007). Further 

information on demographic and physiologic characteristics of this sample is presented in 

table 3. 

Table 3: Selected demographic and physiological characteristics of study 2 

Characteristic Mean (S.D) 
Female, n (%) 54 (52.42) 
Age, years 49.63 (6.45) 
Education, years 15.99 (2.61) 
BMI kg/m2 28.34 (5.78) 
Systolic blood pressure mm Hg 120.29 (13.07) 
Diastolic blood pressure mm Hg 72.60 (9.46) 
Blood glucose mg/dl 102.04 (36.01) 
Total cholesterol mg/dl 196.67 (39.19) 

 

This was a relatively well-educated (mean education = 15.99 years, S.D = 2.61), 

cognitively intact sample (mean MMSE score = 28.71, S.D = 1.39). Further information 

on the cognitive profile of the sample is presented in table 4.  
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Table 4: Raw scores on neuropsychological assessment measures for study 2 

Measure Mean score (S.D) 
Global cognition  
Mini Mental State Examination (MMSE) 28.71 (1.39) 
Weschler Abbreviated Scale of Intelligence- II (WASI-II)  
Vocabulary subtest 44.10 (6.09) 
Matrix reasoning subtest 20.45 (4.75) 
Full scale IQ 111.55 (14.81) 
Memory  
California Verbal Learning Test- II (CVLT-II)  
Free recall 11.15 (2.86) 
Recognition Discriminability 3.00 (0.67) 
Executive Function  
Trail Making Test (TMT)  
Part A (s) 31.15 (10.72) 
Part B (s) 69.23 (38.67) 
Controlled Oral Word Association (COWA) 41.08 (11.31) 
Weschler Adult Intelligence Scale –III (WAIS-III) Digit Span 19.94 (4.22) 
Stroop color-word subtest 40.71 (10.04) 

 
Visceral fat and cortical thickness 

In order to control for non-normality of visceral fat data (Shapiro-Wilk’s statistic 

= 0.913, p <0.001 for visceral fat mass; 0.912, p <0.001 for visceral fat volume), a square 

root transformation was carried out. Visceral fat mass and visceral fat volume were 

highly correlated (r = 0.97, p <0.001). Both visceral fat mass and visceral fat volume 

were significantly associated with increased cortical thickness in the right posterior 

cingulate gyrus (X Y Z coordinates: 9, -53, -15; t=2.38, s.e =0.001, p = 0.019 and t=2.71, 

s.e =0.001, p = 0.011, respectively), adjusting for age, blood pressure, fasting glucose and 

total cholesterol. With inclusion of these covariates and stringent controls for multiple 

comparisons, the posterior cingulate gyrus was the only region in the entire cortical 

mantle that yielded results that were significant. Plots of these relationships are depicted 
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in figures 2 and 3. Each cm3 increase in visceral fat volume predicted 0.31 mm higher 

cortical thickness. Similarly, every 1g increase in visceral fat mass predicted 0.29 mm 

increase in cortical thickness. As thickness of the cortical mantle in cognitively intact 

adults ranges between 1 and 4.5 mm (Paxinos, 1990) across the cortical mantle with an 

average thickness of approximately 2.5 mm (Fischl, 2000), this represents a projected 

increase in cortical thickness of approximately 12.4% per cm3 of visceral fat and 

approximately 11.6% per gram of visceral fat. 

As the posterior cingulate gyrus has been linked to poorer working memory (Sala- 

Llonch, 2012), we examined the associations between thickness in the right posterior 

cingulate gyrus and performance on the executive function tests in our screening battery. 

Results are presented in detail in table 5.  

Table 5: Linear regression models examining the association between cognitive test scores 

and thickness in the posterior cingulate gyrus 

 
Test b p-value 
Stroop color-word (number of words in 40s) 0.14 0.127 
TMT part B (time to completion) 0.17 0.071 
TMT part A (time to completion) 0.06 0.532 
COWA 0.03 0.744 
WAIS III Digit Span total score -0.04 0.702 

 
While none of the associations reached statistical significance, there was a trend 

towards thicker cortex in the right posterior cingulate ROI being associated with poorer 

performance on the Trails B (b = 0.17, p = 0.071), a test of working memory and 

executive function. Bivariate correlations between visceral fat mass, visceral fat volume 

and performance on all other executive function measures are presented in table 6. 
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Table 6: Bivariate correlations between neuropsychological assessment measures and 

visceral fat 

Measure r 
(mass) 

p r (volume) p 

Global cognition     
Mini Mental State Examination (MMSE)  0.006 0.95 0.005 0.96 
Weschler Abbreviated Scale of Intelligence- II (WASI-II)     
Vocabulary subtest     
Matrix reasoning subtest -0.166 0.09 -0.156 0.11 
Full scale IQ   -0.057 0.56 -0.088 0.371 
Memory -0.124 0.205 -0.136 0.165 
California Verbal Learning Test- II (CVLT-II)     
Free recall -0.252 0.009 -0.245 0.012 
Recognition Discriminability  -0.090 0.360 -0.060 0.544 
Executive Function     
Trail Making Test (TMT)     
Part A (s)  -0.080 0.415 -0.082 0.405 
Part B (s) -0.088 0.375 -0.078 0.427 
Controlled Oral Word Association (COWA)  0.182 0.061 0.173 0.075 
Weschler Adult Intelligence Scale –III (WAIS-III) Digit 
Span  

-0.070 0.477 -0.084 0.386 

Stroop color-word subtest <0.001 0.998 0.011 0.914 
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Discussion 

The primary finding from the current study was that higher visceral fat mass and 

volume were significantly associated with thicker cortex in the right posterior cingulate 

gyrus. This was contrary to our original hypothesis that cortical thinning will relate to 

abdominal obesity, but inspection of task performance was consistent with the idea that 

the observed relationship is indicative of potential brain/cognitive vulnerability. Previous 

work on obesity and brain morphology in middle age has shown reductions in total brain 

volume (Isaac et al., 2011), increases in white matter hyperintensity volume (Debette et 

al., 2010; Jagust et al., 2005); generally indicative of vascular damage and lower 

hippocampal volume (Jagust et al., 2005) suggestive of subcortical neurodegeneration. 

