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In this thesis we use Floquet theory to theoretically study the influence of circularly po-

larized light on disordered two-dimensional models exhibiting topological transitions. We find

circularly polarized light can induce a topological transition in extended Kane-Mele models

that include additional hopping terms and on-site disorder. The topological transitions are un-

derstood from the Floquet-Bloch band structure of the clean system at high symmetry points in

the first Brillouin zone. The light modifies the equilibrium band structure of the clean system

in such a way that the smallest gap in the Brillouin zone can be shifted from the M points to

the K(K ′) points, the Γ point, or even other lower symmetry points. The movement of the

minimal gap point through the Brillouin zone as a function of laser parameters is explained

in the high frequency regime through the Magnus expansion. In the disordered model, we

compute the Bott index to reveal topological phases and transitions. The disorder can induce

transitions from topologically non-trivial states to trivial states or vice versa, both examples

of Floquet topological Anderson transitions. As a result of the movement of the minimal gap

point through the Brillouin zone as a function of laser parameters, the nature of the topological

phases and transitions is laser-parameter dependent–a contrasting behavior to the Kane-Mele

model.
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1

Introduction

The Kane-Mele model is an example of a lattice model used to understand crystalline solids,

an important topic in condensed matter physics. In particular, the Kane-Mele model uses a

honeycomb lattice, like that of graphene. This thesis explores several variations on the Kane-

Mele model, which represents electrons as being at the lattice sites. The electrons can hop from

one site to nearest neighbor sites and to second-nearest neighbor sites. This thesis extends that

model to allow hopping to third-nearest neighbor sites or to pair the atoms, with each atom

bonded to one of its nearest neighbors with different strength from its other two neighbors. The

model is also extended by shining a laser on the lattice and by introducing on-site disorder. In

each of these cases, we study whether the model produces a topological insulator or a trivial

insulator.

On a honeycomb lattice (see Figure 2.1), the electrons can move from one lattice site to

an adjacent lattice site with a certain amplitude, represented by the parameter t1. Determining
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the best value of this and other parameters to represent a real material may be complicated, but

for the purposes of this thesis, we set t1 = 1. This choice simply sets the energy scale of the

calculations, so is done without loss of generality.

The electrons are also allowed to move to the second-nearest neighbor sites. Due to spin-

orbit coupling, the second-nearest neighbor terms in the Hamiltonian are imaginary, so are

antisymmetric. The strength of the second-nearest neighbor interaction is denoted by λsoc. The

nearest neighbor hopping and the second-nearest neighbor spin-orbit coupling terms form the

Kane-Mele model, which this thesis extends in several ways.

The first extension is the generalized Kane-Mele model (GKM), which allows hopping

between third-nearest neighbors. Third-nearest neighbor hopping is symmetric like first-nearest

neighbor hopping and its strength is determined by the parameter t3. The second extension is

the dimerized Kane-Mele model (DKM), in which the two atoms within the same unit cell

of the honeycomb lattice have a different hopping parameter with each other than with their

nearest neighbors in other unit cells. Sec. 2.2 has a more mathematical description of the GKM

and DKM models.

The GKM and DKM models are further extended with the addition of on-site disorder and

the application of a laser.

Disorder is represented in the system by adding a random number to each of the diagonal

entries of the Hamiltonian matrix. Essentially, disorder causes electrons to prefer some lattice

sites over others. Random numbers are chosen from a uniform distribution in the range from

−Udis/2 to Udis/2, where Udis is another parameter. The disorder in the system means that it
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is no longer periodic in space, which necessitates that calculations be done in real-space with a

finite sample size. Periodic boundary conditions are then imposed on that finite sample.

The laser, with amplitude A0 and frequency Ω, makes the Hamiltonian periodic in time,

thus Floquet’s theorem applies to the system. Floquet’s theorem states that periodicity in time

in the Hamiltonian imposes periodicity in energy, so the band structure becomes periodic in

quasienergy with period Ω. If the amplitude of the laser is low, states from one periodic image

are only slightly coupled to states in other periodic images. Two frequencies are studied, the

off-resonance case where Ω is greater than the bandwidth and the on-resonance case where

Ω is less than the bandwidth. Because the Floquet copies substantially increase the size of

the Hamiltonian matrix, it is necessary to limit the number of Floquet copies considered when

doing numerical calculations. The influence of the laser also changes the shape of the bands, as

seen in Figure 4.2.

A method is described to calculate the topological invariant, the Bott index. This invariant

is used to determine if the system is a topological insulator or a trivial insulator. The Bott index

is equivalent to the Chern number in cases when both apply. The term Chern number is used in

clean systems, without disorder, when there is translational symmetry. The term Bott index is

used when the system has disorder, which destroys the translational symmetry. The topological

invariant must take an integer value for a given system. If the system is topologically insulating

with symmetry-protected conducting states on the surface, the invariant is odd. If the system is

topologically trivial without such surface states, the invariant is even.
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Finally, the results of those calculations are presented, including band structures, the size

of the band gap of the system, and phase diagrams of the Bott index.

The extensions of the Kane-Mele model studied in this thesis exhibit different topological

phases depending on the values of the parameters and the iteration of the disorder. In systems

without disorder, it is possible to calculate the invariant just once for a set of parameters, and

phase transitions are sharp. For systems with disorder, the Bott index depends on the exact

configuration of the disorder. The Bott index must be calculated and averaged across a repre-

sentative sample of disorder iterations. Each iteration has an integer Bott index, but different

iterations may disagree, so the phase transitions are blurred. In the limit of infinite system size,

the transitions would become sharp, but, as demonstrated by Fig 4.6, choosing a larger size that

is still calculable in a reasonable amount of time would not meaningfully change the results.
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2

Model

2.1 Introduction

Research on topological band insulators has seen dramatic progress in the past decade.[1–4]

The phenomenology is even richer when inter-particle interactions are taken into account and

fractionalized phases result. [5–9] Starting from a non-interacting band structure, the Coulomb

interaction can induce a topological transition.[10–12] For example, in the two-dimensional

honeycomb lattice, the Dirac points are stable to weak Coulomb interaction, while the bulk

gap will open at a finite critical Coulomb interaction.[13–15] In the kagome lattice, there is a

flat band and a quadratic band touching point which is perturbatively unstable to the Coulomb

interaction.[10, 16] Recently, an active direction of research has been to study the topological

transition by periodically driving a non-interacting system to a non-equilibrium state, called a

