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AAAABSTRACTBSTRACTBSTRACTBSTRACT    
    

 Oxidative stress, or the imbalance of reactive oxidative species and antioxidants, 

is implicated in a wide variety of physiological functions and diseases.  Currently, little is 

known about the biological concentrations and the exact roles of individual species.  In 

particular, the cellular concentrations of hydroxyl radical and the etiology of this reactive 

oxygen species in disease states are unclear.  The photophysical properties of 

luminescent lanthanide-based imaging agents and the magnetic properties of fluorinated 

contrast agents make them favorable candidates to monitor oxidative species in 

biological environments.  

 Luminescent lanthanide-based probes for hydroxyl radical are presented.  These 

probes utilize aromatic acid pre-antennas that sensitize terbium emission upon 

hydroxylation.  The ability of hydroxylated and non-hydroxylated aromatic acids including 

benzoate, benzamide, isophthalate, isophthalamide, trimesate, and trimesamide to 

sensitize Tb-DO3A was evaluated by time-delayed luminescence spectroscopy.  The 

formation of a weak ternary complex between hydroxytrimeasamide and Tb-DO3A was 

confirmed by temperature-dependent titrations.  The luminescence response of the 

bimolecular Tb-DO3A and trimesamide probe to hydroxyl radical generated by the 

photolysis of hydrogen peroxide was investigated.  The system exhibits excellent 

selectivity for hydroxyl radical over other biologically relevant reactive oxygen and 

nitrogen species.  

 Next, fluorinated magnetic resonance imaging contrast agents responsive to 

hydroxyl radical are described.  The 3,5-difluorobenzoic acid probe is water soluble and 

ratiometrically responds to hydroxyl radical.  Upon hydroxylation, a fluoride ion is 

released.  The relative signal intensity of the product and that of the unreacted contrast 

agent can then be used to monitor the analyte in a ratiometric manner by 19F NMR and 

19F MRI.  The selectivity of the system towards hydroxyl radical compared to other 
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reactive oxygen and nitrogen species is also measured.  Paramagnetic, lanthanide-

based contrast agents incorporating the sensing moiety are also evaluated for increased 

sensitivity of detection compared to the diamagnetic analogs.  

 Additionally, a family of lanthanide-based luminescent complexes based on a 

macrocyclic core featuring different sensitizing antennas and variable pendant arms are 

investigated in terms of their biological compatibility.  The cellular uptake of Tb-DOTA 

complexes containing hydroxyisophthalamide (IAM), methoxyisophthalamide 

(IAM(OMe)), or phenathridine (Phen) antenna were comparable despite their differences 

in hydrophobicity.  The luminescence quenching of Tb-DOTA-IAM(OMe) was also 

investigated in cell lysate by time-delayed spectroscopy.  Pendant arms varying in 

hydrophobicity and charge were used to evaluate the effect of structural and electronic 

properties on cellular viability and cell association as measured by a MTT assay and 

ICP-MS, respectively.  Regardless of the amide substituents, complexes based on Tb-

DOTAm-IAM(OMe) core exhibited low cytotoxicity and low cellular association.  Thus, 

complexes based on this platform are well-suited for the detection of extracellular 

analytes.  
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8-OH-G 8-hydroxyguainine 
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BET back energy transfer  

BOC tert-butoxycarbonyl 
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BRW Bloch-Redfield-Wangsness  

CA contrast agent  
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DIPEA N,N-diisopropylethylamine 

 
DMEM Dulbecoo’s modified eagle medium  

DMF dimethylformamide 

 

DMSO dimethyl sulfoxide 
 

DNA deoxyribonucleic acid  

DO3A 
1,4,7,10-tetraazacyclododecane-1,4,7-
tris(acetic acid) 

 

DO2A 
1,4,7,10-tetraazacyclododecane-1,7-
bis(acetic acid) 

 

DOTA 
1,4,7,10-tetraazacyclododecane-1,4,7,10-
tetraacetic acid 

 

DOTAm 
1,4,7,10-tetrakis(carbamoylmethyl)-
1,4,7,10-tetraazacyclododecane 

 

DTPA diethylene triamine pentaacetic acid 

 

N

N

N

N
O

OH

O

OH

O
OH

O
HO



Abbreviations        

xix 

 

DTPA-BMA 
5,8-Bis(carboxymethyl)-11-[2-
(methylamino)-2-oxoethyl]-3-oxo-2,5,8,11-
tetraazatridecan-13-oic acid 

 
E˚’ standard reduction potential  

EDTA ethylenediaminetetraacetic acid 

 
EC50 half maximal effective concentration  

EPR electron paramagnetic resonance  

ER endoplasmic reticulum  

ESI-MS electrospray ionization mass spectrometry  

ESR electron spin resonance  

ET energy transfer  

FOV field of view  

GPx glutathione peroxidase  

GSH gluathione 

 

GSSH oxidized glutathione 

 

HATU 
1-[Bis(dimethylamino)methylene]-1H-
1,2,3-triazolo[4,5-b]pyridinium 3-oxid 
hexafluorophosphate 

 

HEPES 
4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid  

 
H2O2 hydrogen peroxide  

HO• hydroxyl radical  
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HPLC high performance liquid chromatography  

hROS highly reactive oxygen species  

IAM 2-hydroxyisothalamide 

 

IAM(OMe) 2-methoxyisophthalamide 

 

ICP-MS 
inductively coupled plasma mass 
spectrometry 

 

LIS lanthanide induced shift Δδ = δparamagnetic – δdiamagnetic 

Ln lanthanide  

MOPS 4-morpholinepropanesulfonic acid 
 

MPO myeloperoxidase  

MR  magnetic resonance  

MRI magnetic resonance imaging  

MRS magnetic resonance spectroscopy  

MTT 
3-(4, 5-dimethylthiazolyl-2)-2,5-
diphenyltetrazolium bromide 

 

NADPH 
nicotinamide adenine dinucleotide 
phosphate 

 

NI naphthalimide 

 
NIR  near infrared  

NMR nuclear magnetic resonance  
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NO nitric oxide  

NO2• nitrogen dioxide  

NOS nitric oxide synthase  

nNOS neuronal nitric oxide synthase  

eNOS endothelial nitric oxide synthase  

iNOS inducible nitric oxide synthase  

NOX2 
NADPH (nicotinamide adenine 
dinucleotide phosphate) oxidase 

 

NP 1,8-naphthyridine 
 

oAA orthoaminoanilide 

 
OCl- hypochlorite  

O2 molecular oxygen  

O2
- superoxide  

1O2 singlet oxygen  

ONOO- peroxynitrite  

PARACEST 
paramagnetic chemical exchange 
saturation transfer 

 

PBS phosphate buffered saline  

PIPES 1,4-piperazinediethanesulfonic acid 

 

PCC pyridinium chlorochromate 
 

Phen 6-methylphenanthridine 
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PMA phorbol myristate acetate 

 
PMT photomultiplier tube  

PRE paramagnetic relaxation enhancement  

PSC pseudo contact shift  

R1 longitudinal relaxation rate Equal to 1/T1 

R2 transverse relaxation rate Equal to 1/T2 

R rhodamine 

 
R• carbon centered radical  

RNA ribonucleic acid  

RNS reactive nitrogen species  

RO• alkoxyl radical  

ROO• alkyl peroxyl radical  

ROOH lipid hydroperoxide  

ROS reactive oxygen species  

SA salicylic acid 
 

SHE  standard hydrogen electrode  

SNR signal-to-noise ratio  

SOD superoxide dismutase  

   

T1 longitudinal relaxation time Equal to 1/R1 

T2 transverse relaxation time Equal to 1/R2 
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TBHP tert-butyl hydroperoxide 
 

tBuO• tert-butoxy radical  

TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxy 

 

TFA trifluoroacetic acid 

 

TPA terephthalic acid 
 

UV ultraviolet light  
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I. OXIDATIVE STRESS AND HUMAN HEALTH 

A. Cellular redox state 

  Oxidative stress refers to a state where oxidative or redox active species 

overwhelm the antioxidant mechanisms in a cell.  This results in damage to cellular 

proteins, DNA, and lipids that can ultimately lead to inflammation, pain, and cell death.  

Within a cell, pro-oxidant and antioxidant molecules are balanced to control the cellular 

redox state; deviations from the normal redox potential can result in oxidative damage to 

biomolecules and toxic effects.  Common classes of oxidative molecules include the 

families of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along 

with reactive thiols and carbon radicals.  These species are produced during normal 

cellular functions such as mitochondrial respiration, metabolism of xenobiotics, and 

ionizing radiation.1-2  Currently, it is known that ROS play critical roles in normal 

physiological functions including protein folding, signaling, and immune responses.3   

 Prevalent antioxidants in enzymatic and non-enzymatic forms control the amount 

of oxidative species present.  Small molecule antioxidants such as glutathione (GSH), 

ascorbic acid (vitamin C), α-tocopherol (vitamin E), carotenoids, and flavonoids are 

efficient scavengers of cellular oxidants.  Additionally, enzymes like superoxide 

dismutase (SOD), peroxidases, and catalase convert reactive oxygen species to less 

reactive forms. Redox homeostasis describes the maintenance of the cellular redox 

state within a narrow range.  Slight disturbances in the equilibrium of pro-oxidants and 

antioxidants can greatly influence the cellular redox environment.  For example, a 30 mV 

change in redox potential inside a cell correlates to a 10-fold change in reducing versus 

oxidizing species.  The amount of oxidative species are thus carefully managed through 

these opposing routes of production and inactivation.   

 Accumulation of ROS at the cellular level has both beneficial and detrimental 

consequences. At low concentrations, ROS have beneficial roles including their ability to 
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act as vasodilators to improve cardiovascular circulation and fight infections during 

inflammatory responses.2  However, bursts of ROS produced, for example by 

neutrophils and macrophages during inflammation, can overwhelm antioxidant defense 

mechanisms.  To facilitate advantageous redox signaling and simultaneously control 

oxidative damage, cells spatially and temporally regulate ROS production.4  The local 

redox buffer capacity of a cell plays a critical role in controlling the flux of ROS.  

Glutathione (GSH), present at millimolar concentrations within cells, reacts rapidly with 

some ROS like hypochlorite, yet has limited reactivity with hydrogen peroxide.  

Therefore, oxidants generated at a specific subcellular location must overwhelm the 

redox capacity within that local region before exerting deleterious effects throughout the 

entire cell. Additionally, cells colocalize the production of ROS and their targets, placing 

the signaling molecules in close proximity to the substrate.  An excellent example 

includes NADPH oxidases that are located in the plasma membrane along with target 

phosphatases that respond to the product ROS.  These cellular mechanisms modulate 

and “buffer” the redox events in a biological environment.  

  Over production of these reactive species, and the resulting oxidative stress, is 

linked to three main classes of pathological conditions.3, 5  The first class of disorders 

include cancers and diabetes that are linked to the altered redox state or mitochondrial 

oxidative stress.  The second class is comprised of inflammatory and oxidative 

conditions like arthritis, chronic inflammation, or reperfusion injury that are associated 

with altered NADPH oxidases or xanthine oxidase activity and an immune response 

directed at the host.3  Last is the category of oxidative damage to biomolecules including 

proteins (carbonylation or nitrosylation), lipids (peroxidation) and DNA (adducts and 

breaks) that accumulate overtime and contribute to aging and aging-associated 

degenerative diseases.6  Thus, oxidative stress is currently implicated in the etiology of a 

wide variety of conditions throughout the body (Figure 1.1).  Presently, the exact role of 

each oxidant in these altered redox processes and the concentrations required to elicit 

protective or damaging effects are unclear.   
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Figure 1.Figure 1.Figure 1.Figure 1.1111. . . . Oxidative stress is implicated in a wide variety of human diseases.7 

 

B. Reactive oxygen and nitrogen species 

 Physiologically relevant ROS and RNS include superoxide (O2
-), singlet oxygen 

(1O2), hydrogen peroxide (H2O2), hypochlorite (OCl-),  hydroxyl radical (OH•), alkoxyl 

radical (RO•), alkyl peroxyl radical (ROO•), nitric oxide (NO), peroxynitrite (ONOO-), and 

nitrogen dioxide (NO2•).  Although the terms ROS and RNS are used to refer to the 

collective group of oxygen or nitrogen species, each oxidant is generated by different 

mechanisms and has a unique reactivity profile. The species are produced in response 

to similar physiological stimuli, react with each other, and have shared biological targets.  

Detection systems exploit the distinctive characteristics of each oxidant, attempting to 

respond specifically to only one species.  This is a complicated process as multiple 

oxidants are produced at the same time, and the species interact with each other, 

antioxidants, and other biomolecules (Figure 1.2).   
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  ROS and RNS are divided into one electron (radical) and two electron 

(non-radical) oxidants, and within each category there is a range of reactivity and 

oxidizing strength (Table 1.1). The standard reduction potential (E°’) indicates the 

relative strength of the oxidant, but cannot alone describe reactivity, as kinetic 

considerations are also a dominant factor.3  The best example is H2O2 that exhibits a 

moderately low reactivity and slow reaction rates (with GSH) due to the high activation 

energy required, despite its high reduction potential.  The remaining portion of this 

section will discuss the formation, reactivity, biological implications, and interactions 

between members of the ROS and RNS families. 

 

 

Figure 1.Figure 1.Figure 1.Figure 1.2222....  Formation, degradation, and interactions between physiologically relevant ROS 
and RNS. SOD, superoxide dismutase; GPx, glutathione peroxidase; MPO, myeloperoxidase; 
NOS, nitric oxide synthase.  
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Table Table Table Table 1111....1111....     Reactivity of ROS and RNS.a  
 

   
Half lifeb Estimated 

in vivo concentrationc 
Rate Constant  
(M-1 s-1) with GSHd 

Reduction 
Potential (V)e 

pKag 

One electron oxidants, radicals      

Hydroxyl radical  HO• 1 ns  fM range 1.6 × 1010 2.31 (HO•, H+/H2O) - 

Carbonate radical  CO3•-   2.3 × 1010 1.78 (CO3•-, H+/HCO3) e  < 0  

Alkoxyl radical RO•   5.3 × 106  1.60 (RO•, H+/ROH) - 

Nitrogen dioxide  NO2• 10 – 100 µs   ~2  × 107 0.6 (NO2/NO2-) f - 

Superoxide O2-  ~1 µs  0.1 nM 2 × 102  
0.94 (O2-, 2H+/H2O2) 
-0.16 (O2/O2-) 

4.8  

Alkyl peroxyl ROO•   1.1 × 103 0.77-1.44 (ROO•, H+/ROOH) - 

Nitric oxide NO 0.05 – 5 s  < 1 µM 8.0 × 10-2 
-0.80 (NO/NO-) 
-0.1 (2NO/ONNO-) f 

- 

Two electron oxidants, non-radicals     

Hypochlorite OCl- < 400 µs  < 150 µM 3 × 107 1.48 (HOCl, H+/Cl-, H2O) 7.5  

Peroxynitrite ONOO- ~ 10 ms ~ 1 nM 1.4  × 103 0.6 (NO2/NO2-) f 6.8  

Nitroxyl HNO    
0.6 (HNO, H+/H2NO) f 
-0.7 (NHO/HNO-) f 

11.5  

Hydrogen peroxide H2O2 ~ 10 µs  0.1 µM 0.87 1.1 (HOO•, H+/H2O2) 11.6  

Singlet oxygen 1O2 ~ 200 ns  9.4 × 108 0.65 (1O2/O2-) - 
 

a Missing entries reflect currently unknown values. b Ref. HO•,6 NO2•,8 O2-,6 NO,5, 9 OCl-,10 ONOO-,11 H2O2,6 1O2.12-13 
c Ref. HO•,6 O2-,6 NO,8 OCl- (upper level),14 ONOO- varies with O2 concentration, 5, 11 H2O2 ranges from 0.001 – 0.7 µM. 6, 15 
d Ref. HO•,16 CO3•-,17 RO•,17 NO2•,8 O2-,18 ROO•,16 NO,19 OCl-,3 ONOO-,11 H2O2,3 1O2.16 
e Standard reduction potentials (E°’) are relative to the SHE electrode and at pH 7. Ref. HO•,3 CO3•-,3, 20-21 RO•,3 NO2•,3 O2-,3, 22 ROO•,3 
NO,3, 22 OCl-,23 HNO,24 H2O2,25 1O2.25         f Theoretical predictions, ± 0.3 V.26 
g Ref. CO3•-,20-21 O2-,5 OCl-,27 ONOO-,23 HNO,5 H2O2.23 
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  Superoxide is considered the primary ROS, as its reaction with other molecules 

generates secondary ROS and RNS.  The process of oxidative phosphorylation in the 

electron transport chain of mitochondrial respiration converts from 0.5 - 3 % of molecular 

oxygen (O2) to O2
-.5-6  Additionally O2

- is formed by enzymes involved in the immune 

response, such as NADPH oxidases, and xanthine oxidases that catabolize purine 

bases.3, 5  With a pKa of 4.8, O2
- exists primarily in the deprotonated form at physiological 

pH.5 Few biomolecules react directly with O2
- despite its ability to act as either an oxidant 

or reductant; however, it commonly interacts with other radical species to form two 

electron, non-radical oxidants.3  The low reactivity of O2
- is offset by its near diffusion-

controlled reaction with NO (k = 7.0 x 109 M-1 s-1) to generate the oxidatively active 

peroxynitrite (ONOO-)1, 5 and its depletion by superoxide dismutase (SOD) that forms the 

slightly more reactive H2O2 as a by-product.  The high enzymatic efficiency of SOD 

(k = ~1 x 109 M-1 s-1) results in a low intracellular biological concentration of O2
- on the 

order of 10-10  M.6, 28 

 The primary source of biological H2O2 is from the antioxidant enzyme SOD, but it 

is also formed in peroxisomes.  The high activation energy of this strong two electron 

oxidant, results in few direct reactions with biomolecules. Further, the high pKa of 11.6 

allows only 1 in 10,000 molecules of H2O2 to exist in the more nucleophilic, deprotonated 

state (HOO-) at physiological pH.23 Its low reactivity and membrane permeability 

complement its ability to modulate energy metabolism, stress, and growth signaling 

pathways.  In particular, H2O2 oxidation of cysteine residues can reversibly modify 

proteins, including phosphatases involved in the attenuation of growth-factor signaling 

cascades.4, 6  Antioxidant enzymes including catalases and peroxidases modulate the 

biological concentration of H2O2 using heme, thiolate, or seleocystine containing active 

sites that lower the activation energy, allowing them to efficiently scavenge H2O2 with 

reaction rates of 107 M-1 s-1.29 Peroxidases, such as glutathione peroxidases (GPx), 

reduce H2O2 to H2O using glutathione as the oxidizing agent (GHS →  GSSH), while 

catalases convert H2O2 into O2 and H2O.  The resulting intracellular concentration of 

H2O2 can fluctuate from a low steady state of 0.001 µM to up to 0.7 µM during periods of 

severe oxidative stress,6, 15 and the extracellular concentration can be increased by an 

order of magnitude.  The cellular effects of H2O2 vary with its concentration; at the low 
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micromolar level it is correlated with cell proliferation, while above 0.5 µM it arrests cell 

growth and induces apoptosis.6  The main detrimental biological effects of H2O2 ensue 

from the more reactive downstream products (OCl- and HO•). 

 Hypochlorite (OCl-) is produced from H2O2 and chloride anion (Cl-) by 

myeloperoxidase (MPO) enzymes in neutrophils to defend against pathogens.23 This 

species is involved in the inflammatory response and the associated chronic conditions. 

It is a highly reactive two electron oxidant (E°’ = 1.48 V) that reacts rapidly 

(k = 3.0 x 107 M-1 s-1) with thiols, such as GSH, in a non-radical mechanism     

(Table 1.1).3-4  The electrophilic character of OCl- makes is susceptible to nucleophilic 

attack by cysteine thiols, generating oxidized sulfenic acid intermediates that yield mixed 

disulfides and other downstream products.4  Additionally, OCl- can react with tyrosine 

protein residues forming chlorotyrosines that impair protein function and are associated 

with the pathology of atherosclerosis and cystic fiborosis.4  Cognate species include 

chloramines (RNHCl), generated from OCl- and amines, and the bromine analogs 

hypobromous acid and bromamines. 

 The interaction of H2O2 with reduced metals such as Fe2+ promotes the formation 

of hydroxyl radical (HO•) in a process commonly called Fenton chemistry (vide infra).30-31  

With a lifetime in the nanosecond range and a reduction potential of 2.13 V, HO• is the 

most reactive member of the ROS family.3  It reacts close to its site of generation with a 

wide variety of biomolecules.  However, its primary pathological consequences result 

from its ability to damage both the DNA bases and the deoxyribose backbone ultimately 

causing permanent alterations in the genetic material of the cell.1, 5  The most 

extensively studied hydroxylation product is 8-hydroxyguanine (8-OH-G), a biomarker of 

oxidative stress (Figure 1.3).  DNA damage of this type induces further mutagenesis and 

has an established role in the etiology of breast cancer.28  

 

 

Figure 1.Figure 1.Figure 1.Figure 1.3333. . . . Hydroxylation of the DNA base quanine by HO• forms 8-hydroxyguanine.        
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 Additional radical species are formed as a consequence of the high reactivity of 

HO•.  Carbon-centered radicals (R•) are generated upon H-atom abstraction by HO• 

from polyunsaturated fatty acids, and further reaction with O2 yields alkoxyl (RO•) and 

peroxyl (ROO•) radicals.5, 28 Additionally, both of these species can be generated 

through the interaction of a lipid hydroperoxide (ROOH) with Fe2+ or Fe3+, respectively.  

The ultimate downstream consequences are lipid oxidation and cyclization reactions that 

can generate reactive aldehydes, such as malondialdehyde, through endoperoxide 

intermediates.5, 28   Malondialdehyde, a mutagen, reacts with nucleophilic amines on 

DNA to form adducts that lead to mutations or permanent DNA lesions if not repaired. 

 RNS are a family of nitrogen-containing oxidants derived from nitric oxide (NO).  In 

vivo, NO is produced by Fe-containing nitric oxide synthase (NOS) enzymes that 

metabolize arginine to citrulline using NADPH as a reducing agent. Three primary 

isoforms mediate NO production: neuronal (nNOS) and endothelial (eNOS) are 

constitutively active and produce nanomolar levels of NO for regulatory functions, while 

the inducible (iNOS) isoform in macrophages generates micromolar NO during  

inflammatory responses.1  NO is a surprisingly poor oxidant (E°’ = -0.80 V) for a radical 

species with half-life of a few seconds in an aqueous environment.5  These features, 

coupled with its ability to diffuse through lipid membranes, make it an ideal intracellular 

messenger involved in neuronal and systemic signal transmission.  NO initiates signaling 

cascades that involve the prominent second messenger cyclic guanosine 

monophosphate (cGMP) that modulates activity of ion channels, phosphodiesterases, 

and protein kinases.  Physiological consequences of NO signaling are quite diverse and 

involve neurotransmission, blood pressure regulation, and immune system modulation.  

 The deleterious effects of NO are related to its diffusion limited reaction with O2
- 

that generates peroxynitrite (ONOO-).  During oxidative bursts, immune cells facilitate 

the formation of ONOO- to fight pathogens by simultaneously generating both NO and 

O2
-.5  At physiological pH, ONOO- is mostly protonated (pK = 6.8),1, 23 and it reacts 

slower, but more selectively than HO•.  Its complex chemistry includes nitration of 

biomolecules that can fragment DNA, oxidize lipids, and damage proteins. The primary 

fates of ONOO- are isomerization to nitrite (NO3
-) and reaction with carbon dioxide (CO2) 

that produces nitrosoperoxycarbonate (ONOOCO2
-).  Subsequent decomposition of this 
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species generates mainly NO3
- and CO2 along with 35 % carbonate radical (CO3•-) and 

nitrogen dioxide (NO2•) (Figure 1.2).  The radicals generated in the latter reaction 

facilitate most of the biological damage connected with ONOO-.  Additional reactive 

radicals are produced during the homolysis of ONOOH to NO2• and HO•, but this 

reaction accounts for only ca. 5 % of biological reactivity.1  Finally, the antioxidant GSH 

is an important sink for ONOO-, reacting with a rate constant near 600 M-1 s-1.   

  Lastly, the interactions between ROS or RNS and redox active metals are of 

biological importance.  Fe (and Cu) metal centers can redox cycle (i.e., Fe3+ ↔ Fe2+) and 

facilitate electron transfers under biological conditions.  The Fenton reaction involves 

Fe2+ (or Cu+) and H2O2 and results in the formation of HO•:31 

���� + ���� + �� →  ��
�  +  ��� +  �� •                                          (1) 

Reduced Fe2+ is regenerated in the following reaction: 

            ��
� +  �
� ���� →  ����  + �

� �� +  ��                                              (2) 

The combination of the above two reactions, where Fe2+ is the catalyst describes the 

conversion of hydrogen peroxide to hydroxyl radical: 



� ����  →  ��� +  �

� �� +  �� •                                                      (3) 

Fenton chemistry is cited as the main source of HO• production in vivo, but the 

physiological conditions and iron homeostatic mechanisms involved are not well 

understood.5, 28, 30 The sequestration of Fe by metal binding proteins and small molecule 

ligands creates a negligible concentration of free Fe and a pool of labile Fe atoms 

estimated at 50-100 μM.28  It is important to note that even Fe2+ atoms chelated by 

biological ligands (proteins, chaperones, transporters) participate in the above redox 

reactions.  In fact, chelated Fe2+ (Fe2+-EDTA) can be even more reactive than the free 

Fe2+ ion.  Thus, this chemistry represents the primary source of highly reactive radical 

species.   

 The cellular redox state is a multifaceted function of ROS production and the 

metabolism of redox active metals (primarily Fe2+ and Cu+) that is synchronized through 

interactions between the species.  Regulation of cellular iron homeostasis by NO and 

ONOO- that modulate the binding affinity of iron-regulatory proteins to DNA response 

elements provides evidence of the complex interplay.1  Another connection between 
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ROS and Fe homeostasis is the O2
- mediated release of Fe from protein Fe-S clusters, 

which increases labile Fe that can produce ROS or assists in the carbonylation of amine 

containing amino acid residues (lysine, arginine, proline, and histidine).4  As a result, 

ROS, RNS, and metal dyshomeostasis are dual contributors to the development of 

oxidative stress and related health conditions.   

 Clearly, the production, function, and decomposition of ROS and RNS are 

interrelated (Figure 1.2).  The complexity of biological oxidants and their interactions 

make it challenging to determine which species is responsible for a particular process.  

To fully understand the biological impact of ROS, the identity of each particular species 

produced under defined conditions must be linked to the associated physiological 

processes.  Interrogating the role of each individual ROS relies on the development of 

molecular probes capable of selectively detecting each ROS.  Below, is a discussion of 

the design considerations of probes for ROS and RNS that harness the unique 

selectivity, kinetic, and localization profiles of each species to unravel the complex redox 

processes in biological systems.  

II.  DESIGN CONSIDERATIONS FOR RESPONSIVE IMAGING AGENTS 

 Ultimately, the goal is to design imaging agents that can be routinely used in 

biomedical research.  As such, several strict requirements must be fulfilled by probes in 

order to generate reliable results regarding the concentration of in vivo analytes.  Probes 

must be water soluble, exhibit low toxicity, function under biological conditions, and 

permeate membranes for the detection of intracellular species.32-33  Physical 

considerations such as thermodynamic and kinetic stability in addition to parameters that 

determine sensitivity of detection must be also be optimized.  Probes for biological 

analytes thus require careful design and testing in order to accurately report on an 

analyte in vivo for biomedical research or diagnostic purposes. 
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A. Physical considerations 

 With respect to lanthanide-based imaging agents, the toxicity is primarily a function 

of the metal-ligand complex stability, as free lanthanide ions are responsible for adverse 

side effects and cell death.  The field of gadolinium-based contrast agents has illustrated 

the direct correlation between toxicity with kinetic lability and thermodynamic stability.34  

Kinetically inert complexes, including macrocyclic derivatives of Ln-DOTA and 

Ln-DOTAm (Figure 1.4), are advantageous as transmetallation with biological metals 

does not readily occur at physiological temperature in the time-frame of days.34   In 

comparison, linear ligands such as Ln-DTPA or Ln-EDTA (Figure 1.4) are kinetically 

labile with the ability to release the metal, often within minutes.  As such, complexes 

based on linear ligand frameworks pose a greater risk of being toxic if they are not 

sufficiently stable.   

 The stability of a lanthanide complex is governed primarily by the ligand denticity 

and the hardness of the donor atoms.  For a same donor type and ligand architecture, 

the smaller the denticity, the less stable the complex.  The linear octadentate ligand 

DTPA forms sufficiently stable complexes with lanthanides for in vivo applications 

(Log KGd-DTPA = 22) whereas the smaller, heptadentate ligand EDTA does not 

(Log KGd-EDTA = 17).35 Similarly, the octadentate macrocyclic ligand DOTA 

(Log KGd-DOTA = 24) yields substantially more stable – and inert – complexes than the 

heptadentate DO3A (Log KGd-DO3A = 21), which is in turn more stable than the 

hexadentate DO2A (Log KGd-DO2A = 13).34, 36-37  Next, the hardness of the donor atom 

should be considered.  Lanthanides favor harder ligands such as carboxylates over 

amides; therefore, they form more stable complexes with the DTPA ligand compared to 

the bis-methylamide derivative, DTPA-BMA (Log KGd-DTPA-BMA = 17). 36  It is important to 

note that linear chelates (DTPA and EDTA) are also more susceptible to enzymatic 

degradation than macrocylic polyaminocarboxylate ligands.38  In terms of design, 

lanthanide-based probes featuring a macrocylic polyaminocarboxylate core are preferred 

over less thermodynamically stable linear chelates.  
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Figure 1.Figure 1.Figure 1.Figure 1.4444....  Chemical structures of lanthanide complexes of common polyaminocarboxylate 
ligands. 
  
 Another consideration in the design of luminescent probes is the photophysical 

properties of the imaging agent that facilitate a change in signal in the presence of the 

analyte.  It is important to remember that responsive probes must be very reactive 

towards their analyte.  For luminescent probes, the brightness, and thus sensitivity is 

related to its ability to absorb and emit light, and its mechanism of fluorescent response.  

The extinction co-efficient (ε) of a fluorescent or phosphorescent reporter measures how 

strongly they absorb light at a defined wavelength, and the quantum yield (φ) describes 

the efficiency of emitting the absorbed light.  Sensitive luminescent reporters thus 

display large extinction coefficients (ε) and quantum yields (φ) in order to maximize 

signal intensities.   Ideally, the excitation wavelength (λex) and emission wavelength (λem) 

will be in the visible light or near infrared ranges to reduce background fluorescence and 

biological damage. A fluorescence response that increases emission intensity in the 

presence of the analyte is easier to detect than a decrease in signal.  “Turn-on” probes 

are thus favored over a turn-off emission-quenching response.32   Lastly, the 

photostability of the fluorophore must be considered to minimize photobleaching or 

destruction of the emitter by overexposure to light. 

 The physical properties of responsive magnetic resonance probes are also 

selected to maximize probe response in the presence of an analyte.  Two main 
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mechanisms of detection are employed: alteration of relaxation rates or modulation of 

chemical shift.  The magnetic properties of the nuclei detected (for example, 1H, 19F, or 

13C) including their spin state (i.e. I = ½), natural abundance, relative sensitivity, and 

gyromagnetic ratio (γ) influence the sensitivity of the probe at a particular magnetic field 

strength.  Nuclear relaxation rates in an applied magnetic field and the chemical shift 

range of the resonance frequencies also impact probe design.  Further, nuclear 

relaxation rates and chemical shift can be modulated by introducing a paramagnetic 

metal center into the probe structure.  

 

B. Biological considerations 

 To use a probe in a biological system, several additional requirements must be 

met.  Along with being water soluble, probes must exhibit high selectively for their target 

analytes over others present in biological systems, including those present at higher 

concentrations.  Selectivity is achieved by harnessing the unique reactivity of the analyte 

or, in the case of metals, their coordinating ability.  Generating a unique response to one 

particular ROS, in the presence of other related species, is a major challenge in 

developing probes to monitor oxidative stress. 

 Probe function and detection also requires responding to target analytes in a 

biological environment while in the presence of physiological ions and small molecules 

capable of interfering with signal turn-on mechanisms.  For example, luminescence 

probes that rely on excited state energy transfer mechanisms can be quenched by 

reducing agents such as ascorbate, urate, and gluthathione.39-40 Probe-protein 

interaction inside cells, as well as extracellularly with serum albumin are also reported to 

reduce luminescence intensity.41  For MRI contrast agents it is equally important to 

consider the biological matrix.  Human serum contains millimolar concentrations of 

anions such as bicarbonate (HCO3
-, 24.5 mM), hydrogen phosphate (HPO4

2-, 0.38 mM), 

and citrate (0.11 mM) along with acetate, lactate, oxalate, malonate, and acidic amino 

acids.  Thus, depending on the mechanism of analyte detection, these anions could 

interfere with a probe’s response by coordinating the lanthanide center.  This 

interference has been observed, in particular, with responsive Gd-based contrast agents 

that rely on changes in the lanthanide coordination sphere.42-46  Relating to the stability 
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of lanthanide complexes as discussed above, coordinating anions like phosphates can 

compete with ligand groups for lanthanide coordination and affect complex stability.  

Therefore, it is important to consider what alternative biological species could react with 

the probe, the relative reaction rates, and how products of these reactions can affect the 

response.47  Evaluating probe function in complex biological media is thus a crucial step 

in the process of probe development  

 Biological imaging agents, ideally, will be reversible in nature and elicit a 

ratiometric response.  Reversible sensors can monitor changes in analyte concentration 

over time and are less likely to disrupt homeostatic cellular mechanisms.  Probes are 

ratiometric if they experience a change in one signal in response to an analyte while 

another signal remains unchanged.  This type of probe is particularly valuable because 

the quantity of the analyte can be determined by the ratio of two different signal 

intensities, even if the exact concentration of the probe is unknown.  As the 

biodistribution of probes is difficult to predict, this feature is a requirement for analyte 

quantitation. 

 A primary goal in imaging biological species is to determine the cellular location of 

analyte generation or accumulation.  Thus, for detection in intracellular analytes, probes 

must be able to enter cells.  Passage through cellular membranes can be achieved 

either via passive, diffusion-based mechanisms or by endocytotic uptake processes 

such as macropinocytosis, clathrin or caveolae dependent internalization.48  Current 

research has correlated structural parameters, including lipophilicity, of metal-centered 

imaging agents to subcellular localization profiles.48-57   

 Within a cell, there are several regions relevant to ROS production: mitochondria, 

endoplasmic reticulum (ER), phagosomes, peroxisomes, and the plasma membranes 

(Figure 1.5).4  Cellular respiration occurs in the mitochondria; in particular, the electron 

transport chain that reduces O2 to H2O and forms O2
- in the process is located in the 

inner mitochondrial membrane.  The ER is the location of protein folding and processing 

where the oxidative process of disulfide bond formation occurs.  Oxidative metabolism 

within peroxisome organelles produces ROS like O2
- and NO during the catabolism of 

long chain fatty acids or biosynthesis of phospholipids and plasminogen.  Immunogenic 

phagosomes contain NADPH oxidases, of which the most studied is NOX2, that defend 
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against invading pathogens.3  Microorganisms stimulate the production of O2
- inside the 

phagosome that can be subsequently converted to H2O2 and then into OCl- or other 

reactive oxidants.  Lastly, NADPH oxidases in the plasma membrane are a relevant site 

of ROS production.  Classically, these enzymes were thought to only be involved in the 

immune response, but since they are present among all cell types, they are now 

suspected to have a more general role.4   As membrane bound enzymes, they are 

perfectly positioned to communicate with cell surface receptors through the transfer of 

electrons from NADPH to extracellular O2 creating O2
-, which is likely involved in 

signaling though H2O2 formed by SOD.  The variety of cellular ROS generation sites 

dictates the need for probes that can be directed to a specific organelles or remain in the 

extracellular space to detect analytes in defined regions.  

 

 
 

 
 
 
Figure 1.Figure 1.Figure 1.Figure 1.5555....         Structure and subcellular compartmentalization of eukaryotic cells.  
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C. Goals of biological imaging agents 

 Imaging agents that respond to ROS aim to meet the following goals, in order of 

increasing difficulty.  First generation probes report on cellular redox state, and an 

excellent example of the progress towards this goal is illustrated by the non-selective 

oxidation of dihydrodichlorofluorescein (DCFH2) to a fluorescent product.  The next goal 

is development of imaging agents that respond to a specific oxidant, which mandates 

rigorous protocols to test selectivity.  Ideally, probes will be reversible in nature and be 

capable of detecting fluxes in ROS concentrations related to the formation and 

destruction of a particular oxidant.  Currently, there are limited examples of molecular 

probes that can reversibly monitor ROS production,58-59 O2
-,60-61 OCl-,62-63  ONOO-,64 and 

NO.65 

 Another equally important aim is to design probes that identify the site of 

production or location of a specific oxidant.  These probes must be localized or targeted 

to areas of ROS production and accumulation and demonstrate a selective response.  

Progress towards this goal includes mitochondrial targeted molecular probes for highly 

reactive ROS,66 H2O2,67 O2
-,68 and NO,69 as well as a H2O2 probe that accumulates in 

lysosomes.70 

 Lastly, quantitative, or ratiometric, probes that can report on the exact 

concentration of an oxidant are desired.  Such detection systems can differentiate the 

absence of probe from the absence of analyte circumventing inconsistencies in probe 

biodistribution throughout cells.  An increasing number of ratiometric probes for 

individual ROS are being developed.  To date, most ratiometric probes for HO• utilize 

nanostructures;71-73 however, several examples of ratiometric molecular probes for HO• 

are discussed in the following section.  

 Probes that simultaneously fulfill all of these goals are highly sought after; 

however, the current focus of the field is on independently developing selective, 

reversible, localized, or quantitative probes.  For ROS, a few example probes are 

emerging that simultaneously meet multiple of these objectives, which highlights the 

inherent challenges in designing selective and sensitive probes for use in biological 

systems.   
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III. IMAGING TECHNIQUES 

 Luminescence spectroscopy (or microscopy) and magnetic resonance imaging 

(MRI) are two common molecular imaging techniques.  The advantages and 

disadvantages of these methods in terms of resolution, sensitivity, and tissue penetration 

are complementary.  For example, luminescence microscopy is ideal for imaging cellular 

events in culture or tissue slices and promoting advances in fundamental biomedical 

research.  MRI, on the other hand, is used for clinical diagnostic purposes on entire 

organisms (i.e. the human body).  Understanding the complex roles of biological 

analytes, such as ROS, first requires investigation on the cellular level that study the 

amount, location, causes, and consequences of analyte production.  Interrogation of the 

roles of a biomarker in cellular systems precedes detection in full organisms.  Ultimately, 

MRI contrast agents monitoring the analyte in vivo will provide diagnostic insights to 

guide treatment of conditions associated with oxidative stress.  

 

A. Luminescence spectroscopy 

1. Advantages and limitations 

 For cellular imaging, luminescence microscopy is widely used due to its high 

resolution and sensitivity.  Luminescence probes compatible with confocal fluorescence 

microscopy can achieve nanometer spatial resolution, thus distinguishing the subcellular 

location (cytosol, organelles, or nucleus).  Detection limits for luminescent complexes 

are dependent on the photophysical properties, mainly the extinction coefficient (ε) and 

quantum yield (φ), of the dye, but they typically fall in the nanomolar range.74  Certain 

ROS present at sub-nanomolar concentrations require the accumulation of signal 

intensity of irreversible probes for detection. As this technique is dependent on the 

absorption and emission of light, its use is restricted to cell or tissue slices with 

maximum imaging depths < 0.1 mm.75 

 A notable advantage of luminescence spectroscopy is the ability to image multiple 

analytes simultaneously.  The concurrent use of two probes, for different analytes, is 

possible when the emission wavelengths are non-overlapping allowing the signal 

intensity of each to be independently measured. With regards to ROS, multiplex imaging 
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is a valuable feature because, in theory, this technique can differentiate the production 

and downstream effects of closely related ROS.  Luminescence probes for ROS and 

RNS have recently been reviewed,47, 76 and the progress in the field of HO• detection is 

discussed below.  

2. Current luminescent probes for hydroxyl radical 

 The role of HO• in disease states has prompted the development of HO• probes 

for cellular imaging and biomedical research applications.  Reported luminescent probes 

for HO• can be divided into three categories: i) those that respond to highly reactive 

oxygen species, but lack selectively for HO•; ii) probes that respond to HO• via an 

indirect detection method; and iii) aromatic probes that become fluorescent upon 

hydroxylation.  The successes of these probes illustrate that oxidative stress, and in 

particular HO•, can be monitored in cellular systems.  However, future probes must 

overcome low selectivity of current probes for HO•, especially in the presence of 

biologically relevant concentrations of competing oxidants.  Biocompatibility must also be 

improved for widespread use.  

a. Probes for hydroxyl radical and other highly reactive oxygen species  

 Probes that are not selective for one oxidant, but respond to multiple members of 

the ROS family are only useful as general indicators of oxidative stress.  Typically, a 

response is observed in the presence of the highly reactive oxygen species (hROS) 

such as O2
-, OCl-, and HO•.  In 2009, Kundu et. al. reported a class of hydrocyanine 

dyes, including Hydro-Cy3, that belong to this category (Figure 1.6).77  These probes are 

generated by NaBH4-mediated reduction of members of the cyanine dye family and 

include probes with range of excitation and emission wavelengths extending into the 

near infrared (NIR) region.  Oxidation by O2
- or HO• linearly increases fluorescence 

intensity and converts the probe from a membrane permeable form to a cationic species 

that accumulates inside cells.  Hydro-Cy3 can monitor ROS production in rat aortic 

muscle during angiotensin II mediated signaling (a pathway implicated in atherosclerosis 

and hypertension) and in explanted mouse aortas.  Thus, this research demonstrates 

the capability of fluorescent probes to monitor ROS production in cells and tissues.   
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Figure 1.Figure 1.Figure 1.Figure 1.6666.  .  .   .   Chemical structures of non-selective fluorescent ROS probes based on cyanine 
dyes.77-79 
 

 Concurrently, the Nagano lab developed a related system for the detection of 

hROS based on cyanine dyes.78  These fluorophores absorb and emit light in the NIR 

and have lower phototoxicity, reduced background fluorescence, and better tissue 

penetration than dyes that emit in the visible range.  Preliminary work identified that 

cyanine dyes with lower oxidation potentials were more susceptible to oxidation.  For 

example, Cy7 is responsive to HO•, ONOO-, OCl-, O2
-, and high concentrations of H2O2, 

while Cy5, with a higher oxidation potential is less sensitive to these ROS (Figure 1.6).  

