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REGULATION OF THE ACTIVITY OF A BUDDING YEAST DNA 

DAMAGE REPAIR ENZYME SAE2 

 

Qiong Fu, Ph.D. 

The University of Texas at Austin, 2014 

 

Supervisor:  Tanya Paull 

 

In response to DNA damage, many repair and signaling molecules mobilize 

rapidly to the sites of DNA double-strand breaks (DSBs). This network of immediate 

responses is regulated at the level of post-translational modifications to coordinate DNA 

repair and checkpoint signaling. Here we investigate the DNA damage-induced 

oligomeric transitions of the Sae2 protein, an important enzyme in the initiation of DSB 

repair. Sae2 is a target of multiple phosphorylation events, which we identify and 

characterize in vivo in budding yeast. Both cell cycle-dependent and DNA damage-

induced phosphorylation of Sae2 are important for the cell survival after DNA damage, 

and the cell cycle-regulated modifications are required to prime the damage-dependent 

events. We find that Sae2 exists in the form of inactive oligomers that are transiently 

released into smaller active units by these series of phosphorylation events. DNA damage 

also triggers removal of Sae2 through autophagy and proteasomal degradation, ensuring 

that active Sae2 is present only transiently in cells. This analysis provides evidence for a 

novel type of protein regulation where the activity of an enzyme is controlled 

dynamically by post-translational modifications that regulate its solubility and oligomeric 

state. 
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Budding yeast Ess1 is a phosphorylation-specific prolyl isomerase. Its human 

homolog Pin1 is found to isomerize CtIP, the human functional ortholog of Sae2, and 

promote the proteasomal degradation of CtIP. However, I could neither detect any 

interaction between Ess1 and Sae2, nor observe any change in Sae2 protein level while 

overexpressing wild-type or mutant Ess1, suggesting Ess1 does not act on Sae2, like Pin1 

does on CtIP. The increased DNA damage sensitivity of Ess1 mutants indicates that Ess1 

is involved in DNA repair, but not related to Sae2. Since Ess1 plays an important role in 

transcription termination together with a RNA 3' end processing factor Pcf11, I 

overexpressed wild-type Pcf11 and found it significantly increased the DNA damage 

resistance of either wild-type or H164R mutant Ess1 cells, and also the sae2△ cells. 

These results imply that Ess1, Pcf11 and Sae2 might contribute to DNA damage repair 

through transcription termination, which links transcription termination and DNA 

damage repair together. 
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CHAPTER 1: INTRODUCTION 

 

DNA DAMAGE AND DOUBLE-STRANDED BREAKS 

Cells suffer from all kinds of DNA damage frequently. It can arise spontaneously 

during normal cellular processes, such as incorrect base incorporation in DNA replication 

or oxidative base damage caused by the reactive oxygen species during metabolism. 

Exogenous sources, such as ultraviolet (UV), ionizing radiation (IR) and base-modifying 

chemicals can also cause DNA damage. These different sources of damage result in a 

wide variety of DNA lesions, from mismatches to base modifications, base loss, protein-

DNA adducts, and DNA breaks.  

DNA double-strand breaks (DSBs) are one of the most deleterious forms of DNA 

damage. They can arise from either endogenous or exogenous sources as mentioned 

above, or during programmed cellular processes such as mating type switch in budding 

yeast, V(D)J recombination, and meiosis. The detection and repair of DSBs are critical 

for cell survival, since unrepaired or inappropriately repaired DSBs can lead to mutagenic 

events such as mutations, translocations, deletions, duplications or chromosome loss, 

which could accumulate and lead to cell death or tumorigenesis in multicellular 

organisms. Therefore, cells must have effective pathways to repair these DSBs. 

 

NON-HOMOLOGOUS END-JOINING (NHEJ) AND HOMOLOGOUS RECOMBINATION (HR) 

Cells have evolved multiple pathways to ensure the timely repair of DSBs. 

Among those pathways, the two major ones are non-homologous end-joining (NHEJ) and 

homologous recombination (HR), as shown in Figure 1.1.  
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Figure 1.1 Simplified model of DSB repair by NHEJ or HR pathway in budding yeast. 

The NHEJ and HR pathway are two major pathways for DSB repair in 
eukaryotes. In the NHEJ pathway, the DSB ends are bound by MRX and Ku complex, 
followed by the recruitment of NHEJ factors: Dnl4, Lif1 and Nej1, which work together 
to ligate the two DSB ends with minimal resection. Nucleotides can be lost at the break 
site by NHEJ repair since the process often involves trimming of mismatched ends. In the 
HR pathway, several nucleases work cooperatively to reveal extensive 3’ single-stranded 
tails on both ends. RPA proteins bind to these 3’ ssDNA tails rapidly, but they are 
displaced by Rad51 protein later with the help of other proteins to form the Rad51 
nucleoprotein filament, which can perform homology search and promote strand invasion 
into a homologous template to form a joint molecule with a displaced strand (D-loop). 
After DNA synthesis using the homologous template, usually an intermediate DNA 
structure called double Holliday junction (dHJ) is formed, which is further dissolved or 
resolved to yield two separate DNA duplex molecules. The lost information is thus 
restored at the break site by the HR pathway.  
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After a DSB occurs, the Mre11-Rad50-Xrs2 (MRX) complex in budding yeast 

(Mre11-Rad50-Nbs1, MRN in mammals) and the Ku complex are among one of the first 

protein complexes that bind to the break site within minutes (Lisby et al, 2004). 

The highly conserved MRX complex is a heterotrimeric complex that plays 

important roles in DNA damage repair, from sensing DSBs and binding to DSB ends, 

regulating DNA end resection, to activating DNA damage checkpoint signaling (details 

will be discussed later in this Chapter) (Symington, 2002).  

The evolutionarily conserved Ku heterodimer yKu70/80 (Ku70/80 in mammals) 

is an abundant nuclear protein complex that binds to duplex DNA with high affinity and 

forms a ring-like structure on DNA by threading onto the end (Walker et al, 2001). Ku 

binding to DSBs promotes recruitment of other NHEJ factors including DNA ligase IV 

complex (Dnl4 and Lif1 in yeast, Dnl4 and XRCC4 in humans) and an accessory factor 

Nej1 (XLF in humans) to the DSB ends to carry out NHEJ repair (Daley et al, 2005). 

In the NHEJ pathway, soon after DSB formation, MRX and Ku bind to both ends 

of the broken DNA molecule and this binding serves a scaffold for the assembly of other 

NHEJ factors. Next, Dnl4 and Lif1 are recruited by yku80 and Xrs2 respectively 

(Palmbos et al, 2008), and Nej1 is also recruited through its DNA binding activity and/or 

through interaction with Lif1 (Deshpande & Wilson, 2007; Sulek et al, 2007). If the two 

DSB ends are ligatable, they will be ligated together directly by the ligase activity of 

Dnl4, but if they are not ligatable, minimal end processing, probably by Rad27 nuclease 

and Pol4 polymerase, is required before final ligation step can take place (reviewed in ref. 

(Daley et al, 2005)).   

In the HR repair pathway, several nucleases (including MRX, Sae2, Exo1 and/or 

Dna2) work cooperatively to degrade the 5’ strands of the broken ends and reveal 

extensive 3’ single-stranded DNA (ssDNA) tails on both ends (details will be discussed 
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later in this chapter). This step is known as DSB end resection. Then the Replication 

Protein A (RPA) complex which has very high affinity for ssDNA binds to these 3’ tails 

rapidly, leading to the checkpoint activation by a checkpoint kinase Mec1 (ATR in 

humans). RPA also recruits Rad52 and other mediators, which facilitate the formation of 

the Rad51 nucleoprotein filament by delivering Rad51 to DNA and replacing RPA. Once 

the Rad51 nucleoprotein filament is formed, it can perform the homology search and 

subsequent strand invasion into the homologous template to form a joint molecule with a 

displaced strand (D-loop). After DNA synthesis using the homologous template, usually 

an intermediate DNA structure called double Holliday junction (dHJ) is formed, which is 

further dissolved or resolved to separate the repaired DNA from the template. The lost 

information at the break site is thus restored through the HR pathway (reviewed in ref. 

(Bernstein & Rothstein, 2009; Longhese et al; Mimitou & Symington, 2009)). 

In general, the NHEJ pathway could be error-prone if some nucleotides are lost or 

minimal processing is performed at the break site. In contrast, the HR pathway is error-

free since it can restore lost information at the break site by using a homologous template. 

A sister chromatid is usually the preferred template for HR repair, and the repair 

efficiency is about 2-3 orders of magnitude over a homologous or heterologous 

chromosome both in yeast cells (Kadyk & Hartwell, 1992) and mammalian cells 

(Johnson & Jasin, 2000; Johnson & Jasin, 2001; Moynahan & Jasin, 1997; Richardson et 

al, 1998).  

 

CELL CYCLE REGULATION OF DNA DOUBLE-STRAND BREAK REPAIR 

The choice of which repair pathway to use largely depends on the cell cycle phase 

when the DSB is detected. In budding yeast (top part of Figure 1.2), most DSBs detected  
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Figure 1.2 Cell-cycle related DSB repair pathway choice in budding yeast and mammals.  

In budding yeast, most DSBs detected in G1 and very early S phase will be 
repaired through the NHEJ pathway, while DSBs detected during the rest of the cell cycle 
will be preferentially repaired by the HR pathway.  In mammals, the NHEJ pathway is 
active throughout the cell cycle, especially during G1 and early S phase, while the HR 
pathway only occurs in the S/G2 phase of the cell cycle. Figure adapted from (Wohlbold 
& Fisher, 2009). 

 

 

 

 

 

 



 6

in G1 and very early S phase will be repaired through the NHEJ pathway. DSBs detected 

during the rest of the cell cycle will be preferentially repaired by the HR pathway, when a 

sister chromatid is readily available as a repair template (reviewed in ref. (Wohlbold & 

Fisher, 2009)). In mammalian cells (bottom part of Figure 1.2), NHEJ is active 

throughout the whole cell cycle, especially for DSB repair during G1 and early S phase, 

while HR is only active in the S/G2 phase of the cell cycle (Takata et al, 1998). This 

restriction makes sense from the standpoint that a sister chromatid is usually not available 

in G1 phase. But how could a cell quickly decide which cell cycle phase it is in and which 

pathway to use? It has been shown that CDK activity in the S/G2 phase is responsible for 

promoting HR in both yeast and vertebrates, by controlling the resection step of DSB 

repair, probably through phosphorylating target proteins involved in this resection step 

(Aylon et al, 2004; Ira et al, 2004; Jazayeri et al, 2006). 

It is thought that the preference for DSB repair by HR pathway in budding yeast 

might be due to the high density of coding genes throughout its genome, and HR repair is 

relatively error-free to maintain the correct genetic information within those coding 

genes. However, in mammalian cells, NHEJ repair is less likely to affect functional genes 

due to lots of introns or regulatory elements, and the presence of many repetitive 

sequences in its genome could even make homologous recombination dangerous (Aylon 

et al, 2004). However, more evidence is needed to support this hypothesis. 

It is important to mention that for most of the DSBs, the HR and NHEJ pathway 

can compensate for each other as the DSB repair will shift toward one pathway if the 

other is defective. This has been shown in yeast cells, DT40 chicken B-cells (Takata et al, 

1998) and mammalian cells (Delacote et al, 2002).  However, there are some DSBs that 

can only be repaired by the HR pathway. For example, in budding yeast, the HR repair 

pathway is the only choice for DSBs created during meiosis by the Spo11 protein, which 
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is a putative topoisomerase that catalyzes the formation of DSBs by forming the Spo11-

DNA covalent complex (Keeney et al, 1997). This Spo11-DNA covalent complex has to 

be removed from DSB ends before repair takes place, and the removal requires both the 

MRX complex (Alani et al, 1990; Cao et al, 1990; Nairz & Klein, 1997) and Sae2 (details 

will be discussed later) (McKee & Kleckner, 1997; Prinz et al, 1997). 

 

MRE11-RAD50-XRS2 (MRX) COMPLEX 

The MRX complex is a highly conserved heterotrimeric complex that plays 

important roles not only in DSB repair, but also in telomere maintenance, cell cycle 

checkpoint signaling and meiotic recombination. A schematic diagram of the MRX 

complex tethering two DNA ends is shown in Figure 1.3. One thing to keep in mind is 

that although MRX can bridge DNA ends in vitro (Chen et al, 2001), it does not only 

bind to the extreme ends on DNA.  

Mre11 is a member of the lamda phosphatase family of phosphoesterases. It has 

manganese-dependent 3’ to 5’ exonuclease activity on dsDNA and endonuclease activity 

on single/ double-stranded junctions and on hairpin loops (Paull & Gellert, 1998; Trujillo 

& Sung, 2001; Trujillo et al, 1998), as well as weak magnesium-dependent endonuclease 

activity on the 5’ strand of linear DNA ends in vitro (Hopkins & Paull, 2008; Nicolette et 

al, 2010). It contains five conserved phosphoesterase motifs in its N-terminal region 

(Sharples & Leach, 1995). Conserved residues (D16, D56, H125 and H213) within these 

motifs are required for Mre11 endonuclease and exonuclease activities in vitro (Arthur et 

al, 2004; Furuse et al, 1998; Moreau et al, 1999; Usui et al, 1998). Mutations that abolish 

the nuclease activity of Mre11 are referred as mre11-nd (nuclease deficient) mutants.  
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Figure 1.3 Schematic structure of the Mre11-Rad50-Xrs2 complex tethering DSB ends.  

Rad50 has two long coil-coil regions which fold back on each other, bringing its 
N-terminal Walker A and the C-terminal Walker B ATPase domain in close proximity. 
The ATPase head domains dimerize with other ATPase head domains from another 
Rad50 in the presence of ATP and this dimerization is important for DNA binding. 
Mre11 binds to Rad50 at the base of the coil-coil region near the ATPase domain. The 
apex of the two coil-coil regions in Rad50 contains a conserved C-X-X-C motif in a hook 
domain which dimerizes with the hook domain from another Rad50 via cysteine-zinc 
interactions. Xrs2 associates with the complex through interaction with Mre11. Figure 
adapted from (Mimitou & Symington, 2009). 
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Rad50 belongs to the structural maintenance of chromosomes (SMC) family of 

proteins (Alani et al, 1989). Proteins in this family have an unusual structure with two 

long coil-coil regions which fold back on each other, bringing the N-terminal Walker A 

and the C-terminal Walker B ATPase domain in close proximity (de Jager et al, 2001). 

The ATPase head domains dimerize with other ATPase head domains from another 

Rad50 in the presence of ATP and this dimerization is important for DNA binding 

(Hopfner et al, 2000). Mre11 also binds to Rad50 at the base of the coil-coil region near 

the ATPase domain to form an Mre112Rad502 heterotetramer (Anderson et al, 2001; 

Hopfner et al, 2002). The apex of the two coil-coil regions contains a conserved C-X-X-C 

motif in a hook domain which could dimerize with the hook domain from another Rad50 

via cysteine-zinc interactions (Hopfner et al, 2002). This allows dimerization between 

two MR complexes to tether two DNA molecules together (Chen et al, 2001; de Jager et 

al, 2001; Hopfner et al, 2002). Besides tethering DNA molecules, the ATPase and 

adenylate kinase acitivity of Rad50 in the MRX complex is also responsible for 

unwinding the DNA ends (Bhaskara et al, 2007; Cannon et al, 2013; Hopfner et al, 2000). 

Xrs2 is a non-enzymatic and the least conserved member of the MRX complex, 

but it serves as an enzyme regulator and also recruits other proteins to the damage site. 

The yeast Xrs2 and the human Nbs1 are conserved in the N-terminal forkhead-associated 

(FHA) domain, which is involved in binding of phosphorylated proteins (Kobayashi et al, 

2002). They also share a conserved C-terminal domain (CCD), which is important for the 

interaction with Mre11 and has phosphorylation sites for the checkpoint kinase Tel1 

(yeast)/ATM (humans) (Kobayashi et al, 2004).  

Deletion of either Mre11 or Rad50 gene results in hypersensitivity to DNA 

damaging agents in many organisms, such as S. cerevisiae, S. pombe, C. elegans, and D. 

melanogaster (Chang et al, 2002; Chin & Villeneuve, 2001; Ciapponi et al, 2004; 
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Tavassoli et al, 1995). The loss of any component of MRN complex even causes lethality 

in vertebrate cells and mouse early embryos (Luo et al, 1999; Xiao & Weaver, 1997; 

Yamaguchi-Iwai et al, 1999). 

In budding yeast, some MRX mutants are found to have accumulated covalent 

Spo11-DNA adducts during meiotic prophase and blocked sporulation, but have nearly 

wild-type resistance to DNA damage in vegetative cells (Alani et al, 1990; Cao et al, 

1990; Nairz & Klein, 1997). These mutants are referred to as mre11S and rad50S 

(separation-of-function) mutants. In addition, some mre11-nd mutants, like mre11-D56N, 

mre11-58S and mre11- H125N, have the same phenotype as that of rad50S mutants 

(Moreau et al, 1999; Symington et al, 2000; Tsubouchi & Ogawa, 1998). These results 

suggest that MRX is important in the removal of Spo11-DNA protein adducts from DSB 

ends during meiosis, and Mre11 nuclease activity is required for this process. 

 

SAE2 IDENTIFICATION AND FUNCTION 

SAE2/COM1 (sporulation in the absence of spo-eleven-2, or completion of 

meiotic recombination) was first identified in two independent genetic screens for 

budding yeast strains defective in Spo11-dependent sporulation, whose null phenotype is 

identical to that of the rad50S, mre11S and mre11-nd mutants, including accumulated 

Spo11-DNA covalent complexes during meiosis, unresected DSBs and absence of HR 

(McKee & Kleckner, 1997; Prinz et al, 1997). These results provide the first genetic 

evidence that Sae2 cooperates with MRX and that both of them are required for meiotic 

DSB repair. 

In addition to the cooperative roles played by MRX and Sae2 in meiotic DSB 

repair, Sae2 and the MRX complex also function in processing hairpin-containing DNA 
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structures in mitotic DSB repair (Lobachev et al, 2002; Rattray et al, 2001). The sae2 null 

mutant, as well as the rad50S, mre11S and mre11-nd mutants, all accumulate 

chromosomes with hairpin-capped ends at the inverted repeat sites, and large 

amplifications of the entire chromosome arm close to the repeats (Lobachev et al, 2002; 

Rattray et al, 2001). These results suggest that both Sae2 and MRX are required in 

processing DNA hairpin structures in vegetative cells.  

 

SAE2 SELF-INTERACTION 

Previous studies discovered self-interaction of Sae2 by yeast two-hybrid assays 

(Uetz et al, 2000), and the observation that Sae2 can self-interact and form multimers or 

oligomers (Kim et al, 2008). This oligomerization requires the N-terminal region and a 

region between amino acid 120 and 170 of the protein (shown in Figure 1.4). Self-

interaction is independent of DNA damage and is necessary for Sae2 function in DNA 

damage repair (Kim et al, 2008). In this paper, an interesting Sae2 mutant with a single 

leucine to proline (L25P) mutation inside this N terminus is shown to completely disrupt 

Sae2 dimerization (Kim et al, 2008). In chapter 3 of this dissertation, I also demonstrated 

that this L25P Sae2 mutant mostly elutes as a monomer when analyzed by size exclusion 

chromatography, and yeast cells expressing this mutant Sae2 have a comparable 

phenotype to that of the sae2 null cells, including hypersensitive to DNA damage 

reagents like methyl methanesulfonate (MMS, a DNA alkylating agent which could 

introduce DSBs during DNA replication) or camptothecin (CPT, a DNA topoisomerase I 

inhibitor). This indicates oligomerization is required for Sae2 function in DSB repair, but 

how oligomerization affects its function remains unknown. 
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Figure 1.4 Schematic diagram of Sae2 protein domains and important residues. 

The Sae2 protein can be roughly divided into three domains: the N-terminal 
domain which is responsible for self-interaction, the central domain which is important 
for its protein stability, DNA binding and endonuclease activity, and the more conserved 
C-terminal domain which is important for its phosphorylation by checkpoint kinase 
Mec1/Tel1. The L25 residue which is important for self-interaction is shown in blue. The 
S267 residue which is phosphorylated by CDK1 during S/G2 phase is shown in green. 
The five putative SQ/TQ sites which are potential Mec1/Tel1 phosphorylation sites are 
shown in red.  
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SAE2 PHOSPHORYLATION  

It is already known that Sae2 is a target of multiple post-translational 

modifications. Among all these, phosphorylation is one of the most important 

modifications that affects its in vivo function. 

A initial study demonstrated that CDK phosphorylates Sae2 at serine 267 (shown 

in Figure 1.4) in the S/G2 phase during normal cell cycle and this phosphorylation is 

critical for cells to use HR pathway for DSB repair (Huertas et al, 2008). Yeast cells 

expressing mutant Sae2 with an non-phosphorylatable alanine at S267 site display a 

phenotype comparable to that of sae2 null cells, including significantly increased 

sensitivity to DNA damaging reagents, impaired DNA end-processing, reduced hairpin-

induced HR, and also an increased rate of NHEJ, suggesting that CDK-dependent 

phosphorylation of Sae2 is critical for cells to enter HR pathway for DSB repair (Huertas 

et al, 2008). 

Besides CDK phosphorylation, previous work also showed that Sae2 is 

phosphorylated by checkpoint kinase Tel1 or Mec1 in response to DNA damage (Baroni 

et al, 2004; Huertas et al, 2008) or during meiosis (Cartagena-Lirola et al, 2006). 

Analysis of the Sae2 amino acid sequence reveals five serine or threonine residues (S73, 

T90, S249, T279, and S289, shown in Figure 1.4), located in the canonical SQ/TQ motif, 

which is the potential candidate for phosphorylation by Mec1/Tel1 (Baroni et al, 2004). 

Mutation of all these serine/threonine residues into non-phosphorylatable alanine not only 

abolishes its in vivo phosphorylation in response to DNA damage but also causes 

hypersensitivity to MMS treatment and decreased rates of mitotic recombination, 

suggesting that this checkpoint-mediated phosphorylation of Sae2 is critical for its 

function (Baroni et al, 2004). However, further study would still be needed to confirm if 

these are real phosphorylation sites in vivo or if there are other residues that are 
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phosphorylated after DNA damage. In this study, I confirmed some of these 

phosphorylation sites and also found more sites that are phosphorylated either before or 

after DNA damage. Also the effect of phosphorylation on the function of Sae2 has been 

explored in this dissertation. 

 

SAE2 ENDONUCLEASE ACTIVITY 

All the genetic results listed above indicate that Sae2 is required to work 

cooperatively with MRX to remove protein-DNA adducts and processing hairpin-

containing DNA structures. But the role of Sae2 in this process was still unknown at that 

time, and there was no recognizable motif of any known biochemical function present in 

the Sae2 protein sequence. 

Surprisingly, Lengsfeld et al. in our lab, in collaboration with Rattray et al., 

discovered that Sae2 binds to DNA, and itself exhibits endonuclease activity in vitro, 

with a preference for ssDNA, and ssDNA/dsDNA junctions (Lengsfeld et al, 2007). They 

also found Sae2 has nuclease activity on ssDNA region adjacent to DNA hairpin 

structures, which could be stimulated by the MRX complex (Lengsfeld et al, 2007). In 

the study, the last purification step of the recombinant Sae2 protein fused with a His6 and 

maltose-binding protein (MBP) tag is the Superdex200 gel filtration size exclusion 

column. The wild-type Sae2 and all other mutants used in the study eluted as three 

distinct forms: oligomer, dimer, and monomer, except for the N-terminal truncation 

mutant (ΔN) which only eluted as monomer, consistent with the previous report that the 

N-terminal region is important for Sae2 self-interaction (Kim et al, 2008).  The monomer 

form has the highest binding affinity to DNA, while the oligomer form does not bind to 

DNA at all, so the monomer form was used for all the experiments in the study. They 
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showed that Sae2 co-immunoprecipitates with MRX complex in the presence of DNA, 

but there is no direct protein-protein interaction between Sae2 and MRX without DNA in 

vitro, indicating those two might only interact on DNA. The ΔN mutant does not bind to 

DNA, as well as another mutant G270D, which was discovered in a genetic screen for 

deficiency in intrachromosomal recombination (Rattray et al, 2001), and both of them 

lack endonuclease activity. A C-terminal truncation mutant (ΔC) still binds to DNA and 

has intermediate level of endonuclease activity, but can not cleave the DNA hairpin 

structure with MRX, indicating that the conserved C-terminus contributes to cooperative 

hairpin removal with MRX. The other two mutants with the five putative SQ/TQ sites 

mutated either to non-phosphorylatable alanine (5A) or phosphomimetic aspartic acid 

(5D) still bind to DNA and have endonuclease activity, but the 5A mutant can not cleave 

hairpin structures with MRX. 

More importantly, all these mutants are defective in the meiosis sporulation assay, 

suggesting that besides its endonuclease activity, there are other events, such as 

oligomerization and phosphorylation that also affect the function of Sae2 in vivo.   

 

DSB END RESECTION IN S/G2 PHASE 

DSB end resection is the critical step that commits cells to enter HR pathway for 

DSB repair since the resected DSB ends are no longer suitable for NHEJ repair. 