Floquet topological insulator.[17] A periodic drive can be realized in a cold atom system with

5
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an optical lattice potential generated by changing the laser field,[18, 19] or in the solid state by

illumination with a monochromatic laser field. [20–39]

In equilibrium, topological insulators induced by Anderson (on-site) disorder have been

well studied in the past decade. [40–51] Within the Born approximation, Anderson disorder

will induce a negative correction to the mass and chemical potential, which in turn may induce

a topological transition.[41] Song et al.[52] studied the effect of different types of disorder on

the topological transition in the Haldane model where a Dirac point is situated at the K,K ′

points. Their study shows that on-site disorder and bond disorder have different effects on the

topological transition. Bond disorder tends to prohibit the system from undergoing a phase tran-

sition to a topological Anderson insulator, contrary to the effect of Anderson disorder. When

the Kane-Mele model[53, 54] is generalized to include third-neighbor hopping, or dimerized

first-neighbor hopping terms along the z direction, the linear crossing can shift from a K,K ′

point to an M point.[55] At the M point, the bond and on-site disorder have the same effect on

the mass renormalization, and both enhance the topological state in the weak disorder limit.[55]

Hung et al.[55] studied the generalized Kane-Mele (GKM) model and dimerized Kane-Mele

(DKM) model (described in this thesis in Sec. 2.2). They found that low and intermediate levels

of disorder tend to stabilize the topological phase for both models. Further, taking the Coulomb

interaction into account tends to destabilize the topological phase in the dimerized Kane-Mele

model, but stabilize the topological phase in the GKM model. Hence the GKM and DKM

provide contrasting behavior to each other, and also to the more heavily studied Kane-Mele

model, thus illustrating the phenomenological richness of topological phases and transitions

under different conditions.
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To summarize, the location of the Dirac point in momentum space in a clean (disorder-

free) system is crucial to determining the effect of bond or on-site disorder. In this thesis, we

show that starting from a fixed equilibrium model Hamiltonian, periodically driving the system

out-of-equilibrium via a laser can shift the Dirac point between different high symmetry points,

for example, from an M to a K or a Γ point. These shifts are computed in detail, and provide

a platform to study differences in the effects of bond and on-site disorder in the presence of a

laser field. Out-of-equilibrium, a disorder-induced transition between topologically trivial and

nontrivial states is characterized by the disorder-averaged Bott index.[56] Prior non-equilibrium

work studied the honeycomb lattice with staggered on-site A-B sub-lattice potentials in the

presence of disorder.[57, 58]

In this thesis, we focus on laser- and disorder-induced topological transitions. Before turn-

ing to the disorder-induced Floquet topological phase transition in the GKM and DKM models,

we first study the Floquet-Bloch band structure where a gap closing and reopening process is

observed. The effect of disorder on the clean Floquet system is studied and the results qualita-

tively explained considering the energy scales of the system gap size and the total bandwidth.

The organization in this thesis is as follows. In Sec.2.2, we describe the generalized Kane-

Mele and dimerized Kane-Mele models. Sec.3.1 introduces Floquet theory. Sec. 3.2 provides

details on the numerical calculations performed. Sec.4.1 covers the Floquet topological transi-

tion, the Floquet-Bloch band structure, and the related low-energy theory. In Sec.4.2, we study

the topological transition in the generalized and dimerized Kane-Mele models subject to both

laser illumination and on-site disorder. Sec. 4.3 examines the topological invariant when the

laser is on-resonant (i.e. the frequency of the laser is such that the energy of a photon is less

7
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FIGURE 2.1: (Color online) (a) Honeycomb lattice with two sub-lattices in one unit cell
(shaded area), labeled A (open circles) and B (filled circles). Three nearest-neighbor unit
vectors are δ1 = (−

√
3/2,−1/2)a, δ2 = (

√
3/2,−1/2)a, δ3 = (0, 1)a, with a the

nearest-neighbor distance. Lattice translational vectors are labeled as a1 = δ3 − δ1 =
(
√

3/2, 3/2)a,a2 = δ3 − δ2 = (−
√

3/2, 3/2)a. The blue dashed lines represent the imag-
inary second-neighbor hopping (spin-orbit coupling) and the arrow directions represent posi-
tive signs. (b) First Brillouin zone of the underlying triangular Bravais lattice with reciprocal
lattice vector b1 = (

√
3, 1)2π/(3a) and b2 = (−

√
3, 1)2π/(3a). High symmetry points are

K = (−2π/
√

3, 2π)/(3a), K′ = (−4π/
√

3, 0)/(3a) and time reversal invariant momenta
M1,2 = (±

√
3π, π)/(3a), M3 = (0, 2π)/(3a). All filled circles are equivalent to K and

all open circles are equivalent to K′. The Floquet quasi-band structure is plotted along the
momentum path K ′ − Γ−M3 −K −M2 −K ′ in the first Brillouin zone.

than the bandwidth of the equilibrium system). Finally, in Sec.4.4, we summarize our main

conclusions.

2.2 Model Hamiltonian

We study both the generalized Kane-Mele (GKM) tight-binding Hamiltonian with third-nearest

neighbor hopping terms and the dimerized Kane-Mele (DKM) model with dimerized hopping
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parameter in the vertical direction on the honeycomb lattice (Fig.2.1(a)). The GKM Hamilto-

nian in real-space is given by, 2.1

Hσ
GKM =− t1

∑
〈ij〉

c†icj + iλsoc

∑
〈〈ij〉〉

σvijc
†
icj − t3

∑
〈〈〈ij〉〉〉

c†icj (2.1)

where t1(t3) is the isotropic hopping integral between first- (third-) nearest neighbors, c†i (cj)

creates (annihilates) an electron with spin σ on site i (j) of the honeycomb lattice (the spin

subindex is omitted for simplicity), and 〈ij〉 limits the summation to nearest neighbors, 〈〈ij〉〉

and 〈〈〈ij〉〉〉 limit the summation to second- and third-nearest neighbors, respectively. Here λsoc

is the spin-orbit coupling strength, σ = 1(−1) for a spin-↑ (↓) sector Hamiltonian, vij = 1 for

the counter-clockwise hopping shown in Fig.2.1(a) with dashed arrow lines, and vij = −1 for

clockwise hopping. In Eq.(2.1) only the spin-σ part of the Hamiltonian is written explicitly.