We have also previously reported cortical thinning in the cognitive control network 

among obese participants compared to successful weight loss maintainers and never 

obese lean participants (Hassenstab et al., 2012). Here, we show selective changes in the 

cortical mantle in one particular region - the cortex of the posterior cingulate gyrus. 

Published work on functional connectivity has implicated the posterior cingulate gyrus as 

a key component of a network that facilitates cognitive performance during working 

memory tasks (Hampson et al., 2006; Sala- Llonch et al., 2012). Furthermore, patients 

with attention deficit/hyperactivity disorder have shown compromised connectivity 

between the posterior cingulate gyrus and other default mode network components 

(Castellanos et al., 2008; Durston et al., 2003). There have also been published studies 

utilizing FMRI that show significant de-activation during the Stroop color-word subtest 

in healthy adults (Peterson et al., 1999). We have also previously shown indirect effects 
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of obesity on memory through elevated concentrations of cerebral metabolites in this 

region(Gonzales et al., 2012). Taken together, the literature strongly suggests that 

disturbances in the structural or functional integrity of the PCC could lead to poorer 

performance across a number of executive function and memory tasks. While it is 

noteworthy that the relationship between thickness in the PCC and performance on the 

TMT-B in this study was only a statistical trend and performance on other executive 

function tests was unrelated to cortical thickness in this area, it is also important to 

remember that the present study included a relatively young, highly educated sample. It is 

not unreasonable to hypothesize that altered structural integrity of the PCC in the sample 

is an early marker of brain vulnerability and decline in cognitive performance would be 

detectable on follow-up examination. It is also important to consider that the relationship 

between measures of cognitive function cortical thickness across the lifespan is likely 

nonlinear (Schnack et al., 2014) and may be moderated by genetic factors (Posthuma et 

al., 2002). Follow up studies tracking possible cognitive decline in this population over 

time and examining non-linear trends and genetic influences could be a profitable future 

direction in this area of research. 

Interestingly, a few other studies have also reported regionally specific increases 

in cortical thickness/brain volume as a result of metabolic risk factors, such as high serum 

cholesterol (Leritz et al., 2011; Solomon et al., 2009). Therefore the relationship, while 

unintuitive, may be worth further investigation. 

Visceral fat is hypothesized to impinge upon the central nervous system via 

perturbation of insulin sensitivity in the brain (Doyle et al., 1995). Mouse models have 
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shown that increased concentrations of uric acid that occur as a result of poor 

homoeostasis of insulin (Johnson et al., 2007). Uric acid induces oxidative stress in 

adipocytes, (Sautin et al., 2007) a phenomenon that results in low levels of circulating 

leptin (Furehwald-Schultes et al., 1999; Sautin et al., 2007). As leptin is protective 

against Alzheimer’s disease associated amyloid b deposits (Fewlass et al., 2004), it may 

be that we are seeing increases in plaque deposits in the posterior cingulate gyrus that 

may precede neurodegeneration. This would be consistent with published work utilizing 

amyloid PET imaging that link increased amyloid b burden to vascular disease in middle 

age (Langbaum et al., 2012; Rodrigue et al., 2013).While there has been research linking 

amyloid b burden to cortical thinning (Becker et al., 2011), a complex, nonlinear 

relationship appears to exist between amyloid burden and brain volume in the context of 

dementia. Examination of the animal literature has shown higher baseline cortical 

thickness in amyloid precursor protein b transgenic mice compared to wild type mice in 

several regions including the posterior cingulate gyrus and retrosplenial cortex 

(Grand'Maison et al., 2013). Autopsy data from the Baltimore Longitudinal Study of 

Aging revealed hypertrophy in the nuclei and nucleoli in the several regions of the 

cerebral cortex, including the posterior cingulate cortex in asymptomatic Alzheimer’s 

Disease patients compared with cognitively intact controls and cognitively impaired 

subjects (Iacono et al., 2008). This finding was replicated by Iacono et. al upon 

examination of autopsy material from the nun study (Iacono et al., 2009) . Neuronal 

hypertrophy and astrogliosis have been suggested as possible mechanisms accounting for 

increases in cortical thickness in individuals at risk for cognitive impairment (Beach, 
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1989). Serrano-Pozo et al (2011) have described significant increases in density of 

astrocytes in the proximity of dense core plaques in post autopsy brains of Alzheimer’s 

disease patients across a range of disease stages. The number of activated astrocytes also 

correlated significantly with number of neurofibrillary tangles in post autopsy brains at 

later stages of the disease process (Serrano-Pozo et al., 2011). As some researchers 

believe that neurofibrillary tangle density contributes more strongly to disease severity 

and neuronal death than total plaque burden (Berg et al., 1998; Giannakopoulos et al., 

1997) it is possible that astrogliosis as a result of increased plaque burden potentially 

drives increases in neurofibrillary tangles, which then leads to neurodegeneration and 

cortical thinning. Thus, we may speculate that visceral fat contributes to neuronal 

hypertrophy in the posterior cingulate cortex in middle age via increases in amyloid b 

deposition. Direct examination of this hypothesis is beyond the scope of this study. 

