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Motion planning for optimal information gathering in an opportunistic navigation (Op-
Nav) environment is considered. An OpNav environment can be thought of as a radio
frequency signal landscape within which a receiver locates itself in space and time by ex-
tracting information from ambient signals of opportunity (SOPs). The receiver is assumed
to draw only pseudorange-type observations from the SOPs, and such observations are
fused through an estimator to produce an estimate of the receiver’s own states. Since
not all SOP states in the OpNav environment may be known a priori, the receiver must
estimate the unknown SOP states of interest simultaneously with its own states. In this
work, the following problem is studied. A receiver with no a priori knowledge about its
own states is dropped in an unknown, yet observable, OpNav environment. Assuming that
the receiver can prescribe its own trajectory, what motion planning strategy should the
receiver adopt in order to build a high-fidelity map of the OpNav signal landscape, while
simultaneously localizing itself within this map in space and time? To answer this question,
first, the minimum conditions under which the OpNav environment is fully observable are
established, and the need for receiver maneuvering to achieve full observability is high-
lighted. Then, motivated by the fact that not all trajectories a receiver may take in the
environment are equally beneficial from an information gathering point of view, a strat-
egy for planning the motion of the receiver is proposed. The strategy is formulated in a
coupled estimation and optimal control framework of a gradually identified system, where
optimality is defined through various information-theoretic measures. Simulation results
are presented to illustrate the improvements gained from adopting the proposed strategy
over random and pre-defined receiver trajectories.

I. Introduction

T
he weakness of global navigation satellite systems (GNSS) space-based signals makes them easy to block
intentionally or accidentally, rendering GNSS insufficient for reliable anytime, anywhere navigation.

Motivated by the plenitude of ambient radio frequency signals in GNSS-challenged environments, such as
indoors, deep urban canyons, and environments experiencing intentional jamming, a new paradigm termed
opportunistic navigation (OpNav), has been proposed.1, 2 This paradigm aims to extract positioning and
timing information from ambient radio frequency signals of opportunity (SOPs). OpNav radio receivers
continuously search for opportune signals from which to draw navigation and timing information, employing
on-the-fly signal characterization as necessary. In collaborative opportunistic navigation (COpNav), multiple
OpNav receivers share information to construct and continuously refine a global signal landscape.3

In its most general form, OpNav treats all ambient radio signals as potential SOPs, from conventional
GNSS signals to communications signals never intended for use as timing or positioning sources. Each
signal’s relative timing and frequency offsets, transmit location, and frequency stability, are estimated on-
the-fly as necessary, with prior information about these quantities exploited when available. At this level of
generality, the OpNav estimation problem is similar to the simultaneous localization and mapping (SLAM)
problem in robotics.4, 5 Both imagine an agent which, starting with incomplete knowledge of its location
and surroundings, simultaneously builds a map of its environment and locates itself within that map.
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In traditional SLAM, the map that gets constructed as the agent (typically a robot) moves through the
environment is composed of landmarks – walls, corners, posts, etc. – with associated positions. OpNav
extends this concept to radio signals, with SOPs playing the role of landmarks. In contrast to a SLAM
environmental map, the OpNav signal landscape is dynamic and more complex. For the simple case of
pseudorange-only OpNav, where observables consist solely of signal time-of-arrival measurements, one must
estimate, besides the position and velocity of each SOP transmitter’s antenna phase center, each SOP’s time
offset from a reference time base, rate of change of time offset, and a set of parameters that characterize
the SOP’s reference oscillator stability. Even more SOP parameters are required for an OpNav framework
in which both pseudorange and carrier phase measurements are ingested into the estimator.1 Of course, in
addition to the SOP parameters, the OpNav receiver’s own position, velocity, time offset, and time offset
rate must be estimated. Metaphorically, the signal landscape map can be thought of as a “jello map”, with
the jello firmer as the clocks are more stable.

The observability of OpNav environments comprising a receiver with velocity random walk dynamics
making pseudorange observations on multiple SOPs was analyzed by Kassas and Humphreys.6 This analysis
considered several scenarios an OpNav environment may exhibit, and for each scenario the following questions
were answered: (i) is the environment observable? and (ii) if the environment is not completely observable,
what are the unobservable directions in the state space? This analysis was extended to the case of multiple
receivers in a COpNav environment, and the degree of observability, also known as estimability, of the various
states in the environment was quantified, with special attention paid to the least and most observable states.7

While observability is a Boolean property, i.e. it asserts whether a system is observable or not, it does not
specify which trajectory is best for estimability. This is the subject of this paper. To this end, the receiver
dynamics is modified so to allow for maneuvering in the form of velocity commands.

