
 

 
 
 
 
 

IMPROVING POWDER TABLETING PERFORMANCE THROUGH 
MATERIALS ENGINEERING 

 
 
 
 

A DISSERTATION 
SUBMITTED TO THE FACULTY OF THE GRADAUTE SCHOOL OF THE  

UNIVERSITY OF MINNESOTA 
BY 

 
 
 
 

Frederick Osei-Yeboah 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR THE DEGREE OF  

DOCTOR OF PHILOSOPHY 
 
 
 

Changquan Calvin Sun, Advisor 
 
 
 
 

August, 2015 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Frederick Osei-Yeboah 2015 
 



 

 
 i 

Acknowledgements 

 
I would begin by thanking my adviser, Dr. Changquan Calvin Sun for his unrelenting 

support, inspiring leadership and instilling in me the will to persevere.  Since the 

beginning of my graduate education, he has been my source of motivation and a great 

mentor. He enabled me, over the years to tap into his outstanding approach to research 

and excellent model of manuscript writing.   

Many thanks and heartfelt appreciation to my committee members, Dr. Raj 

Suryanarayanan, Dr. Timothy S. Wiedmann, and Dr. Alex Fok for being so willing to 

serve on my thesis committee and providing encouragement along the way to completion 

of my dissertation. I am grateful for their critical review of my thesis.  I would like to say 

a special thank you also to Dr. Ronald Siegel who helped me to understand useful 

mathematical concepts. 

I am thankful to my mentor Dr. Xiaorong He, Boehringer Ingelheim (BI), Richfield, CT 

who gave me the opportunity to interact with scientist at BI to learn during my internship 

and especially during my final presentation. Thank you to Dr. Ilgaz Akseli, Richard 

Dean, Nadia Ladyzinski and all the other great scientists I met at BI during my 

internship.  I also want to extend my special appreciation to Surmodics for giving me an 

opportunity to conduct some experiments in their laboratory and the friendly scientists at 

Surmodics especially Dr. Joram Slager, Dr. Nathan Lockwood, Tony Anderson, Aida 



 

 
 ii 

Krivdic and Dana Wegener. To the scientist who made my work at Surmodics possible, 

Dr. Klaus Wormuth, many thanks for the kind introduction. I appreciate so much the help 

I received from Dr. Wormuth. 

I want to say thank you to my collaborators Dr. Yushi Feng of Eli Lilly and Company 

and Dr. Yidan Lan of BASF Corporation. A special recognition to Minglun (Jason) 

Zhang for his help with my projects.  

I would like to acknowledge my funding sources, the David J. W. Grant Fellowship in 

Physical Pharmacy from the Department of Pharmaceutics and the University of 

Minnesota Graduate School Doctoral Dissertation Fellowship.  

I would like to thank the Calvin Sun lab members, Dr. Limin Shi, Dr. Sayantan Chattoraj, 

Dr. Sathyanarayana Perumalla, Mr. Wei-Jhe Sun, Mr. Shao-Yu Chang for a wonderful 

comradeship.  I am very grateful also for the support and friendship of members of Sury 

Lab and all the other students in the pharmaceutics graduate program – Mehak, Pinal, 

Sampada, Khushboo, Naveen, Seema, Michelle, Ameya, Kweku Konadu Amponsah 

Effah.  I want to express my special appreciation to Ms. Candice McDermott who 

provided me with administrative assistance in every way she could.  I would like to thank 

my All Nations families especially the Schmidts, the Stockelands, and the Malones for 

their affection and support.  I am very thankful for a great group of friends; Frank and 

Mary Hutton, Jackie McCourt, Bita Arman, Tom Jones, and the rest of the group 



 

 
 iii 

members.  To my special friends Andrew Quao, Emmanuel Bonney, Lt. Seth Coleman in 

Ghana, I want to say thank you.  Even though they were thousands of miles away, they 

were still inspirational. 

To my cousin, Dr. Yaw S. Obeng who has been a wonderful senior brother to me, a great 

mentor and an inspiration, I am thankful for his love and belief in me.  To my parents in 

Ghana, who have always supported me and have had high hopes for me, I am very 

thankful.  I would like to thank the rest of my family in Ghana and also express my great 

appreciation to my brothers and sisters who have shown me unique affection and support. 

Finally, I would to thank my immediate family for their unconditional love. To my wife 

Adwoa, who has always been by me to offer me support where she can and provide me 

with encouragement during the difficult times. To Ellie-Jayne, my dear daughter, for 

being such a wonderful girl even when I had to be away for long periods of time. Thank 

you for everything. 



 

 
 iv 

 

Dedication 

 
To my love, Ewuraa Adwoa and my dear, Ellie-Jayne  

 
To my caring family 



 

 
 v 

Abstract 

Adequate mechanical strength is a critical requirement to the successful development of a 

tablet product.  Before tablet compression, powders are often engineered by various 

processes including wet granulation and surface coating, which may improve or 

adversely affect the powder tableting performance.  Such effects, commonly, result from 

a change in either particle mechanical properties or particulate (size, shape) properties. In 

this work, tableting performance is interpreted based on the qualitative bonding-area and 

bonding-strength (BABS) model.  

The tabletability of the microcrystalline cellulose (MCC) granules deteriorates rapidly 

with increasing amount of granulating water and eventually leads to over-granulation at 

high water level.  Granule surface smoothing, size enlargement, granule densification and 

shape rounding are the dominant factors leading to the tabletability reduction of plastic 

MCC.  Incorporation of increasing amounts of brittle excipients, such as lactose or 

dibasic calcium phosphate reduces the rate of tabletability reduction by promoting more 

granule fragmentation, introducing more surface area available for bonding.  When a 

sufficient amount of brittle excipients is used, the over-granulation phenomenon can be 

eliminated.    

Surface coating of incompressible MCC pellets with highly bonding polymer leads to 

sufficient surface deformation and adhesion to enable direct compression of the pellets 

into tablets of adequate mechanical strength.  This improvement is enhanced by the 
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presence of moisture, which plasticizes the polymer to allow the development of a larger 

bonding area between coated pellets.   

The relationship between mechanical properties and tableting behavior is systematically 

investigated in polymeric composites using celecoxib-polyvinylpyrrolidone vinyl acetate 

solid dispersions.  Mechanical properties such as indentation hardness of the solid 

dispersions were measured using nanoindentation.  Incorporation of celecoxib up to 60% 

by weight hardens the polymers, which reduces bonding area but increases bonding 

strength. On the other hand, moisture softens the solid dispersions and facilitates 

deformation under pressure to improve tablet mechanical strength.   

In summary, insights into the deteriorated tabletability of wet granulated powders have 

been developed and strategies for improving tabletability have been demonstrated.  Also, 

the relationship between particle mechanical properties and tableting performance has 

been examined using solid dispersions.  The BABS model has been further developed to 

enable its widespread application in interpreting complex tableting behavior.     
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General Introduction 

The tablet is an important dosage form for drug delivery because of a number of 

advantages over other dosage forms:  1) significantly better chemical and physical 

stability;  2) accurate delivery of amount of drug;  3) relative ease of production and 

transportation;  4) high patient acceptance; and 5) relatively lower manufacturing cost.1  

Tablet design is however a complex process because a tablet must satisfy several 

competing objectives.  For example, a tablet must be adequately strong to withstand 

mechanical stresses during packaging, shipping and handling.  On the other hand, an 

overly strong tablet may suffer from slower drug release.2  

Many active pharmaceutical ingredients (API) used in drug products, for example, 

ibuprofen, flurbiprofen, acetaminophen, phenacetin, ascorbic acid, and probenecid, 

exhibit poor compaction behaviors.3-5  Poor compaction behavior results in mechanically 

weak tablets.  In order to correct for inherent deficiencies such as poor compaction 

behavior, the API(s) must be formulated with excipients into drug products.  Successful 

tablet product development assures chemical and physical stability, acceptable drug 

release profile intended for the product and adequate mechanical strength.  Judicious 

selection of both excipients and manufacturing processes is required to correct for the 

inherent deficiencies in API for tablet manufacturing.6  The diversity in compaction 

behavior of both drugs and excipients makes this a challenging goal to achieve.   
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Traditional formulation development is characterized by inefficient empirical methods, 

which generally do not lead to optimized products.  Currently, problems associated with 

mechanically weak or defective tablets such as tablet capping, lamination and high 

friability, still persist.4  The need for a more scientific tablet formulation design and to 

modernize pharmaceutical product development and manufacturing is well known and 

has been articulated by the Food and Drugs Administration (FDA).7,8 

Scientific tablet development is best if a clear relationship between the structure of 

materials and their properties are known.  Based on such understanding the ideal process 

employed in manufacturing platform technologies can be used to achieve optimum 

product performance.  These relationships involving materials’ structure, processing, 

property and performance have been elaborated by the principles of materials science 

tetrahedron (MST).6   

Tablets gain their mechanical strength from the process of powder compaction, and the 

adequacy of their strength is commonly ascertained by methods, which include tablet 

tensile strength9, indentation hardness10, and tablet friability11 tests during development.  

The outcome of a compaction run depends on material properties and the conditions of 

the compaction process e.g. compression speed.12  Thus, the constituent materials’ 

mechanical properties, such as elasticity, plasticity, viscoelasticity and fracture 

toughness, and particulate properties, including particle size, particle shape, surface 

texture, surface energy are of paramount interest to tableting.13   



 

 
4 

It has been proposed that the mechanical strength of a tablet essentially stems from two 

fundamental attributes – the inter-particulate bonding area (BA) and inter-particulate 

bonding strength (BS).14  The bonding area-bonding strength (BABS) model suggests 

that all the factors that influence tablet compaction alter one or both of these attributes.  

Tablet strength is favored by high bonding area, which primarily results from plastic 

deformation, and high bonding strength, which may be attributed to the surface energy.  

The BABS model can enable formulation scientists to diagnose the leading causes of 

poor tableting performance of a powder and guide targeted corrective actions by choosing 

appropriate excipients and processes during the product development process.  

Appropriate application of MST and the BABS model is expected to significantly 

improve the efficiency in tablet formulation development.  The purpose of this research is 

to facilitate the design of tablet formulations using MST and the BABS model as the 

guiding principles.  The thesis is aimed at understanding the impact of materials 

engineering on tableting performance of powders and to establish a clear relationship 

between particle mechanical properties and tablet mechanical strength such that it allows 

the development of efficient strategies to address poor tableting behavior of drugs. 
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Literature Review 

The Tablet 

The concept of compressing medicinal powder into compacts is credited to Professor 

Brockedon, who successfully compressed potassium bicarbonate into tablets in 1844.15  

Today, the compressed tablet is the most common dosage form for oral drug delivery, 

more utilized than capsules.16  The fact that tablet products accounted for almost half of 

the new medicinal entities (NMEs) (46%) registered in the US from 2009 till date, 7% 

more than the preceding 5 year period,17 signifies their importance as a dosage form 

(Table 1.1).  The tablets are the preferred dosage form to capsules, because tablets can be 

manufactured at a higher production speed and a lower cost, and tampering the tablet 

content is difficult.18  Apart from the flexibility in shape and color, a tablet is also 

significantly smaller than a capsule for the same drug content.  These are essential for 

developing an appealing and unique product with good patient compliance.     

Tablets are mainly for oral drug delivery and may be classified based on the mode of 

administration, the intended mechanism of drug release or their site of application.  The 

common types of tablets include 1) immediate release tablets; 2) modified release tablets; 

3) buccal tablets;  4) dispersible tablets; 5) soluble tablets; 6) effervescent tablets; 7) 

chewable tablets and 8) lozenges.17 A tablet may belong to more than one class of 

products.  For example, the dispersible or soluble tablets may be regarded as immediate 
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release tablet products. 

Several important attributes characterize a tablet product.  Tablet mechanical strength is 

one of the critical quality attributes of a tablet.19  Factors including material physical form 

(structure), particle size, shape, surface (particulate properties), plasticity, brittleness, 

viscoelasticity (mechanical properties) and moisture are of importance to a material’s 

tableting behavior.   

 

 Formation of a Tablet 

The compaction process takes place in a tooling set, i.e. a die and two punches on a tablet 

press and has been categorized into four phases: I) die filling and particle slippage, II) 

compression, III) decompression, and IV) ejection.14  Depending on the tablet press, both 

punches can move towards each other during compression or one will be stationary as the 

other compresses the powder.  Commercial tablet presses, e.g. Korsch (Berlin, Germany) 

and compaction simulators e.g. Presster (MCC, East Hanover, NJ), are of the first kind, 

while materials testing instruments such as Zwick® (Ulm, Germany), Instron® 

(Norwood, MA) and Carver Press (Fred Carver, Monomonee, WI) are of the latter.  

In Phase I, the particles fill the die and move past each other to pack more efficiently as 

the punches move into the die.  At this stage, displacement of trapped air in the bulk 

powder occurs, and the powder porosity decreases without any significant resistance to 
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the punch movement.  At a critical porosity, the loose powder transitions into a rigid 

body and becomes susceptible to the stress applied by the punches.20  This transition 

initiates Phase II, the powder compression stage.  Phase II is where particles experience 

the maximum stress for deformation to occur.  In Phase III, the decompression stage, the 

stress is reduced from the highest achieved in Phase II to zero.  The compacts are finally 

pushed out of the die in the ejection phase – Phase IV. 

Permanent deformation (plastic) occurs if the particles’ yield stress is exceeded by the 

applied stress; if not the deformation is only elastic.  This implies that the powder blend 

will eventually return to its original pre-compression state.  Upon ejection a loose powder 

will emerge.  For particles that are susceptible to brittle fracture, fragmentation into 

smaller particles ensues before the particles finally undergo plastic or elastic deformation.  

In Phase III, when the applied stress is removed, elastic energy stored as a result of the 

work of compaction is dissipated.  Elastically deformed fragments, on release of pressure 

return to their original shape of the fragments.  However, for plastically deformed 

particles, the altered particle shape is preserved.  Tablets gain their mechanical strength 

from the process of powder compaction.  Conceptually, if the interparticulate contact area 

resulting from the particle deformation is large enough, and the forces of attraction 

among the particles are sufficient, the tablet will remain intact at the end of the 

compaction process and the tablet will gain some mechanical strength.  The magnitude of 

this strength is a result of the interplay between the total area of contact and the strength 
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of interaction.  This is the basis of the bonding area-bonding strength (BABS) model.14   

 

Tablet Mechanical Strength 

The mechanical strength of a tablet obtained is a function of the physico-chemical, 

particulate (shape, size and surface) and mechanical properties of the particles (elastic, 

plastic deformation, and brittleness)13 and the conditions of formation, e.g., the 

compaction pressure and speed.21  Tablets are subjected to various kinds of stresses to 

test their mechanical strength.  Tablet hardness, a term that has been used, albeit 

inappropriately, to describe a tablet’s durability, ease of handling and firmness, is 

essentially resistance to the tablet crushing under a certain applied load.22  Hardness is a 

misnomer because it has a different meaning in mechanical engineering; however, quite a 

number of studies use it as a tablet strength descriptor even in recent pharmaceutical 

literature.23-26  Tablet crushing force or strength is used synonymously with hardness and 

is taken as the breaking force obtained when a tablet is fractured diametrically.  For this 

test any tablet shape can be used.   

Tablet tensile strength is the tensile stress at failure.9,27  It may be obtained by different 

methods such as diametral compression test9 or flexural (bending) test28, though the 

diametral compression test appears to be the most common.  The determination of the 

tablet tensile strength originates from fundamental understanding of stress fields in 
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compacts and also takes into account the tablet size and geometry, hence it is usually 

regarded as a better descriptor of tablet mechanical strength.14  Tensile strength by the 

diametral compression test is given by Equation 1.1.        

 

Dt
P

π
σ 2
=

                                                       Equation 1.1 

 

where σ is the tensile strength, P is the applied load, D is the tablet diameter and t is the 

thickness.  The tablet has to be cylindrical for Equation 1.1 to be applicable.  Similarly, 

the tensile (flexural) strength by bending test is only applicable to tabloid-shaped 

specimens. 

Other parameters known for characterizing mechanical strength include fracture 

toughness22, indentation hardness (resistance to permanent deformation of the tablet 

surface)29, and tablet friability11.  Of these methods, the tablet friability test is the most 

interesting and has compendial specification.30-32 

Tablet friability is a measure of the ability of the tablet to resist abrasion, friction or 

mechanical shock.11  High friability leads to unacceptable loss of drug content during 

downstream processing (e.g., film coating), storage, and handling.33   
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A standard United States Pharmacopoeia (USP) method has been developed to test tablet 

friability.34  In this method, a set of “identical” tablets from the same batch are required.  

Tablets are dropped from a fixed height for a pre-determined number of times, usually 

100 times.   Tablets are then recovered, de-dusted, and weighed.  The weight loss of the 

set of tablets is used to quantify friability of the tablets.  A total tablet weight of at least 

6.5 g is required for a single test to ascertain whether the batch will pass or fail for the 

particular manufacturing conditions, e.g. compaction pressure and speed, being used.  

Generally, an acceptable friability for compressed uncoated tablets corresponds to ≤0.8% 

weight loss for a newly developed tablet formulation.  In fact thresholds much below the 

0.8% may be adopted for this test35 depending on the intended use of the tablets.   

 

Predicting Tableting Mechanical Strength 

Tabletability describes the relationship between compaction pressure and tablet tensile 

strength.  It represents the ability to form a coherent compact out of powder particles 

under the effect of compaction pressure.36,37  Many compression equations exist that 

describe the density-pressure relationship.38-41  However, attempts to quantitatively 

describe the relationship between tablet tensile strength and compaction pressure has 

been less rewarding.20,42   

The difficulty in describing tabletability, quantitatively, is due to the inability to quantify 
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the areas of contacts between particles in a compact43 and to estimate the intermolecular 

forces over these areas to arrive at a final strength value.  Also, particle size and shape, 

surface roughness, the orientation of contact planes in the compact make such attempts 

even more difficult.44  While tensile strength-compaction pressure data can be fitted with 

equations, e.g., Leuenberger’s equation42, the ability to predict tabletability based on 

material mechanical properties and particulate properties is the ultimate goal.43 

Attempts to predict powder mixture tabletability from the compaction behavior of 

individual powders have led to conflicting results.42,45-48  Fell and Newton reported a 

correlation between the tensile strength of individual powders and mixtures of α-lactose 

anhydrate, β-lactose anhydrate and α-lactose monohydrate.45 Humbert – Droz and co-

workers also recorded some linear trends between individual powder components 

compaction properties and the tableting performance of mixtures.49  However, many 

other workers could not establish such relationships.  For example, Newton et al. (1977), 

who conducted studies on dicalcium phosphate and phenacetin50; Kurup and Pilpel 1978, 

on commercial griseofulvin formulations 51; Sheik-Salem and Fell (1982) on lactose and 

sodium chloride 52; Panaggio et al (1984) on calcium phosphate and starch53 and Cook 

and Summer (1985) using dicalcium phosphate and aspirin54 found essentially no linear 

correlations between component properties and powder mixtures to enable reliable 

predictions of tableting performance from individual components.  None of these studies 

probed the individual particle mechanical properties.  Inferences were made from bulk 
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behavior.  

Picker-Freyer et al. (2007) studied sulfathiazole polymorphs with AFM nanoindentation 

and recognized that Sulfathiazole Form III, which apparently had higher hardness than 

Forms I and II, exhibited better compaction behavior.47  The authors concluded that the 

mechanical properties of sulfathiazole polymorph did not correlate with performance.  A 

recent study has shown that the best tableting performance of a series of alkali halides is 

obtained for crystals with intermediate hardness instead of those with lowest hardness.55  

This observation is consistent with the findings of Cao et al. and highlights the 

importance of considering properties that will enhance both the interparticulate area of 

contact as well as the forces of attraction in attempting to predict tableting performance 

of powders.3  As pointed out by Cao et al.,3 it is highly probable that sulfathiazole Form 

III falls within the intermediate hardness range where compaction behavior is best as 

observed with the alkali halides.55 

The qualitative bonding area-bonding strength (BABS) model is a useful tool for moving 

closer to that goal of performance prediction by allowing clear explanation of complex 

powder tableting behaviors.14  The BABS model treats tensile strength as an outcome of 

the bonding area between adjacent particles and the strength of interactions over that 

area.  The interplay between bonding area (BA) and bonding strength (BS) can lead to 

complex tableting behavior of materials, depending on pressure, temperature, 

composition, and particulate properties (e.g., size and shape).56-59   
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Although the BABS model is conceptually sound, its direct demonstration is difficult due 

to the challenge of individually modulating either the bonding area or the bonding 

strength.    

 

Adequate Tablet Mechanical Strength 

Tablet design is complicated by the fact that a tablet must meet competing objectives.  

For example, a tablet must be adequately strong to withstand mechanical stresses but not 

too strong to suffer from slower drug release.2  Thus optimizing tablet mechanical 

strength using a tablet’s mechanical performance criteria, e.g. friability, becomes more 

important to tablet formulation development than a preset empirical tensile 

strength/breaking force criterion which may compromise dissolution rate of tablet from a 

tablet.60   

In early development stages, the mechanical performance of tablet products is indirectly 

assessed through measuring tablet mechanical strength by methods such as tablet tensile 

strength and indentation hardness.61,62  Although mechanical strength plays a critical role 

in the resistance to attrition and abrasion, predictions on real-life mechanical integrity 

performance based on, for instance, tensile strength measurements may be misleading63,64 

because other factors, such as tablet size, tablet shape or even tablet surface roughness, 

may affect tablet durability and handling toughness.63-65   
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As a critical performance test for any tablet product, the friability test should be used 

extensively to facilitate the tablet product development.  However, the standard USP 

friability test is usually carried out at a late formulation development stage, as a quality 

control tool, when a large amount of drug is available because of the requirement of a 

batch of tablets.   

To obtain information useful for guiding tablet development, a number of batches at 

different mechanical strengths must be systematically tested to determine tableting 

process conditions for producing sufficiently strong tablets.  It becomes prohibitive to 

carry out the conventional friability test in such a systematic manner, not to mention the 

time resources required unless a material-sparing method is developed. 

 

Components of the Tablet 

The tablet usually contains both drug substance(s) and excipients.  Figure 1.1 illustrates 

that using only the drug substance to produce tablets can only occur in an idealized 

situation.  Practically, a typical tablet is a multi-component compact containing active 

pharmaceutical ingredient(s) (APIs) and excipients (pharmacologically non-active 

ingredients).  Excipients incorporated into a tablet are required to enable 

manufacturability, i.e., to facilitate processing by producing a suitable flow rate and 

compactibility, and to modulate the performance of the tablet product to obtain specific 
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attributes such as adequate tablet mechanical strength and appropriate drug release 

(Figure 1.1).2  A combination of the API and the excipients for the purpose of drug 

product development is referred to as a formulation.  The amount and physical form of 

tablet components and the relative position of the particles in the tablet constitute the 

tablet structure.  A placebo is a formulation without.22   

 

Active Pharmaceutical Ingredient 

Active Pharmaceutical Ingredients (APIs) for tablet formulation development are in the 

form of powders and have diverse particulate and mechanical properties.  Crystalline 

APIs of all forms are known.  Many are of needle-like47,66, tabular67, prismatic,68 

platy47,68,69, acicular69, columnar70 crystal shapes.  Particulate properties such as particle 

size, shape, and to some extent, surface energy can be modified by crystallization, 

milling, precipitation, etc.71   Amorphous (non-crystalline) API is a high-energy form and 

usually requires processes such as spray72 or freeze drying73, milling74, etc. to induce the 

transformation.75  Critical questions regarding APIs in product development pertain to 

how much can be included in the drug product (drug loading), and which formulation 

strategy and development processes are to be employed.  Answers to these questions are 

heavily dependent on the particulate and mechanical properties of the API.  Quantitative 

descriptions of material plasticity and elasticity by indentation hardness and elastic 
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modulus are more useful in this regard.3,37,76-78  The hardness, elastic modulus and 

fracture toughness are usually reported.79  Ascorbic Acid80 (Vitamin C) crystals are 

among the hardest known APIs, while theophylline78 is considered one of the softest 

APIs.   

 

Excipients 

The choice of excipients is critical to the success of the development of a drug product 

because they affect both tableting and drug release performance.2  Excipients used in 

tableting are mainly categorized by their functionality2; the common functional classes 

include 1) Diluent, 2) Binder, 3) Disintegrant, 4) Lubricant, and 5) Glidant.2,81   

A diluent is included in a formulation primarily to increase the bulk volume of the API 

and to improve the tableting and flow properties of the API powder.  Examples of 

diluents include, but not limited to, microcrystalline cellulose (MCC), calcium 

phosphates e.g. dibasic calcium phosphate, polydextrose, pregelatinized starch, and 

sugars, e.g., lactose and mannitol.  Due to their primary function in a formulation, the 

amounts used in formulations could vary widely.  Diluents may be highly crystalline82, 

partially crystalline83 or completely amorphous84 in their physical state.  Particulate and 

mechanical properties of diluents differ and are offered in various grades by the 

manufacturers.  The primary particles could be agglomerated as in MCC.85  Ductile 
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diluents, like the celluloses, deform easily under pressure but the inorganic salts such as 

dibasic calcium phosphate and sugars are brittle and fragment when compressed.  The 

starches are known to be very sensitive to tableting speed and hence more viscoelastic.12 

Binders are polymeric in nature and usually non-crystalline.2  While a diluent  (such as 

MCC86) could also serve as a binder if it has the property of high compactibility, typical 

binders usually include polyvinylpyrrolidone, hydroxypropyl cellulose, and starch, as a 

paste.  The form of the binder when included in a formulation depends on the 

manufacturing process, e.g. a binder for wet granulation may be added as liquid.83  

Binders become sticky when wet.87   

Disintegrating agents or simply disintegrants, for example, crospovidone, sodium starch 

glycollate, croscarmellose sodium, alginic acid and sometimes pregelatinized starch, are 

substances that facilitate the breaking up of tablets into smaller fragments when in 

contact with a liquid medium.  Some disintegrants, for example sodium starch glycolate 

and croscarmellose sodium are effective even at low concentrations, and are dubbed 

superdisintegrants.26   

The function of a lubricant in a tablet formulation is to prevent sticking to tablet tooling 

and reduce the ejection force be reducing friction between the tablet and the die during 

the tableting process.  The most common lubricant, magnesium stearate is highly 

hydrophobic88 whereas sodium stearyl fumarate, another example of lubricant, has been 



 

 
18 

shown to have a lesser hydrophobic effect on tablets89.  

Glidants are also called flow aids.  These are materials that enhance the flow of powders 

usually by reducing the degree of interparticulate cohesion and friction.90 Colloidal Silica 

is a commonly used flow aid. 

Other excipients used in tablet products include wetting agents, e.g., sodium lauryl 

sulphate and docusate sodium, coloring agents, and sweeteners for masking taste, e.g. 

aspartame.81 

Although each of these classes of excipients may be of the same functional classification, 

they could have a different impact on tableting performance of the formulation.  

Likewise, their response to various processes in development could differ significantly. 

These stem from their physico-chemical differences.  Hence structure-property 

relationship lies at the heart of efficient product development as expounded by the 

principle of materials science tetrahedron (MST).91 

 

Materials Engineering in Tablet Product Development 

The development of material-sparing techniques and predictive modeling tools to 

facilitate decision making is essential but the choice of appropriate materials and 

processing method is critical.21,92  Commonly used processes for tablet manufacture 
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include direct compression, and wet and dry granulation.93   Of these, direct compression 

is the simplest and lowest-cost processing route, as it involves only weighing, blending, 

and compression.  It also avoids many processing-induced physical and chemical 

instability issues.93  Direct compression is, however, generally limited to low drug 

loading because of the poor flow and tableting properties of APIs which cannot be easily 

rectified at high drug loading.  A large-dose tablet requires a large quantity of excipients 

to correct the inherent deficiencies of a drug with poor compaction and flow properties 

and is normally not amenable to direct compression.1   

Granulation is simply agglomeration of particles.  Wet granulation is often used for APIs 

that are not heat- or moisture-sensitive.  For moisture and heat sensitive materials, dry 

granulation is used instead.  It is a particle engineering process similar to wet granulation 

but there is no involvement with liquid.  This circumvents the issue with water and heat 

sensitivity.  In dry granulation, agglomerates are formed by compressing feed powder 

into ribbons followed by milling into appropriate size ranges.94  

The multiple unit pellet system (MUPS) is another particle engineering approach gaining 

attention in pharmaceutical product development especially for controlled drug release.95  

Individual drug-bearing beads, e.g. hard MCC beads (granules), are coated with 

polymeric functional layer(s) to modulate the drug release and essentially create mini 

drug depots.96  For consistent administration, drug-bearing beads need to be placed into a 

capsule or compressed into a tablet.97-100   
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In pharmaceutical manufacturing, polymeric composites are also often used.  The most 

common polymeric composite used is the amorphous solid dispersion (ASD). ASD 

technology is an integral part of modern day drug formulation development for oral 

dosage forms because of the number of drug candidates that have poor aqueous 

solubility.  In ASDs, polymer-drug interactions are postulated to improve physical 

stability of the drug, i.e., inhibit crystallization.  Interactions such as complexation, 

hydrogen or ionic bonding are often cited.101-103  While the molecular interactions are 

proceeding, other properties such as mechanical properties could also be evolving as a 

function of composition.104  Systematic understanding of the tableting performance of 

ASDs is not yet well developed because the focus of research is mostly on enhanced 

dissolution.105   

Poor powder tabletability is a common problem that challenges the successful 

development of high quality tablet products.  This problem occurs more frequently when 

a high dose of a poorly compressible drug must be delivered or when the powder is 

granulated, by an either dry or wet process or when unique structures like MUPS and 

polymeric composites such as ASDs are designed for compression.106-108  To effectively 

solve tabletability problems, the identification of the cause of poor tabletability is 

critical.82    
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Particle Engineering by Wet Granulation 

A formulation is wet-granulated by spraying either water or a binder solution unto 

powder as it is agitated in a mixer to produce the agglomerates.  The binder is introduced 

into the formulation to enable inter-particulate bonding which facilitate agglomeration.109 

The wetted agglomerates must be dried to reduce the moisture level to a typical range of 

< 5%.  This results in agglomerates, usually of larger size than the particles of the starting 

materials. Depending on the intensity of the mixing, the process is referred to as high 

shear or low shear.  The purpose of granulation is to improve powder flow and increase 

bulk density to facilitate consistent die filling in high speed tableting; to eliminate dust, 

prevent segregation of powder blends and improve content uniformity especially during 

the manufacture of low dose drugs; to improve product appearance and so on.109-111  

Granulation is a complex process because of the number of variables – formulation, 

process and equipment – that influence the process outcome (Figure 1.2).  The inter-

dependence of these variables further complicates the understanding of the process and 

makes modeling and scale up difficult.112  Materials that predominantly undergo plastic 

deformation such as microcrystalline cellulose (MCC), when granulated, sometimes lose 

their tableting performance.85,113-116  This substantial loss of ability of granulated powders 

to be compressed into tablets of adequate mechanical strength has been referred to as 

over-granulation.107 

A mechanistic understanding of the tableting performance of granulated powders is 
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critical to formulation development because granulation is a common intermediate step 

that precedes tableting.  The reduced tabletability of plastic powders, e.g. MCC, has been 

attributed to a variety of mechanical and chemical events but such mechanisms are still 

being debated.115  For example in some reports, the changes in compaction behavior of 

cellulose have been attributed to changes in internal bonding within the cellulose material 

after granulation.117,118  Changes in degree of crystallinity and binding capacity after 

milling of the cellulose material have also been cited.119  On the other hand, studies that 

focused on granule properties have suggested that the loss of tablet mechanical strength 

of MCC granules may be attributable to changes in surface texture characteristics such as 

surface smoothing, particle rounding, reduced surface area and porosity (granule 

densification) as well as size enlargement.85,113-116,120  When these changes occur the total 

inter-granular bonding area necessary to form strong tablets is expected to reduce, which 

culminates into loss of tablet strength.14   

The effects of granulating water level85,120, massing/mixing time113 and excipient 

variability in initial moisture content have been systematically investigated using MCC 

and pure water as granulating fluid to understand the relationship between granule 

structure and properties during high shear wet granulation (HSWG) on the tableting and 

flow performance.114  The choice of the parameters was based on the fact that water level 

(i.e., liquid saturation level) can be used as a guide to granulation end-point determination 

in HSWG, massing time can be utilized to ensure effective granulating liquid distribution, 
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minimize the impact of raw material variability such as initial moisture content on 

granule properties and to ensure process reproducibility.  Through these studies we have 

learned that, indeed, wetting may occur without any form of agglomeration or nuclei 

formation during HSWG until a critical granulating liquid level is reached.85  At some 

critical concentration of granulating water granule size may increase abruptly.120  It has 

been shown that with or without size enlargement, other granule properties such as shape, 

porosity and surface area may evolve and it is the combined effects of these changes that 

influence the tableting and flow performance of granules.85,113  Over-granulation is said 

to have occurred if tablet tensile strength cannot reach 2 MPa in the typical compaction 

range of 50 – 400 MPa.  The induction or onset of over-granulation in MCC granules 

appears to correspond with a sharp rise in granule size.120  Although useful insights have 

been obtained, the previous reports utilized a simplified model system of MCC powder 

granulated with pure water.  A systematic study which considers the evolution of 

particulate and mechanical properties in more complex systems is yet to be shown. 