Larger longitudinal studies utilizing amyloid PET imaging would be needed to tease out 

these complex, seemingly nonlinear relationships between amyloid b deposition, cortical 

thickness and cognitive test performance. 

The current study provides useful information on the direct impact of visceral fat 

on the brain in middle-aged adults. This is an adequately powered study that comprises of 

a cognitively intact, ethnically diverse sample. However, this study is limited by the cross 

sectional design, which precludes assessment of causation. A possible future direction 

would involve longitudinally examining this cohort, to track progression of 

neurodegeneration, cognitive decline and their relationships to midlife markers of 

peripheral metabolism. It is also possible that hereto-unexamined metabolic and genetic 
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factors could have moderated the effect of visceral fat on the cortical mantle; however, 

every effort was made to statistically control for documented relevant confounding 

variables such as age, blood pressure, fasting glucose and total cholesterol. 

In summary, higher visceral fat volume and mass were associated with increased 

thickness in the right posterior cingulate gyrus. This main effect was observed over and 

above statistically controlling for age, systolic blood pressure, total cholesterol and 

glucose levels. While future research is needed to explore possible mechanisms behind 

this relationship, the current study is a useful first step in highlighting the complex 

relationship between visceral fat and structural changes to the cortical mantle in middle 

age. 
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STUDY 3: CENTRAL ADIPOSITY PREDICTS NEURONAL VIABILITY IN 

MID-LIFE 

The prevalence of obesity has increased exponentially in the United States (NCHS, 2006) 

and globally (W.H.O., 2000, 2009), rendering it the fifth leading cause of mortality 

worldwide (W.H.O., 2009). Furthermore, obesity is implicated in a host of negative 

outcomes including increased risk of stroke, gall bladder disease, as well as cancer 

(Kopelman et al., 2000). However, the association between obesity and physical health is 

not straightforward. In what is known as the obesity paradox, obese individuals with 

chronic conditions such as heart failure have lower mortality rates (Curtis et al., 2005). 

Published research has also highlighted a similarly complex relationship between obesity 

and brain health. Obesity at midlife has been linked to increased risk for Alzheimer’s 

Disease (Gustafson et al., 2003), diminished working memory related functional 

activation (Gonzales et al., 2010) and altered concentrations of crucial cerebral 

metabolites (Haley et al., 2013). However, despite these established and well regarded 

findings, others have found a potential protective effect of high body mass index (BMI) 

and subsequent incident dementia (Qizilibash et al., 2015). Still others have reported no 

association between midlife obesity and structural indices of brain health in old age 

(Albanese et al., 2015). The relationship between being overweight/obese in midlife and 

brain health is thus complicated and warrants further investigation. Given that 

neurodegeneration is irreversible, it is imperative to elucidate the mechanisms that drive 

these changes early in life, where targeted preventative efforts may be launched. 
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Adipose tissue comprises of metabolically active cells that could have deleterious effects 

on central nervous system functioning through metabolic or hormonal pathways 

(Gustafson et al., 2010; Gustafson et al., 2007). However, the distribution of adipose 

tissue throughout the body appears to selectively predict cognitive ability (Cereda et al., 

2007). Centrally distributed adipose tissue is indicative of visceral fat, which is 

metabolically active and a more salient predictor of cognitive decline and dementia 

compared to body mass index (BMI) (Cereda et al., 2007; Kaul et al., 2012; Kerwin et 

al., 2011). We have previously described the deleterious effects of various proxies of 

visceral fat (waist circumference and BMI) on working memory related functional brain 

activation (Gonzales et al., 2014) and cerebral neurochemical profiles (Gonzales et al., 

2012) in middle aged adults. However, to our best knowledge, very little research has 

been done utilizing direct measures of visceral fat and its effects on brain integrity in 

middle age. As more direct measures of abdominal obesity have increased utility in 

predicting neurodegeneration in elderly populations (Isaac et al., 2011), it is imperative to 

directly examine the impact of actual visceral fat mass and volume on brain integrity. We 

recently reported on the effects of visceral fat mass and volume on the thickness of the 

cortical mantle using an exploratory whole brain approach (Kaur et al., 2015). Here, we 

aim to expand on this work by exploring the relationship between visceral fat and 

neuronal viability and metabolism measured by Magnetic Resonance Spectroscopy 

(MRS). 

MRS allows for the identification and quantitation of several neurochemicals of 

neurobiological significance such as N-acetyl-aspartate (NAA), myo-inositol (mI) and 
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creatine (Cr) among others. NAA is exclusively found in the adult central nervous system 

(Urenjak et al., 1992) and has been directly linked to changes in cognitive functioning in 

patients with Alzheimer’s Disease (Jessen et al., 2001) and neurologically intact younger 

adults (Grachev et al., 2001). It is widely regarded as a marker of neuronal density. 