The Hamiltonian with opposite spin-σ̄ is the time-reversal of Hσ
GKM.

The DKM Hamiltonian in real-space is given by,

Hσ
DKM =

∑
i

(−t1(c†ici+δ1 + c†ici+δ2)− tdc
†
ici+δ3 + h.c.) + iλsoc

∑
〈〈ij〉〉

σvijc
†
icj, (2.2)

where td is the nearest-neighbor hopping parameter along the vertical direction (δ3 in

Fig.2.1(a)). For conciseness, we write the Hamiltonian with a general form,

Hσ =
∑
i

−t1(c†ici+δ1 + c†ici+δ2)− tdc
†
ici+δ3 + h.c.

+ iλsoc

∑
〈〈ij〉〉

σvijc
†
icj − t3

∑
〈〈〈ij〉〉〉

c†icj. (2.3)
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In this form, we have the GKM model when td = t1 and we have the DKM when t3 = 0.0, td 6=

t1. Fourier transforming the Hamiltonian in Eq.(2.3) to momentum space, we obtain Hσ =∑
k ψ
†
kHkψk with ψk = (ckA, ckB)T , where ckA and ckB define annihilation operators on the

two basis sites in the unit cell shown in Fig.2.1(a). In the following, we focus on the spin-↑

Hamiltonian only,

Hk↑ =

 0 −f1(k)− t3f3(k)

−f ∗1 (k)− t3f ∗3 (k) 0



+

−λsocg(k) 0

0 λsocg(k)

 , (2.4)

where

g(k) = −2 sin(k · a1) + 2 sin(k · a2) + 2 sin(k · a1 − k · a2)

f1(k) = td + t1e
−ik·a1 + t1e

−ik·a2 (2.5)

f3(k) = e−ik·(a1+a2) + 2 cos(k · a1 − k · a2).

The lattice vectors, a1 and a2, are defined in Fig.2.1. For the GKM model, the gap opened at

the Γ point is |6(t1 + t3)|; at the K and K′ points, the gaps are |6
√

3t2|; and the gaps at M1,2,3

points are 2|t1 − 3t3|. In this thesis, we fix t1 = 1.0, t2 = −0.3 to make sure the equilibrium

system band gap is situated at the M points. When Eq.(2.3) is exposed to a normally incident
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laser field, the time-dependent Hamiltonian can be expressed as

H(t) =
∑
i

[
−t1c†ici+δ1 − t1c

†
ici+δ2 − tdc

†
ici+δ3

]
e−iAij(t)

− t3
∑
〈〈〈ij〉〉〉

c†icje
−iAij(t) + h.c.

+ iλsoc

∑
〈〈ij〉〉

σvijc
†
icje

−iAij(t) , (2.6)

where Aij(t) = A(t) · (Rj −Ri), A(t) = A0[sin(Ωt), cos(Ωt)] is the vector potential with A0

the amplitude and Ω the frequency of the laser. The relation Rj = Ri + δi with i = 1, 2, 3

for each term holds. In Eq.(2.6), we set Planck’s constant ~ = 1, the speed of light c = 1,

the charge of the electron e = 1, and adopt the Coulomb gauge by setting the scalar potential

φ = 0. We ignore the tiny effect of the magnetic field of the laser field. The units of energy are

expressed in terms of the nearest-neighbor hopping amplitude t1, for t1 = 1,

Hk↑(t) =

 0 −f1(k, t)

−f ∗1 (k, t) 0

+

−λsocg(k, t) −t3f3(k, t)

−t3f ∗3 (k, t) λsocg(k, t)

 , (2.7)

where

g(k, t) ≡ ieik·a1−iA(t)·a1 − ie−ik·a1+iA(t)·a1

− ieik·a2−iA(t)·a2 + ie−ik·a2+iA(t)·a2

− ieik·a3−iA(t)·a3 + ie−ik·a3+iA(t)·a3 , (2.8)
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f1(k, t) = tde
−iA(t)·δ3 + t1e

−ik·a1e−iA(t)·δ1 + t1e
−ik·a2e−iA(t)·δ2 , (2.9)

and

f3(k, t) = e−ik·(a1+a2)eiA(t)·2δ3 + eik·a3e−iA(t)·(a1+δ2) + e−ik·a3e−iA(t)·(a2+δ1). (2.10)

The on-site disorder is added to the system through the addition of

Hdis =
∑
i

U i
disc
†
ici, (2.11)

where U i
dis is uniformly distributed in the range [−Udis/2, Udis/2].
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3

Floquet Theory and Bott Index

3.1 Floquet Theory

In this thesis, we illuminate the system with monochromatic (single frequency) light, which

renders the Hamiltonian time-periodic: H(t) = H(t + T ) where T is the period of the laser

drive. Hence, Floquet’s theorem is applicable. The Floquet eigenfunction in real space for the

time-periodic Hamiltonian can be expressed as,

|Ψα(t)〉 = e−iεαt|φα(t)〉, (3.1)

where |φα(t)〉 = |φα(t + T )〉 are the Floquet quasi-modes and εα is the corresponding quasi-

energy for band α. Substituting the wave function above into the time-dependent Schrödinger

13
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equation, and defining the Floquet Hamiltonian operator asH(t) = H(t)− i∂/∂t, one finds

H(t)|φkα(t)〉 = εα|φα(t)〉. (3.2)

Here we restrict the quasienergy to be in the first Floquet zone, i.e., −Ω/2 < εα < Ω/2. (Note

that we have made use of a spin-independent coupling to the laser field so that all bands are

2-fold degenerate. Henceforth, we suppress the spin degeneracy.) Solving for the Floquet states

in Fourier space,

|φα(t)〉 =
∑
m

eimΩt|φ̃mα 〉, (3.3)

where m = 0,±1,±2, · · · and |φ̃mkα〉 is a real space vector which obeys,

∑
m

(Hnm +mΩδnm)|φ̃mα 〉 = εα|φ̃mα 〉, (3.4)

with matrix elements of the Floquet Hamiltonian written as,

Hnm =
1

T

∫ T

0

dte−i(n−m)ΩtH(t). (3.5)