Further, the electron-withdrawing sulfonate groups in Cy5SO3H increased the oxidation 
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potential and suppressed reactivity with ROS. This knowledge was then used to develop 

a novel NIR emitting probe for ROS utilizing two link cyanine dyes (Cy5SO3H-CyIR, 

Figure 1.6).  A relatively non-responsive dye (Cy5SO3H) serves as the fluorophore, and 

an oxidant sensitive dye (CyIR) modulates the response by quenching fluorescence in 

the absence of ROS.  The preferential oxidation of CyIR by ROS relieves quenching and 

restores the fluorescence of Cy5SO3H.  Indeed, Cy5SO3H-CyIR experienced a near 

10-fold emission enhancement in upon treatment with HO•, ONOO-, and OCl-, but also 

responded to O2
- (6-fold) and 1O2 (4-fold).78  Lastly, this probe was applied to ROS 

imaging in HL60 cells expressing membrane-bound and cytoplasmic forms of NADPH 

oxidase, neutrophils, and a mouse model of peritonitis.  An increase in fluorescence 

intensity was observed in cells stimulated to release O2
- followed by a decrease upon 

treatment with SOD.  Thus, Cy5SO3H-CyIR can detect physiologically important ROS in 

biological systems with an emission in NIR region, but it lacks selectivity for one oxidant.  

 Using a similar strategy in 2010, Yuan et. al. designed a hybrid coumarin-cyanine 

probe, Hydro-C-Cy, for the intracellular detection of HO• (Figure 1.6).79  The reduced 

form Hydro-C-Cy emits at 495 nm, while the oxidized system, C-Cy, is fully conjugated 

and emits in the NIR. A ratiometric response is observed; the fluorescence intensity ratio 

(I651/I495) increases 210-fold in the presence of HO•.   Such a large ratiometric response 

is uncommon; fluorescence enhancements of 10 to 20-fold are suitable.  The observed 

pseudo-first order rate constant for HO• mediated oxidation was 5.1 x 10-4 s-1.79  

However, it is important to note that the rate constants for HO• and aromatic systems is 

diffusion limited (109 M-1 s-1).80-81  Surprisingly, this probe reports high selectivity for HO• 

over other ROS including O2, which contradicts the work of Kundu (discussed above) on 

a related cyanine-based system.77  Despite its poor water solubility (analyses were 

performed in 1:1 mixtures of water and acetonitrile), this probe was applied to cellular 

imaging of HO• in HeLa cells stimulated to produce ROS.  

 Another NIR emitting probe developed by the Nagano group in 2012 utilizes the 

redox properties of a bis-dimethyl tellurium-containing rhodamine dye (TeR) to respond 

to ROS in a semi-reversible manner (Figure 1.7).58  Oxidation of TeR to TeOR is 

accompanied by a large increase in fluorescence intensity (ca.  200-fold) and red shifted 

absorbance maximum (600 nm to 667 nm).  This probe responds to HO•, ONOO-, and 
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OCl-, and a negligible increase in fluorescence is observed after treatment with O2
-, 

H2O2, and NO.58  The primary advantage of this probe is its reversibility; excess 

gluthathione (GSH) reduced the oxidized probe back to the original form.  An application 

to cellular imaging confirmed the reversible nature.  HL60 cells incubated with TeR and 

H2O2, experienced an increase in fluorescence intensity corresponding to the 

intracellular production of OCl- by MPO enzymes followed by a decrease in intensity as 

the cellular redox environment was restored to the resting state.  Note that within a cell, 

GSH is present at a relatively constant concentration and also competes with the probe 

for reaction with the ROS, limiting the overall response.   

 

 

Figure 1.Figure 1.Figure 1.Figure 1.7777....     Chemical structure of a reversible fluorescent ROS probe featuring a redox active 
tellurium atom.58 
 

 An alternative strategy to detect hROS was developed by Cui et. al. in 2011.  They 

modulated Tb-luminescence with an ROS responsive sensitizing antenna.  The probe, 

Tb-BMPTA, contains a novel chelate that doubles as a sensitizer and a 

para-aminophenoxy group that quenches Tb-emission (Figure 1.8).82  ROS, including 

HO• and OCl-, cleave the ether linkage causing a 10 or 5-fold increase in luminescence 

intensity, respectively.  A year later, the same group reported a second generation, 

ratiometric probe comprised of a 1:1 mixture of Tb and Eu-AMTTA (Figure 1.8).83 Each 

complex responds to HO• and OCl-, but to a different extent allowing the ratio of Tb to 

Eu-emission (I540/I610) to ratiometrically report on the ROS concentration.  In the 

presence of micromolar concentrations of HO•, the fluorescence intensity ratio (I540/I610) 

increases 7.8-fold.83  Compared to other fluorescent ROS probes, this system has the 

advantages of long-lived luminescence emission and a large difference between the 
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excitation and emission wavelengths that avoid self-absorption issues.  However, these 

probes respond to both HO• and OCl-, and lack the selectivity needed for cell studies.  

 

 

Figure 1.Figure 1.Figure 1.Figure 1.8888....     Chemical structures of luminescent probes for HO• and OCl-.82-83 

 

b. Indirect detection methods for hydroxyl radical 

Probes in the next class do not report directly the on concentration of HO•, but 

respond to methyl radicals (•CH3) formed form the reaction of HO• and DMSO.  In the 

absence of HO•, a paramagnetic nitroxide radical TEMPO moiety linked to the 

fluorophore quenches emission and a turn-on response is generated upon the reaction 

with •CH3 that forms a stable O-methoxy group (Figure 1.9).  Thus, probes based on this 

mechanism have excellent selectivity for HO•, but require the presence of DMSO that is 

toxic to cells at high concentrations and influences membrane permeability of probes.  

The in vivo and in vitro toxicity of DMSO was recently evaluated by Galbao, et. al. Their 

findings indicate that cell viability is effected by low concentrations of DMSO (2-4% v/v), 

and in some cell lines apoptotic pathways are increased in the presence of as low as 

0.1% DMSO.84  Detection of radicals via spin trapping with electron spin resonance 

(ESR) has been applied to spin-labeled fluorophores85-86 including anthracene87 and 

naphthalene,88-89 and the most recent progress in the field is discussed below. 
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Figure 1.Figure 1.Figure 1.Figure 1.9999.... Indirect fluorescence detection of HO• by nitroxide-containing TEMPO probes.      
(a) Reaction of DMSO with HO• generates methyl radicals (•CH3) that (b) are trapped by the 
nitroxide producing a fluorescent response. 
 

 In 2012, Yapici and coworkers applied the concept of nitroxide-linked probes to 

rhodamine dyes.90  Click chemistry was employed in the synthesis of molecular probes 

TEMPO-R and (TEMPO)2-R to generate rhodamine dyes conjugated to either one or two 

nitroxide moieties, respectively (Figure 1.10).  For (TEMPO)2-R, a 400-fold fluorescence 

increase was observed upon treatment with DMSO and HO• with a detection limit in the 

micromolar range.90   As anticipated, a higher fluorescent response is achieved with the 

binitroxide containing (TEMPO)2-R versus TEMPO-R.  The analyses were performed at 

pH 4.0 to optimize HO• formation by Cu(I) mediated Fenton chemistry and to facilitate 

cleavage of the lactam ring that results in enhanced fluorescent properties.  The lactam 

ring precursor is very weakly fluorescent and allows for a high signal-to-noise ratio in the 

presence of the analyte; however, this requires acidic reaction conditions outside the 

physiological pH range.  A high selectivity (1000-fold) for HO• was observed with both 

probes when treated with approximately 20 µM of each oxidant.  Thus, further selectivity 

studies that examine the response of the probe to biologically relevant concentrations of 

each species are needed.  Cellular studies in human retinal pigment epithelial 

(ARPE-19) cells confirmed that phorbol myristate acetate (PMA) stimulated cells exhibit 

fluorescence enhancement compared to control cells.  Additionally, counterstaining 

experiments in cancer cells (HepG2) detected reacted probe in the mitochondria.   

a 

 

 

b 
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Figure 1.Figure 1.Figure 1.Figure 1.10101010.  .  .   .   Chemical structures of luminescent probes that utilize a nitroxide moiety to 
indirectly monitor HO•.90-91 
  

  Earlier in 2010, a nitroxide-containing boron dipyrromethane (BODIPY) probe, 

TEMPO-BODIPY, was designed by Li et. al. (Figure 1.10).91  TEMPO-BODIPY 

experiences an increase (ca. 10-fold) in fluorescence intensity at 600 nm upon treatment 

with HO• in the presence of DMSO.  Sensitivity experiments determined an 18 pM 

detection limit of using 2.0 μM probe and 100 μM DMSO.  Selectivity for HO• over 

biologically relevant ROS including O2
-, OCl- and ONOO- is observed.  However, in these 

studies each oxidant was administered to the probe at the same concentration which is 

not representative of the relative concentrations of ROS in biological systems.  Cell 

viability studies, performed in the absence of DMSO, with macrophages (RAW264.7) 

determined an ED50 of 69 μM, which is well above the probe concentration (1.0 μM) 

used in subsequent cellular applications.91 Confocal microscopy studies verified that 

TEMPO-BODIPY fluorescence is increased in macrophages stimulated with PMA to 

increase ROS production compared to control cells. Note that all cellular studies were 

performed in the presence of 100 μM DMSO.  Lastly, the fluorescence intensity of 

TEMPO-BODIPY was enhanced in human hepatoma cells compared to normal human 

liver cells supporting the role of ROS in tumor physiology.   
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 A final example in the class is a luminescent complex, Tb-DTPA-TEMPO-cs124, 

whose chelate is substituted with a fluorophore and nitroxide moiety that modulates the 

Tb-centered emission (Figure 1.10).92  The mechanism of probe response was 

thoroughly evaluated with both luminescence and electron paramagnetic resonance 

(EPR) spectroscopy.  Reduction of the nitroxide with ascorbate revealed a direct 

correlation between the disappearance of the EPR signal and increase in luminescence 

intensity, thus confirming that the nitroxide quenches Tb-emission.  Applications to ROS 

detection were performed with HO• generated via the photolysis of nitrate ions (NO3
-).  

Tb-luminescence (546 nm) increased linearly with irradiation time using 2 μM 

Tb-DTPA-TEMPO-cs124, 1.0 M DMSO, and 0.02 – 0.5 M KNO3 in 10 mM Tris buffer at 

pH 7.4.  The estimated detection limit for this system is in the low nanomolar range.   In 

addition to being the first example of a spin-labelled lanthanide complex, 

Tb-DTPA-TEMPO-cs124 has the advantages of water solubility and compatibility with 

time-delayed luminescence techniques. 

c. Probes based on hydroxylation of aromatic substrates  

 The final class of HO• probes are aromatic substrates that become fluorescent 

upon hydroxylation.  These probes often contain aromatic acid moieties and typically are 

highly selective for HO•.  In the 1990s, coumarin-based probes, such as coumarin-3-

carboxylic acid (3-CCA), were evaluated as HO• detectors in aqueous solutions due to 

the formation of the highly fluorescent 7-hydroxycourmain-3-carboxylic acid (7-hCCA) 

upon hydroxylation (Figure 1.11).93  A detailed kinetic study by Manevich, et. al. in 1997 

determined he rate of hydroxylation was diffusion limited (k = 5.0 x 109 M-1 s-1), agreeing 

with published rate constants for aromatic hydroxylation.80  The multiple chemically 

inequivalent hydroxylation sites on 3-CCA leads to the production of primarily 7-hCCA 

and four additional products, as determined by HPLC. The fluorescence properties of 

hydroxycoumarin are highly dependent on the site of hydroxylation.  Thus, the authors 

validated their method for detection of HO• by demonstrating the similar linear decay 

rate of 3-CCA and linear increase of 7-hCCA, establishing that the fluorescence of 

response is proportional to the amount of HO• produced.  They also demonstrated that 

HEPES, MOPS, and PIPES buffers scavenge HO• and interfere with probe response.93   
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 Over the past decade, coumarin-based probes that exhibit a change in the 

excitation and emission profiles upon hydroxylation have been applied to variety of other 

biological applications.  In particular, the succinimidyl ester derivative of 3-CCA was 

coupled to protein albumin,15 histones,94 oligonucleotides,95 poly-arginine,96 and 

phospholipids97 to study the effects of HO• in the vicinity of biomolecules.   

 Similar to the coumarin probes discussed above, a ratiometric probe was recently 

published in 2014 in which hydroxylation of an aromatic dye alters the fluorescence 

properties.  The hybrid naphthyridine-naphthalimide probe, NP-NI, capitalizes on the 

electronic modulation of both dyes at the 4- and 2-positions, respectively, by linking them 

together (Figure 1.11).98  Upon hydroxylation, the fluorescence intensity of the NP 

chromaphore at 418 nm increases, and the response of the NI dye at 552 nm stays 

relatively constant.  Thus, a liner ratiometric response (I418/I552) with respect to HO• 

concentration was observed with a detection limit of 700 nM.  Characterization of the 

product points to hydroxylated naphthyridine that dissociates from a non-fluorescent 

naphthalimide.  High selectivity for HO• was observed over ROS, but alkoxyl radicals 

(RO•) and nitric oxide (NO) were not included in the study.   Cellular applications with 

PMA stimulated macrophages (RAW264.7) revealed that NP-NI can detect 

physiologically produced HO• and has a minimal effect on cell viability up to 20 µM.  

However, the main drawback of this probe is its poor water solubility. 

 

Figure 1.Figure 1.Figure 1.Figure 1.11111111....         Chemical structures of aromatic HO• probes that exhibit changes in fluorescence 
upon hydroxylation.93 
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 Structurally less complex aromatic acids, such as benzoic acid (BA), salicylic acid 

(SA), 4-hydroxybenzoic acid (4-hBA), and terephthalic acid (TPA) have also been used 

to selectively detect HO• (Figure 1.12).99-103  This work was pioneered in the early 2000’s 

and also has more recent applications.  Hydroxylation of these probes produces 

fluorescent products such as 3,4-dihydroxybenzonic acid (3,4-dhBA) from 4-hBA and 

hydroxyterephthalic acid (hTPA) from TPA.  For monitoring HO•, TPA is preferred over 

BA, SA, and 4-hBA because, as a result of the symmetrical structure, monohydroxylation 

yields one product.102, 104  In addition, fluorescence increase upon hydroxylation of TPA 

is three times that of BA.102  Regardless of the probe, a complex and time consuming 

HPLC-based detection method is utilized to quantitate hydroxylated products in both in 

vitro and in vivo samples.  Thus, even though a 4 nM detection limit can be achieved 

with TPA,100 these methods are hindered by destructive sample preparation procedures 

prior to HPLC analysis and inability to monitor HO• in real time.  

        

    
    

    
Figure 1.Figure 1.Figure 1.Figure 1.12121212.        Chemical structures of aromatic acid-containing probes for the detection of HO•. 
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 Despite their drawbacks, these probes have been widely used to monitor HO• 

production in complex biological systems.  For example, Liu et. al. verified that in vivo 

microdialysis of 4-hBA can reliably detect HO• produced during cerebral ischemia and 

reperfusion in rats,99 and Yan and coworkers used the same technique to measure 

radical production in fetal sheep brain with TPA.105 Additional studies using TPA include 

monitoring HO• production by liver microsomal enzymes106 and the photoreactions of 

melanin.107  The more recent expansion of this technique to environmental systems, 

where TPA was used to monitor photochemical produced HO• in natural water 

systems,103 highlights the selectivity and rapid kinetics of aromatic acid systems.  

3. Summary of luminescent probes for hydroxyl radical 

 The probes discussed above are examples of a progressing field in ROS 

detection.  However, there is room for improvement particularly in terms of the selectivity 

of probes for HO• over other hROS (O2
- and OCl-).  For practical in vitro applications, 

probes must selectively respond to HO• while in the presence of a large excess of other 

ROS (H2O2 and NO) that have much longer cellular half-lives and exist at orders of 

magnitude higher concentrations.  Experimentally, this means performing selectivity 

studies with biologically relevant concentrations of analytes.  Faster reaction kinetics are 

also required to accumulate appreciable signal intensity and thus improve sensitivity to 

monitor the low physiological concentration of HO•.  Ideally, next generation probes will 

respond selectively to HO• using a direct detection method and interrogate the sites of 

HO• production with a ratiometric response capable of quantification.  Ratiometric and 

reversible probes to monitor HO• are also required to elucidate the roles of the oxidant in 

physiological processes and disease states.   
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B. Magnetic resonance spectroscopy and imaging 

1. Advantages and limitations 

 MRI is a non-invasive, in vivo detection method that measures changes in 

chemical shift or relaxation rates of nuclei in a magnetic field.  The primary advantage of 

magnetic resonance detection is the capability of generating three dimensional images 

of entire organisms.  Therefore, this technique has wide clinical and diagnostic 

applications.  Disadvantages include poor spatial resolution and low sensitivity.  Modern 

high field (> 4 T) scanners are capable of achieving ca. 100 μm resolution over several 

hours of imaging, while many clinical scanners can distinguish objects separated by 

millimeters.   

 Compared to luminescence-based methods, MRI has a low sensitivity and 

requires millimolar concentrations of contrast agent for detection.  Traditional 

gadolinium-based MRI agents rely on altering the relaxation rates of 1H nuclei of water 

molecules.  As water is highly abundant within the body (~ 55 M), sensitivity is not a 

limiting issue in the presence of contrast agents.  However, MRI contrast agents that 

detect alternative nuclear magnetic resonance active nuclei (13C, 15N, 19F) typically 

employ strategies (vide infra) to increase sensitivity, such as increasing relation rates 

with a paramagnetic lanthanide metal.   

2. Current magnetic resonance probes for oxidative stress  

 Recent work in the detection of oxidative stress has produced three contrast 

agents for ROS: a 13C probe for H2O2, a paramagnetic chemical exchange saturation 

transfer (PARACEST) agent for NO, and a 19F probe for HO•.  These contrast agents 

generate a change in signal, not by altering the relaxation rate, but through a change in 

chemical shift upon reaction with the analyte.  The limited number of examples not only 

indicates the challenges in developing responsive contrast agents with the required 

selectivity and sensitivity for detection, but also highlights the potential growth for this 

area of research.  

 The most recently published (in 2011) contrast agent for oxidative stress is a 

13C MRI probe for H2O2 developed by the Chang laboratory.108  The H2O2 mediated 

oxidation of a 13C labeled benzoylformic acid (13C-BFA) to benzoic acid (13C-BA) 
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proceeds with in minutes (Figure 1.13).  High micromolar (200-1000 μM) levels of H2O2 

can be detected by monitoring the ratio of the 13C signal of the labeled carboxylate in the 

product (δC = 176 ppm) versus the unlabeled carboxylate in the unreacted 13C-BFA 

(δC = 173.5 ppm).108  Note that these concentrations of H2O2 are well above the 

physiologically relevant upper level of 1 µM.6, 15  Additionally, this probe exhibits a ca. 8 

fold selectivity for H2O2 over other ROS.  Phantom images were collected at 14.1 T 

using hyperpolarized samples of 13C-BFA (20 mM) to enhance the MRI signal intensity in 

the presence of 0-200 mM H2O2.  Results indicate that reaction based detection coupled 

with a hyperpolarized 13C MRI probe lacks the sensitivity to monitor H2O2 in vivo. 

 

 

Figure 1.Figure 1.Figure 1.Figure 1.13131313.  .  .  .  Chemical structure of the 13C MRI contrast agent responsive to H2O2.108  

 

 The second example of an MRI agent for oxidative stress is an irreversible 

paramagnetic chemical exchange saturation transfer (PARACEST) agent responsive to 

NO in the presence of O2.  Contrast agents of this type possess one or more protons 

that exchange with bulk water. Upon saturation of the resonance frequency of an 

exchangeable proton, chemical exchange reduces the single intensity of the bulk water.  

A paramagnetic lanthanide ion shifts the resonance of the exchangeable 1H, allowing it 

to be detected at a unique chemical shift.  The NO responsive PARACEST agent, 

Yb-DO3A-oAA, contains an orthoaminoanilide moiety that is oxidized by NO in the 

presence of O2 to a nitroso intermediate that results in the formation of the dimeric 

triazene product (Figure 1.14).9  In vitro studies revealed that a complete deactivation of 

the PARACEST effects for the exchangeable amide and amine are observed upon 

reaction of Yb-DO3A-oAA (40 mM) with NO for 1 h.  This system demonstrates that 

responsive MRI agents can be developed using PARACEST, but also illustrates that 

positioning probes at the sites of oxidant production is needed for in vivo applications.  
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Figure 1.Figure 1.Figure 1.Figure 1.14141414.  .  .  .  Chemical structure of an NO responsive PARACEST agent.109  

   

 The only published magnetic resonance detection method for HO• is a fluorinated 

contrast agent developed by Aime et. al. in 1999.  Hydroxylation of the hydroxyphenyl-

trifluoroacetanilide (CF3PAF, δF = -76.16 ppm) releases trifluoroacetamide (TFAM, 

δF =  -76.79 ppm) or trifluoroacetic acid (TFA, δF =  -76.14 ppm) in a reaction followed by 

19F NMR (Figure 1.15).110  Using a ca. 5 mM solution of CF3PAF, the relative signal 

intensity of the TFAM product increased with respect to the concentration of HO• (which 

is proportional to the concentration of Fenton regent in the presence of H2O2).  This 

probe was further applied to measure the antioxidant capacity of biomolecules and 

biofluids via 
19F NMR spectroscopy.  Due to the small change in fluorine resonance 

frequency (ΔδF) of < 1 ppm upon hydroxylation, these studies were limited to 19F NMR, 

as the individual resonances could not be resolved by MRI.  Future fluorine contrast 

agents should capitalize on the large chemical shift range of the 19F nuclei to design 

probes with resonances of the reacted and unreacted forms that are separated by ca. 

10 ppm and, thus, are compatible with MRI. 

  

 

Figure 1.Figure 1.Figure 1.Figure 1.15151515....     Chemical structure of CF3PAF a 19F NMR contrast agent for HO•.110 
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3. Summary of magnetic resonance detection for oxidative stress 

 The limited examples of MR probes for oxidative stress illustrates that this field is 

at its infancy.  Interestingly, the three published examples utilize different techniques – 

hyperpolarized 13C MRI, PARACEST, and 19F NMR – to generate responsive contrast 

agents, and they monitor different analytes.  The obstacle shared by the MR probes 

discussed above is low sensitivity.  Currently, the detection limits of MRI probes and the 

concentration of the oxidative species are separated by orders of magnitude.  Future 

generation ROS or RNS probes must have sufficient sensitivity to detect their analytes 

within the physiological concentration ranges, while still maintaining high selectivity.  

Fundamental research in the development of responsive contrast agents and the 

application of these techniques to other biological analytes will strongly impact the 

promulgation of HO• MR probes.  

IV. FOCUS OF THE CURRENT STUDY 

 The primary focus of this work is to develop responsive imaging agents for HO• 

that are selective, sensitive, and function in a biological environment.  This goal is 

addressed through the development of aromatic acid containing luminescent and 

fluorine magnetic resonance probes.  In addition to high selectivity, these probes monitor 

HO• directly, unlike some recently developed probes.   

 Initial work, described in chapter two, focuses on developing time-delayed 

luminescence probes that directly detect HO• in aqueous solutions with high sensitivity 

and high selectivity.  Components of the probe include a sensitizing antenna that is 

formed upon hydroxylation and a Tb-complex with open coordination sites to bind the 

antenna. The increase in luminescence intensity of Tb-DO3A in the presence of 

hydroxylated aromatic acid and aromatic amide containing antennas is measured with 

respect to the non-hydroxylated, pre-antenna derivative of each.  Formation of a weak 

ternary complex between the lanthanide complex and the hydroxylated antenna is 

examined by varying the Tb-chelate, measuring the hydration number (q) of the metal 

center, and temperature dependent titrations.  Further, the selectivity for the optimized 
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probes over other ROS is investigated, and the increase in Tb-emission upon 

hydroxylation of the pre-antenna is used to monitor the in vitro production of HO•. 

 In chapter three, a water soluble 19F MRI contrast agent for HO• is presented.  

First, the ratiometric response of a diamagnetic fluorinated benzoic acid probe is 

evaluated using 19F NMR by monitoring the appearance of a reaction product relative to 

the disappearance of the probe.  In vitro production of HO• is followed by 19F MRI, and 

the selectivity for the probe for HO• over other ROS is also assessed.  Next, the 

synthesis and evaluation of second generation probes, which feature a paramagnetic 

lanthanide to increase sensitivity, are discussed.   

 Finally, in chapter four, the cellular compatibility of luminescent lanthanide probes 

based on a macrocyclic polyaminocarboxylate (DOTA) ligand framework is evaluated.  A 

library of complexes is synthesized that systematically and independently varies either 

the sensitizing antenna or the hydrophobicity of substituents. In vitro analysis of the 

complexes includes spectrophotometric characterization, quantum yield determination, 

and assessment of luminescence quenching in cell lysate.  Then, the effect of each 

complex on cell viability is evaluated, and the cellular association is measured by 

ICP-MS and fluorescence spectroscopy. 
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I. SYNOPSIS 

 Molecular probes for the detection of hydroxyl radical (HO•) by time-delayed 

luminescence spectroscopy directly in water at neutral pH with high sensitivity and 

selectivity are presented.  The bimolecular probes consist of a lanthanide complex with 

open coordination sites and a reactive pre-antenna composed of an aromatic acid or 

amide; the latter binds to and sensitizes terbium emission upon hydroxylation by HO•.  

These probes exhibit long luminescence lifetimes compatible with time-delayed 

measurements that remove interfering background fluorescence from the sample.  Six 

different reactive pre-antenna (benzoate, benzamide, isophthalate, isophthalamide, 

trimesate, and trimesamide) and two different terbium complexes (Tb-DO3A and 

Tb-DO2A) were evaluated.  Of these the trimesamide/Tb-DO3A system enables the 

most sensitive detection of HO• with a ca. 1000-fold increase in metal-centered 

time-delayed emission upon hydroxylation of the pre-antenna to 2-hydroxytrimesamide.  

Excellent selectivity for both the trimesamide/Tb-DO3A and trimesate/Tb-DO3A systems 

over other reactive oxygen and nitrogen species are observed.  Notably, the increase in 

metal-centered luminescence intensity is not associated with a decrease in the hydration 

number (q) of Tb-DO3A, suggesting that the antenna is interacting with the lanthanide 

via a second sphere coordination environment or that coordination by the antenna 

occurs by displacement of one or more of the carboxylate arms of DO3A.  Formation of 

a weak ternary complex Tb-DO3A•hydroxytrimesamide was confirmed by 

temperature-dependent titrations that illustrated a decrease in Kapp with increasing 

temperature.   
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II. INTRODUCTION  

A. Detecting hydroxyl radical by luminescence 

  Previous luminescent probes for HO•, as discussed in Chapter 1 (Section III.A.2), 

suffer from low selectivity over other ROS or detect HO• using an indirect method.  Since 

ROS and RNS react with each other and share downstream biological targets, probes 

that selectively – and directly – detect one species are required.  Additionally, probes 

compatible with multiplex imaging could simultaneously monitor two (or more) species 

and dissect their interrelated nature.  Current probes also lack the rapid kinetics required 

to improve the sensitivity of detection, which is particularly important for monitoring ROS 

that are present at low concentrations.  Enhanced biological compatibly is also desired.  

Not all current probes are water soluble, and additional techniques to mitigate the 

interference of background fluorescence would greatly impact biomedical research. 

 In this chapter, the design, evaluation, and mechanism of action of molecular 

probes for the detection of HO• by time-delayed luminescence spectroscopy are 

described.  The probes function in water at neutral pH with high sensitivity and are highly 

selective for HO• over other competing ROS and RNS.  The bimolecular probes consist 

of an aromatic acid that reacts with HO• to produce hydroxylated chromophores that 

interact with the Tb-DO3A center and sensitize lanthanide-centered emission.  Further, 

this method of detection is non-destructive, selective, and can directly measure HO•.  

 

B. Advantages of lanthanide-based luminescent probes 

The probes discussed in this chapter utilize a luminescent lanthanide metal to elicit 

an analyte-induced response.  Several distinct advantages over traditional fluorescent 

probes are gained with luminescent lanthanide probes.  The large Stokes shift – or 

difference in the absorption wavelength of the antenna and emission wavelength of the 

lanthanide – reduces self-absorption issues and provides the advantage of a linear 

relationship between the probe response and the concentration of complex.33  Typical 

Stokes shifts for terbium (Tb) and europium (Eu) are greater than 200 nm, compared to 

approximately 20 nm for common fluorescent dyes.33  Secondly, lanthanides have 

narrow emission bands (~20 nm) and emission spectra that do not overlap, allowing for 
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simultaneous detection of multiple analytes (Figure 2.1a).33  A third advantage of 

lanthanide-based probes is a long luminescence lifetime, on the order of milliseconds, 

that arises from the Laporte forbidden energy transition from the 5D to 7F states of the 

lanthanide.33, 111 Organic dyes and traditional chemsensors or probes have nanosecond 

fluorescent lifetimes, while components in biological media are in the sub-microsecond 

range.33  The long-lived luminescence eliminates the interference of background 

fluorescence with measurements, making these probes particularly useful for 

time-delayed assays in complex biological samples.33, 112-113  In time-delayed detection 

methods, a pulse of excitation light is followed by a time delay, which allows signal 

intensity from background fluorescence to decay prior to detection of the luminescence.  

The resulting signal is a function solely of the lanthanide-complex bound to analyte, 

without interfering background fluorescence or scattered light (Figure 2.1b).33, 111  So 

strictly from theory alone, lanthanide-based probes are able to overcome the significant 

limitations of their organic counterparts.  With large Stokes shifts, narrow emission 

bands, and long luminescent lifetimes, lanthanide-based molecular probes are 

intrinsically well suited use in biological systems.   

    

    
Figure 2.Figure 2.Figure 2.Figure 2.1111. . .  .  Spectral features of lanthanide metals that facilitate their use in biological 
applications.  (a) Characteristic emission spectra of lanthanide complexes illustrating their narrow, 
non-overlapping emission bands.111  (b) Time-delayed detection methods allow background 
fluorescence from the sample to decay prior to measuring the lanthanide emission intensity.33 
 

a                                               b 
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C. Design principles of lanthanide-based probes 

 Lanthanide sensor design is based on four principles that increase luminescence 

quantum yield: efficiency of exciting the triplet state of the antenna, the energy level 

difference between the excited antenna and the lanthanide metal, the physical distance 

between the antenna and lanthanide, and the number of water molecules bound to the 

lanthanide metal center.  The probe described in this chapter uses each of these 

mechanisms to respond to HO• with a high sensitivity of detection.  Forbidden 4f - 4f 

transitions of lanthanides causes low molar absorption coefficients (< 3 M-1 s-1) and, for 

practical biological imaging, the lanthanide cannot be directly excited.111  Therefore, an 

antenna is incorporated that absorbs energy and transfers it to the lanthanide (Figure 

2.2a). The energy transfer process is outlined by the Jablonski diagram in Figure 2.2b. In 

the first step, the antenna is excited to the singlet state (S1) upon absorbing excitation 

light.  Subsequent intersystem crossing (ISC) populates the lowest lying triplet excited 

state (T1), which must be slightly higher in energy than the lanthanide 5D state.  When in 

close proximity, intramolecular energy transfer (ET) occurs from the antenna triplet state 

(T1) causing the metal to be excited into the emitting state (5D).  The lanthanide metal 

ion then emits visible light upon relaxation to the 7F states; the energy level differences 

correspond to characteristic values for each lanthanide (545 nm for Tb and ~ 614 nm for 

Eu).33   

 

 
Figure 2.Figure 2.Figure 2.Figure 2.2222....   Design and energy transfer of lanthanide-based luminescent probes:33                   
(a) Lanthanides are sensitized indirectly through an antenna, and (b) the energy transfer pathway 
from the antenna to the emitting lanthanide metal. Deactivation of the lanthanide metal to the 
ground state is characterized by the production of green (Tb) or red (Eu) light.    
 

a                                                                   b 
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 Efficient energy transfer from the antenna to the lanthanide metal center relies on 

the energy levels of the two components and the distance that separates them.  The 

excited triplet state of the antenna must be higher in energy than the 5D energy level of 

the lanthanide for the energy transfer to occur.  A triplet state lower in energy than the 5D 

lanthanide cannot populate the higher energy state, while an energy level that is too high 

results in direct fluorescence of the antenna.33   However, if the lanthanide 5D is too 

close in energy to the T1 back energy transfer (BET) to the excited antenna can occur.  A 

shorter distance, d, between the antenna and lanthanide metal ion facilitates the Förster 

energy transfer, according to an d6 dependence.  Lastly, the number of water molecules 

coordinated to the lanthanide center affects the quantum yield.  Fewer bound water 

molecules reduces the likelihood of a non-radiative decay processes occurring through 

the vibration of high-energy O-H bonds.111  Therefore, ligand design should minimize the 

number of coordination sites around the lanthanide available for interactions with water 

molecule in the analyte-responsive state.33, 111  

 

D. First generation time-delayed luminescent HO• probe 

 Given the unmet need to detect HO•, a luminescent lanthanide-based probe for 

the sensitive and selective detection of HO• in water was reported.81 An effective 

strategy involves modulating the ability of an antenna to sensitize the lanthanide 

luminescence.  Altering the efficiency of energy transfer of an antenna to an emissive 

lanthanide can in turn be achieved by changing either the excited triplet state energy 

level of the antenna, and/or the antenna-lanthanide distance.33, 111  A first generation 

probe was designed to make use of both of these parameters.  This probe consists of a 

Tb-DO3A complex and 10 equivalents of trimesate (Figure 2.3a).  In the absence of 

HO•, the trimesate does not interact with the Tb-center and, therefore, does not sensitize 

the lanthanide emission.  Initially it was thought the hydroxylated antenna, formed by the 

reaction of the pre-antenna with HO•, would coordinate to the terbium and displace two 

water molecules.  The coordinated antenna, with a triplet excited state energy level more 

amenable to terbium emission causes an 11-fold increase in the time-delayed 

luminescence intensity upon reaction with a steady-state concentration of 0.75 fM HO• 

over at time of one hour (Figure 2.3b) with excellent selectivity (Figure 2.3c).81   
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Figure 2.Figure 2.Figure 2.Figure 2.3333....     Hydroxyl radical sensing via reaction with trimesate and Tb-DO3A.81                     
(a) The hydroxylated trimesate antenna interacts with the Tb-DO3A causing an increasing in 
metal-centered emission.  (b) The relative time-delayed luminescence of Tb-DO3A-trimeasate as 
a function of time with [HO•]ss = 0.37 fM.  (c) Selectivity of Tb-DO3A-trimesate for HO• versus 
other ROS.  
  

 

 In this study, the mechanism of the turn-on luminescence of lanthanide probes for 

HO• is investigated enabling the design of a new system with improved sensitivity and 

selectivity.  The nature and coordinating ability of the antenna are evaluated via 

luminescence lifetime measurements and temperature dependent titrations.  The 

sensitivity of the antennas with the highest turn-on potentials is determined by 

monitoring HO• produced by the photolysis of H2O2.  Two antennas, trimesate and 

trimesamide, are demonstrated to selectively respond to HO• over other ROS and RNS. 

 

 

a 

 

 

 

 
 
 

b                                                   c                                                                                       
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II. RESULTS AND DISCUSSION 

A. Probe design  

 The probe consists of two parts: a lanthanide complex with at least two open 

coordination sites initially occupied by solvent molecules and a pre-antenna that 

coordinates to and sensitizes terbium only after reaction with HO•.  The first step in 

optimizing its design so as to achieve maximum sensitivity for HO• detection, focuses on 

the nature of the pre-antenna.  Six different pre-antenna/antenna pairs are investigated: 

salicylicate, salicylamide, isophthalate, isopthalamide, trimesate and trimesamide 

(Figure 2.4).  The acids were selected because of their previous incorporation into HO• 

detection systems,81, 100-102, 114  while the amides were chosen due to reports by 

Raymond and co-workers that demonstrated the isophthalamide and trimesamide based 

ligands are efficient sensitizers of lanthanide (Sm3+, Eu3+, Tb3+, Dy3+, Ho3+) emission.115   

The trimesate and trimesamide antennas have the additional benefit of three equivalent 

primary reaction sites for HO•; reaction at either site results in the same product.  Thus, 

the investigated antennas were selected to maximize both HO• response and relative 

time-delayed luminescence intensity.   

 

B. Effect of the antenna 

 The probe further relies on a substantial difference in sensitizing ability between 

the antenna and the pre-antenna.  For example, trimesamide (2.6a) does not sensitize 

Tb effectively, but upon reaction with HO• it yields the powerful hydroxytrimesamide 

(2.6b) antenna (Figure 2.5).  This same turn-on of luminescence intensity is experienced 

in the presence of the other hydroxylated antennas investigated with respect to the 

corresponding pre-antenna.  In each case, the time-delayed excitation, time-delayed 

emission, and fluorescence intensity of Tb-DO3A is substantially higher for the 

hydroxylated antenna than for its corresponding non-hydroxylated analog (Figure 2.6).  
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Figure 2.Figure 2.Figure 2.Figure 2.4444....  Chemical structures of pre-antennas and hydroxylated antennas. 

  

 To evaluate which pre-antenna/antenna pair yielded the highest response, ability 

of each aromatic compound to sensitize terbium emission under identical conditions was 

determined.  Note that each pre-antenna/antenna pair requires a different excitation 

wavelength in order to maximize the luminescence intensity in the presence of the 

hydroxylated antenna. In each case, this wavelength was selected from the time-delayed 

excitation profiles of the hydroxylated antenna/Tb-DO3A mixture (Figures 2.7 – 2.12).  
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Figure 2.Figure 2.Figure 2.Figure 2.5555.... (a) Time-delayed excitation (grey), time-delayed emission (black) and                   
(b) fluorescence profiles of Tb-DO3A in the presence of pre-antenna 2.6a (dashed) or 
hydroxylated antenna 2.6b (solid).  Conditions: [Tb-DO3A] = 10 µM, [(pre)antenna, 2.6a or 2.6b] 
= 100 µM, [Tris] = 10 mM, pH 7.2, slit widths (excitation and emission) = 10 nm, T = 20 °C.  
Phosphorescence parameters for (a): λem = 545 nm, λex = 328 nm, time delay = 0.1 ms.  
Fluorescence parameters for (b): λex = 314 nm.  
 

 

 
    

Figure 2.Figure 2.Figure 2.Figure 2.6666....  (a) Time-delayed excitation, (b) time-delayed emission, and (c) fluorescence 
profiles of Tb-DO3A in the presence of 2.1a (dashed cyan), 2.1b (solid cyan), 2.2a (dashed 
green), 2.2b (solid green), 2.3a (dashed magenta), 2.3b (solid magenta), 2.4a (dashed blue), 
2.4b (solid blue), 2.5a (dashed red), 2.5b (solid red), 2.6a (dashed black), or 2.6b (solid black).  
Conditions: [Tb-DO3A] = 10 µM, [(pre)antenna] = 100 µM, [Tris] = 10 mM, pH 7.2, slit widths 
(excitation and emission) = 10 nm, T = 20 °C.  Excitation wavelengths: 2.1a/b, λex = 321 nm; 
2.2a/b,  λex = 333 nm; 2.3a/b,  λex = 333 nm; 2.4a/b,  λex = 324 nm; 2.5a/b,  λex = 331 nm; 2.6a/b,  
λex = 328 nm.  Phosphorescence parameters:  delay = 0.1 ms, gate time = 5.0 ms,                  
decay time = 0.02 s.   
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Figure 2.Figure 2.Figure 2.Figure 2.7777....     Titration of Tb-DO3A with salicylate (2.1b): (a) time-delayed excitation spectra,      
(b) time-delayed emission spectra, and (c) fluorescence spectra. Conditions: [Tb-DO3A] = 10 µM, 
[(pre)antenna] = 0-200 µM, [Tris] = 10 mM, pH 7.2, slit widths = 10 nm, T = 20 °C.  
Phosphorescence parameters: λem = 545 nm, λex = 321 nm, time delay = 0.1 ms, gate time = 
5.0 ms, decay time = 0.02 s.  Fluorescence parameters: λex = 306 nm.  
 

 
Figure 2.Figure 2.Figure 2.Figure 2.8888. Titration of Tb-DO3A with hydroxyisophthalate (2.2b): (a) time-delayed excitation 
spectra, (b) time-delayed emission spectra, and (c) fluorescence spectra. Conditions: 
[Tb-DO3A] = 10 µM, [(pre)antenna] = 0-200 µM, [Tris] = 10 mM, pH 7.2, slit widths = 10 nm, 
T = 20 °C.  Phosphorescence parameters: λem = 545 nm, λex = 333 nm, time delay = 0.1 ms, gate 
time = 5.0 ms, decay time = 0.02 s.  Fluorescence parameters: λex = 324 nm.  
 

 

Figure 2.Figure 2.Figure 2.Figure 2.9999....         Titration of Tb-DO3A with hydroxytrimeasate (2.3b): (a) time-delayed excitation 
spectra, (b) time-delayed emission spectra, and (c) fluorescence spectra. Conditions: 
[Tb-DO3A] = 10 µM, [(pre)antenna] = 0-200 µM, [Tris] = 10 mM, pH 7.2, slit widths = 10 nm, 
T = 20 °C.  Phosphorescence parameters: λem = 545 nm, λex = 333 nm, time delay = 0.1 ms, gate 
time = 5.0 ms, decay time = 0.02 s.  Fluorescence parameters λex = 327 nm.  
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Figure 2.Figure 2.Figure 2.Figure 2.10101010. Titration of Tb-DO3A with salicylamide (2.4b): (a) time-delayed excitation spectra, 
(b) time-delayed emission spectra, and (c) fluorescence spectra. Conditions: [Tb-DO3A] = 10 µM, 
[(pre)antenna] = 0-200 µM, [Tris] = 10 mM, pH 7.2, slit widths = 10 nm, T = 20 °C. 
Phosphorescence parameters: λem = 545 nm, λex = 324 nm, time delay = 0.1 ms, gate time = 5.0 
ms, decay time = 0.02 s.  Fluorescence parameters: λex = 328 nm.  
 