Therefore this step is tightly regulated to ensure that the cell choose the appropriate 

pathway for DSB repair.  

Once a DSB occurs, both MRX and Ku bind to the DSB site very rapidly. If cells 

are in G1 phase of the cell cycle, Ku binding will prevent resection and recruit other 

NHEJ factors to enter the NHEJ pathway for repair (details as discussed earlier). 
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If cells are in the S/G2 phase of the cell cycle, both MRX complex and Ku 

complex still bind to the DSB site, but active CDK comes to the play by phosphorylating 

some target proteins involved in the DSB end resection to start the initial resection. Sae2 

is found to be one of the most important targets (Huertas et al, 2008).  

Recent studies have characterized a two-step model for DSB end resection in 

budding yeast (Mimitou & Symington, 2008; Zhu et al, 2008), which is shown in Figure 

1.5. The first step is the initial phase of short-range resection (about 100~200 

nucleotides), which is carried out by MRX and Sae2. First, MRX binding to the DNA 

recruits the checkpoint kinase Tel1 to the damage site. Sae2, which is already 

phosphorylated by active CDK when cells enter the S/G2 phase, also gets phosphorylated 

by Tel1, and these two events, maybe together with other events, activate Sae2. Then 

MRX and the active Sae2 work cooperatively to reveal 3’ single-strand DNA overhangs 

at both DSB ends about 100~200 nucleotides in length. Ku complex has a very low 

binding affinity for ssDNA, so it might fall off from the DSB ends or is pushed away 

from the DNA ends. The resulting 3’ ssDNA tails are coated by the RPA protein, which 

could also recruit and activate the checkpoint kinase Mec1 (reviewed in ref. (Bernstein & 

Rothstein, 2009; Longhese et al, 2010; Mimitou & Symington, 2009)).  

In the second step, further resection of 5’ DNA strands is performed through 

either Exo1 or Sgs1-Dna2 pathway, to reveal extensive 3’ ssDNA tails (up to several 

kilobases) on both DSB ends. Exo1 (exonuclease 1), which is a member of the Rad2 

family of nuclease, has 5’ to 3’ exonuclease activity and 5’ overhang flap endonuclease 

activity (Lee Bi et al, 2002; Qiu et al, 1999). Dna2 is an enzyme that has both weak 

helicase activity and bipolar endonuclease activity to cut ssDNA (Bae et al, 1998; Budd 

et al, 2000), and is known to function in Okazaki fragment processing (Bae et al, 2001).  

It works together with the 3’ to 5’ DNA helicase Sgs1 which prefers to bind the forked  
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Figure 1.5 Budding yeast DSB end resection in the S/G2 phase. 

In the S/G2 phase of the cell cycle, Sae2 is phosphorylated by active CDK. When 
a DSB occurs, Tel1 also phosphorylates Sae2 at the DSB site. These two events activate 
Sae2. Then MRX and active Sae2 catalyze the initial processing of the 5’ strand, possibly 
by endonucleolytic cleavage, which reduces the ability of Ku to bind the DNA ends. Ku 
might fall off from the DSB ends or is pushed away from the DNA ends. The initial 
resection also promotes extensive 5’ strand resection by either Exo1 or Dna2-Sgs1 to 
reveal long 3’ ssDNA tails. The resulting 3’ ssDNA tails are coated by RPA to allow 
recruitment of Mec1, which leads to DNA damage checkpoint activation. Next, the 
following steps of HR repair could take place, and the lost information is restored 
through the HR pathway. Figure adapted from (Longhese et al, 2010). 



 18

DNA substrate (Bennett et al, 1998). These two independent pathways are both capable 

of rapid and extensive resection of DSB ends, and they work in a redundant way in 

budding yeast. Abrogation of either pathway has little effect on DNA end processing, but 

deletion of both pathways blocks long-range resection and leaves the broken DNA ends 

only to be processed up to 100 to 200 nucleotides from the 5’ end (Mimitou & 

Symington, 2008; Zhu et al, 2008). After extensive resection, the subsequent steps of HR 

repair can take place (details as discussed earlier), and lost information is restored after 

HR repair. 

The initial resection by MRX and/or Sae2 could stimulate the extensive resection 

of DNA ends by Exo1 or Dna2-Sgs1. By using recombinant proteins to reconstitute 

resection assay in vitro, Nicolette et al. in our lab proved that when the amount of Exo1 is 

limiting, MRX and Sae2 strongly promote the 5’ strand resection by Exo1, and this 

stimulation is mainly caused by enhanced binding of Exo1 to DNA substrates, rather than 

the nuclease activity of MRX and Sae2 (Nicolette et al, 2010). Other two groups 

reconstituted the Dna2-Sgs1 pathway, and showed that MRX could also stimulate the 

resection by Dna2-Sgs1, although the nuclease activity of MRX is not required (Cejka et 

al, 2010; Niu et al, 2010).  

Therefore the initiation of resection is critical for DSB repair pathway choice, 

since once started, the resected DSB ends are no longer compatible for NHEJ repair and 

are committed to enter HR pathway for DSB repair. It has been demonstrated that CDK-

Clb activity in the S/G2 phase is the key player in controlling the initial resection of DSB 

repair, and then links the commitment to HR pathway with the S/G2 phase (Aylon et al, 

2004). This is a direct effect of CDK-Clb phosphorylating some target proteins involved 

in the DSB ends resection, and Sae2 is found to be one of the most important targets 

involved in this process (Huertas et al, 2008). But how CDK phosphorylation or Tel1 
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phosphorylation affects Sae2 activity is still unclear, and if there is any crosstalk between 

these two types of phosphorylation is also unknown. These become the major questions 

that I try to address in this dissertation.  

 

INTERPLAY BETWEEN KU AND MRX/SAE2 

For most DSBs, the HR and NHEJ pathways can compensate for each other if one 

is defective (Jeggo et al, 2011). This fact implies that there is interplay between NHEJ 

and HR factors. This interplay is shown mostly due to the competition between the 

function of Ku and MRX/Sae2 factors.  

Deletion of YKU70 is shown to increase the efficiency of initial resection 

significantly both at the DSB ends and at telomeres (Clerici et al, 2008; Lee et al, 1998; 

Maringele & Lydall, 2002). Ku deletion could also partially restore the IR and MMS 

resistance of mre11 null or rad50 null cells (Bressan et al, 1999; Mimitou & Symington, 

2010; Wasko et al, 2009), and almost fully rescue the IR hypersensitivity of sae2 null 

mutant cells (Mimitou & Symington, 2010). In addition, mre11 or rad50 deletion strains 

have been shown to exhibit significantly increased levels of Ku protein at DSB sites 

(Mimitou & Symington, 2010; Shim et al, 2010), and sae2 deletion mutant and mre11-nd 

mutants exhibit elevated levels of Ku-dependent NHEJ (Lee & Lee, 2007). Also, Ku 

over-expression makes sae2 null mutant and mre11-nd mutants even more sensitive to IR 

(Mimitou & Symington, 2010). Taken together, these genetic results suggest that MRX 

and Sae2 compete with Ku at DSB ends, probably through alleviating the inhibitory 

effect of Ku to promote DSB end resection, as Nicolette et al. observed in vitro (Nicolette 

et al, 2010). 
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A recent study provided direct evidence to support this hypothesis (Shim et al, 

2010). In this paper, Shim et al. showed that Ku inhibits DSB resection in the absence of 

MRX complex by blocking the binding of Exo1 and Dna2. However, this inhibitory 

effect of Ku is suppressed in the presence of MRX in vivo. MRX not only recruits Dna2 

nuclease to DSB ends, but also stimulates the recruitment of Exo1 and antagonizes excess 

binding of Ku to DSB ends. In contrast, the recruitment is less dependent on MRX in the 

absence of Ku. Further, by performing in vitro resection assay with purified recombinant 

proteins, they showed that the inhibitory effect of Ku on Exo1 can be partially rescued in 

the presence of MRX and Sae2. Their results suggest that the primary function of MRX 

and Sae2 in stimulating resection is to antagonize Ku (Shim et al, 2010). 

 

SAE2 ACETYLATION, DEACETYLATION AND DEGRADATION 

In addition to phosphorylation, Robert et al. demonstrated that Sae2 could also be 

acetylated and deacetylated, and that this modification regulates the degradation of Sae2 

protein through the autophagy pathway (Robert et al, 2011).  

Eukaryotic cells have two major avenues for protein and organelle degradation: 

the proteasome and the vacuole (for yeast)/lysosome (for mammals). Limited by the size 

of the gated channel and the capacity, the proteasome usually serves to degrade soluble 

proteins with ubiquitin tags (Voges et al, 1999). The vacuole, the other major avenue, is a 

place mainly for degrading large protein complexes, insoluble aggregrates and organelles 

by its resident hydrolases (Teter & Klionsky, 2000). 

Autophagy is the highly conserved membrane trafficking system in all eukaryotes 

that delivers cytoplasmic cargos to the vacuole (lysosome) for degradation and recycling. 

It occurs constitutively at a basal level, but is greatly stimulated under certain conditions 
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such as starvation, growth factor deprivation, and pathogen infection (Klionsky, 2007). 

Under starvation conditions, cytoplasmic components could be engulfed by 

autophagosomes non-selectively. But more studies have revealed that autophagy is highly 

selective and tightly regulated through cargo recognition, often by certain ubiquitin tag, 

especially under conditions other than starvation (Kirkin et al, 2009; Kraft et al, 2010; 

Yang & Klionsky, 2010). Many autophagy-related (ATG) genes have been identified in 

yeast so far, but only 15 are commonly required for all pathways, which are referred as 

‘core’ ATG genes, and ATG1 is one of them. The ATG1-encoded Atg1 kinase, together 

with its regulators (Atg13, Atg17, Atg31 and Atg29), form the Atg1 complex which 

functions in the initial step of most autophagy pathways: phagophore formation 

(Stjepanovic et al, 2014). The phagophore is a double-layered membrane with a shape of 

a crescent, which enlarges to engulf cytoplasmic cargos, and then closes to form the 

autophagosome (Mizushima et al, 2011). Phagophore formation is primarily induced by 

the Atg1 complex, which can be regulated by the cellular energy sensor AMPK kinase 

and the cell growth regulator TOR (target of rapamycin) kinase (Budovskaya et al, 2005; 

Chang & Neufeld, 2009; Ganley et al, 2009; Samari & Seglen, 1998). 

In the study by Foiani and colleagues, the inhibition of histone deacetylases 

(HDACs) with valproic acid (VPA) or the ablation of two HDACs: Hda1 (class I 

HDACs) and Rpd3 (class II HDACs) can trigger Sae2 degradation through an Atg-1 

dependent autophagy pathway (Robert et al, 2011). Deletion of GCN5, a histone 

acetyltransferase (HAT), resulted in the suppression of Sae2 degradation by VPA. 

Treatment of cells with rapamycin, which stimulates autophagy by inhibiting the Tor 

kinase, also leads to the degradation of Sae2 (Robert et al, 2011). Based on the above 

results, they proposed a model for this process: upon DSB induction, the MRX complex 

is recruited to DSB sites, followed by Sae2, which remains deacetylated in an Hda1- and 
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Rpd3-dependent way. After resection of DSB ends, Sae2 (and likely other targets) 

undergoes Gcn5-mediated acetylation, and then is exported to the cytoplasm for vacuolar 

degradation by the autophagy pathway (Robert et al, 2011). 

However, many interesting questions are still unknown regarding this model. For 

example, the acetylation site(s) on Sae2 is (are) still unidentified. Besides, it is unclear 

how and when acetylated Sae2 is targeted for this autophagy-mediated degradation, or if 

ubiquitin also plays a role in this autophagy degradation process since it often serves as a 

tag in selective autophagy pathways. 

 

CTIP IS A FUNCTIONAL ORTHOLOG OF SAE2 

Although there is only a limited conservation in protein sequence, mostly at the 

C-terminus, between Sae2 and its functional orthologs in other eukaryotes (Ctp1 in 

fission yeast, Com1 in worms and plants, and CtIP in chicken, Xenopus and mammals), 

they still display a surprisingly similar and important role in the DSB repair (Akamatsu et 

al, 2008; Limbo et al, 2007; Sartori et al, 2007).   

CtIP (carboxyl-terminal binding protein-interacting protein, also known as 

RBBP8) was first identified as a cellular protein that binds to CtBP (C-terminal region of 

adenovirus E1A proteins) (Schaeper et al, 1998) and the tumor suppressor protein 

BRCA1 (Wong et al, 1998; Yu et al, 1998). Later, Sartori et al. found that CtIP is 

important for DSB end resection, ATR activation, and HR repair in S and G2 phase of the 

cell cycle in human cells. Also they detected that CtIP physically and functionally 

interacts with the MRX complex for HR repair, and revealed that despite its large size 

(897 residues), CtIP has sequence homology with Sae2, which is limited to the C-

terminus (Sartori et al, 2007).  
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Similar to Sae2, the N-termianl region (residues 45-160) can also mediate CtIP 

homodimerization (Dubin et al, 2004). This dimerization might facilitate the formation or 

exchange of CtIP multi-protein complex (Dubin et al, 2004) and also increase its stability 

(Stokes et al, 2007). More importantly, a recent study demonstrates that CtIP 

dimerization mutants are strongly defective in HR, DSB end resection, and DNA damage 

checkpoint activation, but the interaction between CtIP and BRCA1/Nbs1 is not disrupted 

(Wang et al, 2012). Further, the CtIP dimerization mutant fails to localize to DSB sites, 

and shows a significantly reduced level of CtIP phosphorylation after DNA damage 

(Wang et al, 2012). These results imply that the dimerization motif on the N terminus of 

CtIP is also functionally conserved and is essential for its function in DNA damage 

repair, in consistent with our result of Sae2 L25P oligomerization mutant. 

 

CTIP PHOSPHORYLATION 

As a functional ortholog of Sae2, CtIP is also found to be governed by CDK 

through phosphorylation in the S/G2 phase to promote DSB end resection, in a similar 

manner to that of Sae2, and this CtIP phosphorylation site T847, which is located in the 

conserved C-terminus, aligns with Sae2 S267 site (Huertas & Jackson, 2009).  Mutating 

this T847 to non-phosphorylatable alanine (A) impairs the DSB resection, ssDNA 

formation, RPA phosphorylation and foci formation after DSB induction, while mutating 

it to glutamic acid to mimic phosphorylation allows some DSB resection even after CDK 

inhibition (Huertas & Jackson, 2009).  

Another CDK phosphorylation site S327 has also been found to be important for 

CtIP interaction with BRCA1 as well as with MRN, and is required for CtIP recruitment 

to DSB sites and subsequent checkpoint activation (Chen et al, 2008; Varma et al, 2005; 
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Yu & Chen, 2004). This phosphorylation promotes the ubiquitination of CtIP by BRCA1, 

which has E3 ubiquitin ligase activity, and both of the phosphorylation and ubiquitination 

are necessary for CtIP localization to the DNA damage site (Yu et al, 2006). In contrast, 

the chicken CtIP S332A mutant (equivalent to human CtIP S327A mutant) has an 

increased sensitivity to CPT, but the DSB resection and HR repair are not compromised 

(Nakamura et al, 2010). Whether this is a result of differences between human and 

chicken CtIP remains to be determined.  

CtIP could also be phosphorylated by ATM at S664 and S745 residues after DNA 

damage, and this phosphorylation event is important to free BRCA1 from the BRCA1-

CtIP complex, therefore to modulate the transcription of some DNA-damage-response 

genes, like GADD45 (Li et al, 2000). However, another group observed CtIP 

phosphorylation by ATM after DNA damage, but its interaction with BRCA1 was not 

altered (Wu-Baer & Baer, 2001). This phosphorylation seems to be dispensable for CtIP 

recruitment to damage sites, since a CtIP-8A mutant (all eight SQ/TQ residues mutated to 

alanine, including the two known ATM phosphorylation sites) still shows a normal 

recruitment after DNA damage, compared to that of wild-type CtIP (You et al, 2009). 

Therefore, this apparent discrepancy and the functional consequence of ATM 

phosphorylation on CtIP still require further study.  

Besides ATM, ATR (human homolog of yeast Mec1) could also phosphorylate 

CtIP upon DNA damage at a conserved T859 site, which is required for the stable 

binding of CtIP to chromatin, full checkpoint activation and the subsequent extensive 

DSB resection (Peterson et al, 2013). This study proposed a model that initial resection 

could either carried out by Exo1 in an ATM-independent manner or by MRN-CtIP in an 

ATM-dependent manner, and then the resulting RPA-ssDNA activates ATR, which in 
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turn phosphorylates CtIP and promotes the downstream extensive resection in a Dna2-

dependent way. 

 

CTIP ACETYLATION AND DEACETYLATION 

Similar to Sae2, human CtIP could also be acetylated and deacetylated. It is 

constitutively acetylated in undamaged cells, and could be deacetylated by SIRT6 upon 

DNA damage to promote DNA end resection and HR (Kaidi et al, 2010). Cells treated 

with the class III lysine deacetylases (KDACs, SIRT1 to SIRT7) inhibitor nicotinamide 

or siRNA against SIRT6 exhibited an increased level of acetylated CtIP and a 

significantly decreased level of RPA phosphorylation and RPA foci, which indicates a 

lower level of resected DSB ends after treatment (Kaidi et al, 2010). Further, they 

identified three lysine sites on CtIP by mass spectrometry: K432, K526 and K604. 

Mutating all these three lysine residues to non-acetylatable arginine could partially rescue 

the HR defect in SIRT6-depleted cells (Kaidi et al, 2010). These results establish CtIP as 

a key SIRT6 substrate to promote DSB end resection and HR, also reveal a new layer of 

control on CtIP activity by post-translational modifications. Budding yeast Sir2 is a 

homolog of human SIRT6, and sir2 null cells display decreased resistance to DNA 

damage reagent MMS and bleomycin (Kapitzky et al, 2010) and also increased genome 

instability (Lewinska et al, 2014). Considering the fact that Sae2 could be also acetylated 

and deacetylated, it would be interesting to know if Sir2 or other class III KDACs has 

similar effect on Sae2.  
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CTIP AND PHOSPHORYLATION-SPECIFIC PROLYL ISOMERASE PIN1  

A recent study revealed that CtIP could be isomerized by a phosphorylation-

specific prolyl isomerase Pin1, leading to CtIP poly-ubiquitylation and subsequent 

proteasomal degradation (Steger et al, 2013). Since Pin1 binds specifically to 

phosphorylated SP/TP-motifs, which are typical motifs for CDKs and mitogen-activated 

protein kinases (MAPKs), and catalyzes cis/trans isomerization through its peptidyl-

prolyl isomerase (PPlase) domain, this Pin1-CtIP interaction requires CtIP 

phosphorylated T315 residue for Pin1 binding and phosphorylated T276 with P277 

residues for Pin1 isomerization (Steger et al, 2013). Further, Pin1-overexpressing cells 

show compromised resection and reduced HR rate, while Pin1-depleted cells display 

increased DSB end resection and decreased NHEJ rate, and a CtIP non-phosphorylatable 

mutant at both S276 and T315 sites has similar phenotype to that of Pin1-depleted cells 

(Steger et al, 2013). These findings uncover a molecular switch of controlling CtIP 

protein level in a phosphorylation-dependent way by Pin1. Since Pin1 is highly 

conserved in all eukaryotic cells and its amino acid sequence is 46% identical to the 

budding yeast homolog Ess1, I did some experiments to explore if Ess1 can also act on 

Sae2 in a similar way. Details will be discussed in Chapter 4 in this dissertation.  

 

CTIP ENDONUCLEASE ACTIVITY 

CtIP is shown to be required for repairing DSBs generated by topoisomerase 

drugs such as camptothecin or etoposide (Huertas & Jackson, 2009; Nakamura et al, 

2010; Quennet et al, 2011; Sartori et al, 2007), which generates DSBs with covalent 

protein adducts, suggesting that this might be a conserved function as that of Sae2. But 

there is no direct evidence showing that CtIP has endonuclease activity until very 

recently. Wang et al. discovered an endonuclease activity of CtIP that is required for the 
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repair of DSBs occurring at common fragile sites (CFSs) derived AT-rich sequences and 

inverted repeat sequences (Wang et al, 2014). Makharashvili et al. in our lab 

demonstrated that CtIP has a 5’ flap endonuclease activity which is specific for the 5’ 

strand and Y-structure DNA substrate (Makharashvili et al, 2014).  In the study, many 

different DNA substrates were tested, and results indicate that CtIP and Sae2 both cleave 

5’ flaps in a branched DNA structure but CtIP does not cut a hairpin with an adjacent 

ssDNA overhang as does Sae2 (Makharashvili et al, 2014). A CtIP endonuclease 

deficient mutant N289A/H290A is found, which is functional in repairing restriction 

enzyme-generated DSBs but is deficient in processing IR-induced damage and 

topoisomerase protein-DNA adducts (Makharashvili et al, 2014). Also the endonuclease 

activity of many CtIP phosphorylation mutants was characterized, revealing that a small 

number of previously identified phosphorylation sites (for example, two ATM 

phosphorylation sites: S664 and S745, three SP/TP sites: S276, T315 and S347, and a 

previously uncovered putative SQ/TQ site S231) are important for CtIP endonuclease 

activity (Makharashvili et al, 2014). This study indicates that post-translational 

modifications, including ATM phosphorylation and putative CDK phosphorylation at 

certain sites, could regulate CtIP by altering its endonuclease activity directly. 
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HYPOTHESIS AND GOALS 

 

A two-step model for Sae2 activation by CDK and Tel1 phosphorylation 

Sae2 is phosphorylated at S267 by CDK during S and G2 phases of the normal 

cell cycle (Huertas et al, 2008). When a DSB occurs in the S/G2 phase, MRX, which acts 

as a sensor of DSBs, is recruited to the DSB sites very rapidly, as is the checkpoint kinase 

Tel1, followed by Sae2 which is already phosphorylated at S267 by CDK. Then at the 

DSB sites, Sae2 gets phosphorylated by Tel1 on some SQ/TQ sites. These two 

phosphorylation events, maybe together with some other events, activate Sae2. The active 

Sae2, together with MRX, promotes the resection of DSB ends, by antagonizing the Ku 

complex and stimulating Exo1 or Dna2-Sgs1. This end resection commits the cell to enter 

HR pathway for DSB repair, when a sister chromatid is available as a preferred template 

for HR repair, therefore limits the HR repair in S/G2 phase of the cell cycle. However, the 

relation between these two types of phosphorylation and how they activate Sae2 are still 

unknown. 

The transition of Sae2 from an oligomeric state to dimeric or monomeric state 

might be also related to its activation. Previous study in our lab showed that E.coli-

expressed recombinant MBP-Sae2 eluted as three distinct forms: oligomer, dimer, and 

monomer after the gel filtration size exclusion column, and the monomer has the highest 

DNA binding affinity and endonuclease activity, while the oligomer is not active at all 

(Lengsfeld et al, 2007). But if this is also the case for Sae2 in vivo is still unclear.   

Based on the information above, I propose a two-step model for the activation of 

Sae2.  First, Sae2 is phosphorylated by CDK in the S/G2 phase. When a DSB occurs in 

this phase, Sae2 is recruited to the DSB site and phosphorylated by Tel1, probably 

stimulated by the presence of MRX and DNA, as previously shown with human ATM 



 29

and MRN (Lee & Paull, 2005). This CDK phosphorylation might prime Sae2 for Tel1 

phosphorylation, limiting Sae2 to be fully activated only in the S/G2 phase and at the 

DSB site. These two phosphorylation events might activate Sae2 by triggering the 

transition of Sae2 from an inactive oligomeric state to an active dimeric or monomeric 

state.  

In this study, I demonstrated that CDK phosphorylation primes phosphorylation 

of Sae2 by Tel1 kinase after DNA damage, and that both types of modification are 

essential for Sae2 function in DNA damage repair. One of the primary functions of these 

Sae2 phosphorylation events is to transiently disrupt Sae2 from large, oligomeric, 

inactive forms into smaller active forms to promote DNA end resection. I also found that 

Sae2 released from the larger structures is rapidly degraded through a combination of 

autophagy- and proteasome-mediated pathways.  

 

Phosphorylation-specific prolyl isomerase Ess1 and DNA damage repair 

CtIP is a functional ortholog of Sae2 and they share a lot of similarities. For 

example, CtIP also has endonuclease activity (Makharashvili et al, 2014); the 

phosphorylation by CDK at a conserved T847 site, which aligns with Sae2 S267 site, is 

important for its function to promote DNA resection and HR (Huertas & Jackson, 2009); 

it could also be phosphorylated by ATM/ATR after DNA damage. A recent study 

discovered that CtIP could be isomerized by a phosphorylation-specific prolyl isomerase 

Pin1, leading to CtIP poly-ubiquitylation and subsequent proteasomal degradation (Steger 

et al, 2013). This Pin1-CtIP interaction requires the phosphorylated T315 residue of CtIP 

for Pin1 binding and the phosphorylated T276 with P277 residues for Pin1 isomerization. 

Since Pin1 is highly conserved in all eukaryotic cells and its amino acid sequence is 46% 
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identical to the budding yeast homolog Ess1, I try to address if Ess1 can also act on Sae2 

in a similar way. 