Optimizing an observer’s path in tracking applications has been the subject of extensive research.8, 9, 10

In such problems, the observer, who has perfect knowledge about its own states, is tracking a stationary or
a mobile target through its onboard sensors. The trajectory optimization objective is to prescribe optimal
trajectories for the observer to follow to maintain good estimates about the target’s states. Such problems
are typically formulated in an optimal control framework. In SLAM, the problem of trajectory optimization
is more involved, due to the coupling between the localization accuracy and the map quality. Initial SLAM
research did not take motion control into account and assumed the robot’s path to be predetermined or
randomly chosen. Of course, not all trajectories a robot can take will be equally beneficial from a local-
ization and mapping accuracy perspective. The problem of trajectory optimization in SLAM has received
considerable attention recently.11, 12, 13

A fundamental challenge in all optimization-based approaches is the choice of a proper optimization
metric. To this end, the Shannon and Fisher information measures provide a natural way of quantifying
the uncertainty about the receiver’s states and the fidelity of the signal landscape. Since the receiver and
SOP states may not all be known a priori, the optimal motion planning strategy needs to be performed
simultaneously with estimating the unknown states. This dependency of the objective functional on the
parameters to be estimated is prevalent in the information-based optimization literature. It is best described
by Cochran as: “You tell me the value of θ, and I promise to design the best experiment for estimating
θ”.14 A key difference between this class of problems and classical optimal control problems is that the cost
functional to be minimized is time-varying and unknown, as it depends on the action and sensing strategy
that one will take, i.e. the system under consideration is gradually identified.

Optimal receiver motion planning in OpNav environments can be thought of as a hybrid of: (i) optimizing
an observer’s path in tracking problems and (ii) optimizing the robot’s path in SLAM. The similarity to
the tracking problems stems from the fact that the SOP’s state space is not stationary, which is due to the
dynamical nature of the clock error states, making the problem analogous to tracking non-stationary targets.
The similarity to the SLAM problems stems from the fact that the receiver’s objective is to maximize the
information gained about the OpNav environment while simultaneously minimizing the uncertainty about
its own state estimates.

This paper makes two contributions. First, the observability of an OpNav environment consisting of
a receiver which could command its own maneuvers and multiple SOPs is analyzed. The objective of the
observability analysis is twofold: (i) establish the minimum conditions under which the OpNav environment
is fully-observable, and (ii) for scenarios where the OpNav environment is not fully-observable, specify the
observable states, if any. It is shown that the minimum a priori knowledge needed about the OpNav
environment for full observability is reduced from the case where the receiver is moving according to velocity
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random walk dynamics with no control over its maneuvers. The second contribution is the design of a
closed-loop receiver motion planning strategy to optimize the information gathered about the OpNav signal
landscape states simultaneously with the receiver’s own states. To this end, several information-based
measures are compared, namely the (i) D-optimality criterion, which is equivalent to minimizing the volume
of the uncertainty ellipsoid, (ii) A-optimality criterion, which is equivalent to minimizing the average variance
of the estimates, and (iii) E-optimality criterion, which is equivalent to minimizing the length of the largest
axis of the uncertainty ellipsoid.

The remainder of this paper is organized as follows. Section II describes the OpNav environment dynamics
and observation model. Section III analyzes the observability of various scenarios an OpNav environment
may exhibit. Section IV presents a strategy for receiver motion planning for optimal information gathering.
Section V presents simulation results to illustrate the effectiveness of the proposed strategy. Concluding
remarks are given in Section VI.

II. Model Description

A. Dynamics Model

In a generic coordinate ξ, the receiver’s dynamics will be assumed to evolve according to

ξ̇(t) = uξ(t) + w̃ξ(t),

where uξ is the control input in the form of a velocity command and w̃ξ is the process noise, which is modeled
as a zero-mean white stochastic process with power spectral density q̃ξ, i.e.

E [w̃ξ(t)] = 0, E [w̃ξ(t)w̃ξ(τ)] = q̃ξ δ(t− τ),

where δ(t) is the Dirac delta function. Note that in the absence of the control input, uξ, this model is simply
position random walk dynamics.

The receiver and SOP clock error dynamics will be modeled according to the so-called two-state model,
composed of the clock bias δt and clock drift δ̇t. The clock error states evolve according to

ẋclk(t) = Aclk xclk(t) + w̃clk(t),

where

xclk =

[

δt

δ̇t

]

, w̃clk =

[

w̃δt

w̃δ̇t

]

, Aclk =

[

0 1

0 0

]

,

where w̃δt and w̃δ̇t are zero-mean, mutually independent white noise processes with power spectra Sw̃δt

and Sw̃δ̇t
, respectively. The power spectra Sw̃δt

and Sw̃δ̇t
can be related to the power-law coefficients,

{hα}2α=−2, which typically characterize the power spectral density of the fractional frequency deviation

y(t) of an oscillator from nominal frequency, namely Sy =
∑2

α=−2 hαf
α.15 It is common to approximate

such relationships by considering only the frequency random walk coefficient h−2 and the white frequency
coefficient h0, which lead to Sw̃δt

≈
h0

2 and Sw̃δ̇t
≈ 2π2h−2.

16, 17

The receiver’s state vector will be defined by augmenting the receiver’s planar position states with its
clock error states to yield the state-space realization

ẋr(t) = Ar xr(t) +Br ur(t) +Dr w̃r(t), (1)

where xr =
[

rT

r , δtr, δ̇tr

]T

, rr = [xr, yr]
T
, ur = [ux, uy]

T
, w̃r =

[

w̃x, w̃y , w̃δtr , w̃δ̇tr

]T

,

Ar =

[

02×2 02×2

02×2 Aclk

]

, Br =

[

I2×2

02×2

]

, Dr = I4×4.