Size reduction by milling has been able to salvage over-granulated powders.115,121  This 

size reduction strategy is not a good practical solution to solve over-granulation since an 

ideal strategy should be to eliminate over-granulation by designing the formulation in 

such a way that the powder mixture is inherently resistant to it.   

Dry granulation is also faced with a similar situation of loss of tabletability.  Size 

enlargement in dry granulated powders deteriorates powder tabletability of plastic 
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materials.106,115  However, brittle materials exhibit little or no sensitivity to granule size 

enlargement.122  Larger granules of plastic materials are expected to have smaller area 

that can form inter-particulate bonding in tablet because they do not fracture when 

compressed.123  This will lead to reduced tabletability.  On the other hand, when brittle 

granules are compressed they fracture and produce fragments that generate larger surface 

area for bonding.  If this induced fragmentation propensity can be demonstrated to be 

effective in addressing the over-granulation problem in wet granulation, it could make an 

impact in formulation development for this process. 

 

Developing Multiple Unit Pellets Systems 

Tableting of multi-particulates such as MUPS presents several challenges, including 

inability to form tablets of adequate mechanical strength and pressure-induced 

destruction of the functional coating layer when they do form.108,124-128  These prevent 

tablet manufacturing from beads on a routine basis.   

The problem of poor tabletability has been traditionally addressed during formulation 

development through the use of tablet excipients with superior tableting properties, such 

as microcrystalline cellulose (MCC).129  In that case, a large amount of excipients is 

required to afford sufficient tablet mechanical strength.  For example, in a mixture with 

non-compressible sand and a compressible polymer, 40% of the polymer was required to 
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form intact, but weak (~0.25 MPa tensile strength) tablets and 60% of the polymer was 

required to form reasonably strong tablets (1.3 MPa tensile strength) at 250 MPa 

compaction pressure.130,131  In another example, 40% of a highly compressible polymer, 

hydroxypropyl cellulose (HPC), was insufficient to form an intact tablet with poorly 

compressible acetaminophen.130,131   A tablet, however, cannot be too big (usually less 

than 1g) for easy swallowing and compliance by patients.132  Consequently, this strategy 

of simply adding highly compressible excipients to a formulation is unfit for drugs that 

must be delivered in a high dose.   

Work in this field has also focused on mitigating fracture of the functional coating by the 

admixture of beads with soft cushioning excipients and/or compressible excipients to 

protect the coating layer against fracture during compaction.127,128,133,134  When excipients 

are mixed with beads, particle segregation is a foreseeable problem.135  Layering of the 

top surface of beads with compressible excipients such as microcrystalline cellulose 

(MCC) to modify the mechanical properties of the beads is being pursued.136-138  This 

approach, however, requires a huge amount of the layering excipients and still with 

mixed results.136  At present, the task of routinely tableting MUPS remains an unmet need 

in drug delivery.  A simple and easy-to-implement solution to this problem is of high 

pharmaceutical importance.  
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Developing Drug-Polymer Composites 

A successfully designed ASD product must keep the drug amorphous throughout its 

entire shelf life in order to maintain the advantage of increased apparent solubility.139,140  

ASD tablet formulations have polymers as their most common excipients.141  Plasticizers 

and surfactants may also be included in ASDs to facilitate processing and to improve 

wetting; however, they are added in small quantities.142-144  Concentration of polymer(s) 

and/or the other additives in these drug composites are known to vary widely from one 

ASDs formulation to another, depending on the dose and physical stability.141,143   The 

composition of ASDs is expected to influence the particle/powder structure and 

mechanical properties, which will in turn affect the tableting performance of the ASD 

powder.  A clear understanding of such relationship, which is not yet well developed, will 

be critical for optimizing properties of ASD through structure modifications by 

formulation or particle engineering.6  For ASDs, studies that highlight the impact of 

processing parameters such as compaction pressure or formulation variables on product 

performance are limited.143,145,146  In the absence of such fundamental understanding, 

formulation of an ASD-based tablet remains empirical and may lead to formulation 

problems.   

ASDs may also be exposed to a wide range of relative humidity (RH) conditions during 

processing and manufacturing of a tablet product.  It is known that the degree of moisture 

sorption is dependent on the ASD composition, more drug leads to less sorption because 
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of increased hydrophobicity.104,144  Moisture is known to have a complex effect on the 

tableting performance of materials.147  It can improve deformation through plasticization 

but may also weaken intermolecular forces of attraction and consequently the 

interparticulate bonding strength when it forms a sheath on particle surface.56,142,147  

Therefore, understanding the impact of RH condition and sorbed moisture on both the 

mechanical properties of ASDs and their tableting performance is critical. 

 

Objectives and Hypothesis  

The primary motivation for this thesis is to understand the relationship between the 

particulate and mechanical properties and their impact on tableting performance of 

pharmaceutical powders.  The study was divided into a series of projects, which when 

take together provide the necessary information to accomplish the overall goal.  A key 

issue with tablets is the manufacturability to provide consistent tablet-to-tablet 

performance.  The missing gap is the poor ability in the scientific design of formulation 

to ensure consistent manufacturability of pharmaceutical powder into tablets of adequate 

mechanical strength. 

The guiding hypothesis of the thesis is that modulating particulate properties (size, shape, 

surface) and mechanical properties (plasticity, brittleness), based on the mechanistic 

understanding of their effect on the interparticulate bonding area generated in a tablet and 
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the interparticulate forces of attraction (bonding strength), leads to effective solutions to 

poor powder tableting performance.  The ability to modulate these properties through 

appropriate particle engineering has been presented in this thesis in various contexts 

common to the pharmaceutical manufacturing, such as direct compression, high shear 

wet granulation, multi-unit pellet systems, and amorphous solid dispersion technology. 

This research is designed to solve compaction problems encountered during the 

manufacture of tablet products.  

 

The objectives of the projects were: 

1. To gain mechanistic understanding on the over-granulation problem in high shear 

wet granulation and to develop an effective strategy to overcome this problem 

through appropriate particle engineering.   

2. To test the ability of surface coating with a layer of highly bonding polymer on 

improving tabletability of non-compressible granules.  If successful, we will 

examine the applicability of this strategy in preparing directly compressible pellets 

for controlled-release applications.  

3. To further understand the effect of moisture and composition on particle 

mechanical properties as well as the interplay between bonding area and bonding 

strength on powder tabletability.  
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Research plan and Thesis organization 

In this thesis, each chapter is a self-contained module, arranged in the following order.   

1. In Chapter 2, we examine the over-granulation tendency in MCC-

Polyvinylpyrrolidone-Magnesium Stearate system to understand how wet 

granulation affects the structure and properties of the plastic microcrystalline 

cellulose.  Granulation water level was optimized to improve powder flow for 

robust tablet formulation development capable of meeting needs of high speed 

tableting.  

2. In Chapter 3, we develop a strategy to overcome the over-granulation problem by 

effective material engineering, based on the mechanistic understanding gleaned 

from the study in Chapter 2.  In this work, we systematically study the granulation 

performance of binary mixtures of brittle excipients, i.e., lactose and dicalcium 

phosphate, and plastic microcrystalline cellulose.  

3. In Chapters 4 and 5, we investigate a surface coating strategy for overcoming the 

poor tabletability problem of drug layered beads (multi-unit pellet system, MUPS).  

We developed this strategy to attain directly compressible beads which can increase 

tablet mechanical strength by increasing bonding area when compressed.  This 

strategy was further applied to enable development of MUPS tablets with desired 

release profile.   
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4. In Chapter 6, we investigate the effect of moisture and drug loading on the 

mechanical properties and tableting performance of polymer-drug composites, i.e., 

amorphous solid dispersions (ASD).  In this work, we highlighted the importance 

of plasticization/antiplasticization effects by moisture or drug on tableting 

performance of ASDs.   

5. In Chapter 7, we systematically test the role of interplay between bonding area 

(BA) and bonding strength (BS) on tabletability.  A change in mechanical 

properties of powders tends to have opposite effects on BA and BS, i.e., higher 

plasticity favors larger BA but also reduces BS. The net impact on powder 

tabletability depends on the interplay between BA and BS.  We critically examine 

such BA and BS interplay through systematically varying compaction pressure and 

powder temperature during compaction or during tablet breaking for an amorphous 

polymer, Soluplus®.   

 

Tablet friability test is a practical tool for assessing tablet mechanical strength.  In 

Appendix I, we develop and validate an expedited tablet friability test method.  Its 

applications to problems such as the required minimum tablet mechanical strength, and 

the effect of tablet size, shape and composition on tableting performance are 

demonstrated.  We also show its potential as a material-sparing tool for guiding the scale-
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up of tablet manufacturing. 

To appropriately characterize tablet mechanical strength a correct relationship between 

tablet tensile strength and tablet porosity needs to be established. We have addressed a 

potential pitfall in fitting tablet tensile strength-porosity data by non-linear regression.  
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Table 1.1  New Molecular Entities Approved by the Food and Drugs Administration 
(FDA) in the US 
 
 

Year Number of  
Tablets 

Approved 

Number of  
Capsules 
Approved 

Number of 
Other  

Dosage Forms 
Approved 

Percentage of 
Tablets in the 

Approved Drug 
Products 

2009 13 0 8 62 

2010 5 2 8 33 

2011 17 1 5 74 

2012 15 4 15 44 

2013 13 4 8 52 

2014 11 11 11 33 

2015 3 5 4 25 

 
Average 

   
46% 

 
Source:http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Rep
orts.NewOriginalNDA 
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Figure 1.1  Material Engineering Activities involved in the Development of a Solid Dosage Form  (Modified from Sun, 2009) 
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Figure 1.2  The interdependence of the variables in wet granulation that influence 
process outcome  
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CHAPTER 2. EVOLUTION OF STRUCTURE AND 

PROPERTIES OF GRANULES CONTAINING MICRO-

CRYSTALLINE CELLULOSE AND POLYVINYLPYRROLIDONE 

DURING HIGH SHEAR WET GRANULATION 

 

 

 

 

 

 

 

 

This chapter has been published as a research article in the Journal of Pharmaceutical 

Sciences, 2014, 103: 207 – 215  
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Summary 

Granulation behavior of microcrystalline cellulose (MCC) in the presence of 2.5% 

polyvinylpyrrolidone was systematically studied.  Complex changes in flowability and 

tabletability of lubricated MCC granules are correlated to changes in intragranular 

porosity, morphology, surface smoothness, size distribution, and specific surface area 

(SSA).  With 2.5% PVP, the use of 45% granulation water leads to 84% reduction in 

tablet tensile strength and 66% improvement in powder flowability.  The changes in 

powder performance are explained by granule densification and surface smoothing.  

Over-granulation is observed at 45% water level, which is significantly lower than the 

70% water required for unlubricated MCC granules without PVP.  At >45% water levels, 

MCC granules flow well but cannot be compressed into intact tablets.  Such changes in 

powder performance corresponds to the rapid growth into large and dense spheres with 

smooth surface. Compared to MCC alone, the onset of fast granule size enlargement 

occurs at a lower water level when 2.5% PVP is used.  Although the use of 2.5% PVP 

hastens granule nucleation and growth rate, the mechanisms of over-granulation are the 

same, i.e., size enlargement, granule densification, surface smoothing, and particle 

rounding in both systems. 
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Introduction 

Prior to tableting, many pharmaceutical powders are processed by high shear wet 

granulation (HSWG), where either water or a binder solution is sprayed onto a powder 

bed as it is vigorously agitated in a high shear mixer to produce agglomerates.  The main 

objectives of granulation are to: 1) improve powder flow and increase bulk density to 

facilitate consistent die filling during high speed tableting; 2) eliminate dust; 3) prevent 

segregation of powder blends; and 4) improve content uniformity.1-3  However, the 

improvement in powder handling properties is often associated with deteriorated tableting 

performance.4-7  When tabletability deterioration is extreme, sufficiently strong tablets 

cannot be manufactured, a phenomeon known as “over-granulation”.8 To solve the 

problem of over-granulation effectively, a mechanistic understanding is highly desired.   

Microcrystalline cellulose (MCC), one of the most commonly used tablet excipients, has 

the problem of deteriorated tabletability when granulated either dry or wet.7-9  Using the 

simplest system of MCC and water, it was recently shown that surface smoothing, 

particle rounding, reduced surface area, reduced granule porosity, and size enlargement 

during HSWG are responsible for the deteriorated tableting performance of MCC 

granules.4-6,8  These changes in granule structure and properties lead to reduced total 

inter-granular bonding area, hence, loss of tablet strength.10   

Although useful insights have been obtained from studying the simplest MCC and water 

system, the question of whether they are applicable to more complex systems remains 
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open.  Further tests of over-granulation mechanisms using more complex systems are of 

critical importance for solving real-world over-granulation problems.  Among possible 

excipients used in a HSWG formulation, a polymeric binder is expected to have a 

significant impact on the development of granule structure7 by influencing the granule 

nucleation and growth kinetics.11,12  Therefore, we investigate a system containing MCC 

and polyvinyl pyrrolidone (PVP), a common HSWG binder.  In addition, we characterize 

granules after lubrication with 0.5% (wt%) magnesium stearate to ensure that knowledge 

derived from this work is more relevant to real pharmaceutical granules, which are 

invariably lubricated prior to tableting. 

 

Materials and Methods 

Materials 

Microcrystalline cellulose, MCC, (Avicel PH101) was received from FMC Biopolymer 

(Philadelphia, PA).  Polyvinylpyrrollidone (PVP) K30 was received from BASF 

(Geismar, Germany).  Initial moisture content of the MCC was 4.24%.  The amount of 

PVP was fixed at 2.5% of the weight of MCC for all batches.  Water level was varied 

between  5% and 105% of the weight of MCC to prepare a total of 12 batches of 

granules.  PVP binder solutions of different concentrations were prepared by dissolving 

PVP in distilled water corresponding to the desired water levels.  A physical mixture of 
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MCC and PVP (0% water) was also prepared and characterized.  Magnesium stearate was 

received from Mallinckrodt (St Louis, MO). 

 

Methods 

Wet Granulation 

Each batch of granules, containing 100 g of MCC,  was prepared using a custom-made 

laboratory-scale high-shear granulator (1.7 L bowl volume, modified KitchenAid food 

processor, two impellers, 1750 rpm).  Whenever possible, a binder solution was sprayed 

at ~ 30 g/min through a nozzle placed approximately 5 cm above the surface of a moving 

powder bed.  However, the binder solutions used for the 5% and 10% water levels were 

delivered drop-wise from the nozzle tip because they were too viscous to be sprayed.  

Wet granules were massed for 10 minutes after all binder solution had been added.  The 

wet-massing time was purposely prolonged to ensure uniform distribution of binder 

solution in the powder bed and reproducibility of the granulation process.5  The wet 

granules were tray-dried for ~24 hours at 40 oC  in an oven and then placed in a 32% 

relative humidity chamber for at least 48 hours prior to further characterization.  Water 

content in the granules ranged 3.7% - 4.8% based on thermogravimetry measurements. 
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Characterization of Tableting Properties 

Powder compaction studies were conducted at room temperature and ~20% relative 

humidity.  The physical mixture was prepared by mixing 100 g MCC and 2.5 g PVP in 

the granulator for 30 seconds.  All samples were lubricated for 10 minutes with 0.5% 

magnesium stearate using a 1 quart (946 mL) twin shell dry blender (Patterson-Kelley, 

East Stroudsburg, PA) before characterizing their particulate properties, tableting 

performance, and flowability.  

Tableting performance was tested on a compaction simulator (Presster, Metropolitan 

Computing Company, East Hanover, NJ) to simulate 10-station Korsch XL100 tablet 

press using round flat-faced tooling (9.5 mm diameter).  The dwell time was set at 20 ms, 

corresponding to a production speed of 61,600 tablets/hr.  Tablet dimensions were 

measured immediately after ejection.  Tablet diametrical breaking force was determined 

using a texture analyzer (TA-XT2i, Texture Technologies Corporation, Scarsdale, NY) at 

a speed of 0.01 mm/s and 5 g trigger force.  Tablet tensile strength was calculated from 

the breaking force and tablet dimensions.13  True density of the MCC-PVP-magnesium 

stearate composite was obtained by fitting tablet density – compaction pressure data of 

the physical blend using the Sun method.14  Powder tabletability (tablet tensile strength as 

a function of compaction pressure), compressibility (tablet porosity as a function of 
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compaction pressure), and compactibility (tablet tensile strength as a function of porosity) 

were obtained.15,16  

 

Characterization of Powder Flow Properties 

Powder flowability was measured in triplicate using a ring shear tester (RST-XS, 

Dietmar, Schulze, Wolfenbüttel, Germany).  The powders were first pre-sheared under a 

normal consolidation stress of 6 kPa.  Shear tests were subsequetly performed under 0.23, 

2, 3, 4, 5 and 0.23 kPa normal stresses to construct a yield locus.  Unconfined yield 

strengths, fc, and the corresponding major principal stresses, σn, were determined by 

drawing two Mohr’s circles using standard procedures.17 The flow factor, ff = σn/fc was 

subsequently calculated.18   A higher ff generally indicates better flow property.    Avicel 

PH102 (FMC Biopolymer, Philadelphia, PA was also tested under the same experimental 

conditions) as a reference powder for adequate flowability.19,20   Powder bulk density was 

calculated from the powder fill weight and volume of the shear cell. 

 

Characterization of Particulate Properties 

To obtain qualitative information on particle shape, size, and surface properties, samples 

were sputter-coated with platinum (~50 Ǻ coating thickness) and observed with a 
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Scanning Electron Microscope (SEM, Quanta 200F, FEI, USA) operated at 10 kV.  

Particle size distributions were measured using a laser scattering particle size analyzer 

(Malvern Mastersizer 2000, Malvern Instruments Ltd., Worcestershire, UK). An inlet air 

pressure of 1 bar, a feed rate of 30%, and obscuration of  0.6 – 6% were used for data 

collection.  Granules produced with water levels > 65% contained particles larger than 

2000 μm, which is too large for the laser scattering sizer to yield accurate size 

distribution information.  In these cases, granule size was obtained from SEM images 

using the maximum Feret diameter to give semi-quantitative information on granule size 

changes.  Mercury intrusion porosimetry  (MIP, Autopore IV 9500, Micromeritics, 

Norcross, GA) was used to measure the pore-volume distibution of the materials. The 

incremental pore volumes were determined in the range of 5 to 33,000 psi. The pore 

diameter at a given pressure was computed using the Washbun equation.21  Intragranular 

pore size cut off points were determined by examining the pore size distribution data and 

SEM images for each powder, assuming intragranular pores are significantly smaller than 

intergranular pores.  

The specific surface area (SSA) of samples was determined using Krypton adsorption 

over the partial pressure, P/Po, range of 0.05 – 0.2, analyzed using the Brunauer, Emmet 

and Teller (BET) method22 (ASAP 2020, Micromeritics, Norcross, GA). 
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Data Analyses 

Origin statistical software (Origin® 9.0, OriginLab Corp., Northampton, MA) was used 

for all data fitting and statistical analyses.  The best fitting function for each set of data 

was obtained using non-linear regression by systematically varying the parameters until 

the residual sum of squares between the experimental data and predicted values reached a 

global minimum.  Residuals plots were inspected to ensure the true global minimum was 

obtained for each set of data.23  Non-linear regression yielded both mean and standard 

errors for each parameter in the fitting function.   

 

Results 

Particulate Properties 

Table 2.1 summarizes the key observations on granules and their properties linked to 

powder flow and compaction behaviors essential for tablet manufacturing.  SEM images 

provide qualitative information on granule shape, size, and surface features (Figure 2.1).  

In the physical mixture, comprised of MCC, PVP, and magnesium stearate particles, 

irregularly shaped porous MCC agglomerates with uneven surface can be observed 

(Figure 2.1A).   Granulation with 15% water leads to smoother MCC agglomerates and 

the generation of new agglomerates of small particles (Figure 2.1B, arrowed).  With 
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increasing granulating water level, 25 – 45% (Figures 2.1C, D & E), the number of 

observable pores diminishes and fine surface projections on MCC have been completely 

eliminated.  The MCC particles are more regular in shape while the number of new 

agglomerates formed from the small particles increases.  At 45% water these newly 

formed agglomerates appear larger than those at lower water level (Figure 2.1E).   At the 

55% water level, many large surface smooth granules devoid of observable pores are seen 

(Figure 2.1F).  In most of these granules, the primary particles cannot be distinguished in 

the SEM images and they appear more rounded in shape.  With increasing granulating 

water, ≥ 65%, granules continue to enlarge and become dense spheres (Figures 2.1G – 

K).  In this range of water level, granules differ in size but similar in surface features and 

shape (Table 2.1).  Small flaky magnesium stearate particles are found on the surface of 

all granules, which were not present when images of unlubricated granules were 

examined.   

Granule size is represented either by the median volume diameter, d50, for granules 

prepared with lower water levels or by the median of the maximum Feret diameter for the 

higher water level granules (Table 2.1).  The median of the Feret diameter for the 65% 

granules, 343.8 µm, is comparable to d50, obtained by laser diffraction, 356.4 ± 13.2 µm.  

When compared to the physical mixture, granules size decreases when 15 – 35% water 

was used for granulation.  At 35% water level, the granule size decreases by ~19% (Table 

2.1).  This suggests that primary MCC particles mainly undergo surface smoothing and 



 

 
45 

densification instead of forming larger granules within this range of granulating water.  

Interestingly, while the volume median diameter, d50, from the particle size distribution 

of granules obtained at the 45% water granulating level increases by merely ~1% from 

that of the physical mixture, the volume mean diameter, d[4,3], increases by 62.8%.  The 

difference is because d[4,3] are more sensitive to the presence of even a small number of 

large particles than d50 and the overall size distribution is bi-modal for this sample 

(Figure 2.S1).  The d[4,3] is consistent with the observation from SEM images that a few 

large agglomerates are found in this batch of granules.  The size distribution of some of 

the granules is bimodal, especially the 45% water granules.  The SSA is 0.897 ± 0.0168 

m2/g for the physical mixture and decreases consistently with increasing water level 

(Table 2.1).  Nearly ~80% of the SSA of the starting material is lost during the 

granulation process when 55% granulating water is used.  Further increase in water level 

up to 105% only leads to ~14% additional loss in SSA.  

To determine granule porosity from MIP data, a cut-off pore size must be determined to 

separate intra-granular pores from inter-granular pores within a batch of granules.  The 

cut-off size used was 7.2 µm for 0 – 25% water level granules, 3.8 µm for 35 – 75%, 0.1 

µm for 85% - 105% water level granules.  These cut-off sizes were selected based on the 

pore-size distribution and SEM data.  The pore-size distributions for the samples are 

either multimodal or bimodal, which becomes less resolved with increasing granulation 

water level.  Although errors in calculating the intra-granular pore volumes are inevitable 
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in this exercise, the estimated granule porosity still provides useful information for 

identifying a qualitative trend.  From 0 to 15% water level granule porosity maintains at 

~20%, followed by steady decrease from 15% to 55% water level (~79% loss in porosity, 

Table 2.1) and then stays relatively unchanged at ~4.5% from 55% to 75% water level.   

Further increase in water level (85 – 105%) leads to approximately constant porosity of 

~1.3%.  

 

Tableting Properties 

The tabletability of granules generally decreases with increasing water level (Figure 2.2).  

However, the tabletability profiles of the granule produced at 5% water level and the 

physical mixture cross at 250 MPa.  When compaction pressure is >250 MPa, the granule 

has higher tensile strength than the physical mixture.  There is a ~50% drop in tablet 

tensile strength over nearly the entire compaction pressure range when water level 

increases from 5 to 10%.  With further increase to 35% water level, tensile strength 

reduces gradually (Figures 2.2 & 2.5A).  The granules prepared at 45% water granulating 

level do not form tablets of tensile strength > 2 MPa even at 400 MPa compaction 

pressure.  No intact tablet can be formed for granules prepared with 55% - 105% water at 

any pressures.   
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Compressibility plots show that the physical mixture is the most compressible because it 

forms tablets with the lowest porosity at any given compaction pressure up to 300 MPa, 

where tablet porosity is close to zero (Figure 2.3).  Tablet porosities are calculated using 

true density value of 1.437 ± 0.011 g/cm3, determined from fitting tablet density vs. 

pressure data of the physical mixture.  Tablet porosities for granulated powders are 

comparable at low compaction pressures but diverge at higher pressures.   

The compactibility plots (Figure 2.4) have been fitted to the Ryshkewitch – Duckworth 

equation24, as expressed in Equation 2.1:  

 

εσσ b
oε−=                                                                   2.1 

 

where σ is the tablet tensile strength, ε is the porosity,  σo is the tensile strength at zero 

porosity and b is a constant.  At low porosities, the data is well described by this 

equation.  Deviation from the Ryshkewitch – Duckworth equation at high porosities is 

observed for all granules (Figure 2.4), as previously observed in other systems.25   

However, it is interesting to note that the data points deviate from the fitted line at a 

lower porosity for granules prepared with a higher level of water.  
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The initial 5% water leads to a higher σo than the physical mixture, from 9.88 ± 0.08 MPa 

to 13.23 ± 0.25.  Further increment in granulation water level results in a decrease in σo.    

Similarly, the tensile strength of tablets at 300 MPa compaction pressure rises at 5% 

water level and decreases with further increase in the level of granulating water (Figure 

2.5A).  At 300 MPa, which is within the typical range of compaction pressure used in 

tablet manufacture, tablet tensile strength have sufficiently approached a plateau for most 

powders in this study.  The constant b, although close to each other, appears to increase 

with increasing granulating water level (Figure 2.5B).  At 300 MPa, tablet porosity 

initially rises with increasing water level from 0% to 10% and remains essentially 

unchanged at the 10 – 15% water level before dropping at 25% water level (Figure 2.5C).  

Subsequently, porosity stays relatively constant up to 45% water level.   

SEM images of the tablet fracture surface of the powder granulated with 45% water, after 

diametrical compression test, show deformed granules with clear outline as exemplified 

by Figure 2.6.  Evidently, tablet fracture plane runs around granule instead of through 

them, indicating that bonding strength at the contact between two adjacent granules is 

lower than the strength of the granule.  This is reasonable since the granules were 

lubricated with more weakly bonding magnesium stearate.  Moreover, the lack of any 

sign for granule fragmentation is consistent with the well-known plasticity of this 

material.  
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The impact of granule size, specific surface area, and granule porosity on tableting 

performance is presented in Figure 2.7.   In spite of the little change in d50  (~1%) in the 0 

– 45% range of granulating water, there is ~84% drop in tablet tensile strength.   In the 

same range of water level, powder SSA and porosity decrease by ~58% and ~51%, 

respectively.  Clearly, changes in SSA and porosity correlate with the tableting 

performance of granules better than granule size.  The reductions in SSA and porosity 

suggest surface smoothing and granule densification, which are supported by SEM data 

(Figures 2.1A-E). 

 

Flow Properties 

Flow property, assessed by the flow factor18 , ff, initially improves with the use of 15% 

water and then stays nearly unchanged up to 35% granulating water before it sharply 

increases at 45% and higher water level (Table 2.1).  Granules at ≥ 65% granulating 

water level are too large to be tested satisfactorily on the shear cell.  All granules were 

observed to have excellent flowability during the filling of tablet die for compression.   

