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Monomer Screening for Sequence Defined Polymerization in a 
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Sequence defined polymers, or polymers of a pre-determined length and sequence, 

are the “Holy Grail” of polymer synthesis. As the physical properties of polymers are 

highly dependent upon their chemical composition, the wide range of potential applications 

for sequence defined polymers has yet to be explored. After millions of years of evolution, 

the ribosome has become a highly efficient polymerization catalyst. In this project, we will 

work to capitalize on this efficiency to work to create unnatural sequence defined polymers 

in a genetically modified ribosome. Collaborators in the Jewett group are currently 

genetically modifying the ribosomal active site to widen the library of chemistries the 

ribosome is able to catalyze, while we are exploring the chemistries of monomers that could 

be polymerized by a genetically modified ribosome. This thesis will first identify 

monomers capable of polymerization under the restricted conditions set by the ribosome, 

followed by synthesis of promising monomers, and finally taking steps towards loading 

the synthesized monomers onto tRNA. 
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PART 1: MONOMER TEST SCHEMES 

Chapter 1: Introduction and Background 

Polymers have an amazingly wide range of applications in today’s world for 

everyday uses for cars and clothing, to specifically engineered applications like Kevlar for 

bullet-proof vests. Molecular attributes of polymers such as molecular weight distribution, 

tacticity (stereochemistry), and arrangement of co-polymerization 

(block/branched/random) are directly related to their chemical composition and determine 

the polymer’s physical characteristics such as physical strength, permeability, and 

conductance. Due to this correlation, methods to regulate the chemical structure of 

polymers are of high interest. Current methods of synthesizing polymers include mixed-

pot reactions, where reagents are added simultaneously producing a wide range of 

polymers, and batch polymers where reagents are added sequentially, which allows for 

some control on block co-polymerization but still produces a wide molecular weight 

distribution. Alternatively, a catalyst can be utilized to create more regular, stereospecific 

polymers, but even this method produces a variety of molecular weights. Sequence defined 

polymers, or polymers made of a pre-defined length and sequence, are considered the 

“Holy Grail” of polymer synthesis and have not yet been achieved. 

In nature, sequence defined polymers are regularly synthesized based upon a 

provided mRNA template by the ribosome, which can be thought of as a polymerization 

catalyst. The reaction speed and error checking achieved by the ribosome make it an ideal 

candidate for creating sequence defined polymers on a large scale. In an attempt to 

capitalize on this highly efficient catalyst, the design and testing of possible non-amino-

acid monomers that could be catalyzed by a ribosome will be investigated. Additionally, 

the genetic modification of the ribosomal active site will be under investigation by 
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collaborators in the Jewett group in order to polymerize a wider range of unnatural 

monomers.  

In-vivo, ribosomes have only been observed to catalyze the creation of polyamides, 

though the natural ribosome has also been shown to catalyze the formation of polyesters 

in-vitro.1-3 Before attempting to use the ribosome to synthesize a non-amide-backbone 

polymer, an appropriate monomer must be found. The monomer must be soluble in water 

and unreactive under standard physiological conditions (pH 7, 20˚C) to prevent side 

reactions occurring outside the ribosome. Additionally, the monomer must be small enough 

to fit in the active site of the ribosome, and the newly formed polymer must fit through the 

peptide exit tunnel, which has a diameter of 10 to 20 Å.4 Finally, the ribosome must be able 

to tolerate the polymerization conditions, that is to say the reaction conditions for 

polymerization must mild (not too acidic/basic, and not above 100˚C).  

The structure of the amino acid consists of an ester to attach to tRNA, the shuttle 

that brings amino acids into the ribosome, and a nucleophilic group, a free amine, that can 

cleave the ester group of another amino acid to separate the growing peptide from the 

tRNA. The resulting peptide will now become the new electrophilic ester for attack by a 

new incoming amino acid. To utilize the ribosome for polymerization, our designed 

monomers must also contain these two functionalities, an ester group and a nucleophilic 

group. 

To find a monomer that matches all of these criteria, test reactions first must be 

screened outside of the ribosome to determine the conditions required for reaction. The 

monomers to be tested will be modeled after amino acids and will become more variable 

in structure as testing continues. As more complicated chemistries are applied to this 

process, more genetic modification of the ribosome may need to occur.  
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Chapter 2: Results and Discussion 

2.1 TEST REACTIONS 

To determine monomers likely to be polymerized in a genetically modified 

ribosome, test reactions were performed to determine the reaction conditions required for 

polymerization of various monomer candidates. Nine schemes were designed and tested 

under a series of conditions, beginning with equimolar starting material at room 

temperature, followed by the addition of base, and subsequent gradual heating. Reactions 

were monitored by 1H-NMR and TLC for the appearance of product formation. Upon 

observed product formation, the reaction was scaled up to isolate and further characterize 

the product(s) formed. If the desired product was indeed formed under the required 

conditions set by the ribosome, monomer synthesis would begin. 

2.1.1 Scheme 1: Carbazate 

 
 

Figure 2.1: Scheme 1 test reaction and accompanying monomer charged to tRNA. 

After a series of increasingly rigorous conditions, the last of which consisted of 1.1 

equivalents potassium phosphate tribasic and heating at 75˚C, the only product observed 

was the trans-esterification product. Because this scheme did not form the desired product 

under the required conditions set by the ribosome, it was concluded that this monomer was 

not likely to be reactive enough to be catalyzed by a ribosome. 

1 M1 
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2.1.2 Scheme 2: Hydrazinoacetate 
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Figure 2.2: Scheme 2 test reaction and accompanying monomer charged to tRNA. 

After reaction with 1.1 equivalents potassium phosphate, ethyl hydrazinoacetate 

HCl, and excess ethyl acetate at 75˚C. No desired amide bond formation was observed, and 

it was determined would not be favorable for polymerization in a ribosome. 

2.1.3 Scheme 3: 4-Aminomethyl Phthalate 

 
 

Figure 2.3: Scheme 3 test reaction and accompanying monomer charged to tRNA. 

Imide bond formation is utilized in several commercially available polymers, 

including Kapton and Matrimid®, which with their high-heat and chemical resistance, 

typically are used for insulation, gas filters, and flexible tubing.5 Imide bond formation is 

ideal for ribosome catalysis because of its simplicity and close relation to natural peptide 

bond formation.  

The reaction was performed neat in triethylamine at 100˚C. 3 was successfully 

isolated and characterized by 1H-NMR and 13C-NMR. Out of concern for the ability of the 

ribosome to remain functional at the high temperature of 100˚C, a temperature study 

monitored by 1H-NMR in CD3OD was performed, which showed conversion of 50% at 

80˚C and 45% at 75˚C over 48 hours and confirmed product formation under aqueous 

2 

3 

M2 

M3 
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conditions. The synthesis of the designed monomer will continue forward under the 

hypothesis that the catalytic ability of the ribosome may help overcome the required high 

temperatures for reaction. 

2.1.4 Scheme 4: 4-Hydrazino Cinnamate 

 
 

Figure 2.4: Scheme 4 test reaction and accompanying monomer charged to tRNA. 

The proposed mechanism proceeds 1,4- Michael addition of phenyl hydrazine, 

followed by cyclization and displacement of the ester. However, upon reaction with sodium 

acetate at 70˚C, the only formed product was the amide product, without the Michael 

addition. Upon further consideration, it was realized the cyclization from the amide product 

is disfavored under Baldwin’s rule.6 Therefore, it was determined that this reaction would 

not go forward as planned, and instead we pursued the alkyne, which was predicted to 

cyclize.  

2.1.5 Scheme 5: 4-Hydrazino Phenylpropiolate 

 
 

Figure 2.5: Scheme 5 test reaction and accompanying monomer charged to tRNA.  