The receiver’s dynamics in (1) is discretized at a sampling period T , tk+1− tk, assuming zero-order hold
of the control inputs, i.e. {u(t) = u(tk), tk ≤ t < tk+1}, to yield the discrete-time (DT) equivalent model

xr (tk+1) = Fr xr(tk) +Gr ur(tk) +wr(tk), k = 0, 1, 2, . . . (2)
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where wr is a DT zero-mean white noise sequence with covariance Qr, with

Fr =

[

I2×2 02×2

02×2 Fclk

]

, Gr =

[

T I2×2

02×2

]

, Fclk =

[

1 T

0 1

]

Qr = diag [Qp,Qclk,r] , Qp =

[

T q̃x 0

0 T q̃y

]

, Qclk,r =

[

Sw̃δtr
T + Sw̃δ̇tr

T 3

3 Sw̃δ̇tr

T 2

2

Sw̃δ̇tr

T 2

2 Sw̃δ̇tr
T

]

.

The SOP will be assumed to emanate from a spatially-stationary terrestrial transmitter and its state
consists of its planar position and clock error states. Hence, the SOP’s dynamics can be described by the
state-space model

ẋs(t) = As xs(t) +Dsw̃s(t), (3)

where xs =
[

rT

s , δts, δ̇ts

]T

, rs = [xs, ys]
T, ws =

[

w̃δts , w̃δ̇ts

]T

As =

[

02×2 02×2

02×2 Aclk

]

, Ds =

[

02×2

I2×2

]

,

Discretizing the SOP’s dynamics (3) at a sampling interval T yields the DT-equivalent model

xs (tk+1) = Fs xs(tk) +ws(tk), (4)

where ws is a DT zero-mean white noise sequence with covariance Qs, and

Fs = diag [I2×2, Fclk] , Qs = diag [02×2, Qclk,s] ,

whereQclk,s is identical toQclk,r, except that the spectra Sw̃δtr
and Sw̃δ̇tr

are now replaced with SOP-specific
spectra, Sw̃δts

and Sw̃δ̇ts
, respectively.

Defining the augmented state as x ,
[

xT

r , x
T

s

]T

and the augmented process noise vector as w ,
[

wT

r , w
T

s

]T

yields the system dynamics

x (tk+1) = Fx (tk) +w(tk), (5)

where F = diag [Fr, Fs], and w is a zero-mean white noise sequence with covariance Q = diag [Qr,Qs].
While the model defined in (5) considered only one receiver and one SOP, the model can be readily extended
to multiple SOPs by augmenting their corresponding states and dynamics.

B. Observation Model

To properly model the pseudorange observations, one must consider three different time systems. The first
is true time, denoted by the variable t, which can be considered equivalent to GPS system time. The second
time system is that of the receiver’s clock and is denoted tr. The third time system is that of the SOP’s
clock and is denoted ts. The three time systems are related to each other according to

t = tr − δtr(t), t = ts − δts(t),

where δtr(t) and δts(t) represent the amount by which the receiver and SOP clocks are different from true
time, respectively.

The pseudorange observation made by the receiver on a particular SOP is made in the receiver time and
is modeled according to

ρ(tr) = ‖rr [tr − δtr(tr)]− rs [tr − δtr(tr)− δtTOF]‖2 + c . {δtr(tr)− δts [tr − δtr(tr)− δtTOF]}+ ṽρ(tr), (6)

where c is the speed of light, δtTOF is the time-of-flight of the signal from the SOP to the receiver, and ṽρ is
the error in the pseudorange measurement due to modeling and measurement errors. The error ṽρ is modeled
as a zero-mean white Gaussian noise process with power spectral density r̃.18 In (6), the clock offsets δtr
and δts were assumed to be small and slowly changing, in which case δtr(t) = δtr [tr − δtr(t)] ≈ δtr(tr). The
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first term in (6) is the true range between the receiver’s position at time of reception and the SOP’s position
at time-of-transmission of the signal, while the second term arises due to the offsets from true time in the
receiver and SOP clocks.

The observation model in (6) can be further simplified by converting it to true time and invoking mild
approximations to arrive at6, 7

z(t)= ρ(t) , h [x(t)] + ṽρ(t)

≈ ‖rr(t)− rs(t)‖2 + c · [δtr(t)− δts(t)] + ṽρ(t). (7)

Discretizing the observation equation (7) at a sampling interval T yields the DT-equivalent model

z(tk) = y(tk) + vρ(tk) = ‖rr(tk)− rs(tk)‖2 + c · [δtr(tk)− δts(tk)] + vρ(tk), (8)

where vρ is a DT zero-mean, white Gaussian process with covariance r = r̃/T .

III. Observability Analysis

Conceptually, observability of a dynamic system is a question of solvability of the states from a set of
observations that are linearly or nonlinearly related to the states, and where the states evolve according to
a set of linear or nonlinear difference or differential equations. Fundamentally, observability of a system is a
question of distinguishingly of the initial state from its neighbors. For nonlinear systems, it is more appro-
priate to analyze the observability through nonlinear observability tools rather than linearizing the nonlinear
system and applying linear observability tools. This is due to two reasons: (i) nonlinear observability tools
capture the nonlinearities of the dynamics and observations, and (ii) while the control inputs are never
considered in the linear observability tools, they are taken into account in the nonlinear observability tools.