Since Ess1 is an essential gene for budding yeast, I took advantage of some 

known temperature-sensitive Ess1 mutants to replace the wild-type Ess1. I found that 

some of these mutants have an increased sensitivity to MMS or CPT treatment even 

under permissive temperature, compared to that of wild-type Ess1, indicating that Ess1 is 

involved in DNA damage repair. One of these mutants H164R is known to be 

catalytically defective. However, I could not detect any direct interaction between Ess1 

and Sae2 by co-immunoprecipitation before or after DNA damage and overexpression of 

Ess1 did not reduce the protein level of Sae2 in vivo. Expressing the catalytically defect 

Ess1 H164R mutant did not increase Sae2 level either, compared to that of wild-type 

Ess1. Therefore, the DNA damage sensitivity of Ess1 mutants may not be related to Sae2, 

and Ess1 probably does not act on Sae2, as Pin1 does on CtIP. Since Ess1 plays an 

important role in transcription termination together with a termination factor Pcf11, I 

overexpressed wild-type Pcf11 and found it significantly increased the DNA damage 

resistance of either wild-type or H164R mutant Ess1 cells, and also the sae2△ cells. 

These results imply that Ess1, Pcf11 and Sae2 might contribute to DNA damage repair 

through transcription termination, which links transcription termination and DNA 

damage repair together. Further study is needed to address how Ess1 and Pcf11 are 

involved in this process. 
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CHAPTER 2: MATERIALS AND METHODS 

 

RECOMBINANT PROTEIN EXPRESSION 

E. coli expression constructs for mutant Sae2 were made by from pExpGCK566 

(Lengsfeld et al, 2007) using QuikChange mutagenesis (Agilent Technologies) according 

to manufacturer's instructions. These included S267A (pTP1176), S267E (pTP1172), and 

S73D/T90D/S249D/T279D/S289D/S267E (pTP1173), which were transformed into 

ArticExpress cells (Stratagene) and induced for expression at 13°C overnight. The 

purification of recombinant His-MBP-Sae2 was performed as described previously 

(Lengsfeld et al, 2007; Nicolette et al, 2010). Briefly, the cell lysate was applied onto 

Amylose agarose resin (NEB), and then the maltose elution from the Amylose column 

was loaded onto SP-Sepharose resin (G.E.). The high salt elution from the SP-Sepharose 

column was loaded onto Ni-NTA (Qiagen) resin, and the elution from Ni-NTA resin was 

applied to two tandem SP-Sepharose HiTrap columns (G.E.). The peak elution fraction 

after HiTrap columns was then loaded onto a Superdex-200 gel filtration column (G.E.) 

to separate the monomeric, dimeric and multimeric His-MBP-Sae2.  

The yeast Mre11/Rad50/Xrs2 complex was expressed from baculovirus made 

from bacmids pTP404, pTP684 and pTP701 in Sf21 insect cells. Cell lysate was 

precipitated with ammonium sulfate, and then the protein complex was purified after 

going through Ni-NTA (Qiagen) resin, 1ml HiTrap Heparin column (G.E.), and Anti-

Flag M2 agarose resin (Sigma) as described previously (Bhaskara et al, 2007).  

The yeast Exo1 was expressed from baculovirus in Sf21 insect cells and purified 

as previously described (Nicolette et al, 2010). The cell lysate was applied to SP-

Sepharose resin (G.E.). Then the high salt elution from the SP-Sephasrose column was 
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loaded onto Anti-Flag M2 agarose resin (Sigma), washed with 500 mM LiCl, and eluted 

with A buffer (25 mM Tris-HCl, pH 8.0, 100 mM sodium chloride, 10% glycerol, 1 mM 

DTT) containing 0.1 mg/ml Flag peptide (Sigma). 

Purification of yeast Ku70/80 complex was performed as with MRN (Bhaskara et 

al, 2007) but the elution from the nickel resin was loaded onto a 1mL HiTrap Q column 

(G.E.) prewashed with buffer A. The Ku70/80 complex was eluted with buffer A 

containing 500 mM NaCl. Concentrated fractions of Ku70/80 were loaded onto a 

Superdex-200 gel filtration column (G.E.) equilibrated with buffer A and fractions 

containing Ku were collected and aliquated. 

HA-tagged Tel1 protein was purified from the extract of 0.03% MMS-treated 

yeast cells (KSC1906 MATa-inc ADH4cs::HIS2 ade1 his2 leu2 trp1 ura3 TEL1-

HA::TRP1 XRS2-myc::TRP1; gift from Katsunori Sugimoto). Yeast cells were lysed by 

blender with dry ice as previously described (Shen, 2004). The lysed cells were dissolved 

in lysis buffer (25 mM Tris-HCl, pH 7.4, 150 mM sodium chloride, 1 mM EDTA, 10% 

glycerol, 0.5% NP-40, 1 mM DTT) with 1mM PMSF and protease inhibitor cocktail 

(Roche) and then pelleted by centrifugation for 1 h at 35,000 rpm at 4°C, in a Beckman 

70 Ti rotor (Beckman-Coulter) using an Optima L-100 XP ultracentrifuge (Beckman-

Coulter). HA-tagged Tel1 protein was then isolated using anti-HA antibody-conjugated 

agarose beads (Bethyl) from the supernatant and eluted with 0.5 mg/ml HA peptide 

(AnaSpec). 

The isolation of Flag-tagged Sae2 for gel filtration and mass spectrometry 

analysis was performed as described for Tel1 except that the protein was bound to anti-

Flag antibody-conjugated agarose beads (Sigma) and eluted with 0.4 mg/ml 3X Flag 

peptide (Sigma). 
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OLIGONUCLEOTIDE CLEAVAGE ASSAY 

Nuclease assays were performed with [32P-cordycepin]-labeled oligonucleotides: 

TP3835 (5'- CTG CAG GGT TTT TGT TCC AGT CTG TAG CAC CAT GCC TAC 

CTG ACA GTC CGA CAC ATC GGA CTG TCA GGT AGG CAT G-3'). DNA 

substrates (0.125 nM) were incubated with Sae2 in nuclease buffer (25 mM MOPS pH 

7.0, 65 mM NaCl, 1 mM DTT, 5 mM MgCl2, 0.1 mg/mL BSA) in Lobind tubes (Fisher) 

at 30˚C for 2 hours. Reactions were stopped by adding 2 µL of stop solution (0.5% SDS, 

20 mM EDTA pH 8.0, 5 µM TP2622 oligonucleotide), lyophilized, resuspended in 

formamide loading buffer, and resolved on a 20% acrylamide/urea gel at constant 

wattage (40 W) for 2.5 hours. Gels were analyzed by phosphorimager (GE). 

 

IN VITRO RESECTION ASSAYS AND QUANTITATIVE PCR 

Resection assays were performed with recombinant Exo1, MRX, Ku, and Sae2 as 

described previously (Nicolette et al, 2010). Briefly, reaction mixtures contained 

linearized 0.2 nM 4.5 kb plasmid DNA pNO1 (a derivative of pBR322), 25mM MOPS 

(morpholinepropanesulfonic acid), pH 7.0, 60 mM NaCl, 1 mM DTT, 5mMMgCl2, Exo1 

(1.2 nM), MRX (3.5 nM), Ku (20 nM), and the Sae2 monomer (fraction number 28) or 

dimer (fraction number 23) fraction, as indicated in the appropriate figure legends. The 

reaction mixtures were incubated at 30°C for 60 min. Fifty percent of the reaction 

mixture was reserved for quantitative PCR analysis, while the remainder was stopped 

with 0.1% SDS and 10 mM EDTA, and then separated on a 1% native agarose gel. The 

gel was stained with SYBR green (Invitrogen), imaged using a Typhoon imager (GE). 

The level of ssDNA produced during the reaction was also quantified by real-time PCR, 

as described previously (Nicolette et al, 2010). Briefly, resection assays were carried out 

as described above, but stopped with a final concentration of 0.01% SDS. Then the 
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reactions were diluted 20-fold and half of the mixture was digested overnight at 37°C 

with 4 units of NciI (NEB) and the other half was incubated in the same buffer without 

the enzyme at 37°C overnight. 1 μl of digested or undigested DNA sample was used as a 

template in a 25 μl reaction with 0.5 μM of each primer, 0.2 μM probe, and 1X Taqman 

universal master mix (ABI). Q-PCR reactions were performed on ViiA 7 Real-Time PCR 

System (ABI) under standard thermal cycling conditions for 30 cycles. Results were 

analyzed with ViiA 7 software (ABI). For each sample, a ΔCT was calculated by 

subtracting the CT value of the undigested sample from the CT value of the NciI-digested 

sample. The percentage of ssDNA was determined using this equation: 

ssDNA%=1/(2^(ΔCT-1)+0.5)*100. Primers and probes used for the analysis of the 29 nt 

site were: TP2493 (5’- GAGATGGCGCCCAACAGT-3’), TP2494 (5’-

AAGATCGGGCTCGCCACT-3’), and TP2495 (5’- 6FAM-

ACGCCGAAACAAGCGCTCATGAG-TAMRA-3’). Primers and probes used for the 

analysis of the 1025 nt site were: TP2516 (5’- TGCTATGTGGCGCGGTATTAT-3’), 

TP2517 (5’- CTGTCATGCCATCCGTAAGATG-3’), and TP2518 (5’- 6FAM-

CAAGAGCAACTCGGTCGCCGCATA-TAMRA-3’). 

 

YEAST STRAINS USED IN THIS STUDY 

The wild-type and sae2 deletion strains used in complementation assays in Fig. 

2B, C and Fig. 7A,B were BY4741 and the sae2::kanMX derivative (Giaever et al, 2002), 

with pRS313 used for complementation as the vector control (Sikorski & Hieter, 1989). 

The wild-type and sae2 deletion strains used in immunofluorescence and solubility assays 

in Fig. 3A, B, Fig. 5, Fig. 6, and Fig. 7D, E were BY4741 and the sae2::kanMX 

derivative (Giaever et al, 2002), with pRS425 (Christianson et al, 1992) used for 
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complementation as the vector control. The YFP-SAE2 strain used in Fig. 2D, Fig. 3C, D 

and Fig. S1 was W4249-5C (MATa ADE2 bar1::LEU2 trp1-1 LYS2 RAD5 SAE2-4ala-

YFP) (Lisby et al, 2004). Genomic mutations at the YFP-SAE2 locus in this strain were 

made via a 2-step PCR-based method (Reid et al, 2002), generating strains with the 

following SAE2 mutations: S267A (TP3503), S267E (TP3495), 

S267A/S249A/S278A/T279A "A3A" (TP5880), 

S134A/S267A/S249A/S278A/T279A"2A3A" (TP5881), and 

S134E/S267E/S249D/S278D/T279D"2E3D" (TP5882). Mutant alleles were fully 

sequenced at both steps.  

 

YEAST SAE2 EXPRESSION CONSTRUCTS  

The S. cerevisiae wild-type SAE2 gene was cloned into the low-copy pRS313 

vector (Sikorski & Hieter, 1989) under the control of the native SAE2 promoter with a 

2XFlag tag at the N-terminus (cloning details available upon request) to create pTP1496. 

Mutant alleles of SAE2 were made from pTP1496 by QuikChange mutagenesis (Agilent 

Technologies) to create S267A (pTP1402), S134A (pTP2409), S134A/S267A"2A" 

(pTP2450), S267A/S249A/S278A/T279A"A3A" (pTP2331), 

S134A/S267A/S249A/S278A/T279A"2A3A" (pTP2452), 

S267E/S249D/S278D/T279D"E3D" (pTP2408), 

S134E/S267E/S249D/S278D/T279D"2E3D" (pTP2512), and S252A (pTP2322), 

K239Q/K266Q"QQ" (pTP2344) constructs. A high-copy vector containing the wild-type 

SAE2 gene with a 2XFlag tag in pRS425 (Christianson et al, 1992) "FLAG-SAE2/2μ" 

(Kim et al, 2008) was a gift from John Petrini. Mutant sae2 alleles were made in this 

plasmid to generate forms with S267A (pTP1598), S267A/S249A/S278A/T279A"A3A" 
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(pTP2370), S134A/S267A/S249A/S278A/T279A"2A3A" (pTP2467), 

S267E/S249D/S278D/T279D"E3D" (pTP2384), and 

S134E/S267E/S249D/S278D/T279D"2E3D" (pTP2513). 

 

PROTEIN EXPRESSION ANALYSIS IN YEAST 

25 OD yeast cells were collected and lysed as previously described (Foiani et al, 

1994). Cells were first washed with 20% of trichloroacetic acid (TCA), then lysed in 200 

μl of 20% TCA by glass bead vortexing. Glass beads were washed twice with 100 μl of 

5% TCA. The resulting extracts were combined. After centrifugation, the pellet was 

washed twice with water and then dissolved with 1x SDS sample loading buffer by 

vortexing and heating to 100℃ for 5 minutes. The extract was finally clarified by 

centrifugation again and subjected to Protein blotting with anti-Sae2 antibody (custom 

polyclonal made in mouse, Precision Antibody) followed by anti-yeast ADH antibody 

(Abcam). For estimations of wild-type Sae2 concentrations in cells with genomic and low 

copy plasmid expression, yeast cells were lysed in lysis buffer (see Recombinant Protein 

Expression, above) and vortexed in the presence of glass beads (20 times 1 minute each). 

After removal of insoluble material by centrifugation at 20800 g for 20 minutes at at 4°C, 

Sae2 protein was isolated with anti-Flag agarose beads, and eluted Sae2 was compared 

with a titration of known amounts of MBP-Sae2 using quantitative western blotting 

(Licor Odyssey), as well as with TCA-precipitated material from high copy expression 

strains.  
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MASS SPECTROMETRY: POST-TRANSLATIONAL MODIFICATIONS 

Flag-tagged Sae2 was isolated from 12,000 OD yeast cells as described above 

under "recombinant protein expression" and separated using 12% SDS-PAGE, followed 

by staining with Coomassie Blue. The Sae2 band was excised from the gel and 

sequentially washed with 25 mM ammonium bicarbonate, acetonitrile, and 10 mM 

dithiothreitol at 60°C and 50 mM iodoacetamide at room temperature. Trypsin and 

elastase digestion was performed at 37°C for 4 h. After quenching with formic acid, the 

supernatant was analyzed. Each gel digest was analyzed by nano LC/MS/MS with a 

Waters NanoAcquity HPLC system interfaced to a ThermoFisher LTQ Orbitrap Velos by 

MS Bioworks, LLC (Ann Arbor, MI). Peptides were loaded on a trapping column and 

eluted over a 75μm analytical column at 350 nL/min; both columns were packed with 

Jupiter Proteo resin (Phenomenex). The mass spectrometer was operated in data-

dependent mode, with MS performed in the Orbitrap at 60,000 FWHM resolution and 

MS/MS performed in the LTQ. The fifteen most abundant ions were selected for MS/MS. 

Data were searched using a local copy of Mascot with the following parameters: 

Enzyme: Trypsin or None (for chymotrypsin, elastase and pepsin); Database: 

SGD (forward and reverse appended with common contaminants and recombinant SAE2 

sequence); Fixed modification: Carbamidomethyl (C); Variable modifications: Oxidation 

(M), Acetyl (N-term, K), Pyro-Glu (N-term Q), Deamidation (N,Q), Phospho (S,T,Y); 

Mass values: Monoisotopic; Peptide Mass Tolerance: 10 ppm; Fragment Mass Tolerance: 

0.8 Da; Max Missed Cleavages: 2; Mascot DAT files were parsed into the Scaffold 

version 3 software (Proteome Software, Portland, OR) for validation, filtering to create a 

non-redundant list per sample. Data were filtered using a minimum protein value of 99%, 

a minimum peptide value of 50% (Prophet Scores) and requiring at least two unique 

peptides per protein. Modified peptides were identified with scores greater than or equal 
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to 85% (Peptide Prophet Scores).  Within a given peptide, modification site assignments 

were assessed in Scaffold PTM version 2.1.0 using A-score and also through manual 

validation for low confidence site localization.  Scaffold A-score localization probability 

was greater than 50% except for S149/T151, which were not distinguishable, and 

S244/S249, which were difficult to distinguish from S252.  Top scoring sites are 

reported, with scores reported in the results. 

 

MASS SPECTROMETRY: SAE2 QUANTIFICATION 

Samples for Sae2 quantification by mass spectrometry are prepared as following: 

100 OD yeast cells were collected and lysed similarly to the protocol for the solubility 

assay except the pellet fraction was dissolved in extract buffer without SDS or heating. 

Samples from supernatant or pellet were incubated with 55 mM iodoacetamide in the 

dark at room temperature for 30 minutes, followed by trypsin digestion (2 μg trypsin for 

1-2 mg/ml total protein) at 37℃ for 4 hours. Digestion was stopped by adding 1% formic 

acid. Samples were cleaned up by Pierce C18 Spin Column (Thermo Scientific) and 

followed by 50,000 MWCO Microcon filter (Millipore). 

Data dependent and the dose response LC-oxpSRM analyses were both performed 

on a Thermo LTQ-Orbitrap Elite (San Jose, CA) mass spectrometer equipped with an 

ultra-high-pressure Dionex Ultimate 3000 RSLC nano-LC system (Sunnyvale,CA) with 

buffer A ( 0.1% (v/v) formic acid in water) and buffer B (0.1% (v/v) formic acid in 

acetonitrile). Peptides were concentrated onto an in-house packed 100-nm-inner diameter 

x 2-cm C18 column (Magic C18, 3 µm, 100 Å, Michrom Bioresources Inc.) then 

separated on a 75-nm-inner diameter x 50-cm C18 fused silica column. Liquid 

chromatography was performed using a gradient of 5-40% buffer B over 200 min. For FT 
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MS1/ion trap MS2 targeted experiments, one scan cycle included an MS1 scan (300-

1700) at a resolution of 60,000 followed by MS2 on selected Sae2 peptides. 

Peptide/protein identification was performed with ProteomeDiscoverer 1.3 embedded 

with SEQUEST (Thermo Scientific, San Jose, CA, USA). The search parameters used 

were as follows: two missed cleavages were permitted, fixed modifications on cysteine 

carbamidomethylation, variable modifications on oxidized methionine and, 10 ppm 

precursor tolerance and 0.8 Da MS/MS tolerance. Peptide identifications were filtered 

using Percolator, where a 5% false discovery rate was applied. Skyline quantitation: A 

spectra library was created from the ProteomeDiscoverer result to determine extracted 

ion current peak area for full scan MS1 filtering feature in Skyline software for the 5 

transitions for each targeted peptide. A spectral library was created from the 

ProteomeDiscoverer result.  Skyline v1.4 was applied for chromatogram extraction from 

MS1 precursor of an ADH peptide (GVIFYESHGK) and targeted MS/MS spectra of 

Sae2 peptides (DNFLFDFNTNPLTK, EQLNQIVDDGCFFWSDK) for peak area 

calculation. The MS1 precursor isotopic import filter was set to a count of three, (M, 

M+1, and M+2) at a resolution of 60,000. Similarly, extracted ion count peak areas for 

MS2 fragment ions were summed for 5 transitions for each targeted peptide.   

 

YEAST CELL IMMUNOFLUORESCENCE STAINING 

25 OD yeast cells expressing wild-type or mutant Sae2 in a low-copy plasmid 

were collected, washed with water, and resuspended in media containing 0.167 mg/ml 

alpha factor (GenScript). After 2 hours incubation, cells were collected, washed with 

water, and released into media containing 0.03% MMS. 5 OD of cells were collected 0, 

20, 40, 60 minutes after release and then fixed with 3% formaldehyde for 30 minutes. 
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Fixed cells were digested with 0.5 unit/ml zymolase (Zymo Research) at 30℃ for 2 

hours, and then incubated with 1:2000 monoclonal anti-flag M2 antibody (Sigma) at 

room temperature for 1 hour, followed by 1:1000 Alexa Fluor 488 donkey anti-mouse 

(Invitrogen) secondary antibody at room temperature for another 30 minutes. After 

washing with PBS, cells were stained with 1 μg/ml DAPI in PBS solution for 5 minutes.  

 

AUTOMATED IMAGESTREAM MICROSCOPY 

10 OD of yeast cells expressing wild-type or mutant Sae2 in a low-copy plasmid 

were collected 0, 20, 40, 60 minutes after release from alpha factor into media containing 

0.03% MMS and then fixed as above. The immunofluorescence staining steps are also 

the same as above. The stained cells were then analyzed by ImageStreamX (Amnis) with 

a 405 nm laser to detect DAPI signal and a 488 nm laser to detect Alexa Fluor 488 signal. 

About 5000 cells were counted from each sample. The resulting data were analyzed by 

IDEAS software (Amnis). The data were first compensated by using data from cells 

stained with DAPI only or Alexa Flour 488 only, and then gated on focused cells, 

followed by single cells and fully digested cells. The resulting cell population (>500) was 

then scored for foci formation with the spot counting function of IDEAS by comparing to 

a training set of cells (>50) with defined Sae2 foci.  

 

FLUORESCENT MICROSCOPY 

Sae2-YFP (W4249-5C), Sae2-S267A-YFP (TP3502), and Sae2-S267E-YFP 

(TP3495) were grown in 5 ml SC medium plus 100 mg/L adenine at 23ºC overnight, and 

either harvested for microscopy or exposed to 40 Gy ionizing radiation (Gammacell 220 

Cobalt-60 Irradiator) by centrifugation and embedded in 1.4% low melting agar. Images 
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were captured under a 100X magnification oil immersion objective (1.46NA) on a Leica 

DM5500B upright microscope illuminated with a 100W mercury arc lamp and high 

efficiency YFP filter cube (Leica Microsystems). The images were captured with a 

Hamamatsu Orca AG cooled digital CCD camera, operated by Volocity software 

(Improvision). Stacks of 11 0.3 micron sections were captured using the following 

channels and exposure times: DIC (12 ms) and YFP (2800 ms). Approximately 200-300 

cells were analyzed for each strain and standard errors plotted.  Images were processed 

and enhanced identically using Volocity software. 

 

IN VITRO KINASE ASSAYS 

The dimer form of wild-type Sae2 protein was incubated with 2.5 nM Tel1, 10 

nM MRX and/or 10 ng DNA (1 kb plus DNA ladder, Invitrogen), in the presence of 1 

mM ATP, 5 mM MgCl2, 50 mM KCl, 1 mM DTT, 50 mM HEPES buffer pH 7.5 and 

10% glycerol in a volume of 40 μl at 30℃ for 90 min. Reaction products were analyzed 

by western blotting with anti-phospho-SQ/TQ antibody (Cell Signaling) followed by anti-

Sae2 antibody (custom antibody, Precision). To analyze CDK phosphorylation of Sae2, 

the dimer form of wild-type or S267A mutant Sae2 protein was incubated with human 

CDK2-cyclin A (New England Biolabs) and 32P-ATP, in the presence of 50 mM Mg2+, 

50 mM MOPS, pH 7.2, 4 mM EDTA, 10 mM EGTA, 0.5 mM DTT and 25 mM β-

Glycerophosphate. After 40 min. incubation at 37℃, reaction products were separated by 

12% SDS-PAGE and detected by phosphorimager analysis. For the two-step in vitro 

kinase assay, Sae2 protein was first incubated with CDK at 37℃ for 30 minutes, then 

incubated with Tel1, MRX and/or DNA (as indicated in Figure 4) at 30℃ for additional 

90 minutes. Reaction products were separated by 6% SDS-PAGE in the presence of 50 
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μM MnCl2 and 25 μM phos-tag reagent (NARD Institute) in the separating gel to 

accentuate the differences in charge induced by phosphorylation, then transferred to 

PVDF membrane and subjected to western blotting with anti-phospho-SQ/TQ antibody 

followed by anti-Sae2 antibody. 

 

GEL FILTRATION 

Flag-Sae2 protein was isolated as described above in Recombinant Protein 

Expression, and the eluate from the anti-Flag antibody resin was separated by gel 

filtration using a Superdex200 column (GE) as previously described (Lengsfeld et al, 

2007). Fractions #16 to #36 after the exclusion volume were tested for Sae2 protein 

concentration by protein blotting or dot blotting and quantitated using the LiCor Odyssey 

system. Examples shown in the figures are representative of several trials. 

 

SAE2 SOLUBILITY ASSAY 

Yeast cells expressing Sae2 from high-copy or low-copy plasmids were 

synchronized with alpha factor and then released into media with or without 0.03% MMS 

as described above. For MG132 treatment (Liu et al, 2007),  yeast cells were grown 

overnight in a synthetic medium (0.17% yeast nitrogenous base without ammonium 

sulfate) supplemented with 0.1% proline, appropriate amino acids, and 2% glucose as the 

carbon source. The culture was re-inoculated into fresh media with 0.003% SDS and 

alpha factor at OD600 0.5 and grew for an additional 3 h at 30°C. Then cells were released 

into media with 0.03% MMS and 75μM MG132 (Fisher Scientific) or the control buffer 

dimethyl sulfoxide (DMSO). 
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Samples were collected every 20 minutes from the release, and lysed by glass 

bead vortexing in extract buffer (100 mM Tris-HCl, pH 8.0, 250 mM ammonium sulfate, 

1 mM EDTA, 10% glycerol) with protease inhibitor cocktail (Roche). The cell lysates 

were centrifuged at 20800 g for 20 minutes at 4°C to separate the supernatant from the 

pellet. Sae2 protein was extracted from the pellet with extract buffer containing 1% SDS 

by vortexing and heating to 100°C for 5 minutes, followed by centrifugation. Both 

supernatant and pellet extracts were analyzed by western blotting with anti-Sae2 

antibody, followed by anti-ADH antibody. Sae2 levels on each blot were normalized to 

ADH for quantification. Examples shown in the figures are representative of several 

trials. 