The reaction of phenyl hydrazine with ethyl phenylpropiolate at 80˚C with calcium 

carbonate formed the desired product, 5. The product was isolated and purified by 

4 

5 

M4 

M5 
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CombiFlash and characterized by 1H-NMR, 13C-NMR, and HRMS. This scheme will 

continue with monomer synthesis, as it reacts well under the required conditions. 

2.1.6 Scheme 6: 4-Hydrazino Benzoylacetate 

 
 

Figure 2.6: Scheme 6 test reaction and accompanying monomer charged to tRNA. 

The reaction of phenyl hydrazine, ethyl acetoacetate, and sodium acetate at 75˚C 

was performed following a protocol provided by Kudirka, et al.7 The major product was 

isolated, purified, and characterized by 1H-NMR, 13C-NMR, and HRMS to show the 

formation of the desired product, 7. This scheme has been continued onto monomer 

synthesis for attachment onto tRNA. 

2.1.7 Scheme 7: 1-Formyl-2-Amino Phenylcyanoacetate 

 
 

Figure 2.7: Scheme 7 test reaction and accompanying monomer charged to tRNA. 

After a series of test reactions, the formation of a variety of products was observed. 

2-amino benzaldehyde was observed to form homodimer and homotrimer moieties. Upon 

LC/MS testing of the starting material, these moieties were observed in low concentration, 

which increased upon addition of temperature and base. Another product’s structure was 

not able to be determined; however, during a pH titration study of ethyl 

6 

7 

M6 

M7 
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phenylcyanoacetate, this product was observed. At this time, it was determined that ethyl 

phenylcyanoacetate preferentially reacts with itself over reacting with amino 

benzaldehyde, so this reaction was reworked with different substituents in the alpha-

position.  

2.1.8 Scheme 8: 1-Formyl-2-Amino Triphenylphosphine Phenylacetate 

 

 

Figure 2.8: Scheme 8 test reaction and accompanying monomer charged to tRNA. 

Colleagues in the Moore group synthesized ethyl-α-triphenylphosphine 

phenylacetate, which was subjected to base and thurough heating. No product formation 

was observed by LC/MS or 1H-NMR, except for the previously observed formation of 

homodimer and homotrimer 2-amino benzaldehyde. It was determined that the 

triphenylphoshine moiety was also not reactive enough to form the desired product. 

2.1.9 Scheme 9: 1-Formyl-2-Amino Bromophenylacetate 

 

 

Figure 2.9: Scheme 9 test reaction and accompanying monomer charged to tRNA. 

Upon reaction of methyl a-bromophenylacetate with benzoic acid at 60˚C with 

potassium phosphate tribasic, formation of a single product was observed. After 

8 

9 

M8 

M9 
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purification and characterization by LC/MS and 1H-NMR, it was determined that the amine 

performed nucleophilic attack displacing the bromine instead of the desired ester. The 

result of which prevents cyclization to the desired product. Upon further consideration, this 

scheme has been reconsidered, and a new scheme, Figure 3.1, will be tested next.  

2.2 SCHEME 6 MONOMER SYNTHESIS  

2.2.1 Plan 1 

Based upon the results of the test schemes, Scheme 3, Scheme 5, and Scheme 6 

were determined to react under the desired conditions. Scheme 6 was selected as the most 

likely to be successfully polymerized in a ribosome due to its high yield under mild 

conditions. An original synthesis plan (Figure 2.10) was created and tested.  

 

 
 

Figure 2.10: Scheme 6 monomer synthesis plan 1. 

Following work by Rostovskii, et al., the ethyl acetate enolate was formed in LDA, 

followed by addition of 4-nitrobenzoate.8 The reaction was quenched with 20% HCl and 

extracted to produce 10 with few side products. By 1H-NMR and LC/MS, both the keto 

and enol form of the compound were observed in solution and were only able to be 

separated by recrystallization.  

10  

11 M6 
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Upon initial attempt to perform nitro reduction on 10, a large amount of undesired 

side product formation was observed, the main of which was determined to be the reduced 

ketone product. Thus, a series of test reduction conditions were performed including: 10% 

Pd and Pt on activated carbon, Sn(II)Cl·2H2O, and Iron powder.9-14 It was determined that 

10% Pt on activated carbon under bubbling H2(g) for 30 minutes produced approximately 

80% 11, but 20% still formed the alcohol bi-product. Pure 11 was isolated by HPLC, and 

characterized by 1H-NMR, 13C-NMR, and HRMS. 

The third step of the monomer synthesis was performed following the procedure 

outlined by Kuznetsova, et al.9 Upon analysis by LC/MS, the reaction was not forming M6, 

and did not leave 11 intact. In an effort to determine whether the diazotization or the 

reduction was forming undesired side products, the test diazotization outlined in Figure 

2.11 was performed on 11. This test diazotization has been well studied in our group and 

has been shown to work on a variety of amine-containing compounds with consistently 

high yield and few side products. 

 

 

Figure 2.11: Test Diazotization of 11. 

Firstly, the diazonium salt is created, followed by immediate addition to the 

salicylic acid, while basic conditions are maintained, and characterization by LC/MS 

performed at both steps in the process. An undesired product formation was observed after 

11 12 

13 
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the diazotization step with no change after the coupling step. Based upon the LC/MS data, 

it was hypothesized that once 12 is formed, it immediately reacted with another of the β-

keto ester compounds at the enol position and did not wait for the addition of salicylic acid. 

It was concluded this was likely the cause of failure of both diazotization reactions.  

In an attempt to both increase the yield of the reduction step and to get the 

diazotization/reduction step to work, protection of the ketone of 10 with ethylene glycol 

was investigated following various protocols.15-16 In all cases, only unreacted 10 was 

observed. It was hypothesized that because the enol form of 10 is the predominant form, 

protection of the ketone would not be favored. Based on these results, it was determined 

that the synthetic route needed to be reevaluated. 

2.2.2 Plan 2 

 

 
 

Figure 2.12: Scheme 6 monomer synthesis plan 2. 

Figure 2.12 demonstrates the new monomer synthesis plan, with the intention of 

performing the Claisen reaction last, as it had already been shown to work well. Firstly, 

Fischer Esterification was performed with 5% H2SO4/EtOH at reflux followed by 

quenching, extraction, and concentration to provide 14 as a pure yellow solid, which was 

characterized by LC/MS.  

14 15 

18

 
 15 

M6 
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Boc protection of 14 was accomplished with excess Boc anhydride, catalytic 

amounts of DMAP, and heating for several hours.17 Purification of crude product by 

CombiFlash produced 15 as a viscous orange liquid, confirmed by 1H-NMR, 13C-NMR, 

and HRMS.  

 

 

Figure 2.13: Products observed during the Claisen Reaction of 15. 

The Claisen reaction was performed following the same procedure as outlined 

previously, but when the reaction was kept at -80˚C, only 10% conversion of 15 to 16 was 

observed. The reaction was then run again with gentle warming to room temperature 

overnight, where production of 16, 17, and 18 were observed, and at completion 45% 

conversion to 18, with 55% conversion to 17 was observed. CombiFlash provided isolation 

of 17, which could then undergo the Boc reaction again, and pure 18 for characterization 

by 1H-NMR, 13C-NMR, and HRMS.  