Here m and n are integers ranging from −∞ to ∞. Thus, the Floquet matrix is an infinite-

dimensional time-independent matrix. In this thesis, we consider the laser frequency to be

comparable to or larger than the bandwidth of the system, so a truncation of the components

to be in m,n = −2,−1, 0, 1, 2 is a good approximation. We have numerically verified that

including a larger range of m,n has a very small numerical impact on our results.
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For circularly polarized light with vector potential A(t) = A0[sin(Ωt), cos(Ωt)], the matrix

elements of the Floquet-Bloch Hamiltonian are

H ij
nm =

1

T

∫ T

0

dte−i(n−m)Ωt exp[−iAij(t)]H ij, (3.6)

from the expression with the general form,

fnm =
1

T

∫ T

0

dte−i(n−m)Ωt exp[−iA(t) · d]. (3.7)

Here we used d = Rj −Ri, and define dx/|d| = cos θ, dy/|d| = sin θ. For nearest-neighbor

hopping terms, |d| = 1, θ = ±5π/6,±π/6,∓π/2. Substituting the vector potential into the

above equation gives,

1

T

∫ T

0

dte−i(n−m)Ωt exp[−iA0(dx sin Ωt+ dy cos Ωt)] = Jm−n(A0|d|) exp[i(n−m)θ],

(3.8)

where Jn(x) is the Bessel function of first kind. In this thesis,we used two equivalent expres-

sions for the topological invariant, the Chern number and the Bott index[36, 56, 59]. Here

we use different expressions to show we used different methods to calculate the topological

invariant. For the Floquet system with translational symmetry, we used Fukui’s method [59] to

calculate the Chern number. For the Floquet system with random on-site disorder, we calculate

the Bott index using the C∗ theory.[56]
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3.2 Calculating the Bott Index

To find the Bott index numerically, we first define two unitary diagonal matrices:

UXnn = exp(2πixn/Lx) (3.9)

UY nn = exp(2πiyn/Ly)

where xn, yn, Lx, and Ly are numbers defined so that atom n is located at the point xna1 +yna2

and so that Lx, and Ly are the number of unit cells in the a1 and a2 directions. Thus if you put

one of the particles at the origin, then half of the particles (one per unit cell) will have integer

values of xn and yn, and moving by Lxa1 or Lxa2 moves from one point to its corresponding

point in an adjacent periodic image. In the extended Floquet Hilbert space,

UF
X =


UX 0

. . .

0 UX

 , (3.10)

with UF
Y defined analogously. This is still a diagonal, unitary matrix, and the number of copies

of UX or UY is equal to the number of Floquet copies being considered in the calculation. These

matrices contain information on the geometry of the system (i.e. the locations of the atoms).
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The Hamiltonian of the system is similar to Eq.2.3, but must account for the disorder and

the influence of the laser. Including the disorder,

Hjk =
∑
j

uj − t1(c†jcj+δ1 + c†jcj+δ2)− tdc
†
jcj+δ3 + h.c.

+ iλsoc

∑
〈〈jk〉〉

vjkc
†
jck − t3

∑
〈〈〈jk〉〉〉

c†jck, (3.11)

where uj is a random perturbation on site j with a strength in the range [−Udis/2, Udis/2] using

a uniform distribution. Copies of this Hamiltonian become blocks in the Floquet Hamiltonian,

but the elements are also changed due to the laser.

Hjk
nm = HjkJm−n(A0|djk|) exp[i(n−m)θjk], (3.12)

where m and n are indices for the blocks of the matrix, while j and k are indices within a block

of the matrix, and |djk| and θjk are the distance and direction, respectively, from site j to site

k. Note that a single site should have the same random perturbation across all Floquet copies

Next, choose an appropriate set of eigenvectors, |ε〉, of the Hamiltonian. This thesis calcu-

lates the Bott index of all states with quasi-energy ε < 0 in the truncated Floquet space. The

next matrix to define is the projector onto the subspace of those eigenvectors.

P =
∑
ε<0

|ε〉〈ε| (3.13)

This contains information about which sites the electrons can hop between, as well as the values

of the parameters (i.e. t1, λsoc, A0, etc) and the iteration of disorder.

17



Combine these matrices to form the projected unitary matrices,

ŨF
Y = PUF

XP ŨF
X = PUF

Y P (3.14)

The Bott index of the chosen states is then

Cb =
1

2π
Im
[
Tr
(

log
(
ŨF
Y Ũ

F
X Ũ

F †
Y ŨF †

X

))]
(3.15)

or, equivalently,

Cb =
1

2π
Im

[ ∑
i s.t. λi 6=0

log (λi)

]
(3.16)

where λi are the nonzero eigenvalues of ŨF
Y Ũ

F
X Ũ

F †
Y ŨF †

X

The cluster size, which is the number of unit cells along a1 and a2, is 24 by 24, giving 1152

sites (two sites per unit cell). The number of Floquet copies is 5.
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4

Results

4.1 Spin Chern number for the disorder-free system

4.1.1 Spin Chern number and Floquet band structure

In Fig.4.1, we plot the spin Chern number as a function of laser intensity for different third-

neighbor hopping parameters t3 = 0.0, 0.2, 0.4 in the generalized Kane-Mele model [Eq.(2.1)]

and different dimerized hopping parameters td = 1.5, 2.0, 2.5 in the dimerized Kane-Mele

model [Eq.(2.2)].

