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Compressive Forces Causing Rod Buckling in Sucker Rod Pumps and 
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Supervisors:  Paul Bommer 

        Kamy Sepehrnoori 

 

Sucker rod pumps has been the most commonly used pumps in the petroleum 

industry. Therefore, many studies associated with sucker rods focuses on maximizing the 

rod life. Rod buckling is a leading problem which causes concentrated wear on tubing 

wall, immediate failure in rod strings, and shortens fatigue life of the string. This study 

fundamentally consists of a review of the literature on compressive forces causing rod 

buckling in sucker rod pumps and using sinker bars to prevent buckling.  

The study initially addresses defining rod buckling, and then continues with the 

studies on analyzing the static forces acting near pump in the literature. Subsequently, the 

critical loads causing rod buckling, and the various approximations to estimate these 

critical loads are discussed. Then, the comparisons of the measured and calculated critical 

loads in the literature are presented. Next, the two of the most commonly experienced 
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buckling types in the sucker pumps, sinusoidal buckling and helical buckling, are 

discussed. An example study on developing a model to estimate compressive forces 

acting on the pump plunger is reviewed to illustrate the importance of the parameters, 

such as surface roughness of pump, valve diameter, and pump geometry. Lastly, using 

sinker bar which is the most practiced method in the industry to prevent rod buckling is 

extensively discussed and demonstrated. 
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Chapter 1:  Introduction 

Texas, the second largest state in the United States of America, is also well-

known for its energy resources. The hundreds of oil wells can be seen while driving 

across Texas. These wells are mostly produced by a common type of pump which is 

called the beam lift pump or the horse head pump because of its shape looking like a 

horse head.  

The beam lift pump consists of three main mechanical parts, surface pump, rod 

string (sucker rods), and subsurface pump (pump plunger and barrel). The surface pump 

is the visible part of the beam lift, located at the surface, which drives the rods up and 

down through an oil well by converting the electric power into motion energy. Rod string 

is composed of hundreds of 25-feet steel or fiber-reinforced plastic (FRP) rods, and 

transmits the motion of the surface pump to the pump plunger. The total length of rod 

string can be thousands of feet. In Figure 1, a short sucker rod and its parts are illustrated. 

This transmitted strokes cause the pump plunger firstly to move the fluid into the pump 

barrel and then to push it up from the pump barrel. Figure 2 represents the schematic of a 

conventional beam lift pump and its major parts.  

The life of rods and pumps plays an important role for the profitability of an oil 

well because oil-producing companies have a natural desire to profit more by using rods 

and pumps for a longer period of time. However, the continuous up-down motion of these 

mechanical parts weakens their endurances in time due to the rapidly changing forces on 

rods and pumps. These forces, mostly depending on the frequency of the motion and the 

materials which are used to manufacture, determine the life of these beam lift pumps. 

Therefore, selecting the most suitable material and estimating the optimum pumping 
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speed for each unique well by considering that the faster the pump moves, the easier the 

pumping system tends to fail are necessary to maximize the life of rods and pumps. 

 

Figure 1:  Sucker Rod Terminology (The Beam Lift Handbook by Paul M. Bommer 

and A. L. Podio, 2015) 

The analysis of the compressive force acting on pumps, which has been widely 

covered in the petroleum industry, is one of the most substantial issues in sucker rod 

pumps which directly affect the rod and pump life, and failures in pumping systems. This 

study focuses on the compressive forces associated with rod buckling and the methods to 

prevent buckling.  

The study begins with defining rod buckling, and proceeds to a review of the 

analysis of the static loads acting near the pump. Then, the study addresses the critical 

loads causing rod buckling, and the approaches in the literature to calculate these loads. 

Comparing the measured critical load data and the calculated critical load values by 

different approaches, the reliability of these methods is investigated. Next, sinusoidal 

buckling and helical buckling are discussed as helical buckling is assumed as the most 

common form of rod buckling in the literature. Later on, the effects of the parameters, 

such as viscosity, valve design, and surface roughness are discussed in the perspective of 
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the models developed to predict the dynamic forces acting on pump. Analyzing the 

compressive forces acting on the bottom of the sucker rod, the most commonly used 

methods to prevent rod buckling are presented. Finally, the method of using heavy sinker 

bar to prevent rod buckling is explained in detail, and the studies in the literature are 

discussed. 

 

 

Figure 2:  Schematic of conventional pumping unit with major components of the 

sucker-rod-lift system (Courtesy of Harbison-Fisher). 
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Chapter 2: Rod Buckling 

Rod buckling, a leading cause of pumping failures, is a universal concern of all 

oil-producing companies and operators. It has been experienced that rod buckling could 

easily engender lost revenue during downtime and expensive operating costs. The most 

of the companies and the operators aim to reduce failures in rod pumping systems in 

order to diminish the effects of costly failures. Therefore, rod buckling has been 

extensively studied in the literature. 

As sucker rods are manufactured to handle thousands of tensile stress, a small 

compressive load can easily bend the sucker rod string. This bending motion is called as 

rod buckling. In this chapter, the previous researches on defining rod buckling, static 

loads on pump plungers, critical buckling loads, buckling types, hydraulics of sucker rod 

pumps, compressive forces acting on the bottom of the sucker rod pumps, and the 

methods to prevent rod buckling are extensively investigated.  