 

Figure 2.Figure 2.Figure 2.Figure 2.11111111.... Titration of Tb-DO3A with hydroxyisophthalamide (2.5b): (a) time-delayed 
excitation spectra, (b) time-delayed emission spectra, and (c) fluorescence spectra. Conditions: 
[Tb-DO3A] = 10 µM, [(pre)antenna] = 0-200 µM, [Tris] = 10 mM, pH 7.2, slit widths = 10 nm, 
T = 20 °C.  Phosphorescence parameters: λem = 545 nm, λex = 331 nm, time delay = 0.1 ms, gate 
time = 5.0 ms, decay time = 0.02 s.  Fluorescence parameters: λex = 320 nm.  
 

 

Figure 2.Figure 2.Figure 2.Figure 2.12121212. Titration of Tb-DO3A with hydroxytrimesamide (2.6b): (a) time-delayed excitation 
spectra, (b) time-delayed emission spectra, and (c) fluorescence spectra. Conditions: 
[Tb-DO3A] = 10 µM, [(pre)antenna] = 0-200 µM, [Tris] = 10 mM, pH 7.2, slit widths = 10 nm, 
T = 20 °C.  Phosphorescence parameters: λem = 545 nm, λex = 328 nm, time delay = 0.1 ms, gate 
time = 5.0 ms, decay time = 0.02 s.  Fluorescence parameters: λex = 314 nm.  
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   Keeping all other experimental conditions constant, the ability of each 

hydroxylated antenna to modulate Tb-DO3A luminescence can be directly compared 

(Figure 2.13).  Alternatively, this turn-on ability can also be expressed by the change in 

relative integrated emission intensity (∆I/I0 = I/I0 Tb•antenna - I/I0 Tb•pre-antenna) as calculated 

with 10 equivalents of the antenna per Tb-DO3A (Table 2.2). Note that these 

comparisons are possible because the same excitation wavelength and photomultiplier 

tube (PMT) voltage was used for the pre-antenna and antenna in each pair; all other 

experimental parameters were kept constant for all pre-antenna/antenna pairs.  The high 

∆I/I0 values, ca. 1000-fold increase for pre-antenna/antenna pairs 2.2, 2.3, 2.5, and 2.6 

indicate that the hydroxyisophthalate (2.2b), hydroxytrimesate (2.3b), 

hydroxyisophthalamide (2.5b), and hydroxytrimesamide (2.6b) antennas are significantly 

more efficient antennas for Tb-DO3A than the salicylate (2.1b) and salicylamide (2.4b).  

 

 

Figure 2.Figure 2.Figure 2.Figure 2.13131313. . .  .  Time-delayed emission of Tb-DO3A in the presence of hydroxylated antennas: 
2.1b (magenta), 2.2b (red), 2.3b (black), 2.4b (grey), 2.5b (blue), and 2.6b (green).  Conditions: 
[Tb-DO3A] = 10 µM, [antenna] = 100 µM, [Tris] = 10 mM, pH 7.2, time delay = 0.1 ms, slit widths 
(excitation and emission) = 10 nm, T = 20 °C.  Excitation wavelengths (λex): 2.1b,  321 nm; 2.2b, 
333 nm; 2.3b, 333 nm; 2.4b,  324 nm; 2.5b, 331 nm; 2.6b, 328 nm.   
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Table 2.Table 2.Table 2.Table 2.1111. Relative integrated emission intensity (I/I0) for each pre-antenna and antenna pair 
representing the turn-on ability of each pre-antenna.   
 

Pre-Antenna Antenna   

    
λex 

(nm) 
I/I0      

λex 

(nm) 
I/I0  ∆I/I0  

2.1a benzoate 321 1.2 2.1b Salicylate 321 23 22 

2.2a isophthalate 333 1.1 2.2b Hydroxyisophthalate 333 1141 1140 

2.3a trimesate 333 1.4 2.3b Hydroxytrimesate 333 1131 1130 

2.4a benzylamide 324 1.8 2.4b Salicylamide 324 25 23 

2.5a isophthalamide 331 1.0 2.5a hydroxyisophthalamide 331 1104 1103 

2.6a trimesamide 328 3.9 2.6a hydroxytrimesamide 328 992 988 

 
Conditions:  [Tb-DO3A] = 10 µM, [(pre)antenna] = 100 µM, [Tris] = 10 mM, pH 7.2, time 
delay = 0.1 ms, slit widths (excitation and emission) = 10 nm, T = 20 °C.  I = integrated emission 
intensity from 470 – 635 nm. ∆I/I0 = I/I0 Tb•antenna - I/I0 Tb•pre-antenna.  Each value represents 
the average of 3 replicates (n = 3). 

 

 In addition to a high luminescence intensity, the ideal antenna for HO• detection is 

able to respond to the analyte when it is present in low concentrations (Figure 2.14). 

With concentrations in the micromolar range, the hydroxytrimesate (2.3b) and 

hydroxytrimesamide (2.6b) cause the largest increases in the luminescence of Tb-DO3A 

(Figure 2.15).  The 500-fold luminescence increase of 2.3b and 2.6b when present at 

0.5 equivalents to Tb-DO3A, make these antennas the most promising candidates for 

the detection of HO• at biologically relevant concentrations.  Interestingly, for some 

systems (hydroxyisophthalate, 2.2b, hydroxytrimesate, 2.3b, hydroxyisophthalamide, 

2.5b, hydroxytrimesamide, 2.6b), the maximum excitation wavelength is red shifted at 

higher concentration of antenna (Figures 2.7- 2.12).  These observations suggest that at 

higher concentrations, the antenna is not fully solvated but is likely aggregated, resulting 

in multiple different luminescing states.  
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Figure 2.Figure 2.Figure 2.Figure 2.14141414....  Relative time-delayed luminescence (I/I0) of Tb-DO3A as a function of increasing 
concentrations of (a) acid (pre)antennas: 2.1a (open square), 2.1b (filled square), 2.2a (open 
circle), 2.2b (filled circle), 2.3a (open triangle), 2.3b (filled triangle), and (b) amide (pre)antennas: 
2.4a (open square), 2.4b (filled square), 2.5a (open circle), 2.5b (filled circle), 2.6a (open 
triangle), 2.6b (filled triangle).  Conditions: [Tb-DO3A] = 10 µM, [(pre)antenna] = 0 - 200 µM,   
[Tris] = 10 mM, pH 7.2, time delay = 0.1 ms, slit widths (excitation and emission) = 10 nm,           
T = 20 °C.  Excitation wavelengths: 2.1a/b, λex = 321 nm; 2.2a/b,  λex = 333 nm; 2.3a/b,  λex = 333 
nm; 2.4a/b,  λex = 324 nm; 2.5a/b,  λex = 331 nm; 2.6a/b,  λex = 328 nm.  I = integrated emission 
intensity from 470 – 635 nm.  Results are mean ± SD (n = 3). 
 

 
Figure 2.Figure 2.Figure 2.Figure 2.15151515....  Relative time-delayed luminescence (I/I0) of Tb-DO3A as a function of increasing 
concentrations of antennas: 2.2b (open square), 2.3b (open circle), 2.5b (filled triangle), and 2.6b 
(filled diamond).  Conditions: [Tb-DO3A] = 10 µM, [antenna] = 0 - 10 µM, [Tris] = 10 mM, pH 7.2, 
time delay = 0.1 ms, slit widths (excitation and emission) = 10 nm, T = 20 °C.  Excitation 
wavelengths: 2.2b, λex = 333 nm; 2.3b, λex = 333 nm; 2.5b, λex = 331 nm, 2.6b, λex = 328 nm.        
I = integrated emission intensity from 470 – 635 nm.  Results are mean ± SD (n = 3). 

0 50 100 150 200

0

500

1000

1500

 

 
a

I/
I 0

[(pre)antenna] (µM)

0 50 100 150 200

0

500

1000

1500

 

 
b

I/
I 0

[(pre)antenna] (µM)

2 4 6 8 10

0

250

500

750

I/
I 0

[antenna] (µM)

O
O

O
O

O

O

OH



Luminescence Detection of HO•                                                                                        Chapter 2  

48 

 

C. Formation of a ternary complex 

 The substantial increase in time-delayed luminescence of the terbium center up to 

700-fold for a 1:1 mixture of 2-hydroxytimesamide and Tb-DO3A in the µM range 

strongly implies a simple equilibrium and the formation of ternary complex between the 

hydroxylated antenna and the lanthanide complex.  These results are consistent with 

prior observations by Gunnlaugsson and co-workers with similar systems.114, 116  With 

this in mind, the initial hypothesis was that the substantial increase in metal-centered 

emission was due to direct coordination of the hydroxylated antenna to the terbium ion. 

One should note, however, that the data do not necessarily prove that the antenna is 

directly coordinated to the metal.   

 To establish the presence of this ternary complex, the effect of temperature on the 

binding curve was evaluated.  Energy transfer from the antenna to the lanthanide can in 

theory occur either via a static or a dynamic mechanism.  The first step involves 

equilibrium and formation of a ternary complex, Tb-DO3A•antenna, which is entropically 

disfavored.   

� − ��3� + ������� ⇌ � − ��3� • ������� 

Assuming that energy transfer from the triplet excited state of the antenna to the 5D state 

of the lanthanide is relatively constant in the temperature range considered, an increase 

in the temperature would shift the equilibrium to the left, resulting in a decrease in Kapp.  

On the other hand, if no ternary complex is formed, sensitization of the lanthanide ion 

would occur in a purely dynamic or collisional mechanism that would be favored at high 

temperature.  In this case, Kapp, would increase as temperature increases.  It is apparent 

from the temperature-dependence titration of Tb-DO3A with 2-hydroxytrimesamide 

(2.6b) that Kapp decreases as the temperature increases from 5 °C to 80 °C 

(Figure 2.16).  This decrease confirms the formation of a ternary complex between 

Tb-DO3A and the hydroxylated antenna, which is the basis of the substantial turn-on for 

this probe. 
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Figure 2.Figure 2.Figure 2.Figure 2.16161616....  Relative time-delayed luminescence (I/I0) of Tb-DO3A as a function of increasing 
concentrations of hydroxytrimesate antenna 2.6b at different temperatures: 5 °C (filled square), 
20 °C (open circle), 40 °C (filled upright triangle), 60 °C (open downward triangle) and 80 °C 
(filled diamond).  Conditions: [Tb-DO3A] = 10 µM, [antenna] = 0 - 10 µM, [Tris] = 10 mM, pH 7.2, 
time delay = 0.1 ms, λex = 328 nm, slit widths (excitation and emission) = 10 nm.  I = integrated 
emission intensity from 470 – 635 nm.  Results are mean ± SD (n = 3). 
 

 One possibility to evaluate the binding mode of the hydroxylated antenna and the 

structure of the ternary complex is to determine the number of inner-sphere water 

molecules directly coordinated on the lanthanide ion. This was achieved by measuring 

the luminescence lifetimes (τ) for the terbium centered emission in H2O and D2O 

according to the method of Horrocks.117  The number of Tb-bound water molecules (q) 

can then be calculated as follows:   

q = 4.2[(1/τH2O) - (1/τD2O)] 
 Of the nine coordination sites available for terbium, the heptadentate ligand DO3A 

leaves two sites open for water molecule coordination, while the hexadentate DO2A 

leaves three (Figure 2.17).  Assuming a salicylate binding mode as observed by 

Raymond in lanthanide hydroxyisophthalamide complexes,118 in each case coordination 

of the hydroxylated antenna on the terbium was expected to reduce the q value by two 

(Figure 2.3).   

 

0 2 4 6 8 10

0

2000

4000

6000

8000

10000

12000

In
te

n
si

ty
 (

a
.u

.)

[antenna] (µM)



Luminescence Detection of HO•                                                                                        Chapter 2  

50 

 

 

 

Figure 2.Figure 2.Figure 2.Figure 2.17171717.  Chemical structures of lanthanide complexes Tb-DO3A and Tb-DO2A. 
  

 The surprising results of this experiment are given in Table 2.2.  For the parent 

Tb-DO3A complex, there is no noticeable change of the hydration number regardless of 

the hydroxylated antenna considered; ∆q = qTb-DO3A - qTb-DO3A•antenna = 0 ± 0.5 in the 

presence of 10 equivalents of hydroxylated antenna.  These results thus suggest that, in 

contradiction with the initial theory, none of the efficient antennas (2.2b, 2.3b, 2.5b, 

2.6b) replace the two inner-sphere water molecules in Tb-DO3A.  One could postulate 

that this lack of binding is due to steric hindrance around the two open coordination sites 

on the terbium ion.    

 

Table 2.Table 2.Table 2.Table 2.2222....  Luminescence lifetimes and corresponding hydration numbers (q) for Tb-DO3A and 
Tb-DO2A in the presence of hydroxylated antennas.  
  

  

Tb-DO3A Tb-DO2A 

    
τH

2
O τD

2
O 

q ∆q a τH
2
O τD

2
O 

q ∆q b 

(ms) 

  

(ms) 

 2.1b salicylate 1.04 1.76 1.6 0.4 1.08 2.38 2.1 0.9 

2.2b hydroxyisophthalate 1.14 2.19 1.8 0.2 1.05 2.33 2.2 0.8 

2.3b hydroxytrimesate 0.91 1.82 2.3 -0.3 1.05 2.24 2.1 0.9 

2.4b salicylamide 1.01 1.80 1.8 0.2 1.08 2.20 2.0 1.0 

2.5a hydroxyisophthalamide 0.99 2.22 2.3 -0.3 1.04 2.40 2.3 0.7 

2.6a hydroxytrimesamide 0.86 2.14 2.9 -0.9 1.02 2.12 2.1 0.9 

Conditions:  [Tb-DO3A or Tb-DO3A] = 50 µM and [antenna] = 500 µM, [Tris] = 10 mM for 
Tb-DO3A and 100 mM for Tb-DO2A, pH 7.2, λem = 545 nm, time delay = 0.1 ms, slit widths 
(excitation and emission) = 10 nm, T = 20 °C. Each value represents the average of 3 replicates 
(n = 3).     a ∆q = qTb-DO3A - qTb-DO3A•antenna    b ∆q = qTb-DO2A - qTb-DO2A•antenna 
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 In the hope of favoring direct coordination of the hydroxylated antenna by 

replacing the two inner sphere water molecules, the less stable but less sterically 

hindered Tb-DO2A was selected.   Coordination of the antenna using two of the three 

open coordination sites would .increase the luminescence of the ternary complex and 

the sensitivity of the probe.  Opening one more coordination site does enable every 

hydroxylated antenna to coordinate the terbium, ∆q = 1 ± 0.5; however, in each case, 

two inner-sphere water molecules still remain (Table 2.2).   Note that this does not 

necessarily indicate that the hydroxylated antennas do not coordinate the terbium ion in 

the case of Tb-DO3A.  This experiment alone cannot distinguish between complete lack 

of ligation by the aromatic antenna (in which case the terbium would be solely 

complexed by the polyaminocarboxylate ligand) and coordination of the antenna in a 

salicylate (or other) binding mode concomitant with release of two carboxylate arms from 

the DO3A or DO2A ligand. Both cases results in a lanthanide complex with two inner-

sphere water molecules.   Also note that the conclusions from this system may not apply 

to other polyaminorcarboxylate lanthanide complexes. While investigating the ability of 

salicylate-based antenna to coordinate and sensitize a terbium complex with a 

tridimethylacetamide cyclen chelate; Gunnlaugsson and co-workers determined that the 

cationic complex does interact with negatively charged aromatic acid antenna through 

either a bidentate binding mode utilizing both oxygen of the carboxylic acids, a salicylate 

binding mode involving both the carboxylate and the phenolate, or in a monodentate 

version solely via the phenolate.114, 119  

 

D. Monitoring production of hydroxyl radical  

 The purpose of these previous studies was to optimize the two component system 

for the detection of HO• by time-delayed luminescence with higher sensitivity. The ability 

of the isophthalate (2.2a), trimesate (2.3a), isophthalamide (2.5a), and trimesamide 

(2.6a) pre-antennas to detect a low steady-state concentration of HO• in the femtomolar 

range in the presence of Tb-DO3A is given in Figure 2.18.  In each of the presented 

studies, HO• was generated by photolysis of H2O2 (irradiation λ = 254 nm). The near 

diffusion limited  rate constant of HO• with aromatics systems (109 M-1 s-1)80 results in the 

formation of hydroxylated antenna and ternary complex in the µM concentration range.  
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Figure 2.Figure 2.Figure 2.Figure 2.18181818....     Relative time-delayed luminescence response (I/I0) of Tb-DO3A in the presence 
of pre-antennas 2.2a (open square), 2.3a (open circle), 2.5a (filled triangle), and 2.6a (filled 
diamond) to HO• generated by photolysis of H2O2.   Experimental conditions: [pre-antenna] 
= 103 µM, [H2O2] = 50 µM, photolysis wavelength = 254 nm.  Phosphorescence conditions: 
[Tb-DO3A] = 12 µM, [pre-antenna] = 97 µM, [Tris] = 12 mM, pH 7.2, time delay = 0.1 ms, slit 
widths (excitation and emission) = 10 nm, T = 20 °C.  Excitation wavelengths: 2.2a, λex = 333 nm; 
2.3a, λex = 333 nm; 2.5a, λex = 331 nm; 2.6a, λex = 328 nm.  I = integrated emission intensity from      
470 – 635 nm. Results are mean ± SD (n = 3). 
 

 Given the brightness of the ternary complex and the dullness of the unreacted 

probe, this causes a substantial increase in luminescent intensity even with reaction 

times under 1 hour.   Moreover, the initial linear response to HO• is indicative of the 

pseudo-zeroth order kinetics of the system, as is expected given the flooding conditions 

of antenna and the low, steady-state concentration of HO•.  After 30 min, the relative 

time-delayed luminescence intensity increased by 77-fold in the presence of 

trimesamide (2.6a) and 46-fold with the trimesate (2.3a) pre-antenna.  The isophthalate 

(2.2a) and isophthalamide (2.5a) pre-antennas yielded much lower increase in metal-

centered emissions in the presence of HO•, 12-fold for 2.2a and 4-fold 2.5a.  The 

increased sensitivity of the trimesate (2.3a) and especially the trimesamide (2.6a) pre-

antennas over the isophthalate (2.2a) and isophthalamide (2.5a) are partly attributed to 

the symmetry of the 3a and 6a. For these pre-antennas, only one product can be formed 

upon reaction with HO•. Hydroxylation of isophthalate and isophthalamide, on the other 

hand, can occur at three different ring positions, only two of which favor lanthanide 
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coordination and sensitization.  Moreover, the luminescence increase with the 

trimesamide system (2.6a) is significantly greater than with the trimesate (2.3a).  The 

77-fold increase in terbium luminescence with the use of trimesamide illustrate a distinct 

advantage of this second generation probe over the initial trimesate and Tb-DO3A 

detection system.81  The decrease in luminescence intensity in the presence of the  

trimesamide (2.6a) antenna after 30 minutes of treatment with HO• is likely due to 

hydroxylation of the antenna at multiple sites, which further alters the excited state 

energy level of the antenna and reduces lanthanide sensitization.  Importantly, the 

trimesamide (2.6a)/Tb-DO3A system is able to respond to HO• produced from the 

photolysis of biologically relevant concentrations of H2O2, as the biological concentration 

of H2O2 during periods of oxidative stress in an inflammatory environment is reported to 

reach ca. 100 µM.5-6   

 In comparison, the earlier detection system based on the fluorescence of 

hydroxylated terephthalate has an estimated detection limit of 50 nM,102 although more 

recent systems can monitor HO• in the fM range.103  A probe designed by Sho and 

co-workers has the advantage of monitoring HO• generated by Fenton chemistry with 

millimolar concentrations of H2O2 ratiometrically, although it is characterized by a limited 

turn-on of less than 4-fold.120  Unfortunately, comparison of the sensitivity of this probe 

with other fluorescence-based HO• detection methods is problematic given the varying 

procedures used for the generation of HO•, such as Fenton chemistry or photolysis of 

H2O2 or NaNO3.  Moreover, the concentrations of the reagents or irradiation source 

power impact the amount of HO• produced, and the concentration of HO• are seldom 

measured or reported. Keeping this in mind, the sensitivity of the TbDO3A/trimesamide 

system remains comparable to or better than other luminescent probes reported. 

 

E. Selectivity for hydroxyl radical over other ROS and RNS 

 Given the very low concentration of HO• in biological and environmental systems 

compared to other ROS and RNS, the selectivity of the probe versus these other 

reactive species is as crucial as the sensitivity of the probe. The ability of the trimesate 

(2.3a) and trimesamide (2.6a) pre-antennas to selectively respond to HO• over other 

ROS was investigated (Figure 2.19).  In both cases, excellent selectivity was observed; 
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a greater than 180-fold or 75-fold selectivity for HO• over other ROS was observed for 

the trimesamide (2.6a) and trimesate (2.3a) pre-antennas, respectively, although 

substantially higher concentrations of the competing ROS/RNS were used.  Importantly, 

the response to H2O2 and NO that are present at orders of magnitude higher 

concentrations and have longer life times in vivo is negligible.3-4   This excellent 

selectivity was anticipated given the nature of the detection system. Hydroxylation of the 

antenna is key to adjusting the energy level of its triplet excited state so as to allow 

maximum energy transfer to the lanthanide ion. Since this hydroxylation is not possible 

with other ROS and RNS, these other species were postulated not to turn on the 

luminescence, hence the observed selectivity.  

 Comparison with other reported systems is limited since the selectivity of most 

probes for HO• over other ROS and RNS is seldom reported. Moreover, in most 

selectivity studies published, the concentration of HO• is typically irrelevant to biological 

or environmental conditions. In some of the most studied systems, selectivity for HO• 

toward other highly reactive species such as O2
-, OCl-, tButO• limits the utility of the 

systems.58, 77, 82  Since they respond to multiple oxidative species, these detection 

systems serve as general indicators of oxidative stress and not as probes for hydroxyl 

radical.58, 77  Aside from our probe, the nitroxide radical based detection systems 

demonstrate the highest selectivity for HO•, but are unfortunately limited in that they 

detect not hydroxyl radical itself, but the products of the reaction of HO• with DMSO.91  In 

comparison, the metal-centered luminescence intensity of the trimesamide 

(2.6a)/Tb-DO3A system showed excellent selectivity for a steady state concentration of 

HO• in the fM range, compared H2O2, O2
- and NO in the mM range. 
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Figure 2.Figure 2.Figure 2.Figure 2.19191919. Selectivity of Tb-DO3A and 2.3a (filled bars) or 2.6a (striped bars) for HO• versus 
other reactive oxygen species. Experimental conditions:  [2.3a or 2.6a] = 103 µM, [HO•] = fM 
range, [H2O2] = 16.4 mM, [tButO•] = 2.0 µM, [OCl-] = 103 µM, [O2-] = 3.9 mM, [1O2] = µM range, 
[NO] = 1.0 mM, reaction time = 30 min, photolysis wavelength = 254 nm, room temperature. 
Phosphorescence conditions: [Tb-DO3A] = 12 µM, [pre-antenna] = 97 µM, [Tris] = 12 mM, 
pH 7.2, time delay = 0.1 ms, slit widths (excitation and emission) = 10 nm, T = 20 °C.  Excitation 
wavelengths: 3a, λex = 333 nm; 6a, λex = 328 nm.  Blank = 100 µM 3a or 6a, 10 µM Tb-DO3A, 
10 Mm Tris buffer.  I = integrated emission intensity from 470 – 635 nm.  Results are 
mean ± SD (n = 3). 

III.  CONCLUSIONS AND FUTURE WORK 

 Molecular probes for the time-delayed luminescence detection of HO• are 

discussed.  The bimolecular probes consist of an aromatic acid that reacts with HO• to 

produce hydroxylated chromophores that readily interacts with Tb-DO3A and sensitizes 

lanthanide-centered emission.  Of the six antenna investigated (benzoate, benzamide, 

isophthalate, isophthalamide, trimesate, and trimesamide), the trimesamide (2.6a) 

demonstrates the highest sensitivity with 77-fold increase in time-delayed luminescence 

upon reaction with steady state fM concentration of HO• after 30 min.  In addition, the 

system displays excellent selectivity, greater than 180-fold, over other ROS and RNS 

species.  The increase in luminescence intensity does not correlate with a decrease in 

the hydration number (q) of the terbium center for TbDO3A.  Nonetheless, temperature-
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dependent titrations confirmed the formation of a ternary complex, in which the antenna 

binds the terbium either by displacing two carboxylate arms or via a second sphere 

coordination environment. The turn-on mechanism, selectivity, and sensitivity of this 

system express significant gains over the first generation probe based on the reactivity 

of trimesate and Tb-DO3A time-delayed luminescence.81   

 The bimolecular nature of this probe is its primary disadvantage and hinders its 

use in cellular systems.  For intracellular detection, a membrane permeable probe is 

required.  Thus, the aim of future work is the synthesis of monomolecular probe in which 

the isothphalamide (or isophthalate) pre-antenna is conjugated to the 

polyaminocarboxylate ligand (Figure 2.20).  The luminescence turn-on mechanism, 

which relies on altering the excited state energy level of the antenna upon hydroxylation 

is identical to the bimolecular systems.  The selectivity of this probe for HO• is expected 

to be retained, due to the use of an aromatic pre-antenna as discussed above.  

However, an increase in sensitivity will likely result as the formation of a ternary complex 

between Tb-DO3A and the hydroxylated antenna will not rely on diffusion.  

 

Figure 2.Figure 2.Figure 2.Figure 2.20202020. . . . Chemical structure of the proposed monomolecular luminescent hydroxyl radical 
probe for cellular imaging.   
 

 Ideally, the probe could be targeted to the mitochondria where HO• are generated 

during cellular respiration.  The high reactivity and small diffusion distance of this ROS 

necessitates targeting probes to the subcellular locations where the analyte is produced.  

This can be accomplished by conjugating the Tb-complex to a triphenylphosphonium 

ion, known to facilitate uptake of metal complexes into mitochondria based on 

differences in electric potential across the inner mitochondrial membrane.121  These 

future probes will capitalize on the selective response of isophthalamide-based antennas 

to HO• and their ability to sensitize lanthanide luminescence.    

N N

NN

H
N

O
O

O

O
O

O

O

OHN

O

HN

Tb



Luminescence Detection of HO•                                                                                        Chapter 2  

57 

 

IV. EXPERIMENTAL 

General cGeneral cGeneral cGeneral considerationsonsiderationsonsiderationsonsiderations. Chemicals were obtained from commercial suppliers and used 

without further purification, unless otherwise indicated.  All solutions were prepared with 

deionized water further purified by a Millipore Simplicity cartridge system (18 MΩ).  

Experiments were conducted in air at ambient temperature, unless otherwise noted. 

pH measurements were taken using a Thermo Orion 3 Benchtop pH meter. 

Fluorescence and phosphorescent measurements were acquired on a Varian Cary 

Eclipse Fluorescence Spectrophotometer using a quartz cell with a path length of 1 cm, 

excitation and emission slit widths of 10 nm.  Solutions were not degassed prior to 

measurement of their luminescence spectra and lifetimes. 

 The following pre-antennas and antennas are commercially available 

(Sigma-Aldrich) and were used without further purification: 2.1a, 2.1b, 2.2a, 2.3a, 2.4a, 

and 2.4b.  The remaining pre-antennas and antennas, 2.2b, 2.3b, 2.5a, 2.5b, 2.6a, and 

2.6b were synthesized according to published literature procedures.92, 118, 122-124  

Successful synthesis was established by 1H NMR and ESI-MS.  Tb-DO3A (1,4,7,10-

tetra- azacyclododecane-1,4,7-tris(acetic acid)) and Tb-DO2A (1,4,7,10-tetra- 

azacyclododecane-1,7-bis(acetic acid)) were synthesized according to literature 

precedent for lanthanide carboxylate complexes.118, 125-128  The tert-butyl protected DO3A 

and DO2A are commercially available (Macrocyclics).   

 

TimeTimeTimeTime----delayed luminescence intensity of Tbdelayed luminescence intensity of Tbdelayed luminescence intensity of Tbdelayed luminescence intensity of Tb----DO3A with (pre)antennas (DO3A with (pre)antennas (DO3A with (pre)antennas (DO3A with (pre)antennas (2.2.2.2.1a1a1a1a----2.2.2.2.6b). 6b). 6b). 6b).  

An aqueous solution of (pre)antenna (2.1a-2.6b) (400 µM) and Tb-DO3A (10.0 µM) in 

Tris buffer (10 mM, pH 7.2) was titrated into an aqueous solution of Tb-DO3A (10.0 µM) 

in Tris buffer (10 mM, pH 7.2).  The time-delayed emission profile was recorded in the 

presence of 0 - 200 µM of (pre)antenna (2.1a-2.6b).  Measurements were recorded with 

a time delay of 0.1 ms, excitation and emission slit widths of 10 nm, and at a 

temperature of 20 °C.  The following excitation wavelengths were used:  2.1a/b,            

λex = 321 nm; 2.2a/b, λex = 333 nm; 2.3a/b, λex = 333 nm; 2.4a/b, λex = 324 nm; 2.5a/b, 

λex = 331 nm; 6a/b, λex = 328 nm.  The luminescence response was reported as the 

integrated emission intensity from 470 – 635 nm.  The experiment was repeated in 

triplicate (n = 3). 
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Luminescence lifetimes and Luminescence lifetimes and Luminescence lifetimes and Luminescence lifetimes and hydration number (q).hydration number (q).hydration number (q).hydration number (q). The luminescence decay of an 

aqueous solution of hydroxylated antenna, 2.1a-2.6b, (500 µM), Tb-DO3A or Tb-DO3A 

(50 µM), and Tris (10 mM for Tb-DO3A and 100 mM for Tb-DO2A, pH 7.2) was 

measured.  For measurements in D2O, the samples were lyophilized and re-dissolved in 

D2O three times prior to analysis.  All decay measurements monitored the emission at 

545 nm, using an initial time delay of 0.01 ms, delay increments of 0.1 ms or 0.2 ms, 

total decay time of 10 ms, and excitation and emission slit widths of 10 nm at a 

temperature of 20 °C.  Luminescence lifetimes (τ) were determined by fitting the data to 

an exponential decay.  The hydration number was calculated according to the following 

equation developed by Horrocks:117 q = 4.2[(1/τH
2
O) - (1/τD

2
O)].  Data was collected in 

triplicate (n = 3). 

    

Effect of temperature on formation of the TbEffect of temperature on formation of the TbEffect of temperature on formation of the TbEffect of temperature on formation of the Tb----DO3A•hydroxytrimesamide ternary DO3A•hydroxytrimesamide ternary DO3A•hydroxytrimesamide ternary DO3A•hydroxytrimesamide ternary 

complex.complex.complex.complex. An aqueous solution of antenna (2.6b) (100 µM) and Tb-DO3A (10.0 µM) in 

Tris buffer (10 mM, pH 7.2) was titrated into an aqueous solution of Tb-DO3A (10.0 µM) 

in Tris buffer (10 mM, pH 7.2).  The time-delayed emission profile was recorded in the 

presence of 0 - 10 µM of antenna (2.6b).  Measurements were recorded with a time 

delay of 0.1 ms, excitation wavelength of 328 nm, excitation and emission slit widths of 

10 nm, and at temperatures of 10, 20, 40, 60, and 80 °C.  The luminescence response 

was reported as the integrated emission intensity from 470 – 635 nm.  At each 

temperature, the experiment was repeated in triplicate (n = 3). 

    

Monitoring HO• produced by photolysis of HMonitoring HO• produced by photolysis of HMonitoring HO• produced by photolysis of HMonitoring HO• produced by photolysis of H2222OOOO2222 .... An aqueous solution of H2O2 (50 µM) 

and pre-antenna (2.2a, 2.3a, 2.5a, or 2.6a) (103 µM) were added to a quartz cuvette. 

The solution (3 × 4 mL total volume) was then irradiated in the quartz cell for 1 h at 

254 nm with a Spectroline hand-held UV lamp.  An aliquot (1.00 mL) was removed from 

the irradiated cell at 0, 5, 10, 15, 20, 25, 30, 45, and 60 minutes. Tris buffer (12 mM, 

pH 7.2), and Tb-DO3A (12 µM) were added to the aliquot.  The luminescence intensity 

was measured with a time delay of 0.1 ms, excitation and emission slit widths of 10 nm, 

and at a temperature of 20 °C.  The following excitation wavelengths were used for 

luminescence measurements:  2.2a, λex = 333 nm; 2.3a, λex = 333 nm; 2.5a, λex = 
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331 nm; 2.6a, λex = 328 nm.  The luminescence response is reported as the integrated 

emission intensity from 470 – 635 nm.  The experiment was repeated in triplicate (n = 3). 

    

Selectivity versus reactive oxygen Selectivity versus reactive oxygen Selectivity versus reactive oxygen Selectivity versus reactive oxygen species and reactive nitrogen speciesspecies and reactive nitrogen speciesspecies and reactive nitrogen speciesspecies and reactive nitrogen species.  ROS and 

RNS were administered to aqueous solutions of the pre-antennas (2.3a or 2.6a) as 

described below.  After stirring the reaction mixtures at room temperature for 30 min, 

Tris buffer, and Tb-DO3A were added to a 1000 µL aliquot of the reaction mixture 

resulting in the following final concentrations: Tris buffer (12 mM, pH = 7.2), Tb-DO3A 

(12 µM), pre-antenna (2.3a or 2.6a) (97 µM). The luminescence intensity was measured 

with a time delay of 0.1 ms, excitation and emission slit widths of 10 nm, and at a 

temperature of 20 °C.  The following excitation wavelengths were used for luminescence 

measurements: 2.3a, λex = 333 nm; 2.6a, λex = 328 nm.  The luminescence response 

was reported as the integrated emission intensity from 470 – 635 nm.  Each experiment 

was repeated in triplicate (n = 3). 

 

Hydroxyl radical (HO•): An aqueous solution of H2O2 (50 µM) and pre-antenna (2.3a 

or 2.6a) (103 µM) was irradiated in a quartz cuvette for 30 min at 254 nm using a 

Spectroline hand-held UV lamp. 

 

Hydrogen peroxide (H2O2): An aqueous solution of H2O2 (16.4 mM) and pre-antenna 

(2.3a or 2.6a) (103 µM) was stirred for 30 min at room temperature. 

 

Tert-butoxy radical (tBuO•): tBuO• was generated in situ according to the procedure 

of Winston.129 Briefly, an aqueous solution of tert-butyl hydrogen peroxide (2.0 µM), 

[Fe(bpy)3(ClO4)2] = 0.52 µM, and pre-antenna (2.3a or 2.6a) (103 µM) was stirred for 

30 min at room temperature  Caution: The iron perchlorate salt is potentially 

explosive and should be handled with care. 

 

Hypochlorite (OCl-): An aqueous solution of hypochlorite (103 µM) and pre-antenna 

(2.3a or 2.6a) (103 µM) was stirred for 30 min at room temperature. 
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Superoxide (O2
-): Solid KO2 (1.1 mg, 0.015 mmol, 3.9 mM final concentration) was 

added to an aqueous solution of pre-antenna (2.3a or 2.6a) (103 µM), and the 

reaction mixture was stirred for 30 min at room temperature. Note that the solid KO2 

was added directly to the solution of pre-antenna and not administered from a stock 

solution since the lifetime of O2
- is insufficient to make stock solutions. 

 

Singlet oxygen (1O2): An aqueous solution of Rose Bengal (0.52 µM) and 

pre-antenna (2.3a or 2.6a) (103 µM) was purged three times with O2 and stirred 

under irradiation with UV light using a 90 W Halogen Flood lamp for 30 min.  

 

Nitric Oxide (NO): An aqueous solution of spermine NONOate (520 µM final 

concentration, delivered from a stock solution in 0.01 M NaOH) and pre-antenna 

(2.3a or 2.6a) (103 µM) was adjusted to pH 5 with HCl and stirred for 30 min at room 

temperature.  The reaction mixture was readjusted to pH 7.0 with NaOH prior to 

analysis
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FFFFLUORINE LUORINE LUORINE LUORINE MMMMAGNETIC AGNETIC AGNETIC AGNETIC RRRRESONANCE ESONANCE ESONANCE ESONANCE DDDDETECTION OF ETECTION OF ETECTION OF ETECTION OF HHHHYDROXYL YDROXYL YDROXYL YDROXYL RRRRADICALADICALADICALADICAL    
 

I. SYNOPSIS 

 Responsive fluorine contrast agents for the selective imaging of hydroxyl radical in 

water by 19F MRI are evaluated. The ability to detect hydroxyl radical in vivo both 

sensitively and selectively is a yet unmet need, crucial to understanding the impact of 

this transient species and to developing therapeutic to reduce oxidative stress.  Using 

the reactivity of HO• with aromatic acids, a fluorinated benzoic acid probe, CA-F2, was 

developed.  CA-F2 reacts with HO• and enables sensitive and ratiometric detection of the 

reactive oxygen species with both 19F NMR and MRI by monitoring the appearance of its 

reaction products relative to the disappearance of the reacting probe.  Upon 

hydroxylation, two different products are formed with distinct chemical shifts +12 and 

+14 ppm upfield from the probe.  The signal for the unreacted probe and those of the 

products can readily and independently be visualized by MRI allowing for ratiometric 

monitoring of HO•.  The detection method is highly selective for HO• over other ROS and 

RNS.  Next, the fluorinated aromatic acid was incorporated into paramagnetic, 

lanthanide-based fluorine contrast agents to increase sensitivity.  As described by Bloch-

Redfield-Wangsness theory, a proximal paramagnetic center increases sensitivity by 

enhancing relaxation rates of 19F nuclei allowing more data to be collected per unit time.  

Unfortunately, these second generation contrast agents were hindered by either low 

water solubility or instability in the presence of HO•.  
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II. INTRODUCTION 

A. Detecting hydroxyl radical by fluorine magnetic resonance 

 Direct in vivo detection of ROS presents an unmet need.  The non-destructive, 

three-dimensional imaging capabilities of MRI make it the technique of choice for such 

experiments.  However, only three responsive contrast agents for ROS (H2O2, NO, and 

HO•) have been reported (see Chapter 1, section III.B.2).9, 108, 110  A hyperpolarized 13C 

labeled benzoylformic acid is responsive to H2O2 (Figure 1.13), but requires exposure to 

high concentrations (200 – 1000 μM) of H2O2 for reactivity.108 Phantom images were 

collected using 20 mM of the contrast agent, demonstrating the limited sensitivity of this 

system.  For detection of NO, a water soluble PARACEST agent, Yb-DO3A-oAA, has 

been described that consists of a polyaminocarboxylate ligand with a pendant 

orthoaminoanilide (Figure 1.14)9  Upon oxidation by NO, a nitroso intermediate initiates 

dimerization and eliminates the PARACEST signals of the exchangeable amide and 

amine protons.  For this system, the detection threshold of unreacted Yb-DO3A-oAA is 

in the low millimolar range (3-6 mM).  Complications in detecting the PARACEST 

response were encountered and demonstrate the need for methods to selectively 

saturate resonances with small offset frequencies. Additionally, the biomolecular nature 

of this detection system is not compatible with in vivo imaging.   

 The previously reported fluorinated probe for HO•, CF3PAF, is a diamagnetic 

hydroxyphenyltrifluoroacetanilide (Figure 1.15).  After 24 h incubation with 10 mM H2O2 

and 50 μM Fe(II)DTPA, the reaction product (TFAM) was detected in the low micromolar 

range  (20 μM).110  However, this contrast agent is only capable of monitoring the 

reactive species by 19F NMR.  Further application of this probe to 19F MRI is limited by 

the small differences (< 1 ppm) in resonance frequencies between the probe and the 

reaction products.  Additionally, techniques to increase the sensitivity are needed to 

enable the detection of physiological concentrations of low abundance analytes.   

 Herein, a 19F responsive MRI contrast agent for the ratiometric and selective 

imaging of hydroxyl radical by MRI is presented.  The fluorinated contrast agent, CA-F2, 

selectively responds to HO• forming characteristic products with substantially different 

fluorine chemical shifts (δF) such that each of them can be readily differentiated and 



19F MR Detection of HO•                                                                                                    Chapter 3 

63 

 

imaged not only by NMR but also by MRI.  Further, the 19F MR signals can be applied to 

the ratiometric MR imaging of HO•.    

 

B. Advantages of fluorine magnetic resonance 

 Fluorine MRI and fluorinated contrast agents present multiple advantages over 

standard 1H MRI for three-dimensional in vivo imaging. The fluorine nuclei (19F, I = ½) is 

attractive due to its 100% abundance and high receptivity (83% of 1H), which provide a 

sensitivity of detection comparable to that of 1H nuclei.  The similar gyromagnetic ratios 

(γ) of 19F and 1H allow images to be collected on standard 1H MRI scanners after 

retuning the radiofrequency coils.130  In addition, 19F MRI has the primary advantage of 

avoiding interference with background signals as biological fluorine is negligible.  Current 

1H gadolinium-based and magnetic iron oxide nanoparticle contrast agents detect 

differences in the relaxation rate of the water molecules associating with the contrast 

agent and ambiguity due to the high background of bulk water can arise.   

 In addition, 19F nuclei are more sensitive to electronic and molecular changes, 

which produces a large chemical shift range (> 300 ppm).  This facilitates the design of 

ratiometric fluorine contrast agents featuring two distinct resonances that can be 

independently imaged.  The importance of ratiometric responses is paramount given that 

it is not possible to predict the distribution of a contrast agent in vivo.  The observed 

signal is proportional to the concentration of the contrast agent and that of the 

biomarker, which can introduce uncertainty based on the non-uniform biodistribution of 

the imaging agent.  False positives and false negatives due to higher and lower 

concentrations of contrast agents, respectively, can be observed with gadolinium-based 

responsive contrast agents because they are not ratiometric.  For example, the same 

level of contrast can be generated by either a low local concentration of contrast agent 

and high levels of a biomarker or by a high concentration of contrast agent and low 

biomarker levels.  Fluorine nuclei have a large chemical shift range, which allows 19F 

MRI contrast agents to employ ratiometric detection methods to circumvent this problem. 