In the equilibrium case (absent the laser, i.e. A0 = 0) of the GKM model, the system gap is

determined by the bands at the M1,2,3 points. By tuning the third-neighbor hopping parameter,

the transition from topologically non-trivial (C = −1) to topologically trivial (C = 2) occurs at

19

the critical value of t3 = 1/3, where the gap at M1,2,3 (C3 rotational symmetry is conserved) 
----------------------------------------------------
Portions of this chapter are based on an article published as L. Du, P. D. Schnase, A. D. Barr, A. R. Barr, and G. A. 
Fiete, Phys. Rev. B 98, 054203 2018).  All authors contributed to the original article.
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FIGURE 4.1: (Color online) The spin Chern number as a function of laser amplitude A0 for the
generalized Kane-Mele model (top row, Eq. (2.1)) with t3 = 0.0 (a), t3 = 0.20 (c), t3 = 0.40
(e) and the dimerized Kane-Mele model (bottom row, Eq. (2.2)) with td = 1.5 (b), td = 2.0
(d), td = 2.50 (f). The remaining parameters are nearest-neighbor hopping t1 = 1.0, spin-orbit
coupling λsoc = 0.3, and laser frequency Ω = 10.0. All the calculations are done with 2500

k-points in the first Brillouin zone and 9 Floquet copies.

closes and reopens, inducing a ±3 change of spin Chern number. This is the starting point of

the non-equilibrium study shown in Fig.4.1(a),(c),(e).

In the DKM model, by comparison, the system gap is determined by the bands at the M3

point. By tuning the dimerized nearest-neighbor hopping, the transition from topologically

non-trivial (C = −1) to topologically trivial (C = 0) occurs. Increasing the dimerized hopping

parameter will close the gap at the M3 point (C3 rotational symmetry is broken), and reopen

the gap at the critical value td = 2.0, inducing a change of Chern number ∆C = ±1. This is

the starting point of the non-equilibrium study in Fig.4.1 (b),(d),(f).

The spin Chern number shows complicated structure for both the GKM and DKM models

when illuminated with a laser. Since Fig.4.1(a),(b),(c),(d) have very similar structure (due to

the same starting topological phase as the Kane-Mele model), our analysis of the topological
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FIGURE 4.2: (Color online) (a, top row) The Floquet-Bloch band structure of the Kane-Mele
model [Eq. (2.1)] with (a1)A0 = 0, (a2)A0 = 0.2 and 0.4, (a3)A0 = 0.6 and 0.8, (a4)A0 = 1
and 1.2, (a5) A0 = 1.4 and 1.6, and (a6) A0 = 1.8 and 2.0. (b, middle row) The Floquet-
Bloch band structure of the generalized Kane-Mele model [Eq. (2.1)] with (b1) A0 = 0, (b2)
A0 = 0.2 and 0.4, (b3) A0 = 0.6 and 0.8, (b4) A0 = 1 and 1.2, (b5) A0 = 1.4 and 1.6, and
(b6) A0 = 1.8 and 2.0. (c, bottom row) The Floquet-Bloch band structure of the dimerized
Kane-Mele model [Eq. (2.2)] with (c1) A0 = 0, (c2) A0 = 0.2 and 0.4, (c3) A0 = 0.6 and 0.8,
(c4) A0 = 1 and 1.2, (c5) A0 = 1.4 and 1.6, and (c6) A0 = 1.8 and 2.0. All parts of this figure
use the parameters t1 = 1.0, λsoc = 0.3, and Ω = 10.0. For graphs that include two values of
A0, the dashed line is based on the lower value and the solid line is based on the higher value.

transition will be focused on Fig.4.1(a),(e),(f). The transition at weak laser intensity can be

easily understood. In Fig.4.1(a), increasing the laser intensity will induce the transition from

topologically non-trivial states to topologically trivial states. This transition can be understood

by plotting the band structure as a function of laser intensity A0, as in Fig.4.2(a1-a6). At

A0 = 0.0 (laser absent), the system gap is determined by the energy difference at the M1,2,3

points (Fig.4.2(a1)). Increasing the laser intensity tends to form a flat band in the region M3 −

K − M2 − K ′ (Fig.4.2(a3)). Further increasing laser intensity will set the K(K ′) point to

determine the band gap (Fig.4.2(a4)). Increasing the laser intensity still further will close,

and then reopen, the gap at the K point (Fig.4.2(a5-a6)), inducing the Chern number change
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TABLE 4.1: Energy gap at high symmetry point in the theoretical infinite frequency limit.

GKM DKM

K(K′) 6
√

3λsocJ0(
√

3A0) 2
√

27λ2
socJ0(

√
3A0)2 + (t1 − td)2J0(A0)2

M1(M2) 2 |t1J0(A0)− 3t3J0(2A0)| 2 |tdJ0(A0)|
M3 2 |t1J0(A0)− 3t3J0(2A0)| 2 |(2t1 − td)J0(A0)|
Γ 6 |t1J0(A0) + t3J0(2A0)| 2 |(2t1 + td)J0(A0)|

∆C = ±1 for K(K ′). This explains the topological transition at A0 = 1.5. In Fig.4.1(e), the

first transition atA0 = 0.4 is induced by the threeM points’ band closing and reopening (Chern

number change ±1 for each M point) driven by laser coupling (Fig.4.2(b2)), while the second

transition at A0 = 1.5 (Fig.4.2(b5)) is because of the K(K ′) points closing and reopening

(Chern number change ±1 for K or K ′ point). In Fig.4.1(f), the first transition at A0 = 0.8

(Fig.4.2(c3)) is due to the M3 point closing and reopening (Chern number change ±1), and the

transition at A0 = 1.8 (Fig.4.2(c6)) is due to the K(K ′) points closing and reopening (Chern

number change ±1) for K or K ′ point. The picture can be confirmed by plotting the Floquet

band structure with different laser intensities in Fig.4.2.

4.1.2 Low energy Hamiltonian in the high frequency limit

From the Magus expansion in the high frequency regime, the effective Hamiltonian is written

as

Heff = H0 +
∑
n

1

nΩ
[Hn, H−n] +O(

1

Ω2
), (4.1)
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where Heff = H0 in the theoretical infinite frequency limit. The position of the K point

is (4π/3
√

3, 0) (and symmetry related points), and the low-energy Hamiltonian at the high-

frequency limit is given by

H0 =

3
√

3λsocJ0(
√

3A0) (t1 − td)J0(A0)

(t1 − td)J0(A0) −3
√

3λsocJ0(
√

3A0)

 . (4.2)

For the generalized Kane-Mele model, we have t1 = td. Then the eigenvalues will be

E± = ±3
√

3λsocJ0(
√

3A0), (4.3)

which depend on only the spin-orbit coupling λsoc and scaled by Bessel functionJ (
√