A. Observability of Nonlinear Systems

For the sake of clarity, the nonlinear observability test employed in this paper is outlined in this subsection.
Consider the continuous-time (CT) nonlinear dynamic system in the control affine form,19 given by

ΣNL :

{

ẋ(t) = f0 [x(t)] +
∑r

i=1 f i [x(t)]ui, x(t0) = x0

y(t) = h [x(t)] ,
(9)

where x ∈ R
n is the system state vector, u ∈ R

r is the control input vector, y ∈ R
m is the observation

vector, and x0 is an arbitrary initial condition.
Two fundamental contrasts between observability of nonlinear and linear systems are:20

(i) Choice of inputs. In the linear case, if any input makes the system observable, then every input does
so; hence, it suffices to consider the case u ≡ 0. In nonlinear systems, this is not the case. Specifically,
there may exist certain inputs that could turn an observable system into unobservable. Hence, sensing and
actuation in nonlinear systems may be coupled, and they need to be studied simultaneously.
(ii) Length of observations. For observable CT linear systems, observing the outputs y over any arbitrary
time interval is sufficient. In nonlinear systems, it may be necessary to observe the outputs over a long, even
infinite, time intervals.

Several notions of nonlinear observability exist for ΣNL.
21 The most general, is (global) nonlinear ob-

servability, in which it might be necessary to travel a considerable distance or for a long period of time
to distinguish between initial conditions in R

n. Observability of ΣNL does not imply that every input u

distinguishes initial conditions in R
n. Stronger and weaker notions of nonlinear observability exist, namely

local observability, weak observability, and local weak observability. A somewhat simple algebraic test exists
to assessing local weak observability, which intuitively means that x0 is instantaneously distinguishable from
its neighbors. This test is based on constructing the so-called nonlinear observability matrix defined next.

Definition 1 The first-order Lie derivative of a scalar function h with respect to a vector-valued function
f is defined as

L
1
fh(x) ,

n
∑

j=1

∂h(x)

∂xj

fj(x) = 〈∇xh(x),f (x)〉 , (10)
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where f (x) , [f1(x), . . . , fn(x)]
T
. The zeroth-order Lie derivative of any function is the function itself, i.e.

L
0
fh(x) = h(x). The second-order Lie derivative can be computed recursively as

L
2
fh(x) = Lf

[

L
1
fh(x)

]

=
〈[

∇xL
1
fh(x)

]

,f (x)
〉

. (11)

Higher-order Lie derivatives can be computed similarly. Mixed-order Lie derivatives of h(x) with respect to
different functions f i and f j, given the derivative with respect to f i, can be defined as

L
2
fifj

h(x) , L
1
f j

[

L
1
f i
h(x)

]

=
〈[

∇xL
1
f i
h(x)

]

,f j(x)
〉

. (12)

The nonlinear observability matrix, denoted ONL, of ΣNL defined in (9) is a matrix whose rows are the
gradients of Lie derivatives, specifically

ONL ,

{

∇T

x

[

L
p
f i,...,f j

hl(x)
]

∣

∣

∣

∣

∣

i, j = 0, . . . , p; p = 0, . . . , n− 1, l = 1, . . . ,m

}

, (13)

where h(x) , [h1(x), . . . , hm(x)]T.

The significance of ONL is that it can be employed to furnish necessary and sufficient conditions for local
weak observability.21, 22 In particular, if ONL is full-rank, then ΣNL is said to satisfy the observability rank
condition, in which case the system is locally weakly observable. Moreover, if a system ΣNL is locally weakly
observable, then the observability rank condition is satisfied generically. The term “generically” means that
the observability matrix is full-rank everywhere, except possibly within a subset of the domain of x.20

B. Observability Analysis of OpNav Environments

The observability of various scenarios that may arise in OpNav environments are analyzed in this subsection.
The objective of this analysis is twofold: (i) determine whether the environment is observable, and (ii) if
the environment is not completely observable, determine the observable states, where the observable states
are referred to as those in an orthogonal complement to the unobservable subspace.

1. Scenarios Overview

The various scenarios considered in the observability analysis are outlined Table 1, where m ∈ N. The
first scenario corresponds to a single receiver and a single SOP whose initial states are unknown (no a
priori knowledge about any of the states is available). Subsequent scenarios consider cases of partial or full
knowledge of initial states. In Table 1, fully-known means that all the initial states are known. Thus, a
fully-known receiver is one with known xr(t0), whereas a fully-known SOP is one with known xs(t0). On the
other hand, partially-known means that only the initial position states are known. Thus, a partially-known
receiver is one with known rr(t0), whereas a partially-known SOP is one with known rs(t0). For the cases of
multiple SOPs, it is assumed that SOPs are not colocated at the same position. Moreover, it is assumed that
the receiver identifies the SOPs according to their classification: unknown, partially-known, or fully-known.

Table 1. OpNav observability analysis scenarios considered

Case Receiver SOP(s)

1 1 Unknown 1 Unknown

2 1 Unknown m Partially-known

3 1 Unknown 1 Fully-known

4 1 Partially-known 1 Unknown

5 1 Partially-known m Partially-known

6 1 Fully-known 1 Unknown
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2. Preliminary Facts

The following facts will be utilized in assessing the observability of the scenarios in Table 1. The rank
of an arbitrary matrix A ∈ R

m×n is the maximal number of linearly independent rows or columns; more
specifically, rank[A] ≤ min {m,n}.

The observable states in an OpNav environment, if any, can be found by computing the basis vectors
spanning the null space of the nonlinear observability matrix ONL and arranging the basis vectors into a
matrix. The presence of a row of zeros in such matrix indicates that the corresponding state is observable,
since such state is orthogonal to the unobservable subspace.