However, as changes in NAA are not always irreversible, it would be more accurately 

termed a marker of neuronal viability (De Stefano et al., 1995). Cortical NAA levels have 

also been reported to be reduced in older adults with higher BMI (Gazdzinski et al., 

2010). However, very little work has been done examining the association between direct 

measures of visceral fat and these neurometabolites. Perturbations in levels of NAA have 

been associated with poorer performance on executive function tests in healthy elderly 

(Ross et al., 2005; Valenzuela et al., 2000). Furthermore, baseline cortical NAA is a 

useful marker for predicting post stroke cognitive decline (Ross et al., 2006). Myo-

inositol (mI), on the other hand, is an organic osmolyte and hypothesized glial marker 

(Brand, 1993). MI is elevated in neurodegenerative disorders such as multiple sclerosis 

(Fernando, 2004) and prodromal Alzheimer’s Disease (Kantarci et al., 2000) as well as 

middle-aged adults with higher BMI, indirectly impacting their memory performance 

(Gonzales et al., 2012). Elevated levels of mI precede cognitive decline in patients with 

Alzheimer’s Disease (Huang et al., 1999), Human Immunodeficiency Virus (HIV) 

(Cloak et al., 2004) and multiple sclerosis (Fernando et al., 2004). Other neurochemical 

markers such as choline (Cho) are associated with white matter integrity in individuals 

with fragile X syndrome (Filley et al., 2015).  
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Neurochemical markers are thus potent predictors of brain integrity and were chosen as 

primary outcomes for this study. As visceral fat is a more salient predictor of cognitive 

outcome and brain integrity than BMI, it is critical to tease out the unique contribution of 

high visceral fat to alterations in cerebral neurochemical profiles. Visceral adipose tissue 

mass and volume were directly measured using dual energy X-ray absorptiometry (DXA) 

(Clasey et al., 1999; Kaul et al., 2012).  
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Method 

Participants 

Adults between the ages of 40-60 years were recruited from the community 

through electronic and print advertisements. Individuals with a history of coronary artery 

disease, angina pectoris, myocardial infarctions, heart failure and cardiac surgery were 

excluded. Additional exclusionary criteria comprised of: history of neurological illness 

(e.g., Parkinson’s disease, neurodegeneration, clinically significant traumatic brain 

injury), major psychiatric disorder (schizophrenia, anxiety), substance abuse (i.e., 

diagnosed abuse and/or previous hospitalization for substance abuse), metabolic disorder 

(thyroid disorder), smoking (within the last 2 years) or MRI contraindications. 

Participants who pass the initial screen were enrolled in the study after providing written 

consent. Data from individuals with uncontrolled hypertension (systolic blood pressure > 

160 mm Hg), diabetes (fasting blood glucose > 126 mg/dl) and acute inflammation 

(fasting blood C-Reactive Protein > 10 mg/dl) were also excluded from this study. 

Procedures 

The study was approved by the University of Texas Institutional Review Board 

and was completed in accordance with the declaration of Helsinki, 1975. Participants 

underwent two separate study visits, a general health assessment where DXA data were 

collected and a neuropsychological/brain imaging assessment. 

General health assessment 

After an 8-hour fast, blood samples were collected from the antecubital vein by 

venipuncture. Fasting glucose and total cholesterol level were assessed using standard 



 50 

enzymatic techniques. Brachial systolic and diastolic blood pressure were assessed using 

a semi-automated device (VP-2000, Omron Healthcare, Bannockburn, IL, USA) after a 

15-minute period of rest. Visceral fat mass and volume were estimated non-invasively via 

dual-energy X-ray absorptiometry (DXA) using a Lunar Dual Energy X-Ray 

Absorptiometry DPX (General Electric Medical Systems, Fairfield, Connecticut). This 

procedure requires that the subject lay down on a padded table that emits energy for 

approximately five minutes while an arm passed overhead and involves a small amount 

of radiation, which is equivalent to less than 1/20 of a chest X-ray. While DXA was 

traditionally used to measure bone density, it has been well validated as a sensitive, 

relatively inexpensive tool for visceral fat measurement (Kaul et al., 2012; Xia, 2014) 

with results comparable to that of computed tomography (CT) (Kaul et al., 2012; Xia, 

2014); the gold standard for measuring visceral fat. As visceral fat is associated with 

chronic systemic inflammation (de Luca, 2008; Fontana, 2007), peripheral levels of C-

Reactive Protein, a marker of chronic inflammation, was measured using commercially 

available high sensitivity Enzyme Linked Immunosorbent Assays (ELISA) (Alpha 

Diagnostics, San Antonio, TX) with a minimum detectable concentration of 0.35 ng/mL. 

Neuropsychological assessment 

Details of the neuropsychological assessment battery administered have been 

described elsewhere (Gonzales et al., 2014). Briefly, participants underwent a 1.5-hour 

battery of standard clinical instruments with established reliability and validity including 

the Mini Mental State Examination (MMSE), the Weschler Abbreviated Scales of 

Intelligence II (WASI-II), the California Verbal Learning Test-II (CVLT-II), Parts A and 
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B of the Trail Making Test (TMT), the Controlled Oral Word Association Test (COWA), 

the Weschler Adult Intelligence Scale III (WAIS III) Digit Span subtest and the Stroop 

Color-Word Subtest (Gonzales et al., 2014). The battery was chosen to provide a 

comprehensive evaluation of memory, executive function and global cognitive ability. 

Trained research assistants administered all assessments with standard administration and 

scoring criteria. 

Neuroimaging 

Magnetic resonance imaging was conducted using a 3T Siemens Skyra scanner 

equipped with a standard head coil. Anatomical scans of the entire brain were collected 

using high-resolution Magnetization Prepared Rapid Acquisition Gradient Echo 

(MPRAGE) sequences (256 × 256 matrix, flip angle = 7°, field of view (FOV) = 24 × 24 

cm2, 1 mm slice thickness, 0 gap, voxel size = 1.0 x 1.0 x 1.0 mm3, TR = 2530.0 ms) for 

voxel localization. Cerebral metabolite concentrations were obtained a stimulated echo 

sequence (svs_se_30) with the following parameters: TE/TR = 30/3000 ms, 80 

excitations, 2000 Hz spectral width, volume ~6 cm3 localized in occipitoparietal grey 

matter including the posterior cingulate gyrus. We concentrated on the occipitoparietal 

grey matter because spectroscopically detectible changes in this region correspond to 

severity of cognitive impairment in clinical populations (Kantarci et al., 2000). The 

commercially available LCModel software was used to quantify and identify metabolite 

resonances. In accordance with standard clinical quantification techniques, the 

concentrations of NAA, mI, choline (Cho) and glutamate (Glu) were calculated as ratios 

to creatine (Cr) (Bramham et al., 2000). 
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Data analysis 