Finally, deprotection of 18 was attempted through a series of deprotection 

procedures. From characterization by LC/MS, 18, mono-Boc, and M6 were observed, but 

also a major, undesired side product. Upon work-up, any M6 that formed would readily 

decompose to this side product. After a vigorous series of sample deprotections, the 

reaction condition that provided the most M6, and minimized side product formation was 

a TFA/TIPS/H2O cocktail reacted at -5˚C for 2 to 3 hours. The reaction was monitored by 

injectable mass spec, and dried by blowing N2(g) over the solution while carefully 

maintaining -5˚C. The compound was then dissolved in dH2O at 0˚C and immediately 

15 18 16 17 
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purified by CombiFlash. Analysis of the fractions collected from the CombiFlash showed 

pure product (by injectable mass spec). Fractions containing M6 were lyophilized 

producing a very fine yellow powder, which was then characterized by injectable mass 

spec and LC/MS. The lyophilized product contained of a small amount of M6, but mostly 

consisted of a new side product that appeared to be a polymer form. At this point, it was 

determined that the deprotected monomer would be too reactive to charge to pdCpA, so 

investigation will continue with different protecting groups (possibly NVOC-Cl) during 

monomer synthesis that could be cleaved in-situ for polymerization.   
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Chapter 3: Conclusions and Future Work 

3.1 NEW TEST REACTION 

 

Figure 3.1: New test reaction based on Scheme 10 developed for investigation. 

Similar to Scheme 10, this new test reaction was designed. After nucleophilic attack 

to displace the bromine, there is still a free amine to attack the ester to form a cyclic product, 

which would consist of one amide and one secondary amine. It is hopeful this reaction 

could occur in the desired conditions based upon the results of the previous test reactions. 

3.2 SCHEME 3 MONOMER SYNTHESIS 

 

 

Figure 3.2: Monomer synthesis for Scheme 3 test reaction. 

The next monomer to be synthesized for charging tRNA will be for Scheme 3 by 

combining an allylic amine with a phthalate onto one ring. Firstly, the amine will be 

displaced by potassium cyanide, followed by reduction of the nitrile.18-19 
  

M3 
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Chapter 4: Experimental 

4.1 MATERIALS AND METHODS 

Ethyl α-triphenylphosphine phenylacetate was synthesized by the Moore group, 

and sent to us for testing. All other chemicals were of reagent grade and used as purchased 

without further purification. LC/MS spectra were obtained on an Agilent Technologies 

6120 Single Quadrupole LC/MS spectrometer which utilized a 5-95% MeOH/H2O gradient 

over 12 minutes, with atmospheric-pressure chemical ionization in both positive and 

negative mode. 1H-NMR (400 MHz) were acquired with an Agilent 400 MHz. 1H-NMR 

(500 MHz) and 13C-NMR were acquired with a Bruker AVANCE III 500 MHz.  

4.2 TEST REACTIONS 

4.2.1 General Screening Procedure 

Each test reaction began with an 1H-NMR and TLC study for the presence of any 

new products, at which time characterization by LC/MS was performed. 0.2 mmol of each 

starting material were separately characterized by 1H-NMR in 1.0 mL CD3OD or if 

insoluble, a mixture of D2O/CD3OD. Then 0.2 mmol of one compound was added to the 

other compound dissolved in the deuterated solvent, and the mixture was allowed to stir at 

room temperature overnight and followed by characterized by 1H-NMR. If no product had 

formed, 1.1 equivalents of base (typically potassium phosphate tribasic, as it does not show 

on 1H-NMR) was added to solution, and again stirred at room temperature overnight and 

characterized by 1H-NMR. Finally, heating began at sequentially higher temperatures 

overnight (45˚C, 60˚C, 75˚C), followed by 1H-NMR Characterization. At this time, LC/MS 

screening would occur, and if no new product formation had occurred, the scheme would 
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be determined not to work under desired conditions, and investigation into the scheme 

would conclude.  

If at any point in this 1H-NMR study, new peaks were observed, the solution was 

characterized by LC/MS. If the formed product matched the expected molecular weight of 

the desired product, the reaction was scaled up for product isolation by column 

chromatography. The pure product then would be characterized by 1H-NMR, 13C-NMR, 

and LC/MS to identify the formed product.  

4.2.2 Scheme 3 Test Reaction 

Dimethyl phthalate (0.640 mmol, 1.0 eq.), benzyl amine (0.613 mmol, 1.0 eq.), and 

triethylamine (0.645 mmol, 1.0 eq.) were added to a vial without solvent and heated at 

103˚C for at least eight hours until no starting material was observed by TLC (dissolved in 

methanol, run in 5:1 hexanes:ethyl acetate). After cooling to room temperature, solution 

was dissolved in 1:1 methanol:dichloromethane and purified by column chromatography 

(5:1 hexanes:ethyl acetate). Fractions containing product were combined and concentrated 

under reduced pressure to produce a white puffy solid, 3, which was characterized by 1H-

NMR and 13C-NMR in CD3OD. (0.071 g, 48.9% yield).  

(Figure 4.1) 1H NMR (400 MHz, Methanol-d4) δ 7.90 – 7.78 (m, 4H), 7.38 – 7.22 

(m, 5H), 4.83 (s, 2H), 2.16 (s, 1H). (Figure 4.2) 13C NMR (126 MHz, Chloroform-d) δ 

168.18, 136.50, 134.11, 132.27, 128.81, 128.75, 127.96, 123.48, 41.75. 
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Figure 4.1: 1H-NMR (400 MHz) in CD3OD of 3.  
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Figure 4.2: 13C-NMR (500 MHz) in CDCl3 of 3.  

Additionally, a 1H-NMR control study was carried out to determine the percent 

conversion to 3 at varying temperatures. Aromatic starting material peaks were integrated 

in reference to desired 3 aromatic peaks, in which there was no overlap, so a percent 

conversion could be calculated. At 60˚C, no product formation was observed; at 75˚C, 20% 

conversion was observed at 24 hours, and 45% conversion was observed at 48 hours; at 

80˚C conversions of 40% and 50% were observed, respectively; at 90˚C, 85% conversion 

was observed after 24 hours. 60˚C and 90˚C were not continued in the 48 hour tests due to 

faulty hot plates.  
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4.2.3 Scheme 4 Test Reaction 

Methyl trans-cinnamate (1.233 mmol, 1.0 eq.) was dissolved in 4.0 mL methanol, 

followed by addition of phenyl hydrazine (1.220 mmol, 1.0 eq.) and sodium acetate (1.220 

mmol, 1.0 eq.). The solution was heated at 70˚C over the weekend until new product was 

observed by TLC. The solution was cooled to room temperature, then purified by column 

chromatography (3:1 ethyl acetate:hexanes). Fractions were collected, concentrated under 

reduced pressure, and characterized by 1H-NMR and LC/MS (compound does not ionize 

in mass spec) to show the formation of the amide bond formation without cyclization.  

 

Figure 4.3: 1H-NMR (400 MHz) in CD3OD of Scheme 4 test reaction. 
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4.2.4 Scheme 5 Test Reaction 

Ethyl phenylpropiolate (0.999 mmol, 1.0 eq), phenyl hydrazine (1.002 mmol, 1.0 

eq.), and calcium carbonate (1.199 mmol, 1.2 eq.) were dissolved in 1 mL ethanol and 

stirred at 80˚C for 25 hours. After cooling to room temperature, the solution was 

concentrated under reduced pressure to produce a red-orange residue. The crude product 

was partially dissolved in acetonitrile, and filtered through syringe filter, followed by 

purification by reverse phase CombiFlash (C-18 column) with a 20-minute gradient of 

water/methanol. The fractions were combined and lyophilized to produce an off-white 

solid, 5 (32.3 mg, 14% yield). The pure product was characterized by 1H-NMR and 13C-

NMR in CDCl3 and (CD3)2SO as well as HRMS. An interesting observation: in CDCl3, the 

iminium of 5 is observed and in (CD3)2SO, the enamine is observed. 