Having prior knowledge about some of the OpNav environment states is equivalent to augmenting the
observation vector with fictitious observations that are identical to such known states. For instance, an
environment with a partially-known receiver and an unknown SOP has an observation vector y = [xr, yr, ρ]

T
.

Consider an OpNav environment with one receiver and one SOP. From Section II, it can be seen that
the vectors {f i}ri=0 corresponding to ΣNL in (9) have the form

f0 = δ̇tre3 + δ̇tse7, f1 = e1, f2 = e2,

where ei is the standard basis vector consisting of a 1 in the ith element and zeros elsewhere. Consider the

vector h =
[

xr, yr, δtr, δ̇tr, xs, ys, δts, δ̇ts, ρ
]T

.

It can be readily shown that the first-order Lie derivatives of {hl(x)}9l=1 with respect to f i is given by

L
1
f

0
hl(x)=



















δ̇tr, l = 3;

δ̇ts, l = 7;

c · (δ̇tr − δ̇ts), l = 9;

0, otherwise

L
1
f

1
hl(x)=











1, l = 1;

g1(rr, rs), l = 9;

0, otherwise,

L
1
f

2
hl(x)=











1, l = 2;

g2(rr, rs), l = 9;

0, otherwise

g1(rr, rs) ,
xr − xs

√

(xr − xs)2 + (yr − ys)2
, g2(rr, rs) ,

yr − ys
√

(xr − xs)2 + (yr − ys)2
.

The second-order Lie derivatives are given by

L
2
f

0
hl(x)=L

2
f

0
f

1
hl(x)=L

2
f

1
f

0
hl(x)=0, ∀l; L

2
f

1
hl(x)=

{

∂xr
g1, l = 9;

0, otherwise,
L
2
f

2
hl(x)=

{

∂yr
g2, l = 9;

0, otherwise,

where

∂xr
g1 ,

∂

∂xr

g1(rr, rs), ∂yr
g2 ,

∂

∂yr
g2(rr, rs).

Therefore, the gradients of the Lie derivatives comprising the rows of ONL defined in (13) are given by

∇T

x

[

L
0
f i
hl(x)

]

=

{

g1 · (eT1 − eT5 ) + g2 · (eT2 − eT6 ) + c · (eT3 − eT7 ), l = 9;

eTl , otherwise;
for i = 0, 1, 2

∇T

x

[

L
1
f

0
hl(x)

]

=



















eT4 , l = 3;

eT8 , l = 7;

c · (eT

4 − eT8 ), l = 9;

0T, otherwise.

∇T

x

[

L
1
f i
hl(x)

]

=

{

∂xr
gi · (eT1 − eT5 ) + ∂yr

gi · (eT2 − eT6 ), l = 9;

0T, otherwise;
for i = 1, 2

∇T

x

[

L
2
f

0
h(x)

]

= ∇T

x

[

L
2
f

0
f

1
h(x)

]

= ∇T

x

[

L
2
f

1
f

0
h(x)

]

= 0T,

∇T

x

[

L
2
f i
hl(x)

]

=

{

∂xr
[∂αr

gi] · (eT1 − eT5 ) + ∂yr
[∂αr

gi] · (eT

2 − eT6 ), l = 9;

0T, otherwise;

where {α = xr for i = 1;α = yr for i = 2}.
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3. Observability Analysis

Case 1. The observation vector has the form y = [ ρ ] and x ∈ R
8. The only linearly independent rows are

those corresponding to
{

∇T

x

[

L
0
f

0

h(x)
]

,∇T

x

[

L
1
f

0

h(x)
]

,∇T

x

[

L
1
f

1

h(x)
]

,∇T

x

[

L
2
f

1

h(x)
]}

, and the null space

of ONL is given by
N [ONL] = span {e1 + e5, e2 + e6, e3 + e7, e4 + e8} .

Hence, the environment is unobservable and none of the states is observable.

Case 2. The observation vector has the form y = [xs1 , ys1 , . . . , xsm , ysm , ρs1 , . . . , ρsm ], where {ρsi}mi=1 is
the pseudorange between the receiver and SOP i, and x ∈ R

4+4m. The only linearly independent rows are
those corresponding to

{

∇T

x

[

L
0
f

0
hl(x)

]

,∇T

x

[

L
1
f

0
h3m−(i−1)(x)

]

,∇T

x

[

L
1
f

1
h3m−(i−1)(x)

]

,∇T

x

[

L
2
f

1
h3m−(i−1)(x)

]}

where l = 1, . . . , 3m, i = 1, . . . ,m, and the null space of ONL is given by

N [ONL] = span

{

e3 +

m
∑

i=1

e3+4i, e4 +

m
∑

i=1

e4+4i

}

.

Hence, the environment is unobservable, but the position states of the receiver, xr and yr, are observable,
along with the position states of the SOPs, xsi and ysi , which are observable by construction.

Case 3. The observation vector has the form y =
[

xs, ys, δts, δ̇ts, ρ
]

and x ∈ R
8. The only linearly inde-

pendent rows are those corresponding to
{

∇T

x

[

L
0
f

0

hl(x)
]

,∇T

x

[

L
1
f

0

h5(x)
]

,∇T

x

[

L
1
f

1

h5(x)
]

,∇T

x

[

L
2
f

1

h5(x)
]}

,

where l = 1, . . . , 5. Hence, ONL is full-rank, and the environment is fully-observable.