3A0). For

the dimerized Kane-Mele model, the Hamiltonian is independent of the third-neighbor hopping

terms t3. The eigenvalues are

E± = ±
√

27λ2
socJ0(

√
3A0)2 + (t1 − td)2J0(A0)2. (4.4)

The position of M3 point is (0, 2π/3), and the low-energy Hamiltonian up to second order

in A0 is given by,

H0 =

 0 fM3

fM3 0

 , (4.5)
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FIGURE 4.3: (Color online) The energy gaps at high symmetry points are plotted with dots.
The dashed line indicates the energy gap in the theoretical infinite-frequency limit. (a) Gener-
alized Kane-Mele model with t3 = 0.0. (b) Generalized Kane-Mele model with t3 = 0.4. (c)
Dimerized Kane-Mele model with td = 2.5. (d) The zero-th order Bessel function of first kind

used in the infinite frequency limit.

with fM3 = (2t1 − td)J0(A0)− 3t3J0(2A0). The eigenvalues are

E± = ± |(2t1 − td)J0(A0)− 3t3J0(2A0)| . (4.6)

For the generalized Kane-Mele model, we have t1 = td, then the eigenvalues will be

E± = ± |t1J0(A0)− 3t3J0(2A0)| . (4.7)

For the dimerized Kane-Mele model, the Hamiltonian is independent of third-neighbor hopping

terms t3. The eigenvalues are

E± = ± |(2t1 − td)J0(A0)| . (4.8)
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FIGURE 4.4: (Color online) Top panel: The phase diagram in the plane of laser intensity A0

and on-site disorder Udis for both GKM with t3 = 0.0 (a), t3 = 0.2 (b), t3 = 0.4 (c) and DKM
with td = 1.5 (d), td = 2.0 (e), td = 2.5 (f). Note the color scale for (c) is different from
the others. The phase diagram can serve as a visual guide. The detailed data with Bott index
as a function of disorder strength are plotted in the lower panels. Middle panel: Generalized
Kane-Mele model with t3 = 0.0 (a1), t3 = 0.2 (b1), t3 = 0.4 (c1) from left to right. Bottom
panel: dimerized Kane-Mele model with td = 1.5 (d1), td = 2.0 (e1), td = 2.5 (f1) from left

to right. The remaining model parameters are fixed at t1 = 1.0, λsoc = 0.3,Ω = 10.0.

The position of the M2 point is (−
√

3π/3, π/3),

H0 =

 0 fM2

fM2 0

 , (4.9)

with fM2 = −tdJ0(A0) + 3t3J0(2A0). The eigenvalues are

E± = ± |−tdJ0(A0) + 3t3J0(2A0)| . (4.10)
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For the generalized Kane-Mele model, we have t1 = td, and the eigenvalues will be

E± = ± |t1J0(A0)− 3t3J0(2A0)| . (4.11)

For the dimerized Kane-Mele model, the Hamiltonian is independent of the third-neighbor

hopping terms t3, and the eigenvalues are

E± = ± |tdJ0(A0)| . (4.12)

The gap for each high symmetry point in the high-frequency limit is summarized in Table 4.1.

The gap size at each high symmetry k point is plotted with a dashed line in Fig.4.3. The exact

gap size is plotted with dots, as a comparison. For the Kane-Mele model and the GKM model,

the gap calculated using the high-frequency approximation can capture the main feature of the

exact results, especially for the gap closing points of Γ, K, and M3, which correspond to the

spin Chern number change. For the DKM Hamiltonian, the high frequency results are in good

agreement for the Γ point. Higher order corrections are needed to explain the gap closing point

around A0 = 0.8 for the M3 points and the minimum at around A0 = 2.2 for the K point.

4.2 Phase diagram and Bott index for the disordered system

In the top panels of Fig.4.4(a-d), we plot the phase diagram of the GKM model with parameter

t3 = 0.0, 0.2, 0.4 and the DKM model with td = 1.5, 2.0, 2.5. The remaining parameters

are fixed at t1 = 1.0, λsoc = −0.3,Ω = 10.0. The detailed data corresponding to the phase
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diagram–the Bott index as a function of disorder at different laser intensities–are plotted in the

middle panels for GKM with t3 = 0.0, 0.2, 0.4 from left to right and the bottom panels for DKM

with td = 1.5, 2.0, 2.5. In the clean system limit (Udis = 0), the system makes a topological

transition as the laser intensity increases, inducing the Dirac points to close and reopen (shown

in Fig.4.2). The inclusion of disorder in the weak disorder region does not change the original

states from topological trivial or non-trivial. In the strong disorder limit, a topologically trivial

(Bott index=0) Anderson insulator appears.

The most interesting phenomena occur for intermediate levels of disorder. Consider Fig.4.4

(a), (c), and (f), which represents the Kane-Mele model, the GKM, and the DKM, respectively.

Reading the figures horizontally, for fixed disorder strength, as the laser intensity increases,

the transition from the topologically non-trivial state to the topologically trivial state occurs in

Fig.4.4(a). These results are not easy to explain because the band structure at the starting point

with finite disorder strength is not well-defined (momentum is not a good quantum number).

As an alternative, one can read the figure vertically, for fixed laser intensity, and study the

effect of disorder on the the original Floquet Bloch states. In this way, the starting point is the

Floquet-Bloch band structure shown in Fig.4.2 in the first Floquet zone −Ω/2 < Ek < Ω/2.

Let us focus on Fig.4.4(a) and Fig.4.4(a1) first. We define the critical disorder strength

as the point where the Bott index deviates from 1. A monotonic behavior is observed for

A0 = 0.2, 0.4, · · · 1.6. By inspecting the Floquet band structure for A0 = 0.2, 0.4, 0.6, 0.8

[Fig.4.2(a2-a3)], one realizes the band gap at the M point does not change much while the

band width is narrowing. This observation explains the results here because for weak laser

intensity, the hopping terms are renormalized by a Bessel function Jn(x) < 1, while the on-site
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disorder term remains unchanged. Thus, critical disorder will decrease at weak laser intensity.

Further increasing A0 = 1.0, 1.2, 1.4, 1.6 [Fig.4.2(a4-a5)], the Floquet-Bloch band structure is

significantly changed (the system gap shifts to the K point). In this process, both the band-

width and system gap decrease, which decreases the critical disorder strength faster. Finally,

at laser intensity A0 = 1.8, 2.0 [Fig.4.2(a6)], the bandwidth decreases dramatically while the

system gap starts to increase, and the competition between them determines the critical disorder

strength.