Despite the size reduction that occurs after granulating with 15 – 35% water, the flow 

property is still better than Avicel PH102 (Table 2.1).  Even though there is ~9% drop in 

granule d50 from 15% to 25%, the powder flowability is not heavily affected as indicated 

by just ~3% drop in ff.  This means the improvement in flowability due to surface 
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smoothing and densification outplays the deterioration due to size reduction.  The 

flowability of the physical mixture (ff = 13.2 ± 0.8) is lower than Avicel PH102 (ff = 15.3 

± 0.23).  This is not surprising given the mixture is predominantly the finer grade of 

MCC, Avicel PH101, which exhibits poorer flowability than Avicel PH102.26  All 

granulated powders exhibit better flowability than Avicel PH102, suggesting adequate 

flowability for a high speed tableting process.19  Bulk density increases consistently with 

increasing water level (Table 2.1). 

 

Discussion 

Granulation has become an essential operation for modulating powder properties such as 

flowability before further processing in pharmaceutical solid dosage form development.1  

In this work, we set to examine the impact of water level, up to 105% (wt %) on the 

particulate properties as well as flow and tableting properties of predominantly 

microcrystalline cellulose granules for a mechanistic understanding on over-granulation.  

These process parameters play key roles in the granulation of any powder.3  For instance, 

granulating water level influences the onset of granule nucleation, granule size, density, 

and shape.4,8,11  In some cases, granulation without binder produces mechanically weak 

granules and tablets.  The main purpose of incorporating polymeric binder is to induce 

agglomeration,11,12 but it can also improve granule strength and enhance compactibility.27  
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Massing or kneading time is the period in which granules are subjected to shear forces in 

the granulator after all the granulation liquid has been added.  Massing time, when 

prolonged, can be used to minimize differences in granule properties, such as size, that 

occur as a result of slight and inadvertent changes in process parameters, for example, 

amount of water added.5  A lubricant is used to facilitate easy tablet ejection and 

minimize picking.  However, it can also deteriorate tablet mechanical strength.28  To gain 

insights more relevant to real-world applications, we investigate HSWG behavior of 

MCC in presence of a binder under prolonged massing time and with lubrication. 

 

Effect of wet granulation on particulate properties 

Granulation is primarily a size enlargement technique through fusion of primary particles.  

During wet granulation, the distribution of liquid under the shear stress leads to granule 

growth as well as breakage and attrition as powder is agitated.2,3  Granule growth results 

from particles coalescence and consolidation during agitation.  Initially formed granules 

may break apart if the impact forces are sufficiently strong.3  In this study, the absence of 

size enlargement up to 35% water level, even with 2.5% PVP binder, suggests 

insufficient amount of granulation liquid available for granule growth.12  This is indirect 

evidence that supports the role of liquid bridges to granule growth.  The observation of 

large agglomerates in these granules (Figure 2.1) indicates the inhomogeneous 
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distribution of binder solution.11  Some particles coalesce to form large granules in the 

regions relatively richer in binder solution before they are redistributed to other areas of 

the powder bed.   The drastic size enlargement at ≥55% water indicates the saturation 

point has been surpassed, where excess binder solution is available for extensive granule 

growth by coalescence.3,12  The d50 and d[4,3] values exhibited a minimum at  35% and 

25% granulating water level respectively (Figure 2.S1). The big difference between d[4,3] 

and d50 at 45% water level is caused by the existence of the discrete, large agglomerates 

since d[4,3], the volume weighted mean size, is more influenced by the presence of larger 

agglomerates than the volume weighted median size, d50.  The initial size reduction and 

impact of larger agglomerates on d[4,3] is in agreement with the results obtained in a 

previous study, where MCC was granulated with only water (5 – 95%).4  The granule 

size for the MCC-PVP-water system is always larger than the MCC-water system at each 

water level.  This demonstrates the role of PVP, a polymeric binder on granule size by 

promoting more agglomeration, perhaps because of the increased viscosity of the binder 

solution favors granule growth.12  This is also evidenced by the fact that agglomerates 

can be located in the 15% water level granules but not until 45% in the previous study.4  

Furthermore, the minimum d50 occurred at 45% water level for the MCC-water system 

but 35% for the MCC-PVP-water system.  This finding justifies the inclusion of 

polymeric binders to promote size enlargement.27  Polymeric binder solutions may, 

however, have problems such as more uneven binder distribution as a result of the 

difficulty in uniform spraying and distribution in powder bed due to its higher solution 
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viscosity.  Uneven binder distribution causes non-uniform nucleation,11 which may result 

in wider and/or multi-modal granule size distributions.   The bimodality in size 

distribution is most prominent for the 45% water level granule but absent in the 55% 

water granule.  This means that nucleation phase ends at a water level slightly above 45% 

(Figure 2.1). 

The powder SSA depends on factors such as particle size, surface roughness, and 

porosity.  Smaller particle size, fine surface protrusions, and higher porosity all favor 

higher SSA.  The reduction in powder SSA in the 0 – 45% water range during 

granulation may be explained by the removal of particle fine surface features and particle 

densification (Table 2.1 and Figure 2.1) since particle size actually decreases when water 

level increases from 15 to 35%.    For the higher water level range (55 – 105%), the 

reduction in SSA can be explained by both the profound size enlargement and particle 

densification.  The slightly lower SSA of the PVP-containing granules than the MCC 

only granules is most likely due to the smaller size of granules in the latter system. 

Interestingly, the SSA of PVP-containing granules prepared with 85 – 105% water levels 

are comparable to the granules without PVP and magnesium stearate lubrication.  Since 

the SSA in this range is very small, there may not be enough resolution for accurate 

determination. The steady reduction in intra-granular porosity is a result of plasticization 

of MCC by water with or without PVP.  When more plastic agglomerates are subjected to 

intense shear stresses, they undergo consolidation (i.e. elimination of pores) more easily5  
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The difference between the MCC-PVP and MCC only systems is the initially high 

porosity of the PVP-containing granules in the lower water range (0 – 35%, Figure 2.S2).  

This may be due to the easier formation of porous agglomerates consisting of mainly 

smaller particles when PVP binder solution is used.  The viscous nature of a polymeric 

binder solution is capable of causing these particles to stick together even at low 

granulating water content.  The majority of particles in the 15% water level granules have 

smooth surface with diminished number of pores, suggesting they are denser than 

particles in the physical mixture (Figure 2.1 and Table 2.1).  However, the presence of 

the newly formed porous agglomerates leads to a slight increase in porosity between 0 

and 15% water level granules (Table 1). 

 

Effect of Wet Granulation on Tableting Performance 

For the ungranulated mixture used in this study, tablet tensile strength rises sharply with 

increasing pressure before leveling off at ~200 MPa (Figure 2.2) while tablet porosity 

sharply decreases initially and then gradually levels off at > 200 MPa (Figure 2.3).   The 

mechanical strength of a tablet is determined by the inter-particulate bonding area and the 

bonding strength over a unit bonding area.10  Since lower porosity corresponds to larger 

bonding area for the same powder, tablet tensile strength is expected to increase with 

decreasing porosity.  Therefore, the shape of tabletability profile (Figure 2.2) corresponds 
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well with that of the compressibility profile (Figure 2.3).  When a well densified powder 

(low porosity) is subjected to further increase in pressure, particles undergo mostly 

reversible elastic deformation but little plastic deformation.  Tablet porosity after ejection 

only slightly decreases with increasing pressure and tensile strength only slightly 

increases.16  In fact, excessive elastic recovery during decompression phase can 

compromise tablet integrity and a lower tensile strength may be observed, a phenomenon 

known as over-compression.29  

Up to ~350 MPa, a plateau is not obvious in the tabletability plot of the 5% water level 

granules (Figure 2.2).  This corresponds well with the continuous decrease in tablet 

porosity (Figure 2.3).  Interestingly, the tabletability curve of the 5% water granulated 

powder crosses that of the physical mixture at ~250 MPa (Figure 2.2).  At pressures > 

250 MPa, tablet tensile strength is higher for the granulated powder.  This leads to the 

peak in the tensile strength as a function of granulating water level (Figure 2.5A).   

Because tablet porosity of the 5% water granulated powder is higher than that of the 

physical mixture (Figure 2.3) and because of the similar particle shape (Figure 2.1), the 

bonding area is expected to be smaller in the 5% water granulated powder.  For its tablets 

to have higher tensile strength, bonding strength must be higher than the physical 

mixture.  This is supported by the higher extrapolated maximum tensile strength for the 

5% granulated powder (Figures 2.2 & 2.5A).  This seemingly strange observation may be 

understood by considering different distribution of PVP in the two powders.  PVP is 
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more uniformly distributed in the granulated powder by covering MCC particle surfaces 

than in the physical mixture.  At low pressure region (< 250 MPa), bonding area is the 

dominating factor and the more compressible physical mixture exhibit lower tablet 

porosity and, therefore, higher tensile strength.  However, bonding area difference is 

diminished at high pressures, where bonding strength is the determining factor for tensile 

strength.  Since bonding strength of the 5% water granulated powder is higher, it is likely 

because of the PVP coating.  The interplay between bonding area and bonding strength 

results in the cross over at 250 MPa.30  The value of b gradually increases up to 45% 

water level (Figure 2.5B).   As granulating water level increases, granules are expected to 

become less compressible due to granule densification, which reduces plasticity.4-6  

However, tablet porosity at comparable compaction pressure does not show the trend of 

monotonic increase in tablet porosity with increasing water level, which is predicted by 

considering deformability of granules alone (Figure 2.5C).  Rather, granules prepared 

with 25 – 45% water exhibit lower porosities than that with 15% water.  This may be 

explained by the fact that the more round shape and smoother surfaces for granules 

prepared with 25 – 45% water have better packing efficiency, which contributes to the 

lower tablet porosity.    

With regards to tabletability, surface smoothing and particle shape rounding effects are 

expected to diminish total bonding area by limiting mechanical interlocking.  This and 

granule densification collectively lead to the decrease in tabletability in the 10 – 55% 
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range (Figure 2.5).  Such effect is so profound that intact tablets cannot be formed in the 

55 – 105% range.  For the densest granules, they behave like elastic balls under ordinary 

compaction pressure, which leads to negligible bonding area.10   When 45% or more 

water was used, granulated powders enter the over-granulation region with tensile 

strength lower than 2 MPa (Figure 2.2).  The transition to the over-granulation state is 

associated with the significant reduction in intra-granular pores, SSA, and particle shape 

rounding (Figure 2.1 and Table 2.1). 

 

Effect of Wet Granulation on Powder Flowability   

Every successful high speed tableting requires adequate powder flow to ensure consistent 

die filling and good control of tablet weight.19  Powder flow can be affected by particle 

size, surface texture, 17 environmental conditions31 as well as powder history such as 

storage time.32  Fine powders generally do not flow well because of high particle 

cohesion.26  The physical mixture of MCC-PVP exhibits the poorest flowability primarily 

because of the surface roughness which leads to higher frictional force during relative 

movement of particle due to mechanical interlocking (Table 2.1).4  The surface 

smoothing, particle shape rounding, granule densification, and size enlargement all favor 

improved powder flowability.  The significant improvement in flowability after 

granulating with 15% water may be attributed to the removal of the fine surface features 
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since changes in particle size and shape are negligible (Figure 2.1 and Table 2.1).  It was 

suggested that the presence of larger particles in a fine powder can sometimes 

significantly improve powder flowability.33  However, this is unlikely to be the reason to 

the improved flowability of these 15 – 35% water level granules because the volume of 

larger particle is actually smaller than that in the starting powder based on the d50.   In the 

15 – 35% water range, flowability is relatively constant despite the higher bulk density, 

lower intra-granular porosity and more round shape (Figure 2.1).  This suggests that the 

granule densification and shape rounding are not as effective in improving powder flow 

as surface smoothing.  At ≥45% water range, the significant improvement in flowability 

is essentially a result of size enlargement.  The flowability of MCC-PVP physical mixture 

is poorer than Avicel PH102 and is, hence, not suitable for high speed tableting.19  

However, granulating with 15% water adequately improves the powder flowability to be 

better than Avicel PH102, hence, suitable for high speed tableting.  For this powder, the 

HSWG process can stop at 15% water level to avoid the potential problem of deteriorated 

tabletability. 

 

Comparison of Simplified and Complex MCC Formulations 

In addition to the previously discussed similarities and differences between the evolution 

of particulate properties in the MCC-PVP-water-magnesium stearate system and MCC-
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water system,4-6,8  the sequence of events with the progression of granulation process is 

the same.  First, fine features on particle surface are removed at low water levels to result 

in surface smoothing attributable to the intense shear stress during the granulation 

process.  This is followed by nucleation of granules, as evidenced by the appearance of 

large agglomerates.  As more liquid is added, the powders become more plasticized and 

porous agglomerates gradually evolve into round dense granule where the original 

particles cannot be identified.  Consequently, a sharp transition to fast granule growth 

phase occurs while keeping the spherical shape of granules.   

When PVP is present, nucleation phase commences at as low as 15% water level in 

contrast to the ~45% water level without PVP.4  This suggests that the use of a binder 

hastens agglomeration.  For the same reason, the fast granule growth phase starts at  

~55% water level with PVP but ~65% for MCC without PVP 8  (Figure 2.S2).   

At the same water level, the tabletability of PVP-containing granule is always lower than 

that of granules without PVP.4,8  This discrepancy is not surprising since MCC-PVP 

granules were prepared with longer massing time and lubrication was applied prior to 

compaction.  The former factor will lead to more densification, and hence, lower 

deformability of granules.  When compressed under the same conditions, smaller bonding 

area is expected. The later factor will reduce bonding strength between particles.28,34  The 

adverse effect on powder tabletability by lubricant is also expected to be more profound 

at higher water level as shown  by previous workers7 because of the better coverage by 
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lubricant on smaller surface area by a fixed amount of lubricant (Figure 2.1).  Both 

reduced bonding area and bonding strength lead to deteriorated tablet tensile strength 

since granules are separated at the interfaces rather than through the granules (Figure 

2.6).  This effect is thus expected to contribute to the deterioration in compactibility 

(Figure 2.4) and σ0 (Figure 2.5A). 

The effect of granulation water on powder flowability in MCC-PVP and MCC follows 

different patterns.  In the MCC-PVP system, granule flowability increases from 0% to 

55% (Table 1).  However, in the MCC only system, the flowability was improved only up 

to 15% granulation water level and stays relatively constant at higher water level.4   At 

the same water level, the flowability of MCC-PVP granules is always better than that 

without PVP.  The different dependence on granulation water level is in agreement with 

the observed smoother surfaces of the MCC-PVP granules and larger size (Figure 2.S1).  

Regardless of the reason for the differences, the use of PVP is advantageous to the 

performance of granules produced by HSWG process. 

 

Conclusion 

For the lubricated MCC–PVP granules, increasing water level leads to both improvement 

in flowability and deterioration in tableting performance due to mechanisms qualitatively 

the same as those observed in the MCC granules, i.e., particle surface area reduction, 
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surface smoothing, granule densification, and size enlargement.  However, the transition 

into the over-granulation zone corresponds to a lower water level when PVP and 

magnesium stearate are used.  The observation of concurring deterioration in tabletability 

and enhancement in flowability suggests that, for the MCC-PVP system, the HSWG 

process should be terminated as soon as satisfactory powder flowability is attained to 

minimize the risk of over-granulation.  The same strategy likely applies to other high 

shear wet granulation formulations that are predominantly plastic.  
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Table 2.1  Evolution of size, surface area, porosity, bulk density and flow factor with increasing granulating water level 
 

Water 
Level 
(%) 

Particle Size            
d50(µm) SSA (m2/g) Porosity 

(%) 
Bulk Density 

(kg/m3) b 
Flow 

Factor b 

Performance 

Tablet 
strength 

Powder 
Flowability 

0 62.7 (±3.0) 0.8967 (±0.0168) 20.03 421.3 (±0.6) 13.20 (±0.83) Very Strong Poor 

15 60.2 (±1.6) 0.7295 (±0.0086) 20.29 483.0 (±2.0) 18.96 (±0.30) Very Strong Adequate 

25 54.6 (±1.1) 0.7052 (±0.0105) 20.21 559.0 (±2.0) 18.44 (±0.36) Strong Adequate 

35 50.7 (±2.5) 0.5863 (±0.0089) 12.75 620.3 (±2.1) 19.01 (±0.56) Strong Adequate 

45 63.4 (±1.8) 0.3739 (±0.0049) 9.676 702.0 (±2.0) 23.25 (±0.49) Weak Good 

55 168.7 (±20.5) 0.1770 (±0.0012) 4.27 853 (±3.0) 51.01 (±0.91) 0 Excellent 

65 343.8a 0.101 (±0.0009) 4.41 NMc NMc 0 Excellent 

75 468.8a 0.091 (±0.0009) 4.68 NMc NMc 0 Excellent 

85 625.2a 0.0765 (±0.0008) 1.20 NMc NMc 0 Excellent 

95 743.8a 0.0973 (±0.0014) 1.30 NMc NMc 0 Excellent 

105 789.7a 0.1041 (±0.0015) 1.45 NMc NMc 0 Excellent 

a Maximum Feret diameter obtained from SEM images 
b Flow factor and bulk density of Avicel PH102 are 15.27 ± 0.23 and 403.3 ± 0.6 kg/m3, respectively. 
c Not measured due to overly large granule sizes  
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Figure 2.1  SEM images of physical mixture and granules at various granulating water levels 
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Figure 2.2  Tabletability of MCC – PVP physical mixture and granules prepared with 

different amounts of water used for granulation 
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 Figure 2.3  Compressibility of MCC – PVP physical mixture and granules prepared with 

different amounts of water 
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Figure 2.4  Compactibility of MCC – PVP physical mixture and granules prepared with 

different amounts of water 
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Figure 2.5  Effect of granulating water level on  (A) tablet tensile strength at 300 MPa 

compaction pressure [open triangle] and tensile strength at 0 porosity [solid diamond]  

(B)  the slope of the Ryshkewitch equation (change in tablet tensile strength with 

porosity) (C) tablet porosity at 300 MPa compaction pressure 

 

 

 

 

 

 

 

 

 



 

 
69 

 

Figure 2.6  SEM images of the fracture surface of a tablet prepared from compressing an 

MCC granule with 45% water at 300 MPa 

 

 

 

 

 

 

 

 

 

 

 

X500 



 

 
70 

30 60 90 120 150 180

0

2

4

6

8

10

Te
ns

ile
 S

tr
en

gt
h 

(M
Pa

)

Particle Size (µm)

0%

15%
25%

35%

45%

55%
Overgranulation zone

size enlargement

SSA (m2/g)

0%

15%
25%

35%

45%

55%

decreasing surface area

51015200.20.40.6

Porosity (%)

0%

15%
25%

35%

45%

55%

A B C

decreasing porosity

0.8

Figure 2.7  Effect of granulating water level on granules properties,  (A)  granule size  (B) specific surface area, SSA  (C)  granule 

porosity and tablet tensile strength at 300 MPa compaction pressure 
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Figure 2.S. 1  Effect of water level on particle size, (A) d50 and d[3,4]; and (B) size 

distribution of MCC-PVP granules measured by laser diffraction  
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Figure 2.S. 2  Effect of PVP and prolonged massing time on granule properties, (A) d50 

[solid line by laser diffraction, dotted line by SEM image analysis]; (B) specific surface 

area; and (C) intra-granular porosity   
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CHAPTER 3. A FORMULATION STRATEGY FOR SOLVING 

THE OVER-GRANULATION PROBLEM IN HIGH SHEAR WET 

GRANULATION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter has been published as a research article in the Journal of Pharmaceutical 

Sciences, 2014, 103: 2434 – 2440 
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Summary 

Granules prepared by the high shear wet granulation (HSWG) process commonly exhibit 

the problem of over-granulation, a phenomenon characterized by a severe loss of the 

ability to form adequately strong tablet.  We hypothesize that the incorporation of brittle 

excipients promotes brittle fracture of granules during compaction, thereby, improving 

tablet mechanical strength by increasing bonding area.  On this basis, we have examined 

the effectiveness of incorporating a brittle excipient into a plastic matrix in addressing the 

over-granulation problem.  A complete loss of tabletability is observed for plastic 

microcrystalline cellulose (MCC) when ≥55% of granulating water was used.  The 

incorporation of a brittle excipient, either lactose or dibasic calcium phosphate (Dical), 

into the MCC matrix leads to improved tabletability in a concentration dependent 

manner, with higher amount of brittle excipient being more effective.  For each mixture, 

tablet tensile strength goes through a minimum as the granulating water increases, e.g., 

1.4 MPa for the mixture containing 80% of lactose and 2.1 MPa for the mixture 

containing 80% Dical.  These results, along with SEM evidence, show that the addition 

of brittle excipients to an otherwise plastic powder is an effective formulation strategy to 

address the over-granulation problem in HSWG. 
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Introduction 

The tabletability of wet granulated pharmaceutical powders is routinely observed to be 

reduced when compared with the virgin powder.1-5  In extreme cases, a granulated 

powder does not form intact tablets6, let alone forming tablets with adequate mechanical 

strength, in the pharmaceutically relevant compaction pressure range of 50 – 400 MPa.  

This phenomenon of severe loss of powder tabletability is known as over-granulation.7  It 

has also been observed that drug release rate may be slowed down after wet granulation.8  

Consequently, the term “over-granulation” may also be used to describe the situation 

when the drug release rate is unacceptably low after granulation.  

Recent work has shown that plastic microcrystalline cellulose (MCC) undergoes size 

enlargement, densification, shape rounding, and surface smoothing during high shear wet 

granulation.5  These changes in particle properties limit the formation of sufficient inter-

particulate bonding area, over which intermolecular attractive forces are significant.9  For 

example, the over-granulated MCC granules are hard and resistant to deformation.7  They 

likely undergo a significant degree of reversible elastic deformation during compression, 

a behavior observed in MCC pellets.4  When it occurs, the extensive elastic recovery of 

granules during decompression decreases the total bonding area among granules.  

Consequently, the tablet is mechanically weak.9   
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Since high levels of plastic excipients, including MCC and other polymers, are routinely 

used in tablet formulations intended for wet granulation, it is reasonable to expect that the 

over-granulation problem of formulated powders during wet granulation has an origin 

similar to that observed in MCC, i.e., insufficient bonding area.  If so, an effective 

strategy for overcoming the over-granulation problem would be to increase bonding area 

in a tablet.  Consistent with this concept, size reduction by milling has been used to 

salvage over-granulated powders.2,7  This size reduction strategy, although effective, is 

not ideal since it is merely reactive to a manufacturing crisis and it requires additional 

processing steps.  An ideal strategy for solving this problem is to eliminate it by 

designing the formulation in such a way that the powder mixture is inherently resistant to 

over-granulation.   

Insight for developing such a formulation strategy to address the over-granulation 

problem may be gained by considering parallel work in dry granulation that is also faced 

with a similar situation of loss of tabletability.  It has been shown that, size enlargement 

in dry granulated powders deteriorates powder tabletability of plastic materials.10  

However, brittle materials exhibit little or no sensitivity to granule size enlargement.11  

These observations agree with the mechanism of reduced area of bonding in a tablet that 

leads to the lower tablet mechanical strength.  Larger granules of plastic materials have 

smaller area that can form inter-particulate bonding in tablet because they do not fracture 

when compressed.  This naturally leads to reduced tabletability.  On the other hand, 
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brittle granules undergo extensive fragmentation when compressed to generate new 

lubricant free surfaces that are available for bonding.  Therefore, the large original 

granule size exerts little negative impact on tablet strength of brittle materials.  

Based on this understanding, we hypothesize that the incorporation of a brittle excipient 

into an otherwise plastic matrix for the HSWG process promotes fragmentation of large 

granules during compaction.  The fragmentation subsequently minimizes the negative 

effect of large granule size on available bonding area to alleviate or even eliminate the 

over-granulation problem.  We test this hypothesis using binary mixtures of MCC with 

each of the two brittle excipients, lactose and dibasic calcium phosphate.   Although both 

lactose and Dical are brittle, they represent different types of materials because lactose is 

water soluble while Dical is not.12 Some of the lactose is dissolved during the wet 

granulation process, which crystallizes out during subsequent water removal by drying.  

On the other hand, the solution mediated redistribution of brittle excipient during 

granulation process is not expected for Dical because of its extremely low solubility in 

water.12  This may cause structural differences and affect fragmentation propensity of 

resultant granules.   
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Materials and Methods 

Materials 

Materials used in this study were provided by respective commercial suppliers as follows: 

microcrystalline cellulose (MCC, Avicel PH101, FMC Biopolymer, Philadelphia, PA), 

polyvinylpyrrollidone (PVP, Kollidon K30, BASF, Geismar, Germany), lactose 

monohydrate (Foremost Farms, Baraboo, WI), anhydrous dibasic calcium phosphate 

(Dical, Anhydrous Emcopress, JRS Pharma, Cedar Rapids, IA), and magnesium stearate, 

(Mallinckrodt, St Louis, MO).  A fixed amount of PVP, 2.5% (wt%) of the powder 

mixtures, was dissolved in varying amounts of water to form polymer solutions, which 

were sprayed during the wet granulation process.  For each mixture, the amount of water 

ranged from 5% to the maximum amount possible without forming a paste. Physical 

mixtures of MCC-PVP-lactose or MCC-PVP-Dical (0% granulating water) were 

prepared as a control.  

The use of PVP as a binder during the granulation process and magnesium stearate as a 

lubricant prior to compaction make this work more relevant to the common HSWG 

process during pharmaceutical manufacturing.  Hence, the knowledge derived from this 

work can be applied to solve overgranulation problems with more confidence.   
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Methods 

Wet Granulation 

Powder mixtures, 100 g per batch, at various ratios of MCC-lactose (20%, 40%, 50%, 

60% and 80% lactose) and MCC-Dical (40%, 60% and 80% Dical) were first mixed in a 

laboratory-scale high-shear granulator (1.7 L bowl volume, modified KitchenAid food 

processor, two impellers, 1750 rpm) for 30 seconds before spraying an appropriate PVP 

binder solution at a rate of ~ 30 g/min through a nozzle placed approximately 5 – 8 cm 

above the moving powder.  The materials were massed for 10 minutes after all binder 

solution has been added.  The prolonged massing is intended to maximize the chance of 

overgranulation to challenge the effectiveness of the proposed formulation strategy.  The 

wet granules were tray-dried for ~24 hours at 40 oC in an oven and then placed in a 32% 

relative humidity chamber for at least 48 hours prior to compaction.  The physical 

mixtures were prepared by mixing MCC and lactose (or Dical) at predetermined ratios 

with 2.5 g PVP in the granulator for 30 seconds.  Before compaction, all samples were 

mixed with 0.5% magnesium stearate for 10 minutes using a 1 quart (946 mL) twin shell 

blender (Patterson-Kelley, East Stroudsburg, PA) operated at 25 rpm. 
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Characterization of Tableting Properties 

Powder compaction studies were conducted at room temperature and approximately 20% 

relative humidity.  Granules were compressed on a compaction simulator (Presster, 

Metropolitan Computing Company, East Hanover, NJ) to simulate a 10-station Korsch 

XL100 tablet press using round flat-faced tooling (9.5 mm diameter).  The dwell time 

was set at 20 ms, corresponding to a production speed of 61,600 tablets/hr.  Tablet 

dimensions were measured immediately after ejection.  Tablet diametral breaking force 

was determined using a texture analyzer (TA-XT2i, Texture Technologies Corporation, 

Scarsdale, NY) at a speed of 0.01 mm/s and 5 g trigger force.  Tablet tensile strength was 

calculated from the breaking force and tablet dimensions.13  Tabletability plot (tensile 

strength as a function of compaction pressure) was obtained.14,15  All data fitting and 

statistical analyses were done using commercial software (Origin® 9.0, OriginLab Corp., 

Northampton, MA).  Tabletability profiles were fitted to polynomial functions of 

appropriate order, from second to fifth, for the best fitting.  Resultant functions were 

subsequently used to obtain the tablet tensile strengths at compaction pressures of 100, 

200, and 300 MPa.  Unless specified, tablet tensile strength reported in the following 

sections refers to tablet compressed at 300 MPa. 

Tablet fracture surfaces after the diametral-compression test for breaking force were 

sputter-coated with platinum (~50 Ǻ coating thickness) and examined with a Scanning 

Electron Microscope (SEM, JEOL 6500F, Tokyo, Japan) operated at 5 kV, to obtain 
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qualitative information on granule deformation behavior.  Granules were also sputter-

coated with platinum (~50 Ǻ coating thickness) and observed with a Scanning Electron 

Microscope (SEM, Quanta 200F, FEI, USA) operated at 10 kV. 

 

Results 

Effect of Composition on Wet Granulation 

Granule size generally increases with increasing level of granulating water or brittle 

excipient concentration.6,16  To define the appropriate range of the granulating water, we 

first determine the water-holding capacity of each powder by recording the maximum 

amount of water that can be added to the powder while being granulated in the granulator 

without forming a paste or thick slurry (Figure 3.1).  Water is added to the powder bed at 

5% or 10% increments until the first sign of suspension formation is observed, at which 

point that water level is recorded as the paste-forming water level (red line in Figure 3.1).  

The water level immediately before the last water addition that leads to paste-formation is 

taken as the water holding capacity (black line in Figure 3.1).  The formation of a thick 

slurry, which is essentially a dispersion of solid particles in the granulating liquid,17 

indicates that the maximum amount of liquid to produce agglomerates has been 

exceeded.  The water holding capacity of powder without forming a slurry decreases in 

the order of MCC (135%) > Dical (45%) > lactose (15%).  The water holding capacities 
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of the mixtures, range between those of the pure powders as expected.  Similar 

observations have been made previously, where a higher MCC concentration in the 

starting powder required a higher amount of water to produce desired pellets or 

granules.16,18,19  

 

Effect of Composition on Tableting Performance of Physical Mixtures 

The effects of powder composition on tablet tensile strength of the MCC-lactose and 

MCC-Dical mixtures are shown in Figures 3.2A and 3.2B, respectively.  When only the 

physical mixtures are considered, an increase in lactose or Dical concentration to 80% 

results in a drop in tablet tensile strength, by as much as 51% for lactose and by 64% for 

Dical.  Similar to an earlier observation,20  the tableting performance of MCC-lactose 

physical mixtures in this work is also better than the MCC-Dical mixtures at equivalent 

MCC concentrations.   

