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Histidine Nucleotide Binding proteins (Hint’s) 
 
Histidine Nucleotide Binding Proteins are classified as members of the HIT superfamily 

proteins, which contain a His-Ø-His-Ø-His-Ø-Ø nucleoside-binding motif, where Ø is a 

hydrophobic amino acid (Figure 1). Based on the enzymatic activity, Hint proteins are 

classified as acyl-adenylate hydrolases and nucleoside phosphoramidases.1 The motif 

positions the substrate in such a way that enables attack of the α-phosphate via 

nucleophilic histidine (Figure 2). The Nucleotidylated-Histidine intermediate undergoes 

hydrolysis via water-mediated attack to subsequently release of the product, nucleoside 

monophosphate, from the active site.2 Mutation of the nucleophilic Histidine abolishes 

the hydrolase activity of Hint proteins. 

 

I. History of nucleoside phosphoramidases  

In 1959, Smith et al. first reported enzymatic hydrolysis of the phosphoramidic 

acid (Figure 3A) to monophosphate and ammonia in E.coli lysate.3 In addition to the 

hydrolytic reaction, an enzymatic phosphoryl transfer from phosphoramidate to glucose 

or hexose sugars was observed (Figure 3B).4 Three years later they isolated two fractions 

containing the enzymatic activity.5 The phosphoramidic activity in the fraction I was 

dependent on divalent metal ions and reducing substances (cysteine and glutathione) to 

achieve the maximum rate of ammonia release, while the activity in fraction III was 

found to be independent. No nucleoside phosphoramidase activity was observed in either 

of these fractions. In 1981, Rossomando et al. performed cold chase radiolabeling 

experiments [3H-ATP] on Dictyostelium Discoideum lysate.6 They observed that a  
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Figure 1: Alignment of the amino acid sequences of Human Hint proteins. Highlighted in 

red are the conserved Histidine residues that form part of the nucleotide binding motif of 

HINT1, HINT2, HINT3 and echinT proteins. The middle Histidine of the motif is 

essential for the hydrolase activity. 

 

HINT1   --------------------------------------------------MADEIAKAQVARP-GGD --TIFGKIIRKEIP---AKIIFE 

HINT2    MAAAVVLAAGLRAARRAVAATGVRGGQVRG AAGVTDGNEVAKAQQATP-GGAAPTIFSRILDKSLP--ADILYE 

HINT3    ----------MAEEQVNRSAGLAPDCEASATAETTVSSVGTCEAAGKSPEPKDYDSTCVFCRIAGRQDPGTELLHCE  
echinT     --------------------------------------------------MAEE--------------------TIFSKIIRREIPSDIVYQ--  
 
HINT1  DDRCLAFHDISPQAPTHFLVIPKKHISQISVAEDDDESLLGHLMIVGKKCAADLGLNKGYRMVVNEGSDGGQSVY  
 
HINT2  DQQCLVFRDVAPQAPVHFLVIPKKPIPRISQAEEEDQQLLGHLLLVAKQTAKAEGLGDGYRLVINDGKLGAQSVY  
 
HINT3  NEDLICFKDIKPAATHHYLVVPKKHIGNCRTLRKDQVELVENMVTVGKTILERNNFTDFTNVRMGFHMPPFCSIS  
 
echinT  DDLVTAFRDISPQAPTHILIIPNILIPTVNDVSAEHEQALGRMITVAAKIAEQEGIAEDGYRLIMNTNRH---GGQEVY  
 
HINT1   HVHLHVL---GGRQMHWPPG---------------------------------------------------------------------  126 

HINT2   HLHIHVL --- GGRQLQWPPG---------------------------------------------------------------------- 163 

HINT3   HLHLHVLP--VDQLGFLSKLVYRVNSY----------------------------------WFITADHLIEKLRT----------182 
echinT   HIHMHLL --- GGRPLG -- PM -----LAHKGL----------------------------------------------------------119 
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Figure 2: Adenosine Monophosphate (AMP) (PDB: 3tw2) bound X-ray crystal structure 
of Human Hint17 
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Figure 3: Classification of phosohoramidases and transphosphorylase. In the scheme; A) 

Hydrolysis of phosphoramidic acid via phosphoramidases and B) Transfer of an 

phosphoryl group from phosphoramidic acid to hexose sugar via transphosphorylase in 

E.coli lysate 
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significant level of radioactivity was retained following cold precipitation and isolation of 

the membrane extract. Treatment of the of the extract with a base did not reduce the 

amount of radiolabeling, indicating formation of a covalent nucleotidylated-protein 

complex with a phosphoramidate linkage (Figure 4). Isolation and characterization of the 

phosphoramidated proteins found the apparent molecular weight to be 13.5 and 1.5 kDa.8 

Since the formation of the phosphoramidated protein is likely via coupling of lysine or N-

terminus residues, substrates such as lysyl-(N-ϵ-5ʹ-phospho) adenosyl phosphoramidate 

conjugated to different tetrapeptides was synthesized (Figure 5). Hydrolysis of these 

substrates was observed in the presence of the isolated phosphoramidases and was 

sensitive to inhibition by divalent metal ions such as copper (II) and zinc (II).  

The first mammalian phosphoramidase was isolated from bovine brain tissue 

extracts. The protein was identified as an inhibitor of Protein Kinase C (PKC) and hence 

was named as protein kinase c inhibitor interacting protein-1 (PKCI-1).9 However, 

subsequent studies demonstrated that, while Hint binds to PKC, it is a modulator of PKC 

function and not a PKC inhibitor. Hence, the protein was later renamed Histidine Triad 

Nucleotide Binding Protein 1 based on its structural ligand-binding motif. Enzymatic and 

chemical degradation followed by mass spectrometric analysis found that bovine Hint1 

consists of 125 amino acids with a molecular weight of 13.7 kDa.10 The apparent 

molecular weight of the target protein on size exclusion chromatography was observed to 

be 36 kDa, indicating that Hint1 is a dimeric protein. Primary amino acid sequence did 

not indicate the presence of a zinc finger domain, however radiolabeling studies 

demonstrated that Hint1 could bind to 65Zn+2 ions.10 Subsequently, Lima et al. performed 

the first in vitro characterization and solved the first X-ray crystal structure of Hint1.  
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Figure 4: Adenyltansferases and Nucleoside phosphoramidase activity on protein 
phosphoramidates  
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Figure 5: Structure of lysyl-(N-ϵ-5ʹ-phospho) adenosine phosphoramidate tetrapeptide, 
tuftsin (thr-lys-pro-arg) as substrates for phosphoramidase activity in D. discoideum 
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They also attempted X-ray crystallographic studies of Human PKCI-1 in the presence of 

Zn+2 ions.11 Nevertheless, they could not detect the presence of zinc ions in their x-ray 

crystal structure.11 They speculated that the x-ray crystallographic conditions were 

forcing the proteins to crystallize mainly in the Apo form. In addition, they also observed 

a decrease in the stability of Hint1 in the presence of zinc. Immunofluorescence studies 

on a human fibroblast cell line indicated localization of Hint1 to be mainly restricted to 

the cytoskeletal structures in the cytoplasm.12  

To date, Hint proteins have been identified across several species such as 

cyanobacteria,13 yeast,14 plants,15 C. Elegans16 and a variety of mammalian species, which 

suggest their important role in cellular functions.  The human genome consists of three 

isoforms namely, HINT1, HINT2 and HINT3 gene products. The physiological role and 

functions of Human Hint proteins are described below. 

 

II. Physiological roles of Eukaryotic Histidine Nucleotide Binding 

Proteins 

A. Neuronal cell biology  

Evidence of the biological role of Hint1 in neuronal cells emerged from a yeast two-

hybrid study designed to screen and identify µ-opioid receptor (MOR) interacting 

proteins. Hint1 was identified as an MOR interacting protein. Genetic knockout of Hint1 

in mice shown to increase the analgesic response as well as reduced tolerance towards 

opioids in mice (Figure 6).17 Later on, Young and co-workers demonstrated that the 

interaction of Hint1 with N-terminus of Regulator of G-protein signaling Z1 (RGSZ1)  
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Figure 6: Hot plate assay for opioid’s analgesic response in Hint1-/- and Hint1+/+ mice. A) 

Time course: Morphine produced elevated analgesic response in Hint1-/- mice over 4-h 

period. Hot plate latencies were recorded at 15, 30, 45, 60, 75, 90, 120, 150, 180 and 240 

min after single injection of morphine (10 mg/kg). B) Chronic tolerance, time course of 

tolerance development in Hint1-/- and Hint1+/+ mice treated daily with morphine (10 

mg/kg, s.c.) for 7 days. Hot plate latencies were recorded 30 min after the injection on the 

days indicated. Analgesic response is reported as the percentage of maximum possible 

effect (MPE). 17 

 
 
 

 
 
 
 
 
 
 

study provides the first evidence that mPKCI can inhibit
PKC-related phosphorylation of MOR. Although it is unclear
whether the inhibition of MOR phosphorylation in mPKCI-
expressing cells is caused by the direct inhibition of PKC
activity or exerted through an indirect effect, our results
suggest that PKCI could play an important role in the regu-
lation of neurotransmitter receptors, in addition to its poten-
tial role in tumor suppression.

Previous evidence for the expression of mPKCI in mouse
brain tissues, at both mRNA and protein levels (Klein et al.,
1998), provide additional support for PKCI’s potential in-
volvement with MOR and/or other neurotransmitter recep-
tors. However, studies on the intracellular localization of
PKCI in normal human mammary epithelial cells and hu-
man breast cancer cells revealed that PKCI was present
mainly in the nucleus with less amounts in the cytoplasm
(Klein et al., 1998), but this was not studied in neuronal cells.
Therefore, the intracellular location of PKCI in neuronal cells
remains to be determined.

It is generally accepted that phosphorylation of opioid re-
ceptors can initiate desensitization and promote internaliza-
tion. Agonist-induced phosphorylation, usually mediated

through GRK, is insensitive to pretreatments with the PKC
inhibitor staurosporine, whereas phorbol ester-induced MOR
phosphorylation could be inhibited by staurosporine, indicat-
ing that multiple kinases and pathways are involved in MOR

Fig. 4. Hot-plate responses. A, dose-response: morphine induced aug-
mented analgesia in mPKCI!/! mice at low and intermediate doses.
mPKCI"/" (n # 13, open) and mPKCI!/! (n # 9, black) were injected with
saline and cumulative morphine, at indicated dose, and then hot-plate
response was assessed 30 min after injection. B, time course: morphine
produced elevated but not prolonged analgesia in mPKCI!/! mice over a
4-h period. Hot-plate responses were recorded 15, 30, 45, 60, 75, 90, 120,
150, 180 and 240 min after a single 10 mg/kg morphine injection in
mPKCI"/" (n # 13, f) and mPKCI!/! (n # 9, Œ) mice. Data were
presented as mean $ S.E. of each group of mice. **, p % 0.01 versus
mPKCI"/" (Student’s t test).

Fig. 5. Chronic tolerance A, time course of tolerance development
mPKCI"/" (f, n # 17) and mPKCI!/! (Œ, n # 9) mice were treated daily
with morphine (10 mg/kg, s.c.) for 7 days, and hot-plate latencies were
recorded 30 min after the injection on the days indicated. B, dose-
response curve shift in mPKCI"/" mice (n # 13, f, day 1; !, day 7); C,
dose-response curve shift in mPKCI!/! mice (n # 9; Œ, day 1; ‚, day 7).
Dose-response curves were determined using a cumulative dosing scheme
on days 1 (5, 10, 20 mg/kg of morphine) and 7 (10, 20, 40, 80 mg/kg) in
mice, as described under Materials and Methods. ED50 was determined
by nonlinear regression analysis using GraphPad Prism software. Data
were presented as the mean $ S.E.
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Scheme 1: Proposed schematic pathway for the mechanism of opioid signaling and cross 

talk of mu-opioid receptor with NMDAR in the central nervous system. Hint1 plays an 

important regulatory protein via unknown mechanism regulating its active site in 

governing this cross talk. In the basal state Hint1 is associated with NMDAR, upon 

morphine challenge the analgesic response is obtained via G-protein signaling and NOS 

pathway. This activation helps Hint1 to co-associate NMDAR with MOR and recruit 

PKC𝛾 onto the membrane. PKC𝛾 and PKA mediated phosphorylation onto the C-

terminus of NMDAR results into the negative feedback via phosphorylation onto the mu-

opioid receptor by CaMKII signaling pathway leads to the development of tolerance.    
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protein with Hint1 is critical in regulating the opioids analgesic response.18 Further 

molecular and pharmacological studies by Garzon et al. demonstrated that Hint1-RGSZ 

complex along with zinc is critical in recruiting PKC𝛾 to the neuronal membrane for the 

activation of N-Methyl-D-Aspartate Receptors (NMDAR) following the activation of 

MOR (Scheme 1).19 Recently, they also demonstrated a similar role of Hint1 in mediating 

crosstalk between cannabinoid and NMDA receptors.20  

Immunohistochemical analysis indicated that intracellular localization of Hint1 is 

restricted mainly to cell bodies and dendritic projections of the neuronal cells.21 

Interestingly, very little or no expression of Hint1 was observed in the astrocytes and 

dopaminergic regions, indicating tight regulation of Hint1 expression in CNS. Expression 

of Hint1 in the brain is evident within 14 days of embryonic development of mice 

(Figure 7). In adult mice, abundant expression is observed within the dorsolateral frontal 

cortex regions (DLFC), such as the olfactory system, amygdala, cerebral cortex and 

hippocampus regions of the CNS. The olfactory system is known to be well-connected 

with DLFC regions of the brain that are associated with affective and mnemonic 

functions such as behavioral mood, associative learning, and episodic memory. Hint1-/- 

mice do exhibit behavioral symptoms associated with mood disorders such as an increase 

in anxiety and depression.22 Genetic mutations in Hint1 have been also shown to impact 

behavioral learning associated with odors in C. Elegans.16 Interestingly, such symptoms 

are very common among schizophrenic patients23 and a decrease in the mRNA levels of 

Hint1 within the dorsolateral frontal cortex (DLFC) region of schizophrenic patients has  
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Figure 7: Brain tissue distribution of Hint1 across CNS. A) and B) Western blot analysis 

of PKCI-1/Hint1 in different ages of mouse brain tissue as well as in different regions of 

adult mouse brain. Whole brain tissue extract of 30μg protein was loaded into each lane. 

E14, embryonic day 14; n.b., new born; m, months; (B and D) Western blot 

quantifications show the densities of ratio between Hint1 and Actin in the same lane.21  

 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 2 Profile of PKCI/HINT1 expression in mouse CNS. The
expression of the PKCI/HINT1 protein was assessed by immunoblot
analysis with anti-hPKCI/HINT1 antiserum. (a) Western blot analysis
of PKCI/HINT1 in different ages of mouse CNS tissues. Whole brain
tissue extract of 30 lg protein was loaded into each lane. E14,
embryonic day 14; n.b. new born; m, months; (c) Western blot
analysis of PKCI/HINT1 in different brain regions of adult mice.
Protein extracts prepared from the different regions of the brain and

spinal cord (cervical segment) and 30 lg of protein was loaded into
each lane. a-actin served as a control for protein loading. (b, d)
Western blots quantifications showing the densities ratio between
PKCI/HINT1 and Actin in the same lane. Mean values ± SE from
three experiments were presented. There was no significant different
in PKCI/HINT1 protein expression of different ages or different
regions in WT mice (P[ 0.05)

Fig. 3 PKCI/HINT1 immunohistochemical staining in cerebral cor-
tex in wild type (a, b) and PKCI/HINT-/- (KO) mouse (c, d). The
antibody detects individual positive cells in all layers of the cerebral
cortex (layers 1–6), with negligible background staining in KO mouse
brain. Immunofluorescence triple-labeling staining in WT mouse
hippocampus (e). PKCI/HINT1 (green) is clearly present in large

pyramidal neurons (arrows) double labeled with the neuronal marker
NeuN (red). Co-expression shows as yellow. Astrocytes labeled with
GFAP (blue) were negative for PKCI/HINT1. Scale bar = 200 lm
for (a, c); 50 lm for (b, d); and 10 lm for e. Note: For interpretation
of the references to color in this figure legend, the reader is referred to
the online version of this article.
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been reported.24 Additionally, genetic variants of Hint1 were also found to be associated 

with nicotine dependence, which is a frequent cause of comorbidity in schizophrenic 

patients.25, 26 The neuronal circuitry of the ventral trigeminal area (VTA) connecting the 

hippocampus and nucleus acummbens plays a major role in the hippocampal dependent 

formation of behavioral memory associated with repeated exposure of substances of 

abuse. A dynamic change in the expression of Hint1 is observed within the nucleus 

acummbens upon chronic administration of nicotine, which further indicates a critical 

role of Hint1 in regulating behavioral memory. 25 

Synaptic facilitation between peripheral nociceptors and spinal dorsal horn pain-

transmitting neurons is one of the key hallmarks in the development of neuropathic pain.  

NMDAR plays a significant role in the sensitization of spinal pain transmitting neurons. 

Abundant expression of Hint1 is also reported in the spinal cord especially in the 

peripheral sciatic nerve,21, 27 This observation is consistent with the study that Hint1-/- 

mice experience enhanced supraspinal nociceptive sensitivity.28 Neuropathic pain is 

commonly observed among patients suffering from peripheral neuropathies. Recently, 

several point mutations in Hint1 have been identified as one of the most frequent cause of 

peripheral neuropathy.27 It is evident from these observations that Hint1 is potentially 

critical in driving the long-term cellular fate of neuronal cells and regulating brain 

adaptations involved in the development of tolerance, neuropathic pain, and addiction.  

 

B. Cancer cell biology  
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Cellular differentiation, in which one cell type transit to another, is a key hallmark in the 

embryonic development of multicellular organisms. Once differentiated, cells undergo 

programmed cellular senescence or cell cycle arrest to control embryonic patterning and 

development. Embryonic senescent cells are non-proliferative and are often compared to 

the mechanism of oncogene-induced senescence observed in tumor suppression. Genetic 

knockout of Hint1 in mice results in normal fetal and adult development. However, 

fibroblast cultivated from day 14 of the embryonic mice displayed increased growth rate 

and spontaneous immortalization.29 In contrast, fibroblast from wild-type Hint1 mice 

underwent cellular senescence (Figure 8). Furthermore, it was demonstrated that N-

Nitroso Benzylamine (NMBA) treatment induced squamous tumor formation with higher 

frequency in Hint1-/- mice than in wild type. These observations were the first 

demonstration of the role of Hint1 as a potential tumor suppressor protein.30 Consistent 

with tumor suppression function, methylation-dependent down regulation of Hint1 was 

observed in human non-small lung cancer cell line, NCI-H522.31 Overexpression of Hint1 

in this cell line resulted in reduced cell growth and inhibition of tumorogenesis. In this 

context, a mechanistic investigation discovered that Hint1 interacts with the ATP/GTP 

binding motif of Pontin and Reptin, which is essential to disrupt their homo and 

heteromeric interactions.32 Both Pontin and Reptin are known to repress transcriptional 

activity of β-catenin in Wnt signaling pathways and are associated with a variety of 

chromatin-remodeling complexes.33 Consistent with a role on transcriptional regulation, 

overexpression of Hint1 in MCF-7 and SW480 cells resulted in the upregulation of pro-

apoptotic factor Bax and down-regulation of anti-apoptotic factor Bcl-2. In similar 

fashion, expression of Hint1 was shown to be critical in the epigenetic silencing of genes  
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Figure 8: The dependence of the growth of fibroblast cells on Hint1 expression. MEF 

cultures established from both Hint1+/+ and Hint1-/- mice from 13.5-day embryos. Number 

of cells was measured at passage day (p) 2, 10, 20 and 25.29  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Carcinogenicity Study. WT (PKCI!/!) 129 strain and knockout
(PKCI"/") mice were produced and maintained in the Herbert
Irving Comprehensive Cancer Center animal facility. The strat-
egy for the carcinogenicity study followed a well established
mouse model of NMBA-induced squamous tumors of the fore-
stomach (19, 32). Specifically, 39 PKCI!/! and 71 PKCI"/" mice
at ages 28–40 weeks were given eight intragastric doses (2 mg!kg
body weight per dose) of NMBA (Ash Stevens, Detroit) over the
course of 4 weeks. Mice in control groups (8 PKCI!/! and 8
PKCI"/" mice) did not receive NMBA treatment. All of the mice
were killed and complete autopsies were performed 12 weeks
after the final NMBA dose. Tumors were examined with respect
to their location, number, and volume. Tumor volume was
calculated by using the formula described in previous studies
(33). All of the tumors identified in the forestomach and other
tissues were carefully removed and processed for histopatholog-
ical examination with hematoxylin and eosin (H&E) staining.
Tumors in the forestomach were histologically classified into
papilloma and squamous cell carcinoma based on described
criteria (34, 35). For statistical analysis, tumor incidence, mul-
tiplicity, and volume were compared between NMBA-treated
mice and control mice.