All variable distributions and regression residuals were examined using the 

Shapiro-Wilk test for normality. The effect of visceral fat mass and volume on NAA and 

mI levels were assessed using simple linear regression models. Clinically relevant 

covariates (age, gender) were chosen a priori based on published relationships with NAA 

and mI (Fayed et al., 2014;  Zhang et al., 2013) . As we have previously documented an 

association between mI and peripheral CRP levels (Eagan et al., 2012), CRP was also 

included as a covariate in order to better estimate the unique contribution of visceral fat 

to any changes in cerebral neurochemical profiles. All statistical analyses were carried 

out using SPSS version 22.0 (IBM SPSS Inc, Chicago, IL, USA).
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Results 

Descriptive statistics 

Seventy-three participants were included in this study. Participants had a mean 

age of 49.55 years (S.D=6.08 years) and a mean BMI of 27.88 (S.D=5.12). Forty-eight 

participants identified as Caucasian, 16 identified as Hispanic/Latin American, 3 

identified as African American and 6 identified as Asian/Other. Participants had a mean 

visceral fat mass of 1022.47g (S.D=745.93g) and a mean visceral fat volume of 1083.90 

cm3 (S.D=790.67cm3). This was a relatively well educated (mean education = 16.47 

years, S.D=2.82) and cognitively intact (mean full scale intelligence quotient = 116.33, 

S.D= 12.78). Further information on the demographic and physiologic characteristics of 

this sample is presented in table 7. 

Table 7: Selected demographic and physiological characteristics for study 3 

 
Characteristic Mean (SD) 
N, (men and women) 73 (36 and 37) 
Age, years 49.55 (6.08) 
Education, years 16.47 (2.82) 
BMI, kg/m2 27.88 (5.12) 
Systolic blood pressure, mm Hg 119 (12) 
Diastolic blood pressure, mm Hg 72 (6) 
Blood glucose, mg/dl 91.1 (10.7) 
Total cholesterol, mg/dl 199.2 (35.3) 
Maximal oxygen consumption, ml/kg/min 36.8 (11.8) 
Waist to Hip Ratio, U 0.85 (0.08) 
Serum C-Reactive Protein mg/dL 3.02 (2.61) 
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Visceral fat and cerebral neurochemical profiles 

In order to control for non-normality of visceral fat data (Shapiro-Wilk’s statistic 

= 0.936, p <0.001 for visceral fat mass; 0.936, p <0.001 for visceral fat volume), a square 

root transformation was carried out. 

Both visceral fat mass and volume were significantly associated with reduced 

concentrations of NAA/Cr in the posterior cingulate gyrus, controlling for age, gender 

and chronic inflammation (b = -0.29, p=0.03, R2 = 0.22 for visceral fat mass and b = -

0.28, p=0.04, R2 = 0.22 for visceral fat volume). 

After controlling for the effects of age, gender and chronic inflammation, visceral 

fat mass and volume were also related to significant increases in the mI/Cr ratio in the 

posterior cingulate gyrus (b = 0.36, p=0.01, R2 = 0.15 for visceral fat mass and b = 0.36, 

p=0.01, R2 = 0.15 for visceral fat volume). 

Visceral fat mass and volume were not related to Cho/Cr or Glu/Cr after 

controlling for age, gender and chronic inflammation (ps>0.05). 
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Discussion 

To our knowledge, this is the first study to utilize a direct measure of visceral fat 

to examine the effects of visceral adipose tissue on brain integrity as measured by 

cerebral neurochemical profiles. Our results point to concentrations of NAA/Cr and 

mI/Cr in the posterior cingulate gyrus as particularly vulnerable to the effects of high 

visceral fat in middle aged adults. Visceral fat mass and volume was associated with 

lower levels of NAA/Cr and elevated levels of mI/Cr in the posterior cingulate gyrus. 

These effects remained significant after controlling for age, gender and systemic 

inflammation. 

A particularly interesting finding was the relationship between NAA/Cr levels and 

high visceral fat. Mouse models of Alzheimer’s disease suggest that elevations in 

cerebral concentrations of mI could precede reductions in concentrations of NAA (Chen 

et al., 2010). It is however, possible that NAA levels in our sample are moderated by 

other factors associated with obesity. For example, NAA levels could be modulated by 

levels of cerebral Brain Derived Neurotrophic Factor, a key neurotrophin responsible for 

synaptic plasticity and neuronal regeneration (Bramham CR, 2005; M. Mattson, 

Maudsley, S, Martin B, 2004) that is diminished in mouse models of obesity (Kernie et 

al., 2000). Recently published work has revealed an association between genetic risk for 

low BDNF and lower hippocampal NAA levels (Egan et al., 2003; Stern et al., 2008). 

Furthermore, examination of the animal literature have revealed simultaneous increases 

in cortical NAA levels and reductions in cortical mI levels after intraventricular BDNF 

infusion (Zhang et al., 2013). The BDNF pathway is thus a mechanism that warrants 
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further investigation. Direct examination of a possible visceral fat-BDNF-neurochemistry 

relationship is, however, beyond the scope of the current study. 

We also demonstrate elevations in mI in individuals with high visceral fat. 