The ratio of these signals can then be used to determine the concentration of an analyte 

even if the concentration of the contrast agent is unknown.   
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 Despite the advantages of 19F MRS/ MRI, the primary limitation is the need for a 

high concentration of 19F contrast agent (10-50 mM) for detection compared to 1H MRI 

agents that affect the relaxation rate of bulk water molecules (~ 55 M).131-132  The 

collection of images with high SNR is also hindered by the long longitudinal relaxation 

times, T1, (0.5 - 3 s) of diamagnetic fluorine contrast agents that necessitate longer 

image acquisition times.  Lastly, diamagnetic contrast agents typically experience small 

changes in chemical shifts (ΔδF ~ 5 ppm) upon chemical perturbation.132-133  Fluorinated 

contrast agents evade ambiguity from interfering background signals, require higher 

loading of contrast agent, and are applicable to the design of ratiometric responsive 

imaging agents for MRI.  To meet the current objective of ratiometrically monitoring HO• 

in three dimensions, 19F MRI is a suitable technique.  

III. RESULTS AND DISCUSSION  

A. Responsive diamagnetic fluorine contrast agent for HO• 

1. Contrast agent design and reactivity 

 The design of this fluorinated responsive contrast agent, CA-F2, is based on the 

reactivity of HO• with aromatic acids81, 134 and aryl fluorine (Figure 3.1).135  It was 

hypothesized that upon hydroxylation of the aromatic ring, a change in 19F chemical shift 

would be observed.  At physiological pH, 3,5-difluorobenzoic acid, CA-F2, is highly 

soluble in water and is characterized by a single 19F singlet at  δF = -110.6 ppm 

(Figure 3.2a).  Reaction with HO• yields primarily two products: F- anion and 5-fluoro-

2,3-dihydroxybenzoic acid, CA-F(OH)2. F- is a common product of the reaction of aryl 

fluorides with hydroxyl radical.135  The identity of the major aromatic product, CA-F(OH)2, 

was confirmed through comparison with literature values of fluorinated aromatic acid 

products and mass-spectrometry.136-139  Each of these two products has a distinct 19F 

signal: F- appears at δF = -122.5 ppm whereas CA-F(OH)2 is characterized by a singlet at 

δF = -124.2 ppm (Figure 3.2b), allowing the abundance of either to be independently 

measured by 19F MRI.  Further, a ratiometric response can be obtained from signal 

intensity of the F- product over that of the unreacted CA-F2 contrast agent. 
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Figure 3.Figure 3.Figure 3.Figure 3.1111....  Chemical structure of the HO• responsive contrast agent, CA-F2. Reaction with 
HO• generates primarily F- and CA-F(OH)2.  

 

    

Figure 3.Figure 3.Figure 3.Figure 3.2222.    19F NMR spectra of CA-F2 (a) before reaction and (b) after reaction with HO• 
generated from the photolysis of H2O2. 
 

 

2. Monitoring the production of hydroxyl radical by 19F NMR 

 The response of CA-F2 to HO• is monitored by the unique 19F resonances of the 

products formed: F- and CA-F(OH)2.  Note that in the reaction of the contrast agent with 

HO•, CA-F(OH)2 is not the only organic compound produced. Other side reactions allow 

for the formation of different aromatic compounds with different NMR spectra, although 

in most cases F- is a by-product. Consequently, the F- peak grows significantly more 

than that of CA-F(OH)2, and the corresponding signal at δF = -122.5 ppm is more 

sensitive for monitoring the presence of HO• (Figure 3.3).   

 

a      

 

 

 

b      
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Figure 3.Figure 3.Figure 3.Figure 3.3333....     19F NMR spectra of aqueous solutions of CA-F2 upon reaction with HO• generated 
by photolysis of H2O2.  19F spectra are normalized to the δF = -110.6 ppm peak.  Reaction time: 0, 
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 h.  Experimental conditions: [CA-F2] = 50.0 mM, 
[H2O2] = 5.0 M, reaction time = 0 – 24 h, irradiation wavelength = 254 nm, T = 22 ˚C.   NMR 
samples in D2O, [DPO42-] = 10.0 mM, pD = 7.4.   

 

Importantly, the ability for CA-F2 to detect HO• is independent of the method by 

which the ROS is generated; comparable responses were observed regardless of 

whether HO• was generated by photolysis of aqueous H2O2 (Figure 3.4) or by Fenton 

chemistry with Fe(II)EDTA (Figure 3.5).  The reactivity of the contrast agent is key to 

achieving sufficient sensitivity to image low concentrations of HO• closer to biomedical 

relevance that are produced both at a steady state level during normal physiological 

functions and at elevated concentrations during periods of oxidative stress. As a result of 

the flooding conditions of the probe which is in large excess versus HO•, the 

steady-state generation of HO• by photolysis of H2O2 (aq) results in pseudo-zeroth order 

kinetics for the formation of the two products F- and CA-F(OH)2. Consequently, under 

these conditions, the concentrations of both products increase linearly with time 

(Figure 3.4). The combination of the near diffusion-limited rate constants of aromatic 

hydroxylation (109 M-1 sec-1)80 with a sufficient reaction period (hours) allows the 

formation of both products in the micromolar range, a concentration sufficient for 

detection both by NMR and MRI (at > 11 T).  However, it is important to note that for in 

vivo applications it is not feasible to flood the system with a large excess of contrast 

agent.  
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Figure 3.Figure 3.Figure 3.Figure 3.4444....     Turn on response of CA-F2 as a function of HO• generated from photolysis of H2O2 
with respect to reaction time measured by the ratio of (a) F- (δF = -122.5 ppm) over 
CA-F2 (δF = -110.6 ppm) or (b) CA-F(OH)2 (δF = -124.2 ppm) over the starting material 
CA-F2 (δF = -110.6 ppm).  Experimental conditions: [CA-F2] = 50.0 mM, [H2O2] = 5.0 M, reaction 
time = 0 – 24 h, irradiation wavelength = 254 nm, T = 22 ˚C.  NMR samples in D2O,            
[DPO42-] = 10.0 mM, pD = 7.4.  Results are mean ± SD (n = 4). 
   

 

 The limiting parameter is thus not the rate constant of the reaction between CA-F2 

and HO• but the concentration of HO•, which dictates how quickly the two products F- 

and CA-F(OH)2 can accumulate. Hydroxyl radical is primarily generated in vivo through 

the Fenton reaction between iron(II) complexes and hydrogen peroxide.30  In this case, 

the concentration of HO• produced is proportional to the available H2O2 in the presence 

of a constant concentration of Fe2+ catalyst and higher concentrations of HO• are 

generated rapidly.  Thus, the concentration of HO• is not at a steady state in the 

femtomolar range.  This situation is analogous to the production of high local 

concentrations of HO• during inflammatory or host-defense responses.  Consequently, 

during in vitro simulations the reaction does not need to be carried out for long periods of 

time and sufficient product signal can be observed by 19F NMR in one hour (Figure 3.5).   
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Figure 3.Figure 3.Figure 3.Figure 3.5555....     Turn on response of CA-F2 as a function of HO• generated from Fenton chemistry.  
Ratio of F- (δF = -122.5 ppm) over the starting material CA-F2 (δF = -110.6 ppm). Experimental 
conditions: [CA-F2] = 30.0 mM, [Fe(II)EDTA] = 3.00 mM, [H2O2] = 0 - 15 mM, reaction time = 1 h,         
T = 22 ˚C.  NMR samples in D2O, [DPO42-] = 10.0 mM, pD = 7.4.  Results are mean ± SD (n = 3).    
 

3. Detecting hydroxyl radical production with 19F MRI 

 The significant difference in the 19F chemical shift of the starting probe and that of 

the two products allows the species to be independently monitored not only by NMR but 

also by MRI.  The previously described 19F MR agent for HO•, CF3PF (Figure 1.15), 

generated products with small changes in chemical shift (ΔδF) of < 1 ppm that could not 

be resolved by MRI.140  However, the products of CA-F2 have resonances that are 

shifted by -12 and -14 ppm for F- and CA-F(OH)2, respectively.  This allows the 

unreacted contrast agent and the products to be imaged separately. 

 Gradient echo 19F phantom images monitoring the production of F- and the 

disappearance of the starting contrast agent CA-F2 after 0, 6, 12, and 24 h of H2O2 

photolysis mirror the data collected by 19F NMR spectroscopy (Figure 3.6).  The signal 

intensity of the products, F- (δF = -122.5 ppm) and CA-F(OH)2 (δF = -124.2 ppm) 

increases with increasing reaction time, resulting in a brighter image (Figure 3.6).  

Simultaneously, the intensity of CA-F2 image (δF = -110.6 ppm) decreases as the 

reaction proceeds. The primary advantage of the responsive contrast agent CA-F2 is its 

application to MR imaging, a technique suitable for 3-dimensional in vivo detection.  
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Figure 3.Figure 3.Figure 3.Figure 3.6666 . Gradient echo 19F MR images obtained at 16.4 T of CA-F2 upon reaction with HO• 
at    (a) δF  = -110.6 ppm,  CA-F2, (b)  δF = -122.5 ppm,  F-.  I. KF, and II. 0 h, III. 6 h, IV. 12 h, V. 
24 h of photolysis at 254 nm.  Experimental conditions:    [CA-F2] = 50.0 mM, [H2O2] = 5.0 M, pH 
= 7. Acquisition parameters: TR = 400 ms, TE = 3.23 ms, FOV = 2.0 cm × 2.0 cm, matrix = 64 × 
64, slice thickness = 5 mm, flip angle = (a) 36°, (b) 42°, ns = (a) 64, (b) 256. Scale bar = 3 mm. 
  

4. Selectivity for hydroxyl radical over other ROS and RNS 

 Importantly, CA-F2 responds selectively to HO• over other biologically relevant 

reactive oxygen and nitrogen species. CA-F2 has a limited response to reactive oxygen 

and nitrogen species, such as H2O2, O2
- , ONOO-, and NO, that are present at either 

higher concentrations or have greater diffusion distances and cellular lifetimes.4  

19F NMR analysis of solutions of CA-F2 indicate that neither the F- peak at 

δF = -122.5 ppm nor the CA-F(OH)2 peak at δF = -124.2 ppm increase substantially in the 

presence of a large excess of each ROS and RNS after 2 hours of reaction (Figure 3.7). 

Notably, a higher selectivity is obtained by monitoring the weaker, less sensitive 

CA-F(OH)2 signal (Figure 3.7b).  Note that for all ROS and RNS except HO•, no 

CA-F(OH)2 product could be detected upon addition of the competing ROS and RNS.  

Overall, when monitoring either product this system exhibits excellent selectivity for HO• 

over biologically-relevant ROS and RNS that are present at higher concentrations in 

vivo. 

a       

      CA-F2 

 

 

b 

           F- 
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Figure 3.Figure 3.Figure 3.Figure 3.7777. . .  .  Selectivity of CA-F2 responsive contrast agent for HO•. (a) Integration ratio of F- 
over CA-F2 and (b) integration ratio of CA-F(OH)2 over CA-F2 upon addition of competing reactive 
oxygen and nitrogen species.  Experimental conditions: [CA-F2] = 50.0 mM, [HO•] = fM range, 
[H2O2] = 5.0 M,    [TBHP] = 2.5 M, [tButO∙] = 250 mM, [OCl-] = 250 mM, [O2-] = 250 mM, 
[1O2] = µM range, [NO] = 250 mM, [ONOO-] = 50 mM, reaction time = 120 min, irradiation 
wavelength = 254 nm, T = 22 ˚C.  NMR samples in D2O, [DPO42-] = 10.0 mM, pD = 7.4.  Results 
are mean ± SD (n = 3). 
 

5. Progress with diamagnetic fluorine contrast agents for HO• 

 In conclusion, the first responsive contrast agent for the ratiometric magnetic 

resonance imaging of hydroxyl radical is described. CA-F2 reacts rapidly with HO• to 

generate two characteristic products, F- and CA-F(OH)2. The ratio of the 19F signals 

directly enables ratiometric fluorine MR imaging of HO• even in conditions where the 

concentration of the contrast agent is unknown. The probe is selective for HO• over 

other biologically relevant ROS or RNS.  Monitoring HO• with a method capable of three-

dimensional in vivo detection represents a major advancement of this imaging agent 

over those previously described.  Other detection methods based on the fluorescence 

properties of organic dyes,58 lanthanide-based probes,81-82 or nanoprobes,72 are all 

limited to in vitro imaging of cells or tissue slices.  However, CA-F2 is limited by low 

sensitivity and the necessity for high (i.e. flooding) concentrations of contrast agent.  

Future fluorine probes must enhance sensitivity to be capable of unambiguous and 

direct imaging of HO• by MRI.   
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B. Increasing sensitivity with a paramagnetic lanthanide  

 Fluorine magnetic resonance imaging, particularly with organic compounds, 

suffers from low sensitivity.  Signal intensity and signal-to-noise ratios (SNR) can be 

augmented when multiple chemically equivalent fluorine nuclei are incorporated into the 

imaging agent. This is one technique to marginally enhance the sensitivity of next 

generation 19F MR probes for HO•.  However, multiple 19F resonances may be observed 

due to stereoisomers and the increased hydrophobicity can limit water solubility. Thus, 

an alternative approach to improve the sensitivity of 19F probes relies on the relaxation 

enhancement induced by paramagnetic lanthanide metals.   

 Incorporating a lanthanide, or other paramagnetic metal, into a 19F responsive 

contrast agent augments the relaxation rates of proximal fluorine nuclei and increases 

the sensitivity of detection.  The T1 of most diamagnetic 19F reporters, like CA-F2, are in 

the range of 0.5 - 4 s, which limits the amount of data that can be collected per unit time.  

Paramagnetic relaxation enhancement (PRE) has been shown to decrease T1 by two 

orders of magnitude (from 1 s to 10 ms) offering increased sensitivity and higher SNR 

with a reduction in acquisition time.131  The enhanced relaxation mechanisms at high 

magnetic fields are described by the Bloch-Redfield-Wangsness (BRW) Theory in terms 

of the electron-nucleus dipole-dipole and Curie relaxation processes.131, 141-144 As a 

result, the longitudinal (R1) and transverse (R2) relaxation rates are defined by the 

following relationships (Equations 1-5):141  
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τR+e = (τR
-1 + �CR�)                                                                                      (5) 

where d is the 19F – Ln3+  distance, µ0 is the vacuum permeability, γF is the gyromagnetic 

ratio of 19F nuclei, T is the absolute temperature, and k is the Boltzmann constant.  The 
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effective magnetic moment, μeff, is proportional to the effective electron g-factor (gJ), the 

Bohr magneton (µB), and the electron angular momentum, J(J+1) (Equation 3).  The 

Zeeman frequency of fluorine is represented by ωf, and the electron frequency (ωe) is a 

function of the magnetic field strength (B0) (Equation 4).  The τR+e term is dependent on 

the rotational correlation time (τR) and the electron spin longitudinal relaxation time (T1e) 

(Equation 5). Together these equations define the relationship of R1 and R2 to the 

effective magnetic moment (μeff) of the Ln3+ metal, the 19F – Ln3+ distance (d), rotational 

correlation time (τR), field strength (B0), and temperature (T).  Thus, optimizing the 

sensitivity of 19F MRS/ MRI agents requires understanding each of these relationships. 

 In terms of designing the next fluorinated contrast agent for HO•, the two most 

important parameters that impact relaxation are the effective magnetic moment (μeff) of 

the lanthanide metal and the 19F – Ln3+ distance (d).  Each lanthanide metal has a 

characteristic μeff/μB value (Table 3.1), and the highest values (μeff of ~ 10) for Tb3+, Dy3+, 

Ho3+, and Er3+ allow them to more drastically enhance relaxation.131  Indeed, a steeper 

increase in R1 for Dy3+ and Ho3+ versus Tm3+, Tb3+, and Eu3+ with respect to field 

strength is observed,131, 141 and the latter metals are likely better suited to application at 

higher field strengths (> 10 T).  Additionally, both R1 and R2 relaxation rates have a 

steep d-6 dependence on distance.  Therefore, controlling the 19F – Ln3+ distance of 

probes is required to improve sensitivity.  Harvey et. al. suggests an optimal distance of 

5.5 – 7.5 Å.131  If the 19F nuclei is positioned too far from the Ln3+ center the relaxation is 

not affected; however, a 19F – Ln3+ distance less than 5 Å causes a drastic enhancement 

in relaxation that contributes to signal reduction as a consequence of line broadening.  

The inequivalent coefficients for R1 and R2 (Equation 1 and 2) result in differential effects 

on the corresponding relaxation rates.  Thus, the 19F – Ln3+ distance can be adjusted to 

balance the positive and negative consequences of relaxation enhancement and 

achieve a T2/T1 ratio near unity.  
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Table 3.Table 3.Table 3.Table 3.1111. . . . Magnetic and relaxation properties of lanthanide(III) ions.131 
 

Lanthanide 
Ion 

Ground 
state 
term 

µeff/µB a µeff/µB (exp) b 

 
Electron 
relaxation time 
(T1e) / 10-13 s c 

Relative 
PCS 
strength e 

Ce3+ 2F5/2 2.56 2.55 0.90 -6.5 

Pr3+ 3H4 3.62 3.47 0.57 -11.4 

Nd3+ 4I9/2 3.68 3.69 1.15 -4.5 

Pm3+I 5I4 2.68 2.41 Unknown 2.4 

Sm3+ 6H5/2 1.55-1.65 1.58 0.45 -0.5 

Eu3+ 7F0 3.40-3.51 3.4 0.09 4.0 

Gd3+ 8S7/2 7.94 7.63 104-105 d 0 

Tb3+ 2F6 9.7 9.8 2.03 -87 

Dy3+ 6H15/2 10.6 10.3 2.99 -100 

Ho3+ 5I8 10.6 10.4 1.94 -39 

Er3+ 4H15/2 9.6 9.4 2.38 32 

Tm3+ 3H6 7.6 7.6 3.69 53 

Yb3+ 2F7/2 4.5 4.3 1.37 22 

a Ref. 145 ; b Ref.141-143, 146-147; c aqua ion, 2.1 T, Ref. 148; d Ref. 142; e Ref.149 
 

 
 BRW theory correctly predicts that the identity of the Ln metal affects the 

relaxation rates of 19F nuclei in studies with non-responsive complexes featuring 

polyamine macrocyclic ligands substituted with acetamide arms containing aryl or alkyl 

trifluoromethyl groups.  When the lanthanide metal is varied, the observed fluorine 

relaxation rates correlate with the μeff/µB of the Ln metal.31, 42-44  The strong relaxing 

metals (Tb3+, Dy3+, Ho3+, and Er3+) cause the greatest reduction in R1 and R2, and Eu3+, 

Tb3+, Dy3+, and in the extreme case of Gd3+, have a substantial effect on R2 compared to 

R1.  The fast R2 leads to highly broadened resonances that reduce the SNR.  Due to the 

dependence of relaxation rates on field strength (B0), strong relaxing ions are preferred 

at higher magnetic fields, while Tm3+ and Er3+ provide adequate relaxation enhancement 

above 7 T.131, 141  

 The increased relaxation rates, and corresponding decreased relaxation times, 

allow for the collection of more data per unit time.  Thus, PRE increases spectral 

sensitivity and SNR in comparison to diamagnetic analogues.  Chalmers et. al. 

demonstrated that the Dy3+ and Ho3+ complexes increased image SNR 10 to 15-fold 

compared to the diamagnetic Y3+ analogue.150  The improved SNR correlates with a 
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T2/T1 ratio closer to 1, where the benefit of longitudinal relaxation is not diminished by 

signal broadening as a consequence of rapid transverse relaxation. Sensitivity gains of 

15-20 times that of diamagnetic complexes can be achieved with fluorinated lanthanide-

based contrast agents from 1.5 to 9.4 T.131  This represents a major advancement in the 

field of 19F MRI as sub-millimolar concentrations of contrast agent can be imaged in 

under 15 min with adequate SNR.150  Utilizing paramagnetic relaxation enhancement in 

the design and function of responsive probes is thus a growing area of research. 

 

C. Paramagnetic fluorine contrast agent for hydroxyl radical 

1. Design and synthesis  

 The PRE effect described above is the basis for the improved sensitivity on a per 

19F basis of lanthanide-based probes as compared to their organic counterparts.  

Particularly effective are the lanthanide ions, such as Dy3+, Ho3+, and Tm3+ that 

substantially reduce T1 and have a more limited influence on T2.  Second generation 19F 

contrast agents, [Dy-F8]3+ and [Tm-F2] for HO• were envisioned that rely on PRE to 

improve sensitivity (Figure 3.8).  Here, the lanthanides Dy3+ and Tm3+ are selected.  

Dy3+, with a μeff of 10.3 (Table 3.1), strongly influences relaxation of 19F nuclei and is 

reported by Chalmers, et. al. to have optimal T2/T1 ratios (~ 0.65) with macrocylic 

complexes containing aryl trifluromethyl groups appended to the amide arms.150-151  

Alternatively, Tm3+ (μeff = 7.6, Table 3.1) is a slightly weaker modulator of 19F relaxation 

that is better suited for measurements at high magnetic fields.  Also, non-responsive 19F 

contrast agents that incorporated Tm3+ exhibited preferential T2/T1 ratios (~ 0.60).150, 152   

 Due to the high selectivity of CA-F2 for HO•, a related fluorinated benzyl amide 

moiety was incorporated into [Dy-F8]3+ and [Tm-F2] for analyte response. The number of 

chemically equivalent difluorobenzyl groups was varied; the symmetrical [Dy-F8]3+ 

contains four analyte sensitive groups to further increase sensitivity over the 

mono-functionalized [Tm-F2].  Calculation of the lowest energy geometry determined the 

Ln-19F distances of [Tm-F2] to be 7.5 and 9.1 Å (Figure 3.9), which are slightly longer 

than the 5 - 7 Å range suggested by Parker.131 
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Figure 3.Figure 3.Figure 3.Figure 3.8888. . .  .  Chemical structures of paramagnetic fluorine contrast agents [Dy-F8]3+ and         
[Tm-F2] for the detection of HO•.   
 

 
 

Figure Figure Figure Figure 3.9.3.9.3.9.3.9. Optimized geometry of [Tm-F2] determined 19F-Ln distances of 7.5 and 9.1 Å.       
Tm (magenta), F (green), O (red), N (blue), carbon (grey),  
  

 A three step synthesis was employed to generate [Dy-F8]3+ (Scheme 3.1).  First, 

3,5-difluorobenzylamine was converted to the corresponding difluorobenzyl-

bromoacetamide (3.1).  Next, cyclen was fully substituted to afford the F8 ligand (3.2) in a 

low yielding reaction.  An alternative synthetic approach of coupling 3,5-difluoro-

benzylamine to the four carboxylic acids on the macrocycle DOTA was unsuccessfully 

mediated by several activating agents (HATU and PyBOP).  Heating the ligand with DyI3 
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in a mixture of methanol and water at neutral pH for 20 h afforded the final complex, 

[Dy-F8]3+.  Similarly, [Tm-F2] was synthesized via mono-alkylation of cyclen with the 

fluorobenzyl pendant arm (3.1, Scheme 3.2).  This reaction proceeded with moderate to 

good yields (ca. 60%) at room temperature, while the tetra-substitution in the synthesis 

of [Dy-F8]3+ required mild heating to functionalize the fourth nitrogen of the macrocyclic 

ring.  Subsequent addition of tert-butylbromoacetate followed by deprotection under 

acidic conditions yielded the final ligand F2 (3.5).  The complex, [Tm-F2], was obtained 

by heating with TmCl3 in an aqueous solution at pH 7 for 3 d.  Formation of both 

complexes, [Dy-F8]3+ and [Tm-F2], was verified by ESI-MS, and their corresponding 1H 

NMR spectra illustrated paramagnetism.   

  

 

 Scheme 3.Scheme 3.Scheme 3.Scheme 3.1111 . Synthesis of [Dy-F8]3+.a  

 
 

a Reagents and conditions: (a) K2CO3, CH2Cl2/H2O (1:1), 22 °C, 2 h; (b) cyclen, K2CO3, CH3CN, 
50 °C, 48 h; (c) DyI3, H2O/CH3OH, pH 7, 65 °C, 20 h. 
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Scheme 3.Scheme 3.Scheme 3.Scheme 3.2222. . . . Synthesis of [Tm-F2].a  

 

 

a Reagents and conditions: (a) cyclen, Cs2CO3, CH3CN, 22 °C, 18 h; (b) tert-butyl bromoacetate, 
Cs2CO3, CH3CN/DMF, 40°C, 18 h; (c) HCl, CH3OH, 22 °C, 24 h; (d) TmCl3, H2O, pH 7, 45 °C, 
3 d.  
 
 
 A lanthanide induced shift (LIS) of the fluorine resonances was observed for each 

complex.  LIS is defined as the difference in chemical shift, Δδ, between a paramagnetic 

complex and its diamagnetic analog (i.e. the ligand): (Δδ = δpara – δdia).  In terms of 

lanthanide-based fluorine probes, the observed shift is defined as the 19FLIS.  If the 19F 

nuclei is at least 5 Å away from the Ln3+, the pseudocontact shift (PCS) is a function of 

the lanthanide, its coordination environment, and the geometric relationship between the 

19F nuclei and the principal dipolar magnetic axis of the Ln3+ ion (Figure 3.10).   
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Figure 3.Figure 3.Figure 3.Figure 3.10101010.  .  .   .   Model of a Ln-DOTAm complex with trifluoroethylacetamide substituents 
illustrating (a) the distance, d, between the Ln3+ ion and the 19F nuclei and the angle, θ, between 
the Ln3+-19F vector and the principle magnetic dipolar axis of the lanthanide ion; and (b) the 
positive (red) and negative (blue) regions of the pseudocontact shift field around the Ln3+ ion.  

 
This relationship is defined by the McConnell-Robertson equation (Equation 6):131 

FLIS �X =  YZ  [1
\Q(]^)1

_
 `ab1 cR �d
4e P�Q                        (6) 

where d is the Ln – 19F distance, θ is the angle between the principal magnetic dipolar 

axis of the Ln3+ ion and 19F nuclei, B2
0 is the second order crystal field coefficient that is 

dependent on Ln3+ coordination environment, and CD is the Bleaney constant for the 

specific lanthanide.  Both the direction and magnitude of the shift are dependent on the 

identity of the lanthanide ion, allowing lanthanides to be ranked by their relative PCS 

strength (Table 3.1).   

 In the present study, the observed 19FLIS of [Dy-F8]3+ (δF = -104.9 ppm) with 

respect to the F8 ligand (3.2, δF = -111.4 ppm) is +6.5 ppm, while the fluorine resonance 

of [Tm-F2] (δF = -125.5 ppm) was shifted -14.5 ppm from the F2 ligand (3.5, 

δF = -111.0 ppm).  Each system displays opposing directions of ΔδF, mirroring the 

opposite signs of the Bleaney constants and PCS strengths of the respective Ln3+ ions.  

The ΔδF induced by the Dy3+ complex is greater in magnitude than that of the Tm3+ 

complex, congruent with the -100 and +53 relative PCS strengths of the ions, 

respectively (Table 3.1).  Additionally, the 19FLIS value of the [Tm-F2] system agrees with 

a b 
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reported ΔδF values of -12 to -28 ppm for non-responsive Tm3+ complexes.150-152          

19F NMR spectra of [Tm-F2] were collected in deuterium oxide, while [Dy-F8]3+ was 

characterized in deuterated methanol (CD3OD).  In both cases, the 19F NMR spectra 

were referenced to trifluoroethylamine (δF = -77.28 ppm).  Unfortunately, [Dy-F8]3+ 

exhibited low water solubility.  Comparison with structurally related complexes revealed 

that tetra-trifluoromethylbenzylacetamide substituted DOTAm complexes were also not 

soluble in fully aqueous solutions (NMR characterization was performed in mixture of 

80% CD3OD and 20% D2O).141  To meet the objective of a water soluble contrast agent 

for HO•, further studies were pursued with [Tm-F2] complex.   

 The 19F PRE induced by the Tm3+ was also investigated.  As described by BRW 

theory, a lanthanide metal can increase the relaxation rates (and decrease the relaxation 

times) of nearby fluorine nuclei.  Using the inversion recovery method, the T1 of the 

diamagnetic CA-F2 was determined as 4.1 s at 282 MHz.  This agrees with reported T1 

values of aryl 19F nuclei in the 3 - 4 s range at 376 MHz.153  Note that T1 is dependent on 

the field strength, and T1 values of 1 - 2 s for aryl 19F nuclei are typical at 470 MHz.154  

Incorporation of the paramagnetic Tm3+ metal in [Tm-F2] was expected to substantially 

decrease T1 in comparison with CA-F2.  Indeed, the T1 of [Tm-F2] was reduced to 49 ms 

at 470 MHz.  These preliminary studies demonstrate the influence of Tm3+ on the 

relaxation rates of proximal 19F nuclei in the current system.   

2. Response to hydroxyl radical  

 Based on the results with CA-F2, it was expected that hydroxylation of [Tm-F2] 

would release F- and form a hydroxylated product, and each would have a unique δF.  

However, when [Tm-F2] is treated with HO• generated via the photolysis of H2O2, two 

resonances are observed by 19F NMR.  A resonance is present at either δF =-124.1 ppm 

or δF = -121.5 ppm for 2 h or 24 h reaction time, respectively, and an impurity is evident 

at -76.3 ppm (Figure 3.11).  Further analysis of the reaction mixtures by 1H NMR 

revealed the absence of paramagnetic character (Figure 3.12).  ESI-MS confirmed the 

absence of [Tm-F2] or other high molecular weight species (> 600 m/z) in the reaction 

mixture. To verify the stability of [Tm-F2] with respect to H2O2, an aqueous solution of the 

complex was combined with 100 equivalents of H2O2 in the absence of UV light.  After 

2 h, the existence of [Tm-F2] was confirmed by 1H NMR, 19F NMR, and ESI-MS.     
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Figure 3.Figure 3.Figure 3.Figure 3.11111111.     19F NMR spectra of (a) unreacted [Tm-F2], the [Tm-F2] reaction mixture after       
(b) 2 h or (c) 24 h of photolysis in the presence of H2O2. Experimental conditions: 
[Tm-F2] = 5.0 mM, [H2O2] = 0.5 mM, photolysis wavelength = 254 nm.  NMR samples in D2O, 
[DPO42-] = 10.0 mM, pD = 7.4, referenced to trifluoroethylamine (δF = -77.28 ppm).  The peak at 
δF =-76.3 ppm corresponds to an unknown impurity.  
 
 
 

 

Figure 3.Figure 3.Figure 3.Figure 3.12121212....     1H NMR spectra of (a) [Tm-F2], and (b) [Tm-F2] reaction mixture after 2 h of photolysis 

in the presence of H2O2.  Experimental conditions: [Tm-F2] = 5.0 mM, [H2O2] = 0.5 M.  NMR 
samples in D2O, [DPO42-] = 10.0 mM, pD = 7.4. 

  

b    2 h 

c    24 h  

a    [Tm-F2] 

b   2 h 

a    [Tm-F2] 
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 This study indicates that [Tm-F2] is stable with respect to H2O2 and is degraded in 

the presence of HO• generated from the photolysis of H2O2.  It is hypothesized that HO• 

reacts with the polyaminocarboxylate ligand and degrades the complex, releasing the 

Tm3+ metal.  A white precipitated formed upon dissolving the reaction mixture in 

phosphate buffer (10 mM, DPO4
2-, pD 7.4) prior to NMR characterization.  This is in 

concert with the insolubility of lanthanide phosphate salts.  Degradation of metal-EDTA 

complexes by H2O2/UV processes are reported in the literature,155 and the reaction of 

HO• with Ln-DPTA complexes occurs with fast rate constants  (k ~ 4 x 109 M-1 s-1).156   

 The reactivity of [Tm-F2] with HO• is surprising, especially when considering the 

reported lanthanide-based probes Tb-BMPTA,82 Ln-AMTTA,83 and trimesate/Tb-DO3A81 

for its detection (Figures 1.8 and 2.3).  In the case of the bimolecular (pre)antenna and 

Tb-DO3A probes discussed in Chapter 2, the photolysis of H2O2 to generate HO• was 

performed only in the presence of the pre-antenna.  The luminescence intensity was 

subsequently measured after the addition of Tb-DO3A to the reaction mixture.  Using 

this protocol, degradation of the lanthanide complex by HO• would not be observed.  As 

for Tb-BMPTA and Ln-AMTTA, they contain non-macrocylic polyaminocarboxylate 

ligands with coordinating aromatic amines.  Sensitivity studies with these complexes 

were performed with HO• generated via Fenton chemistry, which does not involve UV 

light.82-83  Therefore, the response of [Tm-F2] to HO• generated by Fenton chemistry 

should be evaluated.  Further instability of [Tm-F2] to its analyte, HO•, will prevent its use 

as an imaging agent.  As such, alternative strategies and contrast agent architectures 

must be employed to increase the sensitivity of HO• responsive 19F MRI contrast agents. 

IV. CONCLUSIONS AND FUTURE WORK 

 Novel contrast agents for the magnetic resonance imaging of HO• are described.  

Hydroxylation of the diamagnetic probe CA-F2 forms two products, F- and CA-F(OH)2, 

that can be monitored independently by 19F NMR.  Further the ratio of the 19F signals of 

the products compared to that of the unreacted probe can ratiometrically monitor HO• by 

19F MRI.  The ratiometric response and compatibility with 19F MRI present major 

advantages of CA-F2 over the previously reported 19F NMR probe for HO•.   In addition, 
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CA-F2 exhibits excellent selectivity for HO• when treated with other ROS and RNS, 

including those existing at much higher concentrations in vivo.  Despite the rapid 

reaction of HO• with CA-F2, the probe suffers from low sensitivity and requires high 

concentrations of contrast agent.   

 To increase the SNR ratio, the paramagnetic 19F contrast agents [Dy-F8]3+ and 

[Tm-F2] were designed for the detection of HO•.  Enhanced sensitivity and SNR was 

expected as a result of the PRE induced by the lanthanide metal.  The complexes were 

synthesized over facile three or four step syntheses, respectively.  Characterization of 

the complexes by 19F NMR reported 19FLIS in the direction predicted by the relative 

Bleaney co-efficient and relativity PCS strength of the lanthanide (Dy3+ or Tm3+).  PRE 

was also observed.  The longitudinal relaxation time of [Tm-F2] was reduced by ca. two 

orders of magnitude compared to the diamagnetic CA-F2.  Regrettably, the low aqueous 

solubility of [Dy-F8]3+ impeded further studies.  On the other hand, [Tm-F2] was water 

soluble, but decomposed upon treatment with HO• generated by the photolysis of H2O2.  

 Future studies include designing 19F contrast agents for HO• with increased 

sensitivity that employ alternative approaches to PRE.  BRW theory (Equations 1 and 2) 

demonstrates that the relaxation rates of fluorine atoms are affected by proximal 

paramagnetic metals and by the rotational correlation time (τR) of the imaging agent.  

Increasing τR of the probe with a macromolecular structure will cause a reduction in both 

R1 and R2.  For the detection of HO•, difluorobenzyl moieties can be displayed on the 

surface of gold nanoparticles or incorporated into a hyperbranched polymer.  There are 

limited examples of responsive macromolecular fluorinated contrast agents in the 

literature of despite the theoretical advantages of this approach.157  A non-responsive 

example is a Dy3+ chitosan conjugate that amplifies the relaxation rates of the 19F nuclei 

by both PRE and increasing τR.
158  However, diamagnetic macromolecular structures 

based on hyperbranched polymers, or dendrimers that incorporate a high number of 19F 

nuclei have been designed as 19F MRI contrast agents.157, 159-166  These fluorinated 

structures have the benefit of decreasing T1 as a result of the increased τR along with 

improving water solubility and in vivo retention.  As such, application of this technique to 

19F MRI contrast agents can utilize the selectivity of the difluorobenzyl moiety for HO• 

and simultaneously improve sensitivity of detection.   
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V. EXPERIMENTAL  

General considerationsGeneral considerationsGeneral considerationsGeneral considerations. Chemicals were obtained from commercial suppliers and used 

without further purification, including 3,5-difluorobenzoic acid which can be purchased 

from TCI or Sigma Aldrich.  All aqueous solutions were prepared with distilled water 

purified by a Millipore Simplicity cartridge system (18 MΩ).  Reactions and analyses 

were conducted in non-aerated solutions at ambient temperature, unless otherwise 

noted. NMR and mass spectrometry were performed in the LeClaire-Dow 

Instrumentation Facility and the Waters Center of Innovation for Mass Spectrometry, 

respectively, at the Department of Chemistry at the University of Minnesota–Twin Cities.  

NMR spectra were collected on a Bruker Biospin AG 500 Ascend Spectrometer at 500 

MHz for 1H and 470 MHz for 19F.  All 19F spectra are 1H decoupled.  The residual solvent 

peak was used as an internal reference for 1H NMR.  Electrospray ionization mass 

spectra (ESI-MS) were measured on a Bruker BioTOF II. pH measurements were taken 

using a Thermo Orion 3 Benchtop pH meter.  

 

A. Synthesis and Characterization 

2222----bromobromobromobromo----NNNN----(3,(3,(3,(3,5555----difluorobenzyl)acetamide (difluorobenzyl)acetamide (difluorobenzyl)acetamide (difluorobenzyl)acetamide (3.3.3.3.1).1).1).1). Using an upright 3-neck flask, 

aqueous Cs2CO3 (5.60 g, 17.1 mmol) in water (15 mL) and bromoacetylbromide (557 µL, 

6.40 mmol) in CH2Cl2 (15 mL) were added drop wise simultaneously over 10 min to 

3,5-difluorobenzylamine (500 µL, 4.26 mmol) in CH2Cl2 (10 mL) at 0 ºC.   Following the 

addition, the reaction mixture was stirred at room temperature for 2 h.  The organic layer 

was washed with MQ water until the pH was approximately neutral (6 x 15 mL), brine 

(15 mL) and then dried over MgSO4 and filtered.  Removal of the solvent in vacuo 

yielded the product as a white powder (1.02 g, 3.89 mmol, 91% yield).  1H NMR 

(500 MHz, CDCl3, δ): 3.94 (s, 2H), 4.45 (d, J = 6.2 Hz, 2H), 6.73 (m, 1H), 6.80 (d, 

J = 5.8 Hz, 2H), 6.91 (s, 1H). 19F NMR (470 MHz, CDCl3, δ): -110.5 (s, 2F). 13C NMR 

(125 MHz, CDCl3, δ): 29.1, 43.5, 103.4 (t, JCF = 25 Hz), 110.5 (dd, JCF = 20, 6.0 Hz), 

141.5 (t, JCF = 9.0 Hz), 162.4 (d, JCF = 13 Hz), 164.4 (d, JCF = 13 Hz), 165.8 (s).  

HR-ESI-MS (m/z): [M+H]+ calcd for C9H8BrF2NO, 263.9830.; found, 263.9830. 
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2,2',2'',2'''2,2',2'',2'''2,2',2'',2'''2,2',2'',2''' ----(1,4,7,10(1,4,7,10(1,4,7,10(1,4,7,10----tetraazacyclododecanetetraazacyclododecanetetraazacyclododecanetetraazacyclododecane----1,4,7,101,4,7,101,4,7,101,4,7,10----tetrayl)tetrakis(Ntetrayl)tetrakis(Ntetrayl)tetrakis(Ntetrayl)tetrakis(N----(3,5(3,5(3,5(3,5----

difluorobedifluorobedifluorobedifluorobenzyl)acetamide) (3.nzyl)acetamide) (3.nzyl)acetamide) (3.nzyl)acetamide) (3.2).2).2).2). Under N2, 2-bromo-N-(3,5-difluorobenzyl)acetamide 

(3.1, 280 mg,1.06 mmol) in anhydrous CH3CN (15 mL) was added drop wise to cyclen 

(45.6 mg, 0.265 mmol) and K2CO3 (586 mg, 4.24 mmol) in anhydrous CH3CN (15 mL) at 

0°C. After stirring the reaction mixture at 50 °C for 48 h, the solid was removed by 

filtration, and the volatiles were removed under reduced pressure. The crude mixture 

was deposited onto silica and purified by flash chromatography (eluent: 0 – 10% MeOH 

in CH2Cl2) to yield the product as a wild solid (35 mg, 0.039 mmol, 7% yield).  1H NMR 

(500 MHz, (CD3)2O, δ): 2.11 (m, 6H), 2.84 (m, 6H), 3.26 (m, 8H), 4.41 (s, 8H), 6.79 (t, 

J = 9.2 Hz, 4H), 6.98 (d, J = 6.5 Hz, 8H), 8.69 (bs, 4H). 19F NMR (470 MHz, CDCl3, 

δ): -111.4 (s, 8F).  13C (125 MHz, CD3OD, δ): 55.5, 56.4, 101.7 (t, JCF = 25 Hz), 105.5 

(dd, JCF = 6.0, 20 Hz), 142.8 (app m), 143.7 (dd, JCF = 12, 120 Hz), 172.0.  ESI-MS 

(m/z): [M+Na]+ calcd for C44H48F8O4N8, 927.4; found, 927.5. 

 

[Dy[Dy[Dy[Dy----FFFF8888]]]]3+3+3+3+. In methanol (1 mL), the F8 ligand (3.2, 14 mg, 0.016 mmol) and DyI3 (8.4 mg, 

0.016 mmol, 386 µL of an 40.2 mM aqueous solution) were combined.  The pH was 

adjusted to 7 with dilute NaOH and the reaction mixture was heated at 65 °C for 20 h.  

The solvent was removed under reduced pressure to yield the product as a light yellow 

powder (16 mg, 0.015 mmol, quant. yield).  1H NMR (500 MHz, CD3OD, δ): selected 

peaks at -88.8, -47.5, 9.8, 12.6, 14.0, 19.0, 34.3, 36.7, 40.9, 46.1, 82.5, 130.4.  19F NMR 

(470 MHz, CD3OD, δ): -109.0 (s, minor conformer), -104.9 (s, major conformer). ESI-MS 

(m/z): [M]3+ calcd for C44H48F8O4N8Dy, 356.1; found, 356.1. 

 

NNNN----(3,5(3,5(3,5(3,5----difluorobenzyl)difluorobenzyl)difluorobenzyl)difluorobenzyl)----2222----(1,4,7,10(1,4,7,10(1,4,7,10(1,4,7,10----tetrtetrtetrtetraazacyclododecanaazacyclododecanaazacyclododecanaazacyclododecan----1111----yl)acetamide yl)acetamide yl)acetamide yl)acetamide ((((3.33.33.33.3).).).).   