 

YEAST FLOW CYTOMETRY ANALYSIS 

0.5 OD of yeast cells were collected and fixed with 70% ethanol at 4℃ overnight 

with rotation. After fixation, cells were washed and sonicated (1 second x 3), and 

incubated with 0.25 mg/ml RNase A at 37℃ overnight. Cells were then incubated with 5 

mg/ml pepsin at 37℃ for 15 minutes and then sonicated again (1 second x 3). Next, cells 

were stained with 2 μM SYTOX green (Invitrogen) at room temperature for 30 minutes, 

and analyzed by BD Fortessa flow cytometry with a 488 nm laser.  
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CHAPTER 3: PHOSPHORYLATION-REGULATED TRANSITIONS 
IN AN OLIGOMERIC STATE CONTROL THE ACTIVITY OF THE 

SAE2 DNA REPAIR ENZYME 

 

INTRODUCTION 

DNA double-strand breaks (DSBs) are a deleterious form of DNA damage that 

must be repaired correctly to avoid mutagenic consequences including chromosomal 

rearrangements, deletions, and translocations. Eukaryotic cells use a combination of two 

broadly-defined pathways to repair DSBs: non-homologous end joining (NHEJ) and 

homologous recombination (HR) (Symington & Gautier, 2011). In budding yeast, the 

choice of DSB repair pathway largely depends on the cell cycle phase. Most DSBs 

detected in the G1 phase of the cell cycle are repaired by NHEJ, while DSBs detected 

during the S and G2 phases are repaired by one of several forms of homologous 

recombination (Wohlbold & Fisher, 2009). Cyclin-dependent kinase (CDK) is required 

for this cell cycle dependency (Aylon et al, 2004; Ira et al, 2004), and a few of the targets 

involved in this process have been identified (Chen et al, 2011; Huertas et al, 2008; 

Matsuzaki et al, 2012; Wohlbold & Fisher, 2009). 

 

* Portions of this chapter have been published in Molecular and Cellular Biology, 2014 

Mar;34(5):778-93. Fu Q, Chow J, Bernstein KA, Makharashvili N, Arora S, Lee CF, 

Person MD, Rothstein R, Paull TT “Phosphorylation-regulated transitions in an 

oligomeric state control the activity of the Sae2 DNA repair enzyme.” (Fu et al, 2014) 

Author Contributions: Fu Q and Paull TT designed the research and wrote the 

manuscript; Fu Q performed most of the experiments; other authors performed part of 

the experiments. 
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CDK-mediated phosphorylation of Sae2 is critical for the 5' strand resection of 

DSBs (Huertas et al, 2008), a processing event that is a key transition point in the NHEJ 

versus HR decision. Strand resection is impaired in G1 phase, in part through inhibition 

by Ku and other NHEJ factors, but resection occurs efficiently in S and G2 (Barlow et al, 

2008; Krogh & Symington, 2004; Moore & Haber, 1996). The resection process occurs 

in two stages: an initiating phase of short-range resection (~100 to 200 nucleotides) (Zhu 

et al, 2008) that is promoted and catalyzed by the cooperative activity of Sae2 and the 

Mre11/Rad50/Xrs2 (MRX) complex and a later phase of extensive resection (up to 

several kilobases) catalyzed by the redundant activities of Exo1 and Dna2 (Mimitou & 

Symington, 2009; Paull, 2010). Dna2, which also acts in Okazaki fragment processing, 

was also shown to be a target of CDK phosphorylation (Chen et al, 2011). 

Mutation of the CDK target site on Sae2 to alanine (S267A) was previously 

shown to reduce the rate and extent of DSB resection and to increase the sensitivity of 

yeast cells to DNA-damaging agents (Huertas et al, 2008), indicating that CDK-

dependent phosphorylation of Sae2 is important for cells to repair damage. Mec1/Tel1-

mediated phosphorylation of Sae2 after DNA damage was also demonstrated, and 

mutation of 5 putative SQ/TQ phosphorylation sites in Sae2 increased DNA damage 

sensitivity and decreased rates of mitotic recombination (Baroni et al, 2004), although it 

is not known whether these sites are the actual phosphorylation sites in vivo and what 

effect any of these phosphorylation sites have on Sae2 activities. 

We have previously characterized the activities of recombinant Sae2 in vitro, in 

the form of a maltose-binding protein (MBP) fusion protein expressed and purified from 

bacteria (Lengsfeld et al, 2007). The recombinant protein is recovered in three different 

forms (monomer, dimer, and multimer), but these do not show equivalent specific 

activities. The monomer form shows the highest activity in binding to DNA and cleaving 
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DNA in 5’ flaps and in single-stranded DNA (ssDNA) regions adjacent to hairpin 

structures, while the dimer is less active and the multimer is inactive. These DNA-

binding and nuclease activities are consistent with observations that Sae2 and the MRX 

complex are essential for the processing of hairpin recombination intermediates in vivo 

(Lobachev et al, 2002; Rattray et al, 2001; Rattray et al, 2005) and for the removal of 5' 

covalent Spo11 conjugates during meiosis (McKee & Kleckner, 1997; Neale et al, 2005; 

Prinz et al, 1997). Recombinant monomeric Sae2 also strongly increases the activity of 

yeast Exo1 in vitro in a manner that is cooperative with MRX; this activity primarily acts 

through an increased recruitment of Exo1 to DSB ends (Nicolette et al, 2010). 

In this study, we investigate the activity of Sae2 in vivo and in vitro to determine 

how CDK and Tel1 phosphorylation regulates 5' strand resection and HR through Sae2. 

We characterized the sites of post-translational modification through mass spectrometry 

(MS) and genetic analysis and found that, surprisingly, the phosphorylation events 

regulate the oligomeric state of the Sae2 protein in a DNA damage-dependent and 

dynamic manner. We present a model of Sae2 regulation in which the natural insolubility 

of this protein provides a strong barrier to its activity; however, it is a barrier that can be 

breached rapidly and reversibly by transient phosphorylation. 

 

 

RESULTS 

 

Mutation of phosphorylation sites in Sae2 alters the multimer-monomer distribution 

We have previously analyzed the activities of recombinant Sae2 in vitro as a 

maltose-binding protein (MBP) and histidine-tagged fusion protein expressed in E. coli, 
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where the recombinant protein elutes as three distinct forms from gel filtration: a 

multimer, a dimer and a monomer (Lengsfeld et al, 2007). The monomeric form of Sae2 

exhibits the highest specific activity in nuclease assays in vitro, with the dimeric form 

showing ~10-fold less activity than the monomer and the oligomeric form showing 

essentially no activity (Figure 3.1). Although this result suggests that phosphorylation is 

not required for enzymatic activity since the E. coli-produced protein is not 

phosphorylated, we mutated the S267 residue to either an alanine (A) or a glutamic acid 

(E) and found that these changes affected the relative amounts of protein recovered in the 

multimeric peak (Figure 3.2A to C). Further, mutation of all five putative Tel1 

phosphorylation sites (Baroni et al, 2004) to aspartic acid (D) together with S267E 

(5D/S267E) caused the distribution of Sae2 to change dramatically: the multimer peak 

nearly disappeared, and the monomer-size protein species increased in abundance (Figure 

3.2D). The distribution of different forms in wild-type and mutant Sae2 was quantified in 

Figure 3.2E. 

Analysis of the activities of the monomer forms of wild-type, S267A, and 

5D/S267E recombinant proteins showed that they are all active in endonuclease activity 

(Figure 3.3). The proteins were also tested in an in vitro resection assay with MRX, Exo1 

and Ku, and the degradation of the 5' strand at one end of the DNA was analyzed by 

quantitative PCR as previously described (Nicolette et al, 2010). Under these conditions 

where the Ku heterodimer is present, Exo1 is strongly stimulated by MRX and by Sae2 

(Nicolette et al, 2010). Interestingly, the S267A mutant protein appeared to be much less 

active than the wild-type protein in the stimulation of Exo1 in vitro when the 

concentrations of MRX and Exo1 were limiting (Figure 3.4). The wild-type dimer protein 

showed a lower specific activity in this assay, as in the nuclease assay, but still exhibited 

a stimulatory effect on Exo1 in the presence of Ku and MRX. 
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Figure 3.1 Nuclease assays in vitro with recombinant wild-type Sae2 monomers, 
dimmers, and oligomers purified by gel filtration. 

Resection assays were carried out with 3' 32P-labeled hairpin DNA substrate (as 
shown on top) and 0.5, 2, or 8 nM wild-type Sae2 protein, respectively. Reaction 
products were separated by denaturing polyacrylamide gel electrophoresis and analyzed 
by use of a phosphorimager. bp, basepair, nt, nucleotides. 
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Figure 3.2 The distribution of recombinant Sae2 protein after gel filtration. 

(A) to (D) E. coli expressed recombinant wild-type or mutant Sae2 protein 
(S267A, S267E, 5D/S267E: S73D+T90D+S249D+T279D+S289D+S267E), containing 
6xHis and MBP affinity tags for purification were analyzed by gel filtration and 
monitored by UV absorbance at 280 nm. (E) Quantitation of the data in (A) to (D) 
showing the total absorbance in each peak. The peaks were defined as oligomer (fraction 
numbers 16~19; 8~9.5 ml), dimer (fraction numbers 20~26; 10~13 ml) and monomer 
(fraction numbers 27~29; 13.5~14.5 ml). 
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Figure 3.3 Nuclease assays in vitro with recombinant Sae2 monomeric protein comparing 
wild-type, S267A, S267E, and E5D 
(S73D+T90D+S249D+T279D+S289D+S267E). 

Resection assays included 3' 32P-labeled hairpin DNA substrate (as shown on top) 
and 0.5, 2, or 8 nM monomeric Sae2 protein, respectively. Reaction products were 
separated by denaturing polyacrylamide gel electrophoresis and analyzed by 
phosphorimager. 
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Figure 3.4 In vitro DNA resection assays with Exo1, MRX, Sae2 or Ku. 

The monomer form of recombinant wild-type (WT) or mutant Sae2 protein (or 
the dimer form of the wild-type protein) (2.5 nM monomer, 2.5 nM and 25 nM dimer) 
was used in an in vitro DNA resection assay with yeast Exo1 (yExo1) (1.2 nM), yeast 
MRX (yMRX) (3.5 nM) or yeast Ku (yKu) (20 nM) protein, as indicated. The 
degradation of the 5’ strand at one end of the DNA was analyzed by SYBR green staining 
for total double-stranded DNA (top) or by quantitative PCR with primers located 29 bp or 
1025 bp from the end (bottom). 
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Sae2 phosphorylation is essential for the survival of DNA damage in vivo 

From the analysis of MBP-Sae2 proteins, we observed that mutations in residues 

predicted to be phosphorylation targets strongly affected oligomeric distributions and also 

had separate effects on resection. To address how phosphorylation and other 

modifications affect Sae2 activity in a natural context, we sought to identify those sites 

using Sae2 protein isolated from S. cerevisiae. Flag-tagged wild-type or S267A mutant 

Sae2 proteins were immunoprecipitated by anti-Flag antibody-conjugated agarose beads 

(Sigma) from yeast cells treated with or without the DNA alkylating agent methyl-

methane-sulfonate (MMS) and then analyzed by mass spectrometry. As summarized in 

Figure 3.5, many sites were phosphorylated, with additional sites found only in the 

MMS-treated wild-type sample. Within this group there were two SQ/TQ sites, S249 and 

T279, which are likely to be Tel1 targets. Phosphorylation on some sites (S21, S134, 

S244, S249, S278 and T279) was not observed in an S267A mutant, indicating that 

phosphorylation of these sites is dependent on CDK phosphorylation of S267. Two 

lysines on Sae2, K239 and K266, were also acetylated after DNA damage. Top-scoring 

sites are summarized in Table 3.1. 
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Figure 3.5 Post-translational modifications of Sae2 protein identified by mass 
spectrometry. 

Yeast cells expressing Flag-tagged Sae2 (wild-type or S267A mutant) were 
exposed to mock or MMS treatment (0.03% MMS for 4 hours), and Sae2 was isolated by 
immunoprecipitation and analyzed by mass spectrometry. The diagram shows all 
identified phosphorylation and acetylation sites. Also see Table 3.1 below for a detailed 
summary of top-scoring sites. 
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PTM sample

description 

(‐ vs + 

damage)

Scaffold 

PTM 

probability A‐score

Localization 

Probability Sequence

Mascot 

Ion score

Mascot 

Identity score Modifications Observed

Actual 

Mass Charge

Delta 

PPM Start Stop

S21 10840 WT + 98% 1000 100% (I)LKELsLDELLNV(Q) 61.59 49.007492 Phospho (+80) 733.3807 1,464.75 2 ‐0.7187 17 28

S21 10940 WT +  62% 1000 100% (I)LKELsLDELLNV(Q) 33.87 45.418285 Phospho (+80) 733.3806 1,464.75 2 ‐0.8551 17 28

T75 10840 WT + 96% 0 16% (K)LAEILcHEKNAPQQSSQtSAGPGEQDSEDFILTQFDEDIKK(E) 35.81 37.846886 Carbamidomethyl (+57), Phospho (+80) 1,171.79 4,683.13 4 0.3905 58 98

S76 10840 WT + 99% 18.88 99% (L)cHEKNAPQQSSQTsAGPGEQDSEDF(I) 59.84 53.362576 Carbamidomethyl (+57), Phospho (+80) 938.7023 2,813.09 3 ‐0.851 63 87

T75 10898 S267A +  90% 22.3 96% (L)cHEKNAPQQSSQtSAGPGEQDSEDF(I) 45.48 49.426083 Carbamidomethyl (+57), Phospho (+80) 938.7033 2,813.09 3 0.2151 63 87

S76 10898 S267A +  98% 27.16 100% (L)cHEKNAPQQSSQTsAGPGEQDSEDF(I) 55.13 49.449165 Carbamidomethyl (+57), Phospho (+80) 938.7031 2,813.09 3 0.001874 63 87

S76 10940 WT +  100% 22.3 100% (L)cHEKNAPQQSSQTsAGPGEQDSEDF(I) 70.13 49.421867 Carbamidomethyl (+57), Phospho (+80) 938.703 2,813.09 3 ‐0.1047 63 87

S76 10898 S267A +  87% 12.87 91% (L)cHEKNAPQQSSQTsAGPGEQDSEDFILTQFDEDIKKESAEVHY(R) 53.37 58.099903 Carbamidomethyl (+57), Phospho (+80) 992.8375 4,959.15 5 1.039 63 105

S84 10840 WT + 99% 11.86 82% (K)NAPQQSSQTSAGPGEQDsEDFILTQFDEDIKK(E) 45.24 38.302036 Phospho (+80) 1,197.53 3,589.57 3 ‐0.7602 67 98

S73 10841 WT ‐  99% 8.36 69% (K)NAPQQSsQTSAGPGEQDSEDFILTQFDEDIKK(E) 42.56 38.1191 Phospho (+80) 1,197.53 3,589.58 3 0.9109 67 98

S84 10841 WT ‐  99% 20.85 99% (K)NAPQQSSQTSAGPGEQDsEDFILTQFDEDIKK(E) 44.41 38.128464 Phospho (+80) 1,197.53 3,589.58 3 1.746 67 98

S84 10898 S267A +  89% 5.84 75% (K)NAPQQSSQTSAGPGEQDsEDFILTQFDEDIKK(E) 26.23 34.1946 Phospho (+80) 898.4001 3,589.57 4 ‐0.7256 67 98

S84 10898 S267A +  100% 24.63 100% (K)NAPQQSSQTSAGPGEQDsEDFILTQFDEDIKK(E) 66.34 34.217686 Phospho (+80) 1,197.53 3,589.57 3 0.07536 67 98

S73 S84 10898 S267A +  94% 0, 21.39 18%, 99% (K)NAPQQSsQTSAGPGEQDsEDFILTQFDEDIKK(E) 30.55 33.884563 Phospho (+80), Phospho (+80) 1,224.19 3,669.54 3 ‐1.106 67 98

S73 T75 10898 S267A +  100% 9.14, 0 53%, 7% (K)NAPQQSsQtSAGPGEQDSEDFILTQFDEDIKK(E) 54.55 33.911118 Phospho (+80), Phospho (+80) 1,224.19 3,669.54 3 ‐0.289 67 98

S76 10942 WT + 100% 8.36 65% (K)NAPQQSSQTsAGPGEQDSEDFILTQFDEDIKK(E) 49.76 34.217686 Phospho (+80) 1,197.53 3,589.57 3 0.07536 67 98

S76 10898 S267A +  95% 12.87 77% (K)NAPQQSSQTsAGPGEQDSEDFILTQFDEDIKKESAEVHYR(N) 29.57 33.93224 Phospho (+80) 1,141.26 4,561.02 4 0.6564 67 106

S76 10940 WT +  64% 12.65 98% (S)SQTsAGPGEQDSEDFI(L) 33.97 44.966946 Phospho (+80) 874.3379 1,746.66 2 ‐0.66 73 88

S84 10840 WT + 56% 7.28 85% (T)SAGPGEQDsEDFILT(Q) 35.37 49.4388 Phospho (+80) 823.3354 1,644.66 2 0.2106 76 90

S134 10939 WT ‐ 82% 19.02 100% (I)SEFSsPLNGL(N) 36.28 42.53144 Phospho (+80) 565.7413 1,129.47 2 ‐1.109 130 139

S134 10940 WT +  94% 29.9 100% (I)SEFSsPLNGL(N) 45.49 42.387486 Phospho (+80) 565.7416 1,129.47 2 ‐0.578 130 139

S134 10939 WT ‐ 93% 23.88 100% (I)SEFSsPLNGLNNL(S) 45.93 45.29892 Phospho (+80) 736.326 1,470.64 2 ‐1.191 130 142

S134 10940 WT +  73% 35.92 100% (I)SEFSsPLNGLNNL(S) 36.32 45.174995 Phospho (+80) 736.3257 1,470.64 2 ‐1.599 130 142

S149 10840 WT + 99% 13.54 3% (L)SDLEDcsDTVIHEK(D) 68.97 49.48799 Carbamidomethyl (+57), Phospho (+80) 864.3448 1,726.68 2 ‐0.5318 143 156

T151 10840 WT + 95% 0 3% (L)SDLEDcSDtVIHEKDNDKENK(T) 51.67 53.753323 Carbamidomethyl (+57), Phospho (+80) 857.689 2,570.05 3 ‐1.243 143 163

S179 10898 S267A +  98% 21.94 99% (R)KLLGIELENPESTsPNLY(K) 56.99 48.726864 Phospho (+80) 1,049.01 2,096.01 2 0.6421 166 183

S179 10840 WT + 55% 19.02 97% (R)KLLGIELENPESTsPNLYK(N) 38.67 52.802254 Phospho (+80) 1,113.06 2,224.10 2 0.1558 166 184

S179 10840 WT + 100% 16.47 95% (R)KLLGIELENPESTsPNLYK(N) 42.46 35.221832 Phospho (+80) 742.3788 2,224.11 3 5.155 166 184

S179 10840 WT + 100% 21.94 99% (R)KLLGIELENPESTsPNLYK(N) 60.83 35.277588 Phospho (+80) 1,113.06 2,224.11 2 4.65 166 184

Y183* 10841 WT ‐  95% N/A 3% (R)KLLGIELENPESTSPNLyK(N) 33.04 35.407047 Phospho (+80) 742.3762 2,224.11 3 1.65 166 184

S179 10898 S267A +  100% 16.47 96% (R)KLLGIELENPESTsPNLYK(N) 46.06 31.83839 Phospho (+80) 742.3762 2,224.11 3 1.65 166 184

S179 10898 S267A +  100% 21.94 99% (R)KLLGIELENPESTsPNLYK(N) 59.06 31.917305 Phospho (+80) 1,113.06 2,224.10 2 ‐0.7431 166 184

S179 10940 WT +  94% 7.48 72% (R)KLLGIELENPESTsPNLYK(N) 29.98 31.821291 Phospho (+80) 742.3754 2,224.10 3 0.571 166 184

S179 10840 WT + 100% 8.73 45% (R)KLLGIELENPESTsPNLYKNVK(D) 55.98 33.504417 Phospho (+80) 856.1178 2,565.33 3 8.639 166 187

S179 10840 WT + 100% 19.02 98% (K)LLGIELENPESTsPNLYK(N) 94.56 35.57146 Phospho (+80) 1,049.02 2,096.02 2 3.503 167 184

S179 10841 WT ‐  100% 26.38 100% (K)LLGIELENPESTsPNLYK(N) 74.35 35.667908 Phospho (+80) 1,049.01 2,096.01 2 0.6421 167 184

S179 10898 S267A +  100% 23.88 99% (K)LLGIELENPESTsPNLYK(N) 64.28 31.95623 Phospho (+80) 1,049.01 2,096.01 2 ‐0.3116 167 184

S179 10940 WT +  100% 23.88 99% (K)LLGIELENPESTsPNLYK(N) 53.79 31.95623 Phospho (+80) 1,049.01 2,096.01 2 ‐0.3116 167 184

S179 10840 WT + 98% 17.86 97% (K)LLGIELENPESTsPNLYKNVK(D) 41.82 34.49941 Phospho (+80) 1,219.63 2,437.24 2 10.27 167 187

S179 10840 WT + 99% 3.87 44% (K)LLGIELENPESTsPNLYKNVK(D) 37.81 35.3428 Phospho (+80) 813.4133 2,437.22 3 1.505 167 187

S179 10898 S267A +  97% 29.9 100% (L)LGIELENPESTsPN(L) 55.3 45.907303 Phospho (+80) 790.3477 1,578.68 2 ‐0.4769 168 181

S179 10899 S267A ‐ 89% 29.9 100% (L)LGIELENPESTsPN(L) 44.37 45.907303 Phospho (+80) 790.3477 1,578.68 2 ‐0.4769 168 181

S179 10898 S267A +  92% 35.92 100% (L)LGIELENPESTsPNL(Y) 48.1 47.076298 Phospho (+80) 846.89 1,691.77 2 ‐0.1497 168 182

S179 10840 WT + 86% 26.38 100% (L)LGIELENPESTsPNLYK(N) 48.68 52.426533 Phospho (+80) 992.4691 1,982.92 2 ‐0.1781 168 184

S179 10840 WT + 97% 23.88 100% (L)LGIELENPESTsPNLYK(N) 63.84 52.42914 Phospho (+80) 992.4695 1,982.92 2 0.2251 168 184

S179 10841 WT ‐  96% 35.92 100% (L)LGIELENPESTsPNLYK(N) 60.15 52.414642 Phospho (+80) 992.4693 1,982.92 2 0.02348 168 184

S179 10898 S267A +  83% 20.35 100% (L)LGIELENPESTsPNLYKNV(K) 44.44 49.472084 Phospho (+80) 1,099.03 2,196.04 2 0.977 168 186

S179 10898 S267A +  61% 29.9 100% (L)GIELENPESTsPNLY(K) 33.25 46.991695 Phospho (+80) 871.8803 1,741.75 2 0.6579 169 183

Y229 10941 WT ‐ 100% 137.48 100% (R)FyAQVGKPEDSK(H) 44.18 30.614525 Phospho (+80) 724.8214 1,447.63 2 ‐7.147 228 239

K239 10840 WT + 98% 22.53 99% (R)FYAQVGKPEDSkHR(S) 35.21 35.35294 Acetyl (+42) 426.7081 1,702.80 4 ‐23.21 228 241

K239 10840 WT + 100% 46.2 100% (R)FYAQVGKPEDSkHR(S) 46.92 34.52706 Acetyl (+42) 568.6208 1,702.84 3 ‐1.329 228 241

S249 10840 WT + 96% 3.87 42% (R)SLSVVIEsQNSDYEFAFDNLR(N) 34.98 37.39256 Phospho (+80) 838.3819 2,512.12 3 3.172 242 262

S252 10840 WT + 100% 16.65 95% (R)SLSVVIESQNsDYEFAFDNLR(N) 57.16 37.420177 Phospho (+80) 1,257.07 2,512.12 2 3.003 242 262

S244 10840 WT + 100% 7.84 28% (R)SLsVVIESQNSDYEFAFDNLR(N) 57.79 37.403625 Phospho (+80) 1,257.07 2,512.13 2 3.799 242 262

S252 10898 S267A +  99% 4.91 60% (R)SLSVVIESQNsDYEFAFDNLR(N) 36.36 33.406425 Phospho (+80) 838.378 2,512.11 3 ‐1.484 242 262

S252 10840 WT + 100% 9.17 79% (R)SLSVVIESQNsDYEFAFDNLRNR(S) 56.79 37.48188 Phospho (+80) 928.4271 2,782.26 3 ‐0.1543 242 264

S267 10940 WT +  75% 7.53 85% (L)RNRSKsPPGFGRL(D) 33.9 45.794178 Phospho (+80) 388.703 1,550.78 4 ‐0.1968 262 274

