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Leigh McAlister

I study the impact of the used goods market on pricing and profits in the

video game industry and the implications of resale restrictions. I develop a modeling

framework that incorporates (a) heterogeneous consumers who are forward looking

in their buying an selling behaviors, (b) a strategic game producer who prices its

products considering both inter-temporal price discrimination and price competition

with used goods, (c) rational expectations on future prices by both consumers and

the firm, and (d) market equilibria for both new and used-goods markets. With-

out observing sales data, I use equilibrium pricing solutions in my model and the

varying rate of price decrease after a game’s release to identify the sales volume of

a game in every period as a percentage of its total demand. I develop a compu-

tationally tractable utility specification to solve the computational challenge comes

with modeling the supply side equilibrium. I construct the demand function for a

game from heterogeneous consumers whose valuations distribute on an interval, and

partially characterize the consumers’ decisions and reduce the dimensionality of the

state space. Applying the model to a unique dataset of game prices collected from

vi



the Internet, I estimate the game-specific demand for multiple games released in the

U.S. market. The results show significant variation across games in terms of shapes

of valuation distributions, expected play time, degrees of consumers’ preference for

new over used games, and price sensitivities. Policy simulations show that the effects

of prohibiting resale largely depend on the shape of a game’s demand distribution,

because most of the profits are gained from higher-valuation consumers who purchase

the game when the price is high. Prohibiting resale does not dampen their willing-

ness to pay for the game because their high utility from playing it. Moreover, higher

expected future prices in the absence of the used-game market further reduces their

incentives to wait. I find the predicted profit increase is significant for most games

when reselling is prohibited. However, games with demand consisting mostly of low

valuation consumers benefit less from this structural change, because (a) early sales

increase only slightly given a much smaller proportion of high valuation consumers

and (b) losing the option to resell significantly decreases the willingness to pay for

low valuation consumers, forcing the firm to slash its prices dramatically over time. I

find empirical evidence that a firm can be better off with the used game market. This

suggests that though eliminating the resale market is generally optimal for popular

games, retaining it can be more profitable for some games.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

In June 2013, Microsoft announced that their new video game platform, Xbox

One, would require constant online connection to play and as a result, used game

reselling would be restricted.1 What would be the effect of such a structural change,

and would it be beneficial to producers unconditionally? Although the company

later announced that they had decided to reverse the policy and there would be no

restrictions on reselling,2 this event shows that it is technically feasible to forbid

reselling in the video game industry. This dissertation studies how the used goods

market affects equilibrium outcomes and the implications of prohibiting reselling in

this industry.

Reselling of software poses a serious threat to its producer since the digital

software itself does not physically depreciate; there is little, if any, quality discrep-

ancy between new and used software as long as the media disk can be read. Hence,

it is hard to charge much more for new software than used one. What makes matters

worse for video game producers is that video games can be consumed in relatively

1http://www.ign.com/articles/2013/06/06/microsoft-details-xbox-one-used-games-
always-online

2http://www.ign.com/articles/2013/06/19/microsoft-reversing-xbox-one-internet-
used-game-policies

1

http://www.ign.com/articles/2013/06/06/microsoft-details-xbox-one-used-games-always-online
http://www.ign.com/articles/2013/06/06/microsoft-details-xbox-one-used-games-always-online
http://www.ign.com/articles/2013/06/19/microsoft-reversing-xbox-one-internet-used-game-policies
http://www.ign.com/articles/2013/06/19/microsoft-reversing-xbox-one-internet-used-game-policies


short period of time. This differs from office related or utility software which con-

sumers tend to use for extended period of time. Hence, video game producers are

operating in a industry where previously sold copies of a game come back pretty

quickly to the used goods market as competition, and the used games are almost as

good as new. Naturally, some game producers desire to prohibit the reselling of the

used games.3

I investigate these issues by developing a new model of durable goods and

apply it to unique price data collected from the web. In this industry, I observe the

co-existence of new and used goods markets with correlated prices. I also see initially

high but dynamically decreasing game prices, suggesting that consumers’ valuations

for a game is heterogeneous, and firms are using the skimming pricing strategy to

maximize their profits. Realizing this downward trend in prices, a game buyer is

likely to be forward looking, because she can wait to buy a new or used game at

significantly lower price in the future. In addition, she realizes the future opportunity

to recoup part of the price she pays by reselling it after she loses interest in playing the

game anymore. The resale supply will increase with time as more consumers who

have purchased the game earlier lose interest in the game and resell their copies,

making the producer compete heavily against its own products and further slash

its prices. Incorporating these observations, I propose a model which includes the

following components: (a) heterogeneous consumers who are forward looking in their

buying an selling behaviors, (b) a strategic game producer who prices its products

3For example, THQ creative director said “We hope people understand that when the game’s
bought used, we get cheated.” (http://www.computerandvideogames.com/261330/pre-owned-
cheats-developers-thq/)

2

http://www.computerandvideogames.com/261330/pre-owned-cheats-developers-thq/
http://www.computerandvideogames.com/261330/pre-owned-cheats-developers-thq/


considering both inter-temporal price discrimination and price competition with used

goods, (c) rational expectations on future prices by both consumers and the firm, and

(d) market equilibria for both new and used-goods markets. To my knowledge, my

dissertation is the first to incorporate all these components in a structural empirical

model, which enables me to study a rich collection of counterfactual analyses by

simulating model-based prices and sales.

Modeling the supply side equilibrium brings a significant computational bur-

den due to the well-known Curse of Dimensionality (Bellman, 1957). In this context,

consumers typically adopt a durable good once and exit the market, and thus as the

firm sells its product, the remaining demand dynamically shrinks. Then, as the

researcher tries to accommodate richer heterogeneity, the number of state variables

the firm needs to keep track of increases quickly and it becomes computationally

infeasible to solve the resulting dynamic problem. For example, suppose there are

discrete number of consumer segments, each with a different level of valuation about

the product. Then in each period, the firm needs to keep track of how many con-

sumers are remaining in each segment. In addition, when there is the used goods

market, the firm also needs to take into account how many consumers have pur-

chased the product in previous periods for each segment as well. This is the reason

why previous studies which also estimated dynamic demand in the presence of the

used goods market in this industry (Ishihara and Ching, 2012; Shiller, 2012) used

a couple of segments to model consumer heterogeneity, and also did not model the

supply side equilibrium with the used goods market. Hence, unlike my study, they

cannot generate equilibrium prices under the presence of the used game market.
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In addition, what makes the modeling task especially challenging is that

due to well-developed online marketplaces such as Amazon.com and eBay where

consumers can individually buy and sell used goods, sales volume of used games

is difficult to measure. In addition, an econometrician usually can only observe

price data, whereas the sales information of new products is proprietary. Indeed,

even producers are often not able to obtain the the sales information on the used

products of their own. In solving these issues, my dissertation makes contributions

on the following fronts.

Under market equilibrium, the observed prices provide information about

the underlying demand. Intuitively, slow price decline over time implies significant

demand, whereas fast price decline suggest low demand. With a fully specified

supply-side model, which provides a mapping from demand to prices, we can make

inference on demand without sales data. Our solution is to make use of new and used

goods prices by explicitly solving the new and used-goods market equilibria and then

utilize the equilibrium conditions for estimation. There are several previous studies

(Feenstra and Levinsohn, 1995; Sudhir, 2001; Thomadsen, 2005) which used similar

ideas in static settings. We contribute to this stream of research by extending the

method to dynamic equilibrium models.

Inclusion of the market equilibria for both new and used-goods markets in

the estimation means I have to solve for both consumers’ and the firm’s problem for

each candidate parameter draw, which can make the estimation indefeasibly slow.

I develop a new, computationally tractable utility specification to solve the com-

putational challenge. First, I construct the demand function from heterogeneous

4



consumers with their valuations distributed on a normalized, [0, 1] interval. Then,

I can measure demand for each period with the area under the consumer valuation

distribution density curve, between the valuation of the marginal consumer and the

maximum valuation of the entire unfulfilled demand. Here the marginal consumer is

indifferent between buying a used game at current price and waiting. In this frame-

work, I can characterize the state of the demand parsimoniously with the marginal

consumer’s valuation, because in turn it becomes the maximum valuation of the

unfulfilled demand for the next period. In addition, using equilibrium conditions, I

partially characterize consumers’ dynamic video game buying, keeping and selling

decisions analytically, and summarize the state of the used goods supply with an-

other state variable. This enables me to characterize the state of the market with

only two state variables, which facilitates solving the firm’s dynamic problem. This

approach not only enables me to incorporate the supply side equilibrium in the esti-

mation, but also allow me to accommodate rich, continuous consumer heterogeneity

distribution and non-linear price trajectories for consumer price expectations.

In this framework, the state space cannot be represented by a regular grid,

making many popular approximation methods such as Chevyshev (Judd, 1988) and

cubic spline interpolation (Habermann and Kindermann, 2007) inapplicable. I solve

this challenge by applying the radial basis function approximation methods (Buh-

mann, 2000) which can approximate the surface of a function with scattered data.

To my knowledge, my dissertation is the first one to apply this method to dynamic

programming in the marketing literature.

The estimation of our model is through the Generalized Method of Moments

5



(GMM) (Hansen and Singleton, 1982). From the equilibrium conditions of the dy-

namic model, I solve for the unobserved aggregate demand shocks, from which we

construct moment conditions together with observed prices and instrumental vari-

ables. This procedure is analogous to Berry, Levinsohn, and Pakes (1995). I ex-

tend the method to a dynamic equilibrium model with continuous control variables

(prices) instead of a static discrete choice problem, using equilibrium conditions from

both demand and supply sides. Numerical optimization of the GMM objective func-

tion and calculation of the standard errors are challenging due to many local minima

resulting from the highly non-linear nature of the objective function. Hence I employ

the Laplace-type estimator (Chernozhukov and Hong, 2003) for inference, which is

robust to local minima by converting the objective function to the quasi-posterior

distribution and employing MCMC methods to estimate parameters and construct

intervals.

I apply this model to twenty-four video games released in the U.S. market

and estimate the game-specific demand. The results show significant variation across

games in the shape of the valuation distribution, expected play time, degree of

consumers’ preference for a new over a used copy, and demand price sensitivity.

In a counterfactual analysis, I evaluate the profit change for each video game as

a result of eliminating the resale market, assuming that the firms adopt optimal

pricing strategies under the absence of the used game market. The results show that

the effects of prohibiting resale largely depend on the shape of a game’s demand

distribution, because most of the profits are gained from higher-valuation consumers

who purchase the game when the price is high. Since they get high utility from

6



playing a game, prohibiting resale does not dampen their willingness to pay for the

game significantly. However, the absence of the used-game market makes expected

future prices higher, further reduces their incentives to wait. I find the predicted

profit increase is significant for most games, which enjoy a 38% profit increase on

average when reselling is prohibited. However, games with demand consisting mostly

of low valuation consumers benefit less from this structural change, because (a)

early sales increase only slightly given a much smaller proportion of high valuation

consumers and (b) losing the option to resell significantly decreases the willingness

to pay for low valuation consumers, forcing the firm to reduce its prices dramatically

over time. I find empirical evidence that a firm can be better off with the used game

market. This suggests that though eliminating the resale market is generally optimal

for popular games, retaining it can be more profitable for some games.