2.1   DEFINING ROD BUCKLING 

In order to define buckling, determining the all aspects of buckling is needed. The 

motion of rod alone does not cause buckling. Therefore, the consideration of buckling 

should include both the pump’s dynamic and rod inertia. The dominant contributing 

forces which can buckle rods are the loads caused by the motion of the pump, fluid 

properties, and pump clearance. Most of the work in the literature proves that hydrostatic 

has no impact on true compressive force acting on the rods (Lubinski et al. 1962). In 

other words, there is equilibrium between the load which tends to straighten the rod, and 

the load which acts to compress the rod. As a result, the equilibrium abolishes the 

hydrostatic effects in the rod buckling (Mendenhall and Ott, 1995).  
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The resistance occurred at the subsurface pump is one of the main factors which 

directly affects buckling. Since the rod string is not loaded by fluid during down-stroke, 

the effect of this resistance mostly appears in the lower level of rod string while the rest 

upper part of the rod string is held in tensile stress because of the gravitational forces on 

the attached rods in the lower rod string. The point splitting these upper and lower 

portions of rod strings is called as neutral point, which is illustrated in the Figure 3. As a 

secondary effect, the compressive load propagates through rod string which is called 

force wave propagation. This compressive load takes place in the lower level of neutral 

point (Bishop and Long, 2010; Mendenhall and Ott, 1995). 

 

 

Figure 3: Load cycle of stroke and illustration of neutral point (Bishop and Long, 

2010). 



6 

 

To conclude, it is necessary to estimate the compressive force in order to achieve 

a useful rod buckling analysis. Defining and analyzing rod buckling require better 

understanding of neutral point because the principle of preventing buckling is related to 

the methods to keep the neutral point at the lowest level of rod string.  

2.2   ANALYSIS OF SUCKER ROD LOADS 

Prior to estimating the compressive force, it is essential to analyze the forces 

acting on rod string. Since the working principle of the sucker rod pumps is based on 

reciprocating in the well, load on the sucker rods are fluctuating.  Let us consider that 

pump plunger begins moving up from the lowest level which it can reach in the pump 

barrel. As pump moves up, travelling valve tends to close, and fluid begins being lifted 

by pump plunger. Summation of fluid weight, buoyed rod weight and dynamic loads 

gives the total load during the upstroke. Therefore, the maximum (peak) load occurs 

during upstroke which is shown in the Textbook of Bommer and Podio as given in 

Equation (2.1). 

𝑊𝑚𝑎𝑥 = 𝑊𝑟𝑓 + 𝐹𝑜 + 𝑊𝐷𝑢𝑝…………………………………………..……………..…(2.1) 

where Wmax is the maximum rod load during the upstroke, Wrf is the buoyed weight of 

rod, Fo is the weight of fluid, and WDup is the dynamic load during the upstroke.  

When the pump plunger begins moving down in the barrel, standing valve closes, 

and increase in pressure occurs in the barrel. At some point of early time of downstroke, 

pressure in the barrel reaches a critical value which opens the travelling valve, and fluid 

load is transferred to the standing valve. Since fluid weight is hold by the standing valve, 

and the direction of the dynamic load changes due to the downward motion of the rod 

string, the minimum load supported by the sucker rods is shown as in Equation (2.2). 
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𝑊𝑚𝑖𝑛 = 𝑊𝑟𝑓 − 𝑊𝐷𝑑𝑜𝑤𝑛…………………………………………..…………….…..…(2.2) 

where Wmin is the minimum rod load during the downstroke, and WDdown is the dynamic 

loads during the downstroke.  

Wrf can be calculated based on Archimedes’ Principle. According to Archimedes, 

the buoyed weight of the rods is equal to the weight of the rods in air minus the weight of 

the fluid displaced by the rod string. The displaced fluid weight and the buoyed rod 

weight can be computed in Equation (2.3) and Equation (2.4), respectively. 

𝑊𝐹𝐷 = 𝑊𝑟
𝜌𝑓

𝜌𝑟
= 𝑊𝑟

62.4𝛾𝑓

𝜌𝑟
……………………………...……………..……………..…(2.3) 

𝑊𝑟𝑓 = 𝑊𝑟 − 𝑊𝐹𝐷 = 𝑊𝑟 (1 −
62.4𝛾𝑓

𝜌𝑟
) ……………………………..………………..…(2.4) 

where WFD is the weight of the fluid displaced by the rods, Wr is the weight of the rod in 

air, ρf is the density of fluid, ρr is the density of rod, γf is the specific gravity of fluid 

referenced to fresh water. 

The weight of the fluid, which is lifted by the travelling valve during upstroke and 

the standing valve during downstroke, can be estimated by multiplying the static pressure 

of the produced fluid on the pump plunger by the cross-sectional area of the plunger. 

Equation (2.5) gives the fluid load acting over the plunger. 

𝐹𝑜 =
62.4

144

𝑔𝑐

𝑔
𝛾𝑓𝐿𝑛𝐴𝑝 = 0.34𝛾𝑓𝐿𝑛𝐷𝑝

2……………..…………………..……………..…(2.5) 

where g is acceleration due to gravity, gc is gravitational conversion constant, Ln is net 

fluid lift from the working fluid level, Ap is plunger area, and Dp is plunger diameter. 

Since determining the dynamic forces acting on sucker rod pump will be 

discussed in detail in the following sections, Equations (2.1) and (2.2) can be considered 
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as general expressions for the maximum and minimum loads. Dynamic forces basically 

consist of the frictional and viscous forces inside the tubing string, such as the 

mechanical pump friction, the friction between the rods and fluid, the fluid and tubing, 

the tubing and rods, and the friction due to the fluid flowing through valves (Bommer and 

Podio 2015).  