Results
PKCI Gene Targeting. When we began these studies the genomic
structure of the mouse PKCI gene was not known, although it
has been subsequently described on the Ensembl website
database supported by the European Bioinformatics Institute
(see www.ensembl.org!Mus!musculus!geneview?gene#
ENSMUSG00000020267; for references, see www.informatics.
jax.org!searches!reference!report.cgi?!Marker!key#38789).
Therefore, at that time we synthesized an oligonucleotide probe
corresponding to the first 13 aa in the coding sequence of the
mouse PKCI cDNA. Using this probe, we screened a 129-strain
mouse genomic DNA library and found a DNA sequence
corresponding to the first exon of the mouse PKCI gene, which
encodes the first 37 aa of the mouse PKCI protein. We then
designed a targeting construct that would delete the first exon,
its 1.2-kb upstream sequence, and part of the downstream intron,
and would replace this sequence with the neomycin!G418
resistance gene (neor) (Fig. 1 A). Electroporation of this linear-
ized targeting construct into 129 strain ES cells and G418
selection for homologous recombinants yielded neomycin!
G418-resistant clones, 600 of which were picked and screened by
Southern blot analysis for evidence of homologous recombina-
tion. Fourteen of the 600 clones (2.3%) were found to be
homologous recombinants displaying the predicted 9-kb WT and
6.6-kb mutant fragments. Two of these 14 clones were injected
into C57BL!6 blastocysts to generate chimeric mice. The high
coat color male chimeric mice (ranging from 35% to 70%
coating) were then bred to C57BL!6 females to obtain agouti
mice in which the mutant allele had been transmitted through
the germ line. Heterozygous offspring of chimeras appeared
entirely normal and were fertile. Heterozygous mice were then
interbred to produce homozygous deficient PKCI"/" mice,
which were identified by Southern blot analysis of tail DNA (Fig.
1B). Western blot analysis of protein extracts of MEF cell
cultures established from these mice by using an anti-hPKCI
antibody indicated that the PKCI!/" cells had $50% reduction
in the 13.7-kDa PKCI protein and that none of this protein was
detected in the PKCI"/" cells (Fig. 1C).

Phenotype of PKCI!/! Mice. When intercrosses were set up be-
tween mice that were heterozygous for the disrupted PKCI
alleles, we obtained WT (!!!), heterozygous (!!"), and
nullizygous ("!") offspring at approximately the expected
Mendelian 1:2:1 ratios, indicating that there was no significant
embryonic lethality. At birth, the PKCI!/" and PKCI"/" mice

were indistinguishable from their WT littermates and there were
no gross differences in appearance, body size, or weight at 2
months of age. After 3 months of age the body weight of the male
PKCI"/" mice decreased and remained lower than that of the
PKCI!/! mice until $11 months of age (data not shown). This
difference in body weight between months 5 and 7 was statisti-
cally significant (P % 0.01). However, no difference in body
weight gain was seen between the female PKCI"/" and PKCI!/!

mice. We also prepared tissue extracts from the brain, heart,
liver, kidney, and spleen obtained from 4-month-old PKCI!/!

and PKCI"/" male mice. Western blot analysis of these extracts
by using an anti-hPKCI antibody indicated that all of the organs
from the PKCI!/! mice expressed a characteristic 13.7-kDa
protein band, but this protein band was totally absent in all of the
organs of the PKCI"/" mice (Fig. 1D). No significant histologic
and morphologic differences were detected between PKCI!/!

and PKCI"/" mice in these tissues.

Growth of MEF Cells and Sensitivity to Radiation. MEF cultures were
established from both PKCI!/! and PKCI"/" mice by using
13.5-days-postcoitum embryos, and the cultures were then seri-
ally passaged. Both types of MEF cells grew at similar rates for
the first few passages. The growth of the PKCI!/! MEF cells
began to decrease by passage 6, and the cells showed signs of
crisis and their growth ceased by passage 16. The slow growth
of the PKCI!/! cells at passage 10 is shown in Fig. 2A. Growth of
the PKCI"/" MEF cells slowed somewhat after passage 6 but

Fig. 2. Growth of MEF cells. MEF cultures were established from both PKCI!/!

(WT) and PKCI"/" (KO) mice by using 13.5-day embryos. The cells were serially
passaged in DMEM with 10% FBS. (A) Growth curves were carried out with WT
and KO MEF cells at passage (P) 2, 10, 20, and 25. (B) Relative sensitivity of WT
and KO MEF cells to ionizing radiation. Exponentially growing early-passage
2 (P2) WT and KO MEF cells and late-passage (P42) immortalized KO MEF cells
were treated with ionizing radiation ranging from 0.5 to 6 Gy. The numbers
of colonies were then determined and plotted as the surviving fraction (SF).
SF # PE of irradiated cells!PE of control unirradiated cells, where plating
efficiency (PE) # number of colonies!number of cells seeded.

7826 " www.pnas.org!cgi!doi!10.1073!pnas.1332160100 Su et al.
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associated with human colon and hepatocellular carcinomas.34 A catalytically inactive 

Hint1 mutant (H112N) was unable to block induction of apoptosis in the SW480 cell line, 

suggesting that Hint1 apoptotic function is independent of the Hint1 enzymatic activity.32 

Finally, some recent evidence has emerged indicating potential role of Hint2 in 

hepatocellular carcinomas. 35 

 

C. Mast cell biology  

Evidence for the biological function of Hint1 in mast cells emerged with the 

identification of its interaction with Micropthalmia-associated transcription factor (MITF) 

in a yeast two hybrid screening study.36 MITF is a transcription factor containing a helix-

loop-helix leucine zipper DNA-binding protein and is mainly associated with regulatory 

functions in mast, melanocyte and osteoclast cells. In quiescent mast cells, the activity of 

MITF is repressed in part via its interaction with Hint1. Upon activation of mast cells, 

dissociation of Hint1 is driven by the antigen-stimulated production of signaling 

molecules such as diadenosine tetraphosphate (AP4A). The production of AP4A is 

regulated via non-canonical function of Lysine t-RNA synthetases (LysRs) (Scheme 2). 

Activation of mast cells induces the translocation of LysRs from the cytoplasm to the 

nucleus, which binds to MITF, generates AP4A and dissociates Hint1 to activate 

transcription functions (Scheme 3).37, 38 However, whether AP4A mediated regulation of 

Hint1 is a general mechanism in other physiological roles is not yet clear.   
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Scheme 2: Canonical and non-canonical catalytic processes of Lysine t-RNA Synthetase 
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Scheme 3: Proposed model for the regulation of micropthalmia transcription factor 

(MITF) in the quiescent and activated mast cells via Hint1 and LysRs37 

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

EXPERIMENTAL PROCEDURES

Antibodies
The antibody anti-LysRS was custom made against a specially designed

determinant KEVLLFPAMKPE (Hy Laboratories Ltd., Israel). Anti-phosphoser-

ine antibody was purchased from Zymed Laboratories (San Francisco, CA).

Anti-phosphothreonine and anti-Myc were purchased from Santa Cruz

Biotechnology (Santa Cruz, CA). Anti-MetRS and anti-ArgRS were purchased

from Abcam (Abcam Ltd., Cambridge, UK). Anti-p43/AIMP1 was produced as

previously described (Han et al., 2006).

Ap4A Determination
This assay detects the relative amount of Ap4A present in extracts of mamma-

lian cells. For each determination, cells were grown to about 80% confluence.

The cell layer was lysed with trichloroacetic acid. Extraction and measurement

by luminometry of the nucleotides were performed as described previously

(Murphy et al., 2000). Results were normalized by Bradford protein assay.

Cell Growth
RBL-2H3 cells weremaintained in RPMI 1640medium as previously described

(Razin et al., 1999). RBL cells were sensitized first with anti-DNP IgE mono-

clonal antibody (SPE-7, Sigma-Aldrich Corp., St. Louis, MO) and then chal-

lenged with DNP (Sigma-Aldrich Corp.). IgE antibody was centrifuged

(18,000 g, 5 min) before use to remove aggregates.

Chemical Inhibitor Treatment
U0126, PD098059, and SB203580 were purchased from Sigma-Aldrich Corp.

(St. Louis, MO).

Plasmid Construction
Human LysRS was subcloned into the EcoRI and XbaI sites of the pSC2+MT

vector (Invitrogen). This vector was used for the production LysRS mutant by

site-directed mutagenesis in which serine was replaced by alanine at both 207

and 470 positions (LysRS S207A/S470A). Human LysRS S207A variant was

subcloned into pCMV/myc/cyto and pCMV/myc/nuc vectors. The fidelity of

all constructs was verified by direct sequencing.

Gel Filtration Chromatography of Cell Lysates
Cell extracts were applied to a Superdex 200 column (30 3 1 cm from

Amersham Biosciences) using AKTA Explorer (Amersham Biosciences) and

eluted at a flow rate of 0.8 ml/min in buffer containing 20 mM Tris-HCL

(pH 7.4), 150 mM NaCl, 10% glycerol, and 0.5% Triton X-100. Thyroglobulin

(669 kDa), ferritin (440 kDa), catalase (232 kDa), aldolase (163 kDa), BSA

(67 kDa), and OvaAlb (44 kDa) were used as molecular weight standards.

The eluted proteins in each fraction were analyzed by immunoblotting with

anti-LysRS.

Gel Electrophoresis and Western Blots
Proteins were resolved by 10% SDS-PAGE under reducing conditions and

were transferred to nitrocellulose membranes. Visualization of reactive

proteins was performed by enhanced chemiluminescence.

Immunoprecipitation
The immunoprecipitation of the specific proteins from RBL cells was carried

out as previously described (Levy et al., 2002).

Two-Dimensional Electrophoresis
2D electrophoresis was performed as previously described (Han et al., 2008).

Cells were solubilized in 2-D-lysis buffer (7 M urea, 2 M thiourea, 4% w/v,

CHAPS, 100 mM DTT). Cell lysates were loaded to immobilized pH gradient

strip gels (linear pH gradient 4–7, 7 cm). Isoelectric focusing was performed

at 4,000 V until the total volt-hours reached 10 kV hours using PROTEAN

IEF cell (Bio-Rad). Following two-step equilibration with 375 mM Tris-HCl

(pH 8.8), 6 M urea, 2%SDS, 20% glycerol, 2%DTT, and 2.5% iodoacetamide,

the IPG strips were embedded on top of 8% SDS-PAGE gels and sealed with

2% agarose. Proteins were separated based on their molecular weight.

Expression and Purification of LysRS Proteins
cDNA of human LysRS WT or S207A were subcloned into pET28a (Novagen).

Recombinant LysRS proteins were expressed as His fusion proteins and puri-

fied by Ni2+-bound His-Bind resin. Cells were lysed and sonicated in 30 ml of

lysis buffer (20 mMKH2PO4, 500 mMNaCl, 2 mM b-mercaptoethanol [pH 7.8]

containing 0.5 mM PMSF, 1 mg/ml leupeptin, and 5 mg/ml aprotinin). The

lysates were centrifuged at 20,000 g for 1 hr at 4!C. The supernatant was incu-

bated with 1 ml of Ni2+-bound His-Bind resin at 4!C overnight with constant

agitation. The resin was washed with 10 column volumes of washing buffer

A (20 mM KH2PO4, 500 mM NaCl, 2 mM b-mercaptoethanol, and 10% glyc-

erol [pH 6.0]), washing buffer B (20 mM KH2PO4, 500 mM NaCl, 2 mM b-mer-

captoethanol, and 10% glycerol [pH 5.2]), and washing buffer C (20 mM

KH2PO4, 500 mM NaCl, 2 mM b-mercaptoethanol [pH 7.8], and 50 mM imid-

azole). Bound protein was eluted with elution buffer (20 mM KH2PO4, 500 mM

NaCl, and 2 mM b-mercaptoethanol [pH 7.8]) containing 300 mM imidazole.

The fractions eluted with 300 mM imidazole buffer were pooled and injected

onto PD-10 gel-filtration columns equilibrated with phosphate-buffered saline.

The fractions were then analyzed by SDS-PAGE and western blotting.

In Vitro Phosphorylation of LysRS by ERK1
LysRS proteins (200 ng) were incubated with 20 ng of recombinant ERK1 in

phosphorylation buffer (20 mM Tris/HCl [pH 7.5], 25 mM b-glycerophosphate,

5 mM EGTA, 1 mM Na3VO4, 1 mM DTT, 0.12 mM ATP, and 2 mCi [g-32P] ATP

[3000 Ci/mmol]) for 15 min. The reaction mixture was then electrophoresed

through an 8%SDS-polyacrylamide gel. The dried gel was exposed to autora-

diography.

Real-Time Quantitative Polymerase Chain Reaction
Candidate MITF responsive gene transcription was measured using real-time

quantitative PCR. mRNAs of MITF target genes were quantified by SYBR-

green incorporation (ABgene SYBR green ROX Mix, ABgene). Real-time

PCR was performed on Rotor-Gene sequence detection system (Corbett,

Australia). The genes whose mRNA levels were quantified by real-time PCR

were rat TPH, MCP5, and b-actin.

Figure 6. Proposed Model for LysRS as a Signaling Molecule
Following specific stimuli, LysRS is serine phosphorylated in a MAPK-depen-

dent fashion, dissociates from the MSC, and translocates from the cytoplasm

to the nucleus. The phosphorylation on serine residue 207 elevates Ap4A

levels, leads to the dissociation of Hint-1 from MITF, and allows this transcrip-

tion factor to activate its responsive genes.
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Molecular Cell 34, 603–611, June 12, 2009 ª2009 Elsevier Inc. 609
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Figure 9: Tissue distribution of Hint2 mRNA (left) and protein expression levels (right). 

mRNA levels were assessed by real-time quantitative PCR and normalized to skeletal 

muscle expression levels. Protein expression analysis was performed using immunoblot 

analysis.35 

 

 

 

   

 

 

 

 

 

 

 

 

 and PKC isoforms (data not shown). In contrast, Hint2
displayed robust, active site-dependent adenosine mono-
phosphoramidase activity. Using the model compound
AMP-pNA, in which a paranitroaniline reporter was linked
by a phosphoramidate linkage to AMP,7 Hint2 had a kcat of
0.0223 ! 0.0031 s"1 and a Km of 128 ! 35 #mol/L,
whereas rabbit Hint1 had a kcat of 0.00187 ! 0.00006 s"1

and a Km of 134 ! 11 #mol/L, endowing Hint2 with a
kcat/Km 10 times larger than Hint1. When the middle
histidine of the HIT motif of Hint2 was mutated to an
alanine (Hint2-H149A), the adenosine phosphoramidase
activity was lost.

Apoptotic signals, triggered either extrinsically by the
activation of death receptors or intrinsically by the disrup-
tion of intracellular homeostasis, cascade through the mi-
tochondria, which function as central apoptotic regulators.23

Because other HIT proteins, in particular Fhit, influence
apoptosis24,25 and because Hint2 is located in the mitochon-
dria, the effect of Hint2 on apoptosis was investigated.
Different HepG2 cell lines were generated: (1) HepG2 cells
expressing a 20-fold excess of Hint2, (2) HepG2 cells
overexpressing Hint2-H149A with no hydrolase activity
(Figure 4A), and (3) HepG2 cells expressing less than 10%
of native Hint2 due to small interference RNA knockdown

Figure 2. (A) Tissue distribution of HINT2 mRNA assessed by real-time quantitative PCR using a human cDNA panel (Clontech). Results were
normalized to GAPDH expression and presented as fold variations comparatively with skeletal muscle. (B) Expression of Hint2 protein in different
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green, left panel, bar $ 10 #m) colocalized with the mitochondrial marker Mito Tracker (in red, middle panel) as shown in the overlay (in yellow,
right panel). (D) Overlay confocal microscopy pictures of HEK-293 cells incubated with Mito Tracker to mark the mitochondria in red and
expressing a chimeric protein made of Hint2 and GFP. When the GFP was at the C-terminus of Hint2, Hint2 localized to the mitochondria (left
panel). When the GFP protein was at the N-terminus of Hint2, Hint2 remained in the cytoplasm (right panel; original magnification 40%).

Figure 3. (A) The phosphorylation of
histones (330 ng) by PKC was not af-
fected by increasing amounts of Hint2
protein or by increasing amounts of
bovine serum albumin (control, not
shown). (B) Activated PKC phosphory-
lated histones but not Hint2 (upper
panel). The presence of Hint2 in the
reaction was confirmed by immunoblot
analysis (lower panel).
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Figure 10: Regulation of glucose homeostasis by Hint2. A) Insulin tolerance test, Hint2-/- 

mice showed impaired recovery from hypoglycemia after insulin injection. B) Secretion 

of counter regulatory hormone glucagon after 2 hours of insulin injection was 

significantly lower in Hint2-/- mice, whereas higher levels of corticosterone were 

observed in Hint2-/- mice.39 

 

 

 

 

 

 

 

 

 

 

 

 

The presence of Hadhsc in the exocrine fraction sug-
gests contamination of the preparation by islet cells,
whereas the absence of amylase in the islet cell fraction
indicates lack of contamination with acinar cells.
Plasma leptin was higher in Hint2!/! mice at 20

weeks, and plasma adiponectin was slightly higher at
all points (Table 1). To determine whether the
increased fat depots were solely responsible for higher
levels of adipocyte hormones, the mRNA levels of adi-
ponectin and leptin were quantified in WAT collected
from retroperitoneal fat. In freely fed mice, leptin

mRNA was 2.5-fold higher in Hint2!/! than in
Hint2þ/þ (Fig. 5A), whereas adiponectin mRNA was
at equal levels (data not shown).
Effect of Hint2 Deletion on Response to Fas-

ting. To test whether the decrease in hepatic Hadhsc
activity caused an intolerance to fasting, the responses
of Hint2!/! and Hint2þ/þ mice to 16 hours of food
deprivation were compared. The decline in blood glu-
cose followed a similar pattern in both groups (Sup-
porting Fig. 7B). b-Hydroxybutyrate increased 4.1-fold
in fasting Hint2þ/þ and 4.2-fold in fasting Hint2!/!