Next, we turn to the Bott index as a function of disorder for the generalized Kane-Mele

model with t3 = 0.4, shown in Fig.4.4(c1). First we consider low laser intensity: A0 = 0.2, 0.3.

As the laser intensity is increased from A0 = 0.2 to A0 = 0.3, both the bandwidth and the gap

at the M point get smaller, which explains why the critical Udis decreases. Around A0 = 0.4,

the system gap at the M point closes and reopens. Further increasing the laser intensity to

A0 = 0.6, 0.8 will increase the gap at the M point, which pushes the critical Udis to larger

values. Further increasing A0 to 1.0 and 1.2, the system gap shifts to the K point (shown in

Fig.4.2(b5)); this pushes the critical disorder to smaller values. The system gap at the K point

closes and reopens at A0 = 1.4. Finally, the minimal gap shifts to the Γ point, and further

decreases as the laser intensity increases to A0 = 2.0, which explains the critical disorder

strength moving to smaller values from A0 = 1.8 to A0 = 2.0.

Finally, by looking at the data for the dimerized KM model in Fig.4.4(f1), we find a similar

story, except differing for A0 < 0.8. We focus our discussion on this region. The starting point

here is the topological trivial state with spin Chern number C = 0. For weak laser intensity

A0 = 0.2, 0.4, adding disorder does not change the Bott index. The gap is relative large here,
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and neither weak nor intermediate disorder can close the gap and generate band inversion.

Strong disorder, however, will localize all the states. This idea is confirmed by inspecting the

data for A0 = 0.6, 0.8. Here the gap at the M3 point gets smaller, and the intermediate disorder

strength will close the gap and reopen it, which can be explained by the Born approximation,

where the mass is renormalized through disorder. We find the highest values of the data for

A0 = 0.6, 0.8 do not reach 1, which would indicate a topologically non-trivial state. This is

explained as a finite size effect because larger system sizes move the Bott index towards 1;

more detail is provided as an appendix.

4.3 Phase diagram and Bott index for disordered system

with an on-resonant laser

In this section, we study the topological invariant as a function of laser intensity and on-site dis-

order while fixing the laser frequency to be on-resonant (~Ω < W , where W is the bandwidth

of equilibrium model Hamiltonian). In the on-resonant regime, the high-frequency expansion

is not expected to be accurate and the system may display a complex evolution as a function of

laser parameters.

In the top panels of Fig.4.5, we plot the Chern number as a function of on-site disorder

Udis for (a) GKM model with t3 = 0.0 (bandwidth 6t1), (b) GKM model with t3 = 0.2 (band-

width 7.2t1) and (c) DKM model with td = 1.5 (bandwidth 7.0t1). The remaining model

parameters are fixed at t1 = 1.0, λsoc = 0.3,Ω = 5.0. The laser intensity is varied through
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FIGURE 4.5: (Color online) The Chern number as a function of on-site disorder Udis for (a)
GKM model with t3 = 0.0, (b) GKM model with t3 = 0.2 (c) DKM model with td = 1.5.
The remaining model parameters are fixed at with t1 = 1.0, λsoc = 0.3,Ω = 5.0. The Floquet-
Bloch band structure in the clean-limit (absence of disorder) are plotted for different laser
intensity A0 = 0.0, 0.4, 0.8, 1.2, 1.6, 2.0 in (a1-a6) for GKM model with t3 = 0.0, (b1-b6) for

GKM model with t3 = 0.2 and (c1-c6) for DKM model with td = 1.5.

A0 = 0.2, 0.4, 0.6, · · · , 2.0. We focus on the clean limit first, increasing the laser intensity from

A0 = 0.2 to A0 = 2.0, and note the Chern number will change from C = 3 to C = 1 which is

∆C = 2. This behavior can be understood by considering the decrease of the laser frequency

from infinity to finite on-resonant frequency: At infinite laser frequency, the original equilib-

rium bandwidth is rescaled by a Bessel function of the first kind. For example, the effective

bandwidths Weff are 6|J0(A0)t1| for the Kane-Mele model, 6|J0(A0)t1 + 2J0(2A0)t3| for the

GKM model and 2|J (A0)(td + 2t1)| for the DKM model. The next order correction in the
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high-frequency limit is a correction to this effective bandwidth. When the laser frequency is

decreased to be equal to the effective bandwidth, the “top” of a “lower” Floquet copy will touch

the “bottom” of the “upper” Floquet band at E = −Ω/2. Further decreasing the frequency will

generate a quadratic band crossing and a small but finite laser intensity will open a gap between

the band crossing, changing the Chern number by ∆C = ±2.

To further illustrate the picture above, the Floquet-Bloch band structure in the clean-limit

(absence of disorder) is plotted for different laser intensities A0 = 0.0, 0.4, 0.8, 1.2, 1.6, 2.0 in

(a1-a6) for the KM model with t3 = 0.0, (b1-b6) for the GKM model with t3 = 0.2 and (c1-

c6) for the DKM model with td = 1.5. The quasi-energy bands are plotted from −Ω to Ω/2

which includes the copy in the Floquet zone −Ω/2 < ε < Ω/2 and half of the lower copy

−Ω < ε < −Ω/2 to show the band crossing point at Γ. We focus on the behavior of the Chern

number with the laser intensity A0 = 0.8. In the KM model, the Floquet-Bloch band structure

is shown in Fig.4.5(a3). The system gap is situated very close to the Γ point and is small

compared to the system gap at the M3 point. In this way, a small amount of disorder will close

the gap around the |Γ| point first (changing the Chern number by 2), and then close the gap at

the M3 point, changing the Chern number by 1. The magnitude C = 1 is the result of the gap

differences at energyE = −Ω/2 andE = 0.0. This picture is confirmed by comparing the data

for the GKM model with t3 = 0.2 [shown in Fig.4.5(b) and (b3)]. Since the original bandwidth

of the model is larger than the bandwidth of KM model, the gap formed at E = −Ω/2 is larger.