2.3   CRITICAL BUCKLING LOADS 

One of the questions whose answer is so valuable for the industry is how 

compressive load causing rod buckling can be determined. According to Mendenhall and 

Ott (1995), measuring, modeling, or empirically determining are the only ways to 

determine the magnitude of the compressive load which depends on the specific rod 

string installation. Although the most accurate way of determining the load is considered 

as measuring the loads as a function of time and position at the pump by downhole load 

cell device (DHLC), it is not feasible enough to perform routine analysis because it is 

both expensive and time consuming. However, modeling, which is the most popular 

alternative, needs to be calibrated by DHLC measurements. Therefore, well-calibrated 

software can be utilized effectively for routine field works. The third method, empirically 

determining, is less expensive and time consuming than the other two methods, but it is 

not recommended because the complex dynamics of rod string is disregarded. 

Leonhard Euler was the first mathematician investigating buckling and critical 

load required to buckle an ideal, elastic slender column. In his investigation, it is assumed 

that an ideal slender column is perfectly straight and compressed by load acting through 

the centroid of the cross section. According to Euler’s study, this compression can be 

described by one of three forms of equilibrium; stable, neutral, and unstable.  
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In stable equilibrium, the force not exceeding critical load is applied, and the 

perfect straight shape of column does not alter. Under these conditions a small lateral 

force will bend the column which will return to its straight form if the lateral force is 

removed. If the applied force reaches to the critical force, a lateral force will produce a 

deflection, and will not disappear when the lateral force is removed. This equilibrium 

shapes neutral buckling. Equal to or greater loads than the critical load cause instability in 

column which is called unstable buckling (Long and Bennett, 1996).  

Euler solved the differential equation for the rod deflection curve with the free-

fixed boundary conditions assuming that the one end of the column is fixed while the 

other one is free to move radially. The best condition describing the physical shape of the 

bottom rod is free-fixed condition. The general expression for the critical load defined by 

Euler is represented in Equation (2.6): 

𝐹𝐶𝑅 = (𝜋2𝐸 𝐼)/(4𝐿2) ,……..…………….….……………………………………..…( 2.6) 

where E is modulus of elasticity, I is moment of inertia, L is the length of column. The 

moment of inertia for a circle can be expressed as a function of the diameter of circle in 

Equation (2.7): 

𝐼 = (𝜋𝐷4)/64 ,………………………………………………………………..………(2.7) 

According to Long and Bennett, it is possible to develop Equation (2.6) based on 

the end configuration of the column. Figure 4 illustrates these configurations whose 

critical loads are as follows: 

𝐹𝐶𝑅(𝑓𝑖𝑥𝑒𝑑) = (4 𝜋2𝐸 𝐼)/(𝐿2),……………..………………………………….………..(2.8) 
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𝐹𝐶𝑅(ℎ𝑖𝑛𝑔𝑒𝑑) = (𝜋2𝐸 𝐼)/(𝐿2),………………....…………...…………………………...(2.9) 

where FCR(fixed) is the critical load for the fixed end configuration, FCR(hinged) is the critical 

load for the hinged end configuration. 

 

Figure 4:  Configurations of fixed end and hinged end. (A) and (B) respectively 

illustrate fixed end and hinged end configurations (Long et al., 1996). 

The Equations above also reveal that the critical load of a fixed-end configuration 

is four times greater than the critical load of a hinged-end configuration which can be 
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seen in Table 2.1. On the other hand, Leo, Pattillo, and Studenmund present Equation 

(2.10) to estimate the critical compressive force to cause a rod to buckle.  

𝐹𝐶𝑅 = −[0.795𝜋2𝐸𝐼𝑤2]
1

3,…………………..….…...….…………………….……...(2.10) 

where w is the buoyed weight of the sucker rods per foot. 

 

Rod Diameter Buckling 
Loads in 

water (lbf) 

Calculated Euler Loads (lbf) Measured 
Buckling Loads 

(lbf) 
Fixed End Hinged End 

1/2'' - -41 -10 - 

5/8'' -22.9 -100 -25 - 

3/4'' -37.2 -208 -52 -23 

7/8'' -56.2 -385 -96 -162 

1.0'' -80.2 -657 -164 - 

1-1/8'' -109.8 - - - 

1-1/4'' -145.5 - - - 

1-3/8'' -186.0 -2348 -587 -641 

1-1/2'' -230.0 -3325 -831 - 

1-5/8'' - -4579 -1145 - 

Table 2.1: Comparison of calculated and measured buckling forces, and Euler loads. 

In Table 2.1., it is indicated that calculated buckling loads by Equation (2.10) 

result in less values than measured buckling loads by Long and Bennett except for the 

¾’’ rods. Furthermore, the calculated Euler loads for fixed-end rods are much greater 

than measured loads as the calculated Euler loads for hinged-end rods closely 

approximate the measured loads. Ott and Mendenhall assert in their conference paper that 

the predicted critical load values by commercially available software programs are much 

more than those measured by the downhole tool with strain gauges which provides actual 

forces at the pump. 
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2.4        BUCKLING TYPES 

2.4.1 Sinusoidal Buckling 

Euler’s critical load equation describes sinusoidal buckling which takes form of 

sine wave. Also, Equation (2.11) is an expression for any other sinusoidal shape assumed 

by the rod. 