This dissertation is structured in the following way. In the next section, I

review the current literature on durable goods market, intertemporal price discrim-

ination and the video game industry and elaborate on how my model differs from

the prior work. In Chapter 2, I discuss the construction of a theoretical two-period

model, which illustrates the fundamental ideas of dynamic demand, expectations,

competition between new and used games, intertemporal price discrimination in a

simple setting. I conduct comparative statics to show the effects of the used game

market on equilibrium outcomes. In Chapter 3, I construct a multi-period, empir-

ical model that I take to the data, and characterize the consumers’ and the firm’s

dynamic decisions. Numerical details of solving dynamic problem is discussed. In

Chapter 4, after I describe the data and the estimation strategy, I show the results

7



from the estimation and the counterfactual analysis. I conclude my dissertation in

Chapter 5.

1.2 Literature Review

My research builds on the empirical literature in marketing and economics

which develops models on consumers’ dynamic durable goods purchase decisions with

aggregate level data such as Song and Chintagunta (2003), Gordon (2009), Goettler

and Gordon (2011), and Gowrisankaran and Rysman (2012).

In particular, my dissertation is closely related to recent studies which use

dynamic structural models to study video game adoption decisions. Nair (2007) uses

a dynamic discrete choice model of adoption to estimate the demand of a game and

uses equilibrium model in policy simulations to study optimal intertemporal price

discrimination in the U.S. video game industry. Ishihara and Ching (2012) devel-

ops dynamic choice model with the used goods market, utilizing recently developed

Bayesian estimation of dynamic structural model (Imai, Jain, and Ching, 2009) and

studies the effect of the used goods market on new goods sales. They collected and

used data from Japanese video game industry where they observe information about

the intermediaries who buy and sell the used games. Shiller (2012) added used goods

market to Nair (2007)’s approach and estimated dynamic demand with used goods

and evaluated profit changes after elimination of the used goods market. He used

data on used game auctions from one of the popular online marketplace and scaled

up this partial information to the entire U.S. market.

I contribute to this stream of research by developing a new dynamic general

8



equilibrium model of video game adoption and resale. Importantly, I fully specify

the supply side equilibria incorporating both new and used goods markets, unlike

previous studies which did not model the supply side. Hence, I can generate equilib-

rium prices under the presence of the used goods market, whereas previous studies

cannot. In my model the equilibrium price trajectory can be directly solved from

the model under different market structures, facilitating counterfactual analyses.

Also, by assuming that the observed new prices are optimally set by the

firm and the used goods market is competitive, I infer sales volume in each period

from the observed prices using equilibrium conditions. This enables me to make

inference on demand without observing the sales data. The idea of using equilibrium

conditions from the model to make inference with limited data has been employed in

the literature. For example, Feenstra and Levinsohn (1995) and Thomadsen (2005)

estimated their models without observing sales in static settings. Also, Sudhir (2001)

used game-theoretic solutions to infer wholesale prices in the absence of information

on those prices. I contribute to this stream of research by extending the method to

dynamic equilibrium models.

In solving for the supply side equilibrium, I find many approximation meth-

ods which are popular in marketing and economics such as Chebyshev (Judd, 1988)

and cubic spline (Habermann and Kindermann, 2007) interpolation inadequate for

my application. This is due to the fact that the feasible state space of my model

cannot be represented by a tensor product of state variables. Hence, I use the radial

basis function approximation methods (Buhmann, 2000) which can approximate the

surface of a function with scattered data. To my knowledge, my dissertation is the

9



first one to apply this method to dynamic programming in the marketing literature.

My dissertation is also related to recent studies which estimated the video

game console demand along with the software demand such as Derdenger (2014);

Derdenger and Kumar (2013); Lee (2013). The scope of my dissertation is quite

different from that of these studies; while my study does not include the console

demand or the competition among video games, it focuses on the intertemporal

price discrimination and the used goods market.

Theoretically, since the Coase conjecture (Coase, 1972), which makes an

argument that a monopolist who sells a durable good to patient and heterogeneous

consumers in an infinite time horizon can forfeit all his monopoly power,4 there

has been rich stream of literature on durable good monopolist’s intertemporal price

discrimination problem (Bulow, 1982; Huang, Yang, and Anderson, 2001; Karp, 1996;

Stokey, 1979, 1981). In my model, while the monopolist does keep certain level of

monopoly power because there is significant the time interval between successive

price revisions, it does lose some monopoly power due to forward-looking behavior

of consumers. Besanko and Winston (1990) is directly related to my study, as the

authors study a stylized model of the intertemporal pricing problem for a monopolist

selling a new product with forward-looking consumers, where consumers decide when

to adopt the product. I extend this model to allow consumers to buy and sell used

goods. Instead of discrete choice framework, my empirical model closely follows the

theoretical model. This allows me to use continuous heterogeneity distribution on

4As the length of time interval between price revisions goes to 0 (consumers’ discount rate over
the time interval goes to 1), the monopolist lowers its price and eventually sets the competitive
price, saturates the market in the initial period.

10



consumer valuation instead of the segment approach typically used in the literature.

Also, the intertemporal pricing problem is related to the infinite-horizon bargaining

models with one-sided incomplete information (Roth, 1985).

Finally, there is a large theoretical literature on the interaction between new

and used durable goods markets. These include optimal durability (Rust, 1986;

Swan, 1970), leasing contracts (e.g., Desai and Purohit, 1999), channel coordination

(Desai, Koenigsberg, and Purohit, 2004; Shulman and Coughlan, 2007), role of trade-

ins (Rao, Narasimhan, and John, 2009), and peer-to-peer used goods (Yin, Ray,

Gurnani, and Animesh, 2010) market. Also, there have been literature about optimal

durability (Hendel and Lizzeri, 1999b; Swan, 1970), and adverse selection (Akerlof,

1970; Hendel and Lizzeri, 1999a).

11



Chapter 2

Two-Period Model

In this chapter, I introduce a two-period model, which illustrates the funda-

mental ideas of dynamic demand, expectations, competition between new and used

games, an intertemporal price discrimination. This model can be solved analytically,

which enables me to conduct comparative statics and show the effects of the used

game market on equilibrium outcomes.

2.1 Two-Period Model

I consider a dynamic game played between a monopolistic firm selling a

durable good and forward-looking consumers with heterogeneous valuations in the

presence of the used goods market. The firm sells the durable good to a unit mass

of consumers, whose flow valuations (denoted by v) follow a distribution with c.d.f

F (v), whose support is the unit interval [0, 1]. The consumers share a discount factor

δ, and I assume that they buy only one copy of the game. The initial t = 1 represents

the period when the game is released, so there is no used goods supply and the used

goods market starts at period 2. The utility a consumer gets from the period when

she purchases the game depends on whether she purchases new or used copy. A

consumer with valuation v gets utility αv, α > 1, from buying a new copy, whereas

she gets v if she purchases a used copy. The parameter α represents consumers’ taste

12



for newness; for example, the additional utility they get from opening the package

of a new copy of the game. In the following periods after purchase, however, both

new and used copies give her the same flow utility v from playing the game. This

reflects the idea that the utility consumers get from playing a video game does not

depreciate physically. Since a video game essentially consists of digitally stored data,

once a consumer starts playing a game, she must get the identical experience from

the used and new copy as long as the game runs.

In each period after purchase period, I assume that a consumer who owns

the game probabilistically loses interest in the game, and after that the utility from

owning the game becomes zero. This can be interpreted as her completing all the

scenarios in the game or just finding it not interesting anymore. Hence I am taking a

discrete approach on the depreciation of consumers’ utility from game holding. Note

that my definition of the event of losing interest in the game is general in a sense that

it includes a broad range of consumers’ unobservable post-purchase behavior. The

existence of the used goods market allows consumers who previously purchased the

game, either new or used, to sell their used games in any period. They act as price

takers, and optimally decide whether or not to sell the game at market-prevailing

price.

Consumers are forward looking in both their purchase and selling decisions;

consumers take into account the possibility of lower future prices for both new and

used games. Moreover, they consider the potential opportunity to sell the product

after losing interest in the game and expect future used game prices for the selling

option. I assume that both the firm and consumers form rational expectations; their

13



expectations about future prices are consistent with the model.

In sum, in each period, upon observing the states including prices of a new

copy pt and a used copy put, consumers who have yet purchased the game decide

whether to purchase new copy, purchase used copy, or wait based on current prices

and their expectations of future prices. Consumers who already own the game decide

whether or not to sell their game in the used market at market price put. If they

decide to keep the game, they get the flow utility if they have not lost interest in the

game, and get zero if they have. The firm takes the consumers’ behaviors as well as

the interaction between its decision and the response from the used goods market

into account in formulating its intertemporal pricing policy. In this model, both new

and used good prices are equilibrium outcomes of a game played between the firm

and its consumers.

In the two-period model, I let v be the total utility from a game instead of

flow utility since I only have two periods for simplicity. If a consumer purchases the

game in period 1, she loses interest in it within that period with probability λ. Then

she sells her video game in the used goods market in period 2.

2.2 Solution of the equilibrium

I solve for the equilibrium by backward induction, starting in period 2. Let

v1 be the valuation of the marginal consumer who is indifferent between purchasing

a new game of the game in period 1 and purchasing either a new or used game in

period 2. Since there are no used game transactions in period 1 and to be consistent

with the notations in the empirical model, I let v2 = v1 and use v2 as the state in
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period 2. Let p∗u2 be the used goods market clearing price, and let v̄2 denote the

valuation of the consumer who is indifferent between buying the new and used game

in period 2. Then given period 2 new good price, p2,

αv̄2 − p2 = v̄2 − p∗u2 ⇒ v̄2 =
p2 − p∗u2

α− 1
(2.2.1)

Let v3 represent the valuation of the consumer who is indifferent between

buying a used game and not buying anything in period 2 and then,

v3 = p∗u2 (2.2.2)

Since consumers who lost interest in the game get zero utility from owning it,

they will sell their games at any pu2 > 0. On aggregate, the supply of the used game

in period 2 is λs1, where s1 = 1− v2, the period 1 sales. In turn, p∗u2 is determined

at where the used goods sales (v̄2 − v3) equals to the used goods supply:

v̄2 − v3 =
p2 − pu2

α− 1
− pu2 = λs1 = λ · (1− v2) (2.2.3)

∴ p∗u2 =
αλv2 − αλ− λv2 + λ+ p2

α
(2.2.4)

The firm sets p2 to maximize the second period profit, taking into account

the effect of its decision on p∗u2. Note that the market size in period 2 is v2. Then,

the firm’s period 2 sales are,

v2 − v̄2 = v2 −
p2 − p∗u2

α− 1
=

1

α
((α+ λ) v2 − λ− p2) (2.2.5)
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and the profit in period 2 is Π2 =
1

α
((α+ λ) v2 − p2 − λ) · p2. From the following

first-order conditions,

∂Π2

∂p2
: (α+ λ) v2 − 2p2 − λ = 0, (2.2.6)

I derive the equilibrium prices and profit in period 2,

∴ p∗2 =
1

2
((α+ λ)v2 − λ) ,

p∗u2 =
1

2α
{αv2 − λ(2α− 1)(1− v2)} , (2.2.7)

Π∗2 =
1

4α
((α+ λ)v2 − λ)2 .