(Figure 4.4) 1H NMR (500 MHz, Chloroform-d) δ 8.00 – 7.96 (m, 2H), 7.81 – 7.76 

(m, 2H), 7.49 – 7.41 (m, 5H), 7.23 (tt, J = 7.4, 1.2 Hz, 1H), 3.86 (s, 2H). (Figure 4.5) 1H 

NMR (500 MHz, DMSO-d6) δ 11.81 (s, 1H), 7.85 – 7.78 (m, 5H), 7.48 (t, J = 7.9 Hz, 2H), 

7.41 (t, J = 7.6 Hz, 2H), 7.30 (dt, J = 20.5, 7.1 Hz, 2H), 6.01 (s, 1H). (Figure 4.6) 13C 

NMR (126 MHz, Chloroform-d) δ 170.40, 154.80, 138.27, 131.02, 130.89, 129.09, 126.14, 

125.48, 119.26, 77.16, 39.83. (Figure 4.7) HRMS-ESI [M + H]+ calculated for C15H12N2O 

237.1022, found 237.1027 
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Figure 4.4: 1H-NMR (500 MHz) in CDCl3 of 5.  



 21 

 

Figure 4.5: 1H-NMR (500 MHz) in (CD3)2SO of 5.  
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Figure 4.6: 13C-NMR (500 MHz) in CDCl3 of 5. 
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Figure 4.7: High Resolution Mass Spectrum (ESI positive mode) of 5. 

4.2.5 Scheme 6 Test Reaction 

Phenyl hydrazine (0.498 mmol, 1.1 eq.) was dissolved in 1.00 mL ethanol, followed 

by addition of ethyl acetoacetate (0.435 mmol, 1.0 eq.) and sodium acetate (0.546 mmol, 

1.3 eq.). The solution was heated while stirring at 75˚C overnight, and the solution turned 

a burnt orange color. Characterization by TLC showed two new product formations. The 

solution was extracted with DCM and concentrated under reduced pressure to produce an 

orange solid. The solution was purified by column chromatography (packed in hexanes, 

run in 1:1 to 1:4 hexane:ethyl acetate). The two products were collected, concentrated 

under reduced pressure, and characterized by 1H-NMR. The desired product, 6, was 

determined to be the first product to elude from the column, and was further characterized 

by 1H-NMR, 13C-NMR, and HRMS (0.101 g, 43.6% yield)  
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(Figure 4.8) 1H NMR (500 MHz, Chloroform-d) δ 7.85 (d, J = 8.1 Hz, 2H), 7.38 

(t, J = 8.0 Hz, 2H), 7.17 (t, J = 7.4 Hz, 1H), 3.41 (s, 2H), 2.18 (s, 3H), 1.25 (s, 1H). (Figure 

4.9) 13C NMR (126 MHz, Chloroform-d) δ 170.69, 156.43, 138.13, 128.92, 125.15, 

118.98, 43.20, 29.80, 17.11. (Figure 4.10) HRMS-ESI [M + H]+ calculated for C10H10N2O 

175.0866, found 175.0869. (Figure 4.11) HRMS-ESI [M - H]- calculated for C10H10N2O 

173.0730, found 173.0717. 

 

 

Figure 4.8: 1H-NMR (500 MHz) in CDCl3 of 6.  

N
N

O
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Figure 4.9: 13C-NMR (500 MHz) in CDCl3 of 6. 

N
N
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Figure 4.10: High Resolution Mass Spectrum (ESI positive mode) of 6. 

 

Figure 4.11: High Resolution Mass Spectrum (ESI negative mode) of 6. 
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4.2.6 Scheme 9 Test Reaction 

2-Amino benzaldehyde (0.419 mmol, 1.0 eq.) was dissolved in 1.0 mL methanol, 

followed by the addition of methyl α-bromophenylacetate (0.413 mmol, 1.0 eq.), and 

potassium phosphate tribasic (0.416 mmol, 1.0 eq.). Solution heated at 62˚C overnight, and 

characterized by TLC (3:1 hexane:ethyl acetate) to show a small amount of starting 

material and the development of one main product. The solution was diluted in ethyl 

acetate, washed with brine, a few drops of 3M HCl added, and concentrated under reduced 

pressure. Solution characterized by LC/MS to show amine displacement of the bromine, 

and no 9 formed.  

 

Figure 4.12: LC/MS data of Scheme 9. LC traces: at 254 nm, 214 nm, and 280 nm 
(frames 1-3). Mass detection: ESI/APCI positive ionization (frame 4), 
ESI/APCI negative ionization (frame 5). 
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Figure 4.13: ESI/APCI positive ionization mass spectrum from 8.2 to 8.6 min. 

 

 

Figure 4.14: ESI/APCI negative ionization mass spectrum from 8.3 to 8.6 min.  
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4.3 MONOMER SYNTHESIS 

4.3.1 Plan 1 

4.3.1.1 Claisen Reaction (10) 

Following a protocol laid out by Rostovskii, et al., diisopropylamine (24.3 mmol, 

2.2 eq.) was added to a flame-dried RBF of 12 mL dry THF on dry ice/acetone bath under 

argon. n-Butyllithium (23.8 mmol, 2.1 eq.) was added dropwise to the diisopropylamine 

solution and was rapidly stirred for 15 minutes.8 Dry ethyl acetate (dried over sieves for 

several days) (24.6 mmol, 2.2 eq.) added quickly to the solution, and stirred an additional 

15 minutes. In a second flame-dried RBF, methyl 4-nitrobenzoate (11.1 mmol, 1.0 eq.) was 

dissolved in 7 mL THF, then added dropwise to the first solution, and the reaction was 

monitored by TLC (2:1 hexane:ethyl acetate). After 30 minutes, the solution was quenched 

with 12 mL 20% HCl, then allowed to warm to room temperature. The solution was 

extracted with ether, washed with sat. NaHCO3, H2O, brine, dried with Na2SO4, and 

concentrated under reduced pressure to produce a thick orange oil. Compound dry loaded 

onto column packed in hexanes, and eluted with 6:1 hexane:ethyl acetate. Pure product was 

collected and concentrated under reduced pressure to produce a yellow solid, 10, which 

was characterized by 1H-NMR, 13C-NMR, and HRMS. (0.922 g, 35.2% yield) 

(Figure 4.15) 1H NMR (500 MHz, Chloroform-d) δ 12.55 (s, 1H), 8.35 – 8.29 (m, 

1H), 8.29 – 8.22 (m, 2H), 8.13 – 8.08 (m, 1H), 7.95 – 7.89 (m, 2H), 5.75 (s, 1H), 4.29 (q, 

J = 7.2 Hz, 2H), 4.21 (q, J = 7.2 Hz, 1H), 4.03 (s, 1H), 1.34 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 

7.2 Hz, 1H). (Figure 4.16) 13C NMR (126 MHz, Chloroform-d) δ 191.21, 172.75, 168.39, 

166.81, 150.74, 149.35, 140.46, 139.45, 129.71, 127.08, 124.11, 123.87, 90.36, 61.98, 

60.99, 46.34, 14.34, 14.16. (Figure 4.17) HRMS-ESI [M + Na]+ calculated for C11H11NO5 

260.0529, found 260.0523. 



 30 

 

 

Figure 4.15: 1H-NMR (500 MHz) in CDCl3 of 10.  
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Figure 4.16: 13C-NMR (500 MHz) in CDCl3 of 10.  
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Figure 4.17: High Resolution Mass Spectrum (ESI positive mode) of 10. 