Case 4. The observation vector has the form y = [xr, yr, ρ ] and x ∈ R
8. The only linearly independent

rows are those corresponding to
{

∇T

x

[

L
0
f

0

hl(x)
]

,∇T

x

[

L
1
f

0

h3(x)
]

,∇T

x

[

L
1
f

1

h3(x)
]

,∇T

x

[

L
2
f

1

h3(x)
]}

, where

l = 1, 2, 3, and the null space of ONL is given by

N [ONL] = span {e3 + e7, e4 + e8} .

Hence, the environment is unobservable, but the position states of the SOP, xs and ys, are observable, along
with the position states of the receiver, xr and yr, which are observable by construction.

Case 5. The observation vector has the form y = [xr, yr, xs1 , ys1 , . . . , xsm , ysm , ρs1 , . . . , ρsm ] and x ∈
R

4+4m. The only linearly independent rows are
{

∇T

x

[

L
0
f

0

hl(x)
]

,∇T

x

[

L
1
f

0

h2+3m−(i−1)(x)
]}

, where l =

1, 2, . . . , 2 + 3m and i = 1, . . . ,m, and the null space of ONL is given by

N [ONL] = span

{

e3 +

m
∑

i=1

e3+4i, e4 +

m
∑

i=1

e4+4i

}

.

Hence, the environment is unobservable, and none of the states is observable, other than those that observ-
able by construction, namely xr, yr, xsi , and ysi .

Case 6. The observation vector has the form y =
[

xr, yr, δtr, δ̇tr, ρ
]

and x ∈ R
8. The only lin-

early independent rows are
{

∇T

x

[

L
0
f

0

hl(x)
]

,∇T

x

[

L
1
f

0

h5(x)
]

, ∇T

x

[

L
1
f

1

h5(x)
]

, ∇T

x

[

L
2
f

1

h5(x)
]}

, where l =

1, 2, . . . , 5. Hence, ONL is full-rank, and the environment is fully-observable.

4. Conclusions:

1. An OpNav environment with the dynamics and observation models defined in Section II is fully ob-
servable if and only if the initial states of at least one SOP are fully-known or the initial states of the
receiver are fully-known.
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2. The inputs are necessary to make Cases 3 and 6 observable, since the Lie derivative contributions of f1

or f2 are needed to make ONL full-rank. While the inputs corresponding to f1 or f2 can be specified
in infinitely many ways, the only requirement is that such inputs be non-zero.

3. Adding inputs reduces the a priori knowledge needed for observability of the OpNav environment.
Specifically, it was previously shown that an environment comprising a receiver with velocity ran-
dom walk dynamics and no inputs, making pseudorange observations on multiple SOPs is completely
observable if and only if the initial states of at least: (i) one SOP is fully-known and one SOP is
partially-known, (ii) the receiver is partially-known and one SOP is fully-known, or (iii) the receiver
is fully-known.7 In contrast, Case 3 concludes that if the receiver can command its own maneuvers,
then conditions (i) and (ii) are reduced as the knowledge of only one fully-known SOP suffices for
complete observability, i.e. there is no need for a partially-known SOP nor a partially-known receiver,
respectively. Moreover, it was previously shown that for an environment with an unknown receiver with
velocity random walk dynamics, at least two partially-known SOPs are needed to make the position
states of the receiver observable.7 Case 2 concludes that this requirement is reduced to at least one
partially-known SOP whenever the receiver is driven by control inputs.

IV. Optimal Motion Planning

A. Information Optimization Measures

The observability results in Section III only establish when the OpNav environment is observable, but they
do not specify which receiver inputs are best for observability. This section prescribes such inputs. The
main objective of the receiver’s optimal motion planning is to evaluate different sensing actions that the
receiver can take, and choose the action that maximizes the information acquired about the environment,
while simultaneously minimizing the uncertainty about the receiver’s own states. In this respect, this can be
viewed as an adaptive sensing problem, in which one adaptively plans trajectories to maximize the amount
or quality of gathered information.11

A fundamental challenge in all optimization-based approaches is the choice of a proper optimization
metric. In the OpNav context, one needs to quantify the expected acquired information for different sensing
actions the receiver may take. To this end, the Shannon entropy and Fisher information measures will be
adopted. Broadly, Shannon entropy is related to the volume of a set containing a specified probability mass,
while Fisher information is related to the surface area of this set.23

A common measure of uncertainty is the notion of entropy, which was introduced by Shannon. Entropy
measures the compactness, and thus the informativeness, of a distribution.24 The entropy of a random vector
x with distribution p(x) is defined as

H(x) , −
∫

∞

∞

p(x) log[p(x)]dx.

The mutual entropic information loss after an action u is defined as ∆I(u) = H(x|u) − H(x), where
H(x|u) is the conditional entropy after action u. A multi-variate Gaussian random vector x has entropy pro-
portional to the logarithm of the determinant of its covariance matrixP, namelyH(x) = 1

2 log[(2πe)
n det(P)].

Therefore, for a Gaussian random vector x(tk) with covariance P(tk), it can be shown that to minimize the
mutual entropic information loss after an action u(tk), one needs to solve the optimization problem

maximize
u(tk)

log det

[

Y [tk+1|u(tk)]
Y(tk)

]

,

where Y(tk) , P−1(tk) is the information matrix and Y [tk+1|u(tk)] is the corresponding information matrix
after action u(k). Recognizing that Y(tk) corresponds to the Fisher information matrix, one can establish
the connection between the Shannon entropy and the Fisher information: minimization of Shannon entropy
is equivalent to maximization of Fisher information. This is the basis of the so-called D-optimality criterion.