Now consider period 1. The indifference condition for the valuation of the

marginal consumer v2 is,

αv2 − p1 + δ ((1− λ)v2 + λEpu2) = δ(max{αv2 − Ep2, v2 − Epu2}) ≥ 0 (2.2.8)

Assuming rational expectations, I have Ep2 = p2 and Epu2 = pu2. From the

results of period 2, the value of v which satisfies αv−p2 = v−pu2 is v̄2, which is clearly

less than v2, because v2 is the upper bound of the valuations of consumers who have

not purchased the game in period 1. Hence, I have max{αv2−p2, v2−pu2} = αv2−p2

, and from Equation (2.2.8) I have,

v2 =
(2α− 1) δλ2 + αδλ+ 2αp1

(2α− 1) δλ2 − α2δ + 2αδλ+ 2α2
(2.2.9)
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The total sum of the discounted profit is,

Π = Π1 + δΠ2 = (1− v2(p1)) · p1 + δ · 1

4α
((α+ λ)v2 − λ)2 (2.2.10)

To solve this, let

∆1 = α3δ2 − 4α3δ + 4α3 + 3α2δ2λ− 4α2δ2 + 4α2δλ2 − 4α2δλ+ 6α2δp1

∆2 = 8α2δ − 8α2p1 + 7αδ2λ2 − 4αδ2λ+ 4αδ2 − 8αδλ2p1

∆3 = −4αδλ2 + 4αδλp1 − 8αδp1 + δ2λ3 − 4δ2λ2 + 6δλ2p1

then I can denote the first order condition as

∂Π

∂p1
=

α (∆1 + ∆2 + ∆3)

(α2δ − 2α2 − 2αδλ2 − 2αδ + δλ2)2 = 0

Also, the second-order condition is satisfied,

∂2Π

∂p2
1

=
2α
(
3α2δ − 4α2 + 2αδλ− 4αδ + 3δλ2 − 4αδλ2

)
(α2δ − 2α2 − 2αδλ2 − 2αδ + δλ2)2 < 0,

because 3α2δ − 4α2 < 0, 2αδλ − 4αδ < 0 and 3δλ2 − 4αδλ2 < 0 given α > 1,

0 < δ < 1, and 0 < λ < 1.

By solving the FOC, I have the following equilibrium values,

p∗1 = −
α3δ2 − 4α3δ + 4α3 + 3α2δ2λ− 4α2δ2 + 4α2δλ2 − 4α2δλ

6α2δ − 8α2 − 8αδλ2 + 4αδλ− 8αδ + 6δλ2

−
8α2δ + 7αδ2λ2 − 4αδ2λ+ 4αδ2 − 4αδλ2 + δ2λ3 − 4δ2λ2

6α2δ − 8α2 − 8αδλ2 + 4αδλ− 8αδ + 6δλ2

v∗2 =
α2δ − 2α2 − 4αδλ2 − 2αδ + 3δλ2

3α2δ − 4α2 − 4αδλ2 + 2αδλ− 4αδ + 3δλ2
(2.2.11)

Π∗ = −
α
(
α2δ2 − 4α2δ + 4α2 + 4αδ2λ2 + 6αδ2λ− 4αδ2 − 8αδλ+ 8αδ + δ2λ2 − 8δ2λ+ 4δ2

)
12α2δ − 16α2 − 16αδλ2 + 8αδλ− 16αδ + 12δλ2
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To illustrate the effect of the used goods market on equilibrium values, I also

solve for the equilibrium without the used goods market. In this case, the period 2

decision becomes (v1 and v2 no longer exist and consumers’ decisions are summarized

by v1 and v2 instead),

αv̄2 − p2 = 0. (2.2.12)

The decision to buy in period 1 is characterized by

αv̄1 − p1 + δ(1− λ)v1 = δ(αv1 − Ep2) ≥ 0

Without the used goods market, the decision to buy in period 2 becomes

αv̄2 − p2 = 0⇒ v1 =
p2

α
(2.2.13)

and period 2 profit is:

Π2 = p2

(
v̄1 −

p2

α

)
(2.2.14)

first order conditions yields

α
(
v̄1 − 2

p2

α

)
= 0 (2.2.15)

Hence, equilibrium period 2 values are

p∗2 =
1

2
αv̄1, Π∗1 =

1

4
αv̄2

1 (2.2.16)

period 1 decision is characterized by

αv̄1 − p1 + δ(1− λ)v1 = δ(αv1 − Ep2) ≥ 0 (2.2.17)

by plugging in period 2 equilibrium values, I have
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v̄1 = − 2p1

αδ − 2α+ 2δλ− 2δ
(2.2.18)

The total sum of discounted profit is

Π = Π1 + Π2δ =
1

4
αv̄2

1δ + p1 (−v̄1 + 1) (2.2.19)

First order conditions:

∂Π

∂p1
=

2αδp1 + 4p1 (αδ − 2α+ 2δλ− 2δ) + (αδ − 2α+ 2δλ− 2δ)2

(αδ − 2α+ 2δλ− 2δ)2 = 0 (2.2.20)

the second-order condition is satisfied,

∂2Π

∂p2
1

=
6αδ − 8α+ 8δλ− 8δ

(αδ − 2α+ 2δλ− 2δ)2 < 0,

again because 6αδ−8α < 0 and 8δλ−8δ < 0 given α > 1, 0 < δ < 1, and 0 < λ < 1.

Hence, I have the following equilibrium values:

p∗1 = −(αδ − 2α+ 2δλ− 2δ)2

6αδ − 8α+ 8δλ− 8δ

v̄∗1 =
αδ − 2α+ 2δλ− 2δ

3αδ − 4α+ 4δλ− 4δ
(2.2.21)

Π∗ = − (αδ − 2α+ 2δλ− 2δ)2

12αδ − 16α+ 16δλ− 16δ

2.3 Comparative Statics

I conduct comparative statics to show the effect of the used goods market

on equilibrium outcomes, and visualize them with a series of plots. I am mainly

interested in how the equilibrium outcomes depend on the level competition from
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the used goods market, which is represented by λ. However, increase in λ decreases

the durability of the game, and it has the following two effects. First, it will lower

consumers’ expected utility from purchasing the game earlier and hence decrease

their willingness to pay in period 1. Second, given the same period 1 sales, it will

increase the supply of used goods in period 2 because more consumers will lose

interest in the game after one period. To highlight only the effect of increase in λ

on equilibrium values through increasing used goods supply, I compare between the

results from the model with and without the used goods market. I depict the results

of the two models with parameter values α = 1.1, δ = 0.9 side-by-side in Figure 2.1.

First I discuss the changes caused by the decrease in the expected utilities

with larger λ. As I described above, the increase in λ makes purchasing the game

in period 1 less attractive to consumers, decreasing their willingness to pay. This

explains the changes shown in the model without the used goods market. With

consumers’ lower willingness to pay for the game, the firm charges lower price for

the game in period 1, but the firm does not reduce the price too much since it can

recoup some of the lost sales in period 2. Thus the period 1 sales decline. However,

since the expected utility of period 2 remains the same, period 2 sales increase due

to the higher remaining demand. Overall, the total profit suffers.

With the introduction of the used goods market, I see the firm reacts differ-

ently to changes in λ. As λ increases, period 1 sales becomes less attractive for the

firm, because the sold goods will come back in period 2 as the used goods supply.

Thus, with the existence of the used goods market, as opposed to the absence of it,

the firm responds by maintaining relatively higher price in period 1 and sells even
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Figure 2.1: Comparative Statics
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less. To be more precise, in the lower range of λ, the firm still decreases the price

a little bit because the effects from the reduced expected utility dominate the com-

petitive force from the used goods market. Still, the size of price decrease in this

case is smaller than that in the case of the no used goods counterpart. As a part of

the sales in period 1 becomes used goods supply in the next period, period 2 sales

actually decrease somewhat. With higher λ, however, the competitive force from the

used goods market dominates, and the firm actually increases period 1 price, further

reducing period 1 sales.
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Chapter 3

Multi-period Model for Empirical Analysis

In this chapter I introduce a multi-period model with an aggregate demand

shock and additional parameters to fit the video game data and quantify the effects

of used goods market on equilibrium outcomes and run policy simulations. The

structure of the multi-period model is natural extension of the two-period model:

I assume (i) consumers are forward-looking in their game purchasing and selling

decisions, (ii) game producers apply Markov pricing strategies, and (iii) the new and

used goods market outcomes follow a Markov Perfect equilibrium.

3.1 Model for Consumers

3.1.1 Demand Model

Per-period utility Let v denote a consumer’s single-period consumption value of

owning the game at period t, where I let F (v) denote the c.d.f of this valuation

distribution on the support of [0, 1]. If the consumer has not purchased the game

yet, her single-period utility for purchasing decisions in period t for is given by ujt:

ujt =


ξtαv − βpt if purchasing a new copy (j = 1)

ξtv − βput if purchasing a used copy (j = 2)

0 if no purchase (j = 0),

(3.1.1)
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where α and β denote consumers’ taste for a new copy and price sensitivity, respec-

tively. ξt represents the aggregate demand shock. I assume that ξt’s are i.i.d draws

from a distribution on (0,∞) with a mean equal to 1. I do not allow ξt to be below

zero, which would yield a situation where the consumer would not buy the product

at a negative price, which is unreasonable for a video game because possessing it

does not generate negative utility and disposing it is practically costless.

Consistent with previous literature which studied video game industry (Ishi-

hara and Ching, 2012; Lee, 2013; Nair, 2007; Shiller, 2012), I do not model the

competition among different video games. As Nair (2007) argued, the large number

of fairly differentiated games makes the games weak substitutes for each other, and

the observed declining price trajectories cannot be explained by inter-game competi-

tion. Also, modeling competition would make the dimensionality of the state space

computationally intractable.

Next, consider the consumers’ selling decisions. Suppose a consumer has

bought the game prior to period t, and has not lost interest in the game yet. Then,

she can choose to resell the game at used market price put, or keep the game and

receive the flow utility:

wkt =

βput if selling the game (k = 1)

ξtv if keeping the game (k = 0).
(3.1.2)

Notice that I assume that the aggregate demand shock, ξt, also enters to the utility

of consumers who already purchased the game. This assumption is reasonable when

the source of the aggregate error is the shocks on game-playing values. For example,
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if potential buyers get a positive shock because it is a holiday and they have more

spare time to play the game, then consumers who already have the game are likely to

get more utility from the game as well. However, if the shock is from an increase in

the firm’s marketing expenditure (e.g., game advertisement), then it is more likely

to affect potential buyers. It can still affect the utility of current game holders,

however, by increasing the number of people they can interact with about the game.

Once the consumer loses interest in the game, he gets zero utility from game

holding1:

zlt =

βput if selling the game (l = 1)

0 if keeping the game (l = 0),
(3.1.3)

Probability of losing interest in the game For the empirical model I assume

the hazard of losing interest in the game, λ, to be constant. I can extend the model

by allowing the hazard that the consumer loses interest in the game after holding it

for τ periods to be a function of time, λ (τ). Then λ(τ) would a discrete time hazard

function, which is similar to what Farias, Saure, and Weintraub (2012) assumed in

their example model.2

States I drop the time subscript and denote current period variables without any

superscript and the next period variables with superscript ′. Let x ∈ X, where

X is the feasible set of x, denote the current period state variables common to the

1I do not include the transaction cost in the model explicitly. Transaction cost is more of
a nuisance parameter, as it is not a particular interest of this study. I opt to not include the
parameter in my model, and instead estimating it separately and subtract the estimate from the
prices before the estimation of the structural parameters.

2They assumed that a firm’s individual state depreciates by one state with probability δ.
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consumers and the firm which hold relevant aggregate level information. Specifically,

I need to know the information about 1) potential used copy supply and 2) remaining

demand in this period, and these potentially include the entire history of new and

used copy transactions. By firstly characterizing consumers’ decisions, however, I

summarize this information with a couple of variables, s and v. s denotes the sum

of total new copy sales so far and it represents the source of the used copy supply,

while v denotes the lowest valuation of the consumer who purchased the game in

the previous period, and it summarizes the remaining demand. I can characterize

the consumers’ problem separately from that of the firm because there are many

game buyers and sellers and they act as price takers in their decisions. Hence for the

consumers, their state variables include the current prices, p = (p, pu) in addition to

x.