This may generate the larger critical disorder to change the Chern number by±2. Secondly, the

energy gap difference at energy at E = −Ω/2 and E = 0.0 is relatively smaller, which induces

the smaller magnitude of C = 1.
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For the DKM model with A0 = 0.8, the Chern number changes from 1 to 2 with small

disorder strength and comes back to 1 as the disorder increases. By inspecting the Floquet-

Bloch band structure in Fig.4.5(c3), we realize there is a linear crossing between the Γ and

M3 points. A small amount of disorder can induce an effective mass which generates a band

inversion and a Chern number change ±1. Further increasing the intensity will close the gap

and bring one back to C = 1. Continuing to increase the disorder will induce the transition

from 1 to 0, which is determined by the energy gap at E = 0.0.

4.4 Conclusion

In this thesis we theoretically studied the topological properties of the generalized Kane-Mele

(GKM) model with third-neighbor hopping t3 and the dimerized Kane-Mele (DKM) model

with dimerized hopping td along the vertical direction [along δ3 in Fig.2.1(a)] under illumina-

tion by a circularly polarized monochromatic laser field. In the absence of the laser, the GKM

model has a critical value of t3 = 1/3, where topological trivial and non-trivial states occur

for values larger and smaller than the critical t3, respectively. The DKM model has critical

td = 2.0 where topological trivial and non-trivial states occur for values larger and smaller than

the critical td, respectively.

To include both topologically trivial and non-trivial states as starting points, we chose t3 =

0.0, 0.2, 0.4 for the GKM model and td = 1.5, 2.0, 2.5 for the DKM model. Their complicated

phase structures were studied numerically, both in the high-frequency off-resonant case and
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the low-frequency resonant case. The topological transitions are explained using the Floquet-

Bloch band structure, where we find the laser will close and reopen Dirac points, inducing a

Chern number change ∆C = ±1 for each Dirac point. Further, we found the laser can shift

the system gap between different high symmetry points. For example, the minimal gap may

shift from an M point to a K point in the Kane-Mele model [shown in Fig.4.2(a1-a6)] or even

shift to some point without high symmetry for the DKM model [shown in Fig.4.2(c1-c6)]. The

band structure, and the system gap at high symmetry points, is explained using the low-energy

Hamiltonian based on a high frequency expansion for the off-resonant case.

Finally, we study the effect of on-site disorder in the GKM and DKM model under a pe-

riodic laser drive (Floquet system). Topological states are sustained with weak disorder, and

destroyed by strong disorder, similar to the case in equilibrium. In addition, weak disorder may

even generate a topologically trivial state from a non-trivial one providing a level of material

control through the interplay of disorder and a periodic drive. Compared to the more heavily

studied Kane-Mele model with disorder, the minimal gap evolution through the Brillouin zone

for the GKM and DKM models presents new phenomenology for disordered Floquet systems.

Appendix: Finite size effect

The finite size effect on the non-quantized region of the Bott index where the Floquet-Anderson

topological transition occurs is studied here. In Fig.4.4(c1) there exists a plateau around the Bott

index 1 with A0 = 0.2, 0.3 and (f1) the Bott index does not reach 1 with A0 = 0.6, 0.8. Here

we studied the two cases with different size to check what the finite size effect is.
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FIGURE 4.6: (Color online) (a) The Bott index as a function of on-site disorder Udis for the
GKM with t3 = 0.4 and laser intensity A0 = 0.2. (b) The Bott index as a function of on-site
disorder Udis for the DKM model with td = 2.5 and laser intensity A0 = 0.8. The remaining
model parameters are fixed at t1 = 1.0, λsoc = 0.3,Ω = 10.0. Different cluster sizes are
chosen to illustrate the finite size effect. The total number of lattice sites are N ×N × 2 where

the 2 comes from the number of atoms in one unit cell.

In Fig.4.6, we plot the disorder- averaged Bott index as a function of disorder for different

system sizes. It is clear that with increasing system size, the non-quantized region of the Bott

index becomes sharper, which is consistent with previous studies.[55, 57] Further, in Fig.4.6(b),

we realize there will be a quantized area with increasing cluster size.
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5

Conclusion

This thesis examined, with theory and computation, the topological properties of several exten-

sions of the Kane-Mele model. These were the generalized Kane-Mele model, with third-

nearest neighbor hopping, and the dimerized Kane-Mele model, in which the first-nearest

neighbor hopping strength is different for bonds parallel to the y-axis.

The effects were studied of a circularly polarized monochromatic laser illuminating the

system and of on-site disorder. Phase diagrams were produced to show the topologically trivial

and non-trivial phases of the system.

Finding topologically insulating phases may open the door to practical uses in the future.

Examples include optoelectronics and energy efficient computer memory via spintronics.

The systems simulated in this thesis display phases in which they are topological insulators

and trivial insulators, and it is possible to switch between those phases by adjusting the values
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of the parameters. One possible application of this is to detect the influence of a laser. If

the system is in a trivial phase and then suddenly switches to having conducting surface states

characteristic of a topological insulator, then the laser is detected. Laser controlled conductivity

allows for a variety of applications in, for example, optoelectronics.

In a topological insulator, the spin of the electrons in the metallic surface states is tied to

their momentum. In order to stop moving around the edge of the material, an electron would

have to change its energy or spin state (electrons going the opposite direction have opposite

spin), which limits ways in which electrons can scatter. The result is less dissipation of currents

in the conducting surface states than would be expected from a bulk metal.

If electrons with spins that point one way more than the opposite way are conducted into a

thin layer of ferromagnetic material, the spins of the incoming electrons can interact with the

spins of the existing electrons, so the spins in the ferromagnet may be changed to match. This

can change the direction of magnetization in the ferromagnet. The direction of magnetization

of the ferromagnet can be used to encode the value of a bit of computer memory. By passing

electric current though the metallic surface states of a topological insulator and into a thin layer

of ferromagnet, bits can be read or rewritten. Using a topological insulator to polarize the

spins of the electrons could potentially work with far lower currents than the existing method,

which uses a thick ferromagnetic layer to create the spin polarization. Less current and lower

dissipation mean less heat generated, which mitigates a major issue faced by the densely packed

circuits found in modern computing devices. Such circuits would be considered spintronic

because they rely on the spin of the electrons, not just their charge.
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