𝐹𝐶𝑆 = [(2𝑛 − 1)𝜋/(2 𝐿)] 2𝐸 𝐼 ,……………………………..……………………….(2.11) 

where FCS is the critical load for sinusoidal buckling, and n is the number of full sine 

waves in rod section. 

Euler’s equation for the rod with free-fixed conditions is applicable to a finite 

length rod; however, Equation (2.12) developed by Dawson and Paslay applies to an 

infinite rod in an inclined borehole by assuming same boundary conditions (Mendenhall 

and Ott, 1995). 

𝐹𝐶𝑆 = 𝐸 𝐼 (𝑛′ π/L)2 + {𝑤 sin(𝑎) /𝑟}{𝐿/(𝑛′ π)}2 ,………..………………………..(2.12) 

In Equation (2.12), a is the borehole inclination from vertical, and n’ represents the 

number of half sine waves in the buckled rod section, and can be expressed as follows: 

𝑛′ = 𝐿/𝑙𝑤,……………………………………………………………………………(2.13) 

𝑙𝑤 = 𝜋 (𝐸 𝐼 / 𝑘)1/4,………………………………………………………………….(2.14) 

𝑘 = 𝑤 sin(𝑎) /𝑟,…………………………………………………………………….(2.15) 

where lw is the length of half-wave for rod string, k is elastic foundation constant, and r is 

radial clearance between rod diameter and tubing wall. 
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2.4.2 Helical Buckling 

The force required for transition of sinusoidal buckling to helical buckling is 

negligible, so it is commonly assumed that rods buckle helically (Mendenhall and Ott, 

1995). The minimum load buckling the rod into a helix is given as 

𝐹𝐶𝐻 = (8 𝐸 𝐼 𝑤 𝑠𝑖𝑛(𝑎)/𝑟) 1/2,……………..………………………………………..(2.16) 

Dawson and Paslay discuss the two experimental solutions to critical helical 

buckling force presented by Dellinger et al. in 1983, and Lubinski and Woods in 1953. 

Dellinger’s equation, Equation (2.17), gives results close to Equation (2.16) in the range 

of fairly high stability as its results increase to 50% higher than Equation (2.16) in the 

range of lower stability. 

𝐹𝐶𝐻 = 2.93 (𝐸 𝐼)0.479 𝑤0.522  (𝑠𝑖𝑛(𝑎)/𝑟)0.436,……………………………..……….(2.17) 

The experiential equation of Lubinski and Woods, Equation (2.18), also verifies 

the theoretical solution (Mendenhall and Ott, 1995). 

𝐹𝐶𝐻 = 2.85(𝐸 𝐼)0.504 𝑤0.496  (𝑠𝑖𝑛(𝑎)/𝑟)0.511,………………………..……………. (2.18) 

The difference between these two equations is most probably caused by the fact 

that Woods and Lubinski used the data directly while Dellinger et al., reconstructed the 

experimental data to fit the equation (Dawson and Paslay, 1984). 

2.5   HYDRAULICS OF SUCKER ROD PUMP 

The hydraulics of the sucker rod pumps generally trigger major problems in 

pumping system, such as partial pump fillage, gas interference, fluid pound, and 

compressive loads on the valve rod. However, these effects are integrated into pump 
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friction constants in rod string design software because of lack of sufficient models. 

These frictions can be examined in three categories; resistance against  the downward 

motion of the pump plunger due to resisting fluid flow through the inside of the plunger, 

mechanical frictions caused by metal to metal sliding, and fluid resistance between the 

plunger and the barrel (Cutler and Mansure, 1999). Therefore, Cutler and Mansure 

discussed dynamic and geometric details to estimate the frictional losses in the model 

which was developed by Sandia National Laboratories, and their effects on the 

calculations. 

The first investigated issue in their study is pressure drop across valves which has 

critical effect on pump filling, gas leakage, and compression loading of the valve rod. By 

testing various sizes of balls and seats in the valves with open and closed cages, they 

conclude that using a smaller ball and larger seat ID decreases the pressure losses in both 

closed and open cage designs, and that using the high efficient valves adequately 

improves the performance of the valves compared to the less efficient valves. As pressure 

drop across entire pump is investigated, the pressure loss in the travelling valve is, 

unsurprisingly, found more than in the standing valve because the area allowing fluid 

flow in the travelling valve is comparatively smaller than in the standing valve. 

According to Cutler and Mansure; however, losing more pressure in the pump exit than 

in the travelling valve was not an expected situation, and can be seen as an opportunity to 

improve the pump design. 

As most parameters in downhole are full of uncertainties, the uncertainty of fluid 

viscosity in downhole and the effect of viscosity have always been extensive study area 

to researchers. Cutler and Mansure notice that at low to medium flow rates changing the 

viscosity from 0.1 cP to 100 cP has very little effect on pressure losses calculated in the 
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model. While this effect becomes greater at high flow rate, it still stays in a small range 

of change. Although it was stated that only a few experiments investigating the effect of 

the viscosity had been conducted in that study, replacing the water at 1 cP with Weeks 

Island Crude at 15 cP only increased the pressure loss by 6%.  

Other issues investigated by Cutler and Mansure are effects of surface roughness, 

valve design, and ball chatter. First of all, according to the results of their model, surface 

roughness has little effect if the absolute roughness does not exceed 1000 microinches. 