Bellman Equations First consider the value function of a consumer with valua-

tion v who has purchased the game τ periods ago. It differs by whether or not the

consumer has lost interest in the game. At any period, let W (v,p,x) denote the

value function where she has not lost interest in the game, and Z(p,x) denote the

value function where she has. Consider the Bellman equation Z(p,x) first:

Z(p,x) = max{Z0(p,x), Z1(p,x)} (3.1.4)

where Zl(·), l ∈ {0, 1} are her alternative-specific value functions given by

Zl(p,x) =

βpu selling (l = 1),

δE [Z(p′,x′)|x] keeping (l = 0)
(3.1.5)
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Hence once she loses interest in playing the game, she does not get any utility from

it anymore. Also,x has sufficient information about future expected prices so the

expectation is only conditional onx. Meanwhile, if she has not lost interest in the

game, the Bellman equation is given by:

W (v,p,x) = max{W0(v,p,x),W1(v,p,x)} (3.1.6)

where Wk(·), k ∈ {0, 1} are her alternative-specific value functions given by

Wk(v,p,x) =

βpu selling (k = 1),

ξv + δ {(1− λ)E [W (v,p′,x′)|x] + λE [Z(p′,x′)|x]} keeping (k = 0).

(3.1.7)

Note that with constant λ, W (·) does not depend on the number of holding periods

τ .

Next, consider the purchasing decision of a potential consumer who has not

purchased the game yet. Let V (v,p,x) the value function for her. Then V (v,p,x)

satisfies the following Bellman equation:

V (v,p,x) = max{V0(v,p,x), V1(v,p,x), V2(v,p,x)} (3.1.8)

where Vj(·), j ∈ {0, 1, 2} are her alternative-specific value functions given by

Vj(v,p,x) =


ξαv − βp+ δ {(1− λ)E [W (v,p′,x′)|x] + λE [Z(p′,x′)|x]} (j = 1),

ξv − βpu + δ {(1− λ)E [W (v,p′,x′)|x] + λE [Z(p′,x′)|x]} (j = 2),

δE [V (v,p′,x′)|x] (j = 0).

(3.1.9)

where j denotes buying new copy (j = 1), buying used copy (j = 2), and waiting
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(j = 0), respectively.

Consumers’ buying decisions Given the states, Consumers make decisions on

new and used copy buying and used copy selling independently from the firm. I

characterize consumers’ decision with new copy and used copy marginal consumer;

let v̄ and v′ denote the valuation of these two consumers, respectively. For any new

and used prices, the new copy marginal consumer in current period is indifferent

between purchasing new or used. Thus given p and pu, v̄ is given by the solution to

the following:

ξαv̄ − βp+ δ
{

(1− λ)E
[
W (v̄,p′,x′)|x

]
+ λE

[
Z(p′,x′)|x

]}︸ ︷︷ ︸
buy new copy

= (3.1.10)

ξv̄ − βpu + δ
{

(1− λ)E
[
W (v̄,p′,x′)|x

]
+ λE

[
Z(p′,x′)|x

]}︸ ︷︷ ︸
buy used copy

. (3.1.11)

The used copy marginal consumer in current period is indifferent between

buying used copy now and waiting til the next period and making a decision. Hence

current period used copy marginal consumer v′ is given by the solution to the fol-

lowing:

ξv′ − βpu + δ
{

(1− λ)E
[
W (v′,p′,x′)|x

]
+ λE

[
Z(p′,x′)|x

]}︸ ︷︷ ︸
buy used copy

= δE
[
V (v′,p′,x′)|x

]︸ ︷︷ ︸
wait

.

(3.1.12)

Firstly, it is straightforward to prove that for any sequence of future expected prices,

if a consumer with valuation ṽ purchases either new or used copy in a given period,

a consumer with a valuation v > ṽ who has not yet purchased the game will also

purchase in the same period. In addition, the assumption that consumers get lower
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initial utility from buying a used copy than from buying a new copy implies that the

new copy price p is greater than pu in an equilibrium, since otherwise everyone will

buy new copy and the demand for the used will be zero. If the new copy price is

higher than used copy price, the reservation valuation of a consumer who purchased

an new copy also must be greater than v . Hence v denotes the lowest valuation of

consumer who have purchased either new or used copy by the previous period, and

it determines remaining demand in current period. The set of consumers who have

purchased by the end of the last period will be on the interval [v, 1]. In addition,

the used copy demand in the current period is v̄ − v′.

From equation (3.1.10), v satisfies:

v̄ =
β (p− pu)

ξ(α− 1)
(3.1.13)

Hence, once a consumer decides to buy the game, choosing between used and

new good does not have dynamic aspect, as it only depends on the relative prices

between new and used game. Now consider the used copy marginal consumer. Firstly

I claim that the right hand side of (3.1.12), δE [V (v′,x′)|x] equals to δE [V1(v′,x′)|x].

This is because in the next period, v′ is the upper bound of the valuation of consumers

who have not purchased the game yet. Hence it has to be bigger than v̄′, which is

the valuation of indifferent consumer between purchasing the new and the used copy

in the next period. Hence, V1(v′,p′,x′) > V2(v′,p′,x′) and I have

ξv′ − βpu + δ
{

(1− λ)E
[
W (v′,p′,x′)|x

]
+ λE

[
Z(p,x′)|x

]}
= δE

[
V1(v′,p′,x′)|x

]
(3.1.14)
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3.1.2 Selling Decisions

By exploiting equilibrium conditions, I can study how consumers behave in

an equilibrium regarding their used game selling decisions independently from the

firm’s problem. I found a couple of propositions which characterize their optimal

decisions, and they significantly simplify their optimal used good selling behavior

before I describe the firms’ problem.

Proposition 1. In equilibrium, consumers would sell the game immediately once

they lose interest in the game.

Proof. At any period, all consumers who already own the game have valuation v ≥ v.

Hence, for any of them to sell their used copies of the game, pu at least needs to

satisfy the following:

βpu ≥ ξv + δ
{

(1− λ)E
[
W (v,p′,x′)|x

]
+ λE

[
Z(p′,x′)|x

]}
(3.1.15)

I show that at βpu = ξv+δ {(1− λ)E [W (v,p′,x′)|x] + λE [Z(p′,x′)|x]}, no

one with v < v will buy the used copy. That is, for all consumers with v ≤ v, their

discounted future expected utility from purchasing the used copy at pu is smaller

than that from purchasing in the next period at E [p′u|xt]. This is because the

difference between pu and Ep′u is more than enough to compensate the loss of one

period flow utility. If there is no demand at this price, then there is no demand at

higher prices either, and thus they cannot be supported in an equilibrium.
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The expected payoff from purchasing a used copy is

ξv − βpu + δ
{

(1− λ)E
[
W (v,p′,x′)|x

]
+ λE

[
Z(p′,x′)|x

]}
By substituting βpu with ξv + δ {(1− λ)E [W (v,p′,x′)|x] + λE [Z(p′,x′)|x]},

ξv − ξv + δ
{

(1− λ)E
[
W (v,p′,x′)|x

]}
− δ

{
(1− λ)E

[
W (v,p′,x′)|x

]}
< 0

since v ≤ v and E [W (v,p′,x′)|x] ≤ E [W (v,p′,x′)|x]. Hence, no consumer whose

valuation is v ≤ v will buy a used copy at this price, and thus it cannot be an

equilibrium, and W (v,p,x) = ξv + δ {(1− λ)E [W (v,p′,x′)|x] + λE [Z(p′,x′)|x]}.

Proposition 1 also implies the following corollary.

Corollary 1. In equilibrium, current used copy price, pu, is greater than future

discounted expected used copy price δEp′u. That is, I have pu > δEp′u for all period.

Proposition 2. If λ(τ) is nondecreasing in τ , among consumers who own the game,

those who have not lost interest in the game do not sell their copies at the market

prevailing used good price in equilibrium.

Proof. For consumers to wait instead of selling after losing interest, there must be

an period where they want to wait and sell in the next period. Hence, it is sufficient

to show that for any adjacent period, consumers who lost interest in the game do not

have the incentive to wait and sell in the next period. In any period, for a consumer
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to expect to do so, the current used price needs to be

βpu ≤ δβE
[
p′u|x

]
For this price to be an outcome of an equilibrium, there needs to be zero demand

at this price, because otherwise there are consumers who are willing to pay more

than βpu = δβE [p′u|x] for the used copy in this period, and at that price, suppliers

are also willing to sell their copies instead of waiting. Let’s compare the utility of

buying now and buying in the next period for a consumer who has valuation v when

the price is βpu = δβE [p′u|x]:

v − βpu + δ
{

(1− λ)E
[
W (v,p′,x′)|x

]
+ λE

[
Z(p′,x′)|x

]}
−δ
[
v − Eβp′u + δ

{
(1− λ)E

[
W (v,p′′,x′′)|x

]
+ λE

[
Z(p′′,x′′)|x

]}]

⇒ v − δβEp′u + δ
{

(1− λ)E
[
W (v,p′,x′)|x

]
+ λE

[
Z(p′,x′)|x

]}
−δ
[
v − Eβp′u + δ

{
(1− λ)E

[
W (v,p′′,x′′)|x

]
+ λE

[
Z(p′′,x′′)|x

]}]

⇒ (1− δ)v + δ
{

(1− λ)E
[
W (v,p′,x′)|x

]
+ λE

[
Z(p′,x′)|x

]}
−δ2

{
(1− λ)E

[
W (v,p′′,x′′)|x

]
+ λE

[
Z(p′′,x′′)|x

]}
≥ 0

which holds because E [W (v,p′,x′)|x] ≥ E [W (v,p′′,x′′)|x] and E [Z(p′,x′)|x] ≥

E [Z(p′′,x′′)|x]. Hence, at this price, consumers are better off buying now than

waiting, and thus it cannot be an outcome of an equilibrium. Thus consumers do

not have an incentive to wait once they lose interest in playing the game, and I have
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Z(p,x) = pu in equilibrium.

Propositions 1 and 2 simplify the consumers’ used goods selling decisions

significantly. Even though I allow consumers to optimally sell their copies, the

solution of their post-purchase dynamic problem becomes trivial; in an equilibrium

they will not sell their copies until they lose interest the game, and they will do so

immediately on losing interest, regardless of the used copy price. Hence the supply

of used copy in period t is exactly the same as the number of consumers who own

the game prior to period t and just have lost interest in the game. Then, with the

assumption that probability of losing interest in the game is constant λ, I have the

following used copy supply:

q∗ut = λ ·
(
t−1∑
τ=0

qτ

)
= λ · s

that is, it becomes just λ times s, the cumulative new copy sales up to the previ-

ous period. This is because since the probability of losing interest is constant, all

consumers who own the game has the same chance of losing interest in the game,

regardless of their valuation of the game and how long they had been playing the

game. Also, previous used good transactions become irrelevant because they do not

affect how many people have the game, as only the ownership of the copy changes

with used copy transactions. Hence, instead of keeping track of how many games

are sold in each previous period, I only need to know how many games are sold so

far.

In sum, as described above, the state x consists of (s, v), where s denotes the
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cumulative sales up to the previous period and v is the lowest valuation of consumer

who have purchased either new copy or used copy by the previous period defined

in (3.1.12). The feasible set for the state variables is X = {(v, s)|1 ≥ v, s ≥ 0, v ≤

F−1(1 − s)}. 1 − s is the remaining demand only when all of the cumulative sales,

s, occurred in the last period and there has been no used goods transaction. Thus,

F−1(1− s) is the upper bound of v.