4.3.1.2 Nitro Reduction (11) 

Claisen product (0.124 mmol) was dissolved in 1 mL dichloroethane. 10% platinum 

on activated carbon (20% by weight) added to solution, and H2(g) was bubbled through the 

solution three times before allowing to stir under H2(g). The reaction was monitored closely 

by LC/MS for the consumption of 10 and the production of 11, as well as the undesired 

alcohol product. After 30 minutes, the solution was filtered through syringe filter and 

concentrated under reduced pressure to produce a yellow oil. Product was then dissolved 

in 1:1 water:acetonitrile and purified by HPLC. Relevant fractions were collected, 

concentrated under reduced pressure, and lyophilized to produce a yellow solid, 11, which 

was characterized by 1H-NMR, 13C-NMR, and HRMS. (20.4% yield) 

(Figure 4.18) 1H NMR (500 MHz, Chloroform-d) δ 7.82 – 7.74 (m, 2H), 6.67 – 

6.61 (m, 2H), 4.20 (q, J = 7.1 Hz, 2H), 3.89 (s, 2H), 1.25 (t, J = 7.0 Hz, 4H). (Figure 4.19) 
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13C NMR (126 MHz, Chloroform-d) δ 190.63, 168.25, 151.77, 131.30, 126.71, 113.98, 

61.47, 45.76, 14.25, 1.16. (Figure 4.20) HRMS-ESI [M + H]+ calculated for C11H13NO3 

208.0968, found 208.0970. 

 

 

Figure 4.18: 1H-NMR (500 MHz) in CDCl3 of 11.  
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Figure 4.19: 13C-NMR (500 MHz) CDCl3 of 11.  
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Figure 4.20: High Resolution Mass Spectrum (ESI positive mode) of 11. 

4.3.1.3 Diazotization (M6) 

Following protocol provided by Kuznetsova, et al., 11 (0.053 mmol, 1.0 eq.) was 

dissolved in 0.5 mL conc. HCl and cooled to 0˚C.9 In a separate flask, sodium nitrate (0.085 

mmol, 1.6 eq.) dissolved in 0.1 mL water, then added dropwise to the first solution, and 

stirred at 0˚C for 30 minutes, then cooled back to -5˚C. A solution of SnCl2·H2O in 0.15 

mL conc. HCl cooled to -18˚C (on dry ice/glycol bath) was slowly added to the first 

solution. After addition, the solution was allowed to gently warm to 5˚C and stirred 

overnight. No crystals formed, as outlined in the provided protocol, and after 

characterization by LC/MS, only undesired products were observed.  
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4.3.1.4 Test Diazotization (12 & 13) 

11 (0.267 mmol, 1.0 eq.) was dissolved in 0.80 mL 1M HCl, and cooled to -5˚C. In 

a separate flask, sodium nitrate (0.268 mmol, 1.0 eq.) dissolved in 106.0 µL to form a 2.5M 

solution, which was added dropwise to the first solution. Solution allowed to stir for 5 

minutes at -5˚C, then characterized by LC/MS, and base was added to the solution to 

neutralize any sodium nitrate left in solution. Salicylic acid (0.309 mmol, 1.2 eq) was 

dissolved in 400 µL 2M NaOH, then the first solution added dropwise to the salicylic acid 

solution, maintaining basic pH by litmus paper. Solution acidified with 1M HCl, and 

precipitate filtered off, and characterized by LC/MS to show the diazotization moiety 

attacked the enol position of another 11. 

4.3.2 Plan 2 

4.3.2.1 Fischer Esterification (14) 

4-Hydrazinobenzoic acid (6.586 mmol) was put into a RBF, and 15 mL 5% 

H2SO4/dry EtOH (ethanol dried over sieves for several days) added to create a suspension, 

which was stirred rapidly while brought to a reflux over 16 hours. As the product is soluble, 

the suspension produced a yellow solution as the reaction occurred. After cooling to room 

temperature, the solution was extracted with ethyl acetate, washed twice each with brine 

and sat. NaHCO3, dried over Na2SO4, and concentrated under reduced pressure to produce 

a yellow solid, 14, which was characterized by 1H-NMR and LC/MS. (0.569 g, 48.0% 

yield) 

(Figure 4.21) 1H NMR (400 MHz, Methanol-d4) δ 7.84 – 7.78 (m, 2H), 6.83 – 

6.78 (m, 2H), 4.28 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). 
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Figure 4.21: 1H-NMR (400 MHz) in CD3OD of 14.  
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Figure 4.22: LC/MS of 14. LC traces: at 254 nm, 214 nm, and 280 nm (frames 1-3). 
Mass detection: ESI/APCI positive ionization (frame 4), ESI/APCI negative 
ionization (frame 5). 

 

Figure 4.23: ESI/APCI positive ionization mass spectrum from 2.8 to 3.1 min of 14. 
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4.3.2.2 Tri-Boc Protection (15) 

Following protocol set by Loog, et al., 14 (2.656 mmol, eq.) was partially dissolved 

in 5 mL dry acetonitrile (dried over Na2SO4 for several days) under argon.17 In a separate 

flask, di-tert-butyl dicarbonate (9.704 mmol, 3.7 eq.) was dissolved in 2.5 mL dry 

acetonitrile, then added to the first solution to stir at room temperature for at least one hour. 

Dimethylaminopyridine (0.105 mmol, 0.04 eq.) was dissolved in a third flask in 0.15 mL 

acetonitrile and added to the first solution, then heated at 60˚C for 24 hours. Reaction was 

monitored by TLC (2:1 ethyl acetate:hexanes) and LC/MS, by which 14, mono-Boc, di-

Boc, and 15 were observed. After the disappearance of 14, the reaction was cooled to room 

temperature, the solution was extracted with ether, washed with 1:1 1M KHSO4:brine, sat. 

NaHCO3, brine, dried with Na2SO4, and concentrated under reduced pressure. Desired 15 

and di-Boc side product could be isolated using a slow gradient of water:acetonitrile by 

CombiFlash. Fractions were combined, organics were evaporated under reduced pressure, 

extracted from the aqueous layer with ether, followed by a final concentration under 

reduced pressure. Di-Boc product produced a yellow solid, and 15 produced an orange 

viscous gel (0.661 g, 51.9% yield).  

(Figure 4.23)1H NMR (500 MHz, Chloroform-d) δ 7.99 (d, J = 8.8 Hz, 2H), 7.47 

(s, 2H), 4.35 (q, J = 7.1 Hz, 2H), 1.46 (s, 27H), 1.38 (t, J = 7.2 Hz, 3H). (Figure 4.24) 13C 

NMR (126 MHz, Chloroform-d) δ 166.22, 151.60, 150.10, 144.91, 130.22, 84.21, 61.04, 

28.21, 28.01, 14.46. (Figure 4.25) HRMS-ESI [M + Na]+ calculated for C24H36N2O8 

503.2364, found 503.2364. 
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Figure 4.24: 1H-NMR (500 MHz) in CDCl3 of 15.  
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Figure 4.25: 13C-NMR (500 MHz) in CDCl3 of 15.  

 



 42 

 

Figure 4.26: High Resolution Mass Spectrum (ESI positive mode) of 15. 