Under N2, the fluorinated bromoacetamide arm (3.1, 757 mg, 2.88 mmol) in anhydrous 

CH3CN (15 mL) was added dropwise at room temperature to a solution of cyclen (1.98 g, 

11.5 mmol) and Cs2CO3 (1.39 g, 4.27 mmol) in CH3CN (30 mL) over 1 minute.  The 

reaction mixture was stirred at ambient temperature for 18 h.  The CH3CN was removed 

under reduced pressure and the resulting oil was dissolved in CHCl3 (20 mL).  The 

organic layer was washed with 1 M NaOH (8 x 20 mL), distilled water (3 x 20 mL), and 

brine (1 x 20 mL), and then dried with MgSO4 and filtered.  The volatiles were removed 
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under reduced pressure to yield the product as a colorless oil (609 mg, 1.71 mmol, 60% 

yield).  1H NMR (500 MHz, CDCl3, δ): 2.79 (m, 18H), 4.45 (s, 2H), 6.68 (s, 1H), 6.92 (s, 

1H). 19F NMR (470 MHz, CDCl3, δ): -111.1 (s, 2F).  13C NMR (125 MHz, CDCl3, δ): 43.6, 

44.0, 45.7, 51.1, 56.7, 103.4 (t, JCF = 25 Hz), 110.1 (dd, JCF = 6.0, 19 Hz), 143.8 (t, JCF = 

8.0 Hz), 164.7 (dd, JCF = 12, 250 Hz), 174.2.  HR-ESI-MS (m/z): [M+H]+ calcd for 

C17H27N5OF2, 356.2256; found, 356.2242.   

 

(1,4,7,10(1,4,7,10(1,4,7,10(1,4,7,10----TrisTrisTrisTris----terttertterttert----butoxycaronylmethylbutoxycaronylmethylbutoxycaronylmethylbutoxycaronylmethyl----1,4,7,101,4,7,101,4,7,101,4,7,10----tetraazacyclododecantetraazacyclododecantetraazacyclododecantetraazacyclododecan----1111----yl) yl) yl) yl) 

difluorobenzylamide (difluorobenzylamide (difluorobenzylamide (difluorobenzylamide (3.3.3.3.4).4).4).4).  Under N2, tert-butylbromoacetate (156 µL, 1.06 mmol) in 

anhydrous CH3CN (10 mL) was added drop wise to cyclen-F2 conjugate (3.3, 160 mg, 

0.344 mmol) and Cs2CO3 (1.19 g, 3.65 mmol) in a mixture of anhydrous CH3CN (10 mL) 

and DMF (2 mL).  Following the addition, the reaction mixture was stirred at 40 ºC for 

18 h.  The solid was removed by filtration, and the solvent removed under reduced 

pressure. The crude product was deposited onto silica and purified by flash 

chromatography (eluent: 0 – 10% MeOH in CH2Cl2) to yield the product as a yellow oil 

(140 mg, 0.20 mmol, 58% yield).  1H NMR (500 MHz, CDCl3, δ): 1.42 (m, 27H), 

1.99-3.70 (bm, 24H), 4.43 (m, 2H), 6.63 (m, 1H), 6.89 (m, 2H), 9.69 (s, 1H). 19F NMR 

(470 MHz, CDCl3, δ): -112.5 (s, 2F, major conformer), -112.6 (s, 2F, minor conformer).  

13C NMR (125 MHz, CDCl3, δ): 28.0, 28.3, 42.2, 52.7, 53.5, 55.7, 56.1, 82.1, 102.1 

(app m), 110.3 (app d, JCF = 19 Hz), 110.6 (app d, JCF = 19 Hz), 144.4 (t, JCF = 10 Hz), 

163.1 (dd, JCF = 11, 240 Hz), 170.6, 172.4.  HR-ESI-MS (m/z): [M+Na]+ calcd for 

C35H57F2N5O7, 720.4118; found, 720.4103. 

 

2,2',2''2,2',2''2,2',2''2,2',2''----(10(10(10(10----(2(2(2(2----((3,5((3,5((3,5((3,5----difluorobendifluorobendifluorobendifluorobenzyl)amino)zyl)amino)zyl)amino)zyl)amino)----2222----oxoethyl)oxoethyl)oxoethyl)oxoethyl)----1,4,7,101,4,7,101,4,7,101,4,7,10----

tetraazacyclododecanetetraazacyclododecanetetraazacyclododecanetetraazacyclododecane----1,4,71,4,71,4,71,4,7----triyl)triacetic acid triyl)triacetic acid triyl)triacetic acid triyl)triacetic acid (3.(3.(3.(3.5).5).5).5).  A solution of HCl in MeOH 

(15 mL, 1.25 M) was added drop wise to the tris-tert-butyl-DO3A-F2 (3.4, 103 mg, 

0.148 mmol) in MeOH (2 mL). The reaction was stirred 24 h at room temperature.  The 

solvent was removed under reduced pressure to yielding a light tan solid (78 mg, 

0.14 mmol, quant. yield). 1H NMR (500 MHz, D2O, δ): 1.86-3.29. (bm, 24H), 4.18 (s, 2H), 

6.55 (t, J = 9.1 Hz, 1H), 6.74 (d, J = 6.6 Hz, 2H).  19F NMR (470 MHz, D2O, δ): -111.0 (s, 

2F). 13C NMR (125 MHz, D2O, δ): 42.0, 50.4, 51.0, 56.6, 58.5, 59.1, 102.2 (t, J = 18 Hz), 



19F MR Detection of HO•                                                                                                    Chapter 3 

86 

 

110.2 (app d, JCF = 17 Hz), 143.4 (app m), 162.6 (dd, JCF = 12, 240 Hz), 172.9, 179.7, 

179.9. HR-ESI-MS (m/z): [M-3H+2Na]- calcd for C23H33F2O7N5, 572.1914; found, 

572.1864. 

 

TmTmTmTm----FFFF2222.... Aqueous TmCl3 (464 µL of a 40.0 mM solution, 19.0 µmol) was added the 

DO3A-F2 ligand (3.5, 10 mg, 19 µmol) in water (320 µL). The pH was adjusted to 7 with 

dilute NaOH, and the reaction mixture was incubated at 45 °C for 3 days.  The solvent 

was removed under vacuum generating the complex as a white powder (13 mg, 

19 µmol, quant yield). 1H NMR (500 MHz, D2O, δ): illustrates paramagnetism, selected 

peaks at -144.5, -132.2, -113.6, -111.0, -98.5, -95.8, -92.0, -86.0, -15.7, -10.8, -8.6, 1.6, 

2.6, 2.9, 3.0, 6.5, 36.7, 42.4, 46.1, 47.0, 49.2, 53.3, 63.5.  19F NMR (470 MHz, D2O, 

δ): -125.5 (minor conformer), -76.3 (impurity).  HR-ESI-MS (m/z): [M+Na]+ calcd for 

TmC23H30O7N5F2, 718.1348; found, 718.1352. 

 

B. Experimental Methods 

Generation of HO• via Generation of HO• via Generation of HO• via Generation of HO• via photolysis of Hphotolysis of Hphotolysis of Hphotolysis of H2222OOOO2222 ....  An aqueous solution of H2O2 (1.45 mL, 

30% wt., 0.015 mol, 5.00 M final concentration, 100 eq) and water (50.0 µL) were added 

to an aqueous solution of CA-F2 (1.50 mL, 100 mM, 0.150 mmol, 50.0 mM final 

concentration). The solution was transferred to a quartz cuvette and irradiated at 22 °C 

for 0 - 24 h at 254 nm using a Spectroline hand-held UV lamp (power = 0.20 amps).  

Reaction mixtures were immediately lyophilized and redissolved in D2O, DPO4
2- 

(10.0 mM, pD = 7.4) for NMR characterization. Experiments were repeated in 

quadruplate (n = 4), and outlying data points were evaluated and removed according to 

the Q-test with 90% confidence interval.   

 

Generation of HO• via Fenton chemistry.Generation of HO• via Fenton chemistry.Generation of HO• via Fenton chemistry.Generation of HO• via Fenton chemistry. An aqueous solution of Fe(II)EDTA (60.0 µL, 

50.0 mM, 3.00 µmol, 3.00 mM final concentration, 0.10 eq) was added to an aqueous 

solution of CA-F2 (300 µL, 100 mM, 30.0 µmol, 30.0 mM final concentration, 1 eq), H2O2  

(0 – 157 µL, 0.30% wt., 0 – 0.015 mmol, 0 – 15.0 mM final concentration, 0 – 0.5 eq) and 

MQ water (12.0 – 640 µL, 5.0 mL final volume). Reaction mixtures were stirred for 1 h at 
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room temperature.  The reaction mixtures were immediately concentrated to dryness 

and redissolved in D2O, DPO4
2- (10.0 mM, pD = 7.4) for NMR characterization. 

 

Selectivity Selectivity Selectivity Selectivity versusversusversusversus    reactive oxygen or nitrogen species.reactive oxygen or nitrogen species.reactive oxygen or nitrogen species.reactive oxygen or nitrogen species. ROS and RNS were 

administered to CA-F2 in aqueous solutions as follows.  Reaction mixtures were stirred 

at room temperature for 2 h, then immediately lyophilized and redissolved in D2O, 

DPO4
2- (10.0 mM, pD = 7.4) for NMR characterization.  Experiments were repeated in 

triplicate (n = 3). 

 

Hydroxyl radical (HO•): An aqueous solution of H2O2  (1.45 mL, 30% wt., 0.015 mol, 

5.00 M final concentration, 100 eq) and water (50.0 µL) were added to an aqueous 

solution of CA-F2 (1.50 mL, 100 mM, 0.150 mmol, 50.0 mM final concentration).  The 

solution was transferred to a quartz cuvette and irradiated for 2 h at 254 nm using a 

Spectroline hand-held UV lamp (power = 0.20 amps).   

 

Hydrogen peroxide (H2O2): An aqueous solution of H2O2  (1.45 mL,  30% wt., 

0.015 mol, 5.00 M final concentration, 100 eq) and water (50.0 µL) were added to an 

aqueous solution of CA-F2 (1.50 mL, 100 mM, 0.150 mmol, 50.0 mM final 

concentration).  tBuOOH (TBHP):  An aqueous solution of tert-butyl hydrogen 

peroxide (347 µL, 70% wt., 7.20 M, 2.50 mmol, 2.50 mM final concentration, 50 eq) 

and water (153 µL) were added to an aqueous solution of CA-F2 (500 µL, 100 mM, 

0.050 mmol, 50.0 mM final concentration).   

 

Hypochlorite (OCl-): An aqueous solution of hypochlorite (179 µL, 4.5% wt., 1.40 M, 

0.250 mmol, 0.25 mM final concentration, 5 eq) and water (321 µL) were added to an 

aqueous solution of CA-F2 (500 µL, 100 mM, 0.050 mmol, 50.0 mM final 

concentration).  

 

Superoxide (O2
-): KO2 (18.0 mg, 0.250 mmol, 250 mM final concentration, 5 eq) and 

water (500 µL) were added to an aqueous solution of CA-F2 (500 µL, 100 mM, 

0.050 mmol, 50.0 mM final concentration).   
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Tert-butoxy radical (tBuO•): Tert-butoxy radical was generated according to 

previously published procedure 129.  Fe(bpy)3(O4Cl)2 (9.0 mg, 0.013 mmol, 12.5 mM 

final concentration, 0.25 eq), an aqueous solution of TBHP (34.7 µL, 70% wt., 

7.20 M, 0.250 mmol, 250 mM final concentration, 5 eq), and water (465 µL) were 

added to an aqueous solution of CA-F2 (500 µL, 100 mM, 0.050 mmol, 50.0 mM final 

concentration).   

 

Nitric Oxide (NO): Spermine NONOate (241 µL, 254 mM in 0.01 M NaOH, 

0.0625 mmol, 125 mM final concentration, 2.5 eq) and water (9 µL) were added to an 

aqueous solution of CA-F2 (250 µL, 100 mM, 0.025 mmol, 50.0 mM final 

concentration).   The reaction mixture was adjusted to pH < 5 with concentrated HCl 

(12 M) and stirred at room temperature.   

 

Peroxynitrite (ONOO-): SIN-1 (260 µL, 121 mM, 0.025 mmol, 50.0 mM final 

concentration, 1 eq) and water (44.0 µL) were added to an aqueous solution of 

CA-F2 (250 µL, 100 mM, 0.025 mmol, 50.0 mM final concentration).  

 

Singlet oxygen (1O2):  An aqueous solution of Rose Bengal (1.00 mL, 2.00 µM, 

2.00 nmol, 1.00 µM final concentration) was added to an aqueous solution of CA-F2 

(1.00 mL, 100 mM, 0.100 mmol, 50.0 mM final concentration).  The solution was 

purged three times with O2 and stirred under irradiation with UV light using a 90 W 

Halogen Flood lamp for 2 h.  
 

MRI.MRI.MRI.MRI.  Magnetic resonance images of samples in 3 mm NMR tubes were acquired on a 

16.4-T, 26-cm horizontal bore magnet (Magnex Scientific, Oxford, UK) interfaced with a 

Varian Direct Drive console (Varian, Palo Alto, CA, USA).  The magnet was equipped 

with a gradient insert capable of reaching 1000 mT/m in 150 µs (Resonance Research, 

Inc., Billerica, MA).  A linear surface coil (12 mm diameter) tunable to both 1H (698.1 

MHz) and 19F (656.8 MHz) frequency was used to transmit and receive the signal.        

1H gradient echo images were acquired using following parameters: repetition time 
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(TR) = 20 ms, echo time (TE) = 2.98 ms, field of view (FOV) = 2 cm x 2 cm, matrix = 

256 x 256, slice thickness = 5 mm, flip angle = 20°.  19F gradient echo images were 

acquired using following parameters: TR = 400 ms, TE = 3.23 ms, FOV = 2 cm x 2 cm, 

matrix = 64 x 64, slice thickness = 5 mm, excitation pulse = 5 ms Gauss.  Images 

at -120 ppm were acquired with flip angle = 36°, number of scans (ns) = 64, acquisition 

time = 27 min.  Images at -110 ppm were acquired with flip angle = 42º, ns = 256, 

acquisition time = 1 h 50 min. 

 

Geometry calculations ofGeometry calculations ofGeometry calculations ofGeometry calculations of    TmTmTmTm----FFFF2222.... Geometry optimization was carried out using 

Gaussian09167 with B3LYP functional by employing the 6-31G(d) basis set for the light 

elements (H, C, N, O and F) and the quasirelativistic effective core potential (RECP) of 

Dolg et al.168-169 and the related [5s4p3d]-GTO valence basis set for the Tm. This RECP 

accommodates 46+4fn electrons in the core for the lanthanide and the outermost 11 

electrons are treated explicitly. Such RECP has been earlier used in DFT studies to 

understand the structure and energetics of the lanthanide complexes.170    

    

Response of TmResponse of TmResponse of TmResponse of Tm----FFFF2222    to HO•.to HO•.to HO•.to HO•.  An aqueous solution of H2O2  (25.5 μL, 30 wt%, 

0.250 mmol, 0.500 M final concentration, 100 eq) and MilliQ water (290.5 µL) were 

added to an aqueous solution of Tm-F2 (184 μL, 13.6 mM, 2.50 μmol, 5.00 mM final 

concentration).  The solution was transferred to a quartz cuvette and irradiated for 2-24 h 

at 254 nm using a Spectroline hand-held UV lamp (power = 0.20 amps).  Reaction 

mixtures were immediately lyophilized and redissolved in D2O, DPO4
2- (10.0 mM,          

pD = 7.4) for NMR characterization.     
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CCCCHAPTER HAPTER HAPTER HAPTER 4444    
CCCCELLULAR ELLULAR ELLULAR ELLULAR CCCCOMPATIBILITY OF OMPATIBILITY OF OMPATIBILITY OF OMPATIBILITY OF LLLLANTHANIDE ANTHANIDE ANTHANIDE ANTHANIDE CCCCOMPLEXESOMPLEXESOMPLEXESOMPLEXES    
 

Reproduced with permission from  Peterson, K. L.; Dang, J. V.; Weitz, E. A.; Lewandowski, C.; 
Pierre, V. C., Inorg. Chem. 2014, 53, 6013-6021.  Copyright 2014 American Chemical Society. 

I. SYNOPSIS 

 A systematic study of the effect of the hydrophobicity and charge on the cell 

viability and cell association of lanthanide metal complexes is presented.  The terbium 

luminescent probes feature a macrocyclic polyaminocarboxylate ligand (DOTA) in which 

the hydrophobicity of the antenna and that of the carboxyamide pendant arms are 

independently varied.  Three sensitizing antennas were investigated in terms of their 

function in vitro: 2-methoxyisophthalamide (IAM(OMe)), 2-hydroxyisothalamide (IAM), 

and 6-methylphenanthridine (Phen).  Of these complexes, the Tb-DOTA-IAM exhibited 

the highest quantum yield, although the higher cell viability and more facile synthesis of 

the structurally related Tb-DOTA-IAM(OMe) platform renders it more attractive.  Further 

modification of this latter core structure with carboxyamide arms featuring hydrophobic 

benzyl, hexyl, trifluoro groups as well as hydrophilic amino acid based moieties 

generated a family of complexes that exhibit high cell viability (EC50 > 300 μM) 

regardless of the lipophilicity or the overall complex charge.  Only the hexyl substituted 

complex reduced cell viability to 60% in the presence of 100 µM complex.  Additionally, 

cellular association was investigated by ICP-MS and fluorescence microscopy.  

Surprisingly, the hydrophobic moieties did not increase cell association in comparison to 

the hydrophilic amino acid derivatives.  It is thus postulated that the hydrophilic nature of 

the 2-methoxyisophthalamide antenna (IAM(OMe)) disfavors the cellular association of 

these complexes.  As such, responsive luminescent probes based on this scaffold are 

appropriate for the detection of extracellular species. 
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II. INTRODUCTION 

A. Luminescent lanthanide probes for biological imaging 

 Luminescent metal complexes are increasingly employed as biomolecular and 

cellular probes due to their unique photophysical properties that make them particularly 

well suited to monitor biological processes.171-174  Examples include not only complexes 

of transition metals such as Pt, Ir, and Ru, but also those that incorporate lanthanides, 

most commonly Eu and Tb.33, 111, 174  In particular, the long luminescence lifetimes of the 

emitting metal mitigates the interference of background fluorescence originating from the 

biological sample.  Moreover, since the large energy difference between the absorbing 

and emissive states of lanthanide complexes removes self-absorption issues, their 

luminescence signal intensity is proportional to their concentration over a wide range of 

values.  With this in mind, lanthanide-based molecular probes have been applied to the 

detection of reactive oxygen species (ROS),82-83, 175-176 redox active metals,116, 177 pH,178-

179 and intracellular analytes, such as ATP.180 The continued applications of such metal-

based luminescent probes, however, further rely on the ability to limit their cellular 

association altogether for certain tissue imaging experiments or, alternatively, to direct 

them to specific cellular regions.  Prior studies indicate that structural and chemical 

properties of metal complexes, such as their size and hydrophobicity, influence their cell 

viability and cellular association, including their membrane permeability.49-52, 54  Although 

cell-penetrating peptides have been applied to increase the cell uptake of lanthanide 

complexes,181-182 the goal of this project is to modify the intrinsic properties of the metal 

complex to control cellular association. Presented here is a systematic study to evaluate 

the effects of structural variations on a core structure common to most luminescent 

lanthanide probes and an investigation of the practicality of such probes for cellular and 

tissue applications requiring extracellular imaging agents.   

The most common platform of luminescent lanthanide complexes features a 

chelating polyamino carboxylate ligand substituted with one or more carboxamide 

pendant arms from which additional moieties are attached, notably the probe’s antenna.  

The Laporte-forbidden nature of the f-f transition dictates that for practical applications in 
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biologically relevant settings, the probe must incorporate a sensitizing antenna.  In terms 

of the design of a responsive probe, the luminescence intensity of the lanthanide 

complex can then be modulated by altering, among other parameters, the excited triplet 

state energy level of the antenna and the antenna-lanthanide distance.33, 112 For 

biological applications, it is thus important to select an antenna with suitable energetic 

properties for lanthanide sensitization that is also resistant to quenching by the medium.  

Work by Parker and coworkers identified that the nature of the antenna, specifically its 

point of attachment to the cyclen backbone of the ligand, affects the subcellular 

localization of the complexes.52  This work focused primarily on azaxanthone and other 

extended aromatic antenna.51-52, 54, 183-185  Given the increasing use of phenanthridine 

and isophthalamide antenna for the design of luminescent lanthanide probes,115, 118, 180, 

186-187 a deeper understanding of the structural parameters influencing their effect on 

cellular viability and cell association is necessary to further optimize their structures for 

biological application both extra- and intracellularly.   

 

B. Complex architecture for systematic study 

 Herein, two parameters were evaluated for their effect on cell viability and 

association: the nature of the antenna and that of the pendant amide arms.  Each 

complex features a luminescent Tb3+ ion chelated by a DOTA(m)-type ligand.  The 

macrocyclic polyaminocarboxylate ligand provides kinetic inertness, and thus predicted 

lower toxicity on cell viability.34  Furthermore, the overall positive charged lanthanide 

complexes of DOTA tetraamide (DOTAm) ligands are kinetically more inert than DOTA 

analogues as a result of the decreased basicity of the nitrogen atoms.35 Moreover, the 

macrocyclic framework are less susceptible to enzymatic degradation.38  The high kinetic 

inertness of macrocyclic lanthanide complexes and their ability to resist degradation is 

critical for their use in vivo.  Three different antenna were investigated: the hydrophilic 

2-hydroxyisophthalamide, IAM, a reported sensitizer of both Tb and Eu;115, 118 the closely 

related and synthetically more facile 2-methoxyisophthalamide, IAM(OMe); and the 

extended aromatic 6-methylphenanthridine, Phen (Figure 4.1).  For each complex, the 

quantum yield, cellular viability, and cell association were evaluated.  The effect of charge 
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and hydrophobicity on cell viability and association was subsequently evaluated with 

complexes comprising the IAM(OMe) antenna functionalized with varying carboxamide 

arms (Figure 4.2).  

 

 

 
 

Figure 4.Figure 4.Figure 4.Figure 4.1111.  .  .   .   Chemical structures of Tb-DOTA-IAM(OMe) ([Tb-4.1]), Tb-DOTA-IAM ([Tb-4.2]-), 
and Tb-DOTA-Phen ([Tb-4.3]).  
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Figure 4.Figure 4.Figure 4.Figure 4.2222.  .  .   .   Chemical structures of derivatives of [Tb-4.1] with varying charge and 
hydrophobicity.  All modifications were performed on the pendant arm.  

III. RESULTS AND DISCUSSION 

A. Synthesis of lanthanide complexes 

 The isophthalamide complexes Tb-DOTA-IAM(OMe) ([Tb-4.1]) and Tb-DOTA-IAM 

([Tb-4.2]-) were synthesized according to Scheme 4.1.  Briefly, the oxidation of 

bis(hydroxymethyl)-p-cresol with MnO2 and KOH generated the diacid 4.11.  Subsequent 

treatment with methyl iodide generated the methoxy protected diester 4.12, which was 

then converted to the diamide 4.13 with methyl amine.  The aldehyde 4.14 was 

generated via a Riley oxidation of the aryl methyl group in naphthalene at 215 °C.  

Periodinane oxidation methods (Dess-Martin and 2-iodoxybenzoic acid), 
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permananganates, and chromates (Jones’ reagent and PCC) were unsuccessful 

mediators of this transformation.  Reaction of the aldehyde 4.14 with hydroxylamine 

hydrochloride generated the oxime 4.15, which was crystalized by addition of diethyl 

ether to an acidic solution of the crude reaction mixture in ethyl acetate and methanol, 

and then reduced to the amine form of the IAM antenna 4.16.  The tris-BOC protected 

cyclen 4.17 was synthesized as reported,188-189 and further coupled to the amine 4.16 

using HATU as the activating agent.  BOC deprotection in a mixture of hydrochloric 

acid/methanol afforded the IAM(OMe) cyclen conjugate 4.19, which served as a 

common intermediate in the synthesis of  [Tb-4.1], [Tb-4.2]-, and [Tb-4.4]3+ – [Tb-4.10]3-.   

 Alkylation of the cyclen derivative 4.19 with tert-butyl bromoacetate yielded the 

protected ligand, 4.20 (Scheme 4.1).  Deprotection in a mixture of hydrochloric 

acid/methanol yielded the free ligand DOTA-IAM(OMe), 4.1.  Harsher deprotection 

conditions with boron tribromide removed both the tert-butyl groups and the aryl methyl 

ether to yield DOTA-IAM, 4.1.  The final complexes [Tb-4.1] and [Tb-4.2]- were obtained 

from their respective ligands, 4.1 and 4.2, by heating with TbCl3 in aqueous solutions at 

neutral to slightly basic pH for two or more days.190-191  The phenathridine complex, 

[Tb-4.3], was synthesized according to the published procedure.180, 186 

 In order to evaluate the role of charge and hydrophobicity of the lanthanide 

complex on its cellular compatibility, seven derivatives of Tb-DOTA-IAM(OMe) ([Tb-4.1]) 

were synthesized (Figure 4.2 and Scheme 4.1). The synthesis was designed to take 

advantage of the common intermediate 4.19, described above.  Each bromoacetamide 

arm was synthesized using a biphasic method in which bromoacetylbromide in 

dichloromethane and aqueous potassium carbonate were simultaneously added 

dropwise to a solution of the corresponding amine in dichloromethane at 0 °C.  This 

method resulted in moderate to high yields (65 – 85%) of the desired products in high 

purity.  The ligands were obtained upon reaction of the bromoacetamide arms with the 

intermediate 4.19. Metallation with TbCl3 at neutral pH yielded [Tb-4.4]3+ – [Tb-4.8]3+.  

The carboxylic acid derivatives [Tb-4.9] and [Tb-4.10]3-, were obtained by saponification 

of their corresponding esters, [Tb-4.7]3+ and [Tb-4.8]3+, respectively.   
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Scheme 4.Scheme 4.Scheme 4.Scheme 4.1111....     Synthesis    of Tb-DOTA-IAM(OMe) ([Tb-4.1), Tb-DOTA-IAM ([Tb-4.2]-), complexes 
with varying charge and hydrophobicity ([Tb-4.4]3+ – [Tb-4.10]3-).a    
 

 
a Reagents and conditions: (a) MnO2, CH3Cl, 60 °C, 20 h; (b) KOH (s), 230 °C, 1 h;  (c) CH3I, 
K2CO3, acetone, 56 °C, 16 h;  (d) NH2CH3, CH3OH, 65 °C, 18 h;  (e) SeO2, naphthalene, 215 °C, 
2.5 h; (f) hydroxylamine hydrochloride, pyridine, 22 °C, 24 h;  (g) Pd/C (10%), HCl, ethanol/H2O, 
5 bar, 16 h;  (h) HATU, DIPEA, DMF, 22 °C, 40 h; (i) HCl, CH3OH, 22 °C, 18 h; (j) Cs2CO3, 
CH3CN, 40 °C, 18 h; (k) HCl, CH3OH, 22 °C, 18 h; (l) BBr3, CH2Cl2, 25 °C, 18 h; (m) CH3OH, 
65 °C, 16 h; (n) TbCl3, H2O/CH3OH, pH 7, 45 °C, 48 h;  (o) 0.2 M KOH, H2O, 22 °C, 20 h. 
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B. Quantum yield and quenching in cell lysate  

 The nature of the sensitizing antenna of a lanthanide complex can impact its 

function in a biological environment.   Here, three complexes, [Tb-4.1], [Tb-4.2]-, and 

[Tb-4.3], are compared that feature either an isophthalamide or a phenanthridine based 

antenna for sensitizing the lanthanide emissions (Figure 4.1).  Note that each complex 

has the same acetate pendant arms.  All three complexes luminesce in the green region 

of the visible spectrum, with maximum emission at 545 nm when excited at 345 nm 

(Figure 4.3).   These three antenna platforms have different properties in terms of 

hydrophobicity and interactions with biomolecules, including nucleic acids, reducing 

agents and proteins.  The hydrophilic isophthalamide and methoxy isophthalamide are 

comprised of a single aromatic ring and have no known interactions with biomolecules, 

while the phenanthridine is an extended aromatic system capable of base stacking with 

nucleotides and DNA intercalation.180, 186   

 The quantum yield, Φ, of the three Tb-complexes in PBS was investigated by 

comparing the luminescence intensity of each complex to that of a quinine sulfate 

standard in 0.1 M sulfuric acid (Φr = 0.577)192 according to the optically dilute method.118  

At pH 7.8 and 22 °C, the quantum yields of [Tb-4.1] and [Tb-4.3] are statistically identical 

(4.6 ± 1.2% vs. 4.7 ± 2.2%, respectively).  The quantum yield of the phenathridine 

derivative [Tb-4.3] is comparable that of similar lanthanide complexes featuring either 

triamide or triphosphinate substituted DOTA ligands.193  However, [Tb-4.2]- is a more 

efficient emitter with an average quantum yield of 9.8 ± 1.5%, indicating that substituting 

the methoxy for the hydroxyl group on the isophthalamide antenna substantially affects 

the quantum yield of the complex.  Note that quantum yields of ca. 50% have been 

reported by Raymond and coworkers for Tb-complexes with tetra-IAM substituted 

ligands.118 The substantial difference between these complexes results from their 

structures.  As opposed to [Tb-4.2]-, in the tetra-IAM complex H(2,2)-IAM, the 

isophthalamide directly coordinates the lanthanide, thereby enabling a much more 

efficient Dexter-type energy transfer from the antenna to the Tb than the Förster-type, 

through-space mechanism likely taking place in [Tb-4.2]-. On the other hand, [Tb-4.2]- 
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has substantially higher water solubility (M range) than the cryptand H(2,2)-IAM (μM 

range) and enables the design of responsive probes. 

 
 

 
Figure 4.Figure 4.Figure 4.Figure 4.3333....     (a) Time-delayed excitation, (b) time-delayed emission, (c) fluorescence, and (d) 
absorbance profiles of [Tb-4.1] (black), [Tb-4.2]- (red), [Tb-4.3] (blue).  Experimental conditions: 
[Tb-complex] = 50 µM, PBS (pH 7.8), slit widths (excitation and emission) = 10 nm, T = 22 °C.  
Luminescence parameters: λem = 545 nm, λex = 345 nm, time delay = 0.1 ms, gate time = 5.0 ms, 
decay time = 0.02 s.   
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 Nonetheless, the quantum yields of [Tb-4.1], [Tb-4.2]-, and [Tb-4.3] are 

comparable to luminescent d-block compounds used for cellular imaging.  For example, 

the quantum yields of Ir-complexes featuring 2-phenyl pyridine ligands are between 

4 - 8% in PBS buffer.194   Not surprisingly, the quantum yields of Tb-centered 

luminescence is lower than commonly used fluorescence dyes such as Cy3 (4% in 

PBS), Cy5 (30% in PBS), Alexa750 (12% in phosphate buffer), and Texas Red (30% in 

water).195  However, in comparison with phosphorescent metal complexes, organic dyes 

suffer from short fluorescence lifetimes and small Stokes shifts.196  

 The brightness of a luminescent probe is determined by both the quantum yield 

and the molar absorption extinction co-efficient (ε) at the excitation wavelength.  For 

[Tb-4.1], [Tb-4.2]-, and [Tb-4.3] the ε345 values are 200 M-1 cm-1, 3,320 M-1 cm-1, and 

1,400 M-1 cm-1, respectively.  Thus, the Tb-DOTA-IAM ([Tb-4.2]-) complex is the brightest 

of those studied here due to its high molar absorption extinction co-efficient and 

quantum yield.  

 As for any luminescent or fluorescent probe, emission is susceptible to quenching 

by reducing agents, proteins, and other components of biological media.  In the case of 

luminescent Tb and Eu complexes, the quenching pathways can involve electron or 

charge transfer from the excited states to intracellular reducing agents such as urate, 

ascorbate, and glutathione that are present in mM concentrations in cells.39-40   In 

addition, luminescence quenching by proteins, such as human serum albumin, has been 

reported.41  The degree of luminescence quenching was evaluated by measuring the 

time-delayed luminescence intensity of [Tb-4.1] with respect to its concentration 

(0 - 15 μM) in PBS and whole cell lysate at two different protein concentrations. In whole 

cell lysate containing 0.25 mg/mL protein, the luminescence intensity of [Tb-4.1] is 

quenched by 22 ± 2.8%; at 0.5 mg/mL protein the luminescence intensity is reduced by 

30 ± 2.4% (Table 4.1 and Figure 4.4).  Advantageously, the isophthalamide antenna is 

less susceptible to quenching than complexes containing electron-poor sensitizing 

moieties.  For instance, the metal centered emission of terbium azaxanthone complexes 

is quenched by 30-60 % in the presence of 0.2 mM human serum albumin.41  This 

highlights the potential of the IAM(OMe) antenna for biological applications.   
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Table 4.Table 4.Table 4.Table 4.1111....             Luminescence quenching of [Tb-4.1] by whole cell lysate.a  
 

  
Quenching (%) b 

Whole Cell Lysate c 

0.25 mg/mL protein 22 ± 2.8 

0.50 mg/mL protein  30 ± 2.4 

 

a Experimental conditions: [Tb-4.1] = 0 - 15 µM, PBS, pH 7.8, time delay = 0.1 ms, excitation 
wavelength = 345 nm, slit widths (excitation and emission) = 5 nm, integrated emission intensity 
from 470 – 635 nm, T = 20 °C.  Results are mean ± SD (n = 3).   b Percent quenching was 
calculated using the percent change in the slope of the integrated luminescence intensity versus 
the [Tb-4.1] (µM) plots  (Figure 4.4).   c Generated from L6 myoblasts; protein concentration was 
determined by a BCA assay.  
 

 

 

 
    

Figure 4.Figure 4.Figure 4.Figure 4.4444.  .  .  .  Time-delayed luminescence intensity of [Tb-4.1] as a function of increasing 
concentrations in PBS (black square; slope = 96 ± 1.5), whole cell lysate with 0.25 mg/mL protein  
(blue triangle; slope = 75 ± 2.2), and whole cell lysate with 0.50 mg protein/mL (red circle; slope = 
67 ± 1.7).  Experimental conditions: [Tb-4.1] = 0 - 15 µM, PBS pH 7.8, time delay = 0.1 ms, 
excitation wavelength = 345 nm, slit widths (excitation and emission) = 5 nm, integrated emission 
intensity from 470 – 635 nm, T = 20 °C.  Results are mean ± SD (n = 3). 
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C. Influence of the nature of the antenna on cellular compatibility 

 The effect of [Tb-4.1], [Tb-4.2]-, and [Tb-4.3] on the viability of L6 rat muscle 

myoblast cells was investigated using an MTT assay.  It was hypothesized that the 

2-methoxyisophthalamide would have a reduced effect on cell viability due to the 

protecting group on the phenol that could block non-specific interactions with the cell 

proteins and coordination of cellular metal, such as iron and copper.  Additionally, the 

phenanthridine complex, [Tb-4.3], was expected to have a higher effect on cell viability 

due to its ability to intercalate DNA and RNA.180, 186  Following a 24 h incubation with 

0 - 300 µM Tb-complex, the phenanthridine derivative [Tb-4.3] decreases cell viability to 

74% at 100 µM and to 63% at 300 µM. On the other hand, the cellular viability is 

maintained above 80% for both isophthalamide complexes, [Tb-4.1] and [Tb-4.2]- 

(Figure 4.5 and Table 4.2).  The similar profiles indicate that the methoxy protecting 

group on the isophthalamide does not significantly improve cell viability at the doses 

studied here.  This is contrary to a pair of Rh probes chelated by chrysenequinone 

diimine and N-functionalized dipyridyl amine ligands for which small structural changes 

were shown to have a substantial impact on cell viability.  In that case, altering the 

ethoxy substituent to a propyl group reduces the viability of HCT116N and HCT116O 

cells from 80% to 60% after a 24 h incubation with 40 µM complex.50     

 Overall, the complexes in this study are slightly less toxic than lanthanide 

complexes containing tetraazatriphenylene or azaxanthone antennas with phenyl or 

ethylester substituted carboxamide arms, which have EC50 values in the 100 µM to 

> 240 µM range.52-54  They also affect cell viability similarly to Ru(III) polypyridine 

complexes which also have EC50 (72 h) values ≥ 300 µM  in MCF-7 and HT-29 cell 

lines.56  It is interesting to note that [Eu-DOTA]-, containing no antenna moiety, has a 

negligible effect on cell viability from 0 – 500 µM with a 72 h incubation.57  Thus with 

respect to cell viability, [Tb-4.1] and [Tb-4.2]- are preferred for cellular imaging 

applications compared to [Tb-4.3].  
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Figure 4.Figure 4.Figure 4.Figure 4.5555....     Viability (24 h) of L6 myoblasts treated with 0 - 300 µM [Tb-4.1] (solid square),  
[Tb-4.2]- (open circle), and [Tb-4.3] (solid triangle) as determined with an MTT assay. Results are 
expressed as mean ± SD (n = 3).    
    

Table 4.Table 4.Table 4.Table 4.2222. . . . Cellular viability and association of macrocyclic Tb-complexes.    
 

 

Cell viability a 

(%) 
Cell association b 

(μmol Tb/g protein) 

[Tb-4.1] 96 ± 6 6.0 ± 3 

[Tb-4.2]- 80 ± 3 12 ± 5 

[Tb-4.3] 74 ± 9 5.3 ± 3 

[Tb-4.4]3+ 81 ± 2  1.4 ± 0.6 

[Tb-4.5]3+ 63 ± 4 22 ± 10 

[Tb-4.6]3+ 90 ± 8 8.3 ± 3 

[Tb-4.7]3+ 78 ± 8 2.2 ± 0.5  

[Tb-4.8]3+ 90 ± 6  0.32 ± 0.07  

[Tb-4.9]  81 ± 4 1.3 ± 0.4  

[Tb-4.10]3- 88 ± 10 0.47 ± 0.2 

Control   
(no Tb-complex) 

100 ± 6 0.07 ± 0.04 

a Obtained by an MTT assay after a 24 h incubation with 100 µM Tb-complex. Results are 
mean ± SD (n = 3).  b Determined by ICP-MS after a 4 h incubation with 50 µM Tb-complex. 
Results are mean ± SD (n = 3).    

1 10 100

0

25

50

75

100

V
ia

b
ili

ty
 (

%
)

[Tb-complex]  (µM)



 

Cellular Compatibility of Lanthanide Complexes                                                                Chapter 4 

103 

 

 The nature of the antenna was also expected to impact the cellular association of 

the complexes.  Following a 4 h incubation with 50 µM of Tb-complex, the cellular 

accumulation of the metal was determined by ICP-MS and expressed relative to the 

protein concentration as determined by a BCA assay.  Importantly, it should be noted 

that the quantitative nature of measuring cellular association of metal complexes by 

ICP-MS is balanced by the inability of the technique to distinguish between internalized 

or membrane-bound complexes.48 It was anticipated that the extended aromatic antenna 

of [Tb-4.3] would facilitate membrane permeability, as suggested by the increased 

cellular uptake of more lipophilic Ru-complexes and phenanthridine substituted 

cis-platin.48-49, 55  However, cells exposed to the hydrophilic Tb-DOTA-IAM(OMe), 

[Tb-4.1], and the hydrophobic Tb-DOTA-Phen, [Tb-4.3], have similar cell association 

values, while the average value of the most hydrophilic Tb-DOTA-IAM, [Tb-4.2]-, is 

nearly double (Table 4.2).   

 Small structural changes to the ligands of metal complexes have been reported to 

exert varied effects on the intracellular accumulation and distribution.  Using a group of 

lanthanide complexes with tetraazatriphenylene or azaxanthone-based antennas, Parker 

identified that how the antenna was linked to the cyclen ring affected membrane 

permeability and localization more than small structural modifications on the antenna 

itself.52  For the isophthalamide complexes, however, conversion from the methoxy 

group in [Tb-4.1] to the phenolate of [Tb-4.2]- does impact cellular association.  This 

observation is more in concert with the findings of Barton, who measured substantial 

differences in cell association between an alkyl substituted dipyridyl Rh-complex (705 ng 

Rh / mg protein) compared to a complex that introduced a terminal alcohol on the alkyl 

group (165 ng Rh / mg protein).50  The cellular association values measured for the 

hydroxyisophthalamide [Tb-4.2]- are comparable to the values reported for a Tb-complex 

with a tetraazatriphenylene antenna and phenyl substituted amide arms, which had a 

maximum accumulation of 10 μmol per g protein into NIH 3T3 cells after a 4 h incubation 

at 50 µM.52  Unfortunately, further comparisons with cellular accumulation values 

reported in the literature are limited due to differences the method of data collection 
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(ICP-MS vs. flow cytometry40, 49, 197-198), and data presentation of metal in per amount 

protein or per cell.53-56, 199-200    

 Notable differences between the three metal complexes include the increased 

effect of [Tb-4.3] on cell viability above 100 µM in spite of its only modest cell 

association.  The synthesis of [Tb-4.2]- requires a synthetically challenging boron 

tribromide deprotection to produce the 2-hydroxyisophthalamide antenna, and the 

resulting complex has a cellular association only slightly higher than its analog [Tb-4.1].  

The more facile synthesis of the 2-methoxyisophthalamide of [Tb-4.1] compared to 

[Tb-4.2]- thus became a significant factor in selecting an antenna for further studies 

evaluating the effects of variable arms on the cellular compatibility of lanthanide 

complexes. 

D.  Effect of structural and electronic variations in pendant arms  

 The role of charge and hydrophobicity of the polyaminocarboxylate arms on the 

cell viability and association of the lanthanide probes was evaluated with a library of 

derivatives of [Tb-4.1].  Complexes [Tb-4.4]3+ though [Tb-4.10]3- share a common cyclen 

backbone with a 2-methoxyisophthalamide antenna, but differ in the nature of the 

remaining substituents (Figure 4.2).  The alkyl, benzyl, and trifluoro groups impart 

increasing hydrophobicity to the complexes, whereas alanine and glutamine amino-acid 

based substituents in either an ethylester or carboxylic acid form render greater 

hydrophilicity.  The resulting complexes also differ in overall complex charge; neutral 

carboxamide arms generate the +3 charged complexes [Tb-4.4]3+ - [Tb-4.8]3+, the 

addition of monoanionic alanine-based arms forms the zwitterionic complex [Tb-4.9], and 

the di-anionic glutamate arm creates [Tb-4.10]3- bearing a net -3 charge.   

