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Summary
We show how to construct filtered schemes for the Hamilton-Jacobi equation continuum limit of non-
dominated sorting by combining high order possibly unstable schemes with first order monotone and
stable schemes. We prove that the filtered schemes are stable and convergent for all orders. We then
investigat both high-order unfiltered and filtered schemes for the Hamilton-Jacobi equation by imple-
menting both schemes for order k = 1, 2, 3, 5, 8, and 13 numerically solving the equations in various
mesh sizes. The errors from their numerical solutions compared to the known solutions were measured
in the L1 norm and the L∞ norm. Our results suggest that the unfiltered schemes of order higher than
2 are unstable while the 1st order and 2nd order unfiltered schemes remain stable. Moreover, we see
that the 2nd order unfiltered scheme shows 2nd order accuracy. Similarly to the unfiltered schemes, we
see that the 2nd order filtered scheme seems to show 2nd order accuracy. However, it turns out that
the filtered schemes of order higher than 2 only exhibit a 1st order convergence rate. Upon further
investigation, this appears to be due to fact that the filtering relies too often on the 1st order scheme.

Introduction
We investigate high-order finite difference schemes for the two-dimensional Hamilton-Jacobi equation

ux1ux2 = f in (0, 1]2

u = 0 on ∂[0, 1]2 \ (0, 1]2,

}
(1)

where f ≥ 0. This Hamilton-Jacobi equation (1) has a unique non-decreasing viscosity solution. In
order to select the viscosity solution of (1), the finite difference scheme is required to be monotone [1].
Unfortunately, all monotone schemes are necessarily first order at best [2].

It has been observed [1, 4] that the monotonicity property can be relaxed to hold only approximately,
with a residual error that vanishes as the grid is refined, while still ensuring the scheme converges to
the viscosity solution. This allows one to design so-called filtered schemes, which blend together high-
order nonmonotone schemes with monotone first-order schemes in such a way that the resulting filtered
scheme is approximately monotone.

In this paper, we show how to construct arbitrary order filtered upwind finite schemes for the Hamilton-
Jacobi equation (1) and prove that they are stable and convergent for any order. We then present numer-
ical simulations on both filtered schemes and nonfiltered schemes investigating rates of convergence.

Filtered Schemes
Let u be the viscosity solution of (1) and define

w(x) =
u(x)

2 (x1x2)1/2
. (2)

We can also show that w is the unique bounded viscosity solution of the Hamilton-Jacobi equation

(w + 2x2wx1)(w + 2x2wx2) = f on (0, 1]2. (3)

We define for u : [0, 1]2→ R the kth-order backward difference quotient to be

∇k,−i u(x) =
1

h

k∑
j=0

dju(x− jhei). (4)

Here, h > 0 is the grid resolution, di is the backward difference quotient, and as a convention we take
u(x) = 0 whenever x 6∈ [0, 1]2. The boundary value is irrelevant and does not enter into the scheme. We
define the first order upwind scheme approximating the left-hand side of (3) to be

F1 (x,w) =


2∏
i=1

(
w(x) + 2xi∇

1,−
i w(x)

)
, if ∀i, w(x) + 2xi∇

1,−
i w(x) ≥ 0

−∞, otherwise.

(5)

The first order scheme from [3] corresponds to solving

F1(x,w) = f (x) in [0, 1]2h,

where Ωh := Ω∩hZ2 for any Ω ⊆ R2. This scheme has a unique solution, and is monotone, stable, and
convergent to the viscosity solution.

We define the kth-order upwind finite difference scheme approximating the left-hand side of (3) by

Fk (x,w) =

2∏
i=1

(
w(x) + 2xi∇

k,−
i w(x)

)
. (6)

The kth-order upwind finite difference scheme is then given by

Fk(x,w) = f (x) in [0, 1]2h. (7)

The kth-order filtered upwind finite difference approximation of the left-hand side of (3) is given by

Gk (x,w) =

{
Fk(x,w), if |Fk(x,w)− F1(x,w)| ≤

√
h and x ∈ [kh, 1]2,

F1(x,w), otherwise.
(8)

The kth-order filtered upwind finite difference scheme is then given by

Gk(x,w) = f (x) in [0, 1]2h. (9)

The key property of filtered schemes is that any solution wh of (9) also satisfies

f (x)−
√
h ≤ F1(x,wh) ≤ f (x) +

√
h in [0, 1]2h. (10)

Note that we prove in the paper that filtered schemes are stable and convergent for any order.