4.3.2.3 Claisen Reaction (18) 

Diisopropylamine (4.545 mmol, 3.5 eq.) was added to a flame-dried RBF of 2.5 

mL dry THF on a dry ice/acetone bath under argon. n-Butyllithium (4.750 mmol, 3.7 eq.) 

was added dropwise to the diisopropylamine solution and was rapidly stirred for 10 

minutes. Dry ethyl acetate (dried over sieves for several days) (4.607 mmol, 3.5 eq.) added 

quickly to the solution, and stirred an additional 15 minutes. In a second flame-dried RBF, 

15 (1.299 mmol, 1.0 eq.) was dissolved in 3.0 mL dry THF, then added dropwise to the 

first solution still at -79˚C. Solution stirred and gradually allowed to warm to room 

temperature by allowing the ice bath to melt. Reaction monitored by LC/MS, where 15, 

tri-Boc Claisen (16), di-Boc starting material (17), and 18 were observed and monitored 

(Figure 4.29-4.33). After 5 hours, all of 15 was consumed, and the reaction was quenched 
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with 100 mL 100mM phosphate buffer. Precipitate formed upon quenching, and precipitate 

and solution were extracted with ether, washed with sat. NaHCO3, H2O, brine, dried with 

Na2SO4, and concentrated under reduced pressure to produce a yellow, impure solid. The 

solid was dissolved in acetonitrile and purified by CombiFlash. Fractions were combined, 

acetonitrile removed under reduced pressure, and the aqueous layer was extracted with 

diethyl ether, dried with Na2SO4, and finally concentrated under reduced pressure. Pure 18 

was obtained as a yellow solid, which was characterized by 1H-NMR, 13C-NMR, and 

HRMS. (0.214 g, 40% yield) 

(Figure 4.26) 1H NMR (500 MHz, Chloroform-d) δ 7.98 – 7.94 (m, 6H), 7.92 – 

7.87 (m, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.45 – 7.40 (m, 6H), 6.76 (s, 2H), 4.34 (q, J = 7.1 

Hz, 6H), 4.20 (q, J = 7.1 Hz, 2H), 3.95 (s, 2H), 1.58 – 1.41 (m, 52H), 1.37 (t, J = 7.1 Hz, 

10H), 1.25 (t, J = 7.1 Hz, 4H). (Figure 4.27) 13C NMR (126 MHz, Chloroform-d) δ 

166.41, 152.35, 142.76, 130.95, 129.31, 124.83, 117.45, 83.50, 81.29, 61.61, 60.87, 46.07, 

28.40, 28.21, 14.49, 14.21. (Figure 4.28) HRMS-ESI [M + H]+ calculated for C12H30N2O7 

423.2126, found 423.2132. 
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Figure 4.27: 1H-NMR (500 MHz) in CDCl3 of 18.  
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Figure 4.28: 13C-NMR (500 MHz) in CDCl3 of 18. 

 



 46 

 

Figure 4.29: High Resolution Mass Spectrum (ESI positive mode) of 18. 

 

Figure 4.30: 3D LC trace of Claisen Reaction of 15.  
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Figure 4.31: ESI/APCI positive ionization mass spectrum from 12.6 to 12.9 of 15. 
[M+Na]+ expected 503. [2M+Na] + expected 983. 

 

Figure 4.32: ESI/APCI positive ionization mass spectrum from 11.8 to 12.1 of 16. 
[M+Na] + expected 545. [2M+Na] + expected 1067. 

m/z0 250 500 750 1000 1250 1500 1750 2000

0

20

40

60

80

100

*MSD1 SPC, time=12.617:12.899 of L:\NHB_5342_LCMS\03-18\AN-BURKE\210318~BNB175_630PM1~22316.D    MM-ES+APCI, Pos, Scan,

Max: 130188

 5
05

.2

 8
9
1
.4

 3
0
3.

1

 9
85

.4

 4
0
3
.2  5

0
4
.2

 9
8
4
.4

 9
8
3
.4

 5
0
3.

2

m/z0 250 500 750 1000 1250 1500 1750 2000

0

20

40

60

80

100

*MSD1 SPC, time=11.841:12.100 of L:\NHB_5342_LCMS\03-18\AN-BURKE\210318~BNB175_630PM1~22316.D    MM-ES+APCI, Pos, Scan,

Max: 116486

 5
4
7
.2

 1
3
5
.2

 2
23

.2

 2
6
8
.1

 3
2
4
.2  4

4
5
.2

 1
0
6
8
.4

 1
5
3
.1

 1
0
6
7
.4

 1
7
9
.1

 5
4
6
.2

 3
2
3.

2

 2
6
7
.1

 5
4
5.

2



 48 

 

Figure 4.33: ESI/APCI positive ionization mass spectrum from 11.0 to 11.3 of 17. 
[M+Na] + expected 403. [2M+Na] + expected 783. 

 

Figure 4.34: ESI/APCI positive ionization mass spectrum from 10.3 to 10.5 of 18. 
[M+Na] + expected 445. 
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4.3.2.4 Boc Deprotection (M6)  

Due to the rapid decomposition of M6, a wide range of deprotection solutions were 

screened with varying temperatures and time scales characterized by LC/MS and injectable 

mass spec, where 18, mono-Boc, and M6 were all observed, as well as a major 

decomposition product. The following procedures were screened: 

20% TFA/DCM, RT, 24 hours, rotovapped 

20% TFA/DCM, RT, 3 hours, N2 blow dried 

5% TFA/DCM, RT, 2 hours, quenched with HCl 

TFA, RT, 1.5 hours 

95% TFA/2.5% TIPS/2.5% H2O, 0˚C, 1 hour, N2 blow dried 

95% TFA/2.5% TIPS/2.5% H2O precooled to 0˚C, run at 0˚C, 1 hour, N2 blow dried 

1.25M Hydrogen Chloride in EtOH, RT, 5 hours, N2 blow dried 

2M Hydrogen Chloride in Et2O, RT, 5 hours, N2 blow dried 

TFA-D, RT, 1 hour (NMR test) 

87.5% TFA/2.5% TIPS/10% dry EtOH, -5˚C, 1 hour, N2 blow dried 

95% TFA/2.5% Tips/2.5% H2O precooled to -5˚C, run at -5˚C, 3 hours, N2 blow 

dried while remaining at -5˚C 

The last of the reaction conditions was determined to provide the greatest amount 

of M6 and minimized side product formation, so the reaction was scaled up. A solution of 

95% TFA/2.5% triisopropylsilane/2.5% H2O created and cooled to -5˚C. 18 (mmol, eq.) 

cooled to -5C, and dissolved in 5 mL TFA/TIPS solution. Reaction was monitored by 

LC/MS, and after 3 hours, a good amount of M6 was observed, along with small amounts 

of 18 and side product. The solution was then blow dried with N2(g) while still kept at -

5˚C, being cautious to keep the solution as cool as possible. If solution splashed onto the 

side of the flask above the level of water bath, it would form a deep yellow solid, indicating 
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undesired side product formation. After an hour of gentle cooling, the small amount of 

solution was taken up in pre-cooled H2O at 0˚C and injected onto the CombiFlash. 

Immediately as fractions came off the CombiFlash, the fraction was characterized by 

injectable mass spectrum, and frozen. After lyophilization, the product was taken up in 

0.1M HCl, and characterized by injectable mass spectrum, and LC/MS. Characterization 

before lyophilization showed pure M6, however after lyophilization, a lot of a new side 

product was observed. By LC/MS, it is hypothesized that this new product was a dimer of 

the monomer (Figure 4.35-4.37). At this time, it was determined that if the monomer could 

not survive deprotected during the very mild condition of lyophilization, it would likely 

not survive the conditions required to load onto tRNA.  

(Figure 4.34) HRMS-ESI [M + Na]+ calculated for C11H14N2O3 245.0897, found 

245.0906.  

 

Figure 4.35: High Resolution Mass Spectrum (ESI positive mode) of M6. 
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Figure 4.36: Hypothesized M6 dimer moiety. 