 

Effect of Wet Granulation on Tableting Performance 

The impact of wet granulation on the tableting performance of powder mixtures is 

demonstrated with plots of the tablet tensile strength as a function of water level for both 

lactose (Figure 3.2A) and Dical mixtures (Figure 3.2B).  The tabetability of pure MCC 
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granules decreases rapidly with increased amounts of added water.  MCC granules cannot 

be compressed into intact tablets at ≥55% granulating water level, i.e., they are 

completely overgranulated.6  In contrast, the tablet tensile strength of granulated powders 

containing lactose or Dical initially decreases with increasing amounts of added water at 

a rate lower than that of MCC until it reaches a minimum at some granulating water 

level.  Beyond this minimum, additional granulating water results in increased tablet 

tensile strength.  The observed minimum tablet tensile strength is higher when the 

concentration of lactose or Dical is higher (Figures 3.2A and B).      

Both the granulating water level corresponding to the minimum tabletability and the 

minimum tensile strength are related to powder composition.  Mixtures with lower MCC 

concentration required less water to reach the respective minimum tensile strength.  The 

value of the minimum tensile strength increases with increasing amount of brittle 

excipient for both lactose and Dical (Figure 3.3).  When the amount of the brittle 

excipient is 40% or higher, the minimum tensile strength is no longer zero, marking a 

fundamental change in over-granulation behavior exhibited by MCC.  The trend of the 

minimum tablet tensile strength value diverge when the concentration of the brittle 

excipients exceeds 40% (Figure 3.3).  For MCC-lactose granules, there is about a 7-fold 

increase in the minimum value when the lactose concentration increases from 40% to 

60% while that of the MCC-Dical granules is ~30-fold.  At the same concentration, Dical 

appears to be more effective than lactose in terms of the minimum tensile strength.  At 
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80% of the brittle excipients, the minimum tablet tensile strengths are 1.4 MPa for the 

mixture containing lactose and 2.1 MPa for the mixture containing Dical.  Although both 

minima correspond to a granulating water level of 35%, the value of the minimum tensile 

strength of the MCC-Dical granules is about 50% higher than that of MCC-lactose 

granules.  The higher efficiency of Dical in improving tablet tensile strength is likely 

because of its higher brittleness than lactose.21 

To examine interplay among the compaction pressure, granulating water level, and 

composition,  we compare tablet tensile strengths of MCC, MCC-lactose (80%) mixture, 

and MCC-Dical (80%) mixture at 100 MPa, 200 MPa and 300 MPa (Figures 3.4A–C).  

Tablet tensile strength improves with increasing compaction pressure for systems 

containing either brittle excipients at all granulating water levels.  Consequently, the 

tabletability at the three compaction pressures do not converge.  Tablet tensile strength of 

MCC granules approaches zero with increasing granulating water level (Figure 4A).  

Therefore, the three lines converge at ≥55%, the point at which the complete loss of 

tabletability takes place.  While tabletability of MCC granules exhibit extreme sensitivity 

to granulating water level, the tabletability of the mixtures with 80% lactose or Dical 

does not.  If we adopt the 2 MPa tensile strength threshold for overgranulation in typical 

pharmaceutical compaction pressure range (50 – 400 MPa)7, the mixture containing 80% 

lactose recovers after granulating with 45% water (Figure 3.4B).  However, the mixture 
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containing 80% Dical is free from the risk of over-granulation at any granulating water 

level (Figure 3.4C). 

 

Effect of Composition on Tablet Structure 

To assess the degree of brittle fracture versus plastic deformation of granule after 

compaction, morphologies of granules before and after compression at 100 MPa were 

compared  by SEM (Figures 3.5A–C).  These SEM images are for granules prepared with 

25% water level and compressed into tablets at 100 MPa.  The relatively low compaction 

pressure was selected to help identify granules that are more sensitive to stress induced 

fragmentation because only the brittle granules will show signs of fragmentation under 

low pressures.  The fractured tablet surface from MCC granules shows defined outlines 

of the original granules although deformation is visible when compared to the 

uncompressed granules (Figure 3.5A). This lack of appreciable granule fragmentation is 

consistent with the known plasticity of MCC.22  On the other hand, the fracture surfaces 

of MCC-lactose tablet (Figure 3.5B) and MCC-Dical tablet (Figure 3.5C) show clear 

signs of fragmentation when compared to the uncompressed granules.  Within the areas 

examined, several pieces of granules are broken from the original granules, which 

suggests breakage of original granules into smaller fragments during compaction, hence 

minimizing the differences in initial size of the granules. 
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Discussion 

Effective solutions to any pharmaceutical problem requires a mechanistic understanding 

of the inter-relationship among material structure, property of interest, and 

performance.23  For granules prepared by HSWG, their structure, properties and tableting 

performance depend on both powder composition, i.e., formulation variables, and process 

parameters, such as massing time.6-8   Properties that favor superior tableting performance 

include high intragranular porosity24, and low granule mechanical strength3.  These 

properties affect the degree of plastic deformation or fragmentation during compaction 

and, therefore, bonding area after compression.  For large granules, plastic deformation 

alone is inadequate to develop sufficiently large bonding area required for strong tablet.  

When granule size cannot be reduced, fragmentation becomes an important deformation 

mechanism for enhancing bonding area and improving tabletability.  Systematically 

studying the granulation performance of binary mixtures of plastic MCC with a brittle 

excipient offers an opportunity to assess the effectiveness of incorporating brittle 

excipients, on promoting fragmentation and reducing the over-granulation propensity of 

pharmaceutical powders.  Brittleness of composite granules is expected to lie between 

those of pure components.    

 

 



 

 
87 

Relationship between Formulation Composition and Water-holding Capacity  

Granulating liquid level is a key parameter of the wet granulation process.  Water holding 

capacity of a powder may be affected by factors such as particle size, the powder 

wetability, powder bed porosity, hygroscopicity, and solubility in granulating fluid.  The 

rank order of water holding capacity, MCC > Dical > lactose (Figure 3.1), in this work 

can be explained from their different hygroscopicity and aqueous solubility.  MCC sorbs 

much more moisture than Dical and lactose.  At the same granulating water level, less 

free water will be available for forming MCC agglomerates.  To form a continuous liquid 

phase necessary for forming a paste, much more water is required for MCC.  Although 

both Dical and lactose are non-hygroscopic, lactose is more soluble than Dical.  At the 

same granulating water level, the relative amount of solid lactose is less and the volume 

of the liquid phase is larger than Dical because of the dissolution of a significant amount 

of lactose in water.  Therefore, water holding capacity of lactose is lower than Dical.  

Consequently, the nucleation and growth kinetics is expected to follow the rank order of 

lactose > Dical >> MCC.  This is consistent with the observations that a) more 

granulating liquid is required for successful wet granulation when more MCC is present 

in a mixture18,19 and b) MCC-Dical mixtures generally take more granulating water than 

the corresponding MCC-lactose mixtures.16  Regardless of the mechanisms that 

determine water holding capacity, the HSWG processing map (Figure 3.1) clearly 

assesses the ability of a powder to resist slurry formation.  In our opinion, it should be 
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routinely determined for any HSWG formulation of interest since it sets a limit to the 

design space.  A robust HSWG process should keep granulating water level away from 

the transition zone with a safe distance since it is a point of no return for the granulation 

process. 

     

Relationship between Formulation Composition and Tableting Performance 

Figure 3.2 shows that physical mixtures of MCC with either lactose or Dical exhibit 

lower tabletability than MCC; and a higher concentration of brittle excipient corresponds 

to lower tablet tensile strength.  This is not surprising since MCC (Avicel PH101) 

exhibits much higher tabletability than both lactose and Dical.25  For each granulated 

mixture, tablet tensile strength initially decreases with increasing water level.  As shown 

for MCC,5,6 this trend is likely caused by the surface smoothing, particle rounding, 

densification, and the elimination of primary MCC particles due to agglomeration.  This 

explanation is consistent with the fact that a mixture containing more MCC tends to be 

more sensitive to the water addition, i.e., faster drop in tablet tensile strength with 

increasing granulating water (Figures 3.2A and B).  However, unlike for pure MCC, 

tablet tensile strength increases with increasing granulating water level for these lactose 

or Dical mixtures when a critical water level is surpassed.  This happens because higher 

water level leads to larger granules, which undergo more extensive fragmentation during 
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compaction to expose fresh unlubricated surfaces for bonding within a tablet.  

Consequently, tablets are stronger because the effect of magnesium stearate in reducing 

the inter-particulate forces of attraction becomes less.26  MCC granules converge to a 

zero tablet tensile strength at 55% granulating water.  This is expected if it does not 

undergo fragmentation under pressure because the hard, large, elastic granules resist 

deformation.4  Such MCC granules may only crack under high stress instead of breaking 

into fragments.27  However, brittle lactose granules of varying size, shape, and porosity 

produced using different methods exhibit equivalent tabletability to that of ungranulated 

lactose.3  For a given system, higher amount of brittle excipient corresponds to lower 

sensitivity to the change in granulating water level.  This means that the accessible 

granulating water range is narrower but the granulation process is more robust for a 

powder containing more brittle excipient.  In this light, it should also be pointed out that 

higher concentration of brittle excipient, although effective in tackling the over-

granulation problem, leaves less room for errors in the amount of water used during the 

granulation process. 

The structures of dry granules likely differ between the lactose and Dical based granule 

where lactose is expected to mix with MCC more intimately than Dical because of the 

dissolution-crystallization process.  Figure 3.3 suggests that the expected structural 

differences in the lactose and Dical based granules do not significantly affect the amount 

of brittle excipient required to have an impact on over-granulation.  More than 40% of 
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brittle excipient is required for both.  The higher minimum tablet tensile strength of Dical 

granules (Figure 3.3) implies that Dical is more effective than lactose in addressing the 

over-granulation problem.  There are at least two possible explanations to this 

observation: a) Dical based granules are more brittle; and b) Dical has higher bonding 

strength than lactose.  The first possibility is supported by literature evidences that 

suggest higher brittleness of Dical than lactose.  For examples, Dical tablet strength 

increased at a higher tableting speed (higher punch velocity) but lactose did not25 and 

Dical also exhibited higher degree of fragmentation than lactose when fracture tablet 

surfaces were examined.28  The second possibility is speculated based on the higher 

thermal stability of the inorganic salt of Dical than the organic molecular crystal of 

lactose.12  

 

Relationship between Formulation Composition and Tablet Structure 

In addition to data discussed above, the proposed mechanism for the formulation strategy 

to solve the over-granulation problem is also supported by direct observation of granule 

fragmentation in tablet.  At the fracture surface of an MCC tablet, each granule has a 

clear outline similar to that of individual granules prior to compression (Figure 3.5A).  

No fractured granules were present.  This is consistent with the expected lack of brittle 

fracture of MCC granules.  In MCC tablet, the intragranular strength is higher than 
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intergranular strength because granules are coated with a thin layer of magnesium 

stearate.  Therefore, the separation occurs around particles instead of through them during 

the diametral-compression test.  For granules containing 80% lactose or Dical, outlines of 

initial granules have been largely destroyed at the tablet fracture surface.  Small 

fragments are scattered throughout the fracture surface, indicating the occurrence of 

extensive fragmentation of these granules.   This supports the hypothesis that 

incorporation of brittle excipients renders granules brittle, which promotes size reduction 

during compaction, thereby, counters over-granulation problem during HSWG.  Although 

a lab scale granulator under high shear was used in this study, this formulation strategy is 

expected to be valid for large scale wet granulation where shear is usually lower. 

 

Conclusion 

The incorporation of brittle excipients, lactose and dibasic calcium phosphate in this 

study, successfully solves the problem of over-granulation in plastic MCC.  At the fixed 

compaction pressure of 300 MPa, the tablet tensile strength of MCC granules deteriorates 

rapidly with increasing granulating water.  Intact tablet could not be made for MCC 

granules prepared with ≥55% of granulating water.  When a brittle excipient is 

incorporated into the MCC matrix, a minimum tablet tensile strength exists over the 

entire range of granulating water level.  The value of the minimum tensile strength is 
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higher when more brittle excipient is present.  For mixtures containing a higher amount 

of brittle excipient, water addition generally leads to slower reduction in tabletability 

before the minimum is reached.  Once the minimum is passed, tabletability of each 

mixture improves with increasing amount of granulating water due to the more extensive 

fragmentation of larger granules.  The minimum tablet tensile strength of the mixture 

containing 80% of brittle excipient was 1.4 MPa for lactose and 2.1 MPa for dibasic 

calcium phosphate. These results along with SEM evidences show that the addition of 

brittle excipient to an otherwise plastic powder is effective in reducing, sometimes even 

eliminating, the over-granulation propensity of granules prepared by the high shear wet 

granulation process. 
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Figure 3.2  Effect of brittle excipient concentration (A) lactose, (B) Dical on tableting 

performance of MCC granules prepared at different water levels.  The compaction 

pressure was 300 MPa  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
95 

Figure 3.3  Comparison of lactose and Dical based powders at the minimum tablet 

tensile strength. Error bars denote 95% confidence interval for the tablet tensile strength 

at 300 MPa compaction pressure  
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Figure 3.5  Scanning Electron Microscope images of granules (left panel) and corresponding tablet fracture surface (right panel) of 

(A) MCC  (B) MCC 20% + lactose 80%  (C) MCC 20% + Dical 80%.  Granules were prepared at 25% water level and tablets were 

compressed at 100 MPa  
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CHAPTER 4. TABLETABILITY MODULATION THROUGH 

SURFACE ENGINEERING 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter has been published as a note in the Journal of Pharmaceutical Sciences, 
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Summary 

Poor powder tabletability is a common problem that challenges the successful 

development of high quality tablet products.  Using non-compressible microcrystalline 

cellulose beads (spherical granules), we demonstrate that surface coating is an effective 

strategy for modulating tabletability, almost at will, through judicious selection of coating 

material.  This strategy has broad applicability since tabletability of such particles is 

dictated by the properties of the outermost layer coat regardless of the nature of the core. 
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Introduction 

Poor powder tabletability is a common problem that challenges the successful 

development of high quality tablet products.  A symptom of this problem is that sufficient 

tablet mechanical strength cannot be attained within the accessible compaction pressure 

range (typically 50 – 350 MPa).1   This problem occurs more frequently when a high dose 

of a poorly compressible drug must be delivered or when the powder is granulated, by an 

either dry or wet process, before compression.2,3 

The problem of poor tabletability has been traditionally addressed during formulation 

development through the use of tablet excipients with superior tableting properties, such 

as microcrystalline cellulose (MCC).4  In that case, a large amount of excipient is 

required to afford sufficient tablet mechanical strength.  For example, in a mixture with 

non-compressible silica and a compressible polymer, 40% of the polymer is required to 

form intact, but weak (~0.25 MPa tensile strength), tablets and 60% of the polymer is 

required to form reasonably strong tablets (1.3 MPa tensile strength) at 250 MPa 

compaction pressure.5,6  In another example, 40% of another highly compressible 

polymer is insufficient for forming an intact tablet with poorly compressible 

acetaminophen.5,6   A tablet, however, cannot be too big (usually less than 1g) for easy 

swallowing and compliance by patients.7  Consequently, this strategy of simply adding 

highly compressible excipients to a formulation is unfit for drugs that must be delivered 

in a high dose.    
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It has been shown previously that coating particles with a layer of highly bonding 

polymer is effective in improving powder tabletability of extremely poorly compressible 

powders.5,6  When coated with a layer of plastic and highly bonding material, large 

bonding area can develop irrespective of the deformation mechanism of the original 

particles.  Surface coating delivers highly bonding excipients where they are most needed 

in the tablet, i.e., at the particle-particle contact points as shown in the schematic Figure 

4.1.  Such coating controls the nature of particle-particle bonding, regardless of the 

mechanical properties of the core particles.   Because coating is applied to all particles in 

the powder, a uniform three-dimensional bonding network is formed upon compression.  

Therefore, tabletability of the coated powder can be effectively controlled by judiciously 

selecting coating material.  If the coating material is highly bonding, a strong tablet 

tensile strength develops even at a low compaction pressure.  On the other hand, 

tabletability is expected to be poor when the bonding property of the coating layer is 

poor.  The effectiveness of coating on tabletability is in contrast to the physical mixtures 

between a bonding excipient and a non-bonding drug, where a three-dimensional bonding 

network forms only when the amount of bonding excipient exceeds the critical threshold, 

as predicted by the percolation theory.8,9   Therefore, a strong tablet cannot be obtained 

unless the three-dimensional strongly bonding network permeates the entire volume of 

the tablet, which requires the use of a large amount of bonding excipients.  Otherwise, the 

tablet will fail at the weakest point. 
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Using 350 – 500 µm diameter MCC beads, we demonstrate the ability of modulating 

tabletability, almost at will, through judicious selection of surface coating materials.   

 

Materials and Methods 

MCC beads (Cellets 350, Glatt Air techniques Inc, Ramsey, NJ) were used as the core, 

polyvinylpyrrolidone (PVP, K30, BASF Geismar, Germany), poly(methacrylate-

ethylacrylate) 1:1 co-polymer (Kollicoat® MAE 30DP BASF, Ludwigshafen, Germany), 

a 1:1 mixture of PVP and caffeine, and nano sized silica were used as coating materials in 

this study.  Caffeine was used as a model drug to represent drug layering onto beads, a 

process commonly employed during the development of controlled release beads.  

Continuous film coating was achieved using a fluid bed (Unilab, Bosch, Germany).  

Discrete dry coating by silica was carried out in a twin shell blender (Patterson–Kelley, 

East Stroudsburg, PA).  Cylindrical tablets (8 mm in diameter) were compressed on a 

Materials Testing Instrument (Zwick-Roell 1485, Ulm, Germany).  Tablets were broken 

diametrically and tensile strength was calculated from the breaking force and tablet 

dimensions following the standard procedure.10    
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Results and Discussion 

Figure 4.2 shows that the tablet tensile strength oscillates wildly as the beads are 

sequentially coated by bonding and non-bonding materials.  The data show that the 

outermost layer dictates tableting performance of beads regardless of the structure of 

beads underneath.  This deduction cannot be made by simply comparing tableting 

performance of beads individually coated with different materials.   Figure 4.3 is a back 

scattered electrons (BSE) image of the cross-section of a bead obtained using a field 

emission scanning electron microscope (Sigma FE-SEM, Carl Zeiss, Oberkochen, 

Germany).   

Nearly spherical MCC beads exhibit very poor tabletability.  In fact, no intact tablet could 

be prepared by compaction up to 350 MPa.  This is similar to dense MCC granules that 

are prepared by high shear wet granulation or dry granulation because they do not 

undergo sufficient amount of plastic deformation or fragment during compaction.11  

Consequently, a significant amount of elastic deformation is developed during 

compression. 12  The elastic recovery of particles upon the release of compaction pressure 

results in the survival of only a relatively small area of contact between adjacent particles 

(Figure 4.1A) and, therefore, low tablet tensile strength results.13    

When exposed to 75% relative humidity (RH), the beads coated with 10% (wt% of 

beads) of caffeine-PVP (1:1) are visually free flowing and they form tablets with tensile 



 

 
105 

strength of 7.0 MPa at 300 MPa compaction pressure, which is significantly higher than 2 

MPa, a tensile strength target for  successful handling of tablets.14  At lower RHs, tablet 

tensile strength improvement is marginal for the same beads (0.4 MPa and 1.0 MPa at 

32% and 52% RH, respectively).  This highlights the importance of plastic deformation 

of the outer layer on the tablet mechanical strength.  Polymer equilibrated at a higher RH 

is more plastic because of the higher amount of moisture.15,16  Hence, larger bonding area 

between particles is developed under identical compaction conditions as illustrated by 

Figure 4.1B.   

When the beads further coated with a layer of Kollicoat (40%, wt%) are compressed, 

tablet tensile strength is significantly reduced to be nearly negligible regardless of the RH 

(Figure 4.2).  The nearly complete loss of tabletability indicates that Kollicoat does not 

develop sufficient bonding area between adjacent beads, which is necessary for achieving 

a high tablet tensile strength.17  Further top coating with 5-25% (wt%) PVP significantly 

restores the tabletability of beads.  However, the highly plasticized PVP coating causes 

the problem of caking at 75% RH, which is the worst with 25% PVP coating.  Beads 

form large and strong agglomerates over time due to the inter-diffusion of polymer chains 

at contact points.18  This problem is solved by blending the PVP-coated beads with 1% 

(wt%) nano-sized silica to form a discrete coating layer of nano-particles, which serve as 

a physical barrier to prevent sticky PVP layers from coming to contact.   With silica 

coating, beads coated with 25% PVP remain visually free flowing even after exposure to 
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75% RH for 6 days.  The nano-coating is possible by a simple blending process because 

these free-flowing beads can come to frequent contact with silica to facilitate their 

spreading onto the beads.19  For cohesive powders, successful coating by nano particles 

would require the application of external stresses to facilitate the interactions between 

host particles and nano sized guest particles.20  

The silica coating layer significantly lowers the tablet tensile strength of PVP coated 

beads.  This is not surprising because silica particles deposited on bead surface as 

agglomerates (Figure 4.3).  Silica particles in the agglomerates do not bond to each other 

strongly.  When they are present at the contact points, the total area of direct bonding 

between PVP layers on the beads is reduced, hence, tablet is weakened.  Tablet tensile 

strength, however, gradually increases with longer exposure time at 75% RH.  Tablet 

tensile strength has fully recovered after 8 days of exposure but caking also ensues.   This 

suggests that non-bonding silica agglomerates have gradually “sinked” into the PVP 

layer, which leads to nearly complete recovery of PVP-PVP contact points similar to 

those observed in tablets without silica coating.18  Figure 4.4 shows SEM images of free 

beads, top surface of compressed tablets, and fracture surface after tablet breaking.  Tight 

inter-particular boding is evident from the tablet surface when the outer layer is either 

caffeine-PVP or PVP alone.  Elongation and breakage of tightly bonded outer layers is 

evident at the tablet fracture surface, which explains their high tablet tensile strength 

(Figure 4.2).  When the outer layer is Kollicoat, gaps between adjacent particles are 
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larger and the breakage plane moves along the bead surfaces instead of through the 

coating layer.  This explains the lower tablet tensile strength of beads coated with 

Kollicoat.  When silica is applied onto PVP coating, the gaps between beads are also 

larger and the elongation and breakage of the polymer layer is much less than that 

without silica coating.  This is also consistent with the lower tablet tensile strength after 

silica coating (Figure 4.2). 

 

Conclusion 

Our results clearly show that tabletability of a powder can be effectively modulated 

through particle surface coating with materials of targeted bonding properties.  Of all 

these surface-engineered samples, beads coated with 10% of the caffeine:PVP mixture 

exhibits the highest tensile strength as well as resistance to caking.  This superior 

performance may lead to novel formulation strategies for overcoming tableting problems.  

Since coating is a well-established process in industrial manufacturing, innovative 

solutions to tableting problems based on this particle engineering strategy can be many.  

An immediate application is the preparation of tablets from usually non-bonding 

functionally coated beads, which have been generally delivered in capsules.21   
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Figure 4.1  Schematic of bonding between poorly compressible beads in a compressed 

tablet. (A) without coating, only a small bonding area is developed ; (B) with coating by a 

layer of highly bonding material, a large bonding area is developed. A thicker coating 

layer leads to larger bonding area. 
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Figure 4.2  Effect of surface coating on tablet tensile strength of beads compressed at 

150 MPa. Beads were exposed to 75% RH for 4 days. Layered structures of beads are 

illustrated. A. MCC core bead; B. bead A coated with caffeine : PVP (1:1); C. bead B 

coated with Kollicoat MAE; D. bead C coated with PVP; E. bead D coated with nano 

silica; F. bead E after 8 days of exposure to 75% RH. The broken line indicates the 

minimum tablet tensile strength that is desired for successful processing and handling of 

tablets. 
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Figure 4.3  Back Scattered Electron SEM image of a cross-section of a coated bead showing core and various coating layers. A. MCC 

Core; B. 1:1 caffeine: PVP layer; C. Kollicoat MAE layer; D. PVP layer; E. Nano silica 
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Figure 4.4  SEM images of coated Cellet beads with different top layer coating, top 

surface ofcompressed tablets, and tablet fracture surface after diametral breaking test. 

Beads were exposed to 75% RH for 4 days prior to compaction. Label at the left of each 

row of images indicates the outermost layer material. Cracks in the PVP coated beads 

(with and without silica) are caused by dehydration of PVP coating layer during sample 

preparation for SEM. 
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CHAPTER 5. A TOP COATING STRATEGY WITH HIGHLY 

BONDING POLYMERS TO ENABLE DIRECT TABLETING OF 

MULTIPLE UNIT PELLET SYSTEM (MUPS) 
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Summary 

Multiple unit pellet system(s), MUPS, is one of the most commonly used means for 

achieving modified drug release through oral administration.   MUPS is usually delivered 

as capsules that contain drug bearing beads coated with a release modulating functional 

layer.  While highly desired, the routine manufacture of tablets of MUPS by direct 

compression is faced with the problem of poor tableting properties or altered drug release 

behavior due to the rupture of the functional coating layer.  The use of a significant 

amount of cushion material alleviates these problems but is also challenged with the 

problem of segregation and reduced drug loading.  We hypothesize that top-coating the 

beads with a layer of highly bonding polymer can enable direct tableting of beads without 

compromising the functional coating layer and without the segregation problem.  Using 

functionally coated pyridoxine and caffeine beads, we confirmed that top coating with 

PVP sufficiently plasticized with water can enable the preparation of strong tablets at 

even low compaction pressures.  Drug release profiles of tablets are comparable to those 

of uncompressed beads, indicating negligible amount of damage, if any, to the functional 

coating layer.  Therefore, top polymer coating combined with silica coating is a 

promising universally applicable strategy for realizing the goal of delivering MUPS in the 

form of tablet. 
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Introduction 

Drug-loaded beads/pellets, commonly referred to as multi-particulates or multiple unit 

pellet systems (MUPS) are increasingly being used for controlled drug delivery.1-4  

Individual drug-bearing beads are coated with polymeric functional layer(s) to modulate the 

drug release and essentially create mini drug depots.2  Such systems offer advantages 

including: 1) reduced risk of dose-dumping; 2) lower tendency of localized gastric irritation 

from irritant drugs due to more even distribution of the drug in the gastrointestinal (GI) tract; 

3) lower inter-subject variability in drug absorption into the bloodstream due to a more 

consistent transport of the beads in the GI tract; and 4) flexibility in developing products with 

unique drug release profiles through combining beads with different functional coating 

layers.5-8 

For consistent administration, drug-bearing beads need to be placed into a capsule or 

compressed into a tablet.6-9  The tablets are the preferred dosage form because tablets can be 

manufactured at a higher production speed, at a lower cost, and the tablet content cannot 

easily be tampered with.10  Apart from the flexibility in shape and color, a tablet is also 

significantly smaller than a capsule for the same drug content.  These are essential for 

developing an appealing and unique product with good patient compliance.   

Tableting of MUPS, however, presents several challenges including inability to form 

tablets of adequate mechanical strength and pressure-induced destruction of the 
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functional coating layer when they do form.11-16  These prevent tablet manufacturing 

from beads on a routine basis.   

Several technologies have been investigated to improve tablet strength and preserve the 

functional layer.3  A majority of the work in this field has focused on mitigating fracture 

of the functional coating by admixture of beads with soft cushioning excipients and/or 

compressible excipients to protect the coating layer against fracture during compaction 

and to improve tablet mechanical strength.15-18  When excipients are mixed with beads, 

particle segregation is a major problem.19  Layering of the top surface of beads with 

compressible excipients such as microcrystalline cellulose (MCC) to modify the 

mechanical properties of the beads is gaining more attention.4,20,21  This approach, 

however, requires a large amount of the layering excipients and still with mixed results.4  

At present, the task of routinely tableting MUPS remains an unmet need in drug delivery.  

A simple and easy-to-implement solution to this problem is of great pharmaceutical 

importance.  

We have shown that surface coating with a highly bonding polymer can be used to 

effectively modulate tabletability of powders.22-24  This strategy is promising for enabling 

direct tableting of functionally coated beads without compromising functional coating 

layer.  When adequately plasticized, the highly bonding top coated beads can easily deform 

and produce strong tablets even under a low pressure (e.g., 50MPa) because of 1) the 

presence of a three-dimensional bonding network in the tablet; and 2) the low hardness of the 
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top coated polymer layer permitting the easy development of a large bonding contact 

between adjacent beads upon compression (Figure 5.1).  Consequently, stress on the 

functional coating is minimal, and the integrity of the functional coating layer can be 

preserved during tableting without risking drug content uniformity problems due to 

segregation.  For this purpose, we have top-coated two kinds of drug-bearing beads with 

two kinds of modified release layer, and studied their tableting and drug release 

properties.    

 

Materials and Methods 

Materials 

Two types of functionally coated beads were used in this study.  The sustained release 

pyridoxine (vitamin B6) beads, with 95% microcrystalline cellulose (MCC) + 5% 

povidone core prepared using an extrusion and spheronization process, and functionally 

coated with a dispersion of ethylcellulose (containing 5% Eudragit® L100-55, 4.5% 

triethyl citrate, and 3% talc), were received from Upsher Smith Laboratories (Maple 

Grove, MN). The caffeine beads had Cellet 350 (Glatt Air Tech. Inc., Ramsey, NJ) as the 

core and poly(methacrylate-ethylacrylate) 1:1 co-polymer-based enteric coating layer 

(Kollicoat® MAE 30DP, BASF, Ludwigshafen, Germany), which contained 4.5% 

triethyl citrate, and 3% talc. Polyvinylpyrrolidone (PVP) K30 and Vinyl Acetate, VA64 
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(BASF, Geismar, Germany) were used as highly bonding polymers for top coating.  

Fumed silica (Cab-O-Sil, M-5P, Carbot Corp., Billerica, MA) was used as an anti-

adherent.  

 

Methods 

Bead coating  

To coat pyridoxine beads with PVP K30, 40 g of beads were weighed and mixed with 

10%, 15%, and 20% of PVP K30 using a spatula to obtain a uniform mixture before 

spraying ~3.2 g of an acidified water (pH ~2.4) unto the mixture under gentle mixing 

(low shear wet granulation). Coated beads were air dried at 25 oC and 7 % RH for 7 days.     