Given an information matrix, Y, some of the most common optimization matrix measures are25

D-optimality: is equivalent to minimization of the volume of the uncertainty ellipsoid and is given by

minimize J = − log det [Y]
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A-optimality: is equivalent to minimization of the the average variance of the estimates and is given by

minimize J = tr
[

Y−1
]

E-optimality: is equivalent to minimization of the length of the largest axis of the uncertainty ellipsoid
and is given by

minimize J = λmax

[

Y−1
]

,

where λmax is the largest eigenvalue.

B. Optimal Receiver Motion Planning Strategy

A unique feature of OpNav is that the quality of the estimates not only depends on the spatial trajectory
the receiver takes within the environment, but also depends on the velocity with which the receiver traverses
such trajectory. This can be explained by examining the pseudorange observation model derived in (8). Note
the term due to the clock biases c · [δtr(tk)− δts(tk)], and recall the two state model governing the evolution
of the clock bias and drift states over time, which is essentially a double integrator driven by exogenous
stochastic processes. Hence, the state space of each SOP contains time-invariant (static) states, xs and ys,
along with time-varying (dynamic) states , δts and δ̇ts. This makes the estimation problem similar to that
of observers tracking dynamic targets, to which the velocity of the observer (tracker) affects the quality of
the estimates. The effect of the receiver velocity on the quality of estimates can also be seen by considering
a time history of N observations ZN , {z(t1), z(t2), . . . , z(tN)}, collected at a sampling period T , by a
receiver that traversed a particular trajectory at a speed s. If the receiver doubled its speed, i.e. to become
2s, it could have collected the same number of observations at half the sampling period T/2. Recall that the
covariance of the process noise characterizing the clock bias and drift noise Qclk is a function of T , T 2, and
T 3. Therefore, reducing T effectively reduces Qclk, which in turn reduces the estimation error.

The proposed optimal receiver motion planning loop is depicted in Figure 1. At a particular time step
tk, the pseudorange observations made by the receiver on the various SOPs in the environment, z(tk) ,

[z1(tk), . . . , zm(tk)]
T
, are fused through an estimator, an extended Kalman filter (EKF) in this case, which

produces state estimate x̂(tk|tk) and associated estimation error covariance P(tk|tk). The estimate and
associated covariance are fed to an optimizer, which solves for the optimal admissible control input u⋆(tk)
that is the solution to the constrained nonlinear optimization problem

minimize
u(tk)

J [u(tk)]

subject to xr(tk+1) = Fr xr(tk) +Gr u(tk) +wr(tk)

xsi(tk+1) = Fs xsi(tk) +wsi(tk)

zi(tk) = h [xr(tk), xsi(tk)] + vi(tk), i = 1, 2, . . . ,m

‖ur(tk)‖2 ≤ ur,max

‖ur(tk)− u⋆
r(tk−1)‖2 ≤ T ar,max,

where ur,max and ar,max are the maximum speed and acceleration, respectively, with which the receiver can
move. Note that the optimization variable is ur(k), whereas u

⋆
r(k−1) is a known constant vector representing

the velocity commands that resulted from solving the optimization problem in the previous time-step k − 1
and has already been applied. The cost functional J [u(tk)] is the D-optimality, A-optimality, or E-optimality
criterion, whereY = P−1(tk+1|tk+1), i.e. the inverse of the updated estimation error covariance computed by
the EKF. It is worth noting that P(tk+1|tk+1) is a function of u(tk) and can be computed without knowledge
of the next observation z(tk+1). The optimal control input u⋆(tk) is fed-back to the receiver to command
its velocity and is also communicated with the estimator. The produced control u⋆(tk) is commonly referred
to as the local or greedy optimal control, since it is based on a single-step look-ahead.

In principle, the above optimization problem can be solved analytically using Lagrange multipliers. How-
ever, the problem becomes quickly intractable as more SOPs are present in the environment. In particular,
the difficulty stems from the matrix inversion step in the EKF algorithm. In this paper, numerical meth-
ods were employed to solve the constrained nonlinear optimization problem via the sequential quadratic
programming (SQP) method.
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OpNav Environment:
Dynamical System







xr(tk+1) = Fr xr(tk) +Gr u(tk) +wr(tk)

xsi(tk+1) = Fsxsi(tk) +wsi(tk)

zi(tk) = h [xr(tk), xsi(tk)] + vi(tk), i = 1, 2, . . . ,m

Estimator: EKF

Optimal Control

z(tk)

x̂(tk|tk), P(tk|tk)

u
⋆(tk)

Figure 1. Optimal receiver motion planning loop

V. Simulation Results

Consider the following scenario. A receiver that could control its own maneuvers, but with no a priori
knowledge about its own states is dropped in an unknown signal landscape with one “anchor” SOP whose
initial states are known. Recall from Section III that such scenario is observable. The receiver’s objective
is to build as quickly as possible a high-fidelity map of the signal landscape states, while simultaneously
localizing itself within this map in space and time with high accuracy. This section presents simulation
results for five receiver trajectories: a random trajectory in which the receiver velocity commands are chosen
randomly but are known to the receiver, a pre-defined circular trajectory around the known anchor SOP,
and optimal trajectories as computed by the D-optimality, A-optimality, and E-optimality criteria.