Previously, we have highlighted an indirect effect of elevated BMI on memory 

performance through elevations in mI (Gonzales et al., 2012). This is consistent with 

other published work on mI and cognition in multiple disease states (Cloak et al., 2004; 

Fernando et al., 2004; Huang et al., 1999). It has been hypothesized that changes in mI 

occur in the context of systemic inflammation (Eagan et al., 2012). Our results show an 

effect of visceral fat on mI/Cre concentrations over and above that of inflammation, 

however, that warrants further investigation. 

Visceral fat could perturb cerebral mI/Cre concentrations through increasing 

blood brain barrier (BBB) permeability. The BBB consists primarily of endothelial cells 

that are joined by endothelial tight junctions (Pan et al., 2007). Adiponectin, an adipokine 

that is markedly reduced in individuals with high visceral fat (Warren et al., 2012), has 

been shown to stimulate production of nitric oxide (NO), a critical vasodilator in 

endothelial cells (Chen et al., 2003). Furthermore, adiponectin modifies the deleterious 

effects of pro-inflammatory cytokines on endothelial cells that comprise the BBB 

(Spranger et al., 2006). 

Compromised integrity of the BBB could lead to elevated mI levels in cerebral 

glial cells, which could in turn, lead to proliferation of astrocytes (Hattingen et al., 2007). 

Serrano-Pozo et al (2011) have described significant increases in density of astrocytes in 

the proximity of dense core plaques in post autopsy brains of Alzheimer’s disease 
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patients across a range of disease stages. The number of activated astrocytes also 

correlated significantly with number of neurofibrillary tangles in post autopsy brains at 

later stages of the disease process (Serrano-Pozo et al., 2011). Elevations in mI could 

thus be critical early markers of a neurodegenerative process. 

It is noteworthy that we did not find significant relationships between visceral fat 

and other neurochemical markers (Glu/Cr and Cho/Cr). This is unsurprising, given the 

stronger body of research highlighting the effects of NAA/Cr and mI/Cr on cognition 

across disease states. Cho/Cr and Glu/Cr are reduced in individuals with Fragile X 

Syndrome (Bruno et al., 2013; Filley et al., 2015). It is thus possible that levels of Cho/Cr 

and Glu/Cr perturbed by genetic influences unrelated to obesity. 

The main limitation of this study lies in the cross-sectional design, which negates 

determination of causality. However, we demonstrate a relationship between measures of 

visceral fat and neurochemical markers that have been highlighted in the literature as 

early risk factors for cognitive decline and Alzheimer’s Disease. Our sample size (n =73), 

while larger than other published MRS research (Gazdzinski et al., 2010), was modest 

and thus limited the number of analyses that were possible. Future research should 

include mediation/moderation models that highlight possible interactive effects of 

neurochemistry, as well as other potential risk factors known to affect cognitive decline 

such as genetic risk, stress, diet and exercise. 

Despite the above limitations, the current study is a useful early step in teasing out 

the mechanisms behind the complex relationship between obesity and cognition. As the 
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sample comprised of middle aged, cognitively intact individuals, it is provides crucial 

information on preclinical effects of visceral fat that precede neurodegeneration. 
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SYNTHESIS 

The overall goal of this project was to explore the relationship between visceral 

fat and brain vulnerability in middle age. The three studies focused on different indices of 

brain vulnerability; specifically cognitive function (study 1), structural integrity (study 2) 

and neuronal viability (study 3). Study 1 tested a basic biological pathway with serum 

BDNF as a mediator for the effects of a proxy measure for visceral fat (hip-to-waist ratio) 

and cognitive function, while studies 2 and 3 employed increasingly sophisticated 

methodology such as DXA, structural MRI and 1H- MRS to directly examine the effects 

of visceral fat on the brain in middle age. In closing, I will present revisit the main 

findings and comment on future directions including implications for early intervention. 

Visceral fat and cognitive function: mediation by serum BDNF 

Study 1 examined the possible role of BDNF as a mediator of the relationship 

between central adiposity and executive function. When examining the data presented in 

Studies 2 and 3, there was a trend towards a significant relationship between visceral fat 

and poorer performance on the COWA, above the effect of age (b=-0.13, p =0.06). In 

study 1, we found that serum BDNF completely statistically mediated the documented 

relationship between central adiposity (as measured by waist to hip ratio) and 

performance on an executive function task (verbal fluency). This statistical mediation 

was replicated when we re-ran the analyses in an integrated dataset combining data from 

studies 1, 2 and 3. FMRI research on cognitively intact young adults has revealed 

significant deactivation in the posterior cingulate gyrus during a verbal fluency task 

(Schlosser, 1998). Interestingly, study 2 reported changes in cortical thickness the same 
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region among middle-aged adults with high visceral fat (Kaur et al., 2015). Verbal 

fluency performance has also been consistently linked with cardiovascular risk factors 

(Brady et al., 2001) and in cases of post-stroke cognitive decline and vascular dementia, 

verbal fluency is disproportionately impaired compared with other cognitive functions 

such as memory (Lafosse et al., 1997; Starkstein et al., 1996; Wolfe et al., 1990). Verbal 

fluency thus appears to be an area of executive functioning uniquely burdened by high 

cardiovascular risk. Individuals with high visceral fat also tend to have significantly 

higher risk of cardiovascular events such as coronary heart attacks, stroke and mortality 

caused by cardiovascular events (Kannel et al., 1991; Ritchie et al., 2007). It is thus 

possible that high central adiposity drives cardiovascular disease induced declines in 

verbal fluency that lead to more generalized cognitive impairment. Direct examination of 

this is, however, beyond the scope of this study. 