Caffeine beads were prepared using a fluid bed coater (Unilab, Bosch, Germany, batch 

size was 2.5 kg).  The caffeine layer was coated onto the core by spraying a suspension of 

1:1 (w/w) PVP and caffeine in de-ionized water at 35oC to attain ~5% (wt%) of total 

caffeine loading.  Subsequently, 40% (wt%) Kollicoat MAE 30DP coating was applied.  

Finally, the outermost layer (5 – 25%, wt%) of bonding polymer, either PVP K30 or PVP 

VA64, was applied.  The following coating parameters were kept throughout the coating 

process: inlet temperature 65 – 70 oC; fluidized bed air flow of 220 – 240 m3/hr;  
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atomization pressure of 1 bar, nozzle sweeping air pressure of 0.2 bar, feed rate of ~15%, 

and 45 oC bed temperature for drying. 

Lastly, where indicated, silica nanoparticles were deposited on the beads by mixing 1% 

(wt%) of fumed silica with 50 g of beads for 10 min in 1 quart (946 mL) twin shell dry 

blender (Patterson–Kelley, East Stroudsburg, PA) with the beads. 

 

Tableting of beads  

All beads were stored at 25oC in different relative humidity (RH) chambers, containing 

saturated solutions of magnesium chloride (32% RH), magnesium nitrate (52% RH) or 

sodium chloride (75% RH).25  Bead compression was carried out in the pressure range of 

50 – 350 MPa using a universal Materials Testing Instrument (Zwick-Roell 1485, Ulm, 

Germany) using round and flat-faced tooling (8 mm diameter).  For dissolution test, 

beads were also compressed using 13.5 x 8.5 mm oval convex punches and die.  Tablet 

dimensions, and diametrical breaking force were measured within 2 hr post compression.  

Breaking force was determined using a texture analyzer (TA-XT2i, Texture Technologies 

Corp., Scarsdale, NY) at a speed of 0.01 mm/s with a 5 g trigger force.  Tensile strength 

of cylindrical tablets was calculated from the breaking force and tablet dimensions using 

Equation 5.1.26 
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DT
F2

=σ                                                           5.1          

where F is the breaking force, D is the tablet diameter, and T is the tablet thickness.  

Tabletability (tablet tensile strength as a function of compaction pressure) has been used 

to describe the tableting properties of various beads.27   

 

Morphology of free beads and tablets  

The physical appearance of beads before and after compression was captured by a digital 

microscope (Dino-Lite, AnMo Electronics Corp., Taiwan), and a scanning electron 

microscope (SEM, JEOL6700, Tokyo, Japan). Samples for SEM were sputter-coated 

with platinum (100 Å thickness) using ion beam sputter (IBS/TM200S, VCR Group Inc., 

CA, USA).  SEM images were collected at 3 or 5 kV accelerating voltage. 

 

Drug release from beads  

Drug release from ethyl cellulose-coated pyridoxine beads was determined after 

compression at 150 MPa for beads without PVP K30 (no intact tablet was formed without 

the PVP coating) and at 300 MPa for 10 – 20% PVP-coated beads.  The dissolution test 

was carried out in 700 mL of aqueous HCl solution ( pH 2.4) using a 900 mL beaker and 
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agitated briskly with an overhead stirrer (1750 rpm, Lightnin Model L mixer, Rochester, 

NY) at 25oC.  Samples (3 mL) withdrawn at 1 and 2 hr time points were analyzed for 

pyridoxine concentration using UV-vis spectrophotometry at 240 nm wavelength 

(DU530 Beckman Coulter UV-vis spectrophotometer, Fullerton, CA).  The rapid mixing 

facilitated tablet disintegration in less than 1 hr.   Caffeine release from Kollicoat coated 

beads was tested in 750 mL of 0.1 N HCl, using a type II USP apparatus (Varian 705 DS 

Dissolution Apparatus, Walnut Creek, CA) at 100 rpm and 37oC.  Samples (3 mL) 

withdrawn at various time points were analyzed for caffeine using UV-vis 

spectrophotometry at 275 nm wavelength. Amount of each active chemical released was 

determined from the corresponding concentration - UV absorbance standard curves. 

To compare the equivalence of dissolution profiles, the similarity factor, f2 (Equation 5.2) 

was adopted taking uncompressed beads as reference and the compressed beads as 

test.28,29   
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where Rj and Tj represent amount of drug released from reference sample and test sample, 

respectively, at each time point j; n is the number of time points in the profile; and wj is a 

weight factor, which is kept at unity in this work.  With f2 being the logarithmic 

transformation of sum-squared error of differences in dissolution, a value of greater than 

50 represents less than 10% difference in the dissolution behavior in general. 

 

Results 

Comparing different top-coating processes  

The different coating process leads to very different final appearance of coated beads.  

During the modified low shear granulation process (gentle mixing under wetting) of the 

pyridoxine beads, PVP dissolves on contact with the sprayed water and the polymer 

solution spreads on bead surface.  This process is simple and suitable for coating a small 

batch of beads in laboratory but is faced with the problem of agglomeration of coated 

beads, which is more severe as the PVP concentration increases (Figures 5.S1A - C).  

This problem is inevitable for this particular procedure because sufficiently plasticized 

PVP on the beads is sticky and fuse when they come in contact.30 

In contrast, free flowing individual beads can be prepared using the fluid bed coating 

process.  Here, a polymer solution sprayed onto beads is immediately dried by hot air that 

fluidizes the beads before they come in contact with each other to form agglomerates.  
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This process generally produces beads with good uniformity of the different coating 

layers (Figure 5.S1E), and is suitable for industrial production of MUPS. 

 

Tableting and drug release performance of beads  

Pyridoxine beads 

Although the beads top coating by the low shear coating process is unfit for commercial 

manufacturing due to the agglomeration, it is suitable for investigating the feasibility of 

the top coating strategy to improve the tableting properties of the beads.  When beads 

with 20% PVP K30 coating equilibrated at 32% RH are compressed in the 50 – 350 MPa 

range, tablet tensile strength is lower than 0.75 MPa (Figure 5.2A).  This indicates only a 

small area of contact is created for bonding upon compression due to insufficient amount 

of plastic deformation.31   Therefore, at 32% RH, the water content in PVP K30, ~3%, 

does not achieve sufficient plasticization.  One strategy to address this problem is to 

further plasticize PVP K30 by elevating the equilibration RH because moisture content in 

PVP increases rapidly with increasing RH (Figure 5.S2).32  The tabletability of beads 

equilibrated at 52% RH (~10% water in PVP K30) slightly improves (Figure 5.2A).  At 

75%, the tablet tensile strength is considerably improved, ranging from 3 to 7 MPa for 

beads coated with 20% PVP (Figure 5.2A).  With 20% PVP coating, tensile strength 

higher than 2 MPa can be obtained even at the low pressure of 50 MPa.  The formation of 
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strong tablets under “soft compression” conditions favors the preservation of the 

functional coating layer.  

Coated beads equilibrated at 75% RH exhibited over-compression behavior at 10% PVP 

K30 coating level when the compaction pressure was above 250 MPa.  That is, tablet 

tensile strength begins to decrease with increasing pressure after passing a critical 

value.23  Beyond the critical pressure, bonding contacts between particles gained by the 

pressure increase is less than that lost due to the elastic recovery during the 

decompression phase.  Consequently, there is a net reduction in forces holding particles 

together.  The higher the compaction pressure, the greater the degree of over-compression 

because the release of more stored elastic energy leads to more breakage of initially 

formed bonds.  The over-compression is not observed in the 15 and 20% PVP K30 coated 

beads indicating the corresponding coating layers are sufficiently thick to either minimize 

stored elastic energy during compression or provide adequate plastic deformation to 

mitigate detrimental effect by elastic recovery during decompression, or both. 

The release profiles of compressed pyridoxine beads, with and without PVP coating (0 – 

20%), are compared to evaluate the effectiveness of PVP coating in protecting the ethyl 

cellulose based functional layer.  Beads without PVP coating do not form an intact tablet, 

and pyridoxine is released within the 2 hr time period, indicating appreciable amount of 

damage to the functional coating layer (Figure 5.2B).  On the other hand, 10% - 20% 

PVP coated beads form strong tablets without release of pyridoxine even when the 
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compaction pressure was as high as 300 MPa (Figure 5.2B).  All tablets disintegrate in 

less than 1 hour. 

 

Caffeine beads 

PVP top-coated caffeine beads in a fluid bed coater are free from agglomerates (Figure 

5.S1E), suggesting the effectiveness of the coating process and the feasibility for 

industrial implementation of this top coating strategy.   

As observed earlier with the pyridoxine beads, moisture activation of PVP bonding was 

also observed for caffeine beads.  Tablet tensile strength of 2 MPa can be obtained at 50 

MPa pressure for 5-25% PVP top coating (Figure 5.3A).  In contrast, tabletability of 

beads with Kollicoat as the outermost layer is low and does not change with equilibrating 

RH.  Since tablet tensile strength remains relatively low at 52% RH but jumps to very 

high tensile strength at 75% RH for PVP top-coated beads, the critical RH that activates 

superior tabletability must lie between 52% and 75% RH.  This again shows that 

adequate plasticity of the PVP layer is critical to the tabletability of coated bead.   

At this point, we have shown that the top coating strategy is feasible for preparing 

compressible beads that may be used to manufacture MUPS tablets.  To enable successful 

adoption of this strategy, it is useful to identify additional suitable polymers for the same 

application.  We therefore, select a second polymer, PVP VA64, to coat caffeine beads by 
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the same fluid bed coating process.  Similar to PVP K30, tabletability of PVP VA64 

coated beads is low at 32% RH, but improves with increasing RH and becomes excellent 

at 75% RH (Figure 5.3B).  With 10% or 20% PVP VA64 top coating, tablets with tensile 

strength higher than 2 MPa can be obtained at 100 MPa pressures at 75% RH.  The 

results show that PVP VA64 is also a suitable polymer for preparing compressible beads 

through beads top coating. 

 

Mitigating Caking Tendency for PVP K30 top-coated beads 

Although moisture activation profoundly improves tabletability, polymer (PVP K30 or 

PVP VA64) coated beads have the tendency of caking when equilibrated at 75% RH 

(Figure 5.S3).  Essentially, the PVP layer becomes so plasticized that the polymer chains 

gain sufficient mobility to fuse beads on contact without applying any external pressure.33    

Similar phenomenon was also observed in some other film forming polymers used for 

functional coating.30  This problem was, however, not observed for Kollicoat MAE 30DP 

coated beads within the period (4 days) of equilibration. 

To address this caking problem, 1% (by wt. of beads) of nano-sized silica is surface 

coated on the beads before their exposure to 75% RH to provide physical barrier to 

reduce caking tendency.  With 1% silica coating, 25% PVP K30 coated beads (~40 g) 

remain free flowing for at least 6 days when stored at 75% RH.  The silica coated beads, 
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however, exhibit ~30% reduction in tabletability (Figure 5.4).  Despite the reduction in 

tabletability, sufficiently strong tablets (> 2 MPa tensile strength) can still be formed at as 

low as 150 MPa compaction pressure.  Moreover, on prolonged equilibration for 8 days 

or longer, the tabletability is restored (Figure 5.4) while the caking also ensues. 

 

Drug Release from PVP K30 top-coated beads 

In addition to the improved tabletability, another critical criterion for the success of the 

top-coating strategy is the preservation of functional coating layer after compaction.    

Both 250 mg cylindrical and 500 mg oval convex tablets were prepared and their 

dissolution profiles were compared with uncompressed PVP K30 coated beads.  For the 

dissolution test, the cylindrical tablets were compressed at 150 MPa, which produced 

tablets of 2 MPa tensile strength.  Oval convex tablets, compressed at 4 kN, had 

acceptable mechanical strength (breaking force of 142 ± 19 N) as confirmed by the low 

(0.79%) tablet friability.      

Without the Kollicoat layer, the drug goes into solution immediately as expected (Figure 

5.5). The drug release from the cylindrical tablets of PVP K30 coated beads is more 

variable (large error bars) than those of uncompressed beads (Figure 5.5).  This is partly 

caused by the failure of cylindrical tablets to disintegrate into individual beads due to its 

high tablet mechanical strength.  After dissolution, the tablets are loose plugs staying at 
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the bottom of the vessel and crumbled with the slightest touch.  On the other hand, the 

large-sized oval convex tablets completely disintegrated into individual beads in the 

dissolution medium within 55 minutes.  At the 100 rpm paddle speed, the current in the 

dissolution medium was able to move the larger oval convex tablet but not the smaller 

cylindrical tablets.  Lack of tablet movement during dissolution may have contributed to 

the long disintegration time of the cylindrical tablets.  However, this is not expected to be 

a problem in vivo because mechanical stress exerted by the GI track is stronger than that 

during dissolution.  

The similarity factor of the caffeine layered beads was 6.4, which confirms the visually 

observed difference in the dissolution profiles (Figure 5.5) is indeed significant. The 

initial drug release is observed from the two types of tablet but not from the reference 

beads (Figure 5.5).  The possible reason is that functional coating on beads near the edge 

of the tablet, are still damaged despite the presence of PVP layer.  The initial differences 

in drug release between compressed and uncompressed beads diminish continuously and 

become almost the same after 6 hours for reference beads and both tablets.  Overall 

dissolution profiles are similar as shown by the similarity factor,  f2 > 50 (Table 5.1).29  In 

addition, the amount of drug released is essentially the same at 6 hr time point.  
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Discussion 

MUPS have become a prominent system for oral drug delivery.  However, the problems 

of poor tableting performance and pressure-induced rupture of the functional coating 

layer significantly limit routine production of MUPS-based tablet.11,15  The poor 

tabletability of functionally coated beads is caused by the lack of sufficient plastic 

deformation of the functional layer.  Compaction-induced fracture of the coating layer 

may be caused by either excessive compressive stress at contact points between two hard 

beads or excessive tensile stress at points away from the contact due to the large extent of 

deformation of beads.34     

Hard and dense MCC spheres are among the most commonly used cores for MUPS.11  

Their mechanical properties are such that they do not undergo easy plastic deformation 

nor fragmentation during compression.31,35  Under low compaction pressures, limited 

degree of permanent deformation takes place by these beads.  Under high compaction 

pressures, these beads’ surface rupture at points of maximum strain without 

fragmentating into smaller particles (Figure 5.5A).  Because of the large size of MCC 

beads, from hundreds of micrometers to several millimeters, and their resistance to 

fragmentation, the contact area among beads (bonding area) remains small after 

compaction and ejection.  Hence, they exhibit extremely poor tabletability.36  
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To form sufficiently strong tablets, adequate interparticulate contact area after 

compression is required.  The approach of  increasing the bonding area through surface 

coating with plastic polymers (Figure 5.1) is expected to be effective.22  When 

compressed, the easily deformable top-coating layer forms a 3D network, even at a low 

pressure, to afford appreciable mechanical strength to the tablet.36  The ability to form strong 

tablets at low pressures makes this approach attractive to the development of directly 

compressible MUPS tablets.  Top surface coating strategies reported so far require the use of 

complex multiple layers.4,20  A single layer top-coating strategy to enable the production of 

MUPS has many advantages in comparison.    

The significant improvement of tabletability of both pyridoxine and caffeine beads after 

PVP coating is encouraging.  The further activation of tabletability by  water (at high RH) 

is consistent with the dependence of tablet mechanical strength on bonding area.  More 

plasticized PVP layer can naturally form larger bonding areas under identical 

compression conditions.  Thicker PVP coating also favors the formation of strong tablets.  

The difficulty in separating beads is evident by the SEM images of tablet fracture face  as 

demonstrated in our previous work.24  For Kollicoat layered beads, surfaces are smooth 

after tablet breaking.  Consequently, the tablet mechanical strength is low because of the 

small bonding area between such beads.  In contrast, the top coating by plasticized 

polymers enhances both bonding area and bonding strength.36   
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The increased mobility of polymeric chains in the top coating layer, although makes it 

easier to form intimate bonding between adjacent beads, also causes the caking problem.  

The introduction of an anti-adherent, silica, on the surface solves the problem but with 

the sacrifice of lower tablet tensile strength (Figure 5.4).  However, the tabletability 

remains sufficient for forming strong tablets and the loss in tablet tensile strength is 

recovered  after prolonged exposure to the 75% RH.  There is an appreciable window of 

equilibration time where beads are both highly compressible and free-flowing.   

For the top coating strategy to be successful, it is critical that  the integrity of the 

functional coating layer is preserved after compaction.  When coated with 10% - 20% 

PVP K30, the ethylcellolose functional coating layer on pyridoxine beads remains intact 

even after a high compaction pressure (Figure 5.2B).  When coated with 25% PVP K30, 

adequate protection of the Kollicoat functional coating layer is achieved as shown by the 

similar dissolution profiles of the beads and compressed tablets (Figure 5.6).  Therefore, 

satisfactory protection of the functional coating layer has been attained in both systems 

studied.     

The demonstrated success of the top coating  strategy on two types of functional coating 

with two different polymers suggests the possible universal applicability of this strategy.  

If further systematic investigations confirm this, it  forms a basis for developing a much 

more efficient manufacturing process than other existing approaches (e.g., onion ring, 

etc.).20  
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Conclusion 

Top coating with highly bonding polymer is an effective and potentially universal 

strategy for enabling the manufacture of MUPS tablets.  Fluid bed coating is a reasonable 

process for producing agglomerate-free top-coated beads.  A combined moisture 

activation and silica coating of polymer top coated beads can be used to successfully 

prepare MUPS tablets with high mechanical strength and desired dissolution profile.  The 

success with two top coating polymers, PVP K30 and PVP VA64, and two most 

commonly used functional coatings suggest this strategy may find broad applications in 

the controlled oral delivery of drugs.   
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Table 5.1  Comparison of drug release profile to that of caffeine beads top-coated with 

25% PVP K30  

 

Type of beads Similarity Factor (f2) 

Caffeine layered beads 5.9 

Kollicoat layered beads 62 

PVP K30 + Silica coated, Cylindrical Tablet 
(250mg) 

73.8 

PVP K30 + Silica coated - Oval Convex 
Tablet (500mg) 

54.7 
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Figure 5.1  Schematic of the development of a large interparticulate contact area between 

beads coated with a layer of highly bonding polymer   
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Figure 5.2 Performance of 10 – 20% PVP top-coated pyridoxine beads: (A) Effect of RH 

on the tabletability (B) Pyridoxine release profile from compressed tablets in comparison 

to beads without PVP top coating. Beads were equilibrated at 75% RH before compre-

ssion.  Tablets disintegrated completely within 1 hour. 
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Figure 5.3  Effect of RH on the tabletability of beads coated with a Kollicoat layer top-

coated with (A) PVP K30 and (B) PVP VA64 With 10% or 20% PVP VA64 top coating, 

tablets with tensile strength higher than 2 MPa can be obtained at 100 MPa pressures at 

75% RH.   

 

Kollicoat (75%RH) 
25% PVP K30 
(52%RH) 

25% PVP K30 (32%RH) 
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Figure 5.4  Effect of outermost coating layer on tabletability of caffeine-bearing beads 

conditioned at 75% RH; A) Kollicoat MAE 30DP, B) PVP K30, C) PVP K30 + Silica 

(equilibrated for 4 days), D) PVP K30 + Silica (equilibrated for 8 days)   

 

 

 

 

 

 

 

A. Kollicoat 

C. 25% PVP + Silica (4 days) 

B. 25% PVP 

D. 25% PVP + Silica (8 days) 
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Figure 5.5  Release profiles of beads with the outermost layer: (A) caffeine, (B) ) PVP 

K30 (free beads), (C) PVP K30 with silica (cylindrical tablets, 8 mm diameter, 150 MPa 

compaction pressure), (D) PVP K30 with silica (oval convex tablets 13.5 x 8.5 mm, 4kN 

compression force). 
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Figure 5.S 1  PVP K30 top coating on pyridoxine – layered beads (A – C) and on caffeine – layered beads (D) Intact Beads (E) Cross-

sectioned bead showing individual layers.   
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Figure 5.S 2  Moisture sorption/desorption isotherm of polymers used as protective 

coating, PVP K30 and PVPVA 64. At the same RH PVP K30 takes up moisture much 

more than PVPVA 64  
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Figure 5.S 3  Images of caked beads after PVP K30 beads are equilibrated at 75% RH       
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CHAPTER 6. MECHANICAL PROPERTIES AND TABLETING 

PERFORMANCE OF CELECOXIB–PVP VA64 AMORPHOUS 

SOLID DISPERSIONS STUDIED BY NANOINDENTATION AND 

POWDER COMPRESSION 
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Summary 

The amorphous solid dispersion (ASD) is an important class of materials widely used for 

delivering poorly soluble drugs through the tablet dosage form.  The dependence of 

mechanical properties and tableting performance of ASDs on compositions, e.g., drug 

loading and water content, is expected but not yet systematically characterized.  In this 

work, we have quantified mechanical properties, i.e., Hardness, H, and Elastic Modulus, 

E, of PVP VA64 - Celecoxib ASDs as a function of relative humidity (RH) and drug 

loading by nanoindentation.  With increasing celecoxib loading, E only slightly changes 

but H rises to a maximum at ~60% drug loading before gradually decreasing to approach 

that of the pure celecoxib.  An increase in RH from 15% to 32% slightly lowers E and H 

but a further increase to 61% significantly lowers both.   Fine ASD powders (0 – 40% 

celecoxib) (<75 µm) with comparable size distributions showed complex tableting 

performance with changing drug loading and RH.  During compaction, ASDs with a 

lower H can deform more easily to develop a larger bonding area between adjacent 

particles.  However, their bonding strength is also lower.  Based on the consideration of 

effects of mechanical properties on bonding area and bonding strength, complex 

dependence of tabletability on these factors could be clearly explained.  Understanding 

the impact of RH and drug loading on tabletability is useful to the design of ASD tablet 

formulation with robust manufacturability.  
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Introduction 

The amorphous solid dispersion (ASD) technology plays an important role in developing 

oral dosage forms of poorly soluble drug candidates.1-3  A suitably formulated ASD is 

able to increase dissolution rate and improve oral bioavailability of drugs exhibiting 

solubility-limited absorption.4,5  In ASDs, drug molecules are molecularly dispersed in an 

amorphous carrier, typically a hydrophilic polymer.2,6   Plasticizers and surfactants may 

also be included in ASDs to facilitate processing and to improve wetting.7,8  

Concentration of polymer(s) and/or the other additives in these drug composites are 

known to vary widely from one ASD formulation to another, depending on the dose and 

physical stability.5,9  To maintain the advantages of increased apparent solubility and 

dissolution rate, a successful ASD product must keep drug(s) in the amorphous state 

throughout its shelf life.  Due to the stability consideration, drug loading in ASDs is 

usually not very high, usually 10 – 20% (wt%).  Therefore, even a relatively low dose 

drug, say 20 mg, requires 100 – 200 mg of the ASD in each tablet, which corresponds to 

20 – 40% loading for a 500 mg tablet.  At this loading, mechanical properties and 

tableting behaviors of the ASD are expected to play an important role in the tableting 

performance of the formulation, which is critical to successful commercial 

manufacturing.   

However, in contrast to the large number of studies that are focused on physical stability, 

e.g.,  crystallization inhibition during storage and dissolution, of ASDs10-12 literature on 
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mechanical properties and tableting behaviors of ASD is scarce.13,14  There is a clear need 

of systematic investigations of this important but under-studied topic.  Mechanical 

properties of ASDs are expected to depend on the drug loading and formulation 

compositions.13  Variations in moisture content, when exposed to different environment 

relative humidity (RH) during processing and manufacturing of a tablet product, 

influences ASD’s mechanical properties.  Hence, the effects of RH on tableting 

performance should also be investigated.  This has practical importance for developing 

any tablet product, which must assume adequate mechanical strength among other 

requirements.15    

For ASDs, studies that highlight the impact of processing parameters such as compaction 

pressure or formulation variables on product performance are limited.5,16,17  In the 

absence of such fundamental understanding, formulation of an ASD-based tablet remains 

empirical and may lead to formulation problems.  For example, incorporation of a plastic 

excipient into a formulation of an already plastic ASD powder could intensify 

disintegration problems with the resulting tablet product.18  A clear understanding of the 

relationships between compositions, mechanical properties, and tableting performance 

will be critical for achieving the ability to efficiently optimize  ASD compression 

properties through formulation or particle engineering.19 

Nanoindentation is a depth-sensing technique for evaluating material mechanical 

properties, i.e., Hardness, H, and Elastic Modulus, E, under well controlled experimental 
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conditions (rate and magnitude of force and displacement).20  It has been used to 

characterize mechanical properties of a range of materials, including organic crystals.21,22 

We adopt this well-established technique to characterize mechanical properties of ASDs 

in this work.13   

We aim to systematically examine the influence of composition (drug loading and 

moisture content) on the mechanical properties and to link that to tableting performance 

of ASD powders.  Based on a clear understanding between mechanical properties and 

powder tabletability, our ultimate goal is to integrate nanoindentation as one of material-

sparing tools to guide the the ASD tablet formulation development.   

 

Materials and Methods 

Materials 

Polyvinylpyrrolidone Vinyl Acetate, Kollidon® VA64 (BASF, Geismar, Germany)  and 

Celecoxib (Aarti Drugs Ltd., Maharashtra, India) were used as the model compounds in 

this study.  Methanol (Sigma Aldrich, St. Louis, MO) used was of analytical grade. All 

materials were used as received. 
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Methods 

Preparation of ASD Films  

Amorphous solids containing 0 – 100% celecoxib were prepared by dissolving 

appropriate mixtures of PVP VA64 and Celecoxib (1 g total powder weight) in 10 mL of 

methanol.  The solutions were filtered using a 0.45 µm membrane filter. Three drops 

(~0.1 mL) of the filtered solution were placed on a ~10 x 10 mm cut glass slides using a 3 

mL syringe.  Samples were first allowed to air-dry at 25 oC.  Samples were then placed in 

a pre-heated oven (Binder GmbH, Germany) at 175 oC for 5 – 10 min and quickly 

transferred onto a chilled steel block.  Film thickness is 200 -400 um.  Shortly before the 

glassy films were studied by nanoindentation, they were inspected  under a polarized 

light microscopy (Eclipse e200, Nikon, Tokyo Japan) for detecting any sign of the 

presence of crystalline domains.  In all cases, no birefringence was detected. 

 

Mechanical Properties by Nanoindentation 

The glass slides, which supported ASD films, were fixed unto aluminum plucks with the 

aid of super glue and tested for their mechanical properties using a nanoindenter 

(NanoXP, MTS-Nano Instruments, Oakridge, TN)  at 20 ± 1 oC.  We did not have 

complete control of RH due to instrument limitations.  However, careful design of 
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experiment in combination of continuous RH monitoring ensured relatively constant RH 

(± 1%) during the course of measurement for each seires of samples.   

The samples were equilibrated at each selected RH for at least 24 hours before testing.  

An indenter probe with a Berkovich diamond tip was used to indent the films.  Area 

function of the tip was previously established as a function of penetration depth into a 

standard fused silica.  The experiments were conducted in the continuous stiffness 

measurement mode, making 3 x 3 indents, 50 µm apart on each sample to a maximum 

penetration depth of 1000 nm at a rate of 10 nm/s.  Once target penetration depth was 

reached, the indenter was held at constant at the maximum load for 10 s before 

unloading.  Before and after indenting each film, a fused silica standard with a nominal 

elastic modulus of 72 GPa was indented to a depth of 2000 nm to ensure instrument was 

in good working conditions.  Another purpose of indenting fused silica was to clean  the 

tip in case unwanted contamination to the tip occurred during the measurement of the 

previous sample.   

The mechanical properties i.e., the elastic modulus, E, and hardness, H, were extracted 

from the raw data following the standard Oliver and Phar method.23  The indentation data 

between 600 – 900 nm penetration depth were used for the calculation of E and H. A 

Poisson’s ratio, υ of 0.3 was used in calculating E for all samples.  
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where Er is the reduced elastic modulus, Ei is the indenter elastic modulus, S is the 

stiffness and calculated as the slope of the load displacement curve of the initial segment 

of  the unloading curve and β is a correction factor of the value 1.034.   

 

Preparation of ASD Powders 

Drug and polymer solutions were prepared by dissolving in 100 mL of methanol a total 

of 50 g powder mixtures of PVP VA64 and Celecoxib , containing 0 -  40% celecoxib.  

ASD films were obtained by casting in aluminium boats.  The solutions (~12 g) were 

dried at 70 oC for ~12 hrs. The ASD films were pulverized in a high shear blender (Ninja 

Warrior, NJ200 30) using the Ninja® 4-blade running at 3600 rpm, followed by 

cryomilling (6800 Freezer/Mill, SPEX CertiPrep Inc., Mutechen, NJ).  Powders were 

filled into a 190 mL polycarbonate tube stoppered by two steel end plugs with a steel rod-
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shaped impactor in the tube.  Powders was pre-cooled for 15 mins and milled at an 

impact frequency of 10 Hz for 3 mins per milling cycle for a total of 5 cycles with 1 min 

cooling between cycles. The intense milling under liquid nitrogen effectively reduced the 

particle size significantly.24  The powders were equilibrated at room temperature over 

drierite for at least 24 hrs.  Sieving was used to further ensure that the size range was 

narrowed to <75 µm. 

 

Particle Size Analysis 

Particle size distributions, PSDs, of the powders were measured by a laser diffraction 

particle size analyzer (Sympatec GmbH, Clausthal-Zellerfeld, Germany) using the wet 

dispersion method in a 50 mL cuvette and HELOS (H2060, 0.5/0.9 - 175µm) sensor.  For 

each sample, ~10 mg of powder was dispersed in about 1 mL of cyclohexane  in a 1.5 mL 

vial and sonicated for about 50 seconds. The dispersion was then introduced drop-wise 

into the cuvette containing cyclohexane agitated by means of a magnetic stirrer (1000 

rpm) to 20 - 25% optical density. The optical density was maintained between 15 and 

25% during the measurements. For each powder, two samples were studied and 3 

readings were taken per sample.  The measurement time was 10 seconds with a 5-second 

pause time for repeated measurements  for each powder. 
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Moisture Sorption 

Water sorption isotherms of ASD powders were obtained at 25oC using a dynamic vapor 

sorption apparatus (DVS 1000, Surface Measurement Systems, Alperton, Middlesex, 

UK).   The nitrogen flow rate was kept at 15 mL/min.  The samples were equilibrated at a 

desired RH for 8 hours before changing to the next target RH.  The water vapor sorption 

isotherm of PVP VA64 was obtained on SGA-100 (VTI Inc., Hialeah, FL), where the 

sample was equilibrated at a desired RH with equilibrium criteria of < 0.0001%/m or 

maximum 120 mins before moving to the next target RH.  