 As with the previous complexes that differ with respect to the antenna, the cell 

viability (24 h) was measured for the library of complexes featuring pendant arms with 

structural and electronic variations.  Of the hydrophobic complexes, only [Tb-4.5]3+ 

decreases cell viability significantly to 60%, while [Tb-4.4]3+ and [Tb-4.6]3+ are 

comparable to the parent complex [Tb-4.1], maintaining a viability above 80% in the 

concentration range measured (Figure 4.6a and Table 4.2).  Each of the amino acid 

derivatives, [Tb-4.7]3+, [Tb-4.8]3+, [Tb-4.9], and [Tb-4.10]3- also sustain viability above 
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75% even in the presence of 300 µM Tb-complex (Figure 4.6b and Table 4.2).  

Interestingly, the notable reduction in cell viability upon addition of medium-length alkyl 

chains matches the results of a previous study comparing a family of Ir(III) 

cyclometallated probes.  In that study, the Ir-complexes featuring the shortest (C2) and 

longest (C18) alkyl chains had comparable minimal effect on HeLa cell viability 

(EC50 ~15 µM), while the median length alky chain (C10) was significantly more cytotoxic 

(EC50 = 2 µM).198  The hexyl alkyl derivative, [Tb-4.5]3+ excluded, the relatively low effect 

on cell viability (EC50 values > 300 µM) of this entire class of Tb-complexes suggests 

they have only limited interactions with cellular component and bodes well for their 

application.  

Figure 4.Figure 4.Figure 4.Figure 4.6666. . .  .  Viability (24 h) of L6 myoblasts treated with 0 - 300 µM Tb-complexes as 
determined with an MTT assay.  (a) [Tb-4.1] (solid square), [Tb-4.4]3+ (solid triangle), [Tb-4.5]3+ 

(open circle), and [Tb-4.6]3+ (open inverted triangle).  (b) [Tb-4.7]3+ (solid square), [Tb-4.8]3+ (solid 
triangle), [Tb-4.9] (open circle), and [Tb-4.10]3- (open inverted triangle).  Results are expressed as 
mean ± SD (n = 3). 
 

 The role of the pendent arms on the cellular association of the Tb-complexes was 

also investigated by ICP-MS.  It was hypothesized, based on the results of Barton,48-49 

that [Tb-4.4]3+, [Tb-4.5]3+, and [Tb-4.6]3+ would penetrate cells more efficiently due to 

their lipophilic substituents and cationic character that would assist transport across the 

plasma membrane.201  Indeed, higher Tb accumulation is observed with the hydrophobic 

hexyl substituted [Tb-4.5]3+ and trifluoro containing [Tb-4.6]3+ than with the more 
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hydrophilic amino acid derivatives (Table 4.2).  However, this conclusion cannot be 

universally applied to all hydrophobic arms, since the cellular association of the benzyl 

substituted [Tb-4.4]3+ is less than that of the parent complex [Tb-4.1].  The alkyl 

substituted Ir-complexes discussed previously also do not illustrate a direct relationship 

between hydrophobicity and cellular association.  In that study, each complex 

investigated displayed measurable cellular association by ICP-MS, but the C10 version 

afforded the greatest association followed by the C2 and then the C18 derivative.198  

Thus, it is clear that the lipophilicity of the complex cannot alone be used to predict the 

cellular association of metal complexes. 

 Of the amino-acid derivatized complexes, the alanine-based [Tb-4.7]3+ and 

[Tb-4.9] have higher cell association values than the glutamine-based compounds 

[Tb-4.8]3+ and [Tb-4.10]3-.  Positively charged complexes containing esters are reported 

to have enhanced cell association compared to carboxylic acid derivatives,49 and this is 

observed with the slightly higher cell association values of the ethylester complex of 

alanine [Tb-4.7]3+ compared to the neutral acid complex [Tb-4.9].  This reflects the 

finding that the cell association of [Eu-DOTAm]3+ is five times that of  [Eu-DOTA]-, which 

showed negligible cellular accumulation.57    Interestingly, this trend is not repeated for 

the glutamine ethylester and acid complexes, [Tb-4.8]3+ and [Tb-4.10]3-, respectively, 

which both have low cell association values despite their large differences in overall 

complex charge.  This is contrary to lanthanide complexes studied by Parker in which 

the intracellular concentration of a -3 charged glutamate functionalized DOTA with a 

tetraazatriphenylene antenna was approximately three times that of the neutral 

Ln-DOTA-tetraazatriphenylene.40  An important conclusion is that the parameters 

influencing cellular association of lanthanide complexes are multifaceted and include 

both structural features (lipophilicity, nature of the antenna, terminal functional groups) 

and, to a lesser extent, overall complex charge.  
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E. Fluorescence microscopy  

 The cellular association of the Tb-complexes was also investigated with 

epifluorescence microscopy.  According to previous reports, it was anticipated that 

punctuate staining would be observed if the complexes entered cells via endocytosis, 

and diffuse cytoplasmic fluorescence would be consistent with passive translocation 

through the cell membrane.  L6 myoblasts were treated with Tb-complex (200 µM for 

4 h), washed with PBS at room temperature, and fixed with formaldehyde prior to 

imaging.  Results of representative cells indicate the presence of weak intracellular 

staining for the hydrophobic, trifluoro substituted [Tb-4.6]3+, while the fluorescence 

intensity of phenanthridine containing [Tb-4.3] is comparable to the control cells 

(Figure 4.7).  Likewise, the remaining Tb-complexes exhibit similar, weak internal 

fluorescence (Figure 4.7).  Due to reports that different staining patterns can be 

observed in experiments that differ only in whether cells were imaged in a live or fixed 

state,202 the intracellular fluorescence of [Tb-4.6]3+ was also examined in live cells 

(Figure 4.8). In these images, an overall decrease in the intracellular fluorescence to 

levels comparable to the untreated control cells was observed. 
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Figure 4.Figure 4.Figure 4.Figure 4.7777. Fluorescence microscopy images of representative L6 myoblasts treated with 
200 µM [Tb-4.2]- - [Tb-4.8]3+ for 4 h at 37 °C.  Cells were rinsed with PBS and fixed with 
formaldehyde prior to imaging.  (a) Fluorescence images: 60x objective, 325 – 375 nm excitation 
filter, 470 – 750 nm emission filter, 0.4 s exposure time.  (b) Bright field images: 0.04 s exposure 
time.  Scale bars represent 10 μm.  
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Figure 4.Figure 4.Figure 4.Figure 4.8888. . .  .  Fluorescence microscopy images of representative live L6 myoblasts treated with 
200 µM [Tb-4.6]3+ for 4 h at 37 °C.  Cells imaged in phenol red-free media.  (a) Fluorescence 
images: 60x objective, 325 – 375 nm excitation filter, 470 – 750 nm emission filter, 0.1 s exposure 
time.  (b) Bright field images: 0.04 s exposure time.  Scale bars represent 10 μm.    
  

  

 The reduced staining in cytoplasmic vesicles in live cells compared to fixed cells 

has also been observed by Belitsky.202  However, unlike the 2-hydroxyisophthalamide 

complexes, lanthanide complexes featuring tetraazatriphenylene antennas containing 

phenyl, ester, or carboxylate substituents are taken up by CHO or NIH 3T3 cells and can 

be visualized with fluorescence microscopy regardless of the nature of their pendent 

arms.52  Likewise, Bünzli observed lanthanide helicates ranging in overall charge from -6 

to +6 localized to endosomes and lysosomes consistent with endocytotic uptake 

mechanisms irrespective of the polarity or overall charge of the complex.51  Regardless 

of the reasons, the low cell associations exhibited by this entire class of complexes 

render them particularly useful for monitoring extracellular species.  
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IV. CONCLUSIONS AND FUTURE WORK 

 A family of luminescent lanthanide complexes featuring different sensitizing 

antennas varying in charge and hydrophobicity, and pendant arms of variable structural 

and electronic properties were synthesized. The cell viability and association of this 

family of complexes have been evaluated.  With respect to the antenna, the 

2-methoxyisophthalamide of [Tb-4.1] was selected as the ideal candidate for further 

studies due to its synthetic ease (compared to [Tb-4.2]-), suitable quantum yield, little 

effect on cell viability, and modest cell association.  Surprisingly, the addition of 

hydrophobic moieties (benzyl, hexyl, and trifluoro) did not increase cell association.   All 

of the complexes investigated minimally effect cell viability and exhibit low cellular 

association, regardless of the overall complex charge or relative hydrophobicity; thus, it 

is presumed that it is the hydrophilic nature of the 2-methoxyisophthalamide antenna 

that confers the low membrane permeability of this class of compounds.  In conclusion, 

the probes based on the structural framework presented here are well-suited for 

monitoring extracellular analytes such as group I ions, polysaccharides, hormones, or 

other signaling molecules.  

  This current study investigated the effect of structural modifications of the ligand 

on cell association in the absence of targeting moieties; however, conjugating 

Ln-complexes to cell penetrating peptides203 or receptor targeting groups has 

successfully increased the cellular uptake.  Additional studies are needed to identify 

structural features that promote membrane permeability of Ln-complexes based on the 

macrocyclic polyamine ligand with a 2-methoxylisophthalamide antenna.  Future work 

includes appending a polyarginine peptide to Tb-DOTA-IAM(OMe) and evaluating the 

cellular association of this complex (Figure 4.9).  Alternatively, the cell penetrating 

peptide could be linked to the complex via a disulfide bond that would be cleaved in 

reducing environment inside the cell.  In terms of subcellular localization, cell penetrating 

peptides promote uptake via endocyotic pathways placing the “cargo” molecules in 

endosomes.  Progress in the field of cell penetrating, lanthanide-based contrast agents 

has been reviewed181-182, 204 and includes the use polyarginine205-209 and Tat-based 
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peptides.210  This technique is promising as it has previously been applied to 

luminescent metal complexes,211-213 and dual imaging agents.214   

  

 

    

Figure 4.Figure 4.Figure 4.Figure 4.9999....  Chemical structure of a Tb-complex coupled to a polyarginine peptide designed for 
increased cellular uptake.  
 

 Additional approaches to increase cellular accumulation or target complexes to 

specific subcellular locations also warrant further investigation.  Increased cell uptake 

can be pursued by coupling complexes to moieties that facilitate interactions with cellular 

membrane receptors,215-219 transporters,220 or special groups such as exofacial thiols.221  

The application of these approaches to the delivery luminescent macrocyclic 

polyaminocarboxylate complexes is likely to result in cytoplasmic delivery of the probes.  

However, some probes would benefit from an even finer control of distribution – being 

targeted to a specific subcellular region or organelles where the analyte is generated.  

For example, accumulation of HO• probes in the locations where the species is 

produced (mitochondria, ER, phagosomes, and peroxisomes) would not only improve 

the sensitivity of detection, but also increase the physiological relevance of the results.  

To target Ln-complexes to organelles, alternative methods are needed in addition to 

those that increase cellular accumulation.  Previous localization studies with metal 

complexes has revealed that phosphonium ions targets complexes to the 

mitochondria121 and fluorescein promotes nuclear localization (Figure 4.10).222  Thus, a 

mitochondrial targeted probed responsive to HO• could be achieved by appending a 

phosphonium ion to the probes described in the previous chapters.  This would be 
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particularly useful with the luminescent lanthanide-based probes as luminescence 

spectroscopy has a nanomolar resolution that can spatially distinguish organelles.  

 
    

Figure 4.Figure 4.Figure 4.Figure 4.10101010.        Targeting moieties used to direct metal complexes to subcellular locations.          
(a) Phosphonium ions facilitate mitochondria accumulation, and (b) fluorescein can redirect 
complexes to the nucleus.      
   

 Ultimately, future systematic studies will provide more insights into the complex 

relationship between cellular accumulation and probe structure.   This knowledge can 

then be applied to target responsive imaging agents to extracellular or subcellular 

regions relevant to the analyte being detected.  Work in this field is of growing interest, 

particularly in the development of probes for reactive oxygen or nitrogen species and 

redox active metals.  Future generation biomedical imaging agents with defined cellular 

localizations will advance the understanding of these specie in normal physiological 

function and their roles in disease states.  

V. EXPERIMENTAL 

General considerations.General considerations.General considerations.General considerations. Unless otherwise noted, starting materials were obtained from 

commercial suppliers and used without further purification.  Water was distilled and 

further purified by a Millipore Simplicity cartridge system (resistivity 18 mΩ).  1H NMR, 

19F NMR, and 13C NMR spectra were recorded on a BrukerAvance III 500 at 500, 470 or 

125 MHz or on a Varian Inova 300 at 300, 282, or 75 MHz at the LeClaire-Dow 

Characterization Facility of the Department of Chemistry at the University of Minnesota.  

a b 
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The solvent residual peak was used as the internal reference. Data for 1H NMR as 

reported as follows: chemical shift (δ, ppm), multiplicity (s, singlet; d, doublet; t, triplet, 

m, multiplet, b, broad), integration, coupling constants (Hz). Data for 13C NMR are 

reported as chemical shifts (δ, ppm).  Mass spectra (HR = high resolution, 

ESI-MS = electrospray ionization mass spectrometry) were recorded on a Bruker 

BioTOF II at the Waters Center for Innovation in Mass Spectrometry of the Department 

of Chemistry at the University of Minnesota.  Elemental analyses were performed by 

inductively coupled plasma mass spectrometry on a Thermo Scientific XSERIES 2 ICP-

MS fitted with an ESI PC3 Peltier cooled spray chamber, SC-FAST injection loop, and 

SC-4 autosampler at the Department of Geology at the University of Minnesota. 

Samples were diluted appropriately and analyzed in the presence of a 20 ppb of In 

internal standard using the He/H2 collision-reaction mode.  UV−Vis spectra were 

measured with a Varian Cary 100 Bio Spectrophotometer.  Data was collected between 

220 and 800 nm using a quartz cell with a path length of 10 mm. Luminescence data 

were recorded on a Varian Eclipse Fluorescence spectrophotometer using a quartz cell 

with a path length of 10 mm. 

 

A. Synthesis and characterization 

2222----HydrHydrHydrHydroxyoxyoxyoxy----5555----methylisophthalic acid (methylisophthalic acid (methylisophthalic acid (methylisophthalic acid (4.4.4.4.11).11).11).11).  In a round bottom flask, 

2,6-bis(hydroxymethyl)-p-cresol (10.0 g, 59.8 mmol) was dissolved in chloroform 

(250 mL), and MnO2 (36.0 g, 414 mmol) was added.  The reaction mixture was stirred 

for at 60 °C for 20 h.   The resulting mixture was filtered and concentrated under reduced 

pressure to yield a yellow solid which was treated with KOH powder (55.0 g, 980 mmol) 

and heated at 230 °C for 1 h.  After cooling to ambient temperature, the solid mixture 

was dissolved in mQ water (150 mL), filtered, and acidified to pH = 1 with concentrated 

HCl.  The product was collected by filtration, washed with mQ water, and dried overnight 

at 110 °C yielding a tan solid (9.36 g, 47.7 mmol, 80%). 1H NMR (300 MHz, D2O, NaOD, 

δ):  1.98 (s, 3H), 7.04 (s, 2H).  13C NMR (125 MHz, D2O, NaOD, δ): 19.4, 119.7, 129.3, 

129.9, 160.1, 179.2. ESI-MS (m/z): [M-H]- calcd for C9H8O5, 195.0; found, 195.1. 
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Dimethyl 2Dimethyl 2Dimethyl 2Dimethyl 2----methoxymethoxymethoxymethoxy----5555----methylisophthalate (methylisophthalate (methylisophthalate (methylisophthalate (4.4.4.4.12).12).12).12). The diacid (4.11, 11.0 g, 56.3 mmol) 

and K2CO3 (50.5 g, 365 mmol) were added to anhydrous acetone (175 mL) and stirred 

for 5 minutes.   Methyl iodide (70.5 mL, 1.12 mol) was added and the reaction was 

stirred at 56 °C for 16 h.  After cooling to ambient temperature, the solid was filtered and 

the volatiles were removed under reduced pressure.  The residue was taken up in 

ethylacetate and washed with 5% HCl (30 mL), 5% NaHCO3 (30 mL), and brine (30 mL), 

then dried over MgSO4 and concentrated on a rotary evaporator to yield a yellow oil 

(4.68 g, 19.6 mmol, 35%).  1H NMR (300 MHz, CDCl3, δ): 2.35 (s, 3H), 3.89 (s, 3H), 3.91 

(s, 6H), 7.72 (s, 2H).  13C NMR (125 MHz, CDCl3 δ): 20.5, 52.4, 63.7, 126.3, 133.3, 

135.4, 157.5, 166.3.  ESI-MS (m/z): [M+Na]+ calcd for C12H14O5, 261.0; found, 260.9.    

 

2222----MethoxyMethoxyMethoxyMethoxy----NNNN1111,,,,NNNN3333,5,5,5,5----trimethylisophthalamide (trimethylisophthalamide (trimethylisophthalamide (trimethylisophthalamide (4.4.4.4.13).13).13).13). The methoxy-protected diester 

(4.12, 3.65 g, 15.3 mmol) was dissolved in methanolic methylamine solution (2.0 M, 

70 mL, 140 mmol), and the reaction was stirred at 65 °C for 18 h.  The crude product 

was deposited onto silica and purified by flash chromatography over silica eluting with 30 

to 100% ethyl aceteate in hexanes.  The volatiles were removed on a rotary evaporator 

to yield a white powder (3.17 g, 13.4 mmol, 88% yield).  1H NMR (500 MHz, CDCl3, δ): 

2.34 (s, 3H), 3.01 (d, J = 4.9 Hz, 6H), 3.80 (s, 3H), 7.34 (bs, 2H), 7.86 (s, 2H).  13C NMR 

(125 MHz, CDCl3, δ): 20.6, 26.8, 63.4, 127.3, 134.7, 135.1, 153.6, 165.9.  ESI-MS (m/z): 

[M+Na]+ calcd for C12H16N2O3, 259.1; found, 259.1. 

 

5555----FormylFormylFormylFormyl----2222----methoxymethoxymethoxymethoxy----NNNN1111,,,,NNNN3333----dimethylisophthalamide (dimethylisophthalamide (dimethylisophthalamide (dimethylisophthalamide (4.4.4.4.14).14).14).14).  In a mortar and pestle, the 

diamide (4.13, 3.57 g, 15.1 mmol), SeO2 (2.01 g, 18.2 mmol) and naphthalene were 

ground to a powder.  Under N2, the mixture was heated to 215 °C for 1.5 h.  The reaction 

was cooled to 85 °C, another aliquot of SeO2 was added (1.00 g, 9.01 mmol, 0.6 eq), 

and the reaction was heated to 215 °C for an additional 1 h.   After cooling to ambient 

temperature, the solid reaction components were dissolved in CH2Cl2 and the volatiles 

were removed under reduced pressure.  The crude solids were suspended in hexanes 

(50 mL), filtered over celite, and washed with hexanes (200 mL). The product was eluted 

with CH2Cl2.  Evaporation of the solvent under reduced pressure, followed by flash 
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chromatography over silica (0 – 8% CH3OH in CH2Cl2) yielded the aldehyde (14), which 

was immediately used in the next step. 1H NMR (300 MHz, CDCl3, δ): 3.05 (d, J = 4.5 

Hz, 6H), 3.96 (s, 3H), 7.22 (s, 2H), 8.47 (s, 2H), 9.99 (s, 1H).    

 

5555----((Hydroxyimino)methyl)((Hydroxyimino)methyl)((Hydroxyimino)methyl)((Hydroxyimino)methyl)----2222----methoxymethoxymethoxymethoxy----NNNN1111 ,,,,NNNN3333----dimethylisophthalamide (dimethylisophthalamide (dimethylisophthalamide (dimethylisophthalamide (4.4.4.4.15).15).15).15).  The 

crude aldehyde (4.14, 2.54 g) and hydroxylamine hydrochloride (0.702 g, 10.0 mmol) 

were dissolved in pyridine (100 mL) and stirred at ambient temperature for 24 h.  

Pyridine was removed under reduced pressure generating a brown oil, which was 

precipitated by slow addition of diethyl ether to an acidic solution of the oil in ethyl 

acetate:CH3OH (2:1).  The white precipitate was isolated by vacuum filtration (827 mg, 

3.12 mmol, 21% yield over 2 steps). 1H NMR (500 MHz, D2O, NaOD, δ):  2.79 (s, 6H), 

3.62 (s, 3H), 7.60 (s, 2H), 7.94 (s, 1H). 13C NMR (125 MHz, D2O, NaOD, δ): 26.4, 62.6, 

128.5, 128.7, 131.1, 147.9, 154.3, 168.9.  ESI-MS (m/z): [M+Na]+ calcd for C12H15N3O4, 

288.1; found, 288.1.   

 

5555----(Aminomethyl)(Aminomethyl)(Aminomethyl)(Aminomethyl)----2222----methoxymethoxymethoxymethoxy----NNNN1111,,,,NNNN3333 ----dimethylisophthalamide dimethylisophthalamide dimethylisophthalamide dimethylisophthalamide hydrochloride hydrochloride hydrochloride hydrochloride 

((((4.4.4.4.16•HCl).16•HCl).16•HCl).16•HCl). To a solution of the oxime (4.15, 0.722 g, 2.72 mmol) in ethanol (30 mL), 

water (2 mL) and concentrated HCl (2 mL) was added 10% Pd/C (0.14 g), and was 

reacted in a Parr hydrogenator at 5 bar H2 for 16 h.   The catalyst was removed by 

filtration, and the solvent was evaporated under reduced pressure then lyophilized to 

yield a pale yellow solid (0.663 g, 2.31 mmol, 85%).  1H NMR (500 MHz, D2O, δ): 2.87 

(s, 6H), 3.73 (s, 3H), 4.13 (s, 2H), 7.68 (s, 2H).   13C NMR (125 MHz, D2O, δ): 26.4, 41.9, 

62.7, 128.9, 129.2, 132.5, 155.4, 168.7.  ESI-MS (m/z): [M+H]+ calcd for C12H17N3O3, 

252.1; found, 252.2. 

 

5555----(aminomethyl)(aminomethyl)(aminomethyl)(aminomethyl)----2222----methoxymethoxymethoxymethoxy----NNNN1111,,,,NNNN3333----dimethylisophthalamide (dimethylisophthalamide (dimethylisophthalamide (dimethylisophthalamide (4.4.4.4.16).16).16).16). The hydrochloride 

salt of the amine (4.16•HCl, 205 mg, 0.714 mmol) was deposited onto neutral silica 

(SiO2 gel treated with 2% Et3N in CH2Cl2 then 100% CH2Cl2) and isolated via flash 

chromatography, eluting with 0 – 10% CH3OH and 0 – 1% NH4OH in CH2Cl2 to yield the 
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free amine as a yellow oil (131 mg, 0.521 mmol, 73% yield).  1H NMR (500 MHz, MeOD, 

δ): 2.98 (s, 6H), 3.85 (s, 3H), 3.98 (s, 2H), 7.82 (s, 2H).    

    

2222----(4,7,10(4,7,10(4,7,10(4,7,10----tris(tris(tris(tris(terttertterttert----butoxycarbonyl)butoxycarbonyl)butoxycarbonyl)butoxycarbonyl)----1,4,7,101,4,7,101,4,7,101,4,7,10----tetraazatetraazatetraazatetraazacyclododecancyclododecancyclododecancyclododecan----1111----yl)acetic acid yl)acetic acid yl)acetic acid yl)acetic acid 

(4.1(4.1(4.1(4.17).7).7).7).  The tris-BOC protected cyclen acid was synthesized as previously reported.188-

189 1H NMR (500 MHz, CDCl3, δ): 1.44 (s, 18H), 1.46 (s, 9H), 2.88 (s, 4H), 3.42 (m, 14H).  

13C NMR (125 MHz, CDCl3, δ): 28.5, 47.6, 49.9, 51.9, 54.2, 79.6, 80.0, 155.5, 156.1, 

173.2.  ESI-MS (m/z): [M-H]- calcd for C25H46N4O8, 529.3; found, 529.3. 

 

TriTriTriTri----terttertterttert----butyl 10butyl 10butyl 10butyl 10----(2(2(2(2----((4((4((4((4----methoxymethoxymethoxymethoxy----3,53,53,53,5----bis(methylcarbamoyl)benzyl) amino)bis(methylcarbamoyl)benzyl) amino)bis(methylcarbamoyl)benzyl) amino)bis(methylcarbamoyl)benzyl) amino)----2222----oxoethyl)oxoethyl)oxoethyl)oxoethyl)----

1,4,7,101,4,7,101,4,7,101,4,7,10----tetraazacyclododecanetetraazacyclododecanetetraazacyclododecanetetraazacyclododecane----1,4,71,4,71,4,71,4,7----tricarboxylate (tricarboxylate (tricarboxylate (tricarboxylate (4.4.4.4.18).18).18).18). The isophthalamide 

amine (4.16, 235 mg, 0.934 mmol) and N-N,diisopropylethylamine (386 µL, 2.34 mmol) 

were dissolved in DMF (10 mL) and stirred at 0 °C for 15 min.  Separately, the tris-BOC 

cyclen acid acid (4.17) (414 mg, 0.778 mmol) and HATU ((O-(7-azabenzotriazol-1-yl)-

N,N,N′,N′-tetramethyluronium hexafluorophosphate) (359 mg, 0.934 mmol) were 

combined in DMF (10 mL) and stirred at 0 °C for 15 min.  The solution containing HATU 

was added dropwise to the amine at 0 °C, and the reaction mixture was allowed to stir at 

ambient temperature for 40 h.  The solvent was removed under reduced pressure, and 

the crude residue was deposited onto silica and purified by flash chromatography 

(eluent: 0 – 8% CH3OH in CH2Cl2) to yield the product as a colorless oil (622 mg, 

0.814 mmol, 87% yield).  1H NMR (500 MHz, CDCl3, δ): 1.37 (s, 18H), 1.46 (s, 9H), 3.00 

(s, 6H), 3.44 (m, 14H), 3.85 (s, 3H), 4.40 (s, 2H), 5.30 (s, 2H), 7.43 (bs, 2H), 7.84 (s, 

2H).  13C NMR (125 MHz, CDCl3, δ):  26.5, 26.7, 28.3, 28.5, 42.0, 47.5, 49.7, 63.06, 

80.0, 120.4, 128.4, 128.7, 132.0, 134.8, 150.4, 154.9, 155.6, 162.8, 166.34, 166.45, 

171.4.  ESI-MS (m/z): [M+H]+ calcd for C37H61N7O10, 764.4; found, 764.3. 

    

5555----((2((2((2((2----(1,4,7,10(1,4,7,10(1,4,7,10(1,4,7,10----tetraazacyclododecantetraazacyclododecantetraazacyclododecantetraazacyclododecan----1111----yl)acetamido)methyl)yl)acetamido)methyl)yl)acetamido)methyl)yl)acetamido)methyl)----2222----methoxymethoxymethoxymethoxy----NNNN1111,,,,NNNN3333----

dimethylisdimethylisdimethylisdimethylisophthalamide ophthalamide ophthalamide ophthalamide trihydrochloride (4.1trihydrochloride (4.1trihydrochloride (4.1trihydrochloride (4.19).9).9).9). The BOC protected cyclen (4.18, 

678 mg, 0.888 mmol) was dissolved in 1.25 M HCl in CH3OH (20 mL) at 0 °C.  The 

reaction was brought to ambient temperature and stirred 18 h. The volatiles were 
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removed under reduced pressure to yield the product as a white solid (505 mg, 

0.884 mmol, quant.). 1H NMR (500 MHz, D2O, δ): 2.89 (s, 6H), 3.00 (bs, 6H), 3.15 (m, 

10H), 3.49 (s, 2H), 3.72 (s, 3H), 4.38 (s, 2H), 7.55 (s, 2H). 13C NMR (125 MHz, D2O, 

δ): 26.4, 42.2, 42.7, 44.20, 49.80, 62.77, 123.4, 128.6, 130.70, 134.1, 150.9, 154.1, 

168.9, 173.3.  ESI-MS (m/z): [M+Na]+ calcd for C22H37N7O4, 464.3; found, 464.1. 

 

TriTriTriTri----terttertterttert----butyl 2,2',2''butyl 2,2',2''butyl 2,2',2''butyl 2,2',2''----(10(10(10(10----(2(2(2(2----((4((4((4((4----mmmmethoxyethoxyethoxyethoxy----3,53,53,53,5----bis(methylcarbamoyl) bis(methylcarbamoyl) bis(methylcarbamoyl) bis(methylcarbamoyl) benzyl) benzyl) benzyl) benzyl) amino)amino)amino)amino)----2222----

oxoethyl)oxoethyl)oxoethyl)oxoethyl)----1,4,7,101,4,7,101,4,7,101,4,7,10----tetraazacyclodotetraazacyclodotetraazacyclodotetraazacyclododecanedecanedecanedecane----1,4,71,4,71,4,71,4,7----triyl)triacetate (4.2triyl)triacetate (4.2triyl)triacetate (4.2triyl)triacetate (4.20).0).0).0).  Under N2, 

tert-butylbromoacetate (19 µL, 0.13 mmol) in anhydrous CH3CN (4 mL) was added 

dropwise to the cyclen methoxyisophthamide (4.19, 18 mg, 32 µmol) and Cs2CO3 (62 

mg, 0.19 mmol) in anhydrous CH3CN (10 mL) at 0 °C.  Following the addition, the 

reaction mixture was stirred at 40 °C for 18 h.  The solid was removed by filtration, and 

the solvent was removed under reduced pressure. The crude product was deposited 

onto silica and purified via flash chromatography (eluent: 0 – 8% CH3OH in CH2Cl2) to 

yield the product as a light yellow oil (19 mg, 0.024 mmol, 76% yield).  1H NMR (500 

MHz, CDCl3, δ): 1.46 (s, 18H), 1.48 (s, 9H), 2.25 (m, 18H), 3.00 (s, 6H), 3.49 (s, 6H), 

3.91 (s, 3H), 4.45 (s, 2H), 7.99 (s, 2H), 8.25 (s, 2H), 8.63 (s, 1H).  13C NMR (125 MHz, 

CDCl3, δ): 26.5, 27.8, 40.9, 53.5, 55.6, 56.1, 62.9, 81.9, 128.4, 132.3, 133.2, 155.3, 

166.6, 171.8, 172.3. ESI-MS (m/z): [M+Na]+ calcd for C40H67N7O10, 828.5; found, 829.5. 

 

2,2',2''2,2',2''2,2',2''2,2',2''----(10(10(10(10----(2(2(2(2----((4((4((4((4----methoxymethoxymethoxymethoxy----3,53,53,53,5----bis(methylcarbamoyl)benzyl)amino)bis(methylcarbamoyl)benzyl)amino)bis(methylcarbamoyl)benzyl)amino)bis(methylcarbamoyl)benzyl)amino)----2222----oxoethyl)oxoethyl)oxoethyl)oxoethyl)----

1,4,7,101,4,7,101,4,7,101,4,7,10----tetraazacyclododecanetetraazacyclododecanetetraazacyclododecanetetraazacyclododecane----1,4,71,4,71,4,71,4,7----triyl)triacetic acid (triyl)triacetic acid (triyl)triacetic acid (triyl)triacetic acid (4.4.4.4.1).1).1).1). The protected cyclen 

(4.20, 18 mg, 23 µmol) was dissolved in 1.25 M HCl in CH3OH (5 mL) at 0 °C.  The 

reaction was stirred at ambient temperature 18 h. The volatiles were removed under 

reduced pressure to yield the product as a white solid (16 mg, 22 µmol, quant.). 1H NMR 

(500 MHz, (CD3)2SO, δ): 2.78 (s, 6H), 3.51 (m, 20H), 3.74 (s, 3H), 4.33 (s, 2H), 7.52 

(s, 2H).  ESI-MS (m/z): [M-H]- calcd for C28H43N7O10, 636.3; found, 636.3. 
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TbTbTbTb----DOTADOTADOTADOTA----IAMIAMIAMIAM----OMe ([TbOMe ([TbOMe ([TbOMe ([Tb----4.4.4.4.1]).  1]).  1]).  1]).  The cyclen methoxyisophthalate (4.1, 14 mg, 22 µmol) 

and TbCl3 (8.2 mg, 22 µmol, 550 µL of a 40 mM aqueous solution) were combined in MQ 

water (1 mL).   The pH was adjusted to 7.0 with dilute aqueous NaOH and the reaction 

mixture was heated at 45 °C for 48 h.  The solvent was removed by lyophilization to yield 

the product as a white powder (17 mg, 22 µmol, quant.). 1H NMR (500 MHz, D2O, δ):  

selected peaks at -79.5, -76.1, -74.1, -68.9, -0.92, 2.87, 8.46, 18.3, 46.3.  ESI-MS (m/z): 

[M+Na]+ calcd for C28H40O10N7Tb, 816.2; found, 816.1. 

    

2,2',2''2,2',2''2,2',2''2,2',2''----(10(10(10(10----(2(2(2(2----((4((4((4((4----hydroxyhydroxyhydroxyhydroxy----3,53,53,53,5----bis(methylcarbamoyl)benzyl)amino)bis(methylcarbamoyl)benzyl)amino)bis(methylcarbamoyl)benzyl)amino)bis(methylcarbamoyl)benzyl)amino)----2222----oxoethyl)oxoethyl)oxoethyl)oxoethyl)----

1,4,7,101,4,7,101,4,7,101,4,7,10----tetraazacyclododecanetetraazacyclododecanetetraazacyclododecanetetraazacyclododecane----1,4,71,4,71,4,71,4,7----triyl)triacetic acid (triyl)triacetic acid (triyl)triacetic acid (triyl)triacetic acid (4.4.4.4.2).2).2).2). The methoxy-

protected IAM cyclen (4.20, 30.1 mg, 37.3 µmol) was dissolved in dry CH2Cl2 and 

magnetically stirred at -78 °C under argon in fully dried glassware.  Boron tribromide 

(1 mL, 0.8 mmol) was added slowly, and the reaction mixture was allowed to warm to 

ambient temperature and was stirred for 18 h.  The solvent was removed under reduced 

pressure and the reaction mixture dissolved in cold CH3OH (10 mL) and refluxed for an 

additional 16 h.  The solvent was removed under reduced pressure and CH3OH/H2O 

(1:1, 10 mL) was added, followed by concentrated HCl (0.5 mL) and this mixture was 

stirred at ambient temperature for 6 h.  Solvents were removed under reduced pressure 

yielding a brown solid that was purified via reverse-phase HPLC, eluting with 0 – 60% 

acetonitrile in H2O to yield a white solid (18.1 mg, 29.1 µmol, 78%). 1H NMR (500 MHz, 

D2O, δ):  7.89 (s, 2H), 4.37 (s, 2H), 3.87-3.57 (m, 6H), 3.51 (s, 2H), 3.32-3.22 (m, 16H), 

2.92 (s, 6H).    13C NMR (125 MHz, D2O, δ): 171.1, 163.1, 160.1, 158.6, 137.8, 130.0, 

120.4, 71.9, 71.4, 55.2, 54.8, 54.6, 52.3, 29.4.    

 

[[[[TbTbTbTb----DOTADOTADOTADOTA----IAMIAMIAMIAM]]]] ----    ([Tb([Tb([Tb([Tb----4.4.4.4.2]2]2]2] ----). ). ). ). The fully deprotected DOTA-IAM ligand (4.2, 6.0 mg, 

9.6 µmol) was dissolved in mQ H2O (10 mL) and magnetically stirred.  To this, a stock 

solution of TbCl3 (0.101 M, 95 µL) was added and the resultant solution was adjusted to 

pH 8 with aqueous NaOH.  The reaction mixture was then heated at 80 ˚C for 86 h, after 

which it was allowed to cool to ambient temperature.  The solvent was removed via 

lyophilizing to yield an off-white powder (7.4 mg, 9.6 µmol, quant.).  1H NMR (500 MHz, 
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D2O, δ): selected peaks at 1.3, 1.9, 2.9, 8.4, 11.4, 20.2, 22.6. HRMS (m/z): [M+H]+ calcd 

for C27H38N7O10Tb, 780.2006; found, 780.2011. 

 

2,2',2''2,2',2''2,2',2''2,2',2''----(10(10(10(10----(2(2(2(2----oxooxooxooxo----2222----((phenanthridin((phenanthridin((phenanthridin((phenanthridin----6666----ylmethyl)amino)ethyl)ylmethyl)amino)ethyl)ylmethyl)amino)ethyl)ylmethyl)amino)ethyl)----1,4,7,101,4,7,101,4,7,101,4,7,10----

tetraazacyclododecanetetraazacyclododecanetetraazacyclododecanetetraazacyclododecane----1,4,71,4,71,4,71,4,7----triyl)triacetic acid (triyl)triacetic acid (triyl)triacetic acid (triyl)triacetic acid (4.4.4.4.3). 3). 3). 3). The DOTA-Phen ligand was 

synthesized as previously reported.180, 186  

    

TbTbTbTb----DOTADOTADOTADOTA----Phen ([TbPhen ([TbPhen ([TbPhen ([Tb----4.4.4.4.3]).3]).3]).3]).     The DOTA-Phen ligand (4.3, 14.1 mg, 23.7 µmol) was 

dissolved in mQ H2O (15 mL) and magnetically stirred.  To this, a stock solution of TbCl3 

(0.101 M, 235 µL) was added and the resultant solution was adjusted to pH 7 with 

aqueous NaOH.  The reaction mixture was then heated at 80 ˚C for 114 h, after which it 

was allowed to cool to ambient temperature.  The solvent was removed via lyophilization 

to yield an off-white powder (17.7 mg, 23.7 µmol, quant.).  1H NMR (500 MHz, D2O, δ):  

selected peaks at -11.9, -3.2, -1.7, 1.5, 10.5, 13.6, 16.0, 18.5, 22.2, 22.8, 27.0. HRMS 

(m/z): [M+H]+ calcd for C30H35N6O7Tb, 751.1893; found, 751.1880. 

 

NNNN----BenzylBenzylBenzylBenzyl----2222----bromoacetamide (bromoacetamide (bromoacetamide (bromoacetamide (4.4.4.4.21).21).21).21). Aqueous K2CO3 (506 mg, 3.66 mmol) in water 

(3 mL) and bromoacetylbromide (120 µL, 1.38 mmol) in CH2Cl2 (3 mL) were added 

simultaneously dropwise over 15 min to benzylamine (100 µL, 0.915 mmol) in CH2Cl2 

(3 mL) at 0 °C.   Following the addition, the reaction mixture was stirred at ambient 

temperature for 2 h.  The organic layer was washed with MQ water until the pH was 

approximately neutral (6 × 5 mL), brine (5 mL) and then dried over MgSO4 and filtered.  

Removal of the solvent under reduced pressure yielded the product as a white powder 

(184 mg, 0.860 mmol, 88% yield).  1H NMR (500 MHz, CD2Cl2 , δ): 3.91 (s, 2H), 4.45 (d, 

J = 6.0 Hz, 2H), 6.73 (s, 1H), 7.29 (m, 3H), 7.35 (m, 2H).  13C NMR (125 MHz, CD2Cl2, 

δ): 29.3, 43.9, 127.6, 128.7, 137.8, 165.2. ESI-MS (m/z): [M+Na]+ calcd for C9H10BrNO, 

250.0; found, 250.0. 
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2222----MethoxyMethoxyMethoxyMethoxy----NNNN1111,,,,NNNN3333----dimethyldimethyldimethyldimethyl----5555----((2((2((2((2----(4,7,10(4,7,10(4,7,10(4,7,10----tris(2tris(2tris(2tris(2----(benzylamino)(benzylamino)(benzylamino)(benzylamino)----2222----oxoethyl)oxoethyl)oxoethyl)oxoethyl)----1,4,7,101,4,7,101,4,7,101,4,7,10----

tetraazacyclododecantetraazacyclododecantetraazacyclododecantetraazacyclododecan----1111----yl)acetamido)methyl)isophthalamide (yl)acetamido)methyl)isophthalamide (yl)acetamido)methyl)isophthalamide (yl)acetamido)methyl)isophthalamide (4.4.4.4.4). 4). 4). 4). Under N2, N-

benzyl-2-bromoacetamide (4.21, 16 mg, 89 µmol) in anhydrous CH3CN (2 mL) was 

added dropwise to the cyclen methoxyisophthalate (4.19, 13 mg, 24 µmol) and Cs2CO3 

(75 mg, 0.23 mmol) in anhydrous CH3CN (3 mL).  Following the addition, the reaction 

mixture was stirred at 50 °C for 18 h.  The solid was removed by filtration, and the 

solvent removed under reduced pressure. The crude product was deposited onto silica 

and purified by flash chromatography (eluent: 0 – 8% CH3OH in CH2Cl2) to yield the 

product as a light yellow oil (8.0 mg, 8.8 µmol, 38% yield).  1H NMR (500 MHz, CD2Cl2, 

δ): 2.01 – 2.85 (bm, 16H), 2.89 (m, 6H), 3.10 (m, 8H), 3.75 (s, 3H), 4.36 (m, 8H), 7.23 

(m, 17H), 7.79 (s, 4H), 8.19 (bs, 2H).  13C NMR (125 MHz, CD2Cl2, δ): 27.5, 43.2, 44.4, 

51.5, 57.9, 58.8, 64.1, 128.2, 128.8, 129.2, 129.5, 134.1, 139.8, 167.1, 170.5, 172.4. 

HRMS (m/z): [M+Na]+ calcd for C49H64N10O7, 927.4852; found, 927.4895. 

 

[Tb[Tb[Tb[Tb----IAMIAMIAMIAM----OMeOMeOMeOMe----Benzyl]Benzyl]Benzyl]Benzyl]3+3+3+3+     ([Tb([Tb([Tb([Tb----4.4.4.4.4]4]4]4]3+3+3+3+).).).). Aqueous TbCl3 (200 µL of 40 mM solution, 

7.9 µmol) was added to the benzyl isophthalamide ligand (4.4, 7.2 mg, 7.9 µmol) in 

CH3OH (400 µL), for a final H2O to CH3OH ratio of 1:2.  The pH was adjusted to 7 with 

dilute aqueous NaOH, and the reaction mixture was heated to 45 °C for 44 h.  The 

solvent was removed by lyophilization generating the complex as a yellow oil (9.2 mg, 

7.9 µmol, quant.). 1H NMR (500 MHz, (CD3)2SO, δ):  selected peaks at -78.40,                

-70.34, -66.79, -61.73, 0.46, 1.25, 1.94, 3.96, 5.19, 10.24, 13.12, 15.70, 21.58, 27.45, 

32.64, 42.48, 50.40, 61.74. HRMS (m/z): [M]3+ calcd for C49H64N10O7Tb, 354.4732; 

found, 354.4751. 