One potential mechanism through which visceral fat induced reductions in BDNF 

could impinge upon central nervous system functioning is through disruption of the 

insulin regulation pathway. Insulin resistance is strongly associated with reduced BDNF 

(Levinger et al., 2008) and infusion of BDNF into the lateral ventricles of diabetic mice 

normalizes glucose regulation (Nakagawa et al., 2002). As insulin levels became 

available for our set of participants, follow-up examination of the data revealed that while 

insulin sensitivity was significantly related to higher WHR in our data set, it was not 

related to BDNF levels or performance on the COWA in our participants. These results 

were somewhat puzzling; yet, BDNF expression in the brain is extremely complex and 

influenced by multiple factors. Therefore, the BDNF-insulin resistance relationship in our 
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set of participants could have been moderated by another metabolite of neurobiological 

significance. Serotonin, for example, has been highlighted as a biomarker that stimulates 

the expression of BDNF, thus regulating synaptic plasticity and contributing to insulin 

resistance syndrome (Mattson et al, 2004). The relationship between BDNF, insulin 

regulation and the central nervous system is thus complex and requires further 

examination. As the correlation between insulin resistance and visceral fat is well 

documented (Raji et al., 2001) and BDNF has a key role in the pathogenesis of insulin 

resistance syndrome (Duan et al, 2003; Duan et al., 2001; Nakagawa et al., 2002), 

examining this relationship would be critical in enhancing our understanding of the 

nuanced effects of visceral fat on the brain. 

Visceral fat and brain vulnerability 

Study 2 revealed a significant positive relationship between visceral fat and 

cortical thickness in the posterior cingulate gyrus among cognitively intact, middle aged 

adults. While this was contrary to our initial hypothesis that high visceral fat would lead 

to cortical thinning, other published studies have also reported regionally specific 

increases in cortical thickness/brain volume as a result of metabolic risk factors, such as 

high serum cholesterol (Leritz et al., 2011; Solomon et al., 2009). This may point to a 

more complex relationship between metabolic risk factors such as visceral fat and 

structural integrity of the brain that warrants further investigation. 

Visceral fat induced changes in cortical thickness could occur in the context of systemic 

inflammation. Visceral fat has been linked to increased secretion of pro-inflammatory 

cytokines such as Interleukin 6 (IL-6), C-Reactive Protein (CRP) and Tumor Necrosis 
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Factor-alpha (TNF-a)(Fontana et al., 2007; Malavazos et al., 2007) through disruption of 

insulin regulation mechanisms in the central nervous system (de Luca et al., 2008). 

Closer examination of data from study 2 confirms this; CRP was significantly related to 

higher visceral fat (r = 0.18, p < 0.01) and insulin sensitivity (r =-0.24, p < 0.01). There 

was also a non-significant trend where higher CRP was correlated with higher thickness 

in the posterior cingulate cortex (r = 0.21, p = 0.07). CRP and its mediating cytokines are 

capable of crossing the blood brain barrier, where they can propagate an inflammatory 

response (Banks et al., 1995). Higher levels of systemic neuroinflammation are also seen 

very early in plaque development (Apelt et al., 2001). Furthermore, anti TNF-a treatment 

reduces amyloid plaques and tau phosphorylation in transgenic mice (Alpine et al., 2009; 

Mattson et al., 1997; Shi et al., 2010). Taken together, the literature supports a hypothesis 

that neuropathological deposits in the cerebral cortex could occur as a result of high 

visceral fat and would precede neurodegeneration. However, these proposed mechanisms 

are speculative at this point and require validation from future studies directly assessing 

these components. Amyloid PET, for example, would be useful to examine potential 

early plaque build up in the posterior cingulate gyrus that could account for increases in 

cortical thickness as seen on structural MRI. 

Study 3 highlights reductions in concentrations of NAA and increases in 

concentrations of mI in the posterior cingulate gyrus among middle-aged adults with high 

visceral fat over and above the effects of systemic inflammation. As NAA and mI 

concentrations are significantly linked to cerebral BDNF levels (Zhang et al., 2013), it is 

possible that concentrations of these metabolites are perturbed by visceral fat induced 
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reductions in BDNF. BDNF can act on central nervous system functioning through N-

methyl-d-aspartate (NMDA) receptors. BDNF infusion induces NMDA-dependent long-

term potentiation in the insular cortices of adult mice (Escobar et al., 2003). The NMDA 

receptor is the primary molecular device for controlling synaptic plasticity as well as a 

variety of neurocognitive declines (Krystal et al., 1994). Infusion of ketamine, an NMDA 

antagonist, is associated with reductions in fMRI activation in the posterior cingulate 

gyrus among cognitively intact younger adults (Northoff et al., 2005). Published work 

has also revealed reductions in thalamic NAA among chronic ketamine users relative to 

age matched controls (Stone et al., 2014). Thus, BDNF could have a significant effect on 

cortical neurochemistry by acting on NMDA receptors in the posterior cingulate gyrus. In 

our sample, BDNF was not significantly related to concentrations of NAA/Cre and 

mI/Cre. This could be attributed to the fact that participants in this study had much lower 

BDNF overall compared to participants in study 1, where many of the participants were 

specifically recruited from a pool of endurance trained adults. In general, likely due to the 

differences in the baseline characteristics of the two samples, the range of BDNF values 

was greater in study 1 as compared to studies 2 and 3 (3.8 ng/mL to 37.2 ng/mL vs 0.1 

ng/mL to 6.1 ng/mL ). Additionally, other lifestyle factors can also suppress BDNF 

expression. Examination of the animal literature indicates that sleep deprivation can 

reduce BDNF mRNA expression in the neocortex and hippocampi of adult mice 

(Guzman-Marin et al, 2006). As the participants in studies 2 and 3 had much higher 

BMIs and lower fitness levels than the participants in study 1, it is not unreasonable to 

hypothesize that the prevalence of sleep problems among individuals in studies 2 and 3 
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could have been higher; thus, explaining some of the variance in BDNF levels. It would 

hence be necessary to examine these factors to determine their exact effects on our 

sample.  