For the roughness values greater than that limit, pressure loss increases significantly.  

Secondly, in 1984 Allen and Svinos asserted that enlarging the I.D. of the valve 

seat, using open cages rather than closed cages, and increasing I.D. of the pump plunger 

reduced the resisting forces during downstroke. As the results obtained from the model 

by Cutler and Mansure are consistent with this study, it also emphasizes the connection 

between reducing the changes in flow area and the decrease in the resisting forces. 

Therefore, for an accurate prediction of pressure drop along with pump, the fine details of 

the components in the pump should be included in models, and the significant effects of 

these details in pressure drop should be considered when designing new pump 

components.  

Thirdly, the effect of ball chatter was tested by Cutler and Mansure for various 

combinations, such as cases with the ball and seat, with just the seat, and without the ball 

or the seat. The results show that pressure drop rises up rapidly at low flow rates and 

decreases after reaching a critical flow rate. This flow rate can be defined as a critical 

level at which the ball stops chattering. It can be concluded that the size of the check 

valves should be determined to prevent the valve from partially opening. The partially 

opened valve is one of the factors increasing the pressure losses significantly. 
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To sum up, developing a model for analyzing flow in sucker rod pumps provides 

better understanding of hydraulics of pumps.  The effects of the variable parameters, such 

as viscosity, valve design, and surface roughness can be analyzed to more accurately 

predict pressure drops and to reveal the reasons causing the rod buckling. 

2.6   COMPRESSIVE FORCES ACTING ON THE BOTTOM OF THE SUCKER ROD 

In the previous sections, sucker rod loads were analyzed, and the maximum and 

minimum loads were expressed in Equation (2.1) and Equation (2.2), respectively. To 

analyze the tendency of the sucker rod to buckle, more detailed expression is required for 

the dynamic force acting near the bottom of the rod string. This section will discuss the 

dynamic forces caused by fluid friction (drag) and mechanical friction in the annulus 

between the pump plunger and barrel. During upstroke, these forces cannot result in 

buckling because the forces are tensional, but same forces result in compressive effect on 

the bottom of sucker rod during downstroke since these dynamic forces act opposite to 

the sucker rod motion.  

Some of the load analyses in the literature ignore the friction force in the 

travelling valve due to the pressure differences in the pump plunger (Lea et al., 1995). 

However, tests and model calculations show that pressure difference is required to move 

the fluid through travelling valve (Cutler and Mansure, 1999). Therefore, this force 

during downstroke is equal to the cross-sectional area of the plunger times the pressure 

difference between the ends of the pump plunger as shown in Equation (2.19). 

𝐹𝑇𝑉 = (𝑃𝑏 − 𝑃𝑎)𝐴𝑝 = −𝜋𝐷𝑝
2∆𝑃/4,………………………………..……………….(2.19) 

where Pb is the pressure below the pump plunger, Pa is the pressure above the pump 

plunger, and ΔP is the pressure difference across the plunger. 
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To include the viscous fluid drag between the sides of the plunger and the barrel, 

Lea and Nickens use the following formula: 

𝐹𝑑 = −𝜋𝑅𝑖𝐿𝑝
𝜕𝑃

𝜕𝑧
𝐶𝑅 − 2.088 × 10−5 2𝜋𝑅𝑖𝐿𝑝𝜇

𝐶𝑅
𝑉𝑝,…………...………………..……....(2.20) 

where Ri is the radius of the wall corresponding to inner wall of the plunger/barrel gap, Lp 

is plunger length, ∂P/∂z is the pressure gradient of fluid, CR is radial clearance, µ is fluid 

viscosity, and Vp is plunger velocity. 

After the force due to the pressure difference through travelling valve is added to 

Equation (2.20), the compressive buckling force, Fc, is as follows: 

𝐹𝑐 = −𝜋𝐷𝑝
2∆𝑃/4 − 𝜋𝑅𝑖

(𝐷𝑏−𝐷𝑝)

2
∆𝑃 − 1.312 × 10−4 𝐷𝑝𝐿𝑝𝜇

(𝐷𝑏−𝐷𝑝)
𝑉𝑝,……………..……(2.21) 

where Db is the diameter of pump barrel. 

πRi(Db-Dp)/2 can be replaced by π(Db2-Dp2)/8 because  the πRi(Db-Dp)/2 product 

approximates the one half the area of the annulus in the parallel plate. Then, Equation 

(2.21) reduces to Equation (2.22). 

𝐹𝑐 = −𝜋
(𝐷𝑏

2+𝐷𝑝
2)

8
∆𝑃 − 1.312 × 10−4 𝐷𝑝𝐿𝑝𝜇

(𝐷𝑏−𝐷𝑝)
𝑉𝑝,………………….………...……….(2.22) 

Equation (2.22) has two terms which are directly proportional to the pressure 

difference and the fluid velocity. Cutler and Mansure prefer using the pump discharge 

rate rather than ∆P and Vp, so these terms are rearranged in the form of a function of the 

rate. After testing pressure drop across the travelling valve and plunger with changing 

flow rates, an empirical equation is created as follows: 

∆𝑃 ≈ 𝐾 𝑄2, ………………………………...……………………………………….(2.23) 
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where the coefficient, K, is in psi/(bbl/day)2, pressure drop, ΔP, is in psi, and pump 

discharge rate, Q, is in bbl/day.  