Fig. 4. Comparison of glucose tolerance and insulin signaling pathways in fasted Hint2!/! and Hint2þ/þ mice. (A) Glucose tolerance test. Glu-
cose (2 g/kg) was injected intraperitoneally in fasted (16 hours), 21-week-old Hint2!/! (n ¼ 6) and Hint2þ/þ mice (n ¼ 6) and blood glucose
was measured. The fasting blood glucose (0 minutes) was not different. The area under the glucose-time curve was slightly higher in Hint2!/! than
in Hint2þ/þ mice (P ¼ 0.09). (B) Insulin signaling in the liver, skeletal muscle (gastrocnemius), and WAT of fasted Hint2!/! and Hint2þ/þ mice.
Immunoblots of liver, muscle, and WAT were quantified 5 minutes after injection of insulin. The ratios P-Akt/Akt, P-FoxO1/FoxO1, and P-GSK3b/
GSK3b were calculated (Supporting Fig. 3A). The expression levels of phosphoenolpyruvate carboxykinase (Pck1) were normalized to actin (Support-
ing Fig. 3A). (C) Insulin tolerance test (ITT). After a 16-hour fast, insulin was injected intraperitoneally and blood was collected from the tail vein of
20-week-old Hint2!/! (n ¼ 8) and Hint2þ/þ (n ¼ 5) mice (top panel). A separate group of mice (n ¼ 6) were challenged with the ITT three times
at weekly intervals (bottom panel). Hint2!/! mice showed impaired recovery from hypoglycemia. *P < 0.05. **P < 0.01. (D) Secretion of coun-
ter-regulatory hormones 2 hours after ITT. Plasma levels of glucagon were significantly lower in Hint2!/! mice, whereas the increase in corticoster-
one levels was higher in Hint2!/! than in Hint2þ/þ mice. *P < 0.05. **P < 0.01. (E) Glucose-stimulated insulin secretion. Twenty-week-old
fasted (16 hours) mice (n ¼ 6) were injected intraperitoneally with glucose (2 g/kg). Plasma insulin was measured before and 30 minutes after
glucose injection. Only Hint2þ/þ mice showed significantly increased insulin levels. §P < 0.05 (ANOVA). (F) Immunoblot of Hint2 in pancreatic
tissue separated into exocrine and islet cell–enriched fractions. a-Amylase was used as a marker for exocrine cells (top panel). Hadhsc was used as
a marker for the islet cell fraction (middle panel). Islet cells may have contaminated the exocrine fraction. Hint2 was only detected in the enriched
exocrine fraction of Hint2þ/þ pancreas.
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D. Mitochondrial function 

Mitochondria are known as the powerhouse of the cell. They regulate many critical 

functions of cells such as apoptosis, calcium homeostasis, steroid biosynthesis, as well as 

carbohydrate and lipid metabolism. Tissue expression and mRNA analysis by Dufour and 

co-workers first demonstrated that Hint2 is primarily expressed in the liver and pancreas. 

Unlike Hint1, little or no expression was observed in brain tissue or skeletal muscles 

(Figure 9).35 Immunocytochemistry studies on Huh-7 cells indicated that Hint2 is 

primarily localized in the mitochondria.35 Genetic knockdown of Hint2 in H295R cells 

with siRNA resulted in a marked reduction in the angiotensin stimulated steroidal 

response.40 Recently, phenotypic studies on Hint2-/- mice suggested a significant 

alteration in the accumulation of hepatic triglycerides, decreased glucose tolerance, 

abnormal regulation of insulin (Figure 10) and altered mitochondrial calcium 

dynamics.39, 41 Mitochondria isolated from the hepatocytes of KO animals indicated a 

significant increase in the reactive oxygen species and altered membrane potential. This 

change was accompanied by a decrease in glutamate dehydrogenase activity and an 

increase in acetylation of mitochondrial proteins. Overexpression of Hint2 in Huh-7 cells 

resulted in an increase in the apoptotic-signaling pathway, which was found to be 

dependent on the catalytic activity of Hint2. However, the regulation of protein-protein 

interactions or posttranslational modifications by Hint2 in mitochondrial functions has 

remained elusive.  
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Figure 11: A) Overlay of the X-ray crystal structures of Human Hint1 (Blue, PDB: 

1AV5) and Hint 2 (Orange, PDB: 4INC)42 
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B) Hydrophobic residues in the nucleoside-binding pocket of Human Hint1 (PDB: 3tw2) 
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III. Structural characterization of Human Hint proteins 

To date several x-ray crystal structures of Hint proteins have been reported as apo, AMP 

or GMP-bound complexes. Hint1 exist as a homodimeric protein with α + β overall 

folding topology (Figure 11). Each monomer consists of five anti-parallel sheet and two-

helices. Both the monomers are brought together to form ten anti-parallel sheets, with the 

central helix of each monomer packed against the central helix of the other monomer. A 

set of conserved hydrophobic residues form the binding pocket for the purine base, while 

polar residues form the binding pocket of the ribose sugar. A string of histidine residues 

occupies the active site, particularly His-112, which functions as a catalytic nucleophile. 

Human Hint2 shares a sequence similarity of 61% to Hint1 and also exists as a 

homodimer. Recently, Maize et al solved the first X-ray crystal structure of Human Hint 

2 protein.42 The overall structure of Human Hint2 was found to be nearly identical to 

Human Hint1 (Figure 11). In comparison to Hint1 and Hint2, very little is known about 

the structure and function of Human Hint3. Comparison of the primary amino acid 

sequence reveals less than 31% homology, and hence Hint3 is classified as a distinct 

branch of HIT family proteins.43   

To study the importance of homodimerization on the catalytic activity of Hint1, 

Wagner and coworkers designed a monomeric version of Hint1 by destabilizing the 

dimerization interface with point mutations.44 This mutations were characterized by a 

combination of size-exclusion chromatography, static light scattering, and chemically 

induced dimerization studies.44 Molecular dynamics simulations of the monomeric 

hHint1 did not detect significant perturbations of the active-site residues. The combined 
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kinetic and structural results demonstrate that, for monomeric hHint1, the catalytic 

efficiency (k
cat

/K
m
) of substrate hydrolysis is dependent on homodimerization. However, 

the underlying dynamics governing the catalysis or protein interactions of Hint1 remain 

unknown.  

IV. Intracellular regulators/substrates of Human Hint proteins 

Physiological evidence of the function of Hint1 across variety of cellular processes and 

interactions indicate an important role of its structural motif or catalytic activity in the 

regulation of in vivo functions. X-ray crystallographic and NMR studies have clearly 

indicated that the nucleotide-binding motif is an inextricable part of Hint1 in the 

molecular recognition of ligands. However, the identity of the natural regulatory substrate 

or ligand has remained elusive. Previous studies have indicated that the nucleoside 

phosphoramidase activity of Hint1 may act as part of a novel regulatory mechanism of 

protein adenylation or guanidylation. Wagner and Chou et al. have (unpublished results) 

performed pulse-chase radiolabeling experiments with α-32P [ATP/GTP] on mammalian 

and E.coli lysates. Results from these studies indicated a preference for the formation of 

guanylate over adenylated proteins in the lysates. However, stability studies indicated 

that formation of a phosphoramidate linkage was unlikely, since treatment with base 

efficiently removed such linkages. We also found labeling to be independent of the Hint 

proteins catalytic activity. Hence, our results demonstrate that Hints are unlikely to be 

direct protein nucleotidylases.  
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Figure 12: Adenyl sulfate: Ammonia adenyltransferase synthesized AMP-NH2  
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Table 1: Substrate specificity of nucleoside phosphoramidates by Hint11 
 
 
 
 
 
 
 
 

R1 kcat (s-1) km (µM) kcat/km (x 10-3 s-1 M-1) 

Adenine 2.1 ± 0.1 0.13 ± 0.02 15000 ± 3000 

Guanine 2.3 ± 0.7 0.21 ± 0.02 11000 ± 1000 

Hypoxanthine 2.6 ± 0.04 0.71 ± 0.03 3700 ± 300 

Uracil 2.5 ± 0.3 2.2 ± 0.4 42 ± 15 

Thymidine 0.10 ± 0.01 32 ± 5 3 ± 1 

Cytosine 1.2 ± 0.1 2.3 ± 0.4 600 ± 200 
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Scheme 4: A) Catalytic mechanism of Hint1 

 

 

 

 

 

 

B) Scheme of the Kinetic mechanism of Hint12 
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It is likely that small molecule adenylates with acyl-phosphate or phosphoramidate 

linkage are intracellular regulators of Hint proteins. Brenner and co-workers first 

performed a detailed analysis on a variety of endogenous nucleotidylated amino acids, 

sugars, and dinucleotides as possible substrates for Hint1. They discovered that Hint1 

could efficiently hydrolyze adenosine monophosphoramidate (AMP-NH2), an 

intracellular solute synthesized from AMP-Sulfate (AMP-SO4) in prokaryotic and 

eukaryotic organisms (Figure 12).14 They also demonstrated efficient hydrolysis of 

adenylated amino acids, such as AMP-N-acetyl-lysine-N-methyl ester phosphoramidate, 

by Hint1. However, little cleavage of cellular metabolites, such as nucleoside 

disphosphates, dinucleotides or adenylated sugars, by Hint1 was observed. Wagner and 

coworkers performed a detailed nucleoside phosphoramidate substrate specificity study   

on Hint proteins, which clearly demonstrated a preference for purine over pyrimidine 

nucleosides (Table 1). They further demonstrated Hint1 hydrolyzed the Lysyl-AMP 

generated by t-RNA synthetase in vitro (Scheme 4). However, the physiological role of 

Lysyl-AMP or other endogenous substrates to regulate Hint function in vivo has remained 

elusive. 

IV. Trends 

• Hint1-/- mice exhibit a variety of CNS phenotypes such as an increase in opioid 

analgesia, nicotine dependence and anxiety. 

• Hint1 is essential for modulating the cross talk between μ-opioid and NMDA 

receptor in vivo.  
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• Genetic point mutations in Hint1 have been identified in clinical patients to be the 

leading cause of peripheral neuropathy.  

• Hint1 interacts with a variety of transcription factors to regulate tumor 

suppression function, which is independent of its catalytic activity. 

•  AP4A dissociates Hint1 from microphthalmia transcription factor complex to 

regulate the immunomodulatory function in mast cells. 

• Hint 2-/- mice exhibit phenotypes associated with deregulation of mitochondrial 

functions such as carbohydrate metabolism, apoptosis, and oxidative 

phosphorylation.  

• Hint 2 dependent apoptosis in cancer cells is dependent on the catalytic activity. 

• Hint 3 is oligomeric in structure and very little is known about its function. 

 

V. Outstanding questions 

• What is the role of the Hint1 active site or activity in regulating CNS functions or 

phenotypes?  

• What is the endogenous substrate of Hint proteins in vivo?  

• What are the critical structural features or dynamics associated with catalysis that 

may regulate Hint-protein or Hint-ligand interactions in vivo? 

• What is the role of the dimeric/oligomeric structures of Hint proteins in regulating 

its function in vivo? 

• What are the critical structural features of Hint proteins that are essential for 

interactions with transcription factors and proteins involved in the NMDAR 

signaling pathway? 

 

VI. Current Research: 

The research described in the current thesis elucidates the contributions to the 

characterization of Hint1 from the aspect of function, mechanism, and structural 
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determinants. To do so, we describe development of variety of tools to study Human Hint 

proteins. The first two chapters provide the first strong evidence of the role of Hint1 

active site in the CNS using chemical genetics, medicinal chemistry and 

neuropharmacological studies. In Chapter 3, we describe the covalent capture of the 

Hint1-adenylated intermediate using an alternate substrate and time-lapse 

crystallographic studies as part of our efforts to elucidate reaction trajectory of Hint1. In 

Chapter 4, we describe the development of switch-on fluorescent probes as tools for 

monitoring the active site and detection of Hint proteins. Chapter 5 describes the 

structural and functional characterization of genetic mutations of Hint1 associated with 

peripheral neuropathy as well as structural determinants of Hint1.  
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Chapter 2 
 

A New Target For Pain: Inhibition of Hint1 as a novel strategy to modulate the cross 
talk between μ-Opioid and NMDA receptor in the central nervous system 
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INTRODUCTION:  
 

The transition of nociceptive signals into chronic pain is dependent on key cellular 

signaling events that modulate synaptic plasticity of the central nervous system.1-3 The 

duration or frequency of the input signal is critical in mediating long-term neuronal 

cellular fate. Two layers of regulation mediate such neuronal processes: first an upstream 

rapid activation of the transient signaling filters high-frequency signals, which ultimately 

transmits to downstream signaling events leading to stable alterations such as receptor 

localization, gene expression, morphological changes or synaptic remodeling.4, 5 Such 

changes are described as long-term synaptic potentiation (LTP),6 which often relies on 

the activation of the postsynaptic N-methyl-D-aspartate (NMDA) receptors by 

neurotransmitter such as glutamate. Development of neuropathic is induced primary via 

sensitization of the primary sensory neurons (peripheral sensitization) following 

subsequent sensitization of the spinal cord neurons (central sensitization).1, 2 Activation of 

the NMDA receptors in the spinal dorsal horn nociceptive neurons plays an essential role 

in the development of hypersensitivity to pain.7, 8 Administration of NMDA, an agonist of 

NMDA receptor, intrathecally exhibits biting, scratching and licking nociceptive 

hyperalgesic behavior in mice. Opioids such as morphine are known to alleviate such 

behavior (Scheme 1).9-11  

According to “control gate theory” the nociceptive signals originated in the 

peripheral nervous system encounter “nerve gates” before reaching the cortical region of 

the brain.1 Certain discrete regions of the brain, including periaqueductal gray area (PAG) 

of brain, negatively regulate the nerve gates. Studies have demonstrated that direct 
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electric stimulation of PAG region inhibits opening of the nerve gates and hence 

produces an analgesic effect. Most clinically used opioids act by activating MOR 

(possibly in the PAG region, where they are densely expressed) to produce analgesic 

effect. It is also known that repeated exposure of opioids leads to the development of 

acute tolerance via activation of NMDAR signaling pathway in both PAG and dorsal 

horn of the spinal cord.12, 13 Such events have been described to be essential for the 

transition of an acute pain into chronic state. Although this phenomenon is well known, 

the molecular mechanism governing the cross-talk between MOR and NMDAR has 

remained unclear. 

In 2004, Wang and coworkers demonstrated that genetic disruption of Human 

histidine triad nucleotide binding protein 1 (hHint1) in mice results into increased 

morphine analgesia as well as reduced development of tolerance.14 It has been proposed 

that upon morphine challenge, the interplay of different protein assemblies (including 

PKC𝛾) at MOR results in the activation of NMDAR, leading to the development of acute 

morphine tolerance.15-17 Hint1 plays an essential role in recruiting these protein 

assemblies at MOR.18 As a result, NMDAR fails to exert any negative regulation on 

MOR signaling in Hint1-/- mice, resulting into enhanced analgesic effect of morphine 

(Scheme 1, Chapter 1). One of the limitations associated with genetic knockout studies 

is that they cannot differentiate whether the role of Hint1-protein interactions or 

enzymatic activity is associated with the phenotypic response.  

Chemical genetics is a powerful approach to elucidate biological functions of 

genes or proteins of interest using screens of diverse and targeted small molecules.  



	 40	

Scheme 1. Proposed schematic pathway for the mechanism of NMDA evoked 

nociceptive (scratching and biting) behavior and effect of morphine in antagonizing this 

effect in spinal cord. Hint1 plays an important regulatory protein via unknown 

mechanism regulating its active site in governing this cross talk. In the basal state Hint1 

is associated with NMDAR, upon NMDA challenge the scratching behavior is observed 

via NMDAR activation and calcium influx. Administration of morphine leads to a 

negative feed back on NMDAR signaling and hence blocking this effect via co 

associating with NMDAR. Administration of TrpGc prevents this cross talk and 

antagonizes the effect of morphine in vivo. 
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Screening	 small	 molecule	 libraries	 for	 a	 compound	 that	 induces	 phenotype	 of	

interest	represents	forward	chemical	genetics,	whereas	reverse	approach	uses	small	

molecules targeted to a protein or gene of interest, to probe their biological function.19 

Both approaches offer particular advantages of reversibility and potential to modulate 

protein function in vivo. In the current work, we describe reverse chemical genetic 

approach in combination with neuropharmacological studies to investigate the role of 

Hint1 active site in modulating opioid analgesia and neuropathic pain. 

 

RESULTS 

Synthesis and in vitro characterization of an nucleoside carbamate inhibitor of 

Hint1  

We have previously developed an inhibitor of Hint1 by replacing the phosphoramidate 

backbone of the substrate with a non-hydrolysable carbamate linker (Figure 1). The 

designed inhibitor contains tryptamine coupled to 5ʹ-OH of the guanosine with a 

carbamate linker (TrpGc). We chose guanosine instead of adenosine in order to avoid 

off-target effects associated with inhibiting other adenosine triphosphate (ATP) utilizing 

enzymes. The reported synthesis of TrpGc proceeds via isolation of the activated ester 

and subsequent coupling to an amine side chain.20 Nevertheless, our attempts to isolate 

the intermediate proved futile due to high reactivity and instability of the activated ester 

(data not shown). To circumvent this problem, we revised the synthesis under one-pot 

reaction without need for the isolation of the intermediate (Scheme 2). Activation of the 

protected guanosine (2) with 1.2 equivalents of chloroformate followed by subsequent 
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addition of an excess amount of tryptamine (4.0 eqv) resulted in the coupled product (3). 

Isolation and deprotection of 3 with an aqueous TFA resulted in the final product with 

70% yield.17 Next, we investigated the effect of TrpGc on the activity of hHint1 using a 

fluorescence assay described previously.21 Under fixed saturating substrate concentration, 

a dose-dependent decrease in the activity of hHint1 was observed upon addition of 

TrpGc. The half maximum inhibitory concentration (IC50) value of TrpGc was calculated 

to be 25.5 ± 6.0 μM (Figure 2, Bottom).	 Next, we employed isothermal titration 

calorimetric (ITC) studies to investigate the thermodynamic forces behind the non-

covalent association of TrpGc with hHint1 (Figure 2, Top). Thermodynamic studies 

indicated that enthalpic but not entropic forces are primarily responsible for the binding 

of TrpGc to hHint1 (Table 1). The dissociation constant (Kd) value was calculated to be 

3.65 ± 1.0 μM and with an n value of 0.98 ± 0.5, indicating single-site binding event per 

monomer (Table 1).17  

 

TrpGc increases the analgesic effect of opioids in mice  

To perform reverse chemical genetic studies with TrpGc, we established collaboration 

with the neuropharmacological laboratory of Dr. Javier Garzon at the Cajal Institute in 

Spain. We began by evaluating morphine analgesia using a tail flick assay on two 

different strains of mice. The ED80 value for morphine in 129S1 mice was calculated to 

be 1 nmol, whereas a value of 10 nmol was found for CD1 mice. This result is consistent 

with the fact that opioids produce a stronger analgesic response in 129S1 strains than 

CD1 mice. We used the respective ED80 values for the dosing of morphine in our animal 

studies. Upon pretreatment of mice with TrpGc (20 nmoles i.c.v) an increased in  
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Figure 1. Chemical structures of the substrates and an inhibitor of Human Hint1 
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Scheme 2: Synthetic scheme for TrpGc.  
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Figure 2. Isothermal titration calorimetric curve of TrpGc. (Top) A typical binding 

isotherm created after plotting integrated heat peaks against the molar ratio of TrpGc 

(400 μM, 10 mM Tris, 150 mM NaCl, pH 7.5) titrated into the solution of hHint1 (30 

μM). (Bottom) A dose response curve generated by the performing the titration of hHint1 

activity in the presence of TrpGc in the presence of saturating concentration of the 

substrate (TpAd). 
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Table 1: Thermodynamic parameters of TrpGc binding to hHint1 

Ligand Kd (uM) ΔH 
(kcal/mol) 

-TΔS 
(kcal/mol) 

ΔG 
(kcal/mol) 

n 

TrpGc 3.65 ± 1.00 -13.54  ± 1.00 9.54  ± 4.17 -4.1 ± 2.0 0.98 ± 0.5 
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analgesic response was observed following morphine (1 nmol, i.c.v, 20 minutes before) 

administration, when compared to the morphine treatment alone. This effect was clearly 

absent in Hint1-/- mice indicating that other Hint isoforms (Hint 2 and 3) cannot 

compensate for the loss of Hint1 activity in the opioid signaling pathway (Figure 3A). 

This result is also consistent with previously reported studies that demonstrated very little 

or no expression of Hint2 in brain tissues (Chapter 1, Figure 9). In addition, this effect 

was not only restricted to the morphine but also to the other opioids such as DAMGO 

(Figure 3C). To assess the blood-brain barrier (BBB) permeability, we performed 

subcutaneous injection of TrpGc in our studies. To our surprise, we observed an 

enhanced morphine antinociception effect (Figure 3D), indicating BBB permeability of 

TrpGc.   

 

TrpGc prevents/rescues the development of morphine tolerance in mice  

Administration of morphine at its ED80 values is known to decrease the antinociceptive 

response in mice to the successive test doses of the opioids. Tolerance becomes evident 

24 h after the animals have received a single (priming) dose of morphine (1 nmol). 

Administration of TrpGc 20 min before the priming dose of morphine significantly 

reduced the development of tolerance in mice (Figure 3B). In mice that had received the 

priming dose of morphine, injection of TrpGc 20 min before the test dose restored the 

antinociceptive potency of the morphine. These results indicate that TrpGc can not only 

prevent but also rescue morphine tolerance in mice. In similar fashion, TrpGc given 50 

min before the test dose produced an incomplete but still a significant amount of the 

opioid antinociception (Figure 3B).17  
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Figure 3. Tail flick assay for the analysis of opioids analgesia and tolerance in the 

presence or absence of TrpGc. A) Time-course: groups of ten CD1 mice were injected 

with 20 nmol of the Hint1 inhibitor TrpGc or vehicle 20 min before morphine (6 nmol), 

and antinociception was evaluated at the post-opioid intervals indicated. *Significantly 

different from the morphine control group that received vehicle instead of Hint1 

inhibitors, p < 0.05. All drugs were icv injected. B) Morphine acute tolerance, prevention: 

CD1 mice were administered 20 nmol TrpGc or vehicle 20 or 50 min before a priming 

dose of 10 nmol morphine. After 24 h, all mice received a test dose of 10 nmol morphine, 

and anti-nociception was evaluated 30 min later. Morphine acute tolerance, rescue: the 

mice received the priming dose of 10 nmol morphine and 24 h later they were injected 

with 20 nmol TrpGc or vehicle 20 or 50 min before the test dose of 10 nmol morphine 

(Left). The bars represent the mean ± SEM of groups of eight mice. C) Effect of TrpGc 

on DAMGO-induced anti- nociception. CD1 mice received the vehicle, 20 nmol TrpGc 

20 min before 100 pmol DAMGO. D) The effect of subcutaneous (sc) TrpGc (50 mg/kg) 

on the anti- nociception evoked by morphine (10 mg/kg, sc). Each point is the mean ± 

SEM of groups of eight mice. *Significantly different from the control group that 

received the opioid but vehicle instead of the Hint regulator, p < 0.05. Unless otherwise 

specified, all drugs were icv injected. 
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Figure 4. Evaluation of TrpGc on CCI mouse model of mechanical allodynia. Induction 

of mechanical allodynia in wild type (left) and HINT1-/- 129 mice (right): the effect of 

the Hint1 inhibitor, TrpGc. A) CCI neuropathic pain was induced in 129 mice, and paw 

withdrawal thresholds were measured in the contralateral and ipsilateral paw in both CCI 

operated and sham-operated mice (n= 10) before (0) and 3, 7, and 13 days after surgery. 

The force (in grams) at which the mice withdrew the paw in response to von Frey hair 

stimulation was determined as an index of mechanical allodynia. All data are presented as 

the mean ± SEM of eight mice. *Significantly different with respect to the ipsilateral 

paw; θ versus the corresponding paw in the wild-type mice, p < 0.05. B) Lower left and 

right panels: the effect of TrpGc on the mechanical allodynia displayed by wild type and 

Hint1 -/- mice. TrpGc (20 nmol) or vehicle were administered i.c.v to sham and CCI mice 

7 days after surgery, and the nociceptive threshold was evaluated 30 min later. Each bar 

represents the mean ± SEM of eight mice. *Significantly different from the contralateral 

paw nociceptive threshold, p < 0.05. 
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Notably, HINT modulation altered the negative effect of NMDA
on MOR-mediated antinociception (Fig. 6B). This observation sug-
gests that HINT1 supports MOR-mediated activation of NMDARs
and the negative influence of NMDARs on MOR signaling as well.

3.6. TpGc reduces the recruitment of NMDAR activity promoted by
morphine

It was addressed whether HINT enzymatic regulators alter the
capacity of morphine to promote changes at the level of NMDARs.
TpGc was administered to CD1 mice 30 min before a desensitizing
dose of 10 nmol morphine, and at various intervals post-opioid,
groups of mice were killed and parameters reflecting NMDAR ac-
tivity were determined in PAG synaptosomal membranes. Opioids
weakens the association of MORs with NMDAR NR1 subunits
(Rodríguez-Mu~noz et al., 2012). This step that engages the NMDAR-
mediated negative feedback on opioid signaling (Garz!on et al.,
2012), was prevented by TpGc and not by the HINT substrate
TpAd (Fig. 6C).

Morphine also promoted the PKC-mediated phosphorylation of
serine 890 in the NMDAR NR1 C1 segment, the Src-mediated
phosphorylation of tyrosine 1325 in the NMDAR NR2A subunit,
and enhanced CaMKII autophosphorylation, which requires
NMDAR-activated PKA (Garz!on et al., 2012). TpGc greatly reduced
the capacity of morphine to promote the aforementioned phos-
phorylation events (Fig. 7A).

In in vitro assays carried out with recombinant proteins, TpAd
impaired the association between recombinant HINT1 and PKCg, an
association that situates inactive PKC in the MOR-NMDAR envi-
ronment (Fig. 7B). In contrast, the HINT enzymatic inhibitor TpGc
and the weak HINT inhibitor TpGcKp did not significantly alter the
HINT1-PKCg interaction. TpGc inhibited the effect of TpAd on
HINT1-PKCg complex formation, thus indicating that inhibition of
HINT1 catalysis facilitates the binding of PKCg to the HINT1 protein
(Fig. 7B).

On the other hand, TpAd and to a much lesser extent TpGcKp,
was shown to increase the association of HINT1 with the NR1 C
terminal peptide containing the C0eC1eC2 segments (Fig. 7B).
Therefore, the in vitro studies showed the capacity of HINT modu-
lators to alter the association of HINT1 with signaling proteins
implicated in MOR-mediated regulation of NMDAR function.

4. Discussion

The NMDAR regulates essential processes in the nervous system,
such as synaptic plasticity, learning, memory formation, and
cognition, and its activation results in the permeation of Ca2þ ions,
a function that is enhanced or restricted by certain GPCRs (Lu et al.,
1999; Salter and Kalia, 2004) under the control of the HINT1 protein
(Rodríguez-Mu~noz et al., 2011a; S!anchez-Bl!azquez et al., 2012).
Thus, GPCRs such as the MOR positively regulate NMDAR-mediated
calcium fluxes (Chen and Huang, 1991; Rodríguez-Mu~noz et al.,
2012; S!anchez-Bl!azquez et al., 2009). However, GPCRs such as the
cannabinoid 1 receptor (CB1) dampens the activity of this gluta-
mate ionotropic receptor (S!anchez-Bl!azquez et al., 2013b, 2014). In
the absence of HINT1, these interactions areweakened to the extent
that morphine or WIN55,212-2 no longer regulate NMDAR activity
(Rodríguez-Mu~noz et al., 2011a; S!anchez-Bl!azquez et al., 2013b).

Fig. 5. Induction of mechanical allodynia in wild-type and HINT1"/" 129 mice: the
effect of the HINT enzymatic inhibitor, TpGc. A, CCI neuropathic pain was induced in
129 mice, and paw withdrawal thresholds were measured in the contralateral and
ipsilateral paw in both CCI -operated (left) and sham-operated (right) mice (n ¼ 10)
before (0) and 3, 7, and 13 days after surgery. The force (in grams) at which the mice
withdrew the paw in response to von Frey hair stimulation was determined as an
index of mechanical allodynia. All data are presented as the mean ± SEM of eight mice.
*Significantly different with respect to the ipsilateral paw; q versus the corresponding
paw in the wild-type mice, p < 0.05. B, Upper and Lower panels: the effect of TpGc on
the mechanical allodynia displayed by wild-type and HINT1"/" mice. TpGc (20 nmol)
or vehicle were administered icv to sham and CCI mice 7 days after surgery, and the
nociceptive threshold was evaluated 30 min later. Each bar represents the mean ± SEM
of eight mice. *Significantly different from the contralateral paw nociceptive threshold,
p < 0.05. Middle panel: time-course of the effect of a single TpGc injection (20 nmol,

icv) on CCI-induced mechanical allodynia. A group of ten CCI-operated 129 mice
received the HINT inhibitor, and allodynia was determined at the post-TpGc intervals
indicated (days). The dashed line indicates the nociceptive threshold typical of sham-
operated wild-type 129 mice. *Significantly different from the control nociceptive
threshold of day 0 (7th after surgery), p < 0.05.
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Notably, HINT modulation altered the negative effect of NMDA
on MOR-mediated antinociception (Fig. 6B). This observation sug-
gests that HINT1 supports MOR-mediated activation of NMDARs
and the negative influence of NMDARs on MOR signaling as well.

3.6. TpGc reduces the recruitment of NMDAR activity promoted by
morphine

It was addressed whether HINT enzymatic regulators alter the
capacity of morphine to promote changes at the level of NMDARs.
TpGc was administered to CD1 mice 30 min before a desensitizing
dose of 10 nmol morphine, and at various intervals post-opioid,
groups of mice were killed and parameters reflecting NMDAR ac-
tivity were determined in PAG synaptosomal membranes. Opioids
weakens the association of MORs with NMDAR NR1 subunits
(Rodríguez-Mu~noz et al., 2012). This step that engages the NMDAR-
mediated negative feedback on opioid signaling (Garz!on et al.,
2012), was prevented by TpGc and not by the HINT substrate
TpAd (Fig. 6C).

Morphine also promoted the PKC-mediated phosphorylation of
serine 890 in the NMDAR NR1 C1 segment, the Src-mediated
phosphorylation of tyrosine 1325 in the NMDAR NR2A subunit,
and enhanced CaMKII autophosphorylation, which requires
NMDAR-activated PKA (Garz!on et al., 2012). TpGc greatly reduced
the capacity of morphine to promote the aforementioned phos-
phorylation events (Fig. 7A).

In in vitro assays carried out with recombinant proteins, TpAd
impaired the association between recombinant HINT1 and PKCg, an
association that situates inactive PKC in the MOR-NMDAR envi-
ronment (Fig. 7B). In contrast, the HINT enzymatic inhibitor TpGc
and the weak HINT inhibitor TpGcKp did not significantly alter the
HINT1-PKCg interaction. TpGc inhibited the effect of TpAd on
HINT1-PKCg complex formation, thus indicating that inhibition of
HINT1 catalysis facilitates the binding of PKCg to the HINT1 protein
(Fig. 7B).

On the other hand, TpAd and to a much lesser extent TpGcKp,
was shown to increase the association of HINT1 with the NR1 C
terminal peptide containing the C0eC1eC2 segments (Fig. 7B).
Therefore, the in vitro studies showed the capacity of HINT modu-
lators to alter the association of HINT1 with signaling proteins
implicated in MOR-mediated regulation of NMDAR function.

4. Discussion

The NMDAR regulates essential processes in the nervous system,
such as synaptic plasticity, learning, memory formation, and
cognition, and its activation results in the permeation of Ca2þ ions,
a function that is enhanced or restricted by certain GPCRs (Lu et al.,
1999; Salter and Kalia, 2004) under the control of the HINT1 protein
(Rodríguez-Mu~noz et al., 2011a; S!anchez-Bl!azquez et al., 2012).
Thus, GPCRs such as the MOR positively regulate NMDAR-mediated
calcium fluxes (Chen and Huang, 1991; Rodríguez-Mu~noz et al.,
2012; S!anchez-Bl!azquez et al., 2009). However, GPCRs such as the
cannabinoid 1 receptor (CB1) dampens the activity of this gluta-
mate ionotropic receptor (S!anchez-Bl!azquez et al., 2013b, 2014). In
the absence of HINT1, these interactions areweakened to the extent
that morphine or WIN55,212-2 no longer regulate NMDAR activity
(Rodríguez-Mu~noz et al., 2011a; S!anchez-Bl!azquez et al., 2013b).

Fig. 5. Induction of mechanical allodynia in wild-type and HINT1"/" 129 mice: the
effect of the HINT enzymatic inhibitor, TpGc. A, CCI neuropathic pain was induced in
129 mice, and paw withdrawal thresholds were measured in the contralateral and
ipsilateral paw in both CCI -operated (left) and sham-operated (right) mice (n ¼ 10)
before (0) and 3, 7, and 13 days after surgery. The force (in grams) at which the mice
withdrew the paw in response to von Frey hair stimulation was determined as an
index of mechanical allodynia. All data are presented as the mean ± SEM of eight mice.
*Significantly different with respect to the ipsilateral paw; q versus the corresponding
paw in the wild-type mice, p < 0.05. B, Upper and Lower panels: the effect of TpGc on
the mechanical allodynia displayed by wild-type and HINT1"/" mice. TpGc (20 nmol)
or vehicle were administered icv to sham and CCI mice 7 days after surgery, and the
nociceptive threshold was evaluated 30 min later. Each bar represents the mean ± SEM
of eight mice. *Significantly different from the contralateral paw nociceptive threshold,
p < 0.05. Middle panel: time-course of the effect of a single TpGc injection (20 nmol,

icv) on CCI-induced mechanical allodynia. A group of ten CCI-operated 129 mice
received the HINT inhibitor, and allodynia was determined at the post-TpGc intervals
indicated (days). The dashed line indicates the nociceptive threshold typical of sham-
operated wild-type 129 mice. *Significantly different from the control nociceptive
threshold of day 0 (7th after surgery), p < 0.05.
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Notably, HINT modulation altered the negative effect of NMDA
on MOR-mediated antinociception (Fig. 6B). This observation sug-
gests that HINT1 supports MOR-mediated activation of NMDARs
and the negative influence of NMDARs on MOR signaling as well.

3.6. TpGc reduces the recruitment of NMDAR activity promoted by
morphine

It was addressed whether HINT enzymatic regulators alter the
capacity of morphine to promote changes at the level of NMDARs.
TpGc was administered to CD1 mice 30 min before a desensitizing
dose of 10 nmol morphine, and at various intervals post-opioid,
groups of mice were killed and parameters reflecting NMDAR ac-
tivity were determined in PAG synaptosomal membranes. Opioids
weakens the association of MORs with NMDAR NR1 subunits
(Rodríguez-Mu~noz et al., 2012). This step that engages the NMDAR-
mediated negative feedback on opioid signaling (Garz!on et al.,
2012), was prevented by TpGc and not by the HINT substrate
TpAd (Fig. 6C).

Morphine also promoted the PKC-mediated phosphorylation of
serine 890 in the NMDAR NR1 C1 segment, the Src-mediated
phosphorylation of tyrosine 1325 in the NMDAR NR2A subunit,
and enhanced CaMKII autophosphorylation, which requires
NMDAR-activated PKA (Garz!on et al., 2012). TpGc greatly reduced
the capacity of morphine to promote the aforementioned phos-
phorylation events (Fig. 7A).

In in vitro assays carried out with recombinant proteins, TpAd
impaired the association between recombinant HINT1 and PKCg, an
association that situates inactive PKC in the MOR-NMDAR envi-
ronment (Fig. 7B). In contrast, the HINT enzymatic inhibitor TpGc
and the weak HINT inhibitor TpGcKp did not significantly alter the
HINT1-PKCg interaction. TpGc inhibited the effect of TpAd on
HINT1-PKCg complex formation, thus indicating that inhibition of
HINT1 catalysis facilitates the binding of PKCg to the HINT1 protein
(Fig. 7B).

On the other hand, TpAd and to a much lesser extent TpGcKp,
was shown to increase the association of HINT1 with the NR1 C
terminal peptide containing the C0eC1eC2 segments (Fig. 7B).
Therefore, the in vitro studies showed the capacity of HINT modu-
lators to alter the association of HINT1 with signaling proteins
implicated in MOR-mediated regulation of NMDAR function.

4. Discussion

The NMDAR regulates essential processes in the nervous system,
such as synaptic plasticity, learning, memory formation, and
cognition, and its activation results in the permeation of Ca2þ ions,
a function that is enhanced or restricted by certain GPCRs (Lu et al.,
1999; Salter and Kalia, 2004) under the control of the HINT1 protein
(Rodríguez-Mu~noz et al., 2011a; S!anchez-Bl!azquez et al., 2012).
Thus, GPCRs such as the MOR positively regulate NMDAR-mediated
calcium fluxes (Chen and Huang, 1991; Rodríguez-Mu~noz et al.,
2012; S!anchez-Bl!azquez et al., 2009). However, GPCRs such as the
cannabinoid 1 receptor (CB1) dampens the activity of this gluta-
mate ionotropic receptor (S!anchez-Bl!azquez et al., 2013b, 2014). In
the absence of HINT1, these interactions areweakened to the extent
that morphine or WIN55,212-2 no longer regulate NMDAR activity
(Rodríguez-Mu~noz et al., 2011a; S!anchez-Bl!azquez et al., 2013b).

Fig. 5. Induction of mechanical allodynia in wild-type and HINT1"/" 129 mice: the
effect of the HINT enzymatic inhibitor, TpGc. A, CCI neuropathic pain was induced in
129 mice, and paw withdrawal thresholds were measured in the contralateral and
ipsilateral paw in both CCI -operated (left) and sham-operated (right) mice (n ¼ 10)
before (0) and 3, 7, and 13 days after surgery. The force (in grams) at which the mice
withdrew the paw in response to von Frey hair stimulation was determined as an
index of mechanical allodynia. All data are presented as the mean ± SEM of eight mice.
*Significantly different with respect to the ipsilateral paw; q versus the corresponding
paw in the wild-type mice, p < 0.05. B, Upper and Lower panels: the effect of TpGc on
the mechanical allodynia displayed by wild-type and HINT1"/" mice. TpGc (20 nmol)
or vehicle were administered icv to sham and CCI mice 7 days after surgery, and the
nociceptive threshold was evaluated 30 min later. Each bar represents the mean ± SEM
of eight mice. *Significantly different from the contralateral paw nociceptive threshold,
p < 0.05. Middle panel: time-course of the effect of a single TpGc injection (20 nmol,

icv) on CCI-induced mechanical allodynia. A group of ten CCI-operated 129 mice
received the HINT inhibitor, and allodynia was determined at the post-TpGc intervals
indicated (days). The dashed line indicates the nociceptive threshold typical of sham-
operated wild-type 129 mice. *Significantly different from the control nociceptive
threshold of day 0 (7th after surgery), p < 0.05.
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Notably, HINT modulation altered the negative effect of NMDA
on MOR-mediated antinociception (Fig. 6B). This observation sug-
gests that HINT1 supports MOR-mediated activation of NMDARs
and the negative influence of NMDARs on MOR signaling as well.

3.6. TpGc reduces the recruitment of NMDAR activity promoted by
morphine

It was addressed whether HINT enzymatic regulators alter the
capacity of morphine to promote changes at the level of NMDARs.
TpGc was administered to CD1 mice 30 min before a desensitizing
dose of 10 nmol morphine, and at various intervals post-opioid,
groups of mice were killed and parameters reflecting NMDAR ac-
tivity were determined in PAG synaptosomal membranes. Opioids
weakens the association of MORs with NMDAR NR1 subunits
(Rodríguez-Mu~noz et al., 2012). This step that engages the NMDAR-
mediated negative feedback on opioid signaling (Garz!on et al.,
2012), was prevented by TpGc and not by the HINT substrate
TpAd (Fig. 6C).

Morphine also promoted the PKC-mediated phosphorylation of
serine 890 in the NMDAR NR1 C1 segment, the Src-mediated
phosphorylation of tyrosine 1325 in the NMDAR NR2A subunit,
and enhanced CaMKII autophosphorylation, which requires
NMDAR-activated PKA (Garz!on et al., 2012). TpGc greatly reduced
the capacity of morphine to promote the aforementioned phos-
phorylation events (Fig. 7A).

In in vitro assays carried out with recombinant proteins, TpAd
impaired the association between recombinant HINT1 and PKCg, an
association that situates inactive PKC in the MOR-NMDAR envi-
ronment (Fig. 7B). In contrast, the HINT enzymatic inhibitor TpGc
and the weak HINT inhibitor TpGcKp did not significantly alter the
HINT1-PKCg interaction. TpGc inhibited the effect of TpAd on
HINT1-PKCg complex formation, thus indicating that inhibition of
HINT1 catalysis facilitates the binding of PKCg to the HINT1 protein
(Fig. 7B).

On the other hand, TpAd and to a much lesser extent TpGcKp,
was shown to increase the association of HINT1 with the NR1 C
terminal peptide containing the C0eC1eC2 segments (Fig. 7B).
Therefore, the in vitro studies showed the capacity of HINT modu-
lators to alter the association of HINT1 with signaling proteins
implicated in MOR-mediated regulation of NMDAR function.

4. Discussion

The NMDAR regulates essential processes in the nervous system,
such as synaptic plasticity, learning, memory formation, and
cognition, and its activation results in the permeation of Ca2þ ions,
a function that is enhanced or restricted by certain GPCRs (Lu et al.,
1999; Salter and Kalia, 2004) under the control of the HINT1 protein
(Rodríguez-Mu~noz et al., 2011a; S!anchez-Bl!azquez et al., 2012).
Thus, GPCRs such as the MOR positively regulate NMDAR-mediated
calcium fluxes (Chen and Huang, 1991; Rodríguez-Mu~noz et al.,
2012; S!anchez-Bl!azquez et al., 2009). However, GPCRs such as the
cannabinoid 1 receptor (CB1) dampens the activity of this gluta-
mate ionotropic receptor (S!anchez-Bl!azquez et al., 2013b, 2014). In
the absence of HINT1, these interactions areweakened to the extent
that morphine or WIN55,212-2 no longer regulate NMDAR activity
(Rodríguez-Mu~noz et al., 2011a; S!anchez-Bl!azquez et al., 2013b).

Fig. 5. Induction of mechanical allodynia in wild-type and HINT1"/" 129 mice: the
effect of the HINT enzymatic inhibitor, TpGc. A, CCI neuropathic pain was induced in
129 mice, and paw withdrawal thresholds were measured in the contralateral and
ipsilateral paw in both CCI -operated (left) and sham-operated (right) mice (n ¼ 10)
before (0) and 3, 7, and 13 days after surgery. The force (in grams) at which the mice
withdrew the paw in response to von Frey hair stimulation was determined as an
index of mechanical allodynia. All data are presented as the mean ± SEM of eight mice.
*Significantly different with respect to the ipsilateral paw; q versus the corresponding
paw in the wild-type mice, p < 0.05. B, Upper and Lower panels: the effect of TpGc on
the mechanical allodynia displayed by wild-type and HINT1"/" mice. TpGc (20 nmol)
or vehicle were administered icv to sham and CCI mice 7 days after surgery, and the
nociceptive threshold was evaluated 30 min later. Each bar represents the mean ± SEM
of eight mice. *Significantly different from the contralateral paw nociceptive threshold,
p < 0.05. Middle panel: time-course of the effect of a single TpGc injection (20 nmol,

icv) on CCI-induced mechanical allodynia. A group of ten CCI-operated 129 mice
received the HINT inhibitor, and allodynia was determined at the post-TpGc intervals
indicated (days). The dashed line indicates the nociceptive threshold typical of sham-
operated wild-type 129 mice. *Significantly different from the control nociceptive
threshold of day 0 (7th after surgery), p < 0.05.
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Figure 5.	Time-course effect of a single dose of TrpGc injection (20 nmol, i.c.v) on CCI-

induced mechanical allodynia. A group of ten CCI-operated 129 mice received the Hint1 

inhibitor, and allodynia was determined at the post-TrpGc intervals indicated (days). The 

dashed line indicates the nociceptive threshold typical of sham- operated wild-type 129 

mice. *Significantly different from the control nociceptive threshold of day 0 (7th after 

surgery), p < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

Notably, HINT modulation altered the negative effect of NMDA
on MOR-mediated antinociception (Fig. 6B). This observation sug-
gests that HINT1 supports MOR-mediated activation of NMDARs
and the negative influence of NMDARs on MOR signaling as well.

3.6. TpGc reduces the recruitment of NMDAR activity promoted by
morphine

It was addressed whether HINT enzymatic regulators alter the
capacity of morphine to promote changes at the level of NMDARs.
TpGc was administered to CD1 mice 30 min before a desensitizing
dose of 10 nmol morphine, and at various intervals post-opioid,
groups of mice were killed and parameters reflecting NMDAR ac-
tivity were determined in PAG synaptosomal membranes. Opioids
weakens the association of MORs with NMDAR NR1 subunits
(Rodríguez-Mu~noz et al., 2012). This step that engages the NMDAR-
mediated negative feedback on opioid signaling (Garz!on et al.,
2012), was prevented by TpGc and not by the HINT substrate
TpAd (Fig. 6C).

Morphine also promoted the PKC-mediated phosphorylation of
serine 890 in the NMDAR NR1 C1 segment, the Src-mediated
phosphorylation of tyrosine 1325 in the NMDAR NR2A subunit,
and enhanced CaMKII autophosphorylation, which requires
NMDAR-activated PKA (Garz!on et al., 2012). TpGc greatly reduced
the capacity of morphine to promote the aforementioned phos-
phorylation events (Fig. 7A).

In in vitro assays carried out with recombinant proteins, TpAd
impaired the association between recombinant HINT1 and PKCg, an
association that situates inactive PKC in the MOR-NMDAR envi-
ronment (Fig. 7B). In contrast, the HINT enzymatic inhibitor TpGc
and the weak HINT inhibitor TpGcKp did not significantly alter the
HINT1-PKCg interaction. TpGc inhibited the effect of TpAd on
HINT1-PKCg complex formation, thus indicating that inhibition of
HINT1 catalysis facilitates the binding of PKCg to the HINT1 protein
(Fig. 7B).

On the other hand, TpAd and to a much lesser extent TpGcKp,
was shown to increase the association of HINT1 with the NR1 C
terminal peptide containing the C0eC1eC2 segments (Fig. 7B).
Therefore, the in vitro studies showed the capacity of HINT modu-
lators to alter the association of HINT1 with signaling proteins
implicated in MOR-mediated regulation of NMDAR function.

4. Discussion

The NMDAR regulates essential processes in the nervous system,
such as synaptic plasticity, learning, memory formation, and
cognition, and its activation results in the permeation of Ca2þ ions,
a function that is enhanced or restricted by certain GPCRs (Lu et al.,
1999; Salter and Kalia, 2004) under the control of the HINT1 protein
(Rodríguez-Mu~noz et al., 2011a; S!anchez-Bl!azquez et al., 2012).
Thus, GPCRs such as the MOR positively regulate NMDAR-mediated
calcium fluxes (Chen and Huang, 1991; Rodríguez-Mu~noz et al.,
2012; S!anchez-Bl!azquez et al., 2009). However, GPCRs such as the
cannabinoid 1 receptor (CB1) dampens the activity of this gluta-
mate ionotropic receptor (S!anchez-Bl!azquez et al., 2013b, 2014). In
the absence of HINT1, these interactions areweakened to the extent
that morphine or WIN55,212-2 no longer regulate NMDAR activity
(Rodríguez-Mu~noz et al., 2011a; S!anchez-Bl!azquez et al., 2013b).

Fig. 5. Induction of mechanical allodynia in wild-type and HINT1"/" 129 mice: the
effect of the HINT enzymatic inhibitor, TpGc. A, CCI neuropathic pain was induced in
129 mice, and paw withdrawal thresholds were measured in the contralateral and
ipsilateral paw in both CCI -operated (left) and sham-operated (right) mice (n ¼ 10)
before (0) and 3, 7, and 13 days after surgery. The force (in grams) at which the mice
withdrew the paw in response to von Frey hair stimulation was determined as an
index of mechanical allodynia. All data are presented as the mean ± SEM of eight mice.
*Significantly different with respect to the ipsilateral paw; q versus the corresponding
paw in the wild-type mice, p < 0.05. B, Upper and Lower panels: the effect of TpGc on
the mechanical allodynia displayed by wild-type and HINT1"/" mice. TpGc (20 nmol)
or vehicle were administered icv to sham and CCI mice 7 days after surgery, and the
nociceptive threshold was evaluated 30 min later. Each bar represents the mean ± SEM
of eight mice. *Significantly different from the contralateral paw nociceptive threshold,
p < 0.05. Middle panel: time-course of the effect of a single TpGc injection (20 nmol,

icv) on CCI-induced mechanical allodynia. A group of ten CCI-operated 129 mice
received the HINT inhibitor, and allodynia was determined at the post-TpGc intervals
indicated (days). The dashed line indicates the nociceptive threshold typical of sham-
operated wild-type 129 mice. *Significantly different from the control nociceptive
threshold of day 0 (7th after surgery), p < 0.05.
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Inhibition of Hint1 reduces neuropathic pain in chronic constriction injury (CCI) 

model of mice  

The output of the dorsal horn nociceptive network in the spinal cord is greatly enhanced 

during chronic pain, particularly via enhanced excitatory synaptic transmission of NMDA 

receptors.7 Hence, we assessed the possible relevance of Hint1 in this disease using 

chronic constriction injury (CCI) model of neuropathic pain. In the CCI model, the 

mechanical sensitivity to pain threshold is evaluated by the ability of injured mice to 

withhold mechanical force of the von-Frey filament. Nerve-injured Hint1+/+ and Hint1-/- 

mice maintained a healthy appearance and were well groomed. Although their body 

weight decreased after the surgery, it returned to the preoperative values within 2 to 4 

days in all animals. Both Hint1+/+ and Hint1-/- mice displayed increased sensitivity to 

mechanical allodynia on the contralateral side of the surgery (Figure 4A, left). Notably, 

Hint1-/- mice also displayed enhanced sensitivity on the ipsilateral side when compared to 

wild-type animals (Figure 4A, right). Administration of a single dose of TrpGc 

significantly reduced mechanical allodynia, an effect that was observed 30 min after the 

injection, which lasted for about 48-72 h (Figure 5). In contrast such effect was absent in 

Hint1-/- mice (Figure 4B). 

 

Ex-vivo western blot analysis demonstrated that TrpGc reduces activation of 

NMDAR upon administration of morphine and in neuropathic pain 

In the PAG matter of the brain, it has been proposed that the cross talk between MOR and 

NMDAR regulates the development of tolerance to opioids.13, 15 Opioids are known to 
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modulate the association of MORs with NMDAR subunits (Chapter1, Scheme 1). This 

process engages NMDAR mediated negative feedback inhibition of the opioid signaling 

pathway. Morphine promotes the PKC-mediated phosphorylation of serine 890 in the 

NMDAR NR1 C1 segment, the Src-mediated phosphorylation of tyrosine 1325 of the 

NMDAR NR2A subunit, and enhanced CaMKII autophosphorylation, which requires 

NMDAR-activated PKA. TrpGc was administered to CD1 mice 30 min before 

administering the dose of 10 nmol morphine, and at various intervals, post-opioid, groups 

of mice were euthanized, and parameters reflecting NMDAR activity were determined in 

PAG synaptosomal membranes. TrpGc significantly reduced the capacity of morphine to 

promote these phosphorylation events (Figure 6A).  

CCI is known to increase the phosphorylation of NMDAR and its downstream signaling 

proteins, both in the spinal cord as well as in the PAG synaptosomes. Hence, we also 

investigated the amount of NMDAR phosphorylation in the brain and spinal cord tissues 

of animals used in the CCI model of neuropathic pain. Sham and CCI operated mice 

studied 7 days following the surgery has been previously exhibited to display differences 

in the level of NMDAR phosphorylation. Notably, animals under neuropathic pain and 

treated with TrpGc, displayed a reduced amount of the phosphorylation events in a time-

dependent manner, and 3 h later, the activity of CaMKII (based on P-Thr286), and 

NMDARs (based on P-Ser NR1 and P-Tyr NR2) was significantly reduced (Figure 6B). 

Hence, Hint1 inhibition reduces NMDAR mediated negative feedback regulation of the 

opioids.  

 



	 55	

Figure 6.  Modulation of HINT enzymatic activity alters the regulatory connection 

between MOR and NMDAR. A) Ex vivo evaluation of NMDAR activity: CD1 mice were 

injected with 20 nmol TrpGc or vehicle, and 20 min later, all of the mice received 10 

nmol morphine. All drugs were icv injected. Groups of mice were sacrificed at the post-

opioid intervals indicated (m stands for min), and PAG synaptosomes were obtained to 

determine the levels of phosphorylation related to NMDAR activity in western blots. 

Actin was used as a loading control. Each bar is the mean ± SEM of groups of six mice. 

*Significantly different from the control group that received the opioid and the vehicle 

instead of TrpGc, p < 0.05. B) The effect of HINT enzymatic inhibitor on NMDAR-

related molecular changes induced by CCI. TrpGc (20 nmol) was administered to CCI 

mice 7 days after surgery, and different groups of animals were killed at the post-TrpGc 

time intervals indicated. The effects of TrpGc on phosphorylated CaMKII and NMDAR 

NR subunits were determined by western blot analysis of spinal cord synaptosomal 

membranes. Each bar represents the mean ± SEM of six mice. *Significant difference 

with respect to the CCI control group, which received the vehicle instead of TrpGc, p < 

0.05. All drugs were injected i.c.v. 
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influence of extracellular zinc ions on NR2A-containing NMDARs to
enhance their activity (Zheng et al., 1998). PKCg further promotes
AMPAR-NMDAR activity acting at the HINT1-bound Raf-1/MEK/
ERK1/2 cassette. Thus, PKCg under the regulation of MORs indi-
rectly contributes to the negative control of opioid signaling
through the recruitment of NMDAR activity. Furthermore, PKCg
also acts on specific amino acid residues in the MOR C terminal
sequence and third internal loop, reducing the coupling of the MOR
to its transduction and, consequently, the strength of the opioid
signaling (Chen et al., 2013; Garz!on et al., 2012; Rodríguez-Mu~noz
and Garz!on, 2013).

The data presented here may resolve the controversy regarding
whether HINT1 acts as a scaffold for inactive PKC or behavesmerely
as an enzyme for as yet unknown derivatives of nucleoside
monophosphates (Brenner, 2002; McDonald et al., 1987). Indeed,
TpAd behaves as an exogenous substrate of HINT in in vitro assays
(Chou et al., 2007a), but it also reduces the association of PKCgwith
HINT1 while increasing the binding of the NMDAR NR1 subunits to
HINT1 proteins. The TpGc non-competitive inhibitor of HINT
enzymatic activity did not decrease the HINT1-PKCg interaction
and barely increased that of HINT1 with the NR1 subunit. However,
TpGc antagonized the effect of TpAd on the HINT1-PKCg interaction
probably preventing the formation of the adenylated active site
His-112 that could interfere PKCg binding. Therefore, HINT1 does
indeed display an enzymatic activity that regulates its association
with signaling proteins such as PKCg and NMDAR NR1 subunits
(Fig. 8A). In the absence of substrate, HINT1 histidines can bind in a
zinc-dependent fashion to cysteines in the PKC regulatory domain
increasing the activation threshold of the kinase (McDonald et al.,
1987; S!anchez-Bl!azquez et al., 2012). Following MOR stimulation,
HINT1 enzymatic activity leads to adenylation of His-112 and
reduction of the zinc-mediated coupling of inactive PKC (Chou
et al., 2007a), leading to release of PKC and then facilitating its
activation via DAG and calcium binding. Substrate turnover likely
promotes a conformational change in the HINT1 protein that en-
forces its association with the PKCg substrate, the NMDAR NR1
subunit. These processes together will lead to the reinforcement of
the NMDAR-mediated negative feedback onMOR signaling (Garz!on
et al., 2012; Rodríguez-Mu~noz and Garz!on, 2013).

It is possible that upon opioid activation of MORs, the HINT
endogenous substrate reaches saturating levels and in the range of
doses used TpAd produces no significant alterations of morphine
antinociception. Thus, MOR-NMDAR cross-regulation depends on
the availability of an as yet unknown endogenous substrate. The
inhibition of HINT1 enzymatic activity impairs this functional
connection and MOR signaling is freed from NMDAR-mediated
restriction, increasing opioid antinociception and reducing the
appearance of MOR desensitization. Morphine-induced anti-
nociceptive tolerance is sustained by active PKC, which following
the subsequent administration of opioids rapidly recruits NMDAR
activity to restrict MOR signaling to a greater extent than that
observed normally. Under these circumstances, PKC inhibition or
NMDAR antagonism successfully rescuesmorphine antinociception
from tolerance (Chen et al., 2013; Garz!on et al., 2012; Rodríguez-
Mu~noz et al., 2012) in a manner similar to that produced by the
HINT enzymatic inhibitor in morphine-tolerant mice. In this sce-
nario for acute tolerance, TpGc would block the access of the
endogenous substrate enhancing the inhibitory association of PKC
with HINT1, thereby reducing the impact of PKC/Src-activated
NMDAR on MOR signaling.

Fig. 7. Modulation of HINT enzymatic activity alters the regulatory connection be-
tween MOR and NMDAR. A, Ex vivo evaluation of NMDAR activity: CD1 mice were
injected with 20 nmol TpGc or vehicle, and 20 min later, all of the mice received
10 nmol morphine. All drugs were icv injected. Groups of mice were sacrificed at the
post-opioid intervals indicated (m stands for min), and PAG synaptosomes were ob-
tained to determine the levels of phosphorylation related to NMDAR activity in
western blots. Actin was used as a loading control. Each bar is the mean ± SEM of
groups of six mice. *Significantly different from the control group that received the
opioid and the vehicle instead of TpGc, p < 0.05. B, In vitro assay with recombinant
proteins: the effect of HINT modulators TpGc, TpGcKp, TpAd on the association of
HINT1 with full (regulatory þ catalytic domains) PKCg (left) or with the cytosolic
peptide of NMDAR NR1 subunit containing the C0eC1eC2 segments (right). TpGc
antagonizes the effect of TpAd on HINT1-PKCg association (bottom). HINT1 was used at
200 nM, PKCg and NR1 at 100 nM, HINT regulators at 30 mM (left and right panels).
PKCg and NR1 were recovered (P), and the associated HINT1 was determined by

western blot analysis. The assay was repeated three times with comparable outcome.
Each bar is the mean ± SEM of three determinations. *Significantly different from the
control group (C) without the HINT modulator, p < 0.05.
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enhancement of excitatory synaptic transmission via NMDARs (Liu
and Salter, 2010). Thus, we assessed the possible relevance of HINT1
in these diseases using the CCI animal model of neuropathic pain,
which has been characterized at the molecular and behavioral level
in mice (S!anchez-Bl!azquez et al., 2013a). Nerve-injured HINT1þ/þ

and HINT1"/"micemaintained a healthy appearance andwerewell
groomed, and although their bodyweight decreased after surgery it
returned to preoperative values within 2e4 days in all animals.
Sham-operated and CCI HINT1"/" mice studied 7 days after surgery
displayed differences in the level of phosphorylation of signaling
proteins related to NMDAR activation, and these differences were
observed for the spinal cord as well as PAG synaptosomes (Fig. 4A).
Notably, TpGc reduced the incidence of such phosphorylation
events in a time-dependent manner, and 3 h later, the activity of
CaMKII (based on P-Thr286), and NMDARs (based on P-Ser NR1 and
P-Tyr NR2) was significantly reduced (Fig. 4B).

In the CCI model, HINT1"/" mice showed increased allodynic
responses in the ipsilateral nerve-injured leg when studied 3 and
13 days after surgery, and also in the contralateral pawwith respect
to wild-type animals (Fig. 5A). Because HINT1"/" mice display
enhanced NMDAR activity in response to agonists (Vicente-S!anchez
et al., 2013), these mice are likely more susceptible to CCI-induced
mechanical hypersensitivity than their wild-type littermates. Thus,
by regulating NMDAR activity, the HINT1 protein may be involved
in this model of neuropathic pain. Indeed, TpGc but not the HINT
substrate TpAd or the weak HINT enzymatic inhibitor TpGcKp,
significantly reduced allodynia inwild-typemice, an effect that was
observed 30 min after injection and that lasted for 48e72 h. In
contrast, TpGc did not alleviate the allodynia exhibited by HINT1"/"

mice (Fig. 5B).

3.5. Influence of HINT inhibition on NMDAR-mediated
excitotoxicity and negative regulation of morphine antinociception

We studied the possible influence of HINT1 regulators on the
activation of NMDARs promoted by the agonist NMDA. The expo-
sure of neuronal-enriched E16 murine cortical cultures from CD1
mice to NMDA for 24 h resulted in a concentration-dependent
decrease in cell viability, as measured by LDH release. Whereas,
the absence of HINT1 reduces cell viability in response to NMDA
insult (Vicente-S!anchez et al., 2013), TpGc or TpGcKp did not
modify either cell viability or NMDA toxicity in cultured cells
(Fig. 6A). These observations indicate that the HINT1 regulators
used in this study do not directly interfere with the binding of
agonists to NMDARs, and that the inhibition of HINT1 enzymatic
activity is not equivalent to the loss of HINT1 expression.

Fig. 4. Alterations in molecular parameters related to NMDAR activity in the unilateral
sciatic nerve constriction model of neuropathic pain: the effect of TpGc. A, CCI
neuropathic pain was induced in 129 mice. The mice underwent surgery under
anesthesia on day 0 and were sacrificed 7 days later. The presence of activated CaMKII
and of phosphorylated NMDAR NR subunits was determined by western blot analysis
of PAG and spinal cord synaptosomal membranes. Immunosignals (average optical
density of the pixels within the object area/mm2) are expressed as the change relative
to the control group (attributed an arbitrary value of 1, dashed lines). Actin was used as
a loading control, and the immunosignals did not differ by more than 10%. Each bar
represents the mean ± SEM of the data from three determinations (4 animals each)
that were performed using different blots. *Significant difference with respect to the
sham operated control group, p < 0.05. B, The effect of HINT enzymatic inhibitor on
NMDAR-related molecular changes induced by CCI. TpGc (20 nmol) was administered
to CCI mice 7 days after surgery, and different groups of animals were killed at the
post-TpGc time intervals indicated. The effects of TpGc on phosphorylated CaMKII and
NMDAR NR subunits were determined by western blot analysis of spinal cord synap-
tosomal membranes. Each bar represents the mean ± SEM of six mice. *Significant
difference with respect to the CCI control group which received the vehicle instead of
TpGc, p < 0.05. All drugs were injected icv.
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TrpGc prevents endomorphin-2 tolerance on the spinal cord 

Encouraged by our promising results with TrpGc on morphine analgesic response, we 

next wanted to ask whether inhibition of Hint1 has any effect on endogenous opioids 

such as endomorphin-1 or 2. Both opioids previously have been shown to develop 

tolerance within few minutes of administration.22  The model would provide us with an  

alternative for rapid pharmacological evaluation of Hint1 inhibitors in vivo. As seen in 

Figure 7A, administration of the endomorphin-2 (10 nmoles) elicits an analgesic 

response in mice on a hot plate assay. In control experiment administration of the second 

dose of endomorphin-2 elicits a lower analgesic response when compared to the priming 

dose. Animals treated with TrpGc (5 nmoles) before administration of the second dose 

elicited nearly an identical response to the first one, indicating rescue in the development 

of the tolerance. This result suggests that Hint1 active site plays an important role in the 

development of tolerance to opioids in the spinal cord pain circuit. 

 

Inhibition of Hint1 antagonizes the effect of morphine on NMDA evoked behavior 

in mice   

Spinal activation of NMDA receptors has been shown to play an important role in the 

nociceptive processes at the spinal level.7, 8 Intrathecal administration of NMDA (0.3 

nmoles i.t.), an agonist of NMDA receptor, induces hyperalgesic responses such as 

scratching, biting and licking behavior in mice (Scheme 1).10 Administration of opioids 

inhibit these behavior in dose dependent manner. We wanted to investigate the effect of 

Hint1 inhibition on the cross talk between NMDA receptor and µ-opioid receptor on the  
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Figure 7. Effect of TrpGc on the development of Endomorphin-2 and morphine acute 

tolerance in mice. A) Endomorphin-2 acute tolerance, prevention: CD1 mice were 

administered 20 nmol TrpGc or vehicle 5 min before a priming dose of 10 nmol 

endomorphin-2. After 30 min, all mice received a test dose of the 10 nmol morphine, and 

anti-nociception was evaluated 2.5 min later. The bars represent the mean ± SEM of 

groups of four mice. B) % Inhibition of NMDA evoked behavior (upon administration of 

0.3 nmoles of NMDA intrathecally) in a dose dependent manner by morphine (circle). 

TrpGc (black triangle) antagonized the effect of morphine and right shifted the dose 

response curve by at least 10 fold. Values represents standard deviation within n = 3 

mice. 
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spinal nociceptive process. Co-administration of TrpGc along with NMDA and morphine 

antagonized the opioids analgesic effect in a dose dependent manner (Figure 7B). A ten-

fold shift in the dose response curve to the right was observed upon Hint1 inhibitions 

(Figure 7B). Our results clearly indicate an important role of Hint1 active site in 

regulating bidirectional cross talk between MOR and NMDAR on the spinal cord. 

 

Discussion 

Results from our current study strongly suggest that Hint1 active site is important for the 

bidirectional cross talk between GPCRs and NMDARs. Inhibition of Hint1 not only 

increases the analgesic effect but also prevents/rescues the development of the opioid 

tolerance. One of the significant findings was that the pretreatment of animals with a 

single dose of TrpGc alone reduces neuropathic pain, an effect that lasted for 3-4 days in 

animals. Functional assembly of NMDAR requires both NR1 (GluN1) and NR2A 

(GluN2A) or NR2B (GluN2B) subunits. Both GluN2A and GluN2B play a very different 

role in synaptic plasticity and NMDA-induced neuropathic pain.23-25 Moreover, recent 

results from ji and co-workers have clearly demonstrated that GluN2B, but not GluN2A 

is responsible for the development of neuropathic pain in the spinal cord.8 Our results 

point to the fact that Hint1 may be involved in regulating the assembly or activation of 

different NMDAR subunits for differential functions. The fact that pretreatment with a 

single dose of a small molecule Hint1 inhibitor reduces the neuropathic pain in animals 

for 4-5 days without morphine is very intriguing result. Are the observed effect of Hint1 

inhibition on neuropathic pain resulting from a decrease in the development of tolerance 

to endogenous opioids such as endomorphins or directly modulating NMDAR function? 
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Investigating the effect of a Hint1 inhibitor on neuropathic pain in MOR knockout mice 

or in the presence of an MOR antagonist could be used to address such question.  

From functional point of view, MOR is negatively regulated by NMDA receptor. Our 

molecular studies indicated that TrpGc reduces activation of NMDAR and hence 

prevents/rescues the development of opioid’s tolerance. We also discovered that TrpGc 

antagonizes morphine’s effect on NMDA evoked behavior in animals. These results 

indicate that Hint1 is a critical regulator of the bidirectional cross talk between MOR and 

NMDA receptors. However, correlation of the Hint1 active site in regulating NMDAR 

activity still remains largely unknown. In our study, we also found that Hint1-/- mice are 

more sensitized to pain on the ipsilateral side in CCI model, when compared to wild type 

(Figure 4A). The ratio of NMDA/AMPA receptor in the spinal lamina II neurons has 

been previously shown to be important in amplifying neuropathic pain.8, 26 Future genetic 

studies with catalytically impaired or less active Hint1 mutants mice models and 

electrophysiological studies would help to correlate Hint1 activity to NMDAR function.27 

NMDAR regulates a variety of physiological processes by regulating the flux of Ca
2+ 

ions 

across the cellular membrane. Dysregulation of NMDAR has been associated with 

disorders such as chronic pain, Schizophrenia and Alzheimer’s disease.23, 25 It is also 

speculated that activity of NMDAR can be modulated by a variety of different GPCRs. 

For example, both cannabinoid 1 receptor (CB1) and dopaminergic receptors are known 

modulate the function of NMDA receptor.28 29 Clearly, such cross talks has been evolved 

to regulate complex functions of the brain. Consistent with this, Hint1 knock out animals 

exhibit less nicotine dependence and increased amphetamine sensitivity.30, 31 An aberrant 
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expression of Hint1 is also observed in patients suffering from schizophrenia. Taken 

together, it is likely that Hint1 has an important role in the modulation of the NMDAR 

functions. Thus, Hint1 inhibitors could also serve as chemical probes to study function of 

Hint1 in regulating nicotine dependence and amphetamine sensitivity. In addition, our 

Hint1	 inhibitors could be of potential therapeutic interest as adjuvants to reduce the 

development of tolerance to opioids as well as reduce the dosage requirement of the 

opioids clinically. 

Materials and Methods 

General Methods and Materials: 
Guanosine was purchased from Acros Organics. p-Chlorophenyl Chloroformate (cat no: 

363871) and Tryptamine (cat no: 246557 Sigma Aldrich) was purchased from Sigma-

Aldrich. All solvents were purchased from Fischer Scientific and used as received unless 

otherwise noted. Pyridine was purchased in a sure seal bottle from Sigma-Aldrich. Thin-

layer chromatography was performed using EMD pre-coated silica gel 60 F-254 plates. 

All preparative separations were performed using Teledyne Isco combiflash system and 

using RediSepRf high performance gold silica pre-packed columns. High-resolution mass 

spectrometry was performed LTQ Orbitrap Velos (Thermo ScientificTM). Samples and 

compounds during synthesis were freeze-dried with a lyophilizer available from 

Labonaco. All 1H- and 13C-NMR spectra were collected in d6-DMSO (Cambridge Isotope 

Laboratories, Cambridge, MA) at 25 °C using AscendTM Bruker spectrometer 500 MHz 

at the Department of Medicinal Chemistry CCRB NMR facility at the University of 

Minnesota unless otherwise stated. All NMR chemical shifts were recorded in δ parts per 
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million using d6-DMSO as internal reference. Thermodynamic measurements for protein-

ligand association were performed in 96-well plates (Nunc 260251 U96 DeepWell 96-

Well x 1.3 ml from Thermo Scientific) using MicroCal Auto-ITC200 system (GE 

Healthcare life sciences). Nickel nitrilotriacetic acid (Ni-NTA) was purchased from 

Qiagen and cobalt column agarose from Thermofishcer Scientific. Biological buffers 

were purchased from Sigma-Aldrich. Protease inhibitor tablets were obtained from 

Roche. 

 

Male albino CD-1 mice (Charles River), and a mouse knock-out strain on a 96% 129 

mice genetic background carrying a disrupted Hint1 allele and the corresponding wild 

type (a gift from I.B. Weinstein/J.B. Wang), were used in these studies. Genotypes were 

confirmed by PCR analysis of DNA extracted from tail biopsies, and the animals used in 

this study were 8- to 12-week-old adult male mice. The mice were maintained at 22 °C 

on a diurnal 12 h light/dark cycle. Procedures involving mice adhered strictly to the 

guidelines of the European Community for the Care and Use of Laboratory Animals 

(Council Directive 86/609/EEC) and Spanish Law (RD53/2013) regulating animal 

research. For the NMDA evoked behavior and endomorphin tolerance studies were 

performed at University of Minnesota animal care RAR facilities with guidelines strictly 

adhering to IACUC approved protocols. Morphine sulfate (Merck, Darmstadt, Germany) 

was dissolved in saline. The inhibitor of Hint enzymatic activity TrpGc was prepared in 

1:1:18 (v/v/v) mixture of ethanol: Kolliphor EL (Sigma, C5135): physiological saline and 

injected icv into the lateral ventricles in a volume of 4 µl. The intrathecal administration 

of endomorphin-2 and TrpGc was prepared as above and injected in 5 µl. Studies with 
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subcutaneous evaluation of the morphine and TrpGc was performed at 10 mg/kg and 50 

mg/kg doses. 

Protein Expression and Purification: 

The full-length sequence of hHint1 was expressed from the pMCSG7 vector (N-terminal, 

tobacco etch virus (TEV) protease cleavable His6 tag) in Rosetta2 pLysS cells. The cells 

were grown in 2 x 1L LB (Fisher Scientific) media with ampicillin (100 mg/L, Sigma-

Aldrich), chloramphenicol (34 mg/L, Sigma-Aldrich), and glucose (0.1% w/v, BD Difco) 

at 37 °C with shaking at 250 rpm. At OD600 = 0.7, cultures were induced to a final 

concentration of 1 mM IPTG (Denville Scientific Inc) and incubated at 25°C overnight. 

The cultures were harvested by centrifugation at 7,500 g at 4 °C for 10 min and the 

pellets were collected, then resuspended in buffer A (50 mM HEPES pH 7.0, 300 mM 

NaCl, 10% glycerol, 10 mM imidazole), which was then adjusted to 1 mg·mL-1 lysozyme 

and Benzonase nuclease (20 μl). The resuspended cells were lysed by sonication (eight 

cycles of 30 s on, 30 s off) at 4 °C. The cell debris was removed from the lysate by 

centrifugation at 16,000 g at 4 °C for 45 min. The supernatant was loaded onto a nickel 

affinity column, washed with buffer A, and then eluted with an imidazole gradient using 

buffer B (50 mM HEPES pH 7.0, 300 mM NaCl, 10% glycerol, 500 mm imidazole). 

Fractions containing desired protein was combined and to it was added N-terminally His-

tagged TEV protease 2% (w/w). The resulting solutions was transferred to a dialysis 

tubing (molecular weight cut-off of 6000-7000 Da) and dialyzed against 2 L of TEV 

cleavage buffer (50 mM HEPES pH 7.0, 300 mM NaCl, 10% glycerol, 0.5 mM EDTA 

and 1 mM DTT) overnight at 4 °C. The dialyzed protein was then buffer exchanged into 
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buffer A and passed through cobalt affinity chromatography to remove TEV protease. 

The flow through obtained was concentrated to 5 mL and further purified using size 

exclusion chromatography (SEC buffer, 20 mM Tris pH 7.5, 150 mM NaCl, 10% 

glycerol). Pure fractions were collected and concentrated. The protein concentration was 

then determined using A280 absorbance in nanodrop using calculated extinction 

coefficient of 8480 M-1 cm-1 and molecular weight of 14000 Da. The final protein was 

stored at −80 °C until in use. 

 

Isothermal Titration Calorimetry (ITC): 

ITC experiments were conducted on a MicroCal Auto-ITC200 system (GE Healthcare 

life sciences). All titration experiments were performed at 20 °C in ITC buffer (10 mM 

Tris, 150 mM NaCl, pH 7.5). hHint1 was exchanged into ITC buffer using Micro 

biospin6 columns (BioRad, USA) and final protein concentrations were determined as 

described above. To determine the dissociation constant of stock concentration (400 μM) 

of TrpGc was titrated with 30 μM of hHint1. Twenty injections of ligand were injected 

(injection volume 2 μl) into the protein cell. The resulting change in enthalpy was 

measured and the background heat of dilution was subtracted by performing similar 

experiments in the absence of inhibitors. The background heat of dilution was subtracted 

from the resulting data and was fitted into one-site binding model using the ITC200 

microcal software. The resulting association constant obtained by fitting the curve was 

converted into Kd using Ka =1/Kd relationship. 
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Evaluation of antinociception and production of acute tolerance of morphine  

Antinociception was assessed at different time intervals after administration of the drugs 

using the corresponding vehicle as a control. The response of the animals to nociceptive 

stimuli was determined by the warm water (52 °C) tail-flick test and antinociception was 

expressed as a percentage of the maximum possible effect (MPE 1⁄4 100 [test latency 

baseline latency]/[cut-off time (10 s) baseline latency]). The baseline latencies ranged 

from 2 to 2.5 s and the vehicle did not affect them.  

Animals received an icv priming dose of morphine that produces approximately 80% of 

the maximum antinociceptive effect. The experimental groups received, TpGc or the 

vehicle prior to the morphine-priming dose. Development of acute tolerance was 

ascertained by evaluating the antinociceptive response 24 h post-injection, when the 

antinociceptive effect of priming morphine dose had dissipated as witnessed by the 

restoration of baseline latencies in the tail-flick test. Pharmacological rescue of the acute 

tolerance induced via priming does of morphine was evaluated by administering TrpGc 

(20 nmol, icv) 20 and 50 min before administering the second dose of morphine (24 h 

post-priming dose).  

Evaluation of the prevention of the acute tolerance to endomorphin-2 by TrpGc  

Antinociception was assessed at different time intervals after administration of the drugs 

using the corresponding vehicle as a control as describe above. Animals received an i.t-

priming dose of endomorphin-2 (10 nmol) that produces approximately 90% of the 

maximum antinociceptive effect. The experimental groups received TrpGc (20 nmol) or 
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the vehicle prior to the endomorphin-2 priming dose and antinociception was assessed 

from the first dose in the animals. All animal groups after 30 minutes received second 

dose of endomorphin-2 and evaluating the antinociceptive response after 2.5 min to 

assess the development of acute tolerance from the first dose.  

Chronic constriction nerve injury pain model  

After testing the basal mechanical sensitivity of the mice, neuropathic pain was induced 

by chronic constriction injury (CCI) under isoflurane/oxygen anesthesia,32 using a 

modification of the procedure described by Bennett and Xie.33 Briefly, a 0.5 cm incision 

was made in the right mid-thigh, the biceps femoris muscle was separated and the sciatic 

nerve was exposed proximal to its trifurcation. Two ligatures (5/0 braided silk suture; 

Lorca Marin, Murcia, Spain, 70014) were tied around this nerve, approximately 1 mm 

apart, until a short flick of the ipsilateral hind limb was observed. The incision was then 

closed with a 4-0 Ethicon silk suture in layers. The same procedure was used for sham 

surgeries except that the sciatic nerve was exposed but not ligated.  

The tactile pain threshold was then assessed on days 0, 3, 7, and 13 post-surgery, both for 

the ipsilateral and contralateral hind paws, with the individual mice placed in a 

transparent plastic cage with a wire mesh bottom that allowed full access to the paws. 

After a habituation period of 20 min, a mechanical stimulus was delivered to the plantar 

surface from below the floor of the test chamber to measure allodynia using an automatic 

von Frey apparatus (Ugo Basile #37450, Comerio, Italy). A steel rod (0.5 mm diameter) 

was pushed against the hind paw over a 10 s period using increasing force, from 0 to 10 
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g. When the mouse withdrew its hind paw, the mechanical stimulus was automatically 

stopped and the force at which withdrawal occurred was recorded. At each time point, 

three separate threshold measurements were obtained from each hind paw and then 

averaged.  

Western blot Analysis 

Membranes from mesencephalic periaqueductal grey matter (PAG) were prepared as 

described previously,15 and the separated proteins were then transferred onto 0.2 mm 

polyvinylidene difluoride (PVDF) membranes (BioRad #162-0176. Spain). The 

membranes were probed for 24 h at 6 C with the selected antibodies diluted in Tris-

buffered saline (TBS) + 0.05% Tween 20 (TTBS) in DecaProbe chambers (PR 150, 

Hoefer-GE, Spain). All the antibodies used in the study have been shown to bind their 

target protein in vitro, and their labeling of nervous tissue was greatly reduced by pre-

absorption with the recombinant protein or the antigenic peptide when available. The 

primary antibodies were detected using horseradish peroxidase conjugated secondary 

antibodies (1:10,000 in TTBS) and antibody binding was visualized with Immobilon 

Western Chemiluminescent HRP substrate (Millipore WBKLS0100). 

Chemiluminescence was recorded with a ChemiImager IS-5500 (Alpha Innotech, 

California, USA) equipped with a Peltier cooled CCD camera that provided a real-time 

readout of 30 frames per second (35 °C; high signal-to-noise ratio; dynamic range of up 

to 3.4 optical density units), and densitometry (average optical density of the pixels 

within the object area/mm
2
) was performed using Quantity One Software (BioRad). The 

antibodies used were raised against: MOR1 2EL (second external loop) and MOR1 CT 
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(C-terminal, 387e398);18, 34 HINT1 (Abnova H00003094-A01); NMDAR1 phospho S890 

(Cell signaling 3381); NMDAR2A phospho Y1325 (Abcam ab16646); Phospho-

Ca
2+

/calmodulin-dependent protein kinase IIa (CaMKII Thr286, Cell Signaling 3361) and 

Actin (Cell signaling, 8456).  

Studies on NMDA evoked behavior in mice:  

NMDA induced behavior test compare the number of hindlimb-directed biting behaviors 

(nociception) elicited with in a mouse after i.t delivery of NMDA (0.3 nmoles). MOR 

agonist such as morphine antagonizes this behavior in the dose dependent manner (1, 3 

and 10 nmol i.t). Pre-treatment with TrpGc (20 nmol) 5 min before the administration of 

morphine reduces its efficacy and shifted morphine dose response curve by at least ten 

fold in mice (n=3). In a control experiment co-treatment with NMDA and TrpGc does not 

inhibit the NMDA evoked behavior in mice. For these tests, percent antinociception was 

calculated as percent inhibition ± SEM by the formula [(Control − 

Experimental)/Control] × 100%.  

 

Synthetic procedure for the preparation of TrpGc 

2´, 3´-O-isopropylidene Guanosine (1):  

To a cold stirred suspension of guanosine (5.01g, 17.7 mmol) in acetone (300 ml) was 

added catalytic amount of perchloric acid (1.25 ml) drop-wise. The suspension became 

gradually clear and the reaction was monitored using TLC (20:80:0.1 MeOH/CHCl3/TEA 

solvent). At the end of 2 h, ammonium hydroxide (2 equivalent to perchloric acid, 2.75 

ml) was added drop-wise to neutralize the reaction mixture under an ice bath. The 
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resulting product precipitated out from the solution upon neutralization. The reaction 

mixture was then evaporated under rotary evaporator to complete dryness. The crude 

reaction mixture was then triturated with ice-cold water (200 ml) overnight. The 

insoluble material was filtered and washed with cold diethyl ether to collect the desired 

product (3.99 g, 12.39 mmol) in 70 % yield. The 1H NMR spectrum was (DMSO-d6): 

0.00 (s, TMS internal standard), 1.32 (s, 3H), 1.52 (s, 3H), 3.50-3.56 (m, 2H), 4.10-4.13 

(t, 1H), 4.97 (d, 1H), 5.04 (t, 1H), 5.18 (d, 1H), 5.93 (d, 1H), 6.5 (s, 2H), 7.91 (s, 1H) and 

10.66 (s, 1H). 13C- DMSO-d6: 157.16, 154.15, 151.20, 136.30, 117.21, 113.51, 88.87, 

87.09, 84.04, 81.64, 62.07, 27.53 and 25.71 ppm. HRMS (ESI+) calcd for C13H18N5O5 

[(M+H)+] 324.1308 found 324.1304 

 

Synthesis of 2ʹ , 3ʹ-Isopropylidine-5’-O-[(3-Indolyl)-1-Ethyl]Carbamoyl Guanosine 

(2): 

A solution of p-Cl phenyl chloroformate (52 µl, 0.3708 mmoles) was added dropwise to a 

stirred solution of (1) (100mg, 0.309 mmoles in 5 ml anhydrous pyridine at 0 °C) over a 

period of 30 minutes. The solution was stirred at room temperature until TLC and ESI 

MS analysis showed complete consumption of the starting material (2.5 hours). To the 

solution of an activated carbonate ester of nucleoside was added a tryptamine (99 mg, 

0.618 mmoles in pyridine) to form nucleoside carbamate in one-pot. At the end of 24 

hours the reaction mixture was then evaporated to dryness under vacuum. The resulting 

crude mixture was dissolved in ethyl acetate and washed with NaHCO3 (2 x 15 ml) and 

brine (1 x 10 ml). The organic layer was dried over Na2SO4 (anhydrous) and evaporated. 



	 70	

Combiflash was run to purify and isolate the product (236 mg) in 75% yield over two-

step reactions performed in one-pot. The 1H NMR spectrum was (DMSO-d6): 1.32 (s, 

3H), 1.58 (s, 3H), 2.80 (t, 2H), 3.24 (q, 2H), 4.00- 4.30 (m, 3H), 5.10 (d, 1H), 5.24 (d, 

1H), 6.00 (s, 1H), 6.58 (s, 2H), 6.96 (t, 1H), 7.12 (t, 1H), 7.18 (s, 1H), 7.36 (d, 1H), 7.40 

(t, 1H), 7.50 (d, 1H), 7.84 (s, 1H), 10.72 (s, 1H), 10.82 (s, 1H) ppm. 13C- DMSO-d6: 

173.42, 156.59, 152.79, 148.73, 140.08, 136.90, 127.12, 121.84, 121.16, 118.41, 117.93, 

114.21, 113.35, 111.09, 90.83, 84.94, 84.32, 81.48, 63.76, 34.76, 26.22, 24.40, 26.22, 

24.39, 20.66 ppm. Low resolution ESI-MS [M+H] 510.1 

Synthesis of 5ʹ-O-[(3-Indolyl)-1-Ethyl]Carbamoyl Guanosine (Guanosine-5ʹ- 

Tryptamine Carbamate, TrpGc) 

2 (50 mg, 0.098 mmoles) was dissolved in a solution of TFA/H2O (4:1, 2.5 ml) at rt. The 

reaction was completed in 20 minutes as indicated by TLC. The reaction mixture was 

evaporated and combiflash was run to purify the product. A total of 35 mg (yield 76.1 %) 

of the final product was isolated. The 1H NMR spectrum was (DMSO-d6): 2.38 (t, 2H), 

3.17 (q, 2H), 4.23- 4.33 (m, 2H), 4.56 (t, 1H) 5.14 (d, 1H), 5.39 (d, 1H), 6.10 (s, 1H), 

6.38 (s, 2H), 6.96 (t, 1H), 7.15 (t, 1H), 7.21 (s, 1H), 7.32 (d, 1H), 7.40 (t, 1H), 7.48 (d, 

1H), 7.80 (s, 1H), 10.65 (s, 1H), 10.78 (s, 1H) ppm. 13C- DMSO-d6: 172.48, 159.81, 

150.01, 148.92, 140.74, 136.20, 126.84, 122.34, 120.97, 119.15, 118.27, 118.78, 11.95, 

111.37, 87.89, 81.66, 73.14, 70.19, 63.82, 34.31, 20.16 ppm. Low resolution ESI-MS 

[M+H] 470.0 HRMS (ESI+) calcd for C21H23N7O6 [(M+H)+] 470.1788 found 470.1772 
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Design, synthesis and in vivo evaluation of nucleotidomimetic inhibitors of hHint1 
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INTRODUCTION:  
 
Human histidine triad nucleotide binding protein 1 (hHint1) has emerged as a protein of 

interest due to its recently discovered potential as a new therapeutic target for the 

treatment of pain.1, 2 Human Hint1 belongs to the histidine triad (HIT) superfamily, which 

are characterized by a conserved sequence motif, His-X-His-X-His-XX, where X is a 

hydrophobic residue. Human Hint1 exists as a homodimer and possesses nucleoside 

phosphoramidase and acyl-AMP hydrolase activity, with a substrate preference for purine 

over pyrimidine nucleosides.3 Structural and kinetic studies have shown that hHint1 

possess two identical and independent nucleotide-binding subunits.4, 5 Each monomer 

consists of five anti-parallel β sheets and an alpha helix motif. A conserved string of 

hydrophobic residues in or adjacent to the β-sheets creates a binding pocket (S1) for the 

nucleobase, while the aspartate (D43) residue anchors the ribose sugar. The α-

monophosphate group interacts with a conserved string of polar residues including the 

partially positive His114 and the nucleophilic His112 in the active site. The side chains of 

the nucleoside phosphoramidates or acyl-AMP can occupy a relative shallow and solvent 

accessible pocket containing the only tryptophan residue in hHint1. A nucleophilic 

histidine (His112) residue forms part of the active site triad, which is responsible for the 

catalysis by hHint1. A detailed investigation of the kinetic mechanism of hHint1 has 

revealed that the mechanism proceeds by rapid formation of the nucleotidylated-His 

intermediate, followed by partially rate limiting water mediated hydrolysis and 

subsequent release of the nucleoside monophosphate from the active site (Scheme 4B, 

Chapter 1).4 The nucleoside phosphoramidase activity of hHint1 has been shown to be 

necessary for the activation of several preclinical and clinically approved antiviral and 
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anticancer phosphoramidate pronucleotides.6-8 In addition, Chou et al demonstrated that 

lysyl t-RNA synthetase generated lysyl-AMP is also a substrate for hHint1 in vitro.9 

Hint proteins are highly conserved across all the kingdoms of life, suggesting that they 

have an important biological function. Hint1 has been implicated in the regulation of 

MITF/USF2 transcriptional activation complex in mast cells,10 t-RNA synthetase amino 

acid adenylation,9 apoptosis11 and tumorigenicity.12 In addition Hint1 is widely expressed 

in the region of brain primarily responsible for the modulation of pain [periaquaductal 

grey area (PAG)], addiction properties (nucleus accumbens) and motor & sensory 

functions (cerebral cortex).1 Moreover, Hint1-/- mice have been shown to exhibit 

increased sensitivity to amphetamine and decreased nicotine dependence.13, 14 Hint1-/- 

mice also display an enhanced analgesic response to morphine.15 Molecular mechanistic 

studies in this context have found that N-methyl-D-aspartate receptor (NMDAR) 

mediated feedback inhibition of opioid analgesia is critically dependent on Hint1.16 

Nevertheless, the role of Hint1 active site and potential endogenous substrate regulating 

this response has remained enigmatic.  

Chemical genetics is a powerful approach to elucidate biological functions of genes or 

proteins of interest using screens of diverse and targeted small molecules.17 Recently, our 

laboratory has designed and synthesized a non-hydrolyzable substrate analog for hHint1 

(TrpGc, see Fig. 1). TrpGc inhibits hHint1 with a low micromolar binding affinity (Kd = 

3.65 ± 1.0 μM).2 Using reverse chemical genetics, we demonstrated that the TrpGc not 

only enhances morphine analgesia, but also rescues and prevents the development of 

NMDAR mediated morphine tolerance in mice.2 In addition, a single dose of TrpGc was 
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able to reduce mechanical allodynia in animals for several days. Interestingly, inhibition 

of Hint1 also antagonizes morphine-mediated inhibition of NMDA evoked behavior as 

described in previous chapter. Nevertheless, the structure-activity relationship of TrpGc 

and the role of Hint1 on NMDAR functions have remained elusive. TrpGc suffers from 

poor solubility and low micromolar binding affinity for hHint1. Hence, the development 

of water-soluble analogs with a higher binding affinity would enhance the utility of the 

probes to serve as a pharmacological tool for elucidating the biological role of the Hint1 

in NMDAR regulation. Herein, we present our medicinal chemistry efforts to optimize 

TrpGc, which resulted in the development of first submicromolar binding inhibitors for 

hHint1. The newly designed inhibitors were also shown to successfully modulate NMDA 

evoke behavior in vivo.  
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RESULTS 

hHint1 prefers non-polar side chain in the molecular recognition of the nucleoside 

carbamates  

To investigate the importance of the indole ring in the shallow pocket, we began by 

designing analogs of TrpGc in which the aromatic indole side chain is replace with other 

side chains. Structure of all the compounds and their binding affinity in this section is 

reported in Table 1.  Compound 4 with an ethylamine side chain (Table 1) was 

synthesized in similar fashion described for the synthesis of TrpGc in chapter 2 (Scheme 

2). The coupling of the nucleoside carbamates (Chapter 2, Scheme 2) typically proceeds 

over a 24 hours. We investigated and utilized microwave in the synthesis of the 

carbamates in this chapter. The coupling reaction proceeded very quickly and was 

completed within ten minutes. The yields of the coupling reactions for the different amine 

containing side chains are reported in Table 1. We investigated the binding affinity of 4 

for Hint1 using isothermal titration calorimetry (ITC). Removal of the indole side chain 

did not significantly alter the binding affinity for hHint1, when compared to TrpGc.  

Next, we wanted to investigate if the ethylene linker between the carbamate backbone 

and the aromatic ring was of optimum length. Hence, we made two carbamate analogs 

with phenyl (5) and benzyl amine (6) side chains. Replacing the tryptamine with the 

phenyl did not change the binding affinity but incorporating a one-carbon-shortened 

linker with benzyl amine decreased the binding affinity of the compound by two fold 

over TrpGc.  The decrease in the binding affinity reflects the negative impact of 

increased rigidity of the linker on the binding to hHint1. One of the key features of the 

shallow binding pocket S2 is the presence of the only tryptophan (W123) in hHint1 
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(Figure 3 and 4). We asked if we could gain an increase in binding affinity by 

incorporating polar and positive charged residues in the side chain of the analogs in order 

to create cation-pi interactions with W123. With this aim in mind we designed 

compounds with imidazole side chain (7) and a primary amine (8). The compound with 

an histamine side chain would be partially positive and the primary amine would have a 

full positive charge at a neutral pH. The synthesis of the carbamate compound with 

primary amine side chain was achieved with coupling of the mono protected boc of 

diethyl amine under similar fashion to TrpGc. Whereas the coupling of the imidazole 

compound was achieved in DMF instead of pyridine due to limited solubility of 

histamine. Deprotection of acetonide protected 2ʹ 3ʹ-OH and the dimethyl formamide 

protected amine groups was achieved using aqueous triflouroacetic acid (TFA). ITC 

analysis revealed that modifications resulting in 7 were well tolerated without any impact 

on the binding affinity to hHint1 in comparison to TrpGc. In contrast, a full positive 

charge as in 8, reduced the binding affinity to hHint1 by four fold. Together these results 

indicate hHint1 does not prefer substrate or analogs with positive and polar side chains.  
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Table 1: Dissociation constant and yields in the microwave-assisted synthesis of 

nucleoside carbamates 

 

Compound R1 Kd (μM) Yield (%)a 

Normal Microwave 

TrpGc 

 

3.65 ± 1.00 75 72 

4 CH3 2.45  ± 0.59 67 75 

5 
 

1.56 ± 0.01 83 60 

6 
 

8.09 ± 0.09 65 56 

7 
 

3.19 ± 0.41 34 - 

8b  12.0 ± 3.10 62 58 

a Yields reported for the coupling between 2ʹ 3ʹ-OH acetonide protected nucleoside and amine to form carbamate 
b Determined using fluorescent displacement assay described in chapter 5 
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Human Hint1 prefers acyl-sulfamate and sulfamide in comparison to carbamate 

backbone of the nucleotidomimetic inhibitors 

Replacement of the acyl-phosphate linker of enzyme substrates with a bioisosteric acyl-

sulfamate or acyl-sulfamide backbone has been shown to be a successful strategy for the 

generation of water-soluble and potent inhibitors. For example, 5´-amino-5´-N-

(biotinyl)sulfamoyl-5’-deoxyadenosine (Bio-AMS, Figure 1) is a bisubstrate 

subnanomolar inhibitor of biotin protein ligase and contains a acyl-sulfamide backbone. 

Bio-AMS displays potent anti-tubercular activity against multidrug-resistant 

Mycobacterium tuberculosis strains.18 Consequently, we chose to evaluate non-

hydrolyzable nucleotide analogs for hHint1 that contain an acyl-sulfamate or acyl-

sulfamide linker that mimics the corresponding phosphoramidate and acyl-phosphate 

moieties.  We began by comparing the effect of a non-hydrolyzable nucleotide analog 

Bio-AMS with TrpGc on the activity of hHint1 using a fluorescence assay described 

previously.3 At a fixed saturating substrate concentration, both TrpGc and Bio-AMS 

exhibited a dose dependent decrease in the activity of hHint1 with maximum half 

inhibitory concentration (IC50) values of 1.0 ± 0.3 μM and 25.5 ± 6.0 μM respectively 

(Figure 1, bottom). We next employed isothermal titration calorimetry (ITC) to 

investigate the nature of non-covalent interactions on the inhibitory activity of Bio-AMS 

on hHint1. The ITC studies provided an experimental dissociation constant (Kd) of 0.32 ± 

0.1 μM with an n value of 1.0 ± 0.1 indicating one binding site per hHint1 monomer. 

Bio-AMS was found to bind approximately 11 and 209 fold more tightly than TrpGc and 

guanosine monophosphate (GMP) respectively, and to be dominated by enthalpy and not 

entropy (Table 2). 
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Figure 1. Chemical structures and dose response curves of TrpGc and BioAMS. (Top) 

Chemical structures of TrpGc and BioAMS inhibitors of hHint1. (Bottom) Comparison 

of a dose response curve generated by the performing the titration of hHint1 activity in 

the presence of TrpGc (left, generated in Chapter 2) and Bio-AMS (right). The hHint1 

activity was performed at a saturating concentration of the TrpAMP substrate (10 μM) 

using fluorescence activity described previously.3 The resulting response vs concentration 

was fitted into one site model using a graph pad prism to determine inhibitory 

concentration that resulted into 50% of inhibition (IC50). 
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In order to avoid potential off target effects on enzymes utilizing adenosine and 

adenosine nucleotide based substrates, we sought to develop analogues of TrpGc 

containing an acyl-sulfamate or acyl-sulfamide backbone. The first inhibitor examined 

was based on the replacement of the carbamate backbone in TrpGc with a bioisosteric 

acyl-sulfamate backbone. The synthesis of compound 9 (Scheme 1) began with 5´-OH 

sulfamoylation of 2´,3´-O-isopropylidene guanosine (14) to provide intermediate 15. 

Coupling of 15 with the N-hydroxysuccinic acid ester of 3-indole propionic acid (22) in 

the presence of DBU (1,8-Diazabicyclo[5.4.0] undec-7-ene) afforded 16. Deprotection of 

the acetonide in compound 16 with aqueous TFA yielded the final compound 9. In 

similar fashion compound 10 with a butyric acid side chain was synthesized (Scheme 1 

for structure). Replacement of the 5´-oxygen atom in the acyl-sulfamate with nitrogen 

affords an acyl-sulfamide backbone, which increases the pKa of the backbone NH by 2-3 

units. The increased pKa has been shown to increase the stability and the binding affinity 

of Bio-AMS towards biotin protein ligase.20 Hence, we designed compound 11 to 

investigate the impact of the enhanced negative charge of the backbone on the binding 

affinity of hHint1. The synthesis of compound 11 (Scheme 2) began with protection of 

the exocyclic nitrogen on compound 14 with N, N-dimethyl formamide dimethylacetal to 

yield N, N-dimethyl aminomethylene-2´-3´-O-isopropylidene guanosine (17). Iodination 

of the 5´-hydroxy group in 17 with methyltriphenoxyphosphonium iodide (MTPI) in a 

Moffat reaction afforded the iodination of the 5ʹ-OH.  Displacement of the iodide with 

sodium azide followed by reduction under the Staudinger reaction conditions yielded 

compound 19 with a 5´-amine on the ribose sugar. Next, the corresponding 5´-amino 

nucleoside was converted to the 5´-sulfamide by refluxing compound 19 with sulfamide 
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(NH2SO2NH2) in 1,4-dioxane for 2 h.19 Surprisingly, this step also resulted in the removal 

of the N, N-dimethyl aminomethylene of the exocyclic amine along with the formation of 

the desired product (data not shown). The crude 5´-sulfamide nucleoside was then stirred 

in sodium hydroxide/methanol solution to completely deprotect the N, N-dimethyl 

aminomethylene group to afford 20 in an overall yield of 34 % over two steps. Coupling 

of 20 to the N-hydroxysuccinic acid ester of 3-indole propionic acid (22) in the presence 

of DBU followed by the deprotection of the acetonide with aqueous TFA (trifluoroacetic 

acid) yielded the final compound 11. TrpGc exhibits very poor aqueous solubility with 

upto 30-40 uM of the solution can be prepared in the aqueous buffer (with 1-2% DMSO) 

from the stock solution (prepared in 100% DMSO). All the compounds prepared above 

displayed superior aqueous solubility compared to TrpGc. Stock solutions up to 5 mM for 

the guanosine analogues (compound 9, 10 and 11) were easily prepared in aqueous 

buffers without using DMSO.  
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Scheme 1: Synthetic scheme for the synthesis of guanosine acyl-sulfamates 

 

 

 

Reagents and 

conditions: i) 

NH2SO2Cl, DMA, 85%; ii) 22, DBU, DMF 55%; iii) 80 % aq. TFA quant. 
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Scheme 2: Synthetic scheme for the synthesis of guanosine acyl-sulfamides 

 

 

 

 

 

 

 

 

 

Reagents and conditions: i) MTPI, THF, -70 °C for 30 min and then RT for 4 h 92 %; ii) 

NaN3, DMF, RT overnight, 55 %; iii) Triphenyl phosphine/aq dioxane, triethylamine, 50 

°C, 3 h, 54 %; iv) NH2SO2NH2, 1, 4-dioxane reflux for 2 h; and 4N NaOH/MeOH for 2 h, 

33 %; v) 22, DBU in DMF, overnight, 55%; and 80 % aq. TFA, 1 h quant  
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Our next step was to evaluate the in vitro binding affinity of the new series of analogues 

for hHint1 using isothermal calorimetry (ITC) In comparison to TrpGc, compound 9 

displayed a 4.5 fold increase in binding affinity with a measured dissociation constant of 

0.81 ± 0.11 μM for hHint1 (Table 2). The increased binding affinity of 9 is likely due to 

electrostatic and/or hydrogen-bonding interactions of the acyl-sulfamate backbone, with 

polar side chains in the active site, as indicated by the increased gain in the enthalpic 

component over TrpGc. Increasing the pKa of the backbone with a sulfamide in 

compound 11 did not alter the binding affinity of compound 9 as indicated by their 

similar dissociation constants. Attachment of an indole side chain intramolecularly to a 

nucleoside has been shown to dynamically quench the fluorescence of the indole side 

chain due to stacking interactions of the indole ring on the nucleobase.20 Therefore, one 

might predict that compounds 9 and 11 are likely to encounter a higher entropic penalty 

upon binding to hHint1. Consequently, one might propose that removal of the indole 

group in compound 10 would likely increase binding affinity by decreasing the entropic 

cost of binding to hHint1. Surprisingly, the dissociation constant for compound 10 for 

hHint1 was found to be 3-4 fold greater in comparison to 9 (Table 2). Comparing the 

thermodynamic parameters of 9 and 10 revealed no significant differences in the entropy 

of binding. However, compound 10 displayed a nearly 2 kcal mol-1 decrease in the 

enthalpy of binding. These results indicate that increasing interactions associated with the 

active site can improve the ligand binding affinity. Also, these results are in contrast to 

the observed characteristics binding in the carbamate series, where smaller side chains 

are tolerated. These indicate potentially the role of the free energy of ligand solvation and  
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Table 2: Thermodynamic parameters and dissociation constants of hHint1-ligand 

complexes determined using ITC 

Compound Kd (μM) ΔH, kcal mol-1 -TΔS, kcal mol-1 ΔG, kcal mol-1 

TrpGc 3.65 ± 1.00 -13.54  ± 1.00 9.54  ± 4.17 -4.1 ± 2.0 

BioAMS 0.32 ± 0.1 21.30  ± 2.40 12.68  ± 2.68 -8.7 ± 0.20 

9 0.81 ± 0.11 -16.51 ± 0.17 8.05 ± 0.88 -8.46 ± 0.4 

10 2.90 ± 0.25 -13.59 ± 1.12 7.71 ± 0.27 -5.81 ± 1.0 

11 0.92 ± 0.07 -14.75 ± 0.12 6.57 ± 0.17 -8.24 ± 0.12 

12 0.23 ± 0.01 -17.31 ± 0.05 8.19 ± 0.13 -9.13 ± 0.11 

GMPa 67 ± 7.9 - - - 

aData shown from the NMR titrations previously reported by Shapiro and co-workers. 
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the fine balance of hydrophilicity/hydrophobicity that is required for the complexation 

with hHint1.  

 

Impact of a hydrophobic nucleoside in the molecular recognition of ligands by 

hHint1 

Structural studies performed using x-ray crystallography or NMR provide a very 

important insight into the molecular recognition driving the interaction between a protein 

and a ligand. Using 2D-NMR studies, Shapiro and co-workers investigated and identified 

key interactions between nucleoside monophosphates and mouse Hint1.21 Their 1H-15N 

HSQC investigations revealed large chemical shift perturbations (Δδ > 0.2 ppm) for the 

residues surrounding the canopy holding the nucleobase and sugar upon addition of the 

nucleoside monophosphate. Isoleucine 44 in the S1 hydrophobic pocket exhibited the 

largest chemical shift difference of Δδ = 1.11 ppm indicating that nucleobase recognition 

maybe a key event in driving the molecular recognition of nucleotide based ligands by 

Hint1. We chose to explore the impact of a hydrophobic nucleoside inhibitor with an 

acyl-sulfamate backbone by replacing the guanosine base in 9 with a tricyclic 

ethenoadenosine base. Compound 12 provides an additional advantage of stability 

towards cyclonucleoside formation when compared to an adenosine nucleobase due to 

the extensive delocalization of the N-3 nitrogen electrons into the tricyclic ring system. 

The synthesis of compound 12 (Scheme 3) began with the cyclization of exocyclic amine 

in 23 with chloroacetaldehyde in mildly acidic sodium acetate buffer at 40 °C to yield the  
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Scheme 3: Synthetic scheme for the synthesis of Ethenoadenosine acyl-sulfamates 

 

 

 

 

 

 

 

 

 

 

Reagents and conditions: i) chloroacetaldehyde, NaOAc 0.1M pH 6.5, 40 °C, 30%; ii) 

NH2SO2Cl, DMA, 85%; iii) 22 or biotin-NHS, DBU, overnight, 55%; and 80 % aq. TFA, 

1 h quant   
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fluorescent compound 24. The formation of 24 in the reaction mixture can be easily 

monitored on thin layer chromatography due to its fluorescent properties. Compound 24 

was then treated with sulfamoyl chloride in the presence of triethylamine to yield 

compound 25. Coupling of 25 with the N-hydroxysuccinic acid ester of 3-indole 

propionic acid in the presence of DBU followed by deprotection of the acetonide with 

aqueous TFA yielded compound 12 in an overall yield of 60 % over two steps. To avoid 

potential decomposition due to the intrinsically acidic free acyl-sulfamate group, all the 

acyl-sulfamate compounds (9, 10 and 12) were prepared and purified as a 

triethylammonium salt using reverse phase chromatography. Consistent with our 

hypothesis, compound 12 in which a tricyclic nucleobase has been incorporated, resulted 

in an increased binding affinity with a measured dissociation constant of 0.23 ± 0.01 μM 

(Table 2). Compound 12 displayed an increase in binding affinity of 16 and 291 fold 

over compound TrpGc and GMP, respectively. In comparison with 9, a nearly 1 kcal mol-

1 increase in the enthalpy of binding was observed for 12, with no observable difference 

in the entropic component. Encouraged by this, we asked if replacing the tryptamine side 

chain in 12 with a biotin side chain would further increase the binding affinity. 

Compound 13 showed almost identical binding affinity to 12 (data no shown). These 

results indicate that, while ligand and active site desolvation is important, the interactions 

of the nucleobase with the active site dominate biomolecular recognition of the ligands 

by hHint1. 
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Figure 2: HPLC stability studies of Hint1 nucleoside acyl-sulfamate inhibitors. 

Compounds were monitored with UV absorbance of traces at 168-280 nm. Samples 

containing 50-100 μM of the resulting compounds, A) 9 B) 10 and C) 12 were incubated 

at 37 °C in PBS pH 7.4. At indicated time intervals 200 μl of the solution were injected 

on the HPLC and monitored for any appearance of degradation peaks. 
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HPLC studies to determine stability of nucleoside acyl-sulfamate inhibitors of 

hHint1 in an aqueous solution  

Previously an acyl-sulfamate analogue of BioAMS was reported to be susceptible to 

undergo rapid decomposition via intramolecular displacement reaction to form inactive  

3ʹ-5ʹ-cyclo-5ʹ-deoxyadenosine and N-(biotinyl) sulfamic acid.18 We wanted to investigate 

the stability of our inhibitors with acyl-sulfamate backbone before evaluating their effects 

in vivo. We evaluated stability of compounds 9, 10 and 12 using high performance liquid 

chromatography (HPLC) at 37 °C in phosphate buffered saline (Figure 2). The peak of 

the starting material was monitored at 254 nm and 280 nm wavelength over a period of 

48 hours. Determination of the area under the curve (AUC) for the compound peaks at 

interval of 0, 4, 24, 48 and 72 hours revealed little or no change. These results indicate 

that our compounds are stable for up to 72 hours in an aqueous buffer. This result is in 

striking contrast to the previously reported rapid decomposition of the acyl-sulfamate 

analog of Bio-AMS via cyclonucleoside formation.18 

 

X-ray crystal structure analysis to investigate key interactions driving the molecular 

recognition of ligands by hHint1 

To identify the key molecular interaction driving the molecular recognition of the 

inhibitors we obtained high-resolution x-ray crystal structures of 5, 6 and 12 bound to 

hHint1. We first began by comparing the carbamate inhibitors 5 and 6 with AMP bound 

hHint1 structure (Figure 3).22 In all the three structures the 2ʹ 3ʹ-hydroxyl group on the 

ribose sugar was found to be in 2.5 Å away from the side chain oxygen atoms of the Asp 
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43 residue to form strong hydrogen bond interactions. This indicates that interaction of 

sugar is a key event in the driving the molecular recognition of nucleoside ligands by 

hHint1. An additional hydrogen bonding interaction between the carbonyl of carbamate 

inhibitors and the NH from the backbone of Ser107 over AMP was observed. It is likely 

this interaction is resulting in the gain of the binding affinity for hHint1 observed for 

carbamate nucleosides over AMP. The difference in the binding affinity observed 

between 5 and 6 was consistent with our hypothesis that the extra carbon in the side chain 

of 5 would provide more flexibility to accommodate this interaction.  

Next, we wanted to investigate the interaction governing the molecular recognition of 12. 

We obtained a 1.6 Å high-resolution structure of compound 12 in complex with hHint1 

(Figure 4). Compared to the structure of 5 and 6, an additional hydrogen bond between 

the carbonyl of the acyl-sulfamate of 12 and hydroxyl group in the side chain of Ser107 

was observed. This observation is consistent with the gain in the binding affinity and the 

observed increase in the enthalpic contribution of binding (Table 2) with acyl-sulfamate 

inhibitors. They also are consistent with the preference of hHint1 for acyl-nucleoside 

monophosphate (NMP) substrates, suggesting a role for Ser107 in stabilizing negative 

charge development on the substrate carbonyl during catalysis. No additional interaction 

of acyl-sulfamate backbone was observed with the protein except the two oxygen atoms 

in resonance with sulfur can occupy both the conformation of the carbonyl in carbamate 

backbone. This observation is consistent with no difference observed between the 

sulfamate and sulfamide backbone inhibitors. With regard to the 5´ side-chain of 

compound 12, stabilizing van der Waals interactions were observed between the linking 

methylenes and the indole ring of Trp123 (Figure 4). In addition, the planar tricyclic ring  
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Figure 3. High-resolution X-ray crystal structure analysis of AMP (yellow; pdb: 3TW2) 

and overlaid with the compound 5 (cyan) and 6 (pink) in interaction with hHint1 

complex. A) H-bond interaction of the backbone NH of S107 with the carbonyl of the 

backbone carbamate in compound 5 and 6. B) H-bond interaction of the sugar and side 

chain are shown in dotted black lines.  

A)                                                                             B) 
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Figure 4. High-resolution x-ray crystal structure analysis of AMP (yellow; pdb: 3TW2) 

and overlaid with the compound 12 (cyan) in interaction with hHint1 (blue; pdb: 5I2E) 

complex. A) H-bond interaction of the sugar and side chain are shown in dotted black 

lines. B) Different orientations of isoleucine side chains observed in the hydrophobic 

nucleotide-binding pocket for AMP and compound 7 bound hHint1 structure is shown in 

yellow and blue respectively. 
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of the nucleobase is well accommodated by the hydrophobic S1 pocket (which is 

comprised largely of Ile18, Phe19, Ile22, Ile 27, and Ile44). When compared to the AMP 

bound structure, minor changes were observed in the side chain of the isoleucines in the 

S1 pocket (Figure 4), with no significant variation in the protein backbone structure. 

Moreover, no significant changes in the overall conformation of the protein were 

observed when compared to the apo or nucleotide bound structures. (All the x-ray crystal 

structures reported here were acquired in association with alexander strom). 

 

Compound 9 and 12 antagonizes the inhibition by morphine on the NMDA evoked 

biting and scratching behavior in mice 

NMDA is an agonist of the NMDAR in the CNS. As described in the previous chapter 

that inhibition of Hint1 modulates the cross talk between the MOR and the NMDAR in 

the CNS. This modulation is bidirectional and ligand specific, meaning depending upon 

the first activation by either morphine or NMDA, Hint1 inhibition can either inhibit or 

synergize the activation of the NMDA receptor (Chapter 2, Scheme 1 and 2). Activation 

of the NMDAR via the agonist, such as NMDA, is known to induce biting and scratching 

behavior in mice (Chapter 2, Scheme 2). It is also known that upon administration of 

morphine intrathecally (i.t) this behavior can be inhibited. In collaboration with Wilcox 

lab, we have shown that TrpGc can antagonize the inhibitory effect of morphine on 

NMDA evoked behavior (Chapter 2 Figure 7B). We wanted to test the effect of our 

nucleoside acyl-sulfamates especially compound 9 and 12 on the NMDA evoked 

behavior in vivo. Animals were inthrathecally injected with 0.3 nmoles of NMDA and 

the biting and scratching response was recorded as maximum response. In another  
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Figure 5. % Inhibition of NMDA evoked behavior (upon administration of 0.3 nmoles of 

NMDA intrathecally) by morphine (open diamond). Compound 9 (green diamond), 12 

(red inverted triangle) and TrpGc (black circle) antagonized the effect of morphine in a 

dose dependent manner. The ED50 values for 9, 12 and TrpGc were calculated to be 1.2, 

0.6 and 0.47 respectively. Table contains the values