 

 

Powder X-ray Diffraction 

Powder X-ray diffraction (PXRD) pattern was obtained on a wide-angle diffractometer 

(D5005, Bruker AXS) operated at 45 kV and 40 mA using Cu Kα radiation.  The 

measurement was performed with a step size of 0.02o in the 2θ range of 5 – 35o and a 

dwell time of 0.5s. The PXRD data analyses were conducted using JADE software 

(Materials Data Inc., Livermore, CA) 
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Tableting Properties 

Powders were conditioned at 25 oC in  chambers containing saturated salts of lithium 

chloride (11% RH), potassium carbonate (43% RH) and cupric chloride (67% RH) for 

~24 hrs before tableting.  Powder compression was carried out in the pressure range of 50 

– 300 MPa using a universal Materials Testing Instrument (Zwick-Roell 1485, Ulm, 

Germany) using round and flat-faced tooling (6 mm diameter).  Tablet dimensions, and 

diametrical breaking force were measured immediately after ejection.  Breaking force 

was then determined using a texture analyzer (TA-XT2i, Texture Technologies Corp., 

Scarsdale, NY) at a speed of 0.01 mm/s with a 5 g trigger force.   During  powder  

compression, environment RH was ~10% RH for the 11% RH conditioned powder and 

~50% for the 43% and 67% RH conditioned powders. Tensile strength of tablets was 

calculated from the breaking force and tablet dimensions using a standard methods.25 

Tableting properties of various ASD powders has been characterized by tabletability 

(compaction pressure as a function of tablet tensile strength).26  The PXRD of a 40% drug 

loading ASD equilibrated at 67% RH was collected at the end of the compaction study to 

verify its physical stability.  Other powders are assumed to be more stable than this 

powder because this powder contained the highest level of celecoxib and its storage RH 

was the highest. 
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Statistical Analysis and Data Modeling  

Origin statistical software (OriginPro® 2015, OriginLab Corp., Northampton, MA) was 

used for all data fitting and statistical analysis. Design Expert®, (v8.0.6, Stat-Ease Inc. 

Minneapolis, MN) was used for data modeling.  In the model, compaction pressure (CP), 

drug loading (DL) and percentage RH were the main independent variables while tablet 

tensile strength (TS) was the dependent variable.  Transformation was used where 

necessary to ensure data normality and random residuals. During initial regression, both 

the main factors (DL, RH, and CP) and all possible interactions were included.  

Insignificant terms (p-value > 0.05) were then removed after performing ANOVA. 

 

Results 

Figure 6.1 shows typical load displacement curves obtained by nanoindentation on the 

ASD films.  The maximum load and the displacement at the maximum load are clearly 

different for ASD films with different compositions, e.g., the 0% to 40% drug loadings.  

From these raw data, E and H were obtained.23  Qualitatively, both the higher Pmax 

together with lesser penetration depth during the holding period under Pmax, i.e. lesser 

creep20, suggest increased stiffness and reduced plasticity of the composite films as drug 

loading increases from 0% to 40%.   In contrast to nanoindentation raw data of crystals, 
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both loading and unloading curves of these samples are smooth, which is consistent with 

the isotropic  nature of amorphous solids.27   

At 61% RH, both E and H initially increase with drug loading to a maximum at ~60% 

drug loading and then decrease with further increased drug loading (Figure 6.2).  A 

similar trend was observed with voriconazole - PVP VA64 ASDs.13  In the range between 

15% and 32% RH,  E and H only slightly varies.  In fact, H is almost identical at these 

two RHs.  However, increase in RH from 32% to 61% results in a dramatic decrease in 

both E and H at all drug loadings.  At high RH, films sorb more moisture (Figure 6.S1).  

The change in mechanical properties as a result of RH (moisture) from 15% to 61%, is 

larger in the polymer-rich region (lower drug loading) than in the drug-rich region.  This 

correlates with the higher level of sorbed moisture by ASDs containing more polymer, a 

phenomenon also observed in other systems.8,13  For example, the average H reduction, in 

the 0% - 20% drug loading range is ~37% while that at 80% – 100% drug is ~10% (Table 

6.1).  The position of the maximum for both the E and H profiles lies in  the drug rich 

region, i.e. ~60% drug.  Compared to E, H is more sensitive to the changes in 

composition at a given RH (Figure 6.2).  When RH increases from 15% to 61%, the 

percent change in H is  3 – 56% while that  in E is 5 – 31% (Table 6.1).    To summarize, 

small impact of RH on mechanical properties was observed in the low RH range.  

However, at high RH, all ASDs significantly soften.  Moreover, impact of RH on 

mechanical properties is coupled to drug loading.  ASDs, containing more of the 
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hydrophobic celecoxib  sorbs less water.  Correspondingly, the impact of RH change on 

mechanical properties is also less as drug loading increases (Table 6.1). 

All powders in this study are of comparable size (Fig. 6.S2).  The d10, d50 and d90 all five 

powders varied within a narrow range, 1.9 – 3.0 µm; 8.6 – 14.2 µm; and 32.8 – 40.2 µm, 

respectively (Figure 6.3).  The powder obtained from the 10% drug loading has slightly 

less fines and more larger particles (Figure 6.2S).  While it is impossible to attain 

identical PSD among different powders, the overall PSD are satisfactory for the intended 

purpose of  minimizing the effect of particle size on powder tabletability.28,29  

Tabletability of PVP VA64 (0% drug loading) and 40% drug loading ASD at 11%, 43% 

and 67% RHs is shown in Figure 6.4.  The tableting performance of PVP VA64 

undergoes complex change with RH.  Below 200 MPa, tablet tensile strength at 67% RH 

is superior to those at both 43% RH and 11% RH.  With further increase in pressure, the 

tabletability line at 67% RH crosses those of 43% RH and 11% RH at 200 MPa and 250 

MPa, respectively.  At 11% and 43% RHs, tablet tensile strength increases continuously 

with increasing pressure.  At 67% RH, tablet tensile strength initially rises quickly with 

pressure then levels off at ≥150 MPa before slightly trending down at >200 MPa.  At the 

relatively low compaction pressure of 50 MPa, tablet tensile strength at 67% RH exceeds 

2 MPa, a tensile strength generally regarded as adequate for tablets to sustain stresses 

during handling.30  At 40% drug loading, higher RH leads to higher tablet tensile strength 

throughout the compaction range studied, 50 – 300 MPa.  However, the crossover might 
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occur eventually at a higher compaction pressure if the converging trend continues 

beyond 300 MPa (Figure 6.4B).  This is, however, of less relevance to pharmaceutical 

tablet manufacturing, where higher than 350 MPa pressure is rarely used.  A common 

feature between the tabletability profiles of the polymer and 40% drug loaded ASD is that 

both gradually become more curved with increasing RH (Figure 6.4), although  the 

change is more profound for the pure polymer.  At 11% RH,  the tabletability profiles of 

both powders are almost linear.  Unlike the polymer at 67% RH,  tablet tensile strength of 

this kind of powders can effectively be improved by increasing compaction pressure.  

Tabletability of other ASDs, containing different amounts of celecoxib, is shown in 

Figure 6.S3.  The general feature follows those noted in 0% and 40% drug loaded ASD.   

Figure 6.5 gives a succinct summary of the tableting performance of these powders at 

different RHs and two extreme compaction pressures, 50 and 300 MPa, employed in this 

work.  Regardless of the drug loading and RH, tablet tensile strength exceeds 2 MPa at 

300 MPa.  This suggests that PVP VA64-based ASDs with a wide range of compositions 

can still exhibit adequate tabletability.  From the 50 to 300 MPa compaction pressure, the 

average increase in tensile strength for all drug containing ASD powers is about 10-, 8- 

and 4-fold for the powders conditioned at 11% RH, 43% RH, and 67% RH, respectively.  

The change is however slightly different for the PVP VA64 powder; showing from 8- , 6-  

to just  2-fold increase at 11%, 43% and 67% respectively.  The change in tensile strength 

with drug loading at 50 MPa is quite similar at the 11% and 43% RHs.  At 67% RH, there 
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is a monotonic decrease in the tablet strength except at 20% drug loading which exhibits 

the minimum strength.  This trend is roughly opposite to the trend of H and E in this drug 

loading range (0 – 40%) (Figure 6.2).  This hints to the possible role of mechanical 

properties on tablet tensile strength predicted based on the bonding area bonding strength 

model.  Powder tableting behavior is generally more sensitive to their mechanical 

properties at lower compaction pressure.  More plastic materials tend to deform more 

under the same pressure and, therefore, larger bonding area.  The correspondence 

between H and tensile strength for the polymer at 67% RH indicates that the bonding area 

dominates the bonding area – bonding strength interplay in a way similar to the role of 

water on tableting performance of MCC.31  At 300 MPa, especially at 11% and 43% RHs, 

the trend appears to be biphasic where an initial drop in tablet mechanical strength to 

20% drug loading before trending up at higher drug loading is observed.  At 67% RH the 

effect is less obvious partly because of the higher variability in tablet mechanical 

strength.  

To quantitatively describe the dependence of tablet mechanical strength on RH, drug 

loading, and compaction pressure, a quadratic model (Eqn. 1) was obtained from 

regression analyses of data.  This model can then be used to predict the performance of 

an ASD powder of similar particle size as powders in this work at any celecoxib loading 

and RH.    
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222
1

0004.000002.0*00001.0019.00079.0015.042.0 DLCPRHCPDLRHCPTS +−−−++=                   

   Equation 6.4 

 

The p-value of the interaction (CP * RH) term  is 0.04, while that of all other terms is < 

0.005.   Therefore, all included factors in Eqn. 1 can significantly influence tablet tensile 

strength. CP and DL has the most impact because they have the highest coefficients.   R2 

of this model was 0.9623 and the adjusted R2 was 0.9603.  The negligible change in the 

adjusted R2 suggests that the model is not over-specified with unnecessary predictors.  

Furthermore, it suggests that this model accounts for ~96% of all the variations in the 

data set. Figure 6.6 shows the surface plot for the ASD containing 40% celecoxib to 

visualize such effects. 

 

Discussion 

Understanding the impact of composition on the structure and particle deformation 

behaviors is of primary importance to controlling tableting performance and achieving 

adequate tablet mechanical strength.  This is because these material characteristics 

influence the area of contact between particles in tablets (bonding area) and the forces of 

attraction between the particles (bonding strength).32   
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Mechanical properties of particles affect tableting performance.22,33  These mechanical 

properties can be modulated by moisture13,34, crystal structure21,35 etc.  The 

nanoindentation data shown in Figure 6.2 demonstrate the effects of both drug loading 

and moisture on mechanical properties (Figures. 6.1 & 6.2).  E is a measure of material 

stiffness and H is a measure of the ability of a material to resist permanent plastic 

deformation by an external stress.36  In the context of tableting, materials with a lower H 

undergo more extensive plastic deformation, which corresponds to increased bonding 

area between compressed particles.  Lower E corresponds to larger elastic recovery, 

which negatively impact bonding between particles especially when compression 

pressure is high.  The greater sensitivity of H to change in composition than E (Figure 

6.2) implies that fundamentally different molecular processes are responsible to these two 

mechanical properties.  During indentation, a load is applied by the indenter to increase 

both stress and strain.  It is conceiveable that the same load can result in more permanent 

deformation when it is applied for a longer time.  However, E is not affected.  In this 

ASD system, E of pure polymer and drug is comparable.  This indicates comparable 

intermolecular interactions in these two materials.  When they are molecularly mixed, the 

interaction strength within the composite does not change significantly, which is reflected 

as comparable E across the composition range of the ASDs.   The incorporation of 

celecoxib initially increases H of ASD and then decreases with the maximum attained at 

~60% celecoxib loading at all three RHs.  Therefore, celecoxib antiplasticizes the 

polymer in the 0 – 60% celecoxib loading range  Although the decreasing effect at more 
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than 60% celecoxib loading can be interpretated as plasticization effect, a more 

appropriate analysis should be based on the effect of polymer on mechanical properties of 

celecoxib glass, which is the more abundant components in these ASDs.  When a small 

amount of polymer is molecularly dispersed in the celecoxib matrix, the long chain 

polymer molecules likely extend over a large area of celecoxib glass.  This would 

strengthen the glassy celecoxib matrix by distributing stress over a larger area similar to 

the straw–in–brick structure, where the presence of the straw strengthens the brick by 

impeding deformation.37  Some examples from the every day life include wired window 

glass and nano carbon tubes reinforced sports wares.    From either direction, polymer 

rich and drug-rich, the effect is maximized at some drug composition which is dependent 

on the intrinsic property of the pure substances, polymer and drug.  As such, a maximum 

is observed when the H is plotted against composition as shown in Figure 6.2.  If this 

analysis is valid, a maximum may be expected in all ASD systems.  This will need to be 

further tested.  In the case of PVP VA64 – Celecoxib ASDs, the maximum roughly 

corresponds to 60% celecoxib (Figure 6.2).   

The change in PVP VA64 water content when RH is changed from 15% to 32% (2.6% 

changes in water content from moisture sorption isotherm in Figure 6.S1) does not cause 

noticeable change in E but slightly reduces H (Figure 6.3).  Therefore, the small amount 

of additional water can fit in spaces in the ASD without significantly modifying 

molecular properties of its constituents.  The much more water at 67% RH, plasticizes the 
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molecules (both drug and polymer) so that they are more mobile, which results in a less 

rigid ASD. 38  Consequently, both  H and E are significantly reduced.  Although 

antiplasticization effect by water is possible7,31, it likely occurs in an RH range below 

15% RH.  The essentially negligible effect of RH between 15% and 32% suggest that this 

RH range may be the where the transition from antiplasticization to plasticization occurs.  

Antiplasticization occurs when the free volume associated with the polymer structure is 

reduced when a small amount of small molecules, including water, bind to the polymer 

chains.39  At such a small amount, even very effective plasticizers do not increase 

mobility of polymer chain.  Of course, the transition concentration from antiplasticization 

to plasticization effects depends on the properties of the small molecule additive.  The 

different effects on E and H clearly demonstrate that water transitions polymer to the 

plasticization zone much earlier than celecoxib 

The changes in E and H of ASDs are expected to have an impact on powder tabletability. 

The tabletability profile of PVP VA/64 powder equilibrated at 67% RH is typical of 

highly plastic materials, where tablet tensile strength rises quickly and plateaus shortly 

afterward with increasing pressure.31  Above the plateau region, further increase in 

compaction pressure only introduces more stored elastic energy without further 

increasing bonding area which has already reached the maximum (thus the pleatau).  The 

more extensive elastic recovery can then break some of the bonding sites and lead to 

over-compression, which is shown as a drop in tensile strength when compaction 
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pressure increases above a certain limit.40  The nearly linear tabletability profiles at 11% 

RH for both polymer and drug loaded powders are typical of powders that exhibit limited 

plastic deformation, such as calcium phosphates.41  This is consistent with the higher H 

and E values at 11% RH over those at 61% RH, especially for the pure polymer (Figure 

6.2).  Although H and E data at the exact RH used during tableting studies are not 

available due to our limited ability in precisely controlling environment in these 

experiments, it is reasonable to expect that at 67% RH,  H would be much lower than that 

at 11% RH (Figure 6.2).  This is consistent with the more curved tabletability profiles at 

67% RH (Figure 6.4).  It is also useful to mention that the maximum tablet tensile 

strength of the highly plasticized PVP VA/64 powder at 67% RH is significantly lower 

than what can be achieved by the the same powder but at lower RHs (Figure 6.4), which 

have not reached the state of saturated bonding sites at 300 MPa due to the high hardness.  

This suggests that the higher amount of moisture at 67% RH, although favors tablet 

formation by promoting plastic deformation, also reduces bonding strength.  Hence, the 

maximum tablet tensile strength is much lower at 67% RH, which is consistent with the 

lower E and H (Figure 6.2). 

The antiplasticization effect by celecoxib molecules is expected to have two countering 

effects on the tablet tensile strength: 1)  reducing bonding area due to lesser ability to 

undergo plastic deformation under stress, and 2) increasing bonding strength, arising 

from the increased intermolecular forces of attraction between particles for the same 
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reason as the increased E and H.  This bonding area-bonding strength interplay explains 

the complex effects of drug loading and compaction pressure on the tableting 

performance (Figure 6.5).  In the low compaction pressure region, e.g. 50 MPa, bonding 

area effect is dominant when drug loading is below 20%.  Therefore, higher drug loading 

leads to more loss in bonding area in table tensile strength than gain due to higher 

bonding strength.  Tensile strength decreases with increasing drug loading up to 20% 

(Figure 6.5).  Above 20% drug loading, the reverse trend is observed, indicating the 

favorable effect of drug loading on bonding strength exceeds the negative effect on 

bonding area.  This trend is observed in all cases, except at 67% RH and 300 MPa.  

Bonding area is near saturation in all cases because of the high plasticity due to the high 

RH and high pressue.  Therefore, difference in bonding area between powders is small.  

Ideally, the trend in tensile strength should continue to rise with increasing drug loading.  

However, the relatively large errors in measurements for two powders (10% and 30% 

celecoxib) make such an assessment impossible.  In addition, differences in particle size 

will also have an impact on the total available bonding area among these powders.   The 

slightly larger particles in 10% celecoxib ASD powder, should lead to lower tensile 

strength if particle size effect plays a major role because they have smaller surface area 

available for bonding and extensive fragmentation of these particles is unlikely.  

However, this is not the case according to Figure 6.5.  Therefore, the efforts to minimize 

possible effects of particle size on tableting performance is effective in this study. 
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When developing ASD based tablet formulations, ASD powders may be prepared using a 

number of processes, such as spray-drying and hot melt extrusion.9  Impact of different 

particulate properties, such as size, shape, on tabletability should also be considered.33,42  

All powders in this study are fine, which likely exhibit poor flowability.  Size 

enlargement by granulation or hot melt extrusion is expected to improve powder 

flowability43 but may also impact tabletability.  The net effect of particle size on 

tabletability depends on mechanical properties.  Highly plastic particles likely exhibit 

reduced tabletability44,45 but highly brittle particle do not.46,47  In absence of extensive 

fragmentation during compaction, larger particles  result in reduced tablet tensile strength 

because of the smaller number of contact points in the tablet and the lower total bonding 

area.  Putting aside such factors, results from this work suggest that tabletability of all 

PVP VA64-based ASDs is adequate for forming sufficiently strong tablets (by the 2 MPa 

criterion).  Therefore, tabletability of celecoxib-PVP VA64 ASDs should not present a 

insurmountable barrier in its formulation and manufacture into  tablets.    

 The usefulness of tableting data of PVP VA64-celecoxib ASDs is further enhanced by 

constructing a multi-variate model, which may be used to predict the tableting 

performance under different conditions of drug loading, pressure, and RH.  Figure 6.6 

shows the surface plot for  ASD containing 40% drug loading to visualize the model.  

Lastly, it is important that ASDs remained physical stable within the time frame of 
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experiments.  This is verified by PXRD, which established the absence of  of crysalline 

domains of celecoxib in the sample  containign 40% celecoxib at 67% RH (Figure 6.S3). 

 

Conclusion 

Particle composition, e.g., drug loading and moisture content, influence both the 

mechanical properties and tableting performance of ASDs.  Within the RH range studied, 

higher  moisture level reduces both H and  E of pure PVP VA64 and Celecoxib ASDs 

due to plasticization effect of water.  Drug loading also impact H and E and tabletability.  

Effects of moisture and drug loading on tableting performance can be explained by 

simultaneously considering their impact on bonding area and bonding strength .  The 

knowledge derived from this study is  useful to the design of  ASD-based formulation 

with superior tabletability.  
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Table 6.1  Percentage change in E and H when RH increases from 15% to 61%   
 

% Drug Δ E (%) Δ H (%)  
0 31 56  
10 16 36  
20 26 31  
30 19 32  
40 6 8  
60 12 12  
80 11 7  
90 12 3  
100 5 11  
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Figure 6.1  Typical load – displacement curves showing indents on 0%, 20% and 40% 

drug loading   
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32% RH 
15% RH 

61% RH 

(A) 

32% RH 

15% RH 

61% RH 

(B) 

Figure 6.2  Effect of relative humidity condition on (A) Elastic Modulus, E and (B) 

Hardness, H of Celecoxib – PVP VA64 ASD films   
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Figure 6.3  Characteristic particle sizes (d10, d50 and d90) of Celecoxib – PVP VA64 ASD 

powders, 0 – 40% drug loading   
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Figure 6.4  Effect of relative humidity condition on the tabletability of Celecoxib – PVP 

VA64 ASD, (A) 0% and (B) 40% drug loading with 2 MPa representing adequate 

mechanical strength   
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Figure 6.5  Relationship between drug loading and tableting performance (A) 11% RH (B) 43% RH and (C) 67% RH at low and high 

compaction pressure, with 2 MPa representing adequate tablet mechanical strength   
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Figure 6.6  Surface plot of the multi-variate regression model showing the effect of RH 

and compaction pressure on tableting performance for 40% Celecoxib ASD   
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Figure 6.S 1  Effect of celecoxib loading on moisture sorption of ASDs.  Moisture level 

progressively decreases with increasing loading of celecoxib, which is hydrophobic  
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Figure 6.S 2  Particle size distribution of ASDs at (A) 0% ; (B) 10% ; (C) 20% ; (D) 

30%; (E) 40% Drug Loading   
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Figure 6.S 3  Effect of relative humidity condition on the tabletability of Celecoxib – 

PVP VA64 ASD, (A) 10% (B) 20% and (C) 30% drug loading. Tensile strength of 2 MPa 

is indicated for easier identification of pressure required for forming adequately strong 

tablet   
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Figure 6.S 4  Powder X-ray diffraction pattern of 40% Celecoxib ASD after equilibration 

and compaction at 67% RH   
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CHAPTER 7. A CRITICAL EXAMINATION OF THE 

PHENOMENON OF BONDING AREA - BONDING STRENGTH 

INTERPLAY IN POWDER TABLETING 
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Summary 

The bonding area (BA) and bonding strength (BS) interplay has been used to explain 

complex tableting behaviors but it has never been proven. This study is aimed to 

unambiguously demonstrate such interplay.   Soluplus® was used as a model powder.  To 

individually modulate BA, the powder was compressed into tablets at different 

temperatures but tablets were broken at 25 oC.  To modulate BS, identical tablets were 

broken at different temperatures.  To simultaneously modulate BA and BS, both powder 

compression and tablet breaking test were carried out at different temperatures.  Lower 

tablet tensile strength is observed when the powder was compressed at a lower 

temperature while breaking at 25 oC, which is consistent with the polymer’s less ability to 

deform at lower temperatures.  When equilibrated at different temperatures, tensile 

strength of the same tablets increases with decreasing storage temperature, proving that 

BS is higher at lower temperature.  When powder compression and tablet breaking are 

carried out at the same temperature, the BA-BS interplay leads to a profile with a 

maximum tensile strength at 4 oC.  By systematically varying temperature during tablet 

compression and breaking, we have clearly demonstrated the phenomenon of BA - BS 

interplay in tableting.   
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Introduction 

The forming of compact by compression is a process critical to many industries, 

including energy (coal, petroleum, and nuclear), foods, automobiles, metallurgy, 

pharmaceuticals, and ceramics.1-4   Although many compression equations have been 

proposed to describe the density – pressure relationship4-7 , there are only very limited 

attempts in quantitatively describing the relationship between tablet tensile strength and 

compaction pressure, which is sometimes known as tabletability.8,9   

The difficulty in quantitative description of tabletability arises from the challenges in 

quantifying the areas of contacts between particles in a compact10 and summarizing the 

intermolecular forces over these areas to arrive at a final strength value.  Further 

complications are caused by the particle size and shape, surface structures at atomic level, 

the orientation of contact planes in the compact.11  While tensile strength – pressure data 

can be fitted with equations, e.g., Leuenberger’s equation8, the ability to predict 

tabletability based on material mechanical properties and particulate properties is the 

ultimate goal.10   

The qualitative bonding area-bonding strength (BABS) model is a useful tool for moving 

closer to that goal by allowing clear explanation of complex powder tableting 

behaviors12.  The BABS model treats tensile strength as an outcome of the bonding area 



 

 
183 

between adjacent particles and the strength of interactions over that area.  A harder 

material develops smaller bonding area because it does not deform easily under pressure.  

However, harder materials usually also have higher interaction strength over the bonding 

area that is formed.13  The interplay between bonding area (BA) and bonding strength 

(BS) can lead to complex tableting behavior of materials, depending on pressure, 

temperature, composition, and particulate properties (e.g., size and shape).14-17   

To effectively solve tabletability problems, the identification of the cause of poor 

tabletability is critical.18  Although BABS model is conceptually sound, its direct 

demonstration is difficult due to the challenge in completely separating the contributions 

from BA and BS.  For example, obtaining two powders with identical particle size, 

particle surface roughness, morphology is impossible for materials prepared using two 

separate procedures, such as crystallization.  This problem of different particle size and 

shape was partially addressed by comparing tableting properties of an anhydrate - hydrate 

pair.19  Anhydrate – hydrate phase change can be achieved through a vapor mediated 

process without eliciting changes in particulate properties.   However, the different 

mechanical properties between the hydrate and anhydrate (or hydrates with different 

degrees of hydration) can still lead to simultaneous changes in BA and BS.20  In other 

words, BA can be very different for two materials with different plasticity even if the 

particulate properties are the same.  A better tabletability of a hydrate may be caused 

either by its superior plasticity, which leads to larger bonding area, or by its higher 
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bonding strength, or both.  Thus, the coupling between BA and BS for systems involving 

different solid forms makes it impossible to unambiguously demonstrate contributions 

from BA and BS.   

Decoupling contributions from BA and BS requires the use of the same solid phase.  

Therefore, we need to use a material with the ability to have its plasticity and BS 

modulated by external stimuli, such as temperature and pressure.  To this end, organic 

glasses are promising as long as their glass transition temperature, Tg, is not too far away 

from temperatures suitable for carrying out powder compression and tablet strength 

experiments.21  Using such materials, we can change BA by changing the temperature at 

which the powder is equilibrated and compressed.  For example, the higher plasticity of 

the same glass at a higher temperature will favor the development of larger BA.  

Mechanical strength and the strength of intermolecular interactions (or BS) of glassy 

materials also depend on temperature.  Once the tablet is formed, we can control BS by 

equilibrating the tablet at different temperatures.  Usually, higher temperature 

corresponds to lower BS because of increase thermal motion of molecules.22   For a given 

material under constant environmental conditions, pressure impacts BA but not BS.   
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Materials and Methods 

Materials  

We selected Soluplus®, a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol 

graft copolymer, as a model material in this study.  Dry Soluplus has a Tg ~70 oC, ~45 oC 

when equilibrated at 52% RH, 36 oC at 67% RH, and below 25 oC at 75% RH.   In the 

vicinity of Tg, it is possible to change particle plasticity while keeping particle size, 

shape, and surface properties unchanged.  Soluplus powder was obtained by milling dried 

films (solvent evaporation method) under liquid nitrogen and sieving through 75 um 

mesh.  The powder, equilibrated at 67% RH at 25 oC over cupric chloride saturated salt 

solution23 was used in this study. 

 

Methods  

All compression was carried out on a universal material testing machine (Model 1485, 

Zwick, Ulm, Germany) at a speed of 10 mm/min using round (8 mm diameter) flat-faced 

tooling.  Two custom-made rigid PVC blocks were used to align the punches and die to 

allow successful compression.  Tablet dimensions were measured using a digital caliper 

and tablet density was calculated from tablet weight and volume just before tablet 

breaking force determination.  The tablet diametrical breaking force was determined 
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using a texture analyzer (Texture Technologies Corp., Scarsdale, NY/Stable Micro 

Systems, Godalming, Surrey, UK), at a speed of 0.01 mm/s with a 5 g trigger force. 

 

Modulating BA by compressing powders at different temperatures 

Capped plastic vials that contain Soluplus powders were wrapped with paraffin film and 

aluminum foil were equilibrated at 25 oC, 4 oC, and -20 oC rooms for at least 48 hours.  

The water content in Soluplus was stable during storage as suggested by TGA shortly 

before powder compression.  Each powder was compressed at three compaction 

pressures, 50, 100, & 400 MPa.  Pre-conditioned tooling was assembled in the block and 

powder was filled at the desired temperature (in either a refrigerator or a freezer).   The 

temperature inside the refrigerator or freezer was monitored to within 2 oC of desired 

temperature during die filling.  The whole assembly was then quickly moved to the 

materials testing machine for compression at 25 oC. The cold compressed tablets were 

quickly wrapped in paraffin film and equilibrated at 25 oC in sealed vials to avoid 

condensation of water vapor on tablets and frost formation.  The chilled tooling and 

holding block served as temperature buffer that minimizes gross deviation of the powder 

bed temperature from the target temperature during the course of compression, which 

lasted < 1 min at 25 oC.  Under these conditions, differences in tablet mechanical strength 

are due to different bonding areas formed during compression.  Particles at lower 
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temperature are harder.  Therefore, smaller bonding area is developed during 

compression.   Relative difference in bonding area is expected to be higher at lower 

pressure.  However, when pressure is sufficiently high to induce extensive deformation of 

even harder particles, the relative difference in bonding area is expected to be reduced.  

The tablets compressed at 4 and -20oC were allowed to equilibrate to 25 oC in sealed 

containers before exposing all three sets of tablets to 68% RH. 

 

Modulating BS by changing tablet equilibration temperature 

We prepared a set of tablets at 400 MPa at 25 oC.  Tablets, sealed in individual 1.5 mL 

vials, were equilibrated under specified temperatures (-20 oC, 4 C, and 25 oC) for at least 

24 hours before breaking force determination.  Tablet breaking experiments at 25 oC and 

4 oC were performed at respective temperatures. Due to equipment limitations, tablets 

equilibrated at -20 oC were broken at a 4 oC environment immediately after they were 

taken out of the freezer, one at a time.  The total time of exposure to the 4 oC 

environments was less than 60s for all tablets to limit the influence of tablet “warming” 

during the course of breaking test.     