To determine the maximum buckling rod, the peak velocity should be taken into 

account in the calculation. However, if sinusoidal motion is assumed, the peak velocity 

can be related to the average velocity as in Equation (2.24). 

𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑉𝑝𝑒𝑎𝑘

2𝜋
(∫ sin[𝜃]𝑑𝜃

𝜋

0
+ ∫ 0𝑑𝜃

2𝜋

𝜋
) =

𝑉𝑝𝑒𝑎𝑘

𝜋
,…………………….………….(2.24) 

where Vaverage is average velocity, Vpeak is peak velocity, and θ is the coordinate of 

sinusoidal motion of surface pump. 

Now, the peak plunger velocity can be rewritten as Vaverage is equal to Q/Ap. 

𝑉𝑝|
𝑝𝑒𝑎𝑘

= 𝜋
𝑄

𝐴𝑝
=

𝑄

26.7 𝐷𝑝
2

𝑓𝑡 𝑖𝑛2𝑑𝑎𝑦

sec 𝑏𝑏𝑙
,……………………………………………………(2.25) 

where the peak plunger velocity is ft/sec, the pump discharge rate is in bbl/day, and the 

plunger diameter is in inches. The substitution of Equation (2.23) and (2.25) into 

Equation (2.22) gives the final form of the buckling force due to pressure and plunger 

velocity effects. 

𝐹𝑐 ≈ −𝜋
(𝐷𝑏

2+𝐷𝑝
2)

8
𝐾𝑄2 − 1.312 × 10−4 𝐷𝑝𝐿𝑝𝜇

(𝐷𝑏−𝐷𝑝)

𝑄

26.7 𝐷𝑝
2,…………………...….……....(2.26) 

A slightly modified form of this equation is provided in the Beam Lift Handbook 

by including -Fm for the mechanical (Coulomb) friction between plunger and barrel in 

addition to Equation (2.27). 

𝐹𝑐 = −𝜋
(𝐷𝑏

2+𝐷𝑝
2)

8
∆𝑃 − 4.906 × 10−6 𝐿𝑝𝜇𝑄

(𝐷𝑏−𝐷𝑝)𝐷𝑝
− 𝐹𝑚,…….……………...………....(2.27) 
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 Contrary to the experimental approach of Cutler and Mansure to the pressure drop 

through travelling valve, Bommer and Podio present Equation (2.28) to estimate the 

pressure loss by using Bernoulli’s equation to account for changes in elevation, flow 

velocity, and irreversible frictional losses.  

∆𝑃 = 2𝑣2 𝐿𝑝

𝐷𝑇𝑉/12
𝑓

𝜌𝑓

𝑔𝑐(144)
+

1

2
𝑣2𝑒𝑣

𝜌𝑓

𝑔𝑐(144)
+ 0.433𝛾𝑓𝐿𝑝,.…...…………………..….(2.28) 

where v is maximum fluid velocity through plunger, Lp is the overall plunger length, DTV 

is the travelling valve seat diameter, f is the Fanning friction factor, ρf is the fluid density, 

gc is the mass to force conversion, γf is the liquid specific gravity, and ev is the entrance 

and exit friction factor which is represented by Equation (2.29). 

𝑒𝑣 = 0.45(1 − 𝛽) + (
1

𝛽
− 1)

2

,.…………………………………………………..….(2.29) 

where β is the ratio of travelling valve diameter to barrel diameter that can be calculated 

by using Equation (2.30). 

𝛽 =
𝐷𝑇𝑉

𝐷𝑏
⁄ ,.…………………….………………………………………………..….(2.30) 

 Cutler and Mansure (1999) also developed a model to predict the pressure drop 

due to flow through the pump. The five steps of this well-explained model in the 

Appendix of their paper are dividing the pump into logical nodes at each change in 

geometry, determining Reynolds number at each node for each flow rate, determining the 

Friction Factor at each node for each flow rate by solving iteratively, finding the 

irreversible fluid friction losses between each node by considering sudden or gradual 

contraction and enlargement in the pump, and finally determining the total pressure loss 

between each set of nodes.  
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2.7        PREVENTING BUCKLING  

The determination of the compressive force is necessary to compare with the 

critical buckling force. If the maximum value of compressive force exceeds the critical 

buckling load, whether the shape of buckling is sinusoidal or helical should be defined. 

Based on the buckling shape, the possibility of fatigue can be evaluated by estimating the 

stresses on the rod string, and it can be concluded whether or not the compressive loads 

are acceptable. In such situation that the compressive loads are unacceptable, surface 

pumping parameters should be initially investigated because some minor changes in 

surface pumping parameters, such as slowing pumping speed or reducing stroke length 

can reduce the rod buckling effect. Also, these changes can usually provide a better 

solution in a financial point of view and can be more cost effective than changing down-

hole parameters. However, changing the surface pumping parameters is only practical if 

it can be accomplished without significant reductions in oil and gas productions (Bishop 

and Long, 2010).  