 

2222----BromoBromoBromoBromo----NNNN----hexylacetamide (hexylacetamide (hexylacetamide (hexylacetamide (4.4.4.4.22).22).22).22). Synthesis was performed according to the 

procedure for compound (4.21) using hexyl amine. White powder (84% yield).  1H NMR 

(500 MHz, CDCl3, δ): 0.88 (t, J = 6.78 Hz, 3H), 1.32 (m, 6H), 1.52 (quin, J = 7.2 Hz, 2H), 

3.27 (q, J = 6.7 Hz, 2H), 3.87 (s, 2H), 6.49 (s, 1H).  13C NMR (125 MHz, CDCl3, δ): 14.0, 

22.5, 26.5, 29.2, 29.4, 31.4, 40.3,165.2. ESI-MS (m/z): [M+Na]+ calcd for C8H16BrNO, 

244.0; found, 244.1. 
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2222----MethoxyMethoxyMethoxyMethoxy----NNNN1111,,,,NNNN3333----dimethyldimethyldimethyldimethyl----5555----((2((2((2((2----(4,7,10(4,7,10(4,7,10(4,7,10----tris(2tris(2tris(2tris(2----(hexylamino)(hexylamino)(hexylamino)(hexylamino)----2222----oxoethyl)oxoethyl)oxoethyl)oxoethyl)----1,4,7,101,4,7,101,4,7,101,4,7,10----

tetraazacyclododecantetraazacyclododecantetraazacyclododecantetraazacyclododecan----1111----yl)acetamido)methyl)isophthalamide (yl)acetamido)methyl)isophthalamide (yl)acetamido)methyl)isophthalamide (yl)acetamido)methyl)isophthalamide (4.4.4.4.5).5).5).5). Synthesis was 

performed according to the procedure for compound (4) using 2-bromo-N-

hexylacetamide (4.22).  Light green oil (32% yield). 1H NMR (500 MHz, CDCl3, δ): 0.86 

(m, 9H), 1.28 (m, 24H), 1.52 (m, 6H), 2.05-2.93 (bm, 16H), 2.98 (m, 6H), 3.23 (m, 10H), 

3.89 (s, 3H), 7.76 (m, 1H), 7.92 (s, 2H), 8.08 (m, 3H), 8.70 (m, 1H).  13C NMR (125 MHz, 

CDCl3, δ): 14.0, 14.1, 22.6, 26.6, 29.3, 31.5, 39.8, 42.2, 51.0, 53.4, 56.8, 58.9, 62.7, 

128.2, 133.5, 135.0, 155.7, 166.7, 170.5, 171.0.  HRMS (m/z): [M+Na]+ calcd for 

C46H82N10O7, 909.6260; found, 909.6264. 

 

[Tb[Tb[Tb[Tb----IAMIAMIAMIAM----OMeOMeOMeOMe----Hexyl]Hexyl]Hexyl]Hexyl]3+3+3+3+     ([Tb([Tb([Tb([Tb----4.4.4.4.5]5]5]5]3+3+3+3+).).).). Synthesis was performed according to the procedure 

for complex [Tb-4.4]3+.  Light green oil (quant.). 1H NMR (500 MHz, (CD3)2SO, δ): 

selected peaks at -76.17, -66.40, -61.64, 1.25, 2.99, 4.86, 10.37, 15.79, 21.04, 27.31, 

32.32, 37.08, 42.09, 50.36, 61.89. HRMS (m/z): [M]3+ calcd for C46H82N10O7Tb, 

348.5202; found, 348.5213. 

 

2222----BromoBromoBromoBromo----NNNN----(2,2,2(2,2,2(2,2,2(2,2,2----trifluoroethyl)acetamide (trifluoroethyl)acetamide (trifluoroethyl)acetamide (trifluoroethyl)acetamide (4.4.4.4.23).23).23).23). Synthesis was performed according 

to the procedure for compound (4.21) using 2,2,2-trifluoroethanamine.   White crystals 

(81%). 1H NMR (500 MHz, CDCl3, δ): 3.88-3.97 (m, 4H), 7.19 (br s, 1H). 19F NMR 

(282 MHz, CDCl3, δ):  -72.9 (t, J = 8.7 Hz). 13C NMR (75 MHz, CDCl3, δ):  28.9, 41.9 (q, 

J = 34.8 Hz), 124.4, (q, J = 277 Hz), 167.4.  HRMS (m/z): [M+H]+ calcd for C4H5BrF3NO, 

219.9579; found, 219.9579. 

 

2----MethoxyMethoxyMethoxyMethoxy----NNNN1111,,,,NNNN3333----dimethyldimethyldimethyldimethyl----5555----((2((2((2((2----(4,7,10(4,7,10(4,7,10(4,7,10----tris(2tris(2tris(2tris(2----oxooxooxooxo----2222----((2,2,2((2,2,2((2,2,2((2,2,2----trifluoroethyl)trifluoroethyl)trifluoroethyl)trifluoroethyl)    

amino)ethyl)amino)ethyl)amino)ethyl)amino)ethyl)----1,4,7,101,4,7,101,4,7,101,4,7,10----tetraazacyclododecantetraazacyclododecantetraazacyclododecantetraazacyclododecan----1111----yl)acetamido)methyl)yl)acetamido)methyl)yl)acetamido)methyl)yl)acetamido)methyl)    isophthalamide isophthalamide isophthalamide isophthalamide 

((((4.4.4.4.6).6).6).6). Synthesis was performed according to the procedure for compound (4.4) using 

2-bromo-N-(2,2,2-trifluoroethyl)acetamide (4.23).  Yellow oil (38% yield).  1H NMR 

(500 MHz, CD3OD, δ): 2.00-2.80 (bm, 18H), 2.94 (m, 6H), 3.03-3.29 (bm, 8H), 3.80 (s, 

3H), 3.90 (m, 6H), 4.34 (s, 2H), 7.56 (s, 2H), 7.71 (s, 2H), 7.95 (s, 4H).  19F NMR 

(470 MHz, CD3OD, δ): -73.21 (s, 3F), -72.98 (s, 6F).  13C NMR (76 MHz, CD3OD, δ): 
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26.4, 26.8, 30.7, 40.7, 41.1, 42.7, 57.3, 57.6, 63.4, 123.9, 127.6, 130.1, 132.6, 136.8, 

156.2, 168.6, 173.4, 174.1.  HRMS (m/z): [M+Na]+ calcd for C34H49F9N10O7, 903.3534; 

found, 903.3523. 

 

[Tb[Tb[Tb[Tb----IAMIAMIAMIAM----OMeOMeOMeOMe----CFCFCFCF3333]]]]3+3+3+3+     ([Tb([Tb([Tb([Tb----4.4.4.4.6]6]6]6]3+3+3+3+).).).). Synthesis was performed according to the procedure 

for complex [Tb-4.4]3+.  White powder (quant.). 1H NMR (500 MHz, D2O, δ): selected 

peaks at -88.14, -85.47, -74.79, -63.12, 1.55, 2.67, 12.51, 15.46, 19.25, 32.05, 36.13, 

41.75, 46.10, 52.43, 56.51, 63.54.  19F NMR (470 MHz, D2O, 

δ):  -72.4, -68.4, -59.7, -58.3, -54.5, -50.1, -48.4.  HRMS (m/z): [M-H]2+ calcd for 

C34H49F9N10O7Tb, 519.1403; found, 519.1429. 

 

Ethyl 2Ethyl 2Ethyl 2Ethyl 2----(2(2(2(2----bromoacetamido)propanoate (bromoacetamido)propanoate (bromoacetamido)propanoate (bromoacetamido)propanoate (4.4.4.4.24).24).24).24). Synthesis was performed according to 

the procedure for compound (4.21) using L-Alanine ethyl ester hydrochloride. White 

powder (68% yield).  1H NMR (500 MHz, CDCl3, δ): 1.27 (t, J = 7.2 Hz, 3H), 1.42 (d, 

J = 7.2 Hz, 3H), 3.86 (s, 2H), 4.20 (q, J = 7.2 Hz, 2H), 4.53 (quint, J = 7.2 Hz, 1H), 7.05 

(s, 1H). 13C NMR (125 MHz, CDCl3, δ): 14.1, 18.2, 28.7, 48.8, 61.7, 165.1, 172.4.  

ESI-MS (m/z): [M+Na]+ calcd for C7H12BrNO3, 260.0; found, 260.0. 

 

TriethylTriethylTriethylTriethyl----2,2',2''2,2',2''2,2',2''2,2',2''----((2,2',2''((2,2',2''((2,2',2''((2,2',2''----(10(10(10(10----(2(2(2(2----((4((4((4((4----methoxymethoxymethoxymethoxy----3,53,53,53,5----bis(methylcarbamoyl)benzyl)bis(methylcarbamoyl)benzyl)bis(methylcarbamoyl)benzyl)bis(methylcarbamoyl)benzyl)    amino)amino)amino)amino)----

2222----oxoethyl)oxoethyl)oxoethyl)oxoethyl)----1,4,7,101,4,7,101,4,7,101,4,7,10----tetraazacyclododecanetetraazacyclododecanetetraazacyclododecanetetraazacyclododecane----1,4,71,4,71,4,71,4,7----triyl)tris(acetyl))triyl)tris(acetyl))triyl)tris(acetyl))triyl)tris(acetyl))    tris(azanediyl)) tris(azanediyl)) tris(azanediyl)) tris(azanediyl)) 

tripropanoate (tripropanoate (tripropanoate (tripropanoate (4.4.4.4.7). 7). 7). 7).  Synthesis was performed according to the procedure for 

compound (4.4) using ethyl 2-(2-bromoacetamido)propanoate (4.24).  Light yellow oil 

(44% yield). 1H NMR (500 MHz, CDCl3, δ): 1.26 (m, 9H), 1.34 (d, J = 7.0 Hz, 3H), 1.40 

(d, J = 7.1 Hz, 3H), 1.44 (d, J = 7.2 Hz, 3H), 2.13-2.81 (bm, 18H), 2.97 (m, 6H), 3.12-

3.46 (bm, 8H), 3.87 (s, 3H), 4.16 (m, 6H), 4.34 (m, 1H), 4.44 (m, 1H), 4.54 (m, 1H), 7.90 

(s, 2H), 8.02 (m, 4H), 8.64 (m, 2H).  13C NMR (125 MHz, CDCl3, δ): 14.1, 14.2, 17.2, 

17.4, 17.6, 26.7, 42.2, 48.4, 48.6, 50.7, 53.4, 56.9, 61.2, 61.4, 61.6, 62.8, 128.3, 133.3, 

134.9, 155.6, 166.6, 170.7 171.1, 171.4, 172.8, 173.0.   HRMS (m/z): [M+Na]+ calcd for 

C43H70N10O13, 957.5016; found, 957.5061. 

 



 

Cellular Compatibility of Lanthanide Complexes                                                                Chapter 4 

123 

 

[Tb[Tb[Tb[Tb----IAMIAMIAMIAM----OMeOMeOMeOMe----AlaAlaAlaAla----ester]ester]ester]ester]3+3+3+3+     ([Tb([Tb([Tb([Tb----4.4.4.4.7]7]7]7]3+3+3+3+).).).). Synthesis was performed according to the 

procedure for complex [Tb-4.4]3+.  Light yellow powder (quant.).  1H NMR (500 MHz, 

D2O, δ): selected peaks at -86.64, -74.70, -69.62, -17.12, -9.60, -6.71, 1.18, 3.24, 10.45, 

17.70, 21.93, 24.80, 37.79, 45.09, 49.07, 60.34, 81.99.  HRMS (m/z): [M]3+ calcd for 

C43H70N10O13Tb, 364.4787; found, 364.4767. 

 

Diethyl 2Diethyl 2Diethyl 2Diethyl 2----(2(2(2(2----bromoacetamido)pentanedioate (4.2bromoacetamido)pentanedioate (4.2bromoacetamido)pentanedioate (4.2bromoacetamido)pentanedioate (4.25).5).5).5).  Synthesis was performed 

according to the procedure for compound (4.21) using diethyl  L-glutamate 

hydrochloride. White powder (66% yield).  1H NMR (500 MHz, CDCl3, δ): 1.24 (m, 6H), 

2.05 (m, 1H) 2.20 (m, 1H), 2.24 (m, 2H), 3.86 (s, 2H), 4.11 (q, J = 7.0 Hz, 2H), 4.19 (q, 

J = 6.8 Hz, 2H), 4.56 (m, 1H), 7.13 (s, 1H).  13C NMR (125 MHz, CDCl3, δ): 14.1, 14.2, 

27.1, 28.6, 30.1, 52.4, 60.8, 61.9, 165.7, 171.2, 172.6.  ESI-MS (m/z): [M+Na]+ calcd for 

C11H18BrNO5, 346.0; found, 346.0. 

 

HexaethylHexaethylHexaethylHexaethyl----2,2',2''2,2',2''2,2',2''2,2',2''----((2,2',2''((2,2',2''((2,2',2''((2,2',2''----(10(10(10(10----(2(2(2(2----((4((4((4((4----methoxymethoxymethoxymethoxy----3,53,53,53,5----bis(methylcarbamoyl)bis(methylcarbamoyl)bis(methylcarbamoyl)bis(methylcarbamoyl)    

benzyl)amino)benzyl)amino)benzyl)amino)benzyl)amino)----2222----oxoethyl)oxoethyl)oxoethyl)oxoethyl)----1,4,7,101,4,7,101,4,7,101,4,7,10----tetraazacyclododecanetetraazacyclododecanetetraazacyclododecanetetraazacyclododecane----1,4,71,4,71,4,71,4,7----triyl)tristriyl)tristriyl)tristriyl)tris    

(acetyl))tris (azanediyl)) tripentanedioate ((acetyl))tris (azanediyl)) tripentanedioate ((acetyl))tris (azanediyl)) tripentanedioate ((acetyl))tris (azanediyl)) tripentanedioate (4.4.4.4.8).8).8).8).  Synthesis was performed according 

to the procedure for compound (4.4) using diethyl  2-(2-bromoacetamido)pentanedioate 

(4.25).  Yellow oil (38% yield). 1H NMR (500 MHz, CDCl3, δ): 1.22 (m, 18H), 2.01-2.90 

(bm, 28H), 2.97 (m, 6H), 2.80 – 3.00 (bm, 10H), 3.87 (s, 3H), 4.14 (m, 12H), 4.52 (m, 

3H), 7.86 (s, 1H), 7.92 (m, 2H), 8.01 (s, 1H), 8.06 (m, 2H), 8.62 (m, 2H).  13C NMR 

(125 MHz, CDCl3, δ): 14.2, 26.4, 26.7, 29.7, 30.3, 30.5, 42.1, 51.9, 57.0, 60.7, 61.6, 

62.7, 128.2, 133.3, 155.9, 166.7, 171.6, 171.8, 172.8.  HRMS (m/z): [M+Na]+ calcd for 

C55H88N10O19, 1215.6119; found, 1215.6148. 

 

[Tb[Tb[Tb[Tb----IAMIAMIAMIAM----OMeOMeOMeOMe----GluGluGluGlu----ester]ester]ester]ester]3+3+3+3+     ([Tb([Tb([Tb([Tb----4.4.4.4.8]8]8]8]3+3+3+3+).).).). Synthesis was performed according to the 

procedure for complex [Tb-4.4]3+.  Light orange powder (quant.).  1H NMR (500 MHz, 

D2O, δ): selected peaks at -83.19, -79.33, -73.37, -69.19,-69.33, -65.33, -14.16, -7.58,  

-5.51, -4.51, -1.16, 1.13, 2.38, 9.62, 19.98, 24.79, 41.84, 50.36.  HRMS (m/z): [M]3+ 

calcd for C55H88N10O19Tb, 450.5155; found, 450.5159. 
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[Tb[Tb[Tb[Tb----IAMIAMIAMIAM----OMeOMeOMeOMe----AlaAlaAlaAla----acid]acid]acid]acid] ----    ([Tb([Tb([Tb([Tb----4.4.4.4.9]9]9]9] ----).).).). The Tb-complex of the alanine ester, [Tb-4.7]3+, 

(6.1 mg, 5.1 µMol) was stirred with 0.2 M KOH (150 µL, 30.6 µMol) for 20 h at ambient 

temperature. The reaction was then neutralized with HCl and lypholized to yield a white 

powder (5.1 mg, 5.1 µMol, quant.).  1H NMR (500 MHz, D2O, δ): selected peaks 

at -85.69, -83.11, 1.38, 3.04, 8.11, 10.54, 15.33, 16.41, 17.69, 25.62, 33.80, 59.68, 

100.02. ESI-MS (m/z): [M-H]- calcd for C37H55N10O13Tb, 1005.3; found, 1005.4. 

 

[Tb[Tb[Tb[Tb----IAMIAMIAMIAM----OMeOMeOMeOMe----GluGluGluGlu----acid]acid]acid]acid]3333----    ([Tb([Tb([Tb([Tb----4.4.4.4.10]10]10]10]3333----).).).). The Tb-complex of the glutamine ester, 

[Tb-4.8]3+, (9.0 mg, 6.2 µMol) was stirred with 0.2 M KOH (372 µL, 74.4 µMol, 12 eq) for 

20 h at ambient temperature. The reaction was then neutralized with HCl and lypholized 

to yield a white powder (8.0 mg, 6.2 µMol, quant.).  1H NMR (500 MHz, D2O, δ): selected 

peaks at -85.05, -80.96, -77.73, 1.21, 2.10, 3.01, 4.40, 7.67, 9.26, 10.14, 11.48, 15.33, 

18.74, 21.25, 24.77, 27.62, 34.21, 47.37, 58.13, 105.50. HRMS (m/z): [M+H]2- calcd for 

C43H58N10fO19Tb, 589.1650; found, 589.1665. 

 

B. Experimental Methods 

Determination of quantum yield (Φ).Determination of quantum yield (Φ).Determination of quantum yield (Φ).Determination of quantum yield (Φ).  The absorbance and integrated luminescence 

intensity of [Tb-4.1] – [Tb-4.3] in PBS (pH 7.8, n = 1.3345) were compared to the 

reference fluorescence of quinine sulfate (Φr = 0.577)192 in 0.1 M sulfuric acid (n = 1.333).  

Absorption spectra were collected on a Cary 100 Bio UV-Visible Spectrophotometer; 

emission spectra were recorded on a Cary Eclipse Fluorescence Spectrophotometer.  

Quantum yields (Φ) were calculated according to the optically dilute method using the 

equation 

Φg =  Φh 6�h�g= i�g��h�j 6kgkh= 

Where A is the absorbance at the excitation wavelength (λ), n is the refractive index, and 

I is the integrated intensity.115, 118  The subscripts r and x refer to the reference and 

samples, respectively.  All data was collected using the same spectrophotometer on the 

same day, resulting in a constant intensity of the excitation light (λex = 350 nm).  

Measurements were obtained at 22 °C in a quartz cell of 1 cm path length in degased 
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solutions using an excitation wavelength of 350 nm and excitation and emission slit 

widths of 10 nm for both complexes.  The fluorescence response of quinine sulfate was 

reported as the integrated emission intensity from 365-665 nm; the Tb-luminescence of 

was collected with a time delay of 0.1 ms and reported as the integrated emission 

intensity from 470 – 688 nm.  The experiment was performed in triplicate (n = 3). 

 

Cell culture.Cell culture.Cell culture.Cell culture.  Rat muscle L6 myoblast cell line was obtained from ATCC (Manassa, VA).  

Cells were cultured in 25-cm2 or 75-cm2 vented culture flasks in Dulbecco’s modified 

eagle medium (DMEM) supplemented with 10% (v/v) bovine serum (BS) and 10 µg mL-1 

gentamicin at 37 °C and 5% CO2.   The cells were maintained by splitting every 3-4 days 

before reaching confluence; cells were rinsed with PBS, lifted using 0.25 g L-1 typsin for 

5 min, and diluted in fresh medium.  All cells were propagated at low passage numbers 

(< 20) to maintain their myoblastic character.  

    

Preparation of whole cell lysate.Preparation of whole cell lysate.Preparation of whole cell lysate.Preparation of whole cell lysate.  L6 cells were harvested from two 75 cm2 culture 

flasks grown to 85% confluence and centrifuged at 400 g for 10 min at 4 °C.  The 

resulting pellet was rinsed with ice-cold PBS (2 mL) and centrifuged.   The cells were 

then suspended in PBS (1 mL) and transferred to a tight-fitting homogenizer (B-

clearance 0.0008-0.0022 in).  Approximately 90% of cells were ruptured after 120 

strokes, as determined by cell counting with trypan blue and a hemocytometer.  The total 

protein concentration of the whole cell lysate was determined with a bicinchoninic acid 

(BCA) assay (BCA Protein Assay Kit, ThermoScientific) using bovine serum albumin 

(BSA) protein standard solutions.  The whole cell lysate was then diluted to a protein 

concentration of 1.0 mg/mL and aliquots (450 µL) were stored at -20 °C for later use.   

    

Luminescence intensity in whole cell lysate.Luminescence intensity in whole cell lysate.Luminescence intensity in whole cell lysate.Luminescence intensity in whole cell lysate.  An aqueous suspension of [Tb-4.1] 

(100 µM) in whole cell lysate diluted in PBS (0.25 mg/mL protein or 0.5 mg/mL protein) 

was titrated into an aqueous solution of whole cell lysate in PBS (0.25 mg/mL or 

0.5 mg/mL protein).  The time-delayed emission profile was recorded in the presence of 

0 - 15 µM of Tb-complex.  The titration was repeated in pure PBS buffer (pH 7.8) without 
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cell lysate.  Measurements were recorded with an excitation wavelength of 345 nm, time 

delay of 0.1 ms, excitation and emission slit widths of 5 nm, and at a temperature of 

20 °C.  The luminescence response was reported as the integrated emission intensity 

from 470 – 640 nm.  Each experiment was repeated in triplicate (n = 3).  The percent 

quenching of the luminescence was calculated from the slopes of the integrated 

luminescence intensity versus the concentration Tb-complex (µM) plots in PBS and 

whole cell lysate at the two protein concentrations.  

    

Cell viability.Cell viability.Cell viability.Cell viability.  L6 myoblasts (225 µL) were plated at ~ 4.0 x 104 cells mL-1 in a 48 well 

cell culture plate.  Cells were allowed to recover 24 h, after which Tb-complexes in PBS 

(25 µL) were added to the culture media (final concentrations of 0, 1, 3, 10, 30, 100, and 

300 µM).  For the negative control, PBS (without Tb-complex) was used.  The MTT 

assay was performed during the last 3 h of the compound exposure time as follows.  

MTT (3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide, 25 µL of 5 mg/mL 

stock solution, 0.5 mg/mL final concentration) was added to the media, and the plate 

was returned to the cell culture incubator for 3 h.  When a purple precipitate was clearly 

visible, 250 µL of 0.04 M HCl in isopropanol was added to each well.  After an incubation 

of 4 h at room temperature in the dark, the samples were centrifuged at 10,000 g for 5 

min to pellet cellular debris.  For each sample, a portion of the supernatant (200 µL) was 

transferred to a corresponding well of a 96 well plate, and the absorbance at 570 and 

690 nm was recorded using a microtiter plate reader.  The cell viability was calculated 

according to the following equation using the adjusted absorbance of the cells treated 

with Tb-complex in comparison to the control cells.183  

lm��nm�op@@ [%] =  (�(7Q − �\XQ)@rRstuvwCg(�(7Q − �\XQ)stxyhtw  

Results are expressed as mean ± SD (n = 3).  

    

Cellular association by ICPCellular association by ICPCellular association by ICPCellular association by ICP----MS.MS.MS.MS.  The cellular association of [Tb-4.1] – [Tb-4.10] was 

investigated by seeding in triplicate L6 myoblasts (225 µL) at 4.5 x 104 cells mL-1 in a 48 

well plate (~10,000 cells mL-1).  Cells were allowed to recover for 48 h and had grown to 
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80% confluence at which time a concentrated solution of Tb-complex in PBS (25 µL) 

was added to achieve a final concentration of 50 µM in the cellular media.  Cells grown 

in Tb-complex free media (addition of only PBS) were included as a negative control.  

Following 4 h of incubation, the media was removed, and the wells were washed twice 

with room temperature by adding PBS and rocking the culture plate back and forth 

several times.  The addition of a lysis buffer (75 µL of 10 mM Tris, pH 7.5, 100 mM NaCl, 

1 mM Na2EDTA, and 1% Triton X- 100) followed by a 20 min incubation at 4 °C ruptured 

the cell membranes.53  Aliquots (3 × 8 µL) from each well were removed for a BCA assay 

to determine the protein concentration.  Samples (50 µL) were combined with 

concentrated nitric acid (50 µL) and heated to 95 °C for 18 h in flame sealed glass 

ampules prior to ICP-MS analysis.  The Tb content (ppb) was determined by ICP-MS, 

and the cellular association of each Tb-complex (CTb), expressed as µMol Tb g protein-1, 

was calculated according to the following equation: 

Y@r = 6Yuz = /_Yvd 

Where Cm  is the measured metal concentration (ppb) of the cell samples; M is the 

molecular mass of Tb; Cp is the protein concentration (mg/mL).  Results are expressed 

as mean ± SD (n = 3).  

    

Fluorescence microscopy.Fluorescence microscopy.Fluorescence microscopy.Fluorescence microscopy.  L6 myoblasts (passage 9 or 10) were seeded in a poly 

lysine coated 8-well glass-bottom plate and allowed to grow for 24 h to 50% confluence 

at 37 °C in 5% CO2.  Then Tb-complexes [Tb-4.2]- - [Tb-4.8] were added in PBS for a 

final concentration of 200 µM.  Negative control wells containing cells grown in Tb-

complex free media (addition of only PBS) were included.  Following a 4 h incubation, 

the media was removed, and cells were washed three times with PBS at room 

temperature by rocking the culture plate back and forth gently.  Cells were fixed with 4% 

formaldehyde in PBS at room temperature for 15 min.  Additionally, live cell imaging of 

[Tb-4.6] was performed in DMEM phenol red-free media. Epifluorescence images of 

representative cells were acquired on an Olympus IX81 inverted microscope equipped 

with a 60x (N.A. 1.45) oil immersion objective.   Excitation was supplied by an Exfo XCite 

120 metal halide lamp source coupled to the microscope via a liquid light guide, images 
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were collected with a C9100-01 CCD camera, and HCImage software was utilized to 

control the microscope and camera and to process images.  An excitation filter (325 - 

375 nm), dichoric (460 nm), and emission filter (470 - 750 nm) were employed with an 

exposure times of 0.4 s for fixed cells and 0.1 s with live cells.  Bright field images of 

cells were also collected to determine the position of cells (exposure time 0.04 s).  The 

contrast of bright field images was adjusted to a contrast range of 0 - 100 (normal range 

0 - 255) using HCImage software. 



 

129 

 

RRRREFERENCES EFERENCES EFERENCES EFERENCES     
    

1. Koskenkorva-Frank, T. S.; Weiss, G.; Koppenol, W. H.; Burckhardt, S., The complex 
interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: 
Insights into the potential of various iron therapies to induce oxidative and nitrosative 
stress. Free Radic. Biol. Med. 2013, 65, 1174-1194. 

2. Bild, W.; Ciobica, A.; Padurariu, M.; Bild, V., The interdependence of the reactive species 
of oxygen, nitrogen, and carbon. J. Physiol.  Biochem. 2013, 69, 147-154. 

3. Winterbourn, C. C., Reconciling the chemistry and biology of reactive oxygen species. Nat. 
Chem. Biol. 2008, 4, 278-286. 

4. Dickinson, B. C.; Chang, C. J., Chemistry and biology of reactive oxygen species in 
signaling or stress responses. Nat. Chem. Biol. 2011, 7, 504-511. 

5. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J., Free radicals 
and antioxidants in normal physiological functions and human disease. Int. J. Biochem. 
Cell Biol. 2007, 39, 44-84. 

6. Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G., Hydrogen peroxide: a metabolic by-
product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 2007, 8, 722-
728. 

7. Hughes, M. What is oxidative stress. http://www.geneactivatornrf2.org/os/#.U0v_CaKa9bw 
(accessed 14 April 2014). 

8. Ford, E.; Hughes, M. N.; Wardman, P., Kinetics of the reactions of nitrogen dioxide with 
glutathione, cysteine, and uric acid at physiological pH. Free Radic. Biol. Med. 2002, 32, 
1314-1323. 

9. Liu, G.; Li, Y.; Pagel, M. D., Design and characterization of a new irreversible responsive 
PARACEST MRI contrast agent that detects nitric oxide. Magn. Reson. Med. 2007, 58, 
1249-1256. 

10. Ashby, M. T.; Carlson, A. C.; Scott, M. J., Redox buffering of hypochlorous acid by 
thiocyanate in physiologic fluids. J. Am. Chem. Soc. 2004, 126, 15976-15977. 

11. Carballal, S.; Bartesaghi, S.; Radi, R., Kinetic and mechanistic considerations to assess 
the biological fate of peroxynitrite. Biochim. Biophys. Acta 2014, 1840, 768-780. 

12. Flors, C.; Fryer, M. J.; Waring, J.; Reeder, B.; Bechtold, U.; Mullineaux, P. M.; Nonell, S.; 
Wilson, M. T.; Baker, N. R., Imaging the production of singlet oxygen in vivo using a new 
fluorescent sensor, singlet oxygen sensor green J. Exp. Bot. 2006, 57, 1725-1734. 

13. da Silva, E. F. F.; Pedersen, B. W.; Breitenbach, T.; Toftegaard, R.; Kuimova, M. K.; 
Arnaut, L. G.; Ogilby, P. R., Irradiation- and sensitizer-dependent changes in the lifetime of 
ntracellular singlet oxygen produced in a photosensitized process. J. Phys. Chem. B 2011, 
116, 445-461. 

14. Gungor, N.; Knaapen, A. M.; Munnia, A.; Peluso, M.; Haenen, G. R.; Chiu, R. K.; 
Godschalk, R. W.; van Schooten, F. J., Genotoxic effects of neutrophils and hypochlorous 
acid. Mutagenesis 2010, 25, 149-154. 

15. Makrigiorgos, G. M.; Baranowska-Kortylewicz, J.; Bump, E.; Sahu, S. K.; Berman, R. M.; 
Kassis, A. I., A method for detection of hydroxyl radicals in the vicinity of biomolecules 
using radiation-induced fluorescence of coumarin. Int. J. Radiat. Biol. 1993, 63, 445-458. 

16. Sueishi, Y.; Hori, M.; Ishikawa, M.; Matsu-Ura, K.; Kamogawa, E.; Honda, Y.; Kita, M.; 
Ohara, K., Scavenging rate constants of hydrophilic antioxidants against multiple reactive 
oxygen species. J. Clin. Biochem. Nutr. 2014, 54, 67-74. 



References 

130 

 

17. Bonini, M. G.; Augusto, O., Carbon dioxide stimulates the production of thiyl, sulfinyl, and 
disulfide radical anion from thiol oxidation by peroxynitrite. J. Biol. Chem. 2001, 276, 9749-
9754. 

18. Winterbourn, C. C.; Metodiewa, D., Reactivity of biologically important thiol compounds 
with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 1999, 27, 322-328. 

19. Folkes, L. K.; Wardman, P., Kinetics of the reaction between nitric oxide and glutathione: 
Implications for thiol depletion in cells. Free Radic. Biol. Med. 2004, 37, 549-556. 

20. Medinas, D. B.; Cerchiaro, G.; Trindade, D. F.; Augusto, O., The carbonate radical and 
related oxidants derived from bicarbonate buffer. IUBMB Life 2007, 59, 255-262. 

21. Czapski, G.; Lymar, S. V.; Schwarz, H. A., Acidity of the carbonate radical. J. Phys. Chem. 
A 1999, 103, 3447-3450. 

22. Bartberger, M. D.; Liu, W.; Ford, E.; Miranda, K. M.; Switzer, C.; Fukuto, J. M.; Farmer, P. 
J.; Wink, D. A.; Houk, K. N., The reduction potential of nitric oxide (NO) and its importance 
to NO biochemistry. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 10958-10963. 

23. Winterbourn, C. C., The challenges of using fluorescent probes to detect and quantify 
specific reactive oxygen species in living cells. Biochim Biophys Acta 2014, 1840, 730-738. 

24. Shafirovich, V.; Lymar, S. V., Nitroxyl and its anion in aqueous solutions: spin states, protic 
equilibria, and reactivities toward oxygen and nitric oxide. Proc. Natl. Acad. Sci. U. S. A. 
2002, 99, 7340-7345. 

25. Buettner, G. R., The pecking order of free radicals and antioxidants: Lipid peroxidation, 
alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 1993, 300, 535-543. 

26. Dutton, A. S.; Fukuto, J. M.; Houk, K. N., Theoretical reduction potentials for nitrogen 
oxides from CBS-QB3 energetics and (C)PCM solvation calculations. Inorg. Chem. 2005, 
44, 4024-4028. 

27. Harris, D. C., Exploring Chemical Analysis. Fourth ed.; 2009. 
28. Jomova, K.; Valko, M., Advances in metal-induced oxidative stress and human disease. 

Toxicol. 2011, 283, 65-87. 
29. Stone, J. R.; Yang, S., Hydrogen peroxide: a signaling messenger. Antioxid.  Redox Signal. 

2006, 8, 243-270. 
30. Prousek, J., Fenton chemistry in biology and medicine. Pure Appl. Chem. 2007, 79, 2325-

2338. 
31. Bertini, I.; Gray, H. B.; Stiefel , E. I.; Valentine, J. S., Biological Inorganic Chemistry: 

Structure and Reactivity. University Science Books: Sausalito, CA, 2007. 
32. Domaille, D. W.; Que, E. L.; Chang, C. J., Synthetic fluorescent sensors for studying the 

cell biology of metals. Nat. Chem. Biol. 2008, 4, 168-175. 
33. Thibon, A.; Pierre, V. C., Principles of responsive lanthanide-based luminescent probes for 

cellular imaging. Anal. Bioanal. Chem. 2009, 394, 107-120. 
34. Cacheris, W. P.; Quay, S. C.; Rocklage, S. M., The relationship between thermodynamics 

and the toxicity of gadolinium complexes. Magn. Reson. Imaging 1990, 8, 467-481. 
35. Hermann, P.; Kotek, J.; Kubicek, V.; Lukes, I., Gadolinium(III) complexes as MRI contrast 

agents: Ligand design and properties of the complexes. Dalton Trans. 2008, 3027-3047. 
36. Xu, J.; Franklin, S. J.; Whisenhunt, D. W.; Raymond, K. N., Gadolinium complex of tris[(3-

hydroxy-1-methyl- 2-oxo-1,2-didehydropyridine-4-carboxamido)ethyl]-amine: A new class 
of gadolinium magnetic resonance relaxation agents. J. Am. Chem. Soc. 1995, 117, 7245-
7246. 

37. Tweedle, M. F.; Hagan, J. J.; Kumar, K.; Mantha, S.; Chang, C. A., Reaction of gadolinium 
chelates with endogenously available ions. Magn. Reson. Imaging 1991, 9, 409-415. 

38. Di Gregorio, E.; Gianolio, E.; Stefania, R.; Barutello, G.; Digilio, G.; Aime, S., On the fate of 
MRI Gd-based contrast agents in cells. Evidence for extensive degradation of linear 
complexes upon endosomal internalization. Anal. Chem. 2013, 85, 5627-5631. 



References 

131 

 

39. Kielar, F.; Montgomery, C. P.; New, E. J.; Parker, D.; Poole, R. A.; Richardson, S. L.; 
Stenson, P. A., A mechanistic study of the dynamic quenching of the excited state of 
europium(iii) and terbium(iii) macrocyclic complexes by charge- or electron transfer. Org. 
Biomol. Chem. 2007, 5, 2975-2982. 

40. Poole, R. A.; Montgomery, C. P.; New, E. J.; Congreve, A.; Parker, D.; Botta, M., 
Identification of emissive lanthanide complexes suitable for cellular imaging that resist 
quenching by endogenous anti-oxidants. Org. Biomol. Chem. 2007, 5, 2055-2062. 

41. Kielar, F.; Law, G.-L.; New, E. J.; Parker, D., The nature of the sensitiser substituent 
determines quenching sensitivity and protein affinity and influences the design of emissive 
lanthanide complexes as optical probes for intracellular use. Org. Biomol. Chem. 2008, 6, 
2256-2258. 

42. Dickins, R. S.; Aime, S.; Batsanov, A. S.; Beeby, A.; Botta, M.; Bruce, J. I.; Howard, J. A. 
K.; Love, C. S.; Parker, D.; Peacock, R. D.; Puschmann, H., Structural, luminescence, and 
NMR studies of the reversible binding of acetate, lactate, citrate, and selected amino acids 
to chiral diaqua ytterbium, gadolinium, and europium complexes. J. Am. Chem. Soc. 2002, 
124, 12697-12705. 

43. Botta, M.; Aime, S.; Barge, A.; Bobba, G.; Dickins, R. S.; Parker, D.; Terreno, E., Ternary 
complexes between cationic Gd(III) chelates and anionic metabolites in aqueous solution: 
An NMR relaxometric study. Chem. Eur. J. 2003, 9, 2102-2109. 

44. Bruce, J. I.; Dickins, R. S.; Govenlock, L. J.; Gunnlaugsson, T.; Lopinski, S.; Lowe, M. P.; 
Parker, D.; Peacock, R. D.; Perry, J. J. B.; Aime, S.; Botta, M., The selectivity of reversible 
oxy-anion binding in aqueous solution at a chiral europium and terbium center:  Signaling of 
carbonate chelation by changes in the form and circular polarization of luminescence 
emission. J. Am. Chem. Soc. 2000, 122, 9674-9684. 

45. Que, E. L.; Chang, C. J., A smart magnetic resonance contrast agent for selective copper 
sensing. J. Am. Chem. Soc. 2006, 128, 15942-15943. 

46. Major, J. L.; Parigi, G.; Luchinat, C.; Meade, T. J., The synthesis and in vitro testing of a 
zinc-activated MRI contrast agent. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 13881-13886. 

47. Hyman, L. M.; Franz, K. J., Probing oxidative stress: Small molecule fluorescent sensors of 
metal ions, reactive oxygen species, and thiols. Coord. Chem. Rev. 2012, 256, 2333-2356. 

48. Puckett, C. A.; Ernst, R. J.; Barton, J. K., Exploring the cellular accumulation of metal 
complexes. Dalton Trans. 2010, 39, 1159-1170. 

49. Puckett, C. A.; Barton, J. K., Methods to explore cellular uptake of ruthenium complexes. J. 
Am. Chem. Soc. 2007, 129, 46-47. 

50. Weidmann, A. G.; Komor, A. C.; Barton, J. K., Biological effects of simple changes in 
functionality on rhodium metalloinsertors. Phil. Trans. R. Soc. A 2013, 371, 20120117-
20120117. 

51. Chauvin, A.-S.; Thomas, F.; Song, B.; Vandevyver, C. D. B.; Bunzli, J.-C. G., Synthesis 
and cell localization of self-assembled dinuclear lanthanide bioprobes. Phil. Trans. R. Soc. 
A 2013, 371, 20120295-20120295. 

52. New, E. J.; Congreve, A.; Parker, D., Definition of the uptake mechanism and sub-cellular 
localisation profile of emissive lanthanide complexes as cellular optical probes. Chem. Sci. 
2010, 1, 111-118. 

53. New, E. J.; Parker, D., The mechanism of cell uptake for luminescent lanthanide optical 
probes: the role of macropinocytosis and the effect of enhanced membrane permeability on 
compartmentalisation. Org. Biomol. Chem. 2009, 7, 851-855. 

54. Murray, B. S.; New, E. J.; Pal, R.; Parker, D., Critical evaluation of five emissive 
europium(iii) complexes as optical probes: Correlation of cytotoxicity, anion and protein 
affinity with complex structure, stability and intracellular localisation profile. Org. Biomol. 
Chem. 2008, 6, 2085-2094. 



References 

132 

 

55. Park, G. Y.; Wilson, J. J.; Song, Y.; Lippard, S. J., Phenanthriplatin, a monofunctional DNA-
binding platinum anticancer drug candidate with unusual potency and cellular activity 
profile. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 11987-11992. 

56. Dosio, F.; Stella, B.; Ferrero, A.; Garino, C.; Zonari, D.; Arpicco, S.; Cattel, L.; Giordano, S.; 
Gobetto, R., Ruthenium polypyridyl squalene derivative: A novel self-assembling lipophilic 
probe for cellular imaging. Int. J. Pharm. 2013, 440, 221-228. 

57. Darghal, N.; Garnier-Suillerot, A.; Bouchemal, N.; Gras, G.; Geraldes, C. F. G. C.; Salerno, 
M., Accumulation of Eu3+ chelates in cells expressing or not P-glycoprotein: Implications for 
blood-brain barrier crossing. J. Inorg. Biochem. 2010, 104, 47-54. 

58. Koide, Y.; Kawaguchi, M.; Urano, Y.; Hanaoka, K.; Komatsu, T.; Abo, M.; Teraia, T.; 
Nagano, T., A reversible near-infrared fluorescence probe for reactive oxygen species 
based on Te-rhodamine. Chem. Commun. 2012, 48, 3091-3093. 

59. Miller, E. W.; Bian, S. X.; Chang, C. J., A fluorescent sensor for imaging reversible redox 
cycles in living cells. J. Am. Chem. Soc. 2007, 129, 3458-3459. 

60. Liu, F.; Wu, T.; Cao, J.; Zhang, H.; Hu, M.; Sun, S.; Song, F.; Fan, J.; Wang, J.; Peng, X., A 
novel fluorescent sensor for detection of highly reactive oxygen species, and for imaging 
such endogenous hROS in the mitochondria of living cells. Analyst 2013, 138, 775-778. 

61. Manjare, S. T.; Kim, S.; Do Heo, W.; Churchill, D. G., Selective and sensitive superoxide 
detection with a new diselenide-based molecular probe in living breast cancer cells. Org. 
Lett. 2014, 16, 410-412. 

62. Lou, Z.; Li, P.; Pan, Q.; Han, K., A reversible fluorescent probe for detecting hypochloric 
acid in living cells and animals: utilizing a novel strategy for effectively modulating the 
fluorescence of selenide and selenoxide. Chem. Commun. 2013, 49, 2445-2447. 