3.1.3 Consumer Expectations

Specifying how consumers form expectations about future prices is an impor-

tant component of a dynamic model. Usual treatment of the price expectations in the

literature is that assuming consumers are bounded rational in a sense that they form

their price expectations based on current prices and use reduced form regressions to

recover the expectation parameters Gowrisankaran and Rysman (2012); Ishihara and

Ching (2012); Lee (2013); Nair (2007); Shiller (2012). One of the reasons of this is

that consumers’ problem becomes complicated when one assumes that consumers

know the states and the policy rule the firm uses and form the expectations accord-

ingly. In my model, however, I assume consumers form rational expectations about

future prices and thus they share the same aggregate state variables with the firm

in the estimation. This is possible because of the following two reasons: firstly, due

to propositions 1 and 2, I simplified the consumers’ dynamic problem significantly,

and I am able to embed the solution of their dynamic problem in the equilibrium

used copy price condition. Also, my estimation strategy depends on solving the dy-

namic programming problem for the firm during parameter search. Hence, assuming
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rational expectations does not impose any additional computational burden.

3.2 Model for a Game Producer

Now I am ready to describe the firm’s problem. Since the firm also has

rational expectations about future prices and also it incorporates the response from

consumers and the used goods market, consumers’ behavior must be defined before

I characterize the firm’s behavior.

For implementation I use v̄ instead of p for the firm’s control, since choosing

the quantity and the price is equivalent in the monopolist’s problem. The new good

sales are q∗(v,x) = F (v)−F (v), the equilibrium used goods supply is qs∗u (x) = λ · s,

and used goods demand is qd∗u (v, v′,x) = F (v)−F (v′) and I have the following state

transition rules:

s∗(q,x) = s+ q (3.2.1)

v∗(v,x) = qd∗−1
u (v, qs∗u (x),x) (3.2.2)

where qd∗−1
u is the inverse function of qd∗u (·) with respect to v.

As described above, the aggregate used game supply is λ · s regardless of

the used game price. Then, the used game price will be adjusted so the used copy

demand is equal to the supply. From the market clearing condition, I have the

following used game price equation,

p∗u(v, v′,x) = β−1

{(
(ξ − 1) +

1− δ
1− δ(1− λ)

− δ(α− 1)

)
v′ (3.2.3)

−δλE
[
W2(x′)

∣∣x]}+ δE
[
p(x′)

∣∣x]+ δλE
[
pu(x′)

∣∣x] .
35



for the derivation of (3.2.3), see the Appendix 1. Then, new copy price is determined

from 3.1.13,

p∗(v, pu,x) = β−1ξ(α− 1) · v + pu. (3.2.4)

Hence, when the firm maximizes its profit, it incorporates the consumers’

future price expectations and their optimal behavior through the used game price.

Since both the firm and consumers form rational expectations, their price expecta-

tions are consistent.

The firm solves the following problem to maximize the expected sum dis-

counted future profit,

Π(x) = max
v

{
p · q + δf · E

[
Π(x′)

∣∣x]} . (3.2.5)

subject to: q = q∗(v,x)

s′ = s∗(q,x)

qsu = qs∗u (x)

v′ = qd∗−1
u (v, qsu,x)

pu = p∗u(v, v′,x)

p = p∗(v, pu,x)
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3.3 Market Equilibrium

To define the equilibrium, I introduce the following notations. Let v∗(x)

denote the monopolist’s equilibrium quantity strategy and v′∗(x) denote the valu-

ation of the consumer who is indifferent between buying a used game in current

period and buying a new game in the next period when faced with state x. Since

v∗(x), v′∗(x) themselves are functions of the state variables, with slight abuse of

notation, I also denote, qd∗u (x) = qd∗u (v∗(x), v′∗(x),x), p∗u(x) = p∗u(v(x), v′∗(x),x),

and p∗(x) = p∗(v∗(x), p∗u(x),x).

Definition. AMarkov-perfect equilibrium in this model is defined by following policy

rules as functions: valuations v∗(·) and v′∗(·), prices p∗(·) and p∗u(·), quantities q∗(·),

qs∗u (·) and qd∗u (·) such that

1. For any period and for any x ∈ X, v∗(x) solves the firm’s optimization problem

defined in (3.2.5),

2. For any period and for any x ∈ X, and p, pu ≥ 0, a consumer with valuation

v make a purchase of a new game in current period if and only if his current

period utility from doing so exceeds his utility from purchasing a new game in

any future periods, purchasing a used game in current and all future periods,

or not purchasing at all,

3. for any period and for any x ∈ X, and p, pu ≥ 0, a consumer with valuation

v make a purchase of a used game in current period if and only if his current

period utility from doing so exceeds his utility from purchasing a new game in
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current and all future periods, purchasing a used copy in any future periods,

or not purchasing at all,

4. for any period and for any x ∈ X, and p, pu ≥ 0,the aggregate used copy

supply which is result in consumers’ optimal used copy selling decisions, equals

to qs∗u (x),

5. both firm and consumers form rational expectations about future prices,

6. the used goods market clears every period or the used price is zero; that is,

pu(x) > 0 only if qs∗u (x) = qd∗u (x), and pu(x) = 0 otherwise.

3.4 Numerical Details in Solving for Equilibrium

In this section, I describe the details of solving for the equilibrium numeri-

cally. I discuss the approximation of value functions, which is an essential part of

solving dynamic programming with continuous state variables. Then I describe the

value iteration procedure.

3.4.1 Approximation

I need to approximate for four values: Epu(x), EW2(x), Ep(x) are used in

the calculation of used game price, and EΠ(x) is needed for the calculation of sum

of discounted profit to solve the dynamic problem. The challenge in doing so is

that in my model, the state space cannot be represented by a regular grid, which

renders many popular approximation methods in marketing and economics, such as

Chebyshev polynomial and spline approximation, inapplicable. This is because the
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state variable s, which represents the cumulative sales so far, governs the maximum

value the other state variable, v, can take. That is, if a firm has sold s percent

of the total demand so far, by construction one cannot have remaining demand

higher than 1− s, and thus the maximum value of v is F−1(1− s). One can try to

convert the state space into a rectangular grid. For example, one can transform v to

F (v)/(1 − s). I found, however, that this type of conversions introduces additional

numerical error, especially when 1 − s is small, and yields numerically unstable

approximated value functions. The bi-linear approximation, which can be used with

non-rectangular grid, does not work either because the firm’s control in my model is

continuous. The bi-linear approximation introduces too many kink points and the

optimization for continuous control breaks down. To solve this challenge, I employ

recently developed the radial basis function (RBF) approximationBuhmann (2000),

which can accommodate scattered data and also yields smooth approximated values.

I briefly introduce the RBF approximation methods here, and I refer to Buhmann

(2003) and Fasshauer (2007) for further details.

Suppose I have scattered data centers X = {x1, . . . ,xN} ⊂ Rk and associated

real function values f(xi), i ∈ {1, . . . , N}. O look for a continuous function f̂ : Rk →

R which satisfies the interpolation condition,

f̂(xi) = f(xi), i ∈ {1, . . . , N}. (3.4.1)

In the RBF approximation, one assumes that f̂(xi) is of the form

f̂(x) =

N∑
i=1

wiφ(||x− xi||)
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where φ(·) is the radial basis function and wi ∈ {wi, · · · , wN} are the coefficients of

the approximation. The coefficientsw = (wi, · · · , wN ) are found by the interpolation

condition 3.4.1,

w = A−1f

where Aij = φ(||xi − xj ||) and f = (f(x1), . . . , f(xN )). I use the multiquadratic

radial basis function,

φ(r) =
√

1 + (εr)2

where ε is the shape parameter, which I set to 1.5 to preserve the monotonicity of f̂ .

There are a couple of additional advantages of this method. First, it helps solving

the curse of dimensionality. Since one does not have to represent the state space

by a tensor product between grids of state variables, as the dimensionality of the

state increases, the number of function evaluations needed can be smaller than Nk,

where N is the number of grid points and k is the dimensionality of the state. Also,

one can add additional centers on the region in the state space where it matters for

better accuracy. That is, in my model, while the neighborhood near starting point

of s = 0, v = 1 is important in firm’s profit, the profit implication of the region with

large value of s is very small. Hence, I use more centers around s = 0, v = 1 so I can

get better accuracy around that point.

3.4.2 Value Function Iteration

I calculate the solution of the dynamic problem through value iteration

(?Bertsekas, 1995), and I briefly describe its steps. The detailed steps of numer-

ical algorithm is in the Appendix 2. Firstly I choose n approximation centers in
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the state space. For each iteration, I loop over each center, and optimize the firm’s

profit with respect to v̄. To calculate the sum of discounted profit, for any candidate

v ∈ [0, v], I obtain next state s′ = s + q and v′ = F−1 (F (v)− λs). The latter is

from the market clearing condition. Then I calculate pu(v, v′,x) following (3.2.3),

and in turn p(v̄, pu,x) following (3.2.4). After each iteration, I calculate and store

the coefficients for the approximation for the next iteration. I repeat these steps

until the values converge.

The loop-intensive nature of the procedure makes implementation with high-

level languages virtually infeasible, because it will be inadequately slow. Hence, the

algorithm was programmed in Python, but the loop-intensive and the approximation

part are coded in C. Specifically, I use Cython3, which generates efficient C code from

the Cython language which is close to the Python language. The calculation at one

approximation center is independent from those at other centers, and I parallelized

the code using openMP.4

3.5 Simulated Prices and Sales in Market Equilibrium

I numerically solve for the equilibrium with specific parameters and a series

of draws of aggregate error to illustrate equilibrium outcomes my model generates.

Comparing to the actual data I will show in the next chapter, my model can generate

realistic price trajectories. I use a truncated normal distribution with parameters

µ = 0.5 and σ = 1, and support [0, 1] for F (v). I set α = 2, δ = 0.95 and use

3http://cython.org
4http://openmp.org
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two values of λ, 0.01 and 0.005 and compared the equilibrium paths. Figure 3.1

shows the equilibrium trajectories of the two simulations. The plots on the left side

show the equilibrium trajectories of v, p and pu. The plots on the right represent

the shape of the demand distribution, and each number and colored area under the

density curve represent the specific period and its new sales volume, respectively.

Periods with higher sales volume have darker color, and one can easily see how much

penetration the firm has for each period.

In both cases the price trajectories show typical intertemporal price discrim-

ination behavior of the monopolist. Larger λ (higher probability of losing interest in

the game) has two effects on consumers’ dynamic purchasing decision. Firstly, since

they expect to lose interest in game earlier, consumers have lower expected utility

from purchasing the game. In addition, larger λ also means there will be more sup-

ply of used copy later and lower used goods price, and thus it makes waiting option

relatively more attractive. Since the early sales will become used goods supply in

the later periods, the firm chooses to sell less in and λ = 0.01 case. As a result, the

firm gets significantly lower profit in larger λ case (Π = 1.430 when λ = 0.01 and

Π = 1.651 with λ = 0.005).

In sum, similar to the two-period model, since selling new copies of the game

has additional negative effect on the profit through becoming used copy supply in

the future, the firm chooses to sell relatively smaller quantity of the game initially to

mitigate this. With larger λ, even though the firm optimally response to the higher

competition from the used good market, the profit of the firm suffers.
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Figure 3.1: Equilibrium path
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Chapter 4

Data Analysis

4.1 Data

The main dataset of this study is the price data collected from Amazon.com.