We assume that bonding area remains unchanged in a tablet during equilibration at a 

different temperature.  However, bonding strength is a function of equilibration 

temperature.  Therefore, differences in breaking strength are due to differences in 
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bonding strength not to bonding area.  At the temperature closer to Tg, bonding strength is 

expected to be lower.  Therefore, breaking force is expected to be lower at higher 

temperature. The use of a relatively high compaction pressure, 400 MPa, is to assure 

bonding area is large so that a change in bonding strength can be detected with more 

sensitivity.   

 

Modulating coupled effects by BA and BS  

Powders were equilibrated and compressed at -20 oC, 4 oC, and 25 oC.  Tablets were also 

stored and broken at the same temperature as compression, without the exception of -20 

oC tablets quickly broken at 4 oC.  In this design, bonding area is expected to be lower at 

a lower temperature because the glassy material is harder (more rigid).21  The higher 

material hardness also means that bonding strength is higher when the tablets are 

equilibrated and broken at the lower temperature.  The net effect on tablet tensile strength 

depends on the interplay between the negative effect on bonding area and positive effect 

on bonding strength.  In addition, we also varied compaction pressure, 50, 100, & 400 

MPa, to further change bonding area.  The impact of different material plasticity on 

relative bonding area is more when pressure is lower, e.g. 50 MPa.  When compaction 

pressure is sufficiently high, even materials not so plastic can also form fully 
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consolidated tablets.  Therefore, difference in bonding area is less affected by difference 

in particle plasticity. 

In the entire study, a total of five tablets were prepared under each condition. 

 

Results and Discussion 

Soluplus sorbs 8% water at 67% and 25 oC.  Excellent agreement was reached between 

the equilibration water content in a static relative humidity chamber (cupric chloride 

saturated salt solution) and a dynamic moisture sorption balance (Figure 7.1A).   With 

this water content, Tg of soluplus is 36 oC (Figure 7.1B). 

Figure 7.2A is the results of powder equilibrated and compressed at different 

temperatures.  A powder that is equilibrated and compressed at a lower temperature 

exhibits lower tabletability.  Since tablets were equilibrated back to 25 oC before 

conducting the breaking force test, bonding strength is the same for the same material.  

The difference in tabletability is therefore attributed to the different bonding area.  At a 

lower temperature, particles are harder and are expected to be more resistant to plastic 

deformation.17,24,25  As a result, the area of contact reduces with temperature for the same 

powder. 
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Figure 7.2B shows that tensile strength of otherwise identical tablets decreases with 

increasing equilibration temperature. Since the contact areas in these tablets are the same, 

the difference in tablet mechanical strength is due to the energy required to separate the 

particles.   This is consistent with the expectation that the glassy material is harder at a 

lower temperature below Tg.21   

When tablets were formed and broken at the same temperature, a change in temperature 

impacts both bonding area and bonding strength.  As shown in Figure 7.2C, tabletability 

at 4 oC is the highest.  This may be explained by considering the interplay between 

bonding area and bonding strength.  At a lower temperature, smaller bonding area is 

developed (Figure 7.2A) but larger bonding strength is also expected at the same 

compaction pressure (Figure 7.2B).  Comparing the case where tablets are warmed to 25 

oC before being broken, tablets formed and broken at 4 oC and -20 oC is higher.  This is 

again a result of the higher bonding strength at lower temperature.  The data suggest that 

at -20 oC, the negative effect of lower bonding area on tensile strength overpowers the 

positive contribution due to higher bonding strength.  Therefore, lower tablet tensile 

strength is observed.  However, the higher bonding strength dominates the BABS 

interplay at 4 oC.  Hence, tablet tensile strength is the highest.   

For harder particles, the consolidation by compaction is less effective.  Therefore, tablet 

density should be lower when compressed at the same pressure.24  This is exactly what is 

observed in Figure 7.3A.  When tablets are equilibrated at a higher temperature, tablet 
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density is slightly lower (Figure 7.3B), possibly due to the thermal expansion of solids. 

The interplay gives an expected density trend except for the 400 MPa frozen which 

appears to be similar to 4oC tablets (Figure 7.3C).  The data is consistent with the concept 

that harder particles are more difficult to deform, therefore, lower tablet density.  At 25 

oC, tablet density is lower at 400 MPa than at 100 MPa.  This is not observed when 

compression was carried out at 4 oC and -20 oC.  We attribute this to the fact that 

Soluplus is much more plastic at 25 oC because it is close to Tg.  Therefore, some material 

is squeezed into the gap between punch and die which is usually referred to us flashing.26  

Such flashing on tablets could not be completely removed even with very careful 

handling.  Hence, it introduces positive errors in tablet thickness measurement, which 

leads to lower tablet density.  At 4 oC and -20 oC, the plasticity of Soluplus is not too high 

to cause gross errors in tablet thickness measurements.  Figure 7.3D shows the effect of 

tablet equilibration temperature on density.  For tablets compressed at -20 oC, tablet 

density is noticeably higher at -20 oC storage temperature than 25 oC, which may be again 

attributed to the thermal expansion effect.  This thermal expansion effect is less 

significant when tablet storage temperatures of 4 oC and 25 oC are compared.   

Figure 7.4 shows the impact of the BABS interplay on tablet mechanical strength.  

Tablets are weaker when compression is carried out at a lower temperature but re-

equilibrated at 25 oC.  This is explained by lower BA because Soluplus particles undergo 

less extensive plastic deformation at lower temperature.  The same tablet becomes 
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stronger when equilibrated and broken at a lower temperature because material is farther 

below its Tg, which makes it harder.  Hence, BS is higher.  The profile of tablet tensile 

strength under the situation of compressing and breaking tablets at the same temperature 

is interesting.  As discussed earlier, lower temperature can lead to both smaller BA and 

higher BS.  At 4 oC, tablet tensile strength is highest because the positive effect of higher 

BS overpowers the negative effect of smaller BA.  Had the study been conducted at only 

25 and -20 oC, one would have observed no significant effect on tableting performance 

by temperature because of the cancellation of two opposing effects.   

 

Conclusion 

Through systematic control of temperature during tablet compression and breaking using 

an amorphous polymer, we have separately demonstrated the contributions of bonding 

area and bonding strength to tablet tensile strength as well as the interplay between 

bonding area and bonding strength.  Thus, the results in this study support the validity of 

the BABS mode, which can be used to decipher the diverse powder tableting behaviors.  
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Figure 7.1  (A) Moisture sorption kinetics at 67% RH and 25 oC and (B) DSC 

thermogram of Soluplus   
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Figure 7.2  Tableting data (n = 5): (A) powder equilibrated at different temperatures; (B) 

tablets (compressed at 25 oC and 400 MPa) equilibrated at different temperatures; (C) 

powder and tablets equilibrated at respective temperatures.   
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Figure 7.3  Dependence of tablet density on pressure and equilibration temperature: (A) 

tablets compressed at different temperatures and stored at 25 oC; (B) tablets (compressed 

at 25 oC and 400 MPa) and equilibrated at different temperatures; (C) powder equilibrate,  

compression, and tablets equilibration  carried out at constant temperatures; (D) powder 

equilibrated at -20 oC, tablets stored at 25 oC and -20 oC.   
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Figure 7.4  Tensile strength of tablets compressed at 400 MPa and under different 

combinations of compression temperature and tablet equilibration temperature showing 

impact of Bonding Strength (BS), Bonding Area (BA) and the Interplay between BA and 

BS (Interplay).   
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CHAPTER 8.   RESEARCH SUMMARY AND FUTURE WORK 
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Research Summary 

Through materials engineering, the composition and structure of particles were changed 

to modulate the mechanical properties of pharmaceutical powders, and the effects of the 

key properties of the powders on tableting performance were studied. 

High Shear Wet Granulation (HSWG) granules have been observed to undergo 

substantial loss of the ability to be compressed into tablets of sufficient strength, a 

phenomenon called “over-granulation”. We have investigated this over-granulation 

phenomenon using microcrystalline cellulose (MCC)-polyvinylpyrrolidone (PVP) system 

lubricated with magnesium stearate (Chapter 2).  The results show that tabletability of 

MCC granules deteriorated rapidly with increasing granulating water.  Granule size 

enlargement, surface rounding, decreased granule porosity and densification have been 

shown to all contribute to reduction in tabletability by reducing granule deformability and 

intergranular bonding area.  These mechanisms are similar to those of previous findings 

using MCC-water system; however, the transition to over-granulation is much quicker (at 

lower granulating water level) when PVP is used as a binder.  

 One effective approach to address the over-granulation problem is granule size 

reduction.  Since granule size reduction can effectively improve powder tabletability 

through creation of larger surface areas available for bonding in a tablet, brittle excipients 
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(lactose monohydrate and dibasic phosphate calcium) were incorporated in the otherwise 

plastic powder (MCC matrix) to enhance brittleness of HSWG granules (Chapter 3).  

Brittle granules predominantly fracture when deformed during ordinary powder 

compaction process which minimizes initial particle size difference of the granules 

during compaction.  The incorporation of brittle excipients induced more extensive 

granule fragmentation, hence overcoming the over-granulation problem.   

Formulation of drug-loaded/layered beads into oral controlled release tablets, i.e., 

multiple-unit pellets systems (MUPS) suffers from the severity of damage to the 

functional coating layer and poor tablet mechanical strength which is strongly associated 

with the mechanical properties of the coating layer.  Experiments using pyridoxine HCl 

and caffeine-layered, enteric coated microcrystalline cellulose (MCC) beads, top-coated 

with polyvinyl pyrrolidone, PVP K30 and polyvinyl pyrrolidone vinyl acetate,(PVP/VA 

64) have been carried out to show that top-coating highly bonding polymer coupled with 

moisture activation is an effective strategy for improving tabletability of MUPS (Chapter 

4 & 5).  Moisture effectively plasticizes the top-coating polymer.  Due to the minimal 

stress required to form adequately strong tablets by this approach, the integrity of the 

functional coating layer is mostly preserved.  Results from a study of drug release 

revealed minimal damage to functional coating layer. 

Using Celecoxib-PVP/VA64 as a model Amorphous Solid Disperion system, the impact 

of drug loading and environment relative humidity (moisture), over a wide range, on 
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mechanical properties of ASDs and their tableting performance has been investigated 

(Chapter 6).  Nanoindentation, a depth-sensing technique has been used to evaluate the 

material mechanical properties; Hardness, H, and elastic modulus, E. H and E are 

obtained under well-controlled protocol of force and displacement. Through this study, it 

has been shown that higher RH corresponds to lower H & E for PVP/VA64, and the 

celecoxib ASDs due to the well-known plasticization effect of water.  At low pressures 

(50 MPa), higher RH leads to higher tablet tensile strength because of the larger bonding 

area formed between more plasticized particles.  At higher pressure (300 MPa), tensile 

strength is high and meets the 2 MPa criterion for adequate tablet mechanical strength 

because all particles sufficiently deform regardless of their plasticity.  Overall, particle 

composition including moisture significantly influences the mechanical properties and 

tableting performance of polymer-based drug delivery systems. The complex behaviors 

could be well explained by the effect of moisture and composition on mechanical 

properties as well as the interplay between bonding area and bonding strength in tablet.  

These effects when studied thoroughly can guide the design of any new ASD based tablet 

formulation in order to ensure robust manufacturability. 

The interplay between bonding area (BA) and bonding strength (BS) was demonstrated 

by varying them independently and also simultaneously (Chapter 7).  This was achieved 

by varying compaction pressure and temperature of an amorphous polymer, or during 

tablet breaking.  A higher temperature corresponds to a higher particle plasticity 
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(therefore larger BA during compression) and a lower BS during tablet breaking (due to 

higher molecular thermal energy that reduces interparticulate forces of attraction).  The 

powder exhibits lower tabletability when equilibrated and compressed at a lower 

temperature which is consistent with the expectation that particles become harder as 

temperature is farther below the polymer’s Tg.  Therefore, BA within the tablets 

decreases with lower powder storage and compression temperature.  When identical 

tablets compressed at high pressure were stored and broken at different temperatures, the 

tablet tensile strength increases with decreasing storage temperature which is proves that 

BS is higher at lower temperature.  When both the powder compression and tablet 

breaking are carried out at the same temperature, the interplay between the two factors 

ensues.  The opposite effects by BA and BS lead to similar tensile strength at -20 oC and 

25 oC.  At 4 oC, tablet tensile strength is the highest because the positive effect of higher 

BS overpowers the negative effect of smaller BA.  Based on this knowledge, the 

temperature effect on tableting behaviors of Soluplus can be clearly explained by 

considering the interplay between BA and BS. 
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Future Work 

In the field of pharmaceutical tablet manufacturing, effective particle engineering based 

on a clear understanding of the effects of processing on particle structure and properties is 

critical to successful product development.1 Engineering particle composition, at 

molecular level (e.g., PVP VA64-celecoxib ASD) & particle level (e.g., HSWG), and 

structure (bead coating) to overcome powder compaction problems is common in modern 

pharmaceutical tablet product development.  Understanding the compaction behavior of 

drugs and excipients based on the qualitative “interparticulate bonding area – bonding 

strength” model has been shown to be adequate to enable the development of strategies to 

overcome poor powder tabletability.2-5 

High shear wet granulation (HSWG) is a powder engineering technique used frequently 

in pharmaceutical manufacturing to improve flow and compressibility of powders, 

increase bulk density, enhance content uniformity, and prevent segregation.  It has 

demonstrated that transition of plastic Microcrystalline Cellulose (MCC) to MCC–

Lactose/Dicalcium Phosphate (Dical) granules by increasing lactose/Dical concentration, 

minimizes loss of tablet strength to over-granulation (Chapter 2, 3).  Although the system 

studied was more complex in terms of composition than a simple MCC-water system6, 

the impact of incorporating active pharmaceutical ingredients (APIs) was  not explictly 

demonstrated.  The use of model drugs with different mechanical properties and at 

different dug loadings will bring the formulation close to reality in tablet development. 
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This project can potentially show the influence API mechanical properties have on the 

mechanics of tablet formulations with respect to the over-granulation phenomenon.  

Secondly recommendations can be made to formulators on formulation strategies based 

on the consideration of mechanical properties of drug, the drug loading etc. This will 

highlight the importance of characterizing API mechanical properties before drug 

development. 

Tableting of MUPS into adequately strong tablets is challenging (Chapters 4, 5).7  

However this polymer-coating approach for improving tablet strength will eliminate the 

need of incorporating a large amount of excipients in a tablet.  Consequently, the reduced 

tablet size, especially for high dose drugs, will improve patient compliance, and 

significantly reduce the total cost of production (considering the possible reduction in the 

number and quantity of excipients and packaging material).  Mastering of the polymer 

coating strategy so that the technique becomes adequately mature and robust for adoption 

in commercial tablet manufacturing, is required.  Thus, there is the need for further 

studies on other top-coating polymers.   

Incorporating caffeine enhances the moisture-activated tabletability improvement.  There 

is the need to identify other small molecule drugs as model compounds to further 

investigate this phenomenon.  This can have potential application for developing fixed-

dose combination drug products (the immediate release layer is also the “glue” layer for 

forming intact tablets).  Silica coating can make disintegration easy.  Upon release of this 
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drug layer in stomach, enterically coated drug layer will release in intestine.  Currently, 

such controlled release is achieved by mixing beads prepared differently (immediate 

release or modified release).  This work will allow the delivery of such effects using one 

type of beads.  Therefore, there is no risk of segregation.   

To make an impact on product development, plasticizers must be incorporated into the 

coating layer (PVP, PVP VA/64) to reduce the amount of moisture (or critical RH) 

required for activating powder tabletability.  This requires a systematic study.  A benefit 

of this strategy is the significantly lower tablet weight by not coating with a complex 

bonding layer as done in the past (onion ring structure)8. 

 By systematically developing a relationship between particle mechanical properties and 

powder tabletability, strategies can be developed to effectively solve powder compaction 

problems.  However, strong tablets can be formed when the polymer is plasticized 

because the increased plasticity leads to more extensive plastic deformation and, thereby, 

larger bonding area.  This knowledge is important for selecting formulation parameters 

appropriate for quality tablet products. 

Polymers are the most common non-active ingredients, i.e. excipients, found in the 

amorphous solid dispersion (ASD) tablet drug products.  The composition and structure 

of such composites influence the mechanical properties and tableting performance.9,10  

The impact of drug loading and environment relative humidity on mechanical properties 
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of ASD and its tabletability is systematically shown (Chapter 6).  Harder composites (low 

RH and high drug loading) may not always form sufficiently strong tablets under typical 

compaction pressures due to their low plasticity, especially when particle size increases.  

There is the need to study the impact of other polymers, for example of higher Tg and 

different chemical nature on ASD mechanical properties and tableting.  Perhaps a 

systematic study of particle size effect can also be incorporated once the effects can be 

effectively decoupled by methods such as principal component analysis.  There are 

several mechanisms by which amorphous drugs are stabilized by polymer in an ASD, 

e.g., by hydrogen bonding.11  It is yet to be known whether the propensity to form 

hydrogen bonding with drug will have an impact on the mechanical properties and 

tableting performance when drug loading and RH are changed.  A systematic study to 

establish a relationship can inform the choice of other excipients to formulate an ASD.  

The degree of hydrophilicity of polymers used in ASDs varies.  Environment RH affects 

the tableting performance.  Understanding the influence of the degree of affinity for 

moisture on the mechanical properties and tableting performance will be useful to design 

of ASD formulations.  
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APPENDIX I.  VALIDATION AND APPLICATIONS OF AN 

EXPEDITED FRIABILITY METHOD 
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Summary 

The harmonized monograph on tablet friability test in United States Pharmacopeia (USP), 

European Pharmacopeia (Pharm. Eur.), and Japanese Pharmacopeia (JP) is designed to 

assess adequacy of mechanical strength of a batch of tablets. Currently, its potential 

applications in formulation development have been limited due to the batch requirement 

that is both labor and material intensive. To this end, we have developed an expedited 

tablet friability test method, using the existing USP test apparatus. The validity of the 

expedited friability method is established by showing that the friability data from the 

expedited method is not statistically different from those from the standard pharmacopeia 

method using materials of very different mechanical properties, i.e., microcrystalline 

cellulose and dibasic calcium phosphate dihydrate.  Using the expedited friability 

method, we have shown that the relationship between tablet friability and tablet 

mechanical strength follows a power law expression. Furthermore, potential applications 

of this expedited friability test in facilitating systematic and efficient tablet formulation 

and tooling design are demonstrated with examples. 
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Introduction 

Tablet friability is the tendency of a tablet to lose component particles due to abrasion, 

friction, or mechanical shock.1,2  High friability leads to unacceptable loss of drug content 

during downstream processing (e.g., film coating), storage, and handling.3  Besides the 

potential loss in therapeutic effects due to sub-potency, damaged tablet appearance also 

creates doubts by patients on tablet quality.  Although empirical in its origin,1,4 tablet 

friability has become an important tablet performance and quality attribute to assess 

during tablet product development.5,6  To put things in perspective, friability test may be 

compared to dissolution test as a tool for assessing critical performance of any tablet 

product. 

The standard pharmacopeial method for measuring tablet friability requires a set of 

“identical” tablets from the same batch.  A total of at least 6.5 g of tablets is required for 

a single test. Tablets are dropped 100 times from a fixed height, as the friabilator rotates.  

Tablets are then recovered, dedusted, and weighed to calculate weight loss of the set of 

tablets. Generally, ≤1% weight loss is acceptable for an existing compressed and 

uncoated tablet product.  However, a more conservative weight loss of ≤0.8% is 

recommended for new formulations not yet having sufficient packaging data.7-9  Lower 

limits may be set for specific products or for certain unit operations.3,10,11 

Ideally, friability test could have been used extensively to facilitate tablet product 

development.  In reality, however, the standard friability test is routinely carried out “to 
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supplement other physical strength measurements, such as crushing strength”7, tablet 

tensile strength12, and indentation hardness13, to ascertain whether a batch of tablets will 

pass or fail the acceptance criterion.  Failed friability test result triggers a change in 

formulation or compaction parameters, e.g., compaction pressure, speed, or tooling 

design.  A new batch of tablets is then made and tested for friability. This process is 

repeated until a batch of tablet passes the acceptance criterion.  Because the required test 

iterations demand the manufacture of batches of tablets, a significant amount of active 

pharmaceutical ingredient(s) and efforts are required in this kind of formulation 

development process.  Friability test is most useful in guiding formulation development 

when it has been determined as a function of compaction force/pressure, from which the 

minimum compaction force/pressure required to make sufficiently strong tablets can be 

identified.  This is much more effective than the trial and error approach described 

earlier.  With such information, it is easy to determine the tablet mechanical strength that 

is necessary for adequate handling and shipping.14  The traditional friability approach, 

however, does not provide the kind of quantitative information useful to guide 

formulation development unless multiple batches of tablets are prepared under different 

compaction conditions and tested.  This is labor and material intensive, hence, unfit for 

adoption in early formulation development.  Essentially, friability test has been mostly 

used as a tool for quality control.15,16  The use of friability testing as a formulation 

characterization tool or early formulation screening tool is rare, if any. 
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Tabletability (tablet tensile strength as a function of compaction pressure) of a 

formulation can be assessed using a relatively small amount of material (a few grams or 

less) for acceptability by applying an empirical acceptance criterion, e.g., >2 MPa tensile 

strength.17  Since the tensile strength of non-cylindrical tablet is more difficult to obtain2, 

a target tablet breaking force (frequently termed “tablet hardness” in the pharmaceutical 

industry) may be set for making a batch of tablets.  However, even tablets meeting these 

criteria may still exhibit overly high friability because higher tablet breaking strength 

does not always lead to lower friability18,19 and density variation within a tablet can affect 

friability.2  In addition, tablet tensile strength or breaking force is only one of the many 

factors that affect tablet friability, such as tablet size, tablet shape, or even tablet surface 

roughness.18-20  Furthermore, in the development of certain products, such as orally 

disintegrating tablets, tablet tensile strength cannot be very high because of the 

requirement of a short disintegration time.21  Consequently, acceptance criteria based on 

mechanical strength will not be suitable.  Alternatively, tablet friability profile (friability 

as a function of compaction force/pressure) can be used to more reliably assess the 

manufacturability of a formulation than tabletability profile because friability is a direct 

test of tablet performance.  The kind of stresses endured by tablets during friability test is 

relevant to those experienced during storage and handling.1 

To successfully integrate friability measurement into tablet development for fully 

realizing its potential benefits, the availability of a material-sparing and expedited 
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friability method is critical.  Therefore, the goals of this research are twofold: (1) to 

develop and validate a time and material sparing friability test method, and (2) to 

demonstrate some of the potential applications of this method in product development, 

especially in the areas of tooling design and formulation optimization.  We hypothesize 

that the replacement of the batch of “identical” tablets in the USP friability test by tablets 

varying in mechanical strength does not significantly alter the stress state experienced by 

individual tablets and friability of individual tablets is an acceptable approximation of 

corresponding batch friability determined using the standard pharmacopoeial method.  

The availability of such an “expedited method” makes it possible to readily determine 

tablet friability as a function of compression conditions in a material- and time-sparing 

manner. 

 

Materials and Methods 

Materials 

Materials used in this study were: microcrystalline cellulose (MCC, Avicel PH102, Lot. 

P208819889, FMC Biopolymer, Philadelphia, PA), croscarmellose sodium (Ac-Di-Sol-

Lot. TN08819630, FMC Biopolymer, Philadelphia, PA), dibasic calcium phosphate 

dihydrate (DCPD, Emcompress, Lot. 7100X, JRS Pharma, Chicago Heights, IL), 

acetaminophen (APAP, Lot. 124K0165, Johnson & Johnson Company, New Brunswick, 
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NJ), celecoxib (Lot. CBX/1010121, Aarti Drugs Ltd., Maharashtra, India), and 

magnesium stearate (Lot. J03970, Mallinckrodt, St. Louis, MO). All materials were used 

as received. 

 

Methods 

Blending and Compaction 

Powder mixtures of MCC and DCPD were prepared at various ratios (20–80% w/w, 

100 g batch size) by hand-mixing in a pan, followed by blending for 10 min in a 2 quart 

(1.89 L) twin shell blender (Patterson-Kelley, East Stroudsburg, PA) operated at 25 rpm. 

Two formulations containing 40% of APAP or celecoxib in an excipient matrix 

consisting of MCC (34.5% w/w), DCPD (20% w/w), Ac-Di-Sol (5% w/w), and 

magnesium stearate (0.5% w/w) were prepared using the same blending procedure. 

Tablets were compressed using a variety of toolings on a universal material testing 

machine (model 1485, Zwick, Germany) at ambient laboratory conditions (37 ± 9% RH 

and 24 ± 1 °C, Table AI.S1). The tableting speed used in this study was 100 mm/min 

unless indicated otherwise. Except for the two formulations that contain 0.5% magnesium 

stearate, compaction of other powders was carried out using tablet toolings coated with 

5% (w/v) suspension of magnesium stearate in ethanol and air dried. Mean compaction 

pressure was calculated from the force and cross-sectional area of the punch tip. 
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Tensile Strength and Porosity Determination 

To obtain tablet tensile strength – porosity relationship, cylindrical tablets (10 mm 

diameter) were made under different pressures.  Tablet dimensions were measured using 

a digital caliper immediately after ejection and tablet density was calculated from tablet 

weight and volume.  Tablet diametrical breaking force was determined using a texture 

analyzer (Texture Technologies Corp., Scarsdale, NY/Stable Micro Systems, Godalming, 

Surrey, UK), at a speed of 0.01 mm/s with a 5 g trigger force.  True density of each 

mixture powder was calculated from the true densities of pure powders (ρtrue), which 

were obtained by fitting their tablet density (ρtablet) – compaction pressure (P) data using 

Equation AI.1. 22,23 
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where C (M Pa−1) and εc are constants related to powder consolidation properties under 

pressure.  Helium pycnometry is unable to yield accurate true density values for water-

containing powders, such as MCC.24  

Tablet porosity was calculated from tablet density and true density.  The function that 

describes the relationship between tablet tensile strength (σ) – porosity (ε) for each 

powder was obtained by fitting data to Equation AI.225 which was then used to calculate 

tensile strengths of tablets used in friability test from their porosity (Figure AI.S1). 

 

εσσ b
oε−=                                                                   AI.2 

 

where b and σo are empirical constants. 

 

Conventional USP Friability Test 

USP friability tests were conducted using batches of compressed tablets that were coded 

and weighed individually (Mettler Toledo, AG245, Columbus, OH).  The number of 

tablets used in a batch was chosen to afford a total weight of at least 6.5 g.  The friability 

test was conducted using a dual drum, automatic tablet friabilator (Pharma Alliance 
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Group Inc., Model F2, Santa Clarita, CA) at 25 rpm for 4 min.  After the friability test 

and dedusting as per the USP procedure, weight loss of both each tablet and the batch 

was determined.  The friability, expressed as a percentage of the initial weight, of 

individual tablets and the whole batch was calculated.  Determination of individual 

tablets weight loss enabled calculation of the standard deviation for the percentage 

friability of the batch. 

 

Expedited Friability Test 

For each powder, a set of 20 tablets prepared under different compression forces were 

loaded into the friabilator.  Twenty tablets usually yield a reasonable friability plot.  

However, more or less tablets can be used if desired.  The tablets were individually coded 

and weighed before loading into the friabilator.  The percentage weight loss was 

calculated for individual tablets (% friability) and was plotted against compaction 

pressure/force, tablet porosity, or tensile strength.  The threshold tensile strength, 

porosity, or compaction pressure/force corresponding to 0.8% friability was determined 

from respective friability plots. 
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Data Fitting and Statistical Analyses 

Data fitting and statistical analyses were carried out using Origin® (v.9.1, OriginLab 

Corp., Northampton, MA) and Minitab® (v.17, Minitab Inc., State College, PA). 

 

Results 

Validation of the expedited friability method 

The tensile strengths and breaking force of tablets increased with increasing compaction 

pressure for all the materials tested, confirming compaction pressure is a dominant 

process parameter for attaining tablet mechanical strength.26 

The friability plots of MCC and DCPD tablets using both the expedited method and the 

conventional USP method are shown in Figure AI.1. The results from both methods are 

similar within the accuracy of the experiments. Generally, tablet friability (tablet 

performance) decreases with increasing compaction pressure (a process parameter) as 

expected.11,27 This relationship is shown to follow a power law (log–log linear) 

relationship. (Equation AI.3) 

 

y = axb                                                                      AI.3 
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where a is a constant and b is the allometric scaling exponent. 

Results of the statistical analyses suggest a strong correlation between tablet compaction 

pressure and tablet friability for both MCC and DCPD using either friability methods 

with R2 ≥ 0.98 (Table AI.1).  The beneficial effect of compaction pressure in reducing 

friability is closely related to its effect on tablet mechanical strength.  As routinely 

observed, friability is lower when a tablet is stronger21 because it is more difficult to 

remove individual particles from the stronger tablet by mechanical impact during the 

friability tests.  However, if the compaction pressure is so high that the over-compression 

mechanism is activated, tablet friability may be higher at higher pressures or even exhibit 

capping tendencies.18  The trends in our data suggest that over-compression mechanism is 

not present under the compaction conditions employed in this study. 

Results from non-linear regression of the two types of friability data were analyzed for 

statistically significant difference using both 2-sample t-test and paired t-test.  The 2-

sample t-test was conducted using the data summary mode in Minitab® because it permits 

the use of the mean values of a and b, their standard deviations, and the sample size to 

obtain the significance level (p values).  Two sample t-test results show that the two 

friability methods yield functions that are not statistically different (pvalues ≥ 0.06).  