Numerical Simulations
We run simulations on both backward difference schemes and filtered schemes of orders 1, 2, 3, 5, 8,
and 13 with two probability density functions f1 and f2 that were introduced before in [3]. The function
f1 is defined as follows:

f1(x) =
1

4(k + 1)2

2∏
i=1

 2∑
j=1

sin(kxj)
2 + 2k + 2kxi sin(2kxi)

 ,

where k > 0. In the simulations, we set k = 20. The solution of (1) in this case is known to be

u1(x) =
1

k + 1

√
x1x2

(
sin(kx1)2 + sin(kx2)2 + 2k

)
.

We note that the solution u1 is smooth on (0, 1]2.
The function f2 is defined as follows:

f2(x) =
1

(C + 2)2
(w2(x) + 2(1 + C)x(2)) (w2(x) + 2x(1)) .

where x(i) = xπx(i) for a permutation πx such that x(1) ≤ x(2), and w2(x) = C max{x1, x2}+x1 +x2.
We set C = 10 in the simulations. The solution in this case is known to be

u2(x) = 2
√
x1x2w2(x).

Given these f1 and f2, we gather the errors from their numerical solutions compared to the known
solutions for each order of each scheme in different mesh sizes h. These errors are measured in both the
L1 norm and the L∞ norm as numerical evidence of the rate of convergence. We provide here some of
the results from our simulations in Figure 1 - 2. Note that we use “S” to denote “backward difference
scheme” and “FS” to denote “filtered scheme”.
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Figure 1: Errors in the L1 norm from order 1, 2, 3 (left) and 5, 8, 13 (right) schemes when f = f1
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Figure 2: Errors in the L1 norm from order 1, 2, 3 (left) and 5, 8, 13 (right) schemes when f = f2

Rates of Convergence

The results from the simulations suggest that the unfiltered 2nd order backward difference scheme is
convergent with a second order rate. On the other hand, the backward difference schemes of order
higher than two appear to be unstable. In fact, the errors for the unfiltered schemes for order k = 5, 8, 13
are so large they are not shown in the figures.

Observing the errors from filtered schemes in both the L1 norm and the L∞ norm, we see that the
2nd order filtered scheme also tends to give better accuracy than the 1st order one, but other higher
order filtered schemes only give comparable accuracies to the 1st order scheme. A further investigation
shows that high order filtered schemes rely most of the time on the first order scheme in solving (1).
This explains why higher order filtered schemes do not produce better accuracy than lower order ones.
To give a better idea, we show the fraction of grid points for which the kth order scheme is being used
for various mesh sizes and orders when setting f = f1 in Table 1.

Mesh size h 1st order 2nd order 3rd order 5th order 8th order 13th order
3.33× 10−2 95.06% 54.31% 45.00% 44.81% 22.69% 4.88%

6.67× 10−3 98.75% 81.09% 81.61% 75.41% 33.95% 7.59%

1.59× 10−3 99.69% 97.69% 97.42% 85.61% 37.92% 8.78%

3.92× 10−5 99.92% 99.84% 98.57% 87.29% 39.15% 8.97%

9.78× 10−6 99.98% 99.96% 97.82% 87.03% 39.43% 9.00%

Table 1: Fraction of grid points for which the kth order scheme being used in the filtered schemes.

This explains why filtering is not successful for higher order schemes. It would be interesting to deter-
mine why this is happening and whether it can be improved by using different schemes or a different
type of filtering.

References

[1] G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear second
order equations. Asymptotic Analysis, 4(3):271–283, 1991.

[2] J. Calder. Some notes on viscosity solutions of Hamilton-Jacobi equations. 2016. http:
//www-users.math.umn.edu/˜jwcalder/viscosity_solutions.pdf.

[3] J. Calder. Numerical schemes and rates of convergence for the hamilton–jacobi equation contin-
uum limit of nondominated sorting. Numerische Mathematik, Jun 2017.

[4] A. M. Oberman and T. Salvador. Filtered schemes for Hamilton–Jacobi equations: A simple con-
struction of convergent accurate difference schemes. Journal of Computational Physics, 284:367–
388, 2015.

1 The research described in this poster was partially supported by NSF grant DMS-1713691 and a University of Minnesota UROP award.