I have collected daily data for all games sold in Amazon between Feb 27, 2010 and

April 2, 2012. For each game, I use the price of the new game officially sold from

Amazon.com as the new price, and the minimum price1 of the used game listings

posted by individual sellers through the Amazon marketplace as the used price.

Since my estimation strategy relies on solving for the unobserved aggregate

shock from the initial period, I can only use video games which I observe the data

from their release period. Since many games appear in Amazon’s listings before their

release, I have collected release date information from the Wikipedia2, and only use

the games released after Feb 27, 2010. For estimation, I have aggregated the daily

data and generated weekly price trajectories.

The plots in figure 4.1 show the trajectories of new and used prices for several

example games included in the data. There are some regularities in the data. Firstly,

all console games are priced at $59.99 at their release. Also, for all games, the price

1This is the used from price.
22010 in video gaming (http://en.wikipedia.org/wiki/2010_in_video_gaming) and 2011 in

video gaming (http://en.wikipedia.org/wiki/2011_in_video_gaming)
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trajectories eventually converge to a stable, absorbing state, where basically the

trajectories become flat. And the shape of the price trajectories and the time it

takes for them to converge to the absorbing state differ across games. For example,

for Dead Rising 2, the prices more or less decline linearly, and it takes more than a

year for the new game price to hit 20 dollars. On the other hand, for EA SPORTS

MMA, there are significant price decrease soon after its release, and it only takes

about 4 months to hit 20 dollars. Since firms set their prices strategically, the shape

of price decline has information about the underlying demand.

One issue of using Amazon.com’s data is that whether its prices are represen-

tative prices that consumers face when they make purchase decisions. If Amazon.com

sets the price independently from the producers, I cannot regard its prices as the

results from monopolists’ intertemporal price discrimination. I use this data for two

reasons; first, the observed price trajectories consistently show the patterns of price

skimming. Second, since consumers have little cost of web surfing and price compar-

ison online, it is not unlikely that Amazon.com’s prices are systematically different

from those of other online retailers’.

4.1.1 Initial Prices

My model starts in the initial period, where the previous sales are zero and

thus there is full demand remaining, and no used goods supply. However, I observe

both new and used prices in the data from the release date. The potential reasons
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Figure 4.1: Weekly Price Trajectories
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for this include weekly aggregation, the measurement error3, and ineffective listings4.

Hence I discard the first observation of the used game price. Since initial prices of

all games are set at $59.99, I cannot infer the aggregate error from this price. Hence,

I assume that the draw of error is 1 at that period, and regard future errors as the

relative errors to that of the initial period. Given the state of s = 0, v = 1 and the

ξ0 = 1, I calculate the inferred control by find v0 which would yield the price level

of $59.99. Depending on the demand parameters, there are cases where even v0 = 1

cannot generate p0 = 59.99. In those cases I fixed v0 = 1 and assumed that there

were no sales in the period.

4.1.2 Total Sales

To convert the results from the counterfactual analysis in Chapter 4.4 to

actual dollar terms, I need total number of sales figures for each game i, denoted by

Mi. Since my model yields implied the sales volume for each period as a percentage

of total demand, I can multiply the shares by Mi and get the implied sales volume

for each period. I gather the total sales information from one of the online video

game information provider. This provider only produces yearly sales figures, and I

used up to two years of sales after release as the proxy for the total game sales, since

after two years of release, typically new game sales are negligible.

3Although I have collected daily data, since I have only gathered the data once per day, I do
not observe the actual data at the moment of game release.

4Some sellers often have used copy listings with very high prices, without any hope of selling it
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4.2 Estimation

I introduce parametric assumptions for demand distribution for estimation.

For F (v), the c.d.f. of the demand distribution, I use truncated normal distribution

with support [0, 1]. As well as the minimum and maximum value, it is characterized

by its location (µ) and scale (σ) parameters, which are a part of the structural

parameters I estimate.

All parameters except δ are video game specific: µ and σ, the parameters

characterizing demand distribution, λ, the durability parameter, α, the newness

parameter, and β, the price sensitivity. I do not attempt to estimate the discount

factor, since it is not well identified in dynamic setting (Magnac and Thesmar, 2002).

The inverse of interest rate is the usual value used for weekly discount factor in

literature. However, recently Yao, Mela, Chiang, and Chen (2012) found consumers’

estimated weekly discount factor to be much lower through a field study, and thus

I chose to set δ = 0.95 at the level of week. Even though consumers might have

lower discount factor than the interest rate, it is unreasonable to assume that the

firm would also has lower discount factor. Hence, I use 0.99 for the firm’s discount

factor, δf . Hence I am estimating 5 parameters, where I denote the game i specific

structural parameters by θi = (µi, σi, λi, αi, βi), where I drop i whenever it is not

ambiguous.

Unfortunately, likelihood based estimation approach is not feasible because

the Jacobian for the change of variables is not available analytically due to complex

and nonlinear relationship between the demand shock, ξ, and observed prices. Hence

I employ the estimation strategy based on Hansen and Singleton (1982)’s generalized
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instrumental variables estimation of nonlinear rational expectations models. My

estimation strategy is analogous to Petrin (2002) and Gowrisankaran and Rysman

(2012), which supplemented approach taken by Berry, Levinsohn, and Pakes (1995)

(henceforth BLP) with additional moments from the model.

Specifically, I firstly invert the observed price systems to solve for the aggre-

gate error, ξt and predicted prices. Then I construct three sets of moments: 1) the

first moment of ξt, 2) the orthogonality conditions using instruments, and 3) supply

moments which match the predicted prices to the observed prices.

4.2.1 Inversion of the Equilibrium Pricing Conditions

Analogous to BLP, I invert the price system via contraction mapping to solve

for the aggregate demand shock, ξt, and the predicted prices. The intuition for the

procedure is the following: given the state, since ξt are serially uncorrelated5, the

expected future values only depend on the firm’s control through its impact on the

next state variables. Then given the state and the future expected values, I can find

the ξt which rationalize the differences between observed new and used prices from

the equilibrium condition.

Specifically, given the states and observed prices, I aim to find ξ∗ which satis-

fies the equilibrium condition for the new copy marginal consumer, ξt = β
(pt − put)

(α− 1) · v̄t
.

Let pt, put be the actual prices from the data, and v̄∗t (ξt, st, vt) be the profit max-

imizing quantity that firm chooses given ξt and the state st and vt. Let ξti denote

5In principle I could allow ξt to be serially correlated, but in that case I will be introducing ξt
as an additional state variable and it will increase computational burden significantly. This is a
limitation of my model.
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the ξt value at the i’th iteration of the contraction. I take the following steps:

Step 1 Start with ξt0 = 1 and the tolerance ε.

Step 2 Given ξti−1 and the state, compute v̄∗ti−1(ξti−1, st, vt), the profit maximizing

quantity by solving firm’s problem described in (3.2.5)

Step 3 Update ξti = β
(pt − put)

(α− 1) · v̄∗ti−1(ξti−1, st, vt)

Step 4 If |ξti − ξti−1| < ε, stop. Otherwise, go to Step 2

Since I solve the firm’s optimization problem in this procedure, it also simultaneously

yields the implied prices, p̂t, p̂ut, which satisfy pt − put = p̂t − p̂ut, and the implied

next states.

Now the question is how to infer st and vt when I do not observe the sales.

The key observation here is that the knowledge of current state is sufficient in calcu-

lating current error, and I do know the state for a game at its release period, which

is s0 = 0, v0 = 1. Hence, I can calculate ξ0, and I get the implied state for period

1 from the procedure. Then I move to the next period, and calculate ξ1 given the

implied state. I repeat this with the successive periods. Since I cannot infer the state

without sales data unless I observe the prices from the beginning, this does restrict

me to use only games which I observe data from their release period.

I have not been able to provide a formal proof that the procedure described

above will yield unique estimate of ξt. At least in many experiments with simulated

data with realized errors, I found that the inversion procedure reliably recovers ξt.
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Since I assume that E[ξt] = 1, recovered ξt’s give me the first moment con-

dition I can use in estimation.

4.2.2 Instruments

Since Bresnahan (1981), allowing the price to be correlated with the aggre-

gate error has been standard in the studies of industries with differentiated products.

In fact, prices are explicit function of the demand shock in my model, and thus I use

instruments (Z) and the orthogonality conditions in my estimation:

E[Z′ξ(θ)] = 0.

Since I assume that the aggregate shock is serially uncorrelated, the lagged

prices are valid instruments. Also, in case of games which were released in mul-

tiple platforms, I use the lagged prices of the same game from other platforms as

well. While the demand for the game likely differs across platforms since consumers’

choices of game console are not random, it is likely that the demand shocks are

correlated across consoles for the same game, and thus the prices will be correlated.

Potentially I can also include prices of other games in the same genre as well, because

it is reasonable to assume that the aggregate shocks are correlated across games in

the same genre.

4.2.3 Moments from Supply Side

The last set of moments I use are moments from the supply side equilibrium.

Specifically, the procedure described in (4.2.1) yields predicted new and used prices
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associated with the error simultaneously, and I match the predicted prices to the

observed prices for each period:

E[|pt − p̂t|] = 0,

E[|put − p̂ut|] = 0.

I do find that the inclusion of these additional conditions improve the fit signifi-

cantly. This is analogous to the micro moments Petrin (2002) and Gowrisankaran

and Rysman (2012)6 used, in a sense that I match moment predicted from the model

to the moment from the data.

4.2.4 Objective function

The three sets of moments that the GMM objective function includes are

G1(θ), the first moment of ξt, G2(θ) the orthogonality conditions, and G3(θ), the

moments from the supply side. I assume that the population moment conditions

uniquely equal zero at true θ0:

E [G(θ0)] = E

 G1(θ0)

G2(θ0)

G3(θ0)

 = 0.

Following Hansen and Singleton (1982), my estimates of the parameters, θ̂

6They used the difference between observed and predicted increase in household penetration
between two time periods to improve the identification.
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are the solution of the following:

θ̂ = arg min
Σ

{
G(θ)′WG(θ)

}
where W is the weighting matrix.

4.2.5 Laplace-Type Estimator (LTE)

Since my GMM objective function is a complex nonlinear function of pa-

rameters, my GMM objective function yields many local minima which complicate

the optimization and can lead wrong policy implications (Knittel and Metaxoglou,

2012). Hence, I employ the Laplace-Type Estimator (LTE), developed by Cher-

nozhukov and Hong (2003). The LTE can be especially useful in my application

because it is robust to local minima through utilizing Markov chain Monte Carlo

(MCMC) methods after transforming the objective function to the quasi-posterior

distribution. For details of the LTE procedure, see Appendix 3.

4.2.6 Identification

Heuristically, the general difference between new and used prices over time

will identify α. The general level of prices will identify β; for example, with β fixed

at 1, simulations cannot generate price levels which are realistic (for example, above

$50) regardless of other parameters. The shape of price trajectories of individual

games will identify µ and σ, the demand parameters. The rate of price decrease

in different periods has information about underlying demand distribution; it will

rapidly decrease around the region where the slope of the density of the demand is
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high, and it will decrease slowly around the region where the slope is more flat. The

general rate of price decline, specifically the number of periods it takes for the prices

to go to the absorbing state, will identify θ, the probability of losing interest in the

game.

Note that the µ and σ might not be well-identified when σ is large. This is

because as the scale parameter gets larger, the demand distribution increasingly re-

sembles the uniform regardless of the value of µ. In this case, however, the estimates

of the µ and σ do not matter anyway in the counterfactual analysis.