S267 10940 WT +  51% 43.88 100% (R)NRSKsPPGFG(R) 30.07 44.00728 Phospho (+80) 563.7554 1,125.50 2 ‐0.58 263 272

S267 10940 WT +  89% 40.71 100% (R)NRSKsPPGFG(R) 42.08 44.00866 Phospho (+80) 563.7553 1,125.50 2 ‐0.7576 263 272

S265, S267 10939 WT ‐ 72% 1000, 1000 100%, 100% (R)NRsKsPPGFGR(L) 24.48 29.278833 Phospho (+80), Phospho (+80) 681.7889 1,361.56 2 ‐0.7962 263 273

S267 10941 WT ‐ 81% 12.92 98% (R)NRSKsPPGFGR(L) 22.49 29.858753 Phospho (+80) 428.2064 1,281.60 3 ‐0.4907 263 273

S267 10840 WT + 54% 35.81 100% (R)SKsPPGFG(R) 31.5 45.9543 Phospho (+80) 428.6837 855.353 2 ‐0.06238 265 272

S267 10939 WT ‐ 54% 44.85 100% (R)SKsPPGFG(R) 27.28 41.2704 Phospho (+80) 428.6835 855.352 2 ‐0.5295 265 272

S267 10940 WT +  78% 25.25 100% (R)SKsPPGFG(R) 34.45 41.438263 Phospho (+80) 428.6836 855.353 2 ‐0.2959 265 272

S267 10840 WT + 80% 0 11% (R)SKsPPGFGR(L) 23.18 32.14579 Phospho (+80) 338.1583 1,011.45 3 ‐0.918 265 273

S267 10841 WT ‐  89% 6.79 83% (R)SKsPPGFGR(L) 26.48 32.14579 Phospho (+80) 338.1585 1,011.45 3 ‐0.3254 265 273

S267 10841 WT ‐  96% 11.46 93% (R)SKsPPGFGR(L) 30.77 32.14579 Phospho (+80) 338.1584 1,011.45 3 ‐0.6217 265 273

S267 10939 WT ‐ 69% 21.26 99% (R)SKsPPGFGR(L) 19.16 27.151672 Phospho (+80) 338.1584 1,011.45 3 ‐0.6217 265 273

S267 10939 WT ‐ 77% 31.19 100% (R)SKsPPGFGR(L) 23.08 27.118073 Phospho (+80) 506.7337 1,011.45 2 ‐1.139 265 273

S267 10940 WT +  69% 8.58 88% (R)SKsPPGFGR(L) 18.69 27.151672 Phospho (+80) 338.1584 1,011.45 3 ‐0.6217 265 273

S267 10940 WT +  96% 10.21 91% (R)SKsPPGFGR(L) 26.92 27.151672 Phospho (+80) 338.1584 1,011.45 3 ‐0.6217 265 273

S267 10941 WT ‐ 100% 7.62 85% (R)SKsPPGFGR(L) 37.41 27.151672 Phospho (+80) 338.1584 1,011.45 3 ‐0.6217 265 273

K266 10898 S267A +  97% N/A 100% (R)SKsPPGFGR(L) 32.5 27.43 Acetyl (+42) 479.759 957.50 2 ‐1.86 265 273

K266 10942 WT + 85% N/A 100% (R)SkSPPGFGR(L) 25.89 27.604225 Acetyl (+42) 487.7561 973.498 2 ‐0.6041 265 273

S267 10942 WT + 55% 44.85 100% (R)SKsPPGFGR(L) 20.58 27.151672 Phospho (+80) 506.7339 1,011.45 2 ‐0.7442 265 273

S267 10942 WT + 87% 8.58 88% (R)SKsPPGFGR(L) 22.59 28.45718 Phospho (+80) 338.1585 1,011.45 3 ‐0.3254 265 273

S267 10840 WT + 69% 11.11 93% (R)SKsPPGFGRLDFPSTQEGNEDK(K) 26.39 37.143295 Phospho (+80) 825.0397 2,472.10 3 0.4329 265 286

S265 10841 WT ‐  98% 0 13% (R)sKSPPGFGRLDFPSTQEGNEDK(K) 38.6 37.12902 Phospho (+80) 825.0386 2,472.09 3 ‐0.9015 265 286

S267 10939 WT ‐ 89% 11.11 93% (R)SKsPPGFGRLDFPSTQEGNEDK(K) 29.49 33.40444 Phospho (+80) 825.0388 2,472.09 3 ‐0.6589 265 286

S265 10940 WT +  99% 0 7% (R)sKSPPGFGRLDFPSTQEGNEDK(K) 39.21 33.428173 Phospho (+80) 825.0387 2,472.09 3 ‐0.7802 265 286

S265 10942 WT + 73% 0 7% (R)sKSPPGFGRLDFPSTQEGNEDK(K) 24.92 33.641754 Phospho (+80) 825.0396 2,472.10 3 0.3116 265 286

S267 10840 WT + 99% 57.06 100% (K)sPPGFGRLDFPSTQEGNEDKK(K) 40.08 36.711727 Phospho (+80) 796.0373 2,385.09 3 10.84 267 287

T279 10840 WT + 98% 7.38 85% (R)LDFPStQEGNEDK(K) 39.86 32.741577 Phospho (+80) 780.3165 1,558.62 2 ‐0.419 274 286

S278 10840 WT + 85% 0 27% (R)LDFPsTQEGNEDKKK(S) 27.66 35.37567 Phospho (+80) 605.9427 1,814.81 3 ‐1.558 274 288

S278 10940 WT +  73% 3.75 70% (R)LDFPsTQEGNEDKKK(S) 23.44 31.370375 Phospho (+80) 605.9425 1,814.81 3 ‐1.889 274 288

T279 10942 WT + 55% 0 27% (R)LDFPStQEGNEDKKK(S) 20.41 31.448853 Phospho (+80) 605.9432 1,814.81 3 ‐0.7321 274 288

T279 10942 WT + 89% 0 30% (R)LDFPStQEGNEDKKK(S) 26.05 31.49527 Phospho (+80) 605.9429 1,814.81 3 ‐1.228 274 288

*Site excluded due to low localization, with assignment to S179 justified based on multiple observations of S179 peptides.  

Table 3.1 Top-scoring sites of Sae2 post-translational modifications identified by MS. 
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On the basis of the analysis of post-translational modifications, individual 

mutations or combinations of mutations were introduced into a low-copy-number plasmid 

containing the wild-type Sae2 gene under the control of the native Sae2 promoter and 

tested for complementation of sae2△ in DNA damage sensitivity tests (representative 

data are shown in Figure 3.6A) and protein expression (Figure 3.6B). Single mutation of 

most of the sites did not increase the sensitivity of yeast cells to camptothecin (CPT) or 

MMS (data not shown), except for the known S267A mutation. However, the 

combination of S267A+S134A (2A) mutations together strongly increased DNA damage 

sensitivity,	 while the combination of S267E and S134E (2E) fully complemented the 

damage sensitivity of sae2△ (Figure 3.6C). Considering that S134 is an SP site, it is 

possible that S134 is also targeted by CDK. Many different combinations of SQ/TQ site 

mutations were also tested, but the highest sensitivity to DNA damage was observed with 

mutation of S134 and S267 combined with three C-terminal sites, S249, S278A, T279A 

(2A3A).  In contrast, the phosphomimic version of these mutations (2E3D) showed 

intermediate levels of growth in the presence of CPT and MMS. Phosphorylation of the 

three most important non-CDK sites (S249, S278 and T279) was not observed by mass 

spectrometry in the S267A mutant, yet the phenotype of the 2A3A mutant-expressing 

strain was clearly more severe than that of either the S267A or S267A/S134A (2A) 

mutant alone. This result suggests that there is likely some low-level phosphorylation of 

S249/S278/T279 in the absence of CDK modification. Overall, however, the survival 

assays showed that phosphorylation of S134, S267, S249, S278 and T279 residues is very 

important for the function of Sae2 in response to DNA damage.  
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Figure 3.6 Low-copy-number plasmid expressed Sae2 phosphorylation mutants have 
increased sensitivity to DNA damage reagents. 

(A) Sae2 was expressed from a low-copy-number plasmid under the control of the 
native Sae2 promoter in sae2△ yeast cells. Fivefold serial dilutions of cells expressing 
the indicated Sae2 alleles were plated on non-selective medium (untreated) or medium 
containing camptothecin or MMS. 2A=S267A+S134A; 3A=S249A+S278A+T279A; 
A3A=S267A+S249A+S278A+T279A; 2A3A=2A and 3A mutations combined; 
E3D=S267E +S249D+S278D+T279D; 2E3D= E3D+S134E. (B) Protein extracts from 
yeast cells as in (A) (without DNA damage) were analyzed by SDS-PAGE and blotted 
with anti-Sae2 and anti-ADH antibodies. (C) The same as in (A), 2E=S267E+S134E. 
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To further confirm the phenotype, we introduced some of the representative 

mutations into the genomic Sae2 locus of a C-terminal YFP-tagged wild-type Sae2 strain. 

In this context, the S267A mutant shows a more severe defect in response to CPT than 

MMS, and the phenotype was generally much more severe than the phenotype with 

plasmid expression, as was the 2E3D mutant phenotype (Figure 3.7A). Similar results 

were observed with ionizing radiation treatment (Figure 3.7B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 58

A

B

A

B

 

Figure 3.7 Genomic expressed Sae2 phosphorylation mutants have increased sensitivity 
to DNA damage reagents and ionizing radiation. 

(A) Selected Sae2 mutations were introduced into the genomic locus of a C-
terminal YFP-tagged wild-type Sae2 strain. Fivefold serial dilutions of cells were plated 
on non-selective medium (untreated) or medium containing camptothecin or MMS. (B) 
The same as in (A), except cells were plated on normal medium first and left untreated or 
exposed to 80 Gy or 160 Gy of ionizing radiation, and grown for 28 hours. 
A3A=S267A+S249A+S278A+T279A; 2A3A=S134A+S267A+S249A+S278A+T279A; 
2E3D=S134E+S267E+S249D+S278D+T279D. 
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Mutation of Sae2 phosphorylation sites impairs Sae2 localization to DNA damage 
sites 

Similar to the MRX complex, Sae2 localizes to DNA break sites very rapidly 

following DNA damage (Lisby et al, 2004). To determine if the phosphorylation of Sae2 

alters its localization, yeast cells expressing Flag-tagged wild-type or mutant Sae2 alleles 

on low-copy-number plasmids were analyzed for focus formation using 

immunofluorescence staining with anti-Flag antibody. Cells were first synchronized in G1 

phase with alpha factor and then released into media containing 0.03% MMS. Samples 

were collected before (time zero, 0) or 20, 40, or 60 minutes after release and then fixed 

for fluorescence-activated cell sorting (FACS) and immunofluorescence staining 

(representative images from each of the strains at the 40-minute time point are shown in 

Figure 3.8A). To quantify the foci, the cells were also imaged and analyzed using an 

automated microscope, which counted approximately 5,000 cells at each time point and 

scored for focus formation using a set of training images for comparison (Figure 3.8B). 

These results show that Sae2 foci are initially present in wild-type cells but transiently 

decrease upon DNA damage and then increase during further damage exposure. Fewer 

cells expressing the 2A3A and 2E3D mutants than the wild-type cells exhibited Sae2 

foci, and the percentage for cells expressing the 2A3A mutant failed to increase above the 

initial percentage of cells showing foci.  
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Figure 3.8 Low-copy-number plasmid expressed Sae2 phosphorylation mutants have 
impaired localization of Sae2 to DNA breaks. 

(A) Yeast cells expressing Sae2 from a low-copy-number plasmid were 
synchronized in G1 with alpha factor and released from the block in the presence of 
0.03% MMS. Cells were collected 0, 20, 40, and 60 minutes after release and fixed with 
formaldehyde. Sae2 was imaged using anti-Flag primary antibody and Alexa Fluor 488 
secondary antibody. Representative images from the 40-minute time point are shown. (B) 
Yeast cells were prepared as in (A) but analyzed using the ImageStreamX (Ammis) 
automated microscope (5,000 cells per strain) to score for Sae2 foci. The percentages of 
cells with foci are shown for each strain at different time points. 
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We also examined the wild-type and the S267A and S267E mutants expressed 

from the chromosome as YFP fusions and found that the wild-type protein increased 

focus formation in response to ionizing radiation, but the S267A and S267E mutant 

strains exhibited reduced responses to DNA damage (Figure 3.9A and B). The S267A-

expressing strain showed a higher basal level of focus-containing cells than the wild-type 

did (p ≤ 0.005), and this level decreased slightly, although not significantly, after ionizing 

radiation treatment. 
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Figure 3.9 Genomic expressed Sae2 phosphorylation mutants have impaired localization 
of Sae2 to DNA breaks. 

(A) Foci of YFP-Sae2 expressed from the chromosomal locus was analyzed as in 
(Lisby et al, 2004) with either no treatment or 40 Gy IR. Representative images are 
shown here. (B) Cells containing YFP-Sae2 foci were quantified, and standard errors 
were plotted (200 to 300 cells per condition). 
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Phosphorylation of Sae2 by CDK primes Sae2 for Tel1 phosphorylation 

The analysis of Sae2 modifications showed that CDK-mediated phosphorylation 

is required for other phosphorylation events, some of which were at Tel1/Mec1 

consensus sites. To test if CDK phosphorylation promotes the SQ/TQ phosphorylation of 

Sae2 after DNA damage in vivo, Flag-tagged Sae2 (wild-type, S267A/S134A [2A], or 

S267E/S134E [2E] mutant) was immunoprecipitated from yeast cells untreated or treated 

with 0.03% MMS. As shown in Figure 3.10, yeast cells with the mutant 2A or 2E Sae2 

plasmids have a significantly lower level of phospho-SQ/TQ signal than the wild-type, 

indicating that CDK phosphorylation increases the SQ/TQ phosphorylation of Sae2 after 

DNA damage in vivo. 

An in vitro kinase assay with both CDK and Tel1 could address the question of 

whether CDK phosphorylation directly primes Sae2 for Tel1 phosphorylation or whether 

this is an indirect effect. To reconstitute Tel1 activity in vitro, HA-tagged Tel1 protein 

was purified from extracts of MMS-treated yeast cells by HA antibody-conjugated 

agarose beads. Recombinant wild-type MBP-Sae2 protein was incubated with Tel1, the 

MRX complex and DNA, and the reaction products were analyzed by protein blotting 

with anti-phospho-SQ/TQ antibody and anti-Sae2 antibody. As shown in Figure 3.11, 

Sae2 was phosphorylated by Tel1 in vitro, requiring the presence of both MRX and 

DNA, identical to our previous observations with human ATM and MRN (Lee & Paull, 

2005). 
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Figure 3.10 CDK phosphorylation increases the SQ/TQ phosphorylation of Sae2 after 
DNA damage in vivo. 

Cells expressing Flag-tagged wild-type (WT), S267A/S134A (2A), or 
S267E/S134E (2E) mutant Sae2 protein were untreated or treated with MMS (0.03% for 
4 hours). Sae2 was isolated by immunoprecipitation, and analyzed by quantitative 
western blotting with anti-phospho-SQ/TQ and anti-Sae2 antibodies. The ratio of 
phospho-SQ/TQ signal to Sae2 signal was normalized to 1 for the wild-type protein with 
MMS treatment, and the corresponding ratios for other samples relative to that for the 
wild-type are shown below each lane. 
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Figure 3.11 Tel1 phosphorylates Sae2 in the presence of MRX and DNA in vitro. 

Recombinant wild-type MBP-Sae2 protein was incubated with purified Tel1, 
MRX and/or DNA as indicated, in the presence of 1mM ATP and 5mM Mg2+ at 30℃ for 
90 minutes. Reaction products were analyzed by protein blotting with anti-phospho-
SQ/TQ antibody and anti-Sae2 antibody. 
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To investigate the role of CDK in this process, we used recombinant human 

CDK2-cyclin A to phosphorylate wild-type or S267A Sae2 protein in an in vitro kinase 

assay in the presence of 32P-ATP, and monitored phosphorylation with 32P incorporation 

(Figure 3.12). Wild-type Sae2 was phosphorylated by CDK, while the S267A mutant 

showed a greatly reduced signal, confirming that S267 is the major CDK phosphorylation 

site on Sae2. Low-level phosphorylation was still observed with the S267A mutant, 

however, suggesting that other CDK target sites exist on Sae2.  

To determine if CDK phosphorylation affects the efficiency of subsequent Tel1 

phosphorylation, a two-step kinase assay was performed in which wild-type Sae2 protein 

was incubated first with CDK, and then with Tel1, MRX and DNA. Reaction products 

were separated by SDS-PAGE in the presence of Phos-tag reagent to accentuate the 

differences in charge induced by phosphorylation (Kinoshita et al, 2008), and then 

analyzed by protein blotting for phospho-SQ/TQ residues and for total Sae2 (Figure 

3.13A). Sae2 phosphorylation by Tel1 (measured from the phospho-SQ/TQ signal) 

increased significantly after pre-incubation with CDK, which shows that CDK 

phosphorylation directly primes Sae2 for Tel1 phosphorylation. The phospho-SQ/TQ 

signal appears at a much higher position than the anti-Sae2 signal, likely indicating 

multiple phosphorylation events. We also tested the S267A and S267E mutants in this 

reaction and confirmed that Tel1 phosphorylation of both of these was significantly 

reduced in comparison to that of the wild-type protein (Figure 3.13B). Taken together, 

these results suggest that Sae2 is phosphorylated by CDK primarily at S267, and that this 

modification primes Sae2 for Tel1 phosphorylation in the presence of MRX and linear 

DNA ends. 
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Figure 3.12 CDK phosphorylates Sae2 primarily at S267 site in vitro. 

Recombinant wild-type or S267A MBP-Sae2 protein was incubated with human 
CDK2-cyclin A and γ-32P-ATP (P-ATP) at 37℃, as indicated. Reaction products were 
separated by 12% SDS-PAGE and analyzed by use of a phosphorimager. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 68

A

B

A

B

 

Figure 3.13 CDK phosphorylation primes Sae2 for phosphorylation by Tel1 in vitro. 

 (A) Recombinant wild-type MBP-Sae2 protein was first incubated with CDK at 
37℃ for 30 minutes, and then with Tel1, MRX and/or DNA at 30℃ for additional 90 
minutes, as indicated. Reaction products were separated by 6% SDS-PAGE containing 
Mn2+ and Phos-tag reagent (NARD Institute) to accentuate the differences in charge 
induced by phosphorylation, and then transferred to PVDF membrane and analyzed by 
protein blotting with anti-phospho-SQ/TQ and anti-Sae2 antibodies. (B) Kinase assays 
were performed with wild-type, S267A, S267E, and 5D-E 
(S73D+T90D+S249D+T279D+S289D+S267E) Sae2 proteins and analyzed by protein 
blotting as described in (A). 
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Phosphorylation affects the size distribution of Sae2 in vivo 

A previous study suggested that the majority of Sae2 exists as a multimeric form 

in vivo (Kim et al, 2008), and our analysis of recombinant MBP-Sae2 in vitro suggested a 

relationship between phosphorylation and the equilibrium between different multimeric 

forms (Figure 3.2). To investigate whether a change in the oligomeric state of Sae2 

occurs after DNA damage in vivo, we expressed Flag-tagged Sae2 protein in S. cerevisiae 

from a high-copy-number vector and isolated the soluble protein by immunoprecipitation 

either before or after MMS treatment. The protein was separated by gel filtration, and 

fractions were analyzed by protein blotting with anti-Sae2 antibody (Figure 3.14). Wild-

type Sae2 clearly shows a DNA damage-dependent change in the overall size distribution 

of the protein (Figure 3.14A), such that smaller forms become more prevalent with 

damage treatment. Unlike the distinct monomer/dimer/multimer forms of MBP-Sae2 

purified from E. coli, the non-MBP-tagged protein isolated from yeast appeared in a 

continual gradient of apparent molecular weight/size. Comparison of this result with the 

distribution of molecular weight standard suggested that fractions 18 and 19 contain Sae2 

in a multimeric form or in a large protein complex with other proteins, while fractions 25 

to 27 and 29 to 31 are expected to contain dimer and monomer Sae2, respectively.  

Analysis of Sae2 proteins with mutations in the phosphorylation sites showed that 

the S267A mutant appeared to be slightly smaller than the wild-type Sae2 but changed 

less with DNA damage (Figure 3.14B), and the S267A+S134A+S249A+S278A+T279A 

(2A3A) mutant did not change at all with damage (Figure 3.14C). In contrast, the 

S267E+S134E+S249D+S278D+T279D (2E3D) mutant exhibited a much smaller size 

that was approximately similar to that of the expected dimer, and also did not change 

after DNA damage (Figure 3.14D). Similar results were obtained with the A3A and E3D 

mutants, which lack the mutation at S134 site (Figure 3.14E and F).  
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Figure 3.14 Phosphorylation affects the size distribution of Sae2 protein expressed from a 
high-copy-number vector in vivo. 
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Figure 3.14 continued.  
(A to F) Yeast cells were grown in the absence or presence of MMS (0.03% 

MMS for 4 hours). Flag-tagged Sae2 (wild-type or mutant, as indicated) was expressed 
from a high-copy-number vector, isolated by immunoprecipitation, and then separated by 
gel filtration. Fractions were analyzed by protein blotting with anti-Sae2 antibody (left 
panels). Sae2 concentrations in each fraction were quantitated and are shown as a 
percentage of the total (right panels). 2A3A (S267A+S134A+S249A+S278A+T279A), 
2E3D (S267E+S134E+S249D+S278D+T279D), A3A (S267A +S249A+S278A+T279A), 
E3D (S267E+ S249D+S278D+T279D). Examples shown in the figures are representative 
of several trials. 
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The size distribution of Sae2 oligomers is likely determined by the expression 

level in vivo, so we also isolated Flag-tagged Sae2 from cells expressing the protein from 

a low-copy-number vector (Figure 3.15A). This protein also exhibited a transition in size 

distribution that was visible after DNA damage treatment; thus, the change in size is not 

dependent on high-level expression of the protein. With low-copy-number expression, the 

initial size of the oligomers was clearly smaller than that with high-copy-number 

expression (compare Figure 3.15A to Figure 3.14A), but the appearance of even smaller 

forms in fractions 25 to 29 was visible only with damage treatment. Lastly, wild-type 

Sae2 was recovered from yeast cells expressing the protein from the chromosomal locus, 

as shown in Figure 3.15B. In this case, a dot blot of the whole gel filtration fraction was 

necessary to analyze the lower overall level of Sae2 antibody signal. The pattern of Sae2 

distribution also changed dramatically with DNA damage treatment in this case, with the 

nearly complete loss of the large oligomers and accumulation of the monomer and dimer 

forms. Overall, we conclude from this set of experiments that DNA damage promotes the 

release of Sae2 from a multimer form to a range of smaller forms and that the extent of 

this release is affected by phosphorylation. The absolute size of the multimer is 

dependent on the expression level, as would be expected, but there is a transition to the 

monomer and dimer forms that is DNA damage-dependent. 
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Figure 3.15 Phosphorylation affects the size distribution of Sae2 protein expressed from a 
low-copy-number vector or chromosomal locus in vivo. 

(A-B) Flag-tagged Sae2 expressed from a low-copy-number vector (A) or from 
the chromosomal locus (B) was isolated from cells grown in the absence or presence of 
MMS (0.03% MMS for 4 hours) and separated by gel filtration. A dot blot was used in 
(B) to analyze the level of Sae2 protein in each sample. Fractions were analyzed by dot 
blotting with anti-Sae2 antibody (left panels). Sae2 concentrations in each fraction were 
quantitated and are shown as a percentage of the total (right panels). Examples shown in 
the figures are representative of several trials. 
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Sae2 self-interaction is important for its phosphorylation and function in vivo 

One prediction of the damage-induced monomerization model is that smaller 

forms of Sae2 should be active. We tested an allele of Sae2 identified in a previous study 

that was reported to be deficient for self-interaction, L25P (Kim et al, 2008). We 

confirmed it failed to complement a sae2-null strain for DNA damage survival (Figure 

3.16A), and also found that the expression level of this mutant was lower than that of the 

wild-type protein (Figure 3.16B). We also found that L25P mutant was not 

phosphorylated by Mec1/Tel1 after DNA damage treatment in vivo (Figure 3.16C), and 

gel filtration result confirmed that deficiency in self-interaction made the majority of this 

mutant protein come out as a monomer (Figure 3.16D and E). Thus, oligomerization of 

Sae2 is essential for its phosphorylation, and monomerization itself is clearly not 

sufficient for its functional activity in vivo. 
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Figure 3.16 Self-interaction is important for Sae2 phosphorylation and function in vivo. 