 

Figure 4.37: LC/MS data of M6 and dimer  after lyophilization. LC traces: at 254 nm, 
214 nm, and 280 nm (frames 1-3). Mass detection: ESI/APCI positive 
ionization (frame 4), ESI/APCI negative ionization (frame 5). 
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Figure 4.38: ESI/APCI negative ionization mass spectrum from 7.0 to 7.3 of M6 dimer. 
[M-H]- expected 379. 
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PART 2: PREPARATION FOR PDCPA CHARGING 

Chapter 6: Introduction and Background 

The ribosome has had millions of years of evolution to become a highly efficient 

catalyst for natural peptide bond formation. Not only does it have a high rate of 

polymerization at 20 amino acids per second, but it also has mechanisms to detect and 

prevent errors allowing for an accuracy of 99.99%.1-2 Catalytic peptide bond formation is 

highly efficient due to amino acids placed only 7 Å apart in the active site, as well as water 

molecules located close to the active site, the peptidyl transferase center (PTC).3-6 To 

capitalize on this efficiency, research has begun to discover a range of chemistries that 

could be carried out by a genetically modified ribosome. 

 

Figure 6.1: Ribosome with the small and large subunits, mRNA, tRNA, and the amino 
acids in the PTC site.3  

There are three tRNA binding sites in the ribosome, the aminoacyl-tRNA site (A-

site), the peptidyl-tRNA site (P-site), and the exit site (E-site).  Translation is initiated when 

mRNA binds to the small ribosomal subunit, followed by incorporation of tRNA into the 

P-site, and finally the attachment of the large ribosomal subunit. Elongation of the peptide 

occurs by association and dissociation of various aminoacyl-tRNA species into the A-site 
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until the complementary anti-codon of the tRNA correctly matches the codon site of the 

mRNA. Once the correct tRNA has been associated, peptide bond formation is catalyzed 

in the PTC. Translocation occurs by shifting the tRNA in the P-site to the E-site, and the 

tRNA in the A-site into the P-site to both discard the used tRNA, and to vacate the A-site 

for new aminoacyl-tRNA association. 

Once a monomer has been selected based on test chemistries and synthesized, it 

must then be charged onto tRNA to be shuttled into the ribosome for polymerization. One 

method for charging tRNA that is being investigated by the Moore group utilizes flexizyme 

chemistry to catalyze the charging of tRNA.7 The mechanism of which is not completely 

understood, but it is hypothesized that the flexizyme works to increase the nucleophilicity 

of the tRNA.  

Robertson, et al. have proposed another mechanism for charging non-natural amino 

acids onto tRNA by protecting the amine end with photo-labile NVOC, activating the ester 

by cyanomethylation, and charging the monomer onto a dinucleotide, pdCpA.8-11 The 

charged pdCpA moiety is then ligated onto tRNA-CA, tRNA with its last two nucleotides, 

C and A, cleaved off (Figure 8.1). Both methods will be investigated to widen the pool of 

monomers loaded onto tRNA.  
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Chapter 7: Results and Discussion 

7.1 NVOC-CL SYNTHESIS 

 

 

Figure 7.1: NVOC-Cl synthesis. 

Photo-labile protecting group NVOC-Cl is commercially available for $150/1g. 

Because a large amount of NVOC-Cl is required for the charging of pdCpA with different 

monomers, a synthetic route was followed by first reducing the aldehyde to 20, followed 

by nucleophilic attack on triphosgene.12-13 Recrystallization in toluene provided large 

amount of pure NVOC-Cl.  

 

20 NVOC-Cl 
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7.2 PDCPA SYNTHESIS 

7.2.1 Schultz’s Method 

 

Figure 7.2: Schultz’s manual synthesis. 

22 

23 

25 
24 

26 

pdCpA 
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Step 1 of the Schultz method involves trityl protection of the primary alcohol, 

benzoyl protection of the secondary alcohols and the primary amine, followed by cleavage 

of the trityl protecting group, and finally purification by column chromatography.8-9,11 

Upon characterization by LC/MS, 23 was identified, however, mono- di- and tri-benzoyl 

products were also observed in significant quantity. After attempted purification by column 

chromatography, only a very small amount of impure 23 was able to be isolated. Due to 

the difficulty in obtaining large amounts of pure product for first step, new methods of 

pdCpA synthesis were investigated.  

7.2.2 Automated DNA Synthesizer 

 

Figure 7.3: pdCpA synthesis by DNA Synthesizer.  

The method of utilizing an ABI 8909 Expedite DNA Synthesizer to create pdCpA 

by solid phase synthesis was then investigated. Solid phase support, CPG, charged with the 

first nucleotide is purchased pre-loaded on a column, and synthesis from 3’ to 5’ is 

automatically performed on the synthesizer. After synthesis is complete, the protected 

DNA is cleaved from the resin, and loaded onto Glen-Pak Purification Cartridges for 

purification and deprotection of the remaining protecting groups. Although this synthesis 
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allowed for the synthesis of pure pdCpA, the maximum solid phase column size is one 

µmol. In order to load a series of different monomers onto pdCpA, a scale of mmol is 

required. Because it would take weeks of repetitive synthesis to compile those small scales 

into a useful scale, a new method for synthesis was devised modeling this protocol and 

materials as a base structure. 

7.2.3 Manual DNA Synthesizer Method 

In an attempt to scale up the amount of product produced without linearly scaling 

up the time, a manual synthesis protocol was devised and tested. Using a fritted column 

with a continuous flow of dry N2(g), manual synthesis was able to be carried out on a larger 

scale using all of the same reagents that were used in the DNA synthesizer. A few 

alterations needed to be made to the protocol to get the synthesis to work. Firstly, the order 

of the oxidation and capping steps needed to be reversed to ensure proper oxidation of the 

phosphityl groups. Additionally, leaving the activating solution in the column when the 

phosphoramidite was added aided in coupling. Finally, deprotection of the acetyl groups 

was able to occur at the same time as cleavage from the column, eliminating the need to 

perform the tedious Glen-Pak purification. This synthesis provided a pure product in one 

day of synthesis, and one day of work-up. As more monomers are needed to be charged 

onto tRNA, this should provide a useful method in obtaining a relatively large scale of 

product in a short amount of time by simply increasing the scale of each of the reagents.  
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Chapter 8: Conclusions and Future Work 

Once a monomer has been identified and synthesized, it will need to be charged 

onto tRNA. The monomer can be charged onto tRNA by flexizyme chemistry, investigated 

by the Moore group or by pdCpA following Figure 8.1. Both methods for charging tRNA 

will be investigated, as there have been some limitations on what can be charged utilizing 

the flexizyme chemistry, so using both techniques will hopefully widen the available 

library of monomers charged to tRNA.  

 

 

Figure 8.1: Scheme 7 monomer charging onto tRNA via pdCpA. 

To load by pdCpA, the carboxylic monomer will have any amine or hydrazine 

groups protected by NVOC-Cl, followed by cyanomethylation, charging onto pdCpA, and 

pdCpA 

NVOC-Cl 
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NVOC cleavage using a He-Xe lamp. Finally, the charged pdCpA will be ligated by T4 

RNA Ligase to tRNA that has has the last two nucleotides, C and A, cleaved.  

 

 

Figure 8.2: Scheme 3, 6, and 7 monomers with possible positions of variability 
(indicated by *). 

After attachment to tRNA by either flexizyme chemistry or by pdCpA, the charged 

tRNA will be used to attempt polymerization inside a genetically modified ribosome. Once 

a monomer has been shown to polymerize in a genetically modified ribosome, methods to 

diversify monomers by placing unique groups on monomers will be investigated (Figure 

8.2). Assignment of each unique group to a corresponding tRNA anti-codon will allow the 

creation of sequence defined polymers in a genetically modified ribosome.  
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Chapter 9: Experimental 

9.1 MATERIALS AND METHODS 

All chemicals were of reagent grade and used as purchased without further 

purification. Automatic DNA synthesis performed on ABI 8909 Expedite DNA 

Synthesizer. Columns were ordered through Glen Research specifically for Expedite 

synthesizers. All reagents and solutions for pdCpA synthesis in the automatic and manual 

DNA Synthesizer methods were purchased from Glen Research and stored under argon in 

a desiccator, and in a fridge if required, to maintain anhydrous conditions.  