For purposes of numerical stability, the clock error states were defined to be cδt and cδ̇t. The en-
vironment consisted of a receiver with an initial state vector xr(t0) = [0, 0, 100, 10]

T
, an anchor SOP

with an initial state vector xs1(t0) = [0, 150, 10, 0.1]
T
, and three unknown SOPs with initial state vec-

tors xs2(t0) = [100, −150, 20, 0.2]T, xs3(t0) = [200, 200, 30, 0.3]T, xs4(t0) = [−150, 50, 40, 0.4]T, respec-
tively. The receiver’s clock was assumed to be a temperature-compensated crystal oscillator (TCXO) with
h0 = 2 × 10−19 and h−2 = 2 × 10−20, while the SOPs’ clocks were assumed to be oven-controlled crys-
tal oscillators (OCXOs) with h0 = 8 × 10−20 and h−2 = 4 × 10−23. The process and observation noise
spectral densities were taken to be q̃x = q̃x = 0.1 and r̃ = 50, respectively, and the sampling time was
set to T = 0.1 second. The receiver’s maximum speed and acceleration were set to umax =

√
200m/s

and amax = 5m/s
2
, respectively. The EKF receiver initial estimates were x̂r(t0|t0) = [75, 75, 0, 0, ]

T
and

SOPs initial estimates were x̂s2(t0|t0) = [175, 25, 0, 0, ]
T
, x̂s3(t0|t0) = [125, 125, 0, 0, ]

T
, x̂s4(t0|t0) =

[−225, 125, 0, 0, ]
T
, and the corresponding initial estimation error covariances were Pr(0|0) = Psi(0|0) =

diag
[

1× 104, 1× 104, 1× 104, 1× 102
]

, i = 2, 3, 4. For meaningful comparison between the different re-
ceiver trajectories, the process and observation noise generators were primed with the same seed in all five
simulations to produce the same time history (realization) of noise {w(tk)}Nk=0 and {v(tk)}Nk=0, respectively.

Figure 2 illustrates the five resulting receiver trajectories, and Figures 3-6 show the estimation error
trajectories x̃ , x− x̂ along with the ±2σi estimation error variance bounds. The following conclusions can
be drawn from these results. First, the receiver moving randomly in the environment resulted in the poorest
estimates, which highlights the need for optimizing the receiver trajectory. Second, while the intuitive circular
trajectory yielded better estimates than the random trajectory, it still under-performed when compared to the
three optimal trajectories. Third, the D-optimality criterion outclassed the A-optimality and E-optimality
criteria. Fourth, it was interesting to note that the trajectory resulting from the D-optimality criterion
started by circling the anchor SOP before going in a path around the entire set of SOPs. By doing so, the
receiver gained good estimates about its own states very fast, which enabled it to estimate the other unknown
SOPs in the environment better. Fifth, the E-optimality resulted with the most zigzagged trajectory, which
can be explained by recalling that the optimizer keeps focusing on minimizing the largest eigenvalue of the
estimation error covariance matrix. So, as such eigenvalue switches its correspondence from one mode to
another, the optimizer switches its “focus”. Finally, all resulting trajectories exhibited the phenomenon
known in SLAM as “loop closure”, in which the robot (receiver in this case) deliberately “closes the loop”
by revisiting already-explored areas in order to improve the overall map estimate.
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Figure 2. Receiver trajectories for (a) random, (b) pre-defined circular path around the fully-known anchor
SOP, (c) optimal path generated by the D-optimality criterion, (d) optimal path generated by the A-optimality
criterion, and (e) optimal path generated by the E-optimality criterion
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Figure 3. Receiver states estimation error trajectories for a random, pre-defined circular path around the
fully-known SOP, and optimal paths generated by the D-optimality, A-optimality, and E-optimality criteria
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Figure 4. SOP2 states estimation error trajectories
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Figure 5. SOP3 states estimation error trajectories
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Figure 6. SOP4 states estimation error trajectories

VI. Conclusion

This paper addressed the following problem. A receiver with no a priori knowledge about its own
states is dropped in an unknown, yet observable, OpNav environment. Assuming that the receiver could
prescribe its own trajectory, what motion planning strategy should the receiver adopt in order to build a
high-fidelity map of the OpNav signal landscape while simultaneously localizing itself within this map in
space and time? To answer this question, first, an observability analysis was conducted to establish the
minimum a priori knowledge about the environment necessary for complete observability. It was shown that
a controlled receiver requires less a priori knowledge about its environment to establish full observability
than an uncontrolled receiver. Second, an optimal closed-loop information-theoretic strategy was proposed
for receiver motion planning. Three information measures were compared: D-optimality, A-optimality,
and E-optimality. It was demonstrated that all such strategies outperform a randomly moving receiver
and a receiver moving in a pre-defined circular trajectory. Among the three information measures, it was
demonstrated that the D-optimality criterion outclassed the A-optimality and E-optimality criteria. Future
work will investigate the convexity properties of the OpNav optimization problem, if any. Moreover, while the
proposed strategy prescribed the optimal local (greedy) control, future work will assess whether a multi-step
look-ahead control strategy is worth the associated computational burden.
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