(A) Sae2 was expressed from a low-copy-number plasmid under the control of the 
native Sae2 promoter in sae2△ yeast cells. Fivefold serial dilutions of cells expressing 
the indicated Sae2 alleles were plated on non-selective medium (untreated) or medium 
containing CPT or MMS. (B) Protein extracts from yeast cells as in (A) (without DNA 
damage) were analyzed by SDS-PAGE and blotted with anti-Sae2 and anti-ADH 
antibodies. (C) Cells expressing Flag-tagged wild-type or L25P mutant Sae2 protein were 
untreated or treated with MMS (0.03% for 4 hours). Sae2 was isolated by 
immunoprecipitation and analyzed by western blotting with anti-phospho-SQ/TQ and 
anti-Sae2 antibodies. (D) Flag-tagged L25P Sae2 was expressed from a high-copy-
number vector, isolated by immunoprecipitation, and separated by gel filtration. Fractions 
were analyzed by protein blotting with anti-Sae2 antibody. (E) Sae2 concentrations in 
each fraction were quantitated and shown as a percentage of the total. Results here are 
representative of several trials. 
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Phosphorylation of Sae2 increases its solubility 

Sae2 protein isolated by immunoprecipitation primarily came from the soluble 

fraction of the yeast cell extract, but a large majority of Sae2 protein was left in the 

insoluble pellet (data not shown). To examine the dynamics of Sae2 in both the insoluble 

and soluble fractions, an assay was developed to extract and separate these pools of Sae2 

protein from yeast cells.  Cells expressing Flag-tagged Sae2 were first synchronized into 

G1 phase with alpha factor and then released into medium with or without 0.03% MMS. 

Samples were collected every 20 minutes after the release for both solubility assays and 

cell cycle analysis by flow cytometry. The percentage of soluble and insoluble Sae2 

protein was calculated at each time point in comparison to the amount of an ADH1 

control protein, which did not change over this time course. The results in Figure 3.17 

show the soluble and insoluble pools as percentages of the total amount of protein (left 

column) and the amount of soluble protein only (middle column), while the cell cycle 

progression of each culture is shown in the right column. The pool of soluble wild-type 

Sae2 increased 20 minutes after release and was more apparent in samples with MMS 

treatment (Figure 3.17A and B, middle). In contrast, this increase was absent with the 

2A3A and 2E3D mutants (Figure 3.17C and D, middle). In addition, the 2A3A mutation 

resulted in much less soluble Sae2, but the 2E3D mutation made it much more soluble. 
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Figure 3.17 Phosphorylation of Sae2 increases its solubility. 

(A-D) Yeast cells expressing wild-type or mutant Sae2 from a high-copy-number 
plasmid were synchronized in G1 phase with alpha factor and released into medium 
without or with 0.03% MMS, as indicated. Cells were collected before (0) and every 20 
minutes after the release, lysed under native conditions, and the soluble and insoluble 
proteins were separated by centrifugation. Both fractions were analyzed by protein 
blotting for Sae2 protein and quantified (the signal was normalized to the ADH1 levels). 
Left panels: relative amounts of soluble and insoluble Sae2 protein as percentages of the 
total; center panels: percentage of soluble Sae2 at each time point; right panels: FACS 
analysis of yeast cells using SYTOX Green. The approximate positions of 1n and 2n 
peaks are indicated. Examples shown here are representative of several trials. 
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The experiments above were performed with Sae2 expressed from a high-copy-

number plasmid in order to have enough protein for detection by blotting, but a similar 

experiment was also performed with wild-type Sae2 expressed from a low-copy-number 

vector to rule out the possibility that overexpression was responsible for the Sae2 

multimerization. In this experiment (Figure 3.18), targeted mass spectrometry analysis 

was used instead of protein blotting to determine the relative amount of Sae2 in each 

fraction. Results from two Sae2 peptides indicated increased levels of Sae2 in the soluble 

fraction after DNA damage and decreased levels in the insoluble fraction, further 

confirmed our finding that the solubility of Sae2 increases after DNA damage. Lastly, 

soluble Flag-Sae2 was immunoprecipitated from cells expressing Sae2 in a single copy 

from the chromosomal locus; this analysis showed that the amount of soluble Sae2 

increased by 1.6 ± 0.13-fold following DNA damage treatment (calculated by 

quantitative western blotting of Flag-Sae2 isolated from cells before versus after 0.03% 

MMS treatment, as the average of 3 trials with the standard deviation). 
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Figure 3.18 Targeted mass spectrometry detects increased solubility of Sae2 protein after 
DNA damage. 

Yeast cells expressing wild-type Sae2 from a low-copy-number plasmid were 
synchronized in G1 phase with alpha factor and released into medium with 0.03% MMS. 
Cells were collected before (0) and every 20 minutes after the release, lysed under native 
conditions, and the soluble and insoluble proteins were separated by centrifugation. The 
soluble and insoluble protein lysates were then analyzed by targeted mass spectrometry. 
Quantitation of two Sae2 peptides relative to that of peptides from ADH1 is shown.  
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Sae2 is degraded after DNA damage through autophagy and proteasome pathway 

Autophagy is the preferred pathway for the degradation of some protein 

aggregates (Xie & Klionsky, 2007), and a previous study showed that Sae2 was 

acetylated and degraded through the autophagy pathway after DNA damage (Robert et al, 

2011), but acetylation sites were not identified. We observed two damage-dependent 

acetylation sites on Sae2: K239 and K266 (Figure 3.5 and Table 3.1), one of which is 

immediately adjacent to the S267 CDK phosphorylation site. Individual or combined 

mutations of the acetylated residues to arginine (R) to block acetylation did not have any 

effect on DNA damage survival (data not shown); however, mutation of both residues to 

glutamine (Q) to mimic acetylation generated a growth defect even in the absence of 

DNA damage (Figure 3.19A), which correlated with a significantly increased level of 

Sae2 protein (Figure 3.19B). This effect was observed in both a wild-type and autophagy-

deficient (atg1) strain background. Interestingly, the S252A mutant that was deficient in 

one of the DNA damage-dependent phosphorylations identified by mass spectrometry 

(Figure 3.5 and Table 3.1) exhibited increased resistance to DNA damage compared to 

that of the wild-type Sae2, an effect that was not observed in the atg1 deletion strain 

(Figure 3.19A).  
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Figure 3.19 Acetylation mimetic mutant Sae2 has growth defect and increased protein 
level under normal condition. 

(A) Sae2 was expressed from a low-copy-number plasmid under the control of the 
native Sae2 promoter in sae2△ atg1△ or sae2△ yeast cells. Fivefold serial dilutions of 
cells were plated on non-selective medium (untreated) or medium containing 0.018% 
MMS. QQ= K239Q+K266Q. (B) Protein extracts from yeast cells as in (A) (without 
DNA damage) were analyzed by SDS-PAGE and blotted with anti-Sae2 and anti-ADH 
antibodies. 
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A consistent feature of Sae2 dynamics during DNA replication in the presence of 

DNA damage is the transient loss of protein observed particularly at the 20-minute and 

40-minute time points (Figure 3.17). To determine if this reduction in total protein 

amount is dependent on autophagy, Sae2 solubility assays were performed as in Figure 

3.17 but with the atg1 deletion strain (Figure 3.20). These results showed that the 

transient loss of protein was not seen in the absence of a functional autophagy pathway 

(Figure 3.20A). The effect of proteasome-mediated degradation was also assessed using 

MG132 in the atg1 strain, and in this case, a transient increase in total Sae2 was observed 

(Figure 3.20B). These results suggest that both autophagy- and proteasome-dependent 

degradation pathways contribute to the degradation of Sae2 multimeric complexes.  
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Figure 3.20 Sae2 is degraded after DNA damage through autophagy and the proteasome. 

(A) atg1△ yeast cells expressing wild-type Sae2 protein from a high-copy-
number plasmid were synchronized in G1 phase with alpha factor, released into media 
containing 0.03% MMS, and analyzed for Sae2 solubility and cell cycle progression as in 
Figure 3.17. (B) atg1△ yeast cells expressing wild-type Sae2 protein from a high-copy-
number plasmid were treated as in (A) except cells were released into medium containing 
both 0.03% MMS and 75μM MG132. 
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DISCUSSION 

The Sae2 protein is an important component of the machinery that initiates DNA 

double-strand break resection in budding yeast (Mimitou & Symington, 2009; Paull, 

2010), and is the target of CDK phosphorylation which limits 5' strand resection to the S 

and G2 phases of the cell cycle (Huertas et al, 2008). In this study, we identify the 

phosphorylation events that occur on Sae2 in vivo and determine that the CDK 

modifications prime further modification by Mec1/Tel1 kinases that are essential for 

Sae2 activities in DNA damage survival. On the basis of our analysis of recombinant 

Sae2 in vitro and the properties of Sae2 in budding yeast, we propose that one of the 

primary functions of Sae2 phosphorylation is to transiently disrupt Sae2 from large, 

oligomeric, inactive forms into smaller active forms that promote DNA end resection and 

homologous recombination (see the model in Figure 3.21). The Sae2 released from the 

larger structures is also rapidly degraded through a combination of autophagy and 

proteasome-mediated pathways. Overall, this analysis provides evidence that post-

translational modifications are regulators of oligomerization and solubility, such that an 

inherently insoluble protein can be mobilized rapidly and reversibly to perform its 

functions. 
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Figure 3.21 Model of Sae2 regulations during the DNA damage response. 

Sae2 exists in a range of multimeric complexes, some of which are 
phosphorylated at S267 and possibly also S134 during S and G2 phases of the cell cycle 
(green). This phosphorylation and the presence of DNA double-strand breaks promotes 
further Tel1-dependent phosphorylation (red), which initiates the transient disruption of 
Sae2 multimers into smaller units that are active in promoting DSB resection. DNA 
damage also promotes acetylation (yellow) through an unknown mechanism, which then 
stimulates degradation of Sae2 by the autophagy pathway and by the proteasome.  
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Extensive phosphorylation of Sae2 upon DNA damage 

Our analysis of post-translational modifications of Sae2 in vivo showed a much 

larger set of phosphorylation events than was anticipated. Many of these are not at the 

SQ/TQ Mec1/Tel1 consensus sites; however, two of the functionally important sites 

match the consensus sequence and are also strongly dependent on the CDK 

phosphorylation of S267, which was previously shown to be important for DSB resection 

in vivo (Huertas et al, 2008). We observed a hypomorphic phenotype with the S267A 

mutant in DNA damage sensitivity, but a nearly null phenotype when S267, S134, and 

three of the other sites in the C-terminus of the protein (S249, S278, T279) were also 

mutated. These results suggest that there must be residual DNA damage-induced 

phosphorylation of these C-terminal sites in the absence of S267 phosphorylation. In 

contrast, the S267E mutant grew in the presence of CPT and MMS similarly to the wild-

type strain, and the 2E3D phosphomimic allele exhibited an intermediate sensitivity when 

expressed from a low-copy-number vector.  

 

Phosphorylation of Sae2 regulates its oligomeric state 

Our initial analysis of phosphomimic forms of MBP-Sae2 expressed in E. coli 

suggested that phosphorylation of Sae2 affects its oligomeric state. We confirmed this 

notion with Sae2 expressed without MBP tag in yeast and found that phosphorylation 

affects Sae2 solubility, as measured by two indices: the amount of protein observed in the 

soluble pool and the apparent size of soluble complexes measured by gel filtration. The 

increase in soluble Sae2 occurs in a DNA damage-dependent way and is very rapid upon 

release of cells into S phase. Analysis of the nonphosphorylatable or phosphomimetic 

mutations suggested that these sites control Sae2 changes in solubility, with the alanine 
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mutations largely blocking the transitions to more soluble forms and the phosphomimetic 

mutations promoting their formation.  

The absolute concentration of a protein is clearly important when considering 

solubility and oligomerization. We found that the expression level of Sae2 is extremely 

low in wild-type cells, much lower than the estimate previously published in a global 

expression study (Ghaemmaghami et al, 2003). Our analysis of Sae2 levels in yeast cells 

using quantitative protein blotting showed that there are ~100 molecules of the protein 

per cell when expressed from the chromosome, ~280 when expressed from a low-copy-

number CEN plasmid, and ~2,000 when expressed from a high-copy-number 2μ plasmid. 

The measurements of Sae2 solubility by protein blotting required use of high-copy-

number expression strains, but analysis of Sae2 levels in a low-copy-number expression 

strain by mass spectrometry also confirmed transitions in solubility during DNA damage 

exposure (Figure 3.18), as did the analysis of the amount of soluble Sae2 after DNA 

damage when it is expressed from the chromosome. In addition, the changes in apparent 

size distribution measured by gel filtration were also observed with protein isolated from 

low-copy-number and chromosomal expression strains (Figure 3.15). Thus, the effects on 

solubility are not limited to strains with high-copy-number Sae2 expression. In fact, the 

mutations in phosphorylated residues consistently have a much more dramatic effect 

when expressed at a low copy number or from the chromosome than when expressed at a 

high copy number, suggesting that the endogenous pool of Sae2 protein is strongly 

dependent on these modifications. It is possible that the ~100 molecules of Sae2 that are 

present in normal cells are more dependent on the modifications because a minimum 

level of active Sae2 must be reached for efficient DNA repair. A high-copy-number 

expression strain generates higher levels of insoluble protein (and larger soluble 

complexes) than strains with endogenous levels of Sae2, but it also generates a larger 
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pool of smaller oligomers, in theory making the protein less dependent on the 

phosphorylation-induced transitions. 

The observation that L25P Sae2 exists in yeast as a monomer, similar to its 

behavior when expressed in E. coli (Kim et al, 2008) (see Figure 3.16; data not shown), 

indicates that Sae2-Sae2 interactions are important for oligomeric complex formation. 

Nevertheless, we do not know if the complexes are homogeneous in yeast. It is also 

possible that Sae2 phosphorylation releases it from a large oligomer that includes other 

proteins but requires Sae2 dimerization for binding. 

The apparent size of DNA damage-induced Sae2 complexes in yeast is closer to 

that of a dimer than to that of a monomer (with the caveat that gel filtration is affected by 

shape as well as by protein size). We previously showed that monomeric MBP-Sae2 

exhibits a higher specific activity than dimeric complexes (Lengsfeld et al, 2007) and also 

showed that here (Figure 3.1); however, dimeric Sae2 is also significantly more active 

than oligomeric complexes. On the basis of the evidence we have from Sae2 in yeast and 

from in vitro phosphorylation of oligomeric Sae2 complexes, it is possible that the active 

form of Sae2 is a complex with the approximate size of a dimer.  

In addition to the effects on oligomeric transitions, there are also likely to be 

effects of phosphorylation on the functions of Sae2. This is evident from the observation 

that the proteins with phosphomimic mutations (for instance, the 2E3D mutant) are more 

soluble and form smaller complexes yet do not fully complement the functional defects 

seen in the sae2-null strain. These properties may relate to the interactions between 

phosphorylated Sae2 and DNA or between Sae2 and other protein complexes found at the 

break site. We also note that the S267A protein exhibits obvious defects in promoting 

resection in vitro compared to the wild-type or phosphomimic form, even though the 

wild-type MBP-Sae2 protein made in E. coli is not phosphorylated (Figure 3.4). This may 
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indicate a subtle difference in conformation with this mutation that affects its interactions 

with other proteins, since it behaves similarly to wild-type protein in nuclease assays 

(Figure 3.3). A conformational defect in the S267A protein may also underlie its 

phenotype relative to that of S267E, a difference that may not be very evident in focus 

recruitment kinetics but very obvious in DNA damage survival assays over a longer time 

frame. 

The dynamics of Sae2 during DNA damage are reminiscent of those of the yeast 

Rad9 protein, a checkpoint protein that was shown to exist as a large, ~850-kDa protein 

complex in normally growing cells that converts to a smaller ~560-kDa complex after 

DNA damage exposure (Gilbert et al, 2001). Rad9 is not an enzymatic component of the 

DNA repair machinery but is responsible for recruiting and activating Rad53, an 

important checkpoint kinase. In this case, hyperphosphorylation of Rad9 has been shown 

to correlate with conversion of the larger complex to the smaller complex and binding of 

the Rad53 protein (Gilbert et al, 2001). DNA damage-induced transitions between 

inactive and active oligomeric forms may be a common feature of regulation in the DNA 

damage response, considering that many of the initial events occur very rapidly in the 

absence of de novo gene expression, and are reversibly regulated by post-translational 

modifications. 

 

DNA damage-induced degradation of Sae2 

The appearance of more Sae2 in the soluble fraction occurs concomitantly with 

the degradation of ~20% of the protein during replication in the presence of DNA 

damage. This damage-induced loss of protein takes place primarily through autophagy, as 

seen in an atg1 deletion strain, although inhibition of proteasome function further 
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increases Sae2 protein levels. The previously reported involvement of autophagy in Sae2 

degradation (Robert et al, 2011) is consistent with our evidence for large oligomeric 

complexes since this pathway is primarily responsible for removal of damaged organelles 

and large aggregates (Xie & Klionsky, 2007). Here we identify two lysine residues as 

targets for the acetylation that signals Sae2 to the autophagy machinery (K239 and 

K266). Preventing phosphorylation of Sae2 at S267 by mutation does not block either its 

acetylation or its degradation (data not shown); thus, the degradation is not strictly 

dependent on the CDK-induced phosphorylation events, even though it is damage 

induced. At this point it is not known which enzymes acetylate or deacetylate Sae2, 

although this is certainly an interesting area for future study. 

 

Posttranslational modifications as regulators of protein oligomeric transitions 

It is clear that all polypeptides have some propensity to aggregate, although the 

amino acid sequence of most proteins, particularly abundant factors, evolves away from 

this outcome (Chiti & Dobson, 2006; Tartaglia et al, 2007). Single amino acid mutations 

often dramatically decrease the solubility of proteins, in some cases with consequences 

for disease (Invernizzi et al, 2012). Aggregation is usually viewed as an unfavorable 

activity, particularly because the accumulation of aggregated proteins is toxic during 

stress conditions and aging (David, 2012), and is also associated with unfolded or 

misfolded proteins that are destined for degradation. However, there are notable instances 

where the self-association of a polypeptide is beneficial: for instance, to form functional 

intracellular structures such as stress granules, to create new extracellular fibers that 

mediate interactions with the environment, or to promote programmed cell death 

(Sanchez de Groot et al, 2012). Transitions between different homooligomeric states have 
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also been noted as a versatile mechanism of enzymatic regulation in many biological 

contexts (Hashimoto et al, 2011). 

Here we propose that the oligomerization potential of Sae2 has evolved in order 

that the potentially damaging effects of this endonuclease are not present when it is in 

large inactive complexes yet can be released rapidly without the need for de novo 

expression. The data does not support the idea that Sae2 is simply misfolded and 

segregated into nonfunctional aggregates but, rather, support the idea that functional Sae2 

can be liberated from these large complexes. A similar situation may exist with human 

CtIP, despite the low amino acid conservation between these functional orthologs. CtIP 

plays a role in DSB resection very similar to that of Sae2 in budding yeast and is already 

known to be modified by CDK and by ATM/ATR (You & Bailis, 2010). Interestingly, 

the prolyl isomerase Pin1 was shown to regulate the degradation of CtIP through 

ubiquitination in human cells (Steger et al, 2013), but it is unknown whether a similar 

relationship might exist with Sae2 in budding yeast. The example shown in this study 

with Sae2 may be a model for many other enzymes in the DNA damage response or in 

other cellular processes, where the availability of a protein is controlled reversibly at the 

posttranslational level by altering its oligomeric state. 
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CHAPTER 4: BUDDING YEAST PEPTIDYL PROLYL CIS/TRANS 
ISOMERASE ESS1 AND DNA DAMAGE REPAIR 

 
 

INTRODUCTION 

 

Budding yeast peptidyl prolyl cis/trans isomerase Ess1 (Essential 1) was first 

indentified in the early 1980s, and was found to be essential using gene disruption by 

homologous recombination (Hanes et al, 1989). This study showed that Ess1 is expressed 

constitutively throughout the cell cycle, but its transcription level diminishes when cells 

enter the stationary phase (Hanes et al, 1989). Cells in which the Ess1 gene is removed 

did not show cell cycle arrest immediately, instead they can grow up to seven generations 

prior to arrest and nuclear fragmentation (Hanes et al, 1989). Later, another study showed 

that although wild-type cells contain about 200,000 molecules of Ess1, a level of less 

than 400 molecules is enough to support normal growth, but a higher amount is required 

for viability under stress conditions (caffeine or hygromycin B) (Gemmill et al, 2005). 

 

Ess1 is conserved in eukaryotes and has isomerase activity 

When Ess1 was first discovered, its sequence did not show similarity to any 

known protein. Shortly after that, several studies revealed an enzymatic activity which is 

able to reversibly convert the cis/trans forms of a prolyl bond in a peptide substrate. This 

is a non-covalent reaction which does not require ATP but uses energy derived from the 

conformational change of the substrate (Fischer et al, 1984; Schmid, 1993). This type of 

enzyme is then called peptidyl prolyl cis/trans isomerase (PPIase). Later Rahfeld et al. 

found a new class of PPIases in E.coli called Parvulins (Rahfeld et al, 1994), and Hani et 
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al. quickly realized the similarity between Ess1 and these Parvulins (Hani et al, 1995). 

The C-terminal PPIase domain of Ess1 is very similar to the E.coli Parvulin protein (only 

92 amino acids), but Ess1 has a distinguishing N-terminal WW domain, which is only 

about 40 amino acids in length with two signature tryptophan (W) residues located 20-22 

amino acids apart (Bork & Sudol, 1994; Macias et al, 2002; Sudol et al, 1995). This WW 

domain binds proline-rich sequences and is not present in prokaryotic Parvulins. 

Therefore the combination of N-terminal WW domain and C-terminal PPIase domain 

with a short variable linker sequence between them identifies Ess1 orthologs in other 

eukaryotes. Ess1 orthologs identified so far include Drosophila melanogaster Dodo 

(Maleszka et al, 1996), Homo sapiens Pin1 (Lu et al, 1996), Trypanosoma cruzi Pin1 

(Erben et al, 2007), Schizosaccharomyces pombe Pin1 (Huang et al, 2001), Candida 

albicans Ess1 (Devasahayam et al, 2002), and Crytococcus neoformans Ess1 (Ren et al, 

2005), all of which are able to completely rescue yeast cells lacking Ess1 or with an Ess1 

ts-mutant.  

Human Pin1 was discovered in a two-hybrid assay as a Protein Interacting with 

NIMA, a cell cycle kinase that regulates mitosis in Aspergillus nidulans, and can also 

fully rescue yeast cells without Ess1 (Lu et al, 1996). Pin1 is not essential since PIN1 

knockout mice are viable but embryonic Pin1-/- fibroblasts are defective in entering cell 

cycle from G0 arrest  (Fujimori et al, 1999). This difference between Pin1 and Ess1 is 

probably because there are redundant molecule(s) of Pin1 in higher organisms, such as 

human Par14 (Parvulin 14 kDa) (Uchida et al, 1999) and Par17 (Parvulin 17 kDa) 

(Kessler et al, 2007), both of which have the PPIase domain without the WW domain, or 

human Gas7b which is not a Parvulin (no PPIase domain) but has a WW domain similar 

to that of human Pin1 and might be involved in Alzheimer disease (Akiyama et al, 2009). 
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The fact that yeast Ess1 is an essential gene makes the study difficult, so most of 

functional studies have been done with conditional (temperature sensitive, ts) mutants. 

The most commonly used allele is the Ess1 H164R mutant, which bears a mutation in the 

catalytic site that reduces its PPIase activity by about 10,000 fold (Gemmill et al, 2005). 

This mutation also makes the cells temperature sensitive: they grow normally at 23-30°C, 

but fail to grow at 37°C, and 34°C is a semi-permissive temperature for them. Other 

commonly used ts-mutants include W15R, T96P, S122P, G127D and A144T, which are 

all mutations in the PPIase domain except W15R with a mutation at the Tryptophan 

signature residue of the WW domain; however G127D and A144T mutant protein are not 

as stable as H164R at 37°C (Wu et al, 2000).  

The WW domain in Ess1/Pin1 has a strong preference for peptidyl substrates with 

phosphorylated serine or threonine preceding proline (pS/T-P) (Lu et al, 1999; Ng et al, 

2008). The PPIase domain can also bind to the same pS/T-P substrate, but with a much 

lower affinity, therefore the substrate binding is mainly mediated by the WW domain. 

Binding of the substrate can be measured with a variety of methods in vitro, such as 

GST-pulldown, two-hybrid analysis, circular dichroism (CD), nuclear magnetic 

resonance (NMR) and biolayer interferometry (BLI). The binding affinity is relatively 

low, typically in the micromolar range, even with the best substrates.  

The PPIase domain is the catalytic domain of Ess1/Pin1, which has an isomerase 

activity to accelerate the cis/trans isomerization of the proline peptide bond within the 

substrate by a factor of 103-106 (Kofron et al, 1991; Park et al, 1992; Schiene-Fischer et 

al, 2013). Unnatural short peptide substrates are usually used for measuring the accurate 

isomerization rate in vitro because measuring with intact substrates is still very difficult. 

Methods used to measure the rate include dynamic NMR chemical exchange (Landrieu et 

al, 2006; Schutkowski et al, 1998), and protease- or phosphatase-coupled methods, based 
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on the fact that some proteases or phosphatases have preference for pS/T-P motifs in cis 

or trans conformation of the substrate (Fischer et al, 1984; Zhang et al, 2012). But so far 

there is no reliable method to monitor isomerization in vivo.  

 

Ess1 plays an important role in the CTD code of RNA polymerase II 

The C-terminal domain (CTD) of Rpb1, which is the largest subunit of RNA 

polymerase II, is the first and so far the most important Ess1 substrate identified in yeast. 