If these changes do not resolve the rod buckling problem, other alternatives, using 

a larger clearance, shorter barrel, larger TV, redesigning the rod string, or adding sinker 

bars should be taken into account to try to avoid possible buckling (Lea et al., 1995, 

Bommer and Podio 2015).  
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Chapter 3:  Using Sinker Bar to Prevent Buckling 

This chapter focuses on using sinker bar to prevent buckling and its effects on 

compressive force at the top of the pump plunger. The purpose of this common method is 

to replace the lower part of rod string with heavy weight sinker bars to increase the 

rigidity of rod string (Bishop and Long, 2010). In Equation (2.7), the moment of inertia 

for a circle is proportional to its diameter. Therefore, larger diameter of same material 

tends to have higher moment of inertia. In other words, increasing the diameter and 

weight of rods drastically heightens the critical buckling load as the relation can be seen 

in Equations (2.6) and (2.7).  Furthermore, sinker bars can reduce the length of the rods 

affected by compressive force since their weight drives the dynamic neutral point closer 

to the pump plunger. Because, in general, it is difficult to model short sections of heavy 

weight sinker bar, a well-calibrated software program should be utilized for modeling the 

dynamics of the rod string to insure whether there have been inappreciable changes in the 

system, or not (Mendenhall and Ott, 1995).  

Sinker bars can be considered as sucker rods with larger diameter which help 

keep the rod string straight and in tension by providing concentrated weight above the 

pump. Table 3.1 shows the difference between the weights of sinker bars and sucker rods. 

It can be seen that the weights of sinker bars are quite greater than those of sucker rods 

which are indeed proportional to their cross-sectional areas. Since this extra weight due to 

replacing the sucker rod with sinker bars can overcome the compressive load acting at the 

bottom of the string, sinker bars are commonly used to prevent buckling in the sucker rod 

pumps.  

The general idea of using sinker bars is to move the neutral point downward to the 

closest possible point to pump plunger. As it is discussed in Section 2.1, the neutral point 
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is a point at which negative loading begins to occur in rod string. Figure 5 illustrates the 

effect of using sinker bar on the position of neutral point. As the neutral point approaches 

to the bottom of rod string, the effects of rod buckling will be reduced.  

 Table 3.1: Critical Buckling Conditions of Sucker Rods and Sinker Bars. 

It can be seen in Table 3.1 that the critical buckling force of a sinker bar in a fluid 

with a specific gravity of 1 is much greater than that of a sucker rod. For example, the 

compressive load of 100 lbf, which buckles a 1" rod string, can be overcome by a 1-1/4" 

sinker bar. As Equation (2.10) gives the critical buckling forces, the critical lengths 

necessary to buckle a rod can be calculated as shown in Equation (3.1). 

𝐿𝐶 = [0.795𝜋2 𝐸𝐼

𝑤
]

1

3
,………………………...…….………………...………….……...(3.1) 

Then, for a specified rod string, neutral point can be calculated by Equation (3.2) 

if the compressive force is predicted by a model or measured where Fc is the axial 

Size Weight in air 

(lbf/ft) 

Weight in water 

(lbf/ft) 

Moment of 

Inertia (in2) 

Critical Length 

(ft) 

Critical Buckling 

Force (lbf) 

5/8" 1.114 0.971 0.007 23.3 -22.6 

3/4" 1.634 1.425 0.016 26.1 -37.2 

7/8" 2.224 1.939 0.029 28.9 -56.1 

1" 2.904 2.532 0.049 31.6 -80.1 

1-1/8" 3.676 3.205 0.079 34.2 -109.7 

1-1/4" 4.172 3.638 0.120 37.8 -137.4 

1-3/8" 5.049 4.403 0.175 40.2 -177.2 

1-1/2" 6.008 5.239 0.249 42.6 -223.4 

1-5/8" 7.051 6.148 0.342 45.0 -276.6 

1-3/4" 8.178 7.131 0.460 47.3 -337.0 

2" 10.68 9.313 0.785 51.7 -481.1 
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compressive force. Comparing the critical length of this specified rod and the neutral 

point leads to discover if the rod will be buckled under the compressive force. Applying 

to the same example given above, the neutral point of the 1" rod string is calculated as 

39.5 feet above the bottom of rod string with the assumption of a compressive force of 

100 lbf. The critical length of 1" sucker rod is estimated as 31.6 feet in Table 3.1, and it is 

less than the neutral point; therefore, the lower steel rods are predicted to buckle.   

𝐿𝑁𝑃 =
|𝐹𝐶𝑅|

𝑤𝑅(1−0.127𝛾𝑓)
,……………..……………………………….………….………...(3.2) 

 

Figure 5: The position change of neutral point with using sinker bar section (Bishop 

and Long, 2010). 
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If using sinker bar is considered as the method to prevent buckling in this 

situation, the length of an alternative sinker bars can be estimated by Equation (3.3). This 

equation is based on the difference between the compressive force and the critical force 

necessary to buckle the rod above the sinker bar. On the other hand, Lea et al. (1995) 

provide a similar equation to calculate the length of the sinker bar. Because it is based on 

only compressive force, Equation (3.4) provided by Lea and others overestimates the 

necessary length of the sinker bar.  

𝐿𝑆𝐵 =
|𝐹𝑐−𝐹𝐶𝑅|

𝑤𝑆𝐵(1−0.127𝛾𝑓)
,…………………………..…………………………….………...(3.3) 

𝐿𝑆𝐵 =
|𝐹𝑐|

𝑤𝑆𝐵(1−0.127𝛾𝑓)
,…………………………..…………………………….………...(3.4) 

If we go back to the previous example, the length of 1-1/4" sinker bars which 1" 

sucker rods is replaced with is estimated as 5.5 feet by Equation (3.3) while Equation 

(3.4) gives a value of 27.2 feet for the length of the sinker bars. The reason of these 

different results is that the length calculated by Equation (3.3) targets to lower the 

compressive force acting at the bottom of 1" rod taper to its critical buckling force, -80.1 

lbf.; however, Equation (3.4) completely cancels out this compressive load. 