LC/MS spectra were obtained on an Agilent Technologies 6120 Single Quadrupole 

LC/MS spectrometer which utilized a 5-95% MeOH/H2O gradient over 12 minutes, with 

atmospheric-pressure chemical ionization in both positive and negative mode. H-NMR 

(400 MHz) were acquired with an Agilent 400 MHz.  

9.2 NVOC-CL SYNTHESIS 

Following protocol outlined by Tang, et al., 6-nitroveratraldehyde dissolved in 50 

mL dry THF, and cooled to 0˚C.12 Sodium borohydride added to solution and stirred 

overnight under argon, monitored by TLC (1:1 hexane:ethyl acetate). After disappearance 

of starting material, reaction quenched with 100 mL water while still under argon, then 

extracted with dichloromethane twice. Organics combined and concentrated under reduced 

pressure to produce pure 20 (2.042 g, 95.45% yield).  

(Figure 9.1) 1H NMR (499 MHz, Chloroform-d) δ 7.76 (s, 1H), 7.01 (s, 1H), 5.74 

(s, 2H), 4.00 (d, J = 18.2 Hz, 6H). 

Following protocol outlined by Mattelaer, et al, a solution of triethylamine (9.56 

mmol, 1.0 eq.) in 25.0 mL dry THF was added dropwise over 30 minutes to a stirred 

solution of triphosgene (9.56 mmol, 1.0 eq.) and NVOC-Cl (9.56 mmol, 1.0 eq.) in 40.0 
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mL dry THF cooled to 0˚C.13 After the solution was stirred overnight at room temperature, 

the suspension was filtered through a column frit to remove any solid, then was 

concentrated under reduced pressure. The crude product was recrystallized in dry toluene 

under argon to produce a dark crystal, NVOC-Cl (1.2395 g, 47.02% yield), which was 

characterized by 1H-NMR.  

(Figure 9.2) 1H NMR (400 MHz, Chloroform-d) δ 7.71 (s, 1H), 7.17 (s, 1H), 5.01 

– 4.93 (m, 2H), 4.01 (s, 3H), 3.96 (s, 3H), 2.60 (t, J = 6.5 Hz, 1H). 

 

 

Figure 9.1: 1H-NMR (400 MHz) CDCl3 of 20.  
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Figure 9.2: 1H-NMR (400 MHz) CDCl3 of NVOC-Cl.  

9.3 PDCPA SYNTHESIS 

9.3.1 Automated DNA Synthesizer Method 

Because the solid support can be purchased with one nucleotide already attached, 

the synthesis of pdCpA included only one nucleotide addition step and a phosphorylation 

coupling step. The cycle for solid phase synthesis on a DNA synthesizer goes through four 

steps per nucleotide addition: TCA deprotection of DMT, followed by coupling of 

phosphoramidite with tetrazole, then iodine oxidation of phosphityl groups, and finally 

capping of unreacted primary alcohols to prevent polymerization of uncoupled strands. The 

DNA strand is then cleaved from the resin using 1.0 mL ammonium hydroxide. The 

solution is loaded directly onto Glen-Pak cartridges, which attaches to the remaining DMT 
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group of any correctly synthesized strands. Following the protocol provided by Glen 

Research with the purchase of the Glen-Pak, a series of cleansing and cleavage solutions 

were pushed through the column and purified deprotected product was eluted with 0.5% 

ammonium hydroxide in 1 mL 50% acetonitrile in water. The compound was HPLC 

purified, and characterized by LC/MS. 

9.3.2 Manual DNA Synthesizer Method 

Anhydrous conditions must be maintained as best as possible, or this synthesis will 

not work. All solutions, including acetonitrile, were purchased from Glen Research, and 

stored under argon throughout synthesis. Manual solid phase synthesis was performed on 

a glass column cleaned with dichloromethane, hexanes, ethyl acetate, acetone, water, and 

plenty of (non-dry) acetonitrile, followed by at least 24 hours in an oven. The column was 

then plugged with a septum and purged with N2(g) with a wide gauge needed that was first 

run through desiccant, into Schlenk line attached to the column, and an exit port through a 

silicone oil bubbler to maintain anhydrous conditions, prevent buildup of pressure, and to 

monitor flow rate of N2. Throughout synthesis the flow of N2 must be high enough to push 

solvent through the column when the valve is open, while simultaneously pushing through 

the bubbler. Manual shaking of column used to ensure distribution of solutions.  

Directly before beginning synthesis, four solutions must be made fresh. 10 mL dry 

acetonitrile added to 0.5 g Ac-dC-CE Phosphoramidite to bring to a concentration of 

0.067M. 5 mL dry acetonitrile added to 0.25 g Chemical Phosphorylation Reagent II to 

bring to a concentration of 0.067M. Capping mix was made by combining 5 mL Cap Mix 

A with 8 mL Cap Mix B. Finally, 1:1 (v:v) methylamine solution 40 wt.% in 

H2O/ammonium hydroxide are combined to create an AMA solution. 
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Once the column and solutions were prepared, the CPG solid support (0.1 g CPG) 

was poured into the column, and acetonitrile was used to wash down the sides. Each 

coupling has four steps: deprotection, coupling, capping, and oxidation, with thorough dry 

acetonitrile washes after draining each step. Be sure to drain all of the liquid from the 

column on each step, to prevent reaction between reagents Deprotection solution (TCA) 

slowly added and drained continuously, while monitoring bright orange color indicating 

proper deprotection (approximately 12 mL was used). Once bright orange starts to fade in 

color on the column, the column was washed. Next, 0.9 mL tetrazole added and not drained, 

followed by addition of 2.0 mL of 0.067M Ac-dC-CE Phosphoramidite. The solution was 

incubated in the column for 30 minutes with occasional shaking, drained and washed. Next, 

3.25 mL of the capping mixture added, and incubated for 5 minutes, drained and washed. 

5 mL Iodine solution added to column, and incubated for 30 minutes with gentle shaking, 

drained and washed. After completion of the first coupling step, the same protocol will be 

followed for the second coupling step. 

Deprotection solution (TCA) slowly added and drained continuously 

(approximately 10 mL was used), again looking for the bright orange appearance, then the 

column was washed. Next, 0.9 mL tetrazole added and not drained, followed by addition 

of 2.0 mL of 0.067M Chemical Phosphorylation Agent II. The solution was incubated in 

the column for 30 minutes with occasional shaking, then drained and washed. 3.25 mL of 

the capping mixture added, and incubated for 5 minutes, drained and washed. 5 mL Iodine 

solution added to column, and incubated for 30 minutes with gentle shaking, drained and 

washed.  

Once both of the coupling steps have concluded, a final DMT deprotection step was 

performed by slow addition of deprotection solution (TCA) while draining continuously 
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(approximately 10 mL was used), again looking for the bright orange appearance one last 

time, then the column was washed. 

At this point, the dinucleotide is still attached to the solid support with only acetyl 

protecting groups. Fortunately, both deprotection and cleavage from the resin are 

performed by incubating the column in 20 mL AMA overnight.  

After collection of the liquid from the column, the solution was concentrated under 

reduced pressure using a Kolesnichenko contraption to produce pure 20, characterized by 

HRMS.  

(Figure 9.3) HRMS-ESI [M + H]+ calculated for C19H26N8O13P2 637.1167, found 

637.1152. (Figure 9.4) HRMS-ESI [M - H]- calculated for C19H26N8O13P2 635.1022, found 

635.1040. 

 

Figure 9.3: High Resolution Mass Spectrum (ESI positive mode) of 20. 
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Figure 9.4: High Resolution Mass Spectrum (ESI negative mode) of 20. 
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