4.2.7 Estimation Using Simulated Data

Before I estimate the demand parameters with real data, I firstly estimate my

model with simulated data for a set of parameter values and a series of realizations

of the aggregate error, ξt. Given parameters and i.i.d. draws of the aggregate shocks,

I simulate the equilibrium path. Taking the resulting prices as the data, I run the

estimation. I use i.i.d. draws from truncated normal distribution with mean and

scale parameters equal to (1, 0.4) as the aggregate demand shocks. Table 4.1 shows

the results from the estimation. In general, the parameters are precisely estimated,

except the posterior for λ has slightly larger variance.7 Importantly, my model

manages to successfully recover the true parameters; for all parameters, the true

value lies within the range of standard deviation of the estimates.

7I suspect that this is due to suboptimal weighting matrix (identity) in the GMM objective
function that I use to generate the results. Improved implementation should yield more efficient
estimates.
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Table 4.1: Simulation Estimates

Parameter
µ σ λ α β

Mean STD Mean STD Mean STD Mean STD Mean STD

True 0.700 0.250 0.005 3.500 0.070

Estimated 0.720 0.136 0.309 0.105 0.006 0.004 3.646 0.564 0.072 0.025

4.3 Estimation Results

I run the estimation with real data using LTE for multiple games and report

the results. Table 4.2 shows the parameter point estimates and standard deviations

of the posterior draws for each game titles.

The parameters are generally precisely estimated. λ is relatively less precise,

as with the simulation results. In general, the estimated demand distributions show

various shapes across games; the range of µ is from 0.236 of Duke Nukem Forever

to 0.826 of Red Faction Armageddon. σ also has significant variation, from 0.107

of Duke Nukem Forever to 0.677 of L.A. Noire, though in general the valuation

distributions have highly concentrated mass around the mean. The additional utility

consumers get from the new copy versus used copy, which is represented by α, vary

across games, suggesting new copies of certain games are more differentiated from

the used copies than others. A potential reason for this is that games with higher α

might have features only applicable to new purchase, such as bonus items which can

be redeemed only once. Price sensitivity (β) also varies across games, suggesting

that the demand for each game consists of different types of consumers in terms

of price sensitivity. For example, games with higher price sensitive demands such

as Castlevania: Lords of Shadow (0.116), Duke Nukem Forever (0.148), Marvel vs.

55



Table 4.2: Estimation Results

Title µ σ λ α β

Mean STD Mean STD Mean STD Mean STD Mean STD

Alpha Protocol 0.702 0.198 0.414 0.236 0.011 0.008 4.114 0.510 0.046 0.016

Backbreaker Football 0.622 0.071 0.218 0.038 0.006 0.004 3.529 0.210 0.099 0.014

Brink 0.796 0.129 0.335 0.115 0.010 0.006 3.422 0.389 0.053 0.018

Bulletstorm 0.772 0.142 0.302 0.131 0.008 0.006 3.398 0.817 0.048 0.012

Castlevania: Lords of
Shadow 0.546 0.346 0.215 0.150 0.008 0.007 3.382 0.802 0.116 0.058

Dead Rising 2 0.714 0.234 0.431 0.262 0.016 0.013 3.115 0.722 0.046 0.023

Dragon Age 2 0.726 0.159 0.292 0.088 0.006 0.004 3.233 0.453 0.045 0.019

Duke Nukem Forever 0.236 0.236 0.107 0.061 0.018 0.013 2.872 0.579 0.148 0.032

EA SPORTS MMA 0.812 0.131 0.311 0.105 0.007 0.004 3.512 0.510 0.062 0.020

Fallout: New Vegas 0.749 0.153 0.262 0.096 0.007 0.004 3.073 0.481 0.053 0.015

L.A. Noire 0.481 0.262 0.677 0.058 0.003 0.001 4.238 0.403 0.033 0.007

Lost Planet 2 0.713 0.195 0.500 0.325 0.054 0.028 2.032 0.377 0.033 0.007

Marvel vs. Capcom 3: Fate
of Two Worlds 0.621 0.326 0.203 0.131 0.006 0.005 3.236 0.630 0.101 0.036

Medal of Honor 0.767 0.194 0.287 0.115 0.005 0.003 3.849 0.610 0.062 0.028

Mindjack 0.752 0.167 0.263 0.099 0.005 0.003 3.716 0.530 0.067 0.028

ModNation Racers 0.440 0.276 0.281 0.258 0.013 0.010 3.497 0.860 0.084 0.049

Need for Speed: Shift 2 -
Unleashed 0.743 0.195 0.507 0.235 0.020 0.012 3.080 0.639 0.046 0.018

Red Faction Armageddon 0.826 0.114 0.333 0.077 0.008 0.005 3.752 0.536 0.058 0.028

Singularity 0.693 0.240 0.235 0.201 0.021 0.015 3.107 0.816 0.091 0.060

Star Wars: The Force
Unleashed II 0.611 0.365 0.250 0.144 0.007 0.009 3.839 0.891 0.107 0.032

Test Drive Unlimited 2 0.754 0.158 0.307 0.113 0.009 0.007 3.077 0.604 0.071 0.036

Transformers: War for
Cybertron 0.500 0.248 0.343 0.246 0.005 0.006 4.237 0.528 0.068 0.029

TRON: Evolution 0.752 0.173 0.353 0.154 0.016 0.013 3.260 0.885 0.058 0.034

UFC Undisputed 2010 0.695 0.229 0.210 0.116 0.008 0.006 3.426 0.699 0.088 0.029

Capcom 3: Fate of Two Worlds (0.101), and Star Wars: The Force Unleashed II

(0.107) are all action and fighting games which are more likely to attract younger

consumers, who are likely to be more price sensitive.
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4.4 Counterfactual Analysis: Elimination of the Used Goods Mar-
ket

One of the main questions of my study is that the profit implication of

the elimination of the used goods market. Since I explicitly include the supply

side in my estimation, modifying my model to accommodate this counterfactual

is straightforward. First, I remove the used goods related choices from consumers’

dynamic decisions. Without the opportunity to sell the used copy I have Z(p,x) = 0

and the Bellman equations becomes,

W (v,p,x) = ξv + δ(1− λ)E
[
W (v,p′,x′)|x

]
(4.4.1)

Vj(v,p,x) =

ξαv − βp+ δ {(1− λ)E [W (v,p′,x′)|x]} (j = 1),

δE [V (v,p′,x′)|x] (j = 0).
(4.4.2)

where j denotes buying new copy (j = 1) and waiting (j = 0), respectively. Note

that without the used goods market, p does not matter anymore after purchase and

W (·) becomes just the sum discounted future expected utilities:

W (v,p,x) = W (v,x) =
1

1− δ(1− λ)
· v + (ξ − 1)v

New copy marginal consumer condition is (note that I have v′ = v)

ξαv′ − βp+ δ
{

(1− λ)E
[
W (v′,x′)|x

]}
= δE

[
ξ′αv′ − βp′ + δ(1− λ)W (v′,x′′)

∣∣x]
(4.4.3)

Hence I have

α(ξ−δ)v′+δ(1−λ)
1

1− δ(1− λ)
·v′−δ2(1−λ)

1

1− δ(1− λ)
·v′ = βp−δβE

[
p(x′)

∣∣x]
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βp =

{
α(ξ − δ) + δ(1− λ)(1− δ) 1

1− δ(1− λ)

}
· v′ + δβE

[
p(x′)

∣∣x]
∴ p =

1

β

{
α(ξ − δ) + δ(1− λ)(1− δ) 1

1− δ(1− λ)

}
· v′ + δE

[
p(x′)

∣∣x]
I follow procedure similar to Appendix 2 to calculate the equilibrium path under the

counterfactual scheme.

Since I infer the sales volume for each period as a percentage of the total

demand, to evaluate counterfactual profit changes in dollar terms, I need Mi, the

total number of sales for a game i. That is, the estimation and the policy simulation

yield implied sales share in percentage for each period, and I can calculate the implied

sales figures by multiplying each share by Mi. With sales and prices for each period,

producing implied profit is straightforward. I use total sales of two years since game

i’s release to approximate Mi
8.

Table 4.3 shows the results from the counterfactual analysis, with games

ordered by the percentage change in profit. Note that I keep the fixed initial price of

$59.99 for the counterfactual scheme. The effect of eliminating the used goods market

are generally positive for the firm, but Duke Nukem Forever shows negative profit

changes after the change. On average, the profit increase is about 38%, which is about

4 million dollars. The effects widely differ across games, however. In general, the less

popular a game is, in a sense that the game has higher proportion of low valuation

consumers, the less the game gets benefited by the structural change. For example,

games with lower value of µ such as Duke Nukem Forever (µ = 0.236, -0.71%), L.A.

8In general after two years since release, games have negligent sales figures
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Table 4.3: Profit Changes After Eliminating the Used Goods Market
Title Resale No Resale Change (%) Total Sales Change ($)† Genre

Fallout: New Vegas 25.160 42.355 68.34 1,627,206 $27,978 Role-Playing

UFC Undisputed 2010 15.624 25.411 62.64 628,112 $6,147 Fighting

Red Faction Armageddon 26.182 42.390 61.91 104,352 $1,691 Shooter

Bulletstorm 28.692 46.052 60.50 145,355 $2,523 Shooter

EA SPORTS MMA 27.614 43.634 58.01 143,272 $2,295 Fighting

Medal of Honor 28.631 45.198 57.86 1,263,687 $20,935 Shooter

Mindjack 27.497 43.096 56.73 43,239 $674 Shooter

Brink 28.263 44.209 56.42 489,385 $7,803 Shooter

Test Drive Unlimited 2 22.406 34.589 54.37 120,711 $1,470 Racing

Dragon Age 2 28.661 43.500 51.77 569,159 $8,445 Role-Playing

Singularity 13.481 19.891 47.55 173,231 $1,110 Shooter

Lost Planet 2 3.908 5.733 46.69 290,938 $530 Shooter

TRON: Evolution 24.497 34.832 42.19 152,878 $1,580 Action

Marvel vs. Capcom 3: Fate
of Two Worlds

14.443 19.424 34.49 655,069 $3,263 Fighting

Backbreaker Football 14.754 19.408 31.54 119,115 $554 Sports

Dead Rising 2 27.896 35.615 27.67 522,010 $4,029 Action

Castlevania: Lords of
Shadow

16.146 20.445 26.63 285,359 $1,226 Action

Need for Speed: Shift 2 -
Unleashed

25.270 31.630 25.17 119,927 $762 Racing

Star Wars: The Force
Unleashed II

15.812 19.368 22.49 530,487 $1,886 Action

Alpha Protocol 35.586 42.760 20.16 152,596 $1,094 Role-Playing

ModNation Racers 22.899 26.451 15.51 367,544 $1,305 Racing

Transformers: War for
Cybertron

28.070 29.041 3.46 186,963 $181 Action

L.A. Noire 30.172 30.606 1.44 1,214,088 $527 Role-Playing

Duke Nukem Forever 22.432 22.271 -0.72 267,026 ($43) Shooter

Average 23.087 31.996 38.87 423,821 $4,082

†: Figures in thousands

Noire (µ = 0.481, 1.43%), and Transformers: War for Cybertron (µ = 0.500, 3.46%)

get small or negative profit increase. This is because the benefits from the structural

change mostly come from the increase in initial sales where the prices are still high;

without the opportunity of buying from the used goods market, more high valuation

consumers buy in the earlier period, because their future expected prices are higher

in the absence of the used goods market. However, the initial sales does not increase
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much for a game which does not have many high valuation consumers in its demand

to start with. In addition, since W (·) consists of the utility from the sum discounted

flow utility and the used goods sales opportunity, for given v and λ, the absence of the

resale option decreases the value of buying. Moreover, for consumers with lower v,

the utility from this option has relatively bigger share inW (·). Hence, their expected

utility from buying suffers more from the absence of the option and their willingness

to pay decreases more. Thus a game with higher mass of lower valuation consumers

would have smaller profit increase after the structural change, and for some cases

the profit change can be negative. This suggests uniformly removing the used goods

market can be a suboptimal policy; the optimal strategy for games with demand

consisting of large proportion of high valuation consumers is to eliminate the resale

market completely (e.g., by granting ownership exclusively through downloading),

whereas it can be more profitable to allow resale for games with high concentration

of lower valuation consumers.
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Chapter 5

Conclusion

This dissertation investigates the impact of the used game market on equi-

librium market outcomes and the implications of eliminating it in the video game

industry. I develop a new model which incorporates inter-temporal price discrimi-

nation by producers, a used goods market, rational expectations by both consumers

and game producers, and market equilibria for both new and used games. To solve

the computational challenge comes with modeling the supply side equilibrium, I

develop a computationally tractable utility specification, which also allows me to

accommodate continuous consumer heterogeneity and non-linear price expectations.