Limitations 

It is pertinent to note that all three studies included only cognitively intact middle-

aged adults without any neurological illness. An important limitation across all 3 studies 

was a lack of controls for medication use. However, as most cardiovascular risk factors 

that could potentially influence the results were considered carefully and included as 

covariates in regression models where appropriate, it is possible to be reasonably 

confident in the results reported. Furthermore, only 15.5 % of all participants were 

currently prescribed any form of heart, cholesterol, blood pressure medications or 

steroids. Since many of those conditions go undiagnosed and unmedicated at midlife, we 

judged it more important to control for the actual levels of blood pressure, blood glucose 

and lipids. In addition, we were only able to obtain serum BDNF from the periphery. 

BDNF in the brain might have a stronger effect on structure and neurochemistry than 

peripheral BDNF. All studies also included people with high IQ (mean IQ = 112.1 for 

Study 1, 111.55 for Study 2, 116.33 for Study 3). It can thus be posited that the changes 

in brain structure and function highlighted here provide evidence of a worrying trend of 

preclinical neurodegeneration despite high cognitive reserve. 

Moving forward 

As discussed in the introduction, this project is a critical first step in improving 

our general understanding of the impact of visceral fat on brain structure and function in 
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middle age. All the studies highlighted changes in brain structure, chemistry and function 

in individuals with high visceral fat. Statistical power considerations and the cross 

sectional nature of the data limited the types of analyses that could be performed.  

A natural progression of these studies would be to examine the effects of possible 

modifiable risk factors that could account for the effect of visceral fat on brain structure 

and function. Psychosocial stress, for example, is known to affect levels of cerebral 

BDNF (Murakami S, 2005), which could in turn modulate concentrations of NAA as well 

as changes in brain structure. Stress induction has also been connected with reduced 

BDNF mRNA coding in mouse hippocampi (Smith et al., 1995). It would thus be of 

interest to examine the effects of stress reduction as an adjuvant therapy to prevent 

cognitive decline.  

Exercise (Oliff et al., 1998) and dietary restriction (Duan et al., 2001) also 

improve BDNF regulation and may ameliorate some of the negative effects of visceral fat 

on the brain. If systemic inflammation modulates these relationships further, it might be 

pertinent to examine if non-steroidal anti-inflammatory drugs (NSAIDs) would be useful 

in mitigating the deleterious effects of visceral fat on the brain. As mentioned previously, 

the irreversible nature of neurodegeneration renders research on successful preventative 

measures a public health imperative. 

In addition, the possible moderating effects of other psycho-social variables that 

were not included in these analyses for statistical power concerns should be further 

examined. Socio-economic status (SES), for example, is associated with significantly 

increased risk of developing incident dementia in late life (Karp et al., 2004). In 
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particular, when education is used as a marker of low SES, SES is associated with a 

significantly higher relative risk of developing incident dementia (Karp et al., 2004, 

Evans et al, 1997). As all three studies included relatively highly educated individuals 

(mean education =16.9 years for study one, 15.99 years for study 2 and 16.47 years for 

study 3), it would be necessary to examine if these effects are replicated in individuals 

with lower education/SES.  

Race is another psychosocial variable that could potentially have effects on the 

relationship between visceral fat and central nervous system functioning. There is 

evidence for lower levels of visceral fat in middle aged African Americans compared 

with Caucasians and Hispanics with similar BMI and waist circumference (Carroll et. al, 

2008). Furthermore, despite lower levels of visceral fat, African Americans have similar 

or higher levels of inflammatory biomarkers, such as CRP that are commonly associated 

with high visceral fat (Carroll et. al, 2009). It is thus possible that race based genetic 

differences may moderate the effects of visceral fat on central nervous system 

functioning. Direct examination of this was, however, beyond the scope of this study due 

to statistical power considerations.  

In addition to the above, it would be interesting to examine the relationship 

between visceral fat and brain vulnerability earlier in the life span. There is strong 

evidence for obesity-driven changes in executive function in children and adolescents 

(Lokken et. al, 2009. Verdejo-Garcia et. al, 2010). In particular performance on tests that 

involve mental flexibility (which is also assessed in verbal fluency tasks) appear to be 

selectively impacted by high BMI (Lokken et. al, 2009. Verdejo-Garcia et. al, 2010). The 
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direction of this relationship between obesity and executive function in childhood has, 

however, been debated (Smith et. al, 2011). Specifically, it has been hypothesized that 

poorer executive function in childhood leads to disinhibited eating, which could in turn, 

promote childhood obesity (Maayan et. al, 2011). To the best of my knowledge, there has 

however been no research thus far on the selective impact of visceral fat in childhood and 

adolescents. Evidence for this would necessitate the development of interventions early in 

life, before the onset of neurodegenerative processes. 

Summary 

In summary, all three studies appear to emphasize a possible detrimental effect of high 

visceral fat on brain structure and function in middle age. This project provided new 

evidence directly examining the effect of visceral fat on established indices of brain 

structure (cortical thickness), function (cognitive performance) and vulnerability 

(concentrations of cerebral metabolites) among cognitively intact middle aged adults. In 

addition, we provided preliminary evidence for a possible mechanistic pathway 

explaining this relationship by highlighting circulating BDNF as a potential mediator. 

Future directions include examining interactive effects of other biomarkers and directly 

examining treatment options both in middle age and earlier in the life span. 
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