Rpb1 CTD contains many repeats of the heptapeptide sequence Y1S2P3T4S5P6S7, and the 

repeat number varies from 26 in yeast to 52 in vertebrates (some repeats are not perfect 

consensus as shown) (Eick & Geyer, 2013). Extensive studies revealed that this heptad 

repeat could be phosphorylated by cyclin-dependent protein kinases and 

dephosophorylated by phosphatases in vivo. For example, Ser5 is phosphorylated by the 

yeast Kin28 (mammalian CDK7), which is a subunit of the general transcription factor 

TFIIH, prior to promoter clearance (Liu et al, 2004; Rodriguez et al, 2000). Ser5 

phosphorylation level diminishes as RNA Pol II proceeds to elongation, by the action of a 

phosphatase Ssu72 (Hausmann et al, 2005; Krishnamurthy et al, 2004).  Meanwhile, Ser2 

is phosphorylated by the Ctk1 (mammalian CTK9) subunit of the CTDK-1 (mammalian 

P-TEFb) complex during elongation (Cho et al, 2001; Komarnitsky et al, 2000; Patturajan 

et al, 1999), and also could be dephosphorylated by the Fcp1 phosphatase (Cho et al, 

2001; Hausmann & Shuman, 2002). The role of Ser7 phosphorylation in yeast is still 

unknown, but in mammalian cells it has been shown to affect snRNA expression 

(Chapman et al, 2007; Egloff et al, 2007) and prime RNA Pol II CTD for P-TEFb 

recognition (Czudnochowski et al, 2012).  
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The CTD repeat also contains two pS-P motifs that are targets of Ess1. Studies 

have shown that Ess1 is recruited by both the pSer5 and the pSer2/pSer5 doubly 

phosphorylated CTD, and it exhibits a preference for isomerizing the pS5-P6 bond about 

6-fold faster than the pS2-P3 bond (Gemmill et al, 2005). Genetic studies have shown 

that Ess1 is involved in transcription and mRNA processing (Hani et al, 1999; Wilcox et 

al, 2004; Wu et al, 2003; Wu et al, 2000). Two studies later showed that Ess1 promotes 

pSer5 dephosphorylation by generating a structural conformation of the CTD which is 

preferred by the Ssu72 phosphatase (Krishnamurthy et al, 2009; Singh et al, 2009). This 

primarily functions in the Nrd1 alternative termination pathway, which is responsible for 

terminating the transcription of most small nucleolar RNAs (snoRNAs), small nuclear 

RNAs (snRNAs), cryptic unstable transcripts (CUTs), and some short mRNAs (Singh et 

al, 2009). A model is proposed for the role of Ess1 in this Nrd1-dependent termination 

pathway (as shown in Figure 4.1): when RNA Pol II is approaching a Nrd1-dependent 

terminator, Ess1 is recruited by the pSer2/pSer5 of CTD, and targets the pS5-P6 which is 

also the Nrd1 binding site; Ess1 then catalyzes the cis/trans isomerization of pS5-P6, 

resulting in a conformational change of the CTD which becomes a better substrate for 

Ssu72 to dephosphorylate pSer5; Nrd1 is then released from CTD, leading to the binding 

of RNA 3' end processing factor Pcf11 to the adjacent pSer2 site so that termination 

could occur (Singh et al, 2009). Ess1 has been shown to promote the release of Nrd1 and 

enhance the recruitment of Pcf11 to terminators, supporting this model (Singh et al, 

2009). In addition, overexpression of either Pcf11 or Ssu72 almost completely rescues the 

growth defect of the Ess1 H164R ts-mutant (Krishnamurthy et al, 2009; Singh et al, 

2009). A recent study uncovered multiple roles for Ess1 in RNA Pol II transcription: it 

inhibits transcription of noncoding RNA (ncRNA) genes; it controls the phosphorylation 
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Figure 4.1 Model for the role of Ess1 in Nrd1-depedent transcription termination. 

Ess1 is recruited by the pSer2/pSer5 doubly phosphorylated CTD of RNA Pol II, 
and catalyzes the cis/trans isomerization of the pS5-P6 bond about 6-fold faster than the 
pS2-P3 bond. The CTD phosphatase Ssu72 dephosphorylates pSer5 when the adjacent P6 
is in a cis-conformation. After pSer5 dephosphorylation, Nrd1 and Nab3 are released 
from the CTD, and the RNA 3' end processing factor Pcf11 binds to the CTD on pSer2 
site when the adjacent P3 is in a tran-conformation, leading to transcription termination. 
Only one CTD repeat is shown for simplicity. Figure adapted from (Singh et al, 2009). 
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state of CTD Ser7; and it is required for trimethylation of histone H3K4; lastly, it plays 

an important role not only in the Nrd1-dependent alternative termination pathway, but 

also in the canonical mRNA termination pathway (Ma et al, 2012). This is not surprising 

since these two pathways utilize partially overlapping set of proteins including Pcf11, 

Ssu72, Swd2, Ran14 and Rna15 (Lykke-Andersen & Jensen, 2007). 

These changes of CTD together, which is called the “CTD code”, controls various 

steps in RNA Pol II transcription (initiation, elongation, and termination) and mRNA 

processing (capping, 3’ cleavage, and polyadenylation), and apparently, Ess1 plays an 

important role in writing and interpreting this CTD code. 

 

Ess1 controls the nuclear localization of Swi6 and Whi5 

Besides the CTD of Rpb1, there are only two other targets of Ess1, Swi6 and 

Whi5, identified in yeast so far (Atencio et al, 2014). Swi6 is one component of the SBF 

(Swi4/Swi6 box factor) transcriptional activator complex (Swi4, Swi6 and Fkh1), which 

controls the cell cycle entry into late G1 phase (an irreversible transition termed Start) and 

is repressed in M and early G1 phase via a direct physical interaction with the 

transcriptional repressor Whi5 (Wittenberg & Reed, 2005). At G1/Start, Cdc28 kinase 

enters the nucleus, phosphorylates and inactivates Whi5, causing it to dissociate from the 

SBF complex and exit the nucleus, allowing activation of SBF transcription and entry 

into Start (Costanzo et al, 2004; de Bruin et al, 2004). Phosphorylation of cyclin-

dependent kinase sites within the nuclear localization sequence (NLS) of Swi6 and Whi5 

blocks nuclear import of Swi6 and promotes nuclear export of Whi5 (Costanzo et al, 

2004; Taberner et al, 2009; Wagner et al, 2009).  
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Atencio et al. showed that Ess1 not only binds to Swi6 and Whi5 in vivo, but also 

binds to the NLS of Swi6 and the NLS and nuclear export sequence (NES) of Whi5 in 

vitro, and this binding depends on the phosphorylation of serines inside the NLS/NES 

(Atencio et al, 2014). In Ess1 H164R mutant cells, the nuclear localization of Swi6 and 

Whi5 is defective, indicating that Ess1 is required for correct cell cycle-dependent 

nuclear localization of Swi6 and Whi5 (Atencio et al, 2014). However, the mechanism of 

how isomerization of the phosphor-Ser-Pro motifs within the NLS/NES of Swi6 and 

Whi5 affect their nuclear localization is still unclear. One possible model would be that 

Ess1 generates a cis/trans isomer which is a preferred substrate of Cdc14 phosphatase, 

since Cdc14 could dephosphorylate the Ser160 in the NLS of Swi6 to promote its nuclear 

accumulation (Geymonat et al, 2004) and also dephosphorylate the NES of Whi5 to 

prevent its nuclear export via the Msn5 karyopherin (Taberner et al, 2009). It is also 

possible that isomerization caused conformational change of Swi6 and Whi5 could affect 

their interaction with nuclear pore complexes thus change their nuclear localization 

directly.  

 

Human Pin1 is involved in DNA damage repair 

Unlike Ess1, there are many human Pin1 substrates identified so far, and some of 

them are important players in DNA damage repair, for example, p53 and CtIP. This is not 

surprising since Pin1 is overexpressed in numerous types of human cancer.  

A recent study revealed that CtIP could be isomerized by Pin1, leading to CtIP 

poly-ubiquitylation and subsequent proteasomal degradation (Steger et al, 2013). Since 

Pin1 binds specifically to phosphorylated SP/TP-motifs, which are typical motifs for 

CDKs and MAPKs, and catalyzes cis/trans isomerization through its PPIase domain, this 
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Pin1-CtIP interaction requires phosphorylated T315 residue on CtIP for Pin1 binding and 

phosphorylated T276 for Pin1 isomerization of P277 (Steger et al, 2013). Further, Pin1-

overexpressing cells show compromised resection and reduced HR rate, while Pin1-

depleted cells display increased DSB end resection and decreased NHEJ rate, and a CtIP 

non-phosphorylatable mutant at both S276 and T315 sites has similar phenotype to that 

of Pin1-depleted cells. Also, overexpression of wild-type but not the catalytic defective 

Pin1 mutant (W34A or C113A) in human cells could significantly reduce the level of 

CtIP protein by promoting CtIP poly-uniquitylation and subsequent proteasomal 

degradation (Steger et al, 2013). These findings uncover a molecular switch of 

controlling CtIP protein level in a phosphorylation-dependent way by Pin1, and links 

Pin1 to DNA end resection and DSB repair directly. 

The amino acid sequence of Pin1 is 46% identical to Ess1 and Pin1 is functionally 

interchangeable with Ess1 in yeast cells (Lu et al, 1996). Also, there is a study showing 

that yeast Ess1 H164R or A144T mutant cells have increased sensitivity to UV light or 

DNA damage agents MMS and 4NQO (4-nitroquinoline 1-oxide, produces reactive 

oxygen species and causes DNA damage) (Jeong et al, 2005). Therefore, Ess1 might also 

play a role in DNA damage repair, and it is possible that Sae2 is one of its substrates. So I 

tested this hypothesis by confirming the DNA damage sensitivity of Ess1 mutants, and 

also addressed whether Ess1 can act on Sae2 in a similar way to that of Pin1 and CtIP. 
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RESULTS 

 

Cells expressing Ess1 mutants have increased sensitivity to DNA damage agents 

Since the Ess1 gene is essential for the normal growth of yeast cells, an Ess1 

plasmid-shuffle yeast strain (YXW 134, a generous gift from Dr. Steven Hanes) (MATa 

ura3-1, leu2-3, 112 trp1-1, can1-100, ade2-1, his3-11, [phi+], ess1Δ::TRP1+plasmid 

pGD-CaEss1 (2μ, URA3)) was used for most of the following mutation studies.  In this 

strain, the endogenous Saccharomyces cerevisiae Ess1 gene has been deleted and 

complemented with a Candida albicans Ess1 gene on a 2μ plasmid bearing a URA3 

marker (Devasahayam et al, 2002) to support normal cell growth. Therefore after 

transformation of S. cerevisiae Ess1 mutants into this strain, and selection against URA3 

on 5-FOA plates (5-Fluoroorotic Acid, converted to a toxic form in strains expressing the 

functional URA3 gene coding for orotine-5-monophosphate decarboxylase that is 

involved in the synthesis of uracil), the pGD-CaEss1 plasmid is replaced by the desired 

Ess1 mutant plasmid on a ess1Δ::TRP1 background.  

Several Ess1 mutations (W15R, T96P, C120A, S122P, H164R) were introduced 

into a low-copy-number plasmid (pRS313) containing the wild-type Ess1 gene under the 

control of the native Ess1 promoter and tested for complementation of ess1△ in DNA 

damage sensitivity test at different temperatures (representative data are shown in Figure 

4.2A) and protein expression (Figure 4.2B). Most of these mutations were identified in a 

previous study: W15R has a mutation at the Tryptophan signature residue of the WW 

domain; T96P, S122P, and H164R all have mutations in the PPIase domain (Wu et al, 

2000), which render the cells temperature sensitive at 37°C. The H164R mutant, which 

bears a mutation in the catalytic site, has been shown to have a significantly reduced  
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Figure 4.2 Ess1 mutant cells have increased sensitivity to CPT at different temperatures. 

(A) Wild-type (WT) or mutant Ess1 was expressed from a low-copy-number 
plasmid under the control of the native Ess1 promoter in ess1△ yeast cells. Fivefold 
serial dilutions of cells expressing the indicated Ess1 allele were plated on normal 
medium (untreated) or medium containing CPT and grown at different temperatures. (B) 
Protein extracts from yeast cells grown at 30°C as in (A) (without CPT) were analyzed by 
SDS-PAGE and blotted with anti-Ess1 antibody (Rabbit polyclonal antibody, a generous 
gift from Dr. Steven Hanes) and anti-ADH antibody for a loading control. 
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PPIase activity (~10,000 fold) compared to that of the wild-type protein (Gemmill et al, 

2005). The results shown in Figure 4.2A confirmed the temperature sensitivity of these 

previously identified mutants, especially S122P and H164R. More importantly, these 

results showed that both mutants: S122P and H164R, especially H164R, have increased 

sensitivity to DNA damage agent CPT, even under permissive temperatures.  All the 

mutants have Ess1 protein levels similar to that of wild-type, as shown in Figure 4.2B, 

thus the temperature sensitivity and increased DNA damage sensitivity are all due to the 

reduced PPIase activity in the S122P and H164R mutant, confirming that the PPIase 

activity of Ess1 plays a role in DNA damage repair. 

Ess1 is a small protein with only 170 amino acids in length, but by looking at its 

sequence, I found one TP site (T13) and one SQ site (S36), both located in its N-terminal 

WW domain. A previous study revealed that Pin1 itself is phosphorylated in a cell cycle-

regulated way in WW domain at Serine 16, and this phosphorylation regulates the ability 

of the WW domain to mediate Pin1 substrate interaction and cellular localization, since 

the mutant Pin1 S16A, but not Pin1 S16E, acts as a dominant-negative mutant to induce 

mitotic block and apoptosis and increase multinucleated cells (Lu et al, 2002). It would 

be interesting to test if Ess1 is also phosphorylated and if the phosphorylation could also 

affect its activity. Therefore, I mutated these two sites to non-phosphorylatable alanine 

and tested their DNA damage sensitivity in the same way as in Figure 4.2. The results are 

shown in Figure 4.3. Both of them have increased DNA damage sensitivity, although not 

as obvious as that of the H164R mutant, and this is not due to the Ess1 protein level in 

cells. These results indicate that Ess1 might also be subjected to different 

phosphorylation events, and these phosphorylation events are important for its function in 

DNA damage repair. 
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Figure 4.3 Ess1 mutant cells have increased DNA damage sensitivity. 

(A) Wild-type (WT) or mutant Ess1 was expressed from a low-copy-number 
plasmid under the control of the native Ess1 promoter in ess1△ yeast cells. Fivefold 
serial dilutions of cells expressing the indicated Ess1 allele were plated on normal 
medium (untreated) or medium containing MMS or CPT and grown at 25°C. (B) Protein 
extracts from yeast cells grown at 25°C as in (A) (without DNA damage) were analyzed 
by SDS-PAGE and blotted with anti-Ess1 and anti-ADH antibodies. 
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Co-immunoprecipitation does not detect interaction between Ess1 and Sae2 in vivo 

If Sae2 is an Ess1 substrate, we should be able to detect a direct interaction 

between Ess1 and Sae2. And according to the characteristic of Ess1, this interaction, if 

any, should be dependent on the phosphorylation of Sae2 on certain S/T-P site(s), similar 

to that of Pin1 and CtIP.  

I transformed the wild-type low-copy-number Ess1 plasmid (or empty vector as a 

control) into the yeast strain with a flag-tagged wild-type Sae2 expressed from the 

chromosomal locus. Then flag-tagged Sae2 was pulled down from the extract of yeast 

cells growing without or with 0.03% MMS for 4 hours, and the flag elution or in-put was 

analyzed by SDS-PAGE and blotted with anti-Sae2 and anti-Ess1 antibodies. As shown 

in Figure 4.4A, endogenous Ess1 was detected in the in-put, but not the Sae2, since Ess1 

is a relatively abundant protein in yeast cells (about 200,000 molecules per cell), while 

the amount of Sae2 is much lower. Over-expression of Ess1 from a low-copy-number 

plasmid increased the Ess1 level significantly, compared to that of the endogenous 

expressed Ess1. Flag-tagged Sae2 was pulled down successfully from the yeast extract, 

but no Ess1 was detected in either the vector control or Ess1 overexpressed samples, with 

or without DNA damage. 

Considering the fact that the binding affinity between Ess1 and its substrates is 

usually very weak (in micromolar range), overexpressing both Sae2 and Ess1 might help 

to detect the interaction between these two proteins. And if there is any interaction, it 

should be dependent on the phosphorylation of Sae2 on certain S/T-P site(s). There are 

only three S/T-P sites within Sae2: S267, S134 and S179. So I mutated all three serine to 

alanine to generate a 3A (S134A+S267A+S179A) Sae2 mutant, and transformed the 

wild-type low-copy-number Ess1 plasmid into yeast strains with the flag-tagged wild-

type, S267A or 3A mutant Sae2 expressed from a high-copy-number plasmid. Then flag- 
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Figure 4.4 WT Ess1 is not co-immunoprecipitated by flag-tagged Sae2. 

(A) Wild-type (WT) Ess1 (or vector only) was expressed from a low-copy-
number plasmid in yeast cells expressing the flag-tagged Sae2 from its chromosome 
locus. Protein extracts from yeast cells grown without or with 0.03% MMS were 
incubated with flag antibody conjugated agarose beads and the elution or in-put was 
analyzed by SDS-PAGE and blotted with anti-Sae2 and anti-Ess1 antibodies. (B) Wild-
type (WT) Ess1 was expressed from a low-copy-number plasmid in yeast cells expressing 
the indicated flag-tagged Sae2 alleles (or vector only) from a high-copy-number plasmid. 
Protein extracts from yeast cells grow without or with 0.03% MMS were incubated with 
flag antibody conjugated agarose beads and the elution was analyzed by SDS-PAGE and 
blotted with anti-Sae2 and anti-Ess1 antibodies. 3A=S267A+S134A+S179A. 

 

 

 



 107

tagged Sae2 was pulled down from the extract of yeast cells growing without or with 

0.03% MMS for 4 hours, and the elution was analyzed by SDS-PAGE and blotted with 

anti-Sae2 and anti-Ess1 antibodies. As shown in Figure 4.4B, no Ess1 was detected in 

either wild-type, S267A or 3A mutant Sae2 sample with or without MMS. These results 

suggest that either there is no direct interaction between Ess1 and Sae2 or the interaction 

is two weak for co-immunoprecipitation to detect. If it is the latter, an in vitro GST pull-

down assay might help to detect the interaction. 

 

Ess1 is phosphorylated by CDK2 in vitro 

In the previous chapter, I showed that Sae2 is phosphorylated by CDK in vivo and 

in vitro (Figure 3.12). To investigate if Ess1 plays any role in this process, an in vitro 

CDK kinase assay was performed. 

First, the recombinant wild-type or H164R mutant GST-Ess1 protein was purified 

from E.coli with a pGEX plasmid expressing an N-terminal GST tagged Ess1 (kindly 

provided by Dr. Huilin Zhou) by GST Sepharose resin (G.E.) and followed by SP 

Sepharose Fast Flow resin (G.E.). Then recombinant human CDK2-cyclin A, wild-type 

or H164R mutant GST-Ess1, and/or wild-type or S267A mutant MBP-Sae2 protein were 

incubated with 32P-ATP at 37℃ for 30 minutes as indicated.  The reaction products were 

separated by 12% SDS-PAGE and analyzed by use of a phosphorimager (Figure 4.5). 

Sae2 was similarly phosphorylated by CDK in the presence of wild-type or H164R Ess1, 

compared to that without Ess1. Both wild-type and the H164R mutant Ess1 were 

phosphorylated by CDK with or without Sae2, although the mutant was phosphorylated 

much more efficiently. Further experiment is needed to test if the T13 residue is the CDK 

phosphorylation site, since it is the only S/T-P site within Ess1 sequence. 
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Figure 4.5 GST-Ess1 is phosphorylated by CDK in vitro. 

Recombinant wild-type or S267A MBP-Sae2 protein and wild-type or H164R 
GST-Ess1 protein were incubated with human CDK2-cyclin A and γ-32P-ATP (32P-ATP) 
at 37℃, as indicated. Reaction products were separated by 12% SDS-PAGE and 
analyzed by use of a phosphorimager. 
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Ess1 does not affect Sae2 phosphorylation by CDK and Tel1 in vitro 

Since the PPIase activity of Ess1 requires the S/T-P phosphorylation of its 

substrate, if Ess1 could act on Sae2, it is more likely that Ess1 affects the Tel1 

phosphorylation of Sae2, which is primed by the CDK phosphorylation of Sae2. To test 

this possibility, a two-step kinase assay was performed in which wild-type Sae2 protein 

was incubated first with CDK, and then with DNA, Tel1, MRX, and/or wild-type or 

H164R Ess1 protein. Reaction products were separated by 12% SDS-PAGE, and then 

analyzed by protein blotting with anti-phospho-SQ/TQ and anti-Sae2 antibodies (Figure 

4.6). The ratio of phospho-SQ/TQ signal to Sae2 signal was normalized to 1.00 for the 

wild-type Sae2 with CDK2 only (the first lane), and the corresponding ratios for other 

samples relative to this are shown below each lane in Figure 4.6. Sae2 phosphorylation 

by Tel1 (measured by the p-SQ/TQ signal) was not affected by the addition of either 

wild-type or H164R Ess1 protein, suggesting that Ess1 does not regulate the Tel1 

phosphorylation of Sae2. 
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Figure 4.6 Ess1 does not affect Sae2 phosphorylation by CDK and Tel1 in vitro. 

Recombinant wild-type MBP-Sae2 protein was first incubated with CDK at 37℃ 
for 30 minutes, and then with MRX, DNA, Tel1, and/or wild-type or H164R mutant Ess1 
at 30℃ for additional 90 minutes, as indicated. Reaction products were separated by 12% 
SDS-PAGE and then analyzed by protein blotting with anti-phospho-SQ/TQ and anti-
Sae2 antibodies. The ratio of phospho-SQ/TQ signal to Sae2 signal was normalized to 
1.00 for the wild-type Sae2 with CDK2 only (the first lane), and the corresponding ratios 
for other samples relative to this were shown below each lane. 
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Overexpression of Ess1 does not change Sae2 level in vivo 

Overexpression of wild-type but not the catalytic defective mutant (W34A or 

C113A) Pin1 in human cells significantly reduced the level of CtIP protein in a 

proteasome-dependent way (Steger et al, 2013). If Sae2 is a substrate of Ess1, and is 

regulated by Ess1 in a manner similar to that of CtIP by Pin1, we would expect to see a 

decrease in Sae2 level when overexpressing the wild-type but not the catalytic defective 

Ess1 mutant (H164R) in yeast cells. We would also expect that this decrease will not be 

observed in the Sae2 S/T-P non-phosphorylatable mutant since the interaction between 

Pin1 and CtIP requires the S/T-P phosphorylation of CtIP (Steger et al, 2013).  

Since 400 Ess1 molecules per cell is sufficient for the function of Ess1 in normal 

growth (Gemmill et al, 2005), the Ess1 plasmid-shuffle yeast strain was used here to 

express either the wild-type or H164R PPIase defective mutant Ess1 under an ess1Δ 

background. A high-copy-number plasmid carrying either wild-type or mutant Sae2 allele 

was transformed into the wild-type Ess1 or H164R strain. Cells with indicated plasmids 

were tested for their DNA damage sensitivity (Figure 4.7A) and also for total Sae2 

protein level (Figure 4.7B). Figure 4.7A shows that cells expressing wild-type or mutant 

Sae2 together with either wild-type or H164R mutant Ess1 displayed a similar pattern of 

DNA damage sensitivity, except that expressing H164R mutant Ess1 slightly increases 

the sensitivity of all tested Sae2 alleles, compared to that of the wild-type Ess1. This 

result implies that Ess1 and Sae2 play a role in DNA damage repair through different 

pathways. Also, Sae2 protein level in these cells was not significantly different between 

wild-type and H164R mutant strain under normal conditions (Figure 4.7B) or with DNA 

damage (data not shown here).  

Our previous study indicated that Sae2 might be degraded through both 

autophagy- and proteasome-dependent pathways (Figure 3.20). Therefore I did similar  
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Figure 4.7 Wild-type or mutant Ess1 does not change the protein level of Sae2. 

(A) Wild-type (WT) or H164R mutant Ess1 was expressed from a low-copy-
number plasmid under the control of native Ess1 promoter in ess1△ yeast cells with 
indicated Sae2 alleles or vector control (Vec) expressed from a high-copy-number 
plasmid. Fivefold serial dilutions of cells expressing the indicated alleles were plated on 
normal medium (untreated) or medium with CPT and grown at different temperatures. 
(B) Protein extracts from yeast cells grown at 30°C as in (A) (without DNA damage) 
were analyzed by SDS-PAGE and blotted with anti-Ess1 and anti-ADH antibodies. 
3A=S267A+S134A+S179A; 2A3A=S134A+S267A+S249A+S278A+T279A; 
2E3D=S134E+S267E+S249D+S278D+T279D; QQ= K239Q+K266Q. 
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experiments as in Figure 4.7 but with cells bearing additional atg1 knockout to block the 

autophagy-dependent degradation of Sae2. The results are similar to those in Figure 4.7 

(not shown here). These results together indicate that Ess1 does not affect the protein 

level of Sae2 in vivo. 