In theory, these two values do not seem making a difference, but the effects of 

using longer sinker bars due to the additional viscous force in annulus between sinker 

bars and tubing is open to further investigations and experiments. This additional viscous 

force increases the rod load during up-stroke, and decreases it during down-stroke, 

therefore; the length of the sinker bars directly has an impact on the rod life. It may even 

cause buckling in sinker bars because of increasing compression. On the other hand, the 

effects of sinker bar diameter on tubing failures are studied by Bishop and Long (2010). 
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In their paper, it is stated that utilizing the largest diameter sinker bar for the available 

internal diameter of the tubing resulted in reduced tubing wall loss. Therefore, 

minimizing the length of sinker bar is as significant as maximizing the rod diameter 

which increases the contact area between tubing and rod, and reduces the concentrated 

wear on tubing wall. However, it must be also investigated if decreased flow area in 

annulus increases the drag forces, so compressive forces acting on the bottom of the rod 

string.  
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Chapter 4:  Conclusions 

As low oil price has been a great concern in the petroleum industry for the last 

two years, rod buckling can easily result in the excessive well expenses by causing tubing 

wear, fatigue failures, and decreased rod life. There are many studies in the literature 

which investigate the compressive forces causing rod buckling and solutions to prevent 

rod buckling.  

In this report, it is concluded that using sinker bars to increase the rigidity of rod 

string is the most practiced method in the industry. It has been shown that sinker bars 

reduced the effect of buckling if changing surface parameters, such as pumping velocity 

and stroke length was not practical which would be less expensive and time consuming. 

However, determining the true compressive forces has a key role to adjust the length of 

sinker bar. Several commercial software have been developed by the industry to estimate 

the compressive force; however, they should be calibrated with field data and downhole 

measurements to be able to represent each specified oil well.  

On the other hand, there are issues about using sinker bars because viscous force 

between tubing and sinker bar can cause additional compressive force that can be a topic 

for further research. These viscous loads need an extensive study since it has been 

asserted in the literature that using the largest available sinker bar diameters reduced 

tubing wear and failures significantly. 
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Glossary 

 

a: borehole inclination from vertical [degrees] 

Ap: plunger area [inches2] 

CR: radial clearance [inches] 

D: diameter of column [inches] 

Db: barrel diameter [inches] 

Dp: plunger diameter [inches] 

DTV: travelling valve seat diameter [inches] 

ev: entrance and exit friction factor [-] 

E: modulus of elasticity [30.5x106 psi for steel] 

f: Fanning friction factor [-] 

Fc: total buckling force [lbf] 

FCH: critical load for helical buckling [lbf] 

FCR: critical load [lbf] 

FCR(fixed): critical load for the fixed end configuration [lbf] 

FCR(hinged): critical load for the hinged end configuration [lbf] 

FCS: critical load for sinusoidal buckling [lbf] 

Fd: drag force [lbf] 

Fo: fluid weight [lbf] 

FTV: frictional force due to fluid flowing through travelling valve [lbf] 

g: acceleration due to gravity [ft/sec2] 

gc: gravitational conversion constant, [32.174 lbm.ft/(lbf.sec2)] 

I: moment of inertia [inches4] 
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k: elastic foundation constant [psi] 

K: empirical pressure coefficient [psi/(bbl/day)2] 

lw: length of half-wave for rod string [inches] 

L: length of column [inches] 

Lc: critical length [ft] 

Ln: net fluid lift from the working fluid level [ft] 

LNP: neutral point [ft] 

Lp: plunger length [ft] 

LSB: total length of sinker bars [ft] 

n: number of full sine waves in rod section [-] 

n’: number of half sine waves in rod section [-] 

Pa: pressure above the pump plunger [psi] 

Pb: pressure below the pump plunger [psi] 

r: radial clearance between rod diameter and tubing wall [inches] 

Ri: radius of the wall corresponding to inner wall of the plunger/barrel gap [inches] 

Q: pump discharge rate [bbl/day] 

v: maximum fluid velocity through plunger [ft/sec] 

Vaverage: average velocity [ft/sec] 

Vp: plunger velocity [ft/sec] 

Vpeak: peak velocity [ft/sec] 

w: buoyed weight per ft. of the sucker rods [lbf/ft] 

wSB: air weight per ft. of the sinker bars [lbf/ft] 

wR: air weight per ft. of the sucker rods [lbf/ft] 

WDdown: dynamic loads during the downstroke [lbf] 
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WDup: dynamic load during the upstroke [lbf] 

WFD: weight of the fluid displaced by the rods [lbf] 

Wmax: maximum rod load during the upstroke [lbf] 

Wmin: minimum rod load during the downstroke [lbf] 

Wr: rod weight in air [lbf] 

Wrf: buoyed rod weight [lbf] 

β: ratio of TV diameter to barrel diameter [-] 

ΔP: pressure difference across the plunger [psi] 

γf: specific gravity of the fluid referenced to fresh water [-] 

µ: fluid viscosity [cP] 

∂P/∂z: pressure gradient of fluid [psi/ft] 

ρf: density of the fluid [lbm/ft3] 

ρr: density of the rod [lbm/ft3] 

θ: coordinate of sinusoidal motion of surface pump [degree] 
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