Additionally, paired t-test carried out on friability data at the same compaction pressures 

from the two methods (n ≥ 7) show no statistical difference (p values ≥ 0.13).  To satisfy 

the requirement of normality of data distribution, paired t-test was carried out after 
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transforming data to logarithmic form before conducting the test.28  The slopes, i.e., 

parameter b, of the lines are not significantly different for both MCC (p value = 0.15) and 

DCPD (p values = 0.06).  Although the friability data obtained using the conventional 

USP method visually fall slightly to the right side of the expedited method, the paired t-

test shows such visual shift is not statistically significant (p values ≥ 0.13).  Overall, the 

statistical analyses results confirm that the expedited method is valid, i.e., it yields the 

same friability information as the standard USP friability method.  The main difference 

between the two methods is that the expedited method calculates friability based on 

weight loss of individual tablets but the USP method uses the weight loss of the entire 

batch of tablets.  The validity of the expedited method also suggests that tablets in the 

expedited method experience similar stress conditions as those in the standard USP test 

method.  Individual tablets in the expedited method respond differently to the stress 

because of their different mechanical strengths, i.e., they lose varying amounts of 

materials depending on the individual tablet’s strength. 

A conceivable limitation of the expedited method is when accurate weight loss cannot be 

measured using a single tablet because of very low friability.  If the friability test is 

conducted using tablets of 200 mg weight and a balance accurate to 0.1 mg, the smallest 

percent weight loss that can be accurately determined is 0.05%.  Since this is much below 

the USP acceptance criterion of 0.8%, the expedited method can be applied without 

problem for determining whether or not a batch of tablets passes friablity criterion.  The 



 

 
262 

expedited friability method can be adopted for characterizing API powders or screening 

early tablet formulations since it takes only 4–6 g of material to obtain a complete 

friability plot.  This study can be carried out to assess any powder that can be compacted 

into intact tablets as long as compaction force can be controlled. 

 

Applications of the expedited friability method 

Having validated the expedited friability method, we now explore some possible 

applications of this method in characterizing compaction properties of a powder and 

guiding formulation development. To facilitate the ensuing discussion, we classify three 

types of friability plots: Type I shows the relationship between friability and compaction 

force or pressure; Type II shows the relationship between friability and tablet porosity; 

Type III shows the relationship between friability and tablet tensile strength. 

Tablet friability is a critical performance test for assessing tablet quality6 as it has been 

widely recognized that, sufficiently low friability is a key acceptance criterion for tablets. 

Conventional USP friability test yields results that can be used for assuring adequate 

tablet mechanical properties.15  However, it is unable to provide a clear explanation as to 

why a batch of tablet has high friability or how to reduce it.  As per the Materials Science 

Tetrahedron principle, mechanistic insights to a performance problem come from an 

understanding of the structure–property relationship in connection with the performance 
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in question.29  Such understanding is critical for effective engineering of formulation or 

compaction process to improve tablet friability as shown by modeling.2  By using the 

expedited friability method, the relationship between friability and tablet tensile strength 

(tablet mechanical property) or porosity (a measure of tablet structure) can be readily 

obtained. 

 

Guiding effective troubleshooting of high friability problem 

The friability of cylindrical MCC tablets (400 mg, 10 mm diameter) is 2.79% and 0.26% 

when prepared at 10 MPa and 25 MPa, respectively.  The one order of magnitude of 

reduction in friability with an increase of 15 MPa suggests its extreme sensitivity to 

compaction conditions.  In fact, when pressure is 100 MPa, friability of MCC tablet was 

too low to be accurately measured.   With this data, it immediately becomes clear that 

controlling compaction process is effective for addressing friability problem, if 

encountered, for this powder.  On the contrary, the friability of DCPD tablets (650 mg, 

10 mm diameter) was 7.1% and 1% at 50 MPa and 250 MPa, respectively.  Even at a 

relatively high pressure of 250 MPa, tablet friability is still higher than 0.8%.  This 

suggests controlling compaction alone is not very effective for this powder.  Instead, 

reformulation or change of tooling should be sought to address the high friability 

problem. 
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Understanding the relationship between tablet structure and friability 

Although it is clear from Figure AI.1 that MCC is much less friable than DCPD, the exact 

reason for the superior performance of MCC is not revealed by the Type I friability plot.  

Friability is affected by tablet mechanical strength, which determines how easily particles 

can be dislocated from their original places in the tablet when subjected to an external 

shear or impact stress.2  Friability is also affected by the mechanical property of the 

material).27  More brittle materials are less able to reduce the effect of local stresses at 

contact points through plastic deformation.  In addition, they are more to fracture (crack 

propagation) and separation of contact during deformation.30  All these factors lead to 

higher friability for more brittle materials.  Tablet size and shape are also known to affect 

friability because of their impact on the intensity of stress at the points of contact during 

friability test.18  Either one or a combination of these three factors can be responsible for 

problematically high friability of a batch of tablets.  Effective solutions to this problem 

come from a clear understanding of its underlying cause(s).  In the following part of the 

discussion, we only concern ourselves with cylindrical (10 mm flat faced) tablets, which 

significantly simplifies the effort to obtain tablet porosity and tensile strength information 

required for constructing Type II and III friability plots.  Effect of tablet size and shape 

will be separately discussed later in this report. 
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Since tablet tensile strength test is destructive, tensile strength of tablets used for friability 

tests was calculated from porosity using a separately determined relationship between 

tablet porosity and tensile strength by fitting data to Equation AI.2.  The friability – tablet 

porosity relationship is log-linear (exponential decay), while both friability - tensile 

strength and friability – compaction pressure relationships are log–log linear, i.e., they 

follow a power law relationship (Figure AI.2).  Although the empirical power law 

relationship holds for all materials tested in this study, it is possible that other 

mathematical equations may also adequately describe these data.  In addition, these 

relationships may not hold for the entire range of porosity, tensile strength, or compaction 

pressure.  Extrapolation to outside of the range covered by the data should be carried out 

with caution. 

When compared at the same porosity, DCPD has two orders of magnitude higher 

friability than MCC.  When compared at the same tensile strength, the relative difference 

is less but DCPD tablet is still significantly higher than MCC tablet.  This suggests 

DCPD is inherently more prone to high friability even when tablet structure and property 

are considered.  The higher brittleness of DCPD is a likely reason for the higher friability 

because individual particles do not readily undergo plastic deformation to dissipate 

stresses during friability test, which also causes easier crack propagation to eventually 

separate particles from the tablet.  Based on the three types of friability plots shown 

in Figure AI.2, we can also identify the values of tablet descriptors that correspond to the 
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0.8% friability, which can be used as threshold values for adequate performance.  For 

example, the minimum tensile strength values of cylindrical flat face tablets of MCC and 

DCPD are 1.03 MPa and 4.03 MPa, respectively (Figure AI.2).  Although we chose the 

more conservative 0.8% weight loss as the threshold value, limits corresponding to other 

friability values can be set as needed for a specific investigation.  In addition, the same 

exercise can be carried out to determine critical values of other properties of interest, e.g., 

breaking force, hardness, elastic modulus, and brittleness, for any given tablet size and 

shape. 

 

Effect of tablet shape and size on friability 

It has long been known that tablet shape and size affect friability.18  Here, we 

quantitatively compared friability of oval convex, bevel edged, cylindrical, and 

rectangular flat face tablets.  As observed for cylindrical tablets, ductile MCC always 

exhibits significantly lower friability than brittle DCPD for all tablet shapes.  For these 

tablets with different shapes, the average compaction pressures required to obtain 0.8% 

friability is in the order of oval convex < bevel edged < cylindrical < rectangular for both 

MCC and DCPD (Figure AI.3A).  Here, we use compaction pressure instead of 

compression force because mechanical strength of a tablet is determined by pressure.  For 

achieving the same pressure, higher compaction force is required to make larger tablets. 
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For both MCC and DCPD, the pressure required to meet the 0.8% friability ranges from 

2.8 MPa for oval convex MCC tablets to 319.1 MPa for rectangular DCPD tablets.  These 

strikingly different behaviors are easily revealed using the expedited friability method but 

would have been extremely tedious to obtain using the conventional friability test. 

To study the effect of tablet size on tablet performance, 8 mm and 10 mm cylindrical 

tablets of MCC (200 mg and 400 mg) and DCPD (400 mg and 650 mg) were used 

(Figure AI.3B).  Target tablet weights were based on die fill capacity and our intention to 

keep the density and porosity of differently sized tablets approximately the same for a 

given material.  While the minimum compaction pressure for 8 mm and 10 mm MCC 

tablets remain similar, ∼62 MPa higher pressure is required for 10 mm DCPD tablets 

than the 8 mm tablets to meet the 0.8% friability requirement.  The difference in 

sensitivity to tablet size (weight) change between MCC and DCPD is attributed to their 

different mechanical properties.  The more brittle DCPD tablet is more sensitive to the 

increase in impact stress intensity by the higher tablet weight than MCC tablet.  Again, 

this result is qualitatively expected based on experience.  However, quantitative 

understanding like this would have been extremely tedious to obtain without using the 

expedited friability method.  
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Effect of material properties on friability 

The different friability between MCC and DCPD tablets suggests the impact of material 

mechanical properties on friability performance.  We now systematically show such an 

impact using the binary mixtures of MCC and DCPD (Figure AI.4).  Compaction 

properties of powders containing these two excipients have been well studied before.31,32  

For both cylindrical and bevel edged tablets, the compaction pressure corresponding to 

0.8% friability increases with DCPD content.  This is consistent with results from an 

earlier study: (1) at the same compaction pressure, tablets containing more DCPD 

exhibited higher friability; and (2) friability decreases with higher compaction pressure 

for a given material.32  The critical compaction pressure increases slowly up to 60% 

DCPD for cylindrical and 80% DCPD for bevel edged tablets.  With further increase in 

DCPD percentage, the critical compaction pressure increases sharply (Figure AI.4A).  

The average difference in switching from cylindrical to bevel edged tablets is 

9.3 ± 2.7 MPa in the 0–60% DCPD range.  However, for the powder containing 80% and 

100% DCPD, the difference in compaction pressure is 52.8 MPa and 154.9 MPa, 

respectively.  Consistent with the observation made earlier in this study, bevel edged 

tablets generally perform better than cylindrical tablets.  It is interesting to note that the 

relationship between tablet tensile strength that satisfies the friability criterion and the 

concentration of DCPD exhibits a minimum at 40% DCPD for the cylindrical tablets 

(Figure AI.4B).  This suggests that tablet mechanical strength alone is not always a 
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reliable parameter for predicting tablet friability among different materials or 

formulations.  The minimum tensile strength, consistent with the required minimum 

compaction pressure, increases sharply in the 80–100% DCPD range.  The previously 

suggested value of 2 MPa as a critical tensile strength threshold for adequate tablet 

mechanical strength17 seems a reasonable criterion for this series of mixtures containing 

up to 80% DCPD. 

 

Comparing formulations 

To demonstrate the application of this expedited method to formulation development and 

scale up, we prepared APAP and celecoxib formulations (40% drug in a common 

excipient blend) and determined their three types of friability plots using cylindrical 

tablets (10 mm diameter) (Figure AI.5). Compaction pressure may also be used for flat 

face toolings.  However, the use of compaction force is applicable to any tooling. From 

Figure AI.5A, we determine that minimum compression forces corresponding to 0.8% 

friability are 17.24 ± 0.03 kN and 17.84 ± 0.03 kN for APAP and celecoxib formulations, 

respectively.  Even though the critical compression forces are similar, the tablet structure 

and properties of the two formulations are very different.  The corresponding tablet 

porosity/tensile strengths are 8.34%/1.7 MPa for APAP and 1.75%/4.2 MPa for celecoxib 

(Figure AI.5A and C).  The knowledge of critical tablet porosity indicates that increasing 
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pressure is more effective to further reduce friability for the APAP formulation than for 

the celecoxib formulation, which has been nearly fully consolidated at ∼18 kN. 

 

Guiding scale up of tablet formulations 

Finally, the expedited method can be used to guide scale up by assessing impact of 

process parameters, such as tableting speed, on tablet manufacturing.  In this example, we 

use bevel edged tooling to prepare 500 mg tablet.  We first obtain the friability plot of the 

celecoxib formulation at a slow speed (1 mm/min).  From the friability plot, we 

determine the 95% confidence interval (CI) of the compression force corresponding to 

0.8% friability is 7.1–8.4 kN (with a mean of 7.74 kN) (Figure AI.6A).  The breaking 

force of three tablets produced at the upper confidence limit of 8.4 kN lies in the narrow 

range 124.1–126.6 N.  Similar to a state function, breaking force (a tablet property) 

directly correlates to friability (a tablet performance) irrespective of the tableting speed 

(or the path through which the tablet property is obtained).  To achieve the same tablet 

mechanical strength under a higher tableting speed (100 mm/min), compaction force is 

expected to change.  The upper 95% confidence limit of compaction force required to 

prepare tablets of 126.6 N breaking strength at 100 mm/min is 7.5 kN from the 

corresponding breaking force – compaction force curve (Figure AI.6B). This is to say, a 

compression force of 7.5 kN at 100 mm/min is predicted to be sufficient for making 
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tablets that meet the 0.8% friability requirement.  To verify this prediction, two batches 

of tablets produced at 7.5 kN and 100 mm/min were tested by the USP friability method, 

which resulted in the friability values of 0.52 ± 0.09% and 0.58 ± 0.13%.  These friability 

values are below 0.8% friability because of the conservative use of upper confidence 

interval limit to allow a safety cushion for the predicted manufacturing conditions.  In 

fact, the predicted friability at 8.4 kN and 1 mm/min, with the 95% CI of 0.55–0.8%, is in 

agreement with the USP friability (Figure AI.6A). These results confirm the reliability of 

predicting suitable compaction force at a higher tableting speed based on the expedited 

friability test results obtained at a slower speed.  Figure AI.7 summarizes the process that 

can be used to guide tableting process scale up. 

 

Discussion 

Friability is an important, but under-studied, tablet performance.  The standard USP 

friability test method requires the use of a batch of tablets, but only yields a very limited 

amount of information.  As such, it has been used mostly as a quality control tool instead 

of a formulation research tool.  The expedited friability method is material sparing and 

allows the collection of a wealth of information at an early stage of product development.  

With this method, tablet friability can be routinely measured to guide formulation and 

process development and optimization.  As a performance test, it is more reliable than 

other tests, including tablet tensile strength and hardness measurements, in guiding 
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formulation design and it provides information useful for understanding structure–

property–performance relationship.  Since the expedited test does not require a specially 

designed apparatus, it can be easily adopted by the industry. 

The expedited friability method permits a readily quantitative assessment of the effect of 

material mechanical properties (ductile or brittle) on friability using a small amount of 

material.  The USP friability test method is not suitable for this because making batches 

of tablets at different pressures is labor intensive and requires much material.  As shown 

by some of the examples, possible applications of the expedited friability test are many.  

It will enable the early collection of friability data to guide the development of robust 

tablet formulation.  Again, the roles of friability measurement may be compared to that of 

dissolution test in the sense that they both cover an important performance of tablet 

products.  The difference is that the friability test is pertinent to the mechanical strength 

of tablet products while the dissolution test is to bioavailability. 

Based on data obtained from the expedited method, the lower friability of MCC tablets 

than the DCPD tablets at comparable tensile strengths, regardless of tablet shape, is 

another manifestation that materials with different ductility will respond to external 

stresses differently.13  The brittle DCPD tablets are likely to lose more material because 

of the easier crack propagation and chipping when subjected to a mechanical shock.27  

The clear demonstration of the effect of tablet shape and size on tablet friability confirms 

the empirical observation.18,33  In this study, we had the opportunity to examine the 
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pattern of material loss from tablet, which provides more insights on the mechanism of 

high friability of different tablets.  For all materials, friability strongly correlated with the 

appearance of sharp edges or corners.  That is to say, particles that form the sharp edges 

or corners tend to be removed during the friability test.  This is not surprising because, 

under similar impact intensity, sharp corner or edge will generate higher local stress 

during an impact than side or flat surfaces.  Therefore, particles at these places tend to be 

dislocated more easily.  This explains why higher compaction pressure is required to 

maintain the 0.8% friability for the rectangular flat face tablets, which have more sharp 

edges and corners, than other tablet shapes (Figure AI.3).  It also emphasizes the already 

widely adopted view that, when sufficiently strong tablets cannot be made, sharp edges 

and corners should be avoided to minimize tablet friability.  Because the density 

distribution in tablets of different shapes may be different, the variation in density 

distribution could also contribute to the effect of tooling/tablet shape on tablet 

friability.18,26  However, such effect is likely significantly less than that by sharp edges 

and corners.  Regardless the exact mechanism, the overall effect on friability can be 

easily quantified using the expedited friability method.  This provides useful information 

to tooling selection for robust tablet performance when reformulation is not possible or if 

insufficient resource is allowed for reformulation.  If tablet shape is not finalized at the 

time of a study, bevel edged tablets may be used for characterizing friability.  This tablet 

shape likely resembles the final tablet shape more than cylindrical or rectangular tablets.  

Yet it corresponds to higher friability than oval shaped tablets.  Therefore, friability 
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determined with bevel edged tablets is more conservative, which builds in a safety 

cushion in the estimate. 

Since more brittle materials, e.g., DCPD, are more prone to wear and tear than plastic 

materials, e.g., MCC, the use of brittle excipient should not be at a very high fraction 

unless required to correct for formulation deficiencies.  The significant deterioration of 

friability of bevel edged tablets is observed only when more than 80% DCPD is present 

in the binary mixtures with MCC.  This suggests the plastic excipient(s) may play a 

dominant role in controlling tablet friability.18  In any case, a balance between plasticity 

and brittleness of a formulation must be maintained.34,35  Extremely plastic powders are 

susceptible to problems of over-granulation during high shear wet granulation36 or loss of 

tabletability during dry granulation37.  Extremely brittle powders tend to face the 

challenge of overly high friability, as shown in this work.  Reaching such a balance 

requires access to information on relevant performance.  This is one reason why the 

development of material-sparing expedited friability test is important to the successful 

and economic development of high quality tablet products. 

Changes in formulation composition have been shown to affect tablet friability.18,38  

Using the expedited friability method, such effect can now be quantified early in 

development using a small amount of material.  This information will effectively guide 

formulation optimization.  Since this is a performance test, the impact of any formulation 

variable is directly assessed without the need of characterizing other tablet properties, 
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such as tensile strength and hardness, unless an understanding of the differences in 

performance is desired.  In that case, the simultaneous access to all three types of 

friability profiles may be employed as demonstrated using the APAP and celecoxib 

formulations in Figure AI.5.  From this, the tablet tensile strength, porosity, and 

compaction force required for meeting target performance of 0.8% friability can be 

determined.  Although tablet tensile strength must be substantially higher for celecoxib 

formulation than APAP formulation (Figure AI.5C), it does not necessitate higher 

compression forces (Figure AI.5A) because it is more compressible than the APAP 

formulation (Figure AI.5B).  In other words, celecoxib formulation can form a less 

porous tablet at the same compaction force than APAP formulation.  This understanding 

of the unique relationship between structure, property, processing, and performance 

builds a solid foundation for developing high quality tablet products.29  This, in 

combination with other tablet characterization techniques, such as X-ray computed 

tomography, can provide useful information for developing better understanding to the 

tablet structure and property relationship.  Finally, the tensile strength of the celecoxib 

formulation corresponding to 0.8% friability is 4.2 MPa.  This is an exception to the 

empirical rule of >2 MPa criterion as an acceptable tablet mechanical strength, i.e., 

tablets may still not meet friability performance criterion even when tensile strength is 

much higher than 2 MPa. 
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In tablet manufacturing, scale-up may require adjustment to some of the processing 

conditions, e.g., the press speed.39  The integration of the expedited friability method into 

a scale-up plan, summarized in Figure AI.7, will help to eliminate scale up surprises.  The 

objective is to determine the tableting condition, i.e., compression force, that will be 

amenable to a successful compression of tablets with ≤0.8% friability when the tableting 

speed has been changed.  In the example of celecoxib formulation, the use of upper 

confidence intervals is intended to provide a margin of safety in the processing 

parameters that may be required in the large scale manufacturing (Figure AI.6).  Once the 

tablet breaking force for achieving <0.8% friability is determined, the compaction force 

required for achieving this performance can be determined for any tableting speed, i.e., 

8.4 kN at 1 mm/min and 7.5 kN at 100 mm/min.  This makes possible data-driven scale 

up decision to replace empirical ones.  For example, it is counterintuitive to use lower 

compaction force at higher tableting speed.  Without this information, an overly high 

compaction force may have been used at higher speed, which can potentially lead to 

problems such as over-compaction of tablets40, excessive wearing of tablet toolings26, 

slow tablet disintegration21, and delayed drug dissolution and absorption.41  These are just 

a small sample of possible applications of this expediated friability method.  Systematic 

future applications of this method will lead to answers to many more interesting 

questions surrounding tableting formulation development and tablet manufacture. 
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Conclusion 

We have shown that an expedited and material-sparing friability method can be used to 

produce data equivalent to those from the conventional pharmacopoeial friability method.  

The expedited test can be easily adopted by the pharmaceutical industry since only the 

standard friability apparatus is used.  We have also shown several examples of possible 

applications of this method to facilitate tablet formulation development, guide scale up of 

tablet manufacturing process, and gain mechanistic insights on tablet friability. 
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Table AI.1  Statistical analyses of the data from the expedited method and the USP method using the power law relationship,  y = axb  

 

Material R2 a/103 
(SE) a 

2-Sample 
t-test 

p value 

b  
(SE) a 

2-Sample 
t-test 

p value  

Paired t-
test 

p value   
MCCExpedited 0.99 1.11 (0.19) 

0.15 
-2.60 (0.08) 

0.15 0.4 
MCCUSP 0.98 0.75 (0.15) -2.44 (0.08) 

DCPDExpedited 0.99 0.93 (0.13) 
0.09 

-1.24 (0.03) 
0.06 0.13 

DCPDUSP 0.98 0.63 (0.11) -1.15 (0.04) 

  a SE = Standard Error; 
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Figure AI. 1  Friability Plot (Type I) of (A) MCC and (B) DCPD used for validating the 

expedited friability test method by the conventional USP method  
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Figure AI. 2  Friability plots of MCC and DCPD (A) Type I (B) Type II and (C) Type 

III. 10 mm cylindrical flat faced tablets were used     
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Figure AI. 3  Effect of (A) tablet shape (tooling type) and (B) tablet size (8 mm and 10 

mm cylindrical tablets) on the minimum compaction pressure required to achieve 0.8% 

tablet friability for MCC (0.92 g/mL tablet density) and DCPD (1.88 g/mL tablet 

density); error bars indicate 95% confidence intervals of predicted values.  
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Figure AI. 4  Effect of powder composition in the MCC-DCPD binary mixtures on the 

(A) minimum compaction pressure using two types of tooling and (B) minimum tensile 

strength using cylindrical tablets (error bars indicate 95% confidence intervals of 

predicted values)  
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Figure AI. 5  Friability Plots of Acetaminophen (APAP) and Celecoxib (CEL) formulations (10 mm cylindrical tablets), showing 

correlation between friability (a tablet performance) and (A) compaction pressure (a process parameter) (B) porosity  (a tablet 

structure descriptor), and (C) tensile strength (a tablet property) 
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Figure AI. 6  Determination of compression force at a higher speed for producing tablets of Celecoxib formulation (500 mg round 

bevel edged) that meet the friability criterion of 0.8%.   (A) friability plot at 1 mm/min compression speed, (B) manufacturability 

profile  at 100 mm/min compression speed.  95% confidence interval of each fitted line is shaded (B.F. = breaking force). 
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Figure AI. 7  Steps for scaling up tablet production based on friability as performance 

criterion.  Use the upper confidence interval of the compression force as margin of safety 

if possible. Breaking force is specific to tooling and tablet weight   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Develop Compression Force - Friability profile (Type I) using any 
tooling and Lab Scale Press (Figure 6a) 

Determine breaking force of tablets prepared at the force 
corresponding to 0.8% friability (Figure 6a) 

Identify the compaction parameters that lead to tablets with the 
same breaking force on a Commercial Scale Press or a 

compaction simulator (Figure 6b) 
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Figure AI.S 1  Prototype tensile strength – porosity (compactibility) profile for 

calculating tensile strength of tablets used for friability test   
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Table AI.S 1  Description of tablets and toolings   
Test Method Material Tooling Press  

Speed 
(mm/min) 

Target Tablet  
Weight (mg) 

Diameter or 
Dimension 

(mm) 

USP MCC Cylindrical Flat Face 100 400 10 
Expedited MCC Cylindrical Flat Face 100 400 10 
Expedited MCC Cylindrical Flat Face 100 200 8 
Expedited MCC Round Bevel Edged 100 400 10.32 
Expedited MCC Oval Convex* 100 600 8.7 x 13.9 
Expedited MCC  Rectangular Flat Face 100 650 9.57 x 16.54 

      USP DCPD Cylindrical Flat Face 100 650 10 
Expedited DCPD Cylindrical Flat Face 100 650 10 
Expedited DCPD Cylindrical Flat Face 100 400 8 
Expedited DCPD Round Bevel Edged 100 650 10.32 
Expedited DCPD Oval Convex* 100 1000 8.7 x 13.9 
Expedited DCPD Rectangular Flat Face 100 1000 9.57 x 16.54 

      Expedited MCC 80% DCPD 20% Cylindrical Flat Face 100 400 10 
Expedited MCC 60% DCPD 40%  Cylindrical Flat Face 100 440 10 
Expedited MCC 40% DCPD 60% Cylindrical Flat Face 100 520 10 
Expedited MCC 20% DCPD 80% Cylindrical Flat Face 100 560 10 

      Expedited MCC 80% DCPD 20% Round Bevel Edged 100 400 10.32 
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Test Method Material Tooling Press  

Speed 
(mm/min) 

Target Tablet  
Weight (mg) 

Diameter or 
Dimension 

(mm) 
Expedited MCC 60% DCPD 40%  Round Bevel Edged 100 440 10.32 
Expedited MCC 20% DCPD 80% Round Bevel Edged 100 560 10.32 

      Expedited APAP Formulation Cylindrical Flat Face 100 500 10 

      Expedited Celecoxib Formulation Cylindrical Flat Face 100 500 10 
Expedited Celecoxib Formulation Round Bevel Edged 1 500 10.32 

USP Celecoxib Formulation Round Bevel Edged 100 500 10.32 

      * 1.57 mm cup depth for oval convex 
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APPENDIX II.  A PITFALL IN POWDER COMPACTIBILITY 

DATA FITTING USING NON-LINEAR REGRESSION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix II has been published as a lesson learned in the Journal of Pharmaceutical 

Sciences, 2013, 102: 1135 – 1136  
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Tablet tensile strength has been observed to decay exponentially with porosity, a 

relationship that is described by the empirical Ryshkewitch-Duckworth equation 

(Equation AII.1).1  

                                                   
εσσ b

oε−=                                               AII.1 

where ε is the tablet porosity, σ is the tablet tensile strength, b and σo are constants.  The 

constant σo is the maximum tensile strength a powder can attain, at zero porosity, and 

may be used to quantify the bonding propensity of a powder.  Equation AII.1 has been 

routinely used to describe the compactibility of a powder (dependence of tablet tensile 

strength on tablet porosity).  Since powder compactibility is relatively independent of 

tableting speed,2 it is useful in guiding the scale up of a tableting process where tableting 

speed usually increases significantly.   

The constants b and σo are commonly obtained by fitting experimental tensile strength – 

porosity data to Equation AII.1.  Subsequently, tablet tensile strength at a porosity that is 

experimentally inaccessible may be predicted based on the fitted function.  For example, 

some powders are difficult to be compressed into low porosity tablet under common 

compaction pressures because of their high hardness or elasticity.  Other powders do not 

form intact tablet at high pressures because of over-compaction.    
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For routine non-linear fitting of data using Equation AII.1, Microsoft Excel® is 

commonly used because of its wide availability and familiarity by researchers.  However, 

we recently encountered a case of unusually poor fitting of compactibility data of 

microcrystalline cellulose (MCC, Avicel PH102, FMC Biopolymer, Philadelphia, PA) 

and some of its mixtures with dicalcium phosphate dihydrate (DCPD, JRS Pharma, Cedar 

Rapids, IA).  A visual inspection of the fitting suggests that both σo and b were 

overestimated when MCC is the major component in a mixture (up to 60% MCC) (Figure 

AII.1).  There are two possible reasons to this problem: 1) Equation AII.1 is invalid for 

these powders, and 2) non-linear regression is not appropriately carried out.  Since we are 

not aware of similar observation in the open literature, we examine the second possibility 

before questioning the validity of Equation AII.1.   

During non-linear regression, the best fit function is obtained by systematically varying 

the values of σo and b until the residuals sum of squares (RSS) between the experimental 

data and predicted values reaches a global minimum, which yields the best fitting 

function.  However, it sometimes happens that the iteration process falls into a local RSS 

minimum.  In that case, the function does not correspond to the global best fit and poor 

fitting results.3  A good way to address this issue is to re-start the iteration process with a 

different set of initial parameters to avoid the local minima so that the global minimum 

can be reached.3  This is done in this work using a statistical software, Origin labs 

(Origin® 8.0, OriginLab Corp. Northampton, MA), which allows the user input of initial 
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parameters for non-linear fitting.  By using user-defined initial values for fitting, we 

obtain satisfactory fitting using Eqn. 1 to all data using Origin (Figure AII.2).  This result 

suggests that Equation AII.1 remains valid for these powders.  Besides the flexibility in 

initial values, the Origin software also yields estimated errors to each of the fitted 

parameters.  

When the σo and b values yielded by Excel are used as the initial values in the Origin 

fitting, functions essentially the same as those by Excel are obtained.  This confirms that 

the observed poor fitting with Excel is indeed a problem with data fitting not the equation 

itself. Since mechanical properties of this series of powders (MCC, DCPD, and their 

binary mixtures) span a wide range, Equation AII.1 is likely broadly applicable to other 

pharmaceutical powders. 

The lesson learned is that, when performing non-linear fitting, one should critically assess 

the goodness of fitting of the resultant function to data points, perhaps through both 

visual observation and a residuals plot.  Learning how to use powerful statistics software 

is a worthy investment of time for a bench researcher.  The Ryshkewitch-Duckworth 

equation satisfactorily describes compactibility of powders with very different 

mechanical properties. 
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Figure AII. 1  Non-linear regression of compactibility plot of microcrystalline cellulose 

to Eqn. 1 by Microsoft Excel®   
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Figure AII. 2  Non-linear regression of compactibility plot of microcrystalline cellulose 

to Equation AII.1 by Origin Lab®   
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