63. Wang, B.; Li, P.; Yu, F.; Song, P.; Sun, X.; Yang, S.; Lou, Z.; Han, K., A reversible 
fluorescence probe based on Se-BODIPY for the redox cycle between HClO oxidative 
stress and H2S repair in living cells. Chem. Commun. 2013, 49, 1014-1016. 

64. Yu, F.; Li, P.; Li, G.; Zhao, G.; Chu, T.; Han, K., A near-IR reversible fluorescent probe 
modulated by selenium for monitoring peroxynitrite and imaging in living cells. J. Am. 
Chem. Soc. 2011, 133, 11030-11033. 

65. Hilderbrand, S. A.; Lim, M. H.; Lippard, S. J., Dirhodium tetracarboxylate scaffolds as 
reversible fluorescence-based nitric oxide sensors. J. Am. Chem. Soc. 2004, 126, 4972-
4978. 

66. Koide, Y.; Urano, Y.; Kenmoku, S.; Kojima, H.; Nagano, T., Design and synthesis of 
fluorescent probes for selective detection of highly reactive oxygen species in mitochondria 
of living cells. J. Am. Chem. Soc. 2007, 129, 10324-10325. 

67. Dickinson, B. C.; Lin, V. S.; Chang, C. J., Preparation and use of MitoPY1 for imaging 
hydrogen peroxide in mitochondria of live cells. Nat. Protoc. 2013, 8, 1249-1259. 

68. Li, P.; Zhang, W.; Li, K.; Liu, X.; Xiao, H.; Zhang, W.; Tang, B., Mitochondria-targeted 
reaction-based two-photon fluorescent probe for imaging of superoxide anion in live cells 
and in vivo. Anal. Chem. 2013, 85, 9877-9881. 

69. Yu, H.; Zhang, X.; Xiao, Y.; Zou, W.; Wang, L.; Jin, L., Targetable fluorescent probe for 
monitoring exogenous and endogenous NO in mitochondria of living cells. Anal. Chem. 
2013, 85, 7076-7084. 

70. Song, D.; Lim, J. M.; Cho, S.; Park, S.-J.; Cho, J.; Kang, D.; Rhee, S. G.; You, Y.; Nam, 
W., A fluorescence turn-on H2O2 probe exhibits lysosome-localized fluorescence signals. 
Chem. Commun. 2012, 48, 5449-5451. 

71. Tang, B.; Zhang, N.; Chen, Z.; Xu, K.; Zhuo, L.; An, L.; Yang, G., Probing hydroxyl radicals 
and their imaging in living cells by ue of FAM–DNA–Au nanoparticles. Chem. Eur. J. 2008, 
14, 522-528. 

72. Ganea, G. M.; Kolic, P. E.; El-Zahab, B.; Warner, I. M., Ratiometric coumarin-neutral red 
(CONER) nanoprobe for detection of hydroxyl radicals. Anal. Chem. 2011, 83, 2576-2581. 



References 

133 

 

73. Zhuang, M.; Ding, C.; Zhu, A.; Tian, Y., Ratiometric fluorescence probe for monitoring 
hydroxyl radical in live cells based on gold nanoclusters. Anal. Chem. 2014, 86, 1829-
1836. 

74. Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New strategies for 
fluorescent probe design in medical diagnostic imaging. Chem. Rev. 2009, 110, 2620-
2640. 

75. Lenz, P., Fluorescence measurement in thick tissue layers by linear or nonlinear long-
wavelength excitation. Appl. Opt. 1999, 38, 3662-3669. 

76. Chen, X.; Tian, X.; Shin, I.; Yoon, J., Fluorescent and luminescent probes for detection of 
reactive oxygen and nitrogen species. Chem. Soc. Rev. 2011, 40, 4783-4804. 

77. Kundu, K.; Knight, S. F.; Willett, N.; Lee, S.; Taylor, W. R.; Murthy, N., Hydrocyanines: A 
class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, 
and in vivo. Angew. Chem., Int. Ed. Engl. 2009, 48, 299-303. 

78. Oushiki, D.; Kojima, H.; Terai, T.; Arita, M.; Hanaoka, K.; Urano, Y.; Nagano, T., 
Development and application of a near-infrared fluorescence probe for oxidative stress 
based on differential reactivity of linked cyanine dyes. J. Am. Chem. Soc. 2010, 132, 2795-
2801. 

79. Yuan, L.; Lin, W.; Song, J., Ratiometric fluorescent detection of intracellular hydroxyl 
radicals based on a hybrid coumarin-cyanine platform. Chem. Commun. 2010, 46, 7930-
7932. 

80. Herrmann, H.; Hoffmann, D.; Schaefer, T.; Braeuer, P.; Tilgner, A., Tropospheric aqueous-
phase free-radical chemistry: Radical sources, spectra, reaction kinetics and prediction 
tools. Chem. Phys. Chem. 2010, 11, 3796-3822. 

81. Page, S. E.; Wilke, K. T.; Pierre, V. C., Sensitive and selective time-gated luminescence 
detection of hydroxyl radical in water. Chem. Commun. 2010, 46, 2423-2425. 

82. Cui, G.; Ye, Z.; Chen, J.; Wang, G.; Yuan, J., Development of a novel terbium(III) chelate-
based luminescent probe for highly sensitive time-resolved luminescence detection of 
hydroxyl radical. Talanta 2011, 84, 971-976. 

83. Xiao, Y.; Ye, Z.; Wang, G.; Yuan, J., A ratiometric luminescence probe for highly reactive 
oxygen species based on lanthanide complexes. Inorg. Chem. 2012, 51, 2940-2946. 

84. Galvao, J.; Davis, B.; Tilley, M.; Normando, E.; Duchen, M. R.; Cordeiro, M. F., 
Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J 2014, 28, 1317-
1330. 

85. Maki, T.; Soh, N.; Fukaminato, T.; Nakajima, H.; Nakano, K.; Imato, T., Perylenebisimide-
linked nitroxide for the detection of hydroxyl radicals. Anal. Chim. Acta 2009, 639, 78-82. 

86. Pou, S.; Huang, Y. I.; Bhan, A.; Bhadti, V. S.; Hosmane, R. S.; Wu, S. Y.; Cao, G. L.; 
Rosen, G. M., A fluorophore-containing nitroxide as a probe to detect superoxide and 
hydroxylradical generated by stimulated neutrophils. Anal. Biochem. 1993, 212, 85-90. 

87. Yang, X. F.; Guo, X. Q., Investigation of the anthracene-nitroxide hybrid molecule as a 
probe for hydroxyl radicals. Analyst 2001, 126, 1800-1804. 

88. Yang, X. F.; Guo, X. Q., Study of nitroxide-linked naphthalene as a fluorescence probe for 
hydroxyl radicals. Anal. Chim. Acta 2001, 434, 169-177. 

89. Bian, Z. Y.; Guo, X. Q.; Zhao, Y. B.; Du, J. O., Probing the hydroxyl radical-mediated 
reactivity of peroxynitrite by a spin-labeling fluorophore. Anal. Sci. 2005, 21, 553-559. 

90. Yapici, N. B.; Jockusch, S.; Moscatelli, A.; Mandalapu, S. R.; Itagaki, Y.; Bates, D. K.; 
Wiseman, S.; Gibson, K. M.; Turro, N. J.; Bi, L. R., New rhodamine nitroxide based 
fluorescent probes for intracellular hydroxyl radical identification in living cells. Org. Lett. 
2012, 14, 50-53. 

91. Li, P.; Xie, T.; Duan, X.; Yu, F.; Wang, X.; Tang, B., A new highly selective and sensitive 
assay for fluorescence imaging of hydroxyl radical in living cells: Effectively avoiding the 
interference of peroxynitrite. Chem. Eur. J. 2010, 16, 1834-1840. 



References 

134 

 

92. Hong, J.; Zhuang, Y.; Ji, X.; Guo, X., A long-lived luminescence and EPR bimodal 
lanthanide-based probe for free radicals. Analyst 2011, 136, 2464-2470. 

93. Manevich, Y.; Held, K. D.; Biaglow, J. E., Coumarin-3-carboxylic acid as a detector for 
hydroxyl radicals generated chemically and by gamma radiation. Radiat. Res. 1997, 148, 
580-591. 

94. Makrigiorgos, G. M.; Folkard, M.; Huang, C.; Bump, E.; Baranowska-Kortylewicz, J.; Sahu, 
S. K.; Michael, B. D.; Kassis, A. I., Quantification of radiation-induced hydroxyl radicals 
within nucleohistones using a molecular fluorescent probe. Radiat. Res. 1994, 138, 177-
185. 

95. Makrigiorgos, G. M.; Bump, E.; Huang, C.; Baranowska-Kortylewicz, J.; Kassis, A. I., A 
fluorimetric method for the detection of copper-mediated hydroxyl free radicals in the 
immediate proximity of DNA. Free Radic. Biol. Med. 1995, 18, 669-678. 

96. Perry, C. C.; Tang, V. J.; Konigsfeld, K. M.; Aguilera, J. A.; Milligan, J. R., Use of a 
coumarin-labeled hexa-arginine peptide as a fluorescent hydroxyl radical probe in a 
nanoparticulate plasmid DNA condensate. J. Phys. Chem. B 2011, 115, 9889-9897. 

97. Soh, N.; Makihara, K.; Ariyoshi, T.; Seto, D.; Maki, T.; Nakajima, H.; Nakano, K.; Imato, T., 
Phospholipid-linked coumarin: a fluorescent probe for sensing hydroxyl radicals in lipid 
membranes. Anal. Sci. 2008, 24, 293-296. 

98. Meng, L.; Wu, Y.; Yi, T., A ratiometric fluorescent probe for the detection of hydroxyl 
radicals in living cells. Chem. Commun. 2014. 

99. Liu, M.; Liu, S. M.; Peterson, S. L.; Miyake, M.; Liu, K. J., On the application of 4-
hydroxybenzoic acid as a trapping agent to study hydroxyl radical generation during 
cerebral ischemia and reperfusion. Mol. Cell. Biochem. 2002, 234, 379-385. 

100. Linxiang, L.; Abe, Y.; Nagasawa, Y.; Kudo, R.; Usui, N.; Imai, K.; Mashino, T.; Mochizuki, 
M.; Miyata, N., An HPLC assay of hydroxyl radicals by the hydroxylation reaction of 
terephthalic acid. Biomed. Chromatogr. 2004, 18, 470-474. 

101. Newton, G. L.; Milligan, J. R., Fluorescence detection of hydroxyl radicals. Radiat. Phys. 
Chem. 2006, 75, 473-478. 

102. Saran, M.; Summer, K. H., Assaying for hydroxyl radicals: Hydroxylated terephthalate is a 
superior fluorescence marker than hydroxylated benzoate. Free Radic. Res. 1999, 31, 429-
436. 

103. Page, S. E.; Arnold, W. A.; McNeill, K., Terephthalate as a probe for photochemically 
generated hydroxyl radical. J. Environ. Monit. 2010, 12, 1658-1665. 

104. Barreto, J. C.; Smith, G. S.; Strobel, N. H. P.; McQuillin, P. A.; Miller, T. A., Terephthalic 
acid: A dosimeter for the detection of hydroxyl radicals in vitro. Life Sci 1994, 56, PL89-
PL96. 

105. Yan, E. B.; Unthank, J. K.; Castillo-Melendez, M.; Miller, S. L.; Langford, S. J.; Walker, D. 
W., Novel method for in vivo hydroxyl radical measurement by microdialysis in fetal sheep 
brain in utero. J. Appl. Physiol. 2005, 98, 2304-2310. 

106. Mishin, V. M.; Thomas, P. E., Characterization of hydroxyl radical formation by microsomal 
enzymes using a water-soluble trap, terephthalate. Biochem. Pharmacol. 2004, 68, 747-
752. 

107. Qu, X. H.; Kirschenbaum, L. J.; Borish, E. T., Hydroxyterephthalate as a fluorescent probe 
for hydroxyl radicals: Application to hair melanin. Photochem. Photobiol. 2000, 71, 307-
313. 

108. Lippert, A. R.; Keshari, K. R.; Kurhanewicz, J.; Chang, C. J., A hydrogen peroxide-
responsive hyperpolarized 13C MRI contrast agent. J. Am. Chem. Soc. 2011, 133, 3776-
3779. 

109. Liu, M.; Ye, Z.; Wang, G.; Yuan, J., Development of a novel europium(III) complex-based 
luminescence probe for time-resolved luminescence imaging of the nitric oxide production 
in neuron cells. Talanta 2012, 99, 951-958. 



References 

135 

 

110. Aime, S.; Calzoni, S.; Digilio, G.; Giraudo, S.; Fasano, M.; Maffeo, D., A novel F-19-NMR 
method for the investigation of the antioxidant capacity of biomolecules and biofluids. Free 
Radic. Biol. Med. 1999, 27, 356-363. 

111. Bunzli, J. C. G.; Piguet, C., Taking advantage of luminescent lanthanide ions. Chem. Soc. 
Rev. 2005, 34, 1048-1077. 

112. Thibon, A.; Pierre, V. C., A highly selective luminescent sensor for the time-gated detection 
of potassium. J. Am. Chem. Soc. 2009, 131, 434-435. 

113. Hanaoka, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T., Development of a zinc ion-
selective luminescent lanthanide chemosensor for biological applications. J. Am. Chem. 
Soc. 2004, 126, 12470-12476. 

114. Gunnlaugsson, T.; Harte, A. J.; Leonard, J. P.; Nieuwenhuyzen, M., The formation of 
luminescent supramolecular ternary complexes in water: Delayed luminescence sensing of 
aromatic carboxylates using coordinated unsaturated cationic heptadentate lanthanide ion 
complexes. Supramol. Chem. 2003, 15, 505-519. 

115. Law, G.-L.; Pham, T. A.; Xu, J.; Raymond, K. N., A single sensitizer for the excitation of 
visible and NIR lanthanide emitters in water with high quantum yields. Angew. Chem., Int. 
Ed. 2012, 51, 2371-2374. 

116. Kotova, O.; Comby, S.; Gunnlaugsson, T., Sensing of biologically relevant d-metal ions 
using a Eu(III)-cyclen based luminescent displacement assay in aqueous pH 7.4 buffered 
solution. Chem. Commun. 2011, 47, 6810-6812. 

117. Horrocks, W. D.; Sudnick, D. R., Lanthanide ion luminescence probes of the structure of 
biological macromolecules. Acc. Chem. Res. 1981, 14, 384-392. 

118. Samuel, A. P. S.; Moore, E. G.; Melchior, M.; Xu, J.; Raymond, K. N., Water-soluble 2-
hydroxyisophthalamides for sensitization of lanthanide luminescence. Inorg. Chem. 2008, 
47, 7535-7544. 

119. Gunnlaugsson, T.; Harte, A. J.; Leonard, J. P.; Nieuwenhuyzen, M., Delayed lanthanide 
luminescence sensing of aromatic carboxylates using heptadentate triamide Tb(III) cyclen 
complexes: the recognition of salicylic acid in water. Chem. Commun. 2002, 2134-2135. 

120. Soh, N.; Makihara, K.; Sakoda, E.; Imato, T., A ratiometric fluorescent probe for imaging 
hydroxyl radicals in living cells. Chem. Commun. 2004, 496-497. 

121. Kim, Y.-S.; Yang, C.-T.; Wang, J.; Wang, L.; Li, Z.-B.; Chen, X.; Liu, S., Effects of targeting 
moiety, linker, bifunctional chelator, and molecular charge on biological properties of 64Cu-
labeled triphenylphosphonium cations. J. Med. Chem. 2008, 51, 2971-2984. 

122. Zhu, J.; Wang, X.-Z.; Chen, Y.-Q.; Jiang, X.-K.; Chen, X.-Z.; Li, Z.-T., Hydrogen-bonding-
induced planar, rigid, and zigzag oligoanthranilamides. Synthesis, characterization, and 
self-assembly of a metallocyclophane. J. Org. Chem. 2004, 69, 6221-6227. 

123. Adams, H.; Hunter, C. A.; Lawson, K. R.; Perkins, J.; Spey, S. E.; Urch, C. J.; Sanderson, 
J. M., A supramolecular system for quantifying aromatic stacking interactions. Chem. Eur. 
J. 2001, 7, 4863-4877. 

124. Pecoraro, V. L.; Weit, F. L.; Raymond, K. N., Ferric ion-specific sequestering agents. 
Synthesis, iron-exchange kinetics, and stability constants of N-substituted, sulfonated 
catechoylamide analogs of enterobactin. J. Am. Chem. Soc. 1981, 103, 5133-5140. 

125. Weitz, E. A.; Pierre, V. C., A ratiometric probe for the selective time-gated luminescence 
detection of potassium in water. Chem. Commun. 2011, 47, 541-543. 

126. Beeby, A.; M. Clarkson, I.; S. Dickins, R.; Faulkner, S.; Parker, D.; Royle, L.; S. de Sousa, 
A.; A. Gareth Williams, J.; Woods, M., Non-radiative deactivation of the excited states of 
europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and 
CH oscillators: an improved luminescence method for establishing solution hydration 
states. J.  Chem. Soc., Perkin Trans. 2 1999, 0, 493-504. 



References 

136 

 

127. Ghosh, P.; Federwisch, G.; Kogej, M.; Schalley, C. A.; Haase, D.; Saak, W.; Lutzen, A.; 
Gschwind, R. M., Controlling the rate of shuttling motions in [2]rotaxanes by electrostatic 
interactions: a cation as solvent-tunable brake. Org. Biomol. Chem. 2005, 3, 2691-2700. 

128. Ay, E.; Chaumeil, H.; Barsella, A., Syntheses of four new pyridinium phenolates with caged 
phenolate functionalities as chromophores for quadratic optics. Tetrahedron 2012, 68, 628-
635. 

129. Winston, G. W.; Harvey, W.; Berl, L.; Cederbaum, A. I., The generation of hydroxyl and 
alkoxyl radicals from the interaction of ferrous bipyridyl with peroxides. Biochem. J. 1983, 
216, 415-421. 

130. Hu, L.; Hockett, F. D.; Chen, J.; Zhang, L.; Caruthers, S. D.; Lanza, G. M.; Wickline, S. A., 
A generalized strategy for designing F-19/H-1 dual-frequency MRI coil for small animal 
imaging at 4.7 tesla. J. Magn. Reson. Imaging 2011, 34, 245-252. 

131. Harvey, P.; Kuprov, I.; Parker, D., Lanthanide complexes as paramagnetic probes for 19F 
magnetic resonance. Eur. J. Inorg. Chem. 2012, 2015-2022. 

132. Yu, J.-X.; Hallac, R. R.; Chiguru, S.; Mason, R. P., New frontiers and developing 
applications in F-19 NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 70, 25-49. 

133. Yu, J. X.; Kodibagkar, V. D.; Cui, W. N.; Mason, R. P., F-19: A versatile reporter for non-
invasive physiology and pharmacology using magnetic resonance. Curr. Med. Chem. 2005, 
12, 819-848. 

134. Li, L. X.; Abe, Y.; Nagasawa, Y.; Kudo, R.; Usui, N.; Imai, K.; Mashino, T.; Mochizuki, M.; 
Miyata, N., An HPLC assay of hydroxyl radicals by the hydroxylation reaction of 
terephthalic acid. Biomed. Chromatogr. 2004, 18, 470-474. 

135. Eberhardt, M. K.; Ramirez, G.; Ayala, E., Does the reaction of copper(I) with hydrogen 
peroxide give hydroxyl radicals? A study of aromatic hydroxylation. J. Org. Chem. 1989, 
54, 5922-5926. 

136. Jadan, A. P.; Moonen, M. J. H.; Boeren, S.; Golovleva, L. A.; Rietjens, I.; van Berkel, W. J. 
H., Biocatalytic potential of p-hydroxybenzoate hydroxylase from Rhodococcus rhodnii 135 
and Rhodococcus opacus 557. Adv. Synth. Catal. 2004, 346, 367-375. 

137. Molander, G. A.; Cavalcanti, L. N., Oxidation of organotrifluoroborates via oxone. J. Org. 
Chem. 2011, 76, 623-630. 

138. Moonen, M. J. H.; Rietjens, I.; van Berkel, W. J. H., F-19 NMR study on the biological 
Baeyer-Villiger oxidation of acetophenones. J. Ind. Microbiol. Biotechnol. 2001, 26, 35-42. 

139. Xu, R.; Hong, J.; Morse, C. L.; Pike, V. W., Synthesis, structure-affinity relationships, and 
radiolabeling of selective high-affinity 5-HT4 receptor ligands as prospective imaging 
probes for positron emission tomography. J. Med. Chem. 2010, 53, 7035-7047. 

140. Aime, S.; Digilio, G.; Bruno, E.; Mainero, V.; Baroni, S.; Fasano, M., Modulation of the 
antioxidant activity of HO center dot scavengers by albumin binding: a F-19-NMR study. 
Biochem. Biophys. Res. Commun. 2003, 307, 962-966. 

141. Chalmers, K. H.; De Luca, E.; Hogg, N. H. M.; Kenwright, A. M.; Kuprov, I.; Parker, D.; 
Botta, M.; Wilson, J. I.; Blamire, A. M., Design principles and theory of paramagnetic 
fluorine-labelled lanthanide complexes as probes for F-19 magnetic resonance: A proof-of-
concept study. Chem. Eur. J. 2010, 16, 134-148. 

142. Bertini, I.; Turano, P.; Vila, A. J., Nuclear magnetic resonance of paramagnetic 
metalloproteins Chem. Rev. 1993, 93, 2833-2932. 

143. Bertini, I.; Capozzi, F.; Luchinat, C.; Nicastro, G.; Xia, Z. C., Water proton relazation for 
some lanthanide aqua ions in solution. J. Phys. Chem. 1993, 97, 6351-6354. 

144. Peters, J. A.; Huskens, J.; Raber, D. J., Lanthanide induced shifts and relaxation rate 
enhancements. Prog. Nucl. Magn. Reson. Spectrosc. 1996, 28, 283-350. 

145. Gysling, H.; Tsutsui, M., Organolanthanides and Organoactinides. In Adv. Organomet. 
Chem., Stone, F. G. A.; Robert, W., Eds. Academic Press: 1971; Vol. Volume 9, pp 361-
395. 



References 

137 

 

146. Bleaney, B., Nuclear magnetic resonance shifts in solution due to lanthanide ions. J. Magn. 
Resonance 1972, 8, 91-100. 

147. Bertini, I.; Luchinat, C.; Parigi, G., Magnetic susceptibility in paramagnetic NMR. Prog. 
Nucl. Magn. Reson. Spectrosc. 2002, 40, 249-273. 

148. Alsaadi, B. M.; Rossotti, F. J. C.; Williams, R. J. P., Hydration of complexone complexes of 
lanthanide cations. Dalton Trans. 1980, 2151-2154. 

149. Allegrozzi, M.; Bertini, I.; Janik, M. B. L.; Lee, Y. M.; Lin, G. H.; Luchinat, C., Lanthanide-
induced pseudocontact shifts for solution structure refinements of macromolecules in shells 
up to 40 angstrom from the metal ion. J. Am. Chem. Soc. 2000, 122, 4154-4161. 

150. Chalmers, K. H.; Kenwright, A. M.; Parker, D.; Blamire, A. M., 19F lanthanide complexes 
with increased sensitivity for 19F MRI: Optimization of the MR acquisition. Magn. Reson. 
Med. 2011, 66, 931-936. 

151. Chalmers, K. H.; Botta, M.; Parker, D., Strategies to enhance signal intensity with 
paramagnetic fluorine-labelled lanthanide complexes as probes for F-19 magnetic 
resonance. Dalton Trans. 2011, 40, 904-913. 

152. Weitz, E. A. M., M.; Peterson, K.L.; Pierre, V.C., Fe- and Ln-DOTAm-F12 are effective 
paramagnetic fluorine contrast agents for MRI in water and blood. Manuscript in 
preparation. 

153. Dorai, K.; Kumar, A., Fluorine chemical shift tensors in substituted fluorobenzenes using 
cross correlations in NMR relaxation. Chem. Phys. Lett. 2001, 335, 176-182. 

154. Deutsch, C. J.; Taylor, J. S., New class of 19F pH indicators: Fluoroanilines   Biophys. J. 
1989, 55, 799-804. 

155. Jiraroj, D.; Unob, F.; Hagege, A., Degradation of Pb-EDTA complex by a H2O2/UV process. 
Water Res. 2006, 40, 107-112. 

156. Cullen, T. D.; Mezyk, S. P.; Martin, L. R.; Mincher, B. J., Elucidating the radical kinetics 
involved in the radiolytic destruction of lanthanide-complexed DTPA. J. Radioanal. Nucl. 
Chem. 2013, 296, 717-720. 

157. Criscione, J. M.; Le, B. L.; Stern, E.; Brennan, M.; Rahner, C.; Papademetris, X.; Fahmy, T. 
M., Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug 
delivery and noninvasive imaging. Biomaterials 2009, 30, 3946-3955. 

158. De Luca, E.; Harvey, P.; Chalmers, K.; Mishra, A.; Senanayake, P. K.; Wilson, J. I.; Botta, 
M.; Fekete, M.; Blamire, A.; Parker, D., Characterisation and evaluation of paramagnetic 
fluorine labelled glycol chitosan conjugates for 19F and 1H magnetic resonance imaging. J. 
Biol. Inorg. Chem. 2013, 1-13. 

159. Jiang, Z.-X.; Liu, X.; Jeong, E.-K.; Yu, Y. B., Symmetry-guided design and fluorous 
synthesis of a stable and rapidly excreted imaging tracer for 19F MRI. Angew. Chem., Int. 
Ed. Engl. 2009, 48, 4755-4758. 

160. Du, W.; Nystrom, A. M.; Zhang, L.; Powell, K. T.; Li, Y.; Cheng, C.; Wickline, S. A.; Wooley, 
K. L., Amphiphilic hyperbranched fluoropolymers as nanoscopic 19F magnetic resonance 
imaging agent assemblies. Biomacromolecules 2008, 9, 2826-2833. 

161. Thurecht, K. J.; Blakey, I.; Peng, H.; Squires, O.; Hsu, S.; Alexander, C.; Whittaker, A. K., 
Functional hyperbranched polymers: Toward targeted in vivo 19F magnetic resonance 
imaging using designed macromolecules. J. Am. Chem. Soc. 2010, 132, 5336-5337. 

162. Ogawa, M.; Nitahara, S.; Aoki, H.; Ito, S.; Narazaki, M.; Matsuda, T., Synthesis and 
evaluation of water-soluble fluorinated dendritic block-copolymer nanoparticles as a F-19-
MRI contrast agent. Macromol. Chem. Phys. 2010, 211, 1602-1609. 

163. Peng, H.; Blakey, I.; Dargaville, B.; Rasoul, F.; Rose, S.; Whittaker, A. K., Synthesis and 
evaluation of partly fluorinated block copolymers as MRI imaging agents. Biomacromol. 
2009, 10, 374-381. 



References 

138 

 

164. Ogawa, M.; Nitahara, S.; Aoki, H.; Ito, S.; Narazaki, M.; Matsuda, T., Fluorinated polymer 
nanoparticles as a novel F-19 MRI contrast agent prepared by dendrimer-initiated living 
radical polymerization. Macromol. Chem. Phys. 2010, 211, 1369-1376. 

165. Zhu, Q.; Qiu, F.; Zhu, B.; Zhu, X., Hyperbranched polymers for bioimaging. RSC Adv. 
2013, 3, 2071-2083. 

166. Yu, Y. B., Fluorinated dendrimers as imaging agents for F-19 MRI. Nanomed. 
Nanobiotech. 2013, 5, 646-661. 

167. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; 
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, 
X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; 
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; 
Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; 
Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; 
Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, 
M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; 
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; 
Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; 
Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; 
Ortiz, J. V.; Cioslowski, J.; Fox, D. J. , Gaussian 09, Revision D.01. Gaussian, Inc.: 
Wallingford CT, 2009. 

168. Dolg, M.; Stoll, H.; Preuss, H., A combination of quasirelativistic pseudopotential and ligand 
field calculations for lanthanoid compounds. Theor. Chim. Acta 1993, 85, 441-450. 

169. Dolg, M.; Stoll, H.; Savin, A.; Preuss, H., Energy-adjusted pseudopotentials for the rare 
earth elements. Theor. Chim. Acta 1989, 75, 173-194. 

170. Platas-Iglesias, C., The solution dtructure and dynamics of MRI probes based on 
lanthanide(III) DOTA as investigated by DFT and NMR spectroscopy. Eur. J. Inorg. Chem. 
2012, 2012, 2023-2033. 

171. Coogan, M. P.; Fernandez-Moreira, V., Progress with, and prospects for, metal complexes 
in cell imaging. Chem. Commun. 2014, 50, 384-399. 

172. Kobayashi, H.; Longmire, M. R.; Ogawa, M.; Choyke, P. L., Rational chemical design of the 
next generation of molecular imaging probes based on physics and biology: mixing 
modalities, colors and signals. Chem. Soc. Rev. 2011, 40, 4626-4648. 

173. Lo, K. K.-W.; Choi, A. W.-T.; Law, W. H.-T., Applications of luminescent inorganic and 
organometallic transition metal complexes as biomolecular and cellular probes. Dalton 
Trans. 2012, 41, 6021-6047. 

174. Baggaley, E.; Weinstein, J. A.; Williams, J. A. G., Lighting the way to see inside the live cell 
with luminescent transition metal complexes. Coord. Chem. Rev. 2012, 256, 1762-1785. 

175. Lippert, A. R.; Gschneidtner, T.; Chang, C. J., Lanthanide-based luminescent probes for 
selective time-gated detection of hydrogen peroxide in water and in living cells. Chem. 
Commun. 2010, 46, 7510-7512. 

176. Peterson, K. L.; Margherio, M. J.; Doan, P.; Wilke, K. T.; Pierre, V. C., Basis for sensitive 
and selective time-delayed luminescence detection of hydroxyl radical by lanthanide 
complexes. Inorg. Chem. 2013, 52, 9390-9398. 

177. Comby, S.; Tuck, S. A.; Truman, L. K.; Kotova, O.; Gunnlaugsson, T., New trick for an old 
ligand! The sensing of Zn(II) using a lanthanide based ternary Yb(III)-cyclen-8-
hydroxyquinoline system as a dual emissive probe for displacement assay. Inorg. Chem. 
2012, 51, 10158-10168. 

178. Moore, J. D.; Lord, R. L.; Cisneros, G. A.; Allen, M. J., Concentration-independent pH 
detection with a luminescent dimetallic Eu(III)-based probe. J. Am. Chem. Soc. 2012, 134, 
17372-17375. 



References 

139 

 

179. McMahon, B. K.; Pal, R.; Parker, D., A bright and responsive europium probe for 
determination of pH change within the endoplasmic reticulum of living cells. Chem. 
Commun. 2013, 49, 5363-5365. 

180. Weitz, E. A.; Chang, J. Y.; Rosenfield, A. H.; Pierre, V. C., A selective luminescent probe 
for the direct time-gated detection of adenosine triphosphate. J. Am. Chem. Soc. 2012, 
134, 16099-16102. 

181. Major, J. L.; Meade, T. J., Bioresponsive, cell-penetrating, and multimeric MR contrast 
agents. Acc. Chem. Res. 2009, 42, 893-903. 

182. Vithanarachchi, S. M.; Allen, M. J., Strategies for target-specific contrast agents for 
magnetic resonance imaging. Curr. Mol. Imag. 2012, 1, 12-25. 

183. Song, B.; Vandevyver, C. D.; Chauvin, A. S.; Bunzli, J. C., Time-resolved luminescence 
microscopy of bimetallic lanthanide helicates in living cells. Org. Biomol. Chem. 2008, 6, 
4125-4133. 

184. Parker, D., Critical design factors for optical imaging with metal coordination complexes. 
Aust. J. Chem. 2011, 64, 239-243. 

185. New, E. J.; Parker, D.; Smith, D. G.; Walton, J. W., Development of responsive lanthanide 
probes for cellular applications. Curr. Opin. Chem. Biol. 2010, 14, 238-246. 

186. Weitz, E. A.; Chang, J. Y.; Rosenfield, A. H.; Morrow, E. A.; Pierre, V. C., The basis for the 
molecular recognition and the selective time-gated luminescence detection of ATP and 
GTP by a lanthanide complex. Chem. Sci. 2013, 4, 4052-4060. 

187. Smolensky, E. D.; Peterson, K. L.; Weitz, E. A.; Lewandowski, C.; Pierre, V. C., 
Magnetoluminescent light switches--dual modality in DNA detection. J. Am. Chem. Soc. 
2013, 135, 8966-8972. 

188. Woods, M.; Kiefer, G. E.; Bott, S.; Castillo-Muzquiz, A.; Eshelbrenner, C.; Michaudet, L.; 
McMillan, K.; Mudigunda, S. D. K.; Ogrin, D.; Tircsó, G.; Zhang, S.; Zhao, P.; Sherry, A. D., 
Synthesis, relaxometric and photophysical properties of a new pH-responsive MRI contrast 
agent:  The effect of other ligating groups on dissociation of a p-nitrophenolic pendant arm. 
J. Am. Chem. Soc. 2004, 126, 9248-9256. 

189. Jeon, J. W.; Son, S. J.; Yoo, C. E.; Hong, I. S.; Song, J. B.; Suh, J., Protein-cleaving 
catalyst selective for protein substrate. Org. Lett. 2002, 4, 4155-4158. 

190. Moreau, J.; Guillon, E.; Pierrard, J. C.; Rimbault, J.; Port, M.; Aplincourt, M., Complexing 
mechanism of the lanthanide cations Eu3+, Gd3+, and Tb3+ with 1,4,7,10-
tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (dota)-characterization of three 
successive complexing phases: Study of the thermodynamic and structural properties of 
the complexes by potentiometry, luminescence spectroscopy, and EXAFS. Chemistry 
(Weinheim an der Bergstrasse, Germany) 2004, 10, 5218-5232. 

191. Lattuada, L.; Barge, A.; Cravotto, G.; Giovenzana, G. B.; Tei, L., The synthesis and 
application of polyamino polycarboxylic bifunctional chelating agents. Chem. Soc. Rev. 
2011, 40, 3019-3049. 

192. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. 3rd ed ed.; Springer: Singapore, 
2006. 

193. Parker, D.; Senanayake, P. K.; Williams, J. A. G., Luminescent sensors for pH, pO2, halide 
and hydroxide ions using phenanthridine as a photosensitiser in macrocyclic europium and 
terbium complexes. J. Chem. Soc., Perkin Trans. 2 1998, 2129-2139. 

194. Li, C.; Liu, Y.; Wu, Y.; Sun, Y.; Li, F., The cellular uptake and localization of non-emissive 
iridium(III) complexes as cellular reaction-based luminescence probes. Biomaterials 2013, 
34, 1223-1234. 

195. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T., Quantum 
dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763-775. 

196. Fernandez-Moreira, V.; Thorp-Greenwood, F. L.; Coogan, M. P., Application of d6  transition 
metal complexes in fluorescence cell imaging. Chem. Commun. 2010, 46, 186-202. 



References 

140 

 

197. Puckett, C. A.; Barton, J. K., Mechanism of cellular uptake of a ruthenium polypyridyl 
complex. Biochem. 2008, 47, 11711-11716. 

198. Lo, K. K.-W.; Lee, P.-K.; Lau, J. S.-Y., Synthesis, characterization, and properties of 
luminescent organoiridium(III) polypyridine complexes appended with an alkyl chain and 
their interactions with lipid bilayers, surfactants, and living cells. Organometallics 2008, 27, 
2998-3006. 

199. Walton, J. W.; Bourdolle, A.; Butler, S. J.; Soulie, M.; Delbianco, M.; McMahon, B. K.; Pal, 
R.; Puschmann, H.; Zwier, J. M.; Lamarque, L.; Maury, O.; Andraud, C.; Parker, D., Very 
bright europium complexes that stain cellular mitochondria. Chem. Commun. 2013, 49, 
1600-1602. 

200. Lee, P.-K.; Law, W. H.-T.; Liu, H.-W.; Lo, K. K.-W., Luminescent cyclometalated iridium(III) 
polypyridine di-2-picolylamine complexes: synthesis, photophysics, electrochemistry, cation 
binding, cellular internalization, and cytotoxic activity. Inorg. Chem. 2011, 50, 8570-8579. 

201. Zhao, Q.; Huang, C.; Li, F., Phosphorescent heavy-metal complexes for bioimaging. Chem. 
Soc. Rev. 2011, 40, 2508-2524. 

202. Belitsky, J. M.; Leslie, S. J.; Arora, P. S.; Beerman, T. A.; Dervan, P. B., Cellular uptake of 
N-methylpyrrole/N-methylimidazole polyamide-dye conjugates. Bioorg. Med. Chem. 2002, 
10, 3313-3318. 

203. Stewart, K. M.; Horton, K. L.; Kelley, S. O., Cell-penetrating peptides as delivery vehicles 
for biology and medicine. Org. Biomol. Chem. 2008, 6, 2242-2255. 

204. Gianolio, E.; Stefania, R.; Di Gregorio, E.; Aime, S., MRI paramagnetic probes for cellular 
labeling. Eur. J. Inorg. Chem. 2012, 1934-1944. 

205. Allen, M. J.; MacRenaris, K. W.; Venkatasubramanian, P. N.; Meade, T. J., Cellular 
delivery of MRI contrast agents. Chem. Biol. 2004, 11, 301-307. 

206. Allen, M. J.; Meade, T. J., Synthesis and visualization of a membrane-permeable MRI 
contrast agent. J. Biol. Inorg. Chem. 2003, 8, 746-750. 

207. Endres, P. J.; MacRenaris, K. W.; Vogt, S.; Allen, M. J.; Meade, T. J., Quantitative imaging 
of cell-permeable magnetic resonance contrast agents using x-ray fluorescence. Mol. 
Imag. 2006, 5, 485-497. 

208. Futaki, S.; Goto, S.; Sugiura, Y., Membrane permeability commonly shared among 
arginine-rich peptides. J. Mol. Recognit. 2003, 16, 260-264. 

209. Que, E. L.; New, E. J.; Chang, C. J., A cell-permeable gadolinium contrast agent for 
magnetic resonance imaging of copper in a Menkes disease model. Chem. Sci. 2012, 3, 
1829-1834. 

210. Bhorade, R.; Weissleder, R.; Nakakoshi, T.; Moore, A.; Tung, C. H., Macrocyclic chelators 
with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived 
membrane translocation peptide. Bioconjugate Chem. 2000, 11, 301-305. 

211. Mohandessi, S.; Rajendran, M.; Magda, D.; Miller, L. W., Cell-penetrating peptides as 
delivery vehicles for a protein-targeted terbium complex. Chem. Eur. J. 2012, 18, 10825-
10829. 

212. Blackmore, L.; Moriarty, R.; Dolan, C.; Adamson, K.; Forster, R. J.; Devocelle, M.; Keyes, 
T. E., Peptide directed transmembrane transport and nuclear localization of Ru(II) 
polypyridyl complexes in mammalian cells. Chem. Commun. 2013, 49, 2658-2660. 

213. Puckett, C. A.; Barton, J. K., Targeting a ruthenium complex to the nucleus with short 
peptides. Bioorg. Med. Chem. 2010, 18, 3564-3569. 

214. Keliris, A.; Ziegler, T.; Mishra, R.; Pohmann, R.; Sauer, M. G.; Ugurbil, K.; Engelmann, J., 
Synthesis and characterization of a cell-permeable bimodal contrast agent targeting beta-
galactosidase. Bioorg. Med. Chem. 2011, 19, 2529-2540. 

215. Wolf, M.; Hull, W. E.; Mier, W.; Heiland, S.; Bauder-Wuest, U.; Kinscherf, R.; Haberkorn, 
U.; Eisenhut, M., Polyamine-substituted gadolinium chelates: A new class of intracellular 



References 

141 

 

contrast agents for magnetic resonance imaging of tumors. J. Med. Chem. 2007, 50, 139-
148. 

216. Lee, J.; Burclette, J. E.; MacRenaris, K. W.; Mustafi, D.; Woodruff, T. K.; Meade, T. J., 
Rational design, synthesis, and biological evaluation of progesterone-modified MRI 
contrast agents. Chem. Biol. 2007, 14, 824-834. 

217. Corot, C.; Robert, P.; Lancelot, E.; Prigent, P.; Ballet, S.; Guilbert, I.; Raynaud, J.-S.; 
Raynal, I.; Port, M., Tumor imaging using P866, a high-relaxivity gadolinium chelate 
designed for folate receptor targeting. Magn. Reson. Med. 2008, 60, 1337-1346. 

218. Goswami, L. N.; Ma, L.; Cai, Q.; Sarma, S. J.; Jalisatgi, S. S.; Hawthorne, M. F., cRGD 
peptide-conjugated icosahedral closo-B122- core carrying multiple Gd3+-DOTA chelates for 
αvβ3 integrin-targeted tumor imaging (MRI). Inorg. Chem. 2013, 52, 1701-1709. 

219. Andre, J. P.; Geraldes, C.; Martins, J. A.; Merbach, A. E.; Prata, M. I. M.; Santos, A. C.; de 
Lima, J. J. P.; Toth, E., Lanthanide(III) complexes of DOTA-glycoconjugates: A potential 
new class of lectin-mediated medical imaging agents. Chem. Eur. J. 2004, 10, 5804-5816. 

220. Crich, S. G.; Cabella, C.; Barge, A.; Belfiore, S.; Ghirelli, C.; Lattuada, L.; Lanzardo, S.; 
Mortillaro, A.; Tei, L.; Visigalli, M.; Forni, G.; Aime, S., In vitro and in vivo magnetic 
resonance detection of tumor cells by targeting glutamine transporters with Gd-based 
probes. J. Med. Chem. 2006, 49, 4926-4936. 

221. Digilio, G.; Menchise, V.; Gianolio, E.; Catanzaro, V.; Carrera, C.; Napolitano, R.; Fedeli, 
F.; Aime, S., Exofacial protein thiols as a route for the internalization of Gd(III)-based 
complexes for magnetic resonance imaging cell labeling. J. Med. Chem. 2010, 53, 4877-
4890. 

222. Puckett, C. A.; Barton, J. K., Fluorescein redirects a ruthenium-octaarginine conjugate to 
the nucleus. J. Am. Chem. Soc. 2009, 131, 8738-8739. 

 
 