Given the lack of sales data, I use the conditions from the supply side equilibrium

to identify the underlying demand distribution without sales information.

Using this model, I estimate the game-specific demand for multiple video

games released in the U.S. market. The results show significant variation in demand

across games, especially for the shape of the demand distribution. I run a counter-

factual analysis where I evaluate the profit change for each video game as a result of

eliminating the resale market. The counterfactual results suggest that eliminating

the used goods market yields significant profit increase for producers, but the size of

the effects varies significantly across games, depending on the shape of the demand
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distribution. In fact, allowing resales can even increase profits for small number of

games, suggesting differentiated optimal strategies regarding the used goods market.

It has implications for platform producers such as Microsoft, as instead of employing

a uniform policy to restrict the used goods market, it would be better to allow each

individual producers to decide their own policies.

As a future extension, my model can be extended to incorporate additional

information such as new game sales data. With the new information, I can accom-

modate additional aggregate shocks and make the model more flexible in fitting the

data. Another potential extension could be allowing the hazard of losing interest

in a game to be a function of time, λ (τ), instead of assuming λ to be a constant

as discussed in Chapter 3. Another extension would be making the utility from

purchasing a new game, α, time-varying.
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Appendix 1

Derivation of the Used Game Price Equation3.2.3

Given the proposition 1 and 2, consumer’s decision after purchase is quite

simple; they will hold the game and gets flow utility of v until they lose interest, and

they sell at pu:

W (v,x) = ξv + δE
[
(1− λ)W (v,x′) + λβpu(x′)

∣∣x] (1.0.1)

Then the indifference consumer condition is:

ξv′ − βpu(x) + δE
[
(1− λ)W (v′,x′) + λβpu(x′)|x

]
=

δE
[
ξ′αv′ − βp(x′) + δ

{
(1− λ)W (v′,x′′) + λβpu(x′′)

}∣∣x]

⇒ −βpu(x) + ξv′ + δE
[
(1− λ)W (v′,x′) + λβpu(x′)|x

]︸ ︷︷ ︸
=W (v′,x)

= δE

(α− 1)ξ′v′ − βp(x′) + ξ′v + δ
{

(1− λ)W (v′,x′′) + λβpu(x′′)
}︸ ︷︷ ︸

=W (v′,x′)

∣∣∣∣∣∣∣x


⇒ βpu(x)−W (v′,x) = −δE
[
(α− 1)ξ′v′ +W (v′,x′)− βp(x′)

∣∣x]
⇒ pu(x) = β−1 ·

{
−δ(α− 1)v′ +W (v′,x)− δE

[
W (v′,x′)

∣∣x]}+ δE
[
p(x′)

∣∣x]
(1.0.2)
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Note that in case of s = 0, (at the release) the new copy buying decision

becomes automatically dynamic because v′ = F−1(F (v̄)− λs) = v̄.

For any period, the probability of losing interest in the game is λ and con-

sumers’ expected utility from any given period is E [(1− λ)v + λβpu(x′)|x]. Also,

when they lose interest in the game their future values are simply zero. Hence the

value becomes:

W (v,x) = ξv + δE

[
(1− λ)

ξ′v + δ ·

(1− λ)
{
ξ′′v + · · ·

}
+ λβpu(x′′)︸ ︷︷ ︸

lose interest in 2+




+ λβpu(x′)︸ ︷︷ ︸
lose interest in 1+

∣∣∣∣∣x
]

(1.0.3)

where x′ and x′′ denote the 1 and 2 periods future’s state, respectively. I can group

terms into one with v and the other with pu:

W (v,x) = ξv + δ(1− λ) [v + δ(1− λ) {v + · · · }] (1.0.4)

+δE
[
λβpu(x′) + δ ·

{
(1− λ)λβpu(x′′) + · · ·

}∣∣x]
Hence I have,

W (v,x) =
1

1− δ(1− λ)
·v+(ξ−1)v+δλE

[
βpu(x′) + δ ·

{
(1− λ)βpu(x′′) + · · ·

}∣∣x]
(1.0.5)
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and

W (v,x) =

(
(ξ − 1) +

1

1− δ(1− λ)

)
· v

+ E

[
δλβpu(x1) + ·

∞∑
τ=1

(δ · (1− λ))τ δλβpu(xτ+1)

∣∣∣∣∣x
]

(1.0.6)

Hence, I can convert this to a infinite geometric series with common ratio

δ(1− λ) and scale factor v and sum of discounted future used good prices:

W (v,x) =

(
(ξ − 1) +

1

1− δ(1− λ)

)
· v + E

[ ∞∑
τ=0

(δ(1− λ))τ δλβpu(xτ+1)

∣∣∣∣∣x
]

(1.0.7)

then I can separate W (v,x) into two part:

W (v,x) = W1(v) +W2(x)

where

W1(v) =

(
(ξ − 1) +

1

1− δ(1− λ)

)
· v,

W2(x) = E

[ ∞∑
τ=0

(δ(1− λ))τ δλβpu(xτ+1)

∣∣∣∣∣x
]

(1.0.8)

= E
[
δλβpu(x′) + δ(1− λ)W2(x′)

∣∣x]
This form is intuitive in a sense that a consumer’s value from keeping the

game is weighted sum of the future discounted utility from holding the game and

future used good price, and the weight depends on the probability of losing interest
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in the game. Note that W2(x) is the same for everybody. Then the used copy price

equation becomes:

pu(x) = β−1
{
−δ(α− 1)v′ +W (v′,x)− δE

[
W (v′,x′)

∣∣x]}+ δE
[
p(x′)

∣∣x]

⇒ pu(x) = β−1
{
−δ(α− 1)v′ +W1(v′) +W2(x)− δE

[
W1(v′) +W2(x′)

∣∣x]}
+ δE

[
p(x′)

∣∣x]

⇒ pu(x) = β−1

{
(ξ − 1) +

1− δ
1− δ(1− λ)

− δ(α− 1)

}
v′

+ β−1
{
W2(x)− δE

[
W2(x′)

∣∣x]}+ δE
[
p(x′)

∣∣x]
I can simplify W2(x)− δE [W2(x′)|x] more:

W2(x)− δE
[
W2(x′)

∣∣x] = E
[
δλβpu(x′) + δ(1− λ)W2(x′)

∣∣x]− δE [W2(x′)
∣∣x]

= E
[
δλβpu(x′)− δλW2(x′)

∣∣x]

∴ pu(x) = β−1

{(
(ξ − 1) +

1− δ
1− δ(1− λ)

− δ(α− 1)

)
v′ − δλE

[
W2(x′)

∣∣x]}
+δE

[
p(x′)

∣∣x]+ δλE
[
pu(x′)

∣∣x] (1.0.9)
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Appendix 2

Steps for the Solution of the Rational Expectations
Equilibrium

In order to solve this dynamic programming problem, I need to solve for

Π(x), the firm’s value, p(x), the price policy function for the firm, pu(x), the market

clearing price, and W2(x), the portion of future used goods selling option among

the consumers’ value from holding the game. The following steps describe the value

iteration procedure.

Start with Ep0(x) = 0, Ep0
u(x) = 0, EW 0

2 (x) = 0, and EΠ0(x) = 0. Loop

over i, i ∈ N, until Epi(x), Epiu(x), EW i
2(x), EΠi(x) all converge (where i is the

number of iteration). In each iteration,

1. Loop over each grid point x = (s, v) ∈ X. For each x, calculate the maximized

profit, Πi(x) = maxv p
i(v,x) · q + δE

[
Πi−1(x′)

∣∣x]. Specifically, for any given

state x, ξ and control v, I can calculate the implied profit as follows:

(a) (given v) update state variables: x′ = (s′, v′) with the following state

transition rules:

s′ = s+ q, where q = F (v)− F (v)

v′ = max
{

0, F−1 (F (v)− λ · s)
}
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(b) Interpolate for Epi−1
u (x′), EW i−1

2 (x′), Epi−1(x′), and EΠi−1(x′).

(c) calculate used copy prices,

piu(x, ξ) = β−1

(
(ξ − 1) +

1− δ
1− δ(1− λ)

− δ(α− 1)

)
v′

−β−1δλE
[
W i−1

2 (x′)|x
]

+δE
[
pi−1(x′)|x

]
+ δλE

[
pi−1
u (x′)|x

]
(d) calculate new copy price and profit:

pi(x, ξ) = β−1ξ · (α− 1) · v + piu(x)

Πi(x, ξ) = pi(x, ξ) · q + δE
[
Πi−1(x′)

∣∣x]
(e) when maximization is done, update consumers’ value,

W i
2(x) = E

[
δλpi−1

u (x′) + δ(1− λ)W i−1
2 (x′)

∣∣x]
2. Calculate interpolation coefficients for E

[
pi(x)

]
, E
[
piu(x)

]
, E
[
W i

2(x)
]
, and

E
[
Πi(x)

]
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Appendix 3

Details of the Laplace-Type Estimator

Let Ln(θ) denote the GMM objective function,

Ln(θ) = −n1

2
gn(θ)′Wgn(θ)

where gn(θ) =
1

n

∑n
i=1mi(θ) and mi(θ) is the value of moments for observation

i. Following Chernozhukov and Hong (2003), I transform it to the quasi-posterior

distribution pn(θ),

pn(θ) =
exp(Ln(θ))π(θ)´

λ exp(Ln(θ))π(θ)dθ

which is proportional to

pn(θ) ∝ exp(Ln(θ))π(θ)

Then I employ the following Metropolis-Hastings algorithm with the quasi-posterior:

Step 1 Choose a starting value θ0

Step 2 Generate the candidate θ′ from q(θ′|θj)

Step 3 Update θj+1 from θj for j = 1, 2, . . . , using

θj+1 =

θ′ with probability ρ(θj , θ′),

θj with probability 1− ρ(θj , θ′),
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where

ρ(x, y) = inf

(
exp(Ln(y))π(y)q(x|y)

exp(Ln(x))π(x)q(y|x)
, 1

)

I use the standard normal distribution for q(x|y) and the uniform prior for π(θ). I

dynamically choose the tune parameters so the acceptance rate of chain is on average

0.3. I make 20,000 draws with the MCMC chain, and discard first 5,000 draws for

burn-in.
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