 

Overexpression of Pcf11 rescues the DNA damage sensitivity of wild-type or H164R 
mutant Ess1 cells in vivo 

The CTD of RNA Pol II is the most important substrate of Ess1 identified in yeast 

so far, and a previous study showed that Ess1 plays an important role in both the Nrd1-

dependent alternative termination pathway and the canonical mRNA termination pathway 

(Ma et al, 2012). These two pathways utilize partially overlapping proteins including 

Pcf11, Ssu72, Swd2, Ran14 and Rna15 (Lykke-Andersen & Jensen, 2007). 

Based on the observation that overexpression of Pcf11 or Ssu72 could rescue the 

normal growth defect of Ess1 H164R mutant (Krishnamurthy et al, 2009; Singh et al, 

2009), we wondered if Ess1 plays a role in DNA damage repair through transcription 

termination. Like Ess1, both Pcf11 and Ssu72 are essential genes. Therefore I 

overexpressed either wild-type Pcf11 or wild-type Ssu72 from a high-copy-number 

plasmid (Pcf11 plasmid was kindly provided by Dr. Steven Hanes) in the Ess1 plasmid-

shuffle yeast strain expressing either wild-type or H164R mutant Ess1. DNA damage 

sensitivity tests showed that overexpressing Pcf11 but not Ssu72 significantly increased 

the DNA damage resistance of both wild-type and H164R mutant Ess1 cells, while the 

wild-type Ess1 cells still had better resistance than that of H164R mutant cells (Figure 

4.8). These results imply that Ess1 plays a role in DNA damage repair at least partially 

through transcription termination.  
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Figure 4.8 Overexpression of Pcf11 increases the DNA damage sensitivity of Ess1 wild-
type or H164R mutant cells. 

Wild-type (WT) or H164R mutant Ess1 was expressed from a low-copy-number 
plasmid under the control of native Ess1 promoter together with either the wild-type 
Pcf11 or wild-type Ssu72 expressed from a high-copy-number plasmid (or empty vector 
as control) in ess1△ yeast cells. Fivefold serial dilutions of cells were plated on normal 
medium (untreated) or medium containing CPT or MMS, or treated with UV light, and 
grown at 25°C or 30°C as indicated. 
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Overexpression of Pcf11 rescues the DNA damage sensitivity of sae2 null cells in 
vivo 

I also transformed the wild-type Pcf11 or wild-type Ssu72 plasmid into the 

sae2△ strain or sae2△ strain with wild-type Sae2 expressed from a low-copy-number 

plasmid under the control of native Sae2 promoter, and tested the sensitivity of those 

cells in response to different types of DNA damage treatment. As shown in Figure 4.9, 

surprisingly, overexpressing Pcf11 but not Ssu72 significantly increased the DNA 

damage resistance of sae2 deletion cells to different types of DNA damage treatment, for 

example, CPT, MMS, Bleomycin (a glycopeptide antibiotic that introduces DNA strand 

breaks directly), Etoposide (a Topoisomerase II inhibitor), IR or UV light treatment. The 

most obvious rescue effect was observed with sae2 deletion cells overexpressing wild-

type Pcf11 under CPT treatment. These results imply that transcription termination might 

play a role in DNA repair in response to many types of damage treatment. 
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Figure 4.9 Overexpression of Pcf11 reduces the DNA damage sensitivity of sae2△ cells. 

Wild-type (WT) Sae2 was expressed from a low-copy-number plasmid under the 
control of native Sae2 promoter (or empty vector as control) together with either the 
wild-type Pcf11 or wild-type Ssu72 expressed from a high-copy-number plasmid (or 
empty vector as control) in sae2△ yeast cells. Fivefold serial dilutions of cells were 
plated on normal medium (untreated) or medium containing CPT, MMS, Bleomycin, or 
Etoposide, or treated with IR or UV light as indicated, and grown at 30°C. 
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DISCUSSION 

 

Driven by the discovery that the human peptidyl-prolyl isomerase Pin1 could 

isomerize CtIP, the functional ortholog of yeast Sae2, leading to CtIP poly-ubiquitination 

and subsequent proteasomal degradation (Steger et al, 2013), we tried to address if there 

is a similar interaction between yeast peptidyl-prolyl isomerase Ess1 and Sae2.  In this 

study, we confirmed the increased DNA damage sensitivity of some Ess1 catalytic 

mutants (for example, H164R) and also found some new mutants with similar phenotype. 

However, we could neither detect any interaction between Ess1 and Sae2 by co-

immunoprecipitation in vivo, nor observe any change of Sae2 protein level when 

overexpressing wild-type or H164R mutant Ess1 with or without DNA damage. Besides, 

in vitro kinase assays did not show any effect of Ess1 on the phosphorylation of Sae2 by 

CDK and Tel1, except the observation that Ess1 itself could be phosphorylated by CDK. 

Therefore, Ess1 probably does not act on Sae2, as Pin1 does on CtIP. And the DNA 

damage sensitivity of Ess1 mutants may be related to other substrates rather than Sae2. 

The CTD of RNA Pol II is the most important substrate of Ess1 identified in yeast 

so far. Two studies showed that Ess1 promotes pSer5 dephosphorylation by generating a 

structural conformation of the CTD favored by the Ssu72 phosphatase (Krishnamurthy et 

al, 2009; Singh et al, 2009), and this mainly function in the Nrd1 alternative termination 

pathway (Singh et al, 2009). A model is proposed for the role of Ess1 in this pathway: 

when RNA Pol II is approaching a Nrd1-dependent terminator, Ess1 is recruited by the 

pSer2/pSer5 of CTD, and targets the pS5-P6 which happens to be the Nrd1 binding site; 

Ess1 then catalyzes the cis/trans isomerization of pS5-P6, resulted in a conformational 

change of the CTD which is a better substrate for pSer5 dephosphorylation by Ssu72; 

Nrd1 is then released, leading to the binding of Pcf11 to the adjacent pSer2 site so that 
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termination could occur (Singh et al, 2009). A recent study demonstrated that Ess1 not 

only plays an important role in the Nrd1-dependent alternative termination pathway, but 

also is required for the canonical mRNA termination pathway (Ma et al, 2012). This is 

not surprising since these two pathways utilize partially overlapping set of proteins 

including Pcf11, Ssu72, Swd2, Ran14 and Rna15 (Lykke-Andersen & Jensen, 2007). 

Although there are some non-overlapping factors involved in these two different 

pathways, we can still assume that Ess1, Pcf11 and Ssu72 work together in a similar way 

in both pathways, since most of the other distinct factors are required for recognition of 

different transcription termination signals in two different pathways. 

Since overexpression of Pcf11 or Ssu72 almost completely rescues the normal 

growth defect of Ess1 H164R mutant (Krishnamurthy et al, 2009; Singh et al, 2009), we 

try to address the question whether Ess1 plays a role in DNA damage repair through 

RNA Pol II transcription termination. Figure 4.8 showed that overexpressing Pcf11 

significantly increased the DNA damage resistance of both wild-type and H164R mutant 

Ess1 cells, while the wild-type Ess1 cells still had better resistance than that of H164R 

mutant cells. These results imply that Ess1 plays a role in DNA damage repair at least 

partially through RNA Pol II transcription termination. 

The observation that wild-type Ess1 cells still had better resistance than that of 

H164R mutant cells when Pcf11 is overexpressed in both indicates that Ess1 might 

contribute to DNA damage repair other than promoting transcription termination. This is 

possible since Ess1 is found to play multiple roles in the RNA Pol II transcription cycle 

besides transcription termination (Ma et al, 2012). In this paper, Ma et al. showed that 

Ess1 is present along the entire length of coding genes, and could repress the initiation of 

cryptic unstable transcripts (CUTs). In addition, Ess1 is critical for regulating the 

phosphorylation of Ser7 within the CTD and is also required for trimethylation of histone 
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H3 lysine 4 (H3K4) by H3K4 histone methyltranferase Set1 (Ma et al, 2012). H3K4 

trimethylation is well known for its association with active transcription, especially at 

promoters of highly transcribed genes, and is also found to be recruited to sites of newly 

created double-stranded breaks (Faucher & Wellinger, 2010). Cells lacking this histone 

modification display a significant decrease in the repair of DNA breaks by the NHEJ 

pathway and a difficulty to survive under replication stresses (Faucher & Wellinger, 

2010). Therefore, Ess1 might also contribute to DNA damage repair by promoting H3K4 

trimethylation. 

To our surprise, overexpressing Pcf11 also significantly rescued the DNA damage 

sensitivity of sae2△ cells. This might reveal a new connection between transcription 

termination and DNA damage repair (more details in Chapter 5).  
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CHAPTER 5: DISSCUSION AND FUTURE DIRECTIONS 

 

The Sae2 protein is an important component of the machinery that initiates DNA 

double-strand break resection in budding yeast (Mimitou & Symington, 2009; Paull, 

2010), and is the target of CDK phosphorylation which limits 5' strand resection to the S 

and G2 phases of the cell cycle (Huertas et al, 2008). In this study, we identify the 

phosphorylation events that occur on Sae2 in vivo and determine that the CDK 

modifications prime further modification by Mec1/Tel1 kinase that are essential for Sae2 

activities in DNA damage survival. Based on our analysis of recombinant Sae2 in vitro 

and the properties of Sae2 in budding yeast, we propose that one of the primary functions 

of Sae2 phosphorylation is to transiently disrupt Sae2 from large, oligomeric, inactive 

forms into smaller active forms that promote DNA end resection and homologous 

recombination. Sae2 that is released from the larger structures is also rapidly degraded 

through a combination of autophagy and proteasome-mediated pathways. Overall, this 

analysis provides evidence for post-translational modifications as regulators of 

oligomerization and solubility, such that an inherently insoluble protein can be mobilized 

rapidly and reversibly to perform its functions. 

Driven by the discovery that human peptidyl-prolyl isomerase Pin1 could 

isomerize CtIP, the functional ortholog of yeast Sae2, leading to CtIP poly-ubiquitination 

and subsequent proteasomal degradation (Steger et al, 2013), we tried to address if there 

is a similar interaction between yeast peptidyl-prolyl isomerase Ess1 and Sae2.  In this 

study, we confirmed the increased DNA damage sensitivity of some Ess1 catalytic 

mutants (for example, H164R). However, we neither detected any interaction between 

Ess1 and Sae2 in vivo, nor observed any change of Sae2 protein level when 
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overexpressing wild-type or H164R mutant Ess1 with or without DNA damage. 

Therefore, Ess1 probably plays a role in DNA damage repair by acting on other 

substrates.  

One of the most important substrates of Ess1 identified in yeast so far is the CTD 

of RNA Pol II. Previous studies showed that Ess1 promotes pSer5 dephosphorylation by 

generating a structural conformation of the CTD favored by the Ssu72 phosphatase, 

which further promotes the recruitment of RNA 3' end processing factor Pcf11 to the 

adjacent pSer2 site so that termination could occur (Krishnamurthy et al, 2009; Singh et 

al, 2009). The requirement of Pcf11, Ssu72, and Ess1 in both the Nrd1-dependent 

alternative termination pathway and the canonical mRNA termination pathway indicates 

that this is probably the case for both pathways (Ma et al, 2012). Since overexpression of 

Pcf11 or Ssu72 almost completely rescues the normal growth defect of Ess1 H164R 

mutant (Krishnamurthy et al, 2009; Singh et al, 2009), we wonder if Ess1 also plays a 

role in DNA damage repair through transcription termination. As expected, 

overexpressing wild-type Pcf11 significantly increased the DNA damage resistance of 

both wild-type and H164R mutant Ess1 cells. Surprisingly, overexpressing Pcf11 also 

significantly increased the DNA damage resistance of sae2△ cells. These results imply 

that Ess1 contributes to DNA damage repair at least partially through transcription 

termination, and Sae2 might also play a role in this process. These results also might 

reveal a link between transcription termination and DNA damage repair. 

DNA damage repair is important for lesions occurring in actively transcribed 

DNA template since the RNA polymerase cannot transcript through a damaged site. 

Stalled RNA polymerases and persisting DNA lesions are very harmful and can even lead 

to cell death. Transcription termination is not only important to prevent interference with 

transcription of downstream genes, but also critical to release the RNA polymerase from 
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the DNA template for reinitiation or new transcription. Therefore, under DNA damage 

conditions, transcription termination might help to release stalled RNA polymerases, 

giving time or space for repair machinery to correct these lesions, leading to a better cell 

survival.  

 

DNA DAMAGE-INDUCED OR CELL CYCLE-RELATED DEGRADATION OF SAE2 

The appearance of more Sae2 in the soluble fraction occurs concomitantly with 

the degradation of ~20% of the protein during replication in the presence of DNA 

damage. This damage-induced loss of protein takes place primarily through autophagy, as 

seen in an atg1 deletion strain, although inhibition of proteasome function further 

increases Sae2 protein levels. The previously reported involvement of autophagy in Sae2 

degradation (Robert et al, 2011) is consistent with our evidence for large oligomeric 

complexes since this pathway is primarily responsible for removal of damaged organelles 

and large aggregates (Xie & Klionsky, 2007). Here we identify two lysine residues as 

targets for the acetylation that signals Sae2 for degradation (K239 and K266). Preventing 

phosphorylation of Sae2 at S267 by mutation does not block either its acetylation or 

degradation (data not shown), thus the degradation is not strictly dependent on the CDK-

induced phosphorylation events even though it is damage-induced. At this point it is not 

known which enzymes acetylate or deacetylate Sae2, although this is certainly an 

interesting area for future study. Also our results indicate that both proteasome and 

autophagy pathways might contribute to Sae2’s degradation, but how acetylation is 

related to any of them and how these two pathways are coordinated are completely 

unknown. There is an interesting paper showing that acetylated core histones upon DNA 

damage could be degraded through proteasome in a polyubiquitin-independent way with 
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the help of a proteasome activator PA200 in mammalian cells (Qian et al, 2013). This 

might shed some light on the relation between Sae2 acetylation and degradation since 

PA200 has a yeast homologue BLM10 which shows an increased cell sensitivity to DNA 

damage reagents like MMS if knocked out (Doherty et al, 2012). 

It is also notable that Sae2 contains two putative degradation signals: a PEST 

sequence and a KEN-box, according to online prediction algorithms. They might also 

play a role in Sae2 degradation process after DNA damage or during normal cell cycle. 

The PEST sequence is a short polypeptide region that targets proteins for rapid 

degradation. It is rich in proline (P), glutamic acid (E), serine (S), and threonine (T) and 

is usually flanked by lysine (K), arginine (R), or histidine (H), but positively charged  

residues are not allowed within this sequence (Rogers et al, 1986). By using an online 

PEST sequence prediction program (http://emboss.bioinformatics.nl/cgi-

bin/emboss/epestfind), Sae2 is shown to have a potential PEST sequence starts from 

amino acid 66 to 97 (KNAPQQSSQTSAGPGEQDSEDFILTQFDEDIK) with a score of 

5.07. Usually a PEST score above 5.0 is considered as a real biological interest 

(Rechsteiner & Rogers, 1996).  There are a number of ways to induce the PEST sequence 

dependent degradation, such as light, phosphorylation, or exposing the PEST region 

through conformational change (Rechsteiner & Rogers, 1996).  Although the mechanism 

by which PEST sequences are recognized is not very clear, some PEST-containing 

proteins have been shown to be degraded by the ubiquitine-26S proteasome (Reverte et 

al, 2001; Spencer et al, 2004), and some are mediated via the calpain protein (Shumway 

et al, 1999). Therefore, it would be very interesting to do truncation or mutations within 

this PEST sequence to see whether it could affect Sae2 stability. If so, further study could 

focus on if phosphorylation by either CDK or Tel1 or the whole oligomeric to monomeric 
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conformational change acts as a signal for Sae2 proteolytic degradation after DNA 

damage. 

The KEN-box, first identified in Cdc20 (Pfleger & Kirschner, 2000), is a short 

motif contains a highly conserved KEN sequence which serves as a reorganization signal 

for Anaphase-Promoting Complex/Cyclosome (APC/C) -dependent proteolysis. It usually 

presents together in APC/C substrates with another APC/C degron, the destruction box 

(D-box) which has a minimal consensus of RXXL (King et al, 1996). An APC/C 

substrate harbouring both D and KEN boxes is recognized by APC/C co-activator Cdc20 

or Cdh1, which subsequently recruits the APC/C E3 ubiquitin ligase complex, resulting 

in the ubiquitin-dependent proteasomal degradation of the substrate (Pfleger & Kirschner, 

2000). However, some substrates contain only either the D-box or the KEN-box, in one 

or more copies. It is thought that Cdc20 is more dependent on the D-box and Cdh1 is 

more dependent on the KEN-box (Passmore et al, 2005; Zur & Brandeis, 2002). Many 

KEN-boxes were found within key cell cycle proteins or other proteins, such as human 

CDC6 (Petersen et al, 2000), securin (Zur & Brandeis, 2001), yeast CIN8 (Hildebrandt & 

Hoyt, 2001) and Aurora kinase B (Nguyen et al, 2005). Using an online prediction 

program (http://arm.biocuckoo.org/online.php), I found there is a very potential KEN-box 

in Sae2 from amino acid 160 to 162 (IHEKDNDKENKTRKLLG) with a score of 18.705 

(in the setting of high threshold for KEN-box, compared to a cutoff score 9.116). There is 

only a weak D-box (score 5.041) found within Sae2 sequence from amino acid 320 to 

323 (EREYVFKREQLNQIVDDG) by this program in the setting of low threshold for D-

box (compared to a cutoff score 4.644). Mutation study about these two motifs would be 

very interesting to test whether Sae2 is also degraded in an APC/C dependent way during 

the normal cell cycle. 
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TRANSCRIPTION TERMINATION AND DNA DAMAGE REPAIR 

DNA lesions can generate structural distortions on DNA strands that interfere 

with basic cellular functions, such as transcription and replication. These lesions are 

generally fixed by nucleotide excision repair (NER). Depending on whether the DNA 

lesion is located anywhere in the genome or on the transcribed strand (TS) of an active 

gene, the NER can be divided into two sub-pathways: global genome repair (GG-NER) 

and transcription-coupled repair (TC-NER, or TCR). 

At actively transcribed genes, when the elongating RNA Pol II stalls at bulky 

DNA lesions such as UV-induced pyrimidine dimmers, it could efficiently recruit TCR 

specific factors for the assembly of the repair complex. However, the stalled RNA Pol II 

has a footprint of about 35 nucleotides, occupying 10 nucleotides in front and 25 

nucleotides behind the lesion (Tornaletti & Hanawalt, 1999). Then the stalled RNA Pol II 

needs to be either released or backtracked from the lesion site for the following repair 

processes to occur. 

Transcription termination usually occurs when the RNA Pol II ceases RNA 

synthesis and both Pol II and the nascent RNA are released from the DNA template. It 

serves many critical functions in the cell, for example, preventing Pol II from interfering 

with downstream DNA elements, and promoting RNA polymerase recycling. Recently, 

growing evidence revealed a new role of transcription termination:  contributing to DNA 

damage repair. 

E. coli NusA, a component of all elongating RNA polymerases, in addition to its 

known roles in transcription elongation and termination, is found to be important for the 

recruitment of DNA repair factors to sites of stalled transcription complexes (Cohen et al, 

2009; Cohen et al, 2010; Cohen & Walker, 2010). 
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Inhibition of Rho-dependent transcription termination in E.coli has been shown to 

induce DSBs depending on replication, suggesting that Rho might function in the release 

of obstructing RNA Polymerase during replication (Washburn & Gottesman, 2011). 

In budding yeast, a transcription termination factor RTT103 is found to associate 

with sites of DNA breaks, and Rtt103 mutant cells are sensitive to multiple forms of 

genome insults, indicating that Rtt103 is likely to play a direct role in response to DNA 

damage (Srividya et al, 2012). Similarly, loss of Kub5-Hera, the human homolog of 

Rtt103, resulted in increased basal R-loop levels, DSBs, activated DNA-damage 

responses and enhanced genomic instability (Morales et al, 2014). 

Yeast Sen1, a component of the Nrd1 transcription termination complex, interacts 

physically with the NER repair protein Rad2 and the Sen1 mutation increases the UV 

sensitivity of rad2 null cells, suggesting a connection between transcription termination 

and NER (Ursic et al, 2004). Sen1 is also found at replication forks to help preventing 

deleterious outcomes of the putative collisions between the transcription and replication 

machineries (Alzu et al, 2012). 

Yeast Rna14, Rna15, Hrp1, and Pcf11 all belong to the cleavage Factor I (CFI) 

which function in both transcription termination pathways. A recent study discovered that 

Rna14, Rna15, or Hrp1 mutant alleles caused increased sensitivity to UV light in the 

absence of global genome repair, also resulted in a delay in DNA damage checkpoint 

activation and RNA Pol II degradation in response to UV, indicating that CFI and 

transcription termination participate in the DNA damage response (Gaillard & Aguilera, 

2014). 

Our observation that overexpressing Pcf11 significantly increased the DNA 

damage resistance of both wild-type and H164R mutant Ess1 cells, and also the sae2△ 
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cells implies that Ess1, Pcf11 and Sae2 may all contribute to DNA damage repair through 

transcription termination.  

Further study is needed to look into the details of this process. First of all, since 

the rescue effect of sae2 deletion cells is more obvious with CPT treatment than other 

types of damage treatment, and DNA Topoisomerase I (Top1) is the only primary cellular 

target of CPT (Pommier, 2004), it would be easier to study the role of transcription 

termination in DNA repair in this case. Top1 relaxes DNA superhelical tension generated 

during transcription or DNA replication by producing transient Top1-linked DNA single-

stranded breaks (also known as Top1 cleavage complex, Top1cc) (Wang, 2002). This 

cleavage complex could be trapped by CPT, leading to transcription- or replication-

mediated DNA damage (Pommier, 2004). A previous study revealed that upon CPT 

treatment, RNA Pol II is hyperphosphorylated,  selectively at Ser5 of CTD by Cdk7 in 

mammalian cells, and this hyperphosphorylated Rpb1 is not primarily targeted for 

proteasome degradation but instead is subjected to reversible phosphorylation and 

dephosphorylation (Sordet et al, 2008). Besides, CPT treatment also induces Top1 

degradation in a transcription- and the tumor suppressor protein Brca1-dependent way 

(Sordet et al, 2008). Since CtIP binds to Brca1 (Wong et al, 1998; Yu et al, 1998) and 

both of them are important for cellular tolerance to topoisomerase inhibitors (Nakamura 

et al, 2010), which is similar to Sae2 (Foster et al, 2011), it is possible that Sae2 is 

important in removing Top1cc from DNA for its subsequent degradation upon CPT 

treatment. Based on these results, we proposed a hypothesis (Figure 5.1) about how Sae2 

and transcription termination would participate in DNA damage repair under CPT 

treatment. In wild-type Sae2 cells, the Top1cc introduced by CPT might be removed 

from the DNA by Sae2 rapidly to allow DNA repair and continuation of transcription. 

Therefore overexpressing Pcf11 will not increase the CPT resistance of wild-type Sae2  
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Figure 5.1 Sae2 and transcription termination participate in DNA damage repair upon 
CPT treatment. 

(A) In wild-type Sae2 cells, the Top1 cleavage complex (Top1cc) introduced by 
CPT might be removed from the DNA by Sae2 rapidly to allow DNA repair and 
continuation of transcription. (B) In sae2 deletion cells, no Sae2 protein is available to 
remove Top1cc from the DNA rapidly, but overexpressing Pcf11 recruits other 
transcription termination factors which work cooperatively to terminate the paused 
transcription complex, enhancing cell survival during CPT treatment. See text for details. 
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cells. However, in sae2 deletion cells, there is no Sae2 protein to remove Top1cc from the 

DNA rapidly. In this situation, overexpressing Pcf11 might recruit other transcription 

termination factors which work cooperatively to terminate the paused transcription 

complex so that other repair proteins could remove Top1cc or RNA Pol II can reinitiate 

or start new transcription to enhance cell survival under CPT treatment.  

To address this hypothesis, we could overexpress other transcription termination 

factors (for example, Rna14, Rna15, Rtt103, Clp1, or Nrd1) to test if any other factor also 

has a similar effect as that of Pcf11, or test these factors in strains with other DNA repair 

gene deletions (including Rad50, Mre11, Exo1, or Dna2) to determine if any other repair 

proteins are also involved in the removal of Top1cc conjugates.  

Since Pcf11 is a scaffold protein in the cleavage complex and interacts with many 

other proteins besides RNA Pol II CTD (Ghazy et al, 2012; Haddad et al, 2012; Lunde et 

al, 2010; Noble et al, 2005; Zhang et al, 2005), we could examine if overexpressing any 

Pcf11 separation-of-function mutant abolishes the rescue effect of wild-type Pcf11. 

We could also compare the protein level of Top1 or Top1-DNA conjugates and 

the phosphorylation pattern of RNA Pol II CTD before and after CPT treatment in either 

wild-type Sae2 cells or sae2 deletion cells, to directly monitor the removal of Top1-DNA 

conjugates and RNA Pol II transcription termination under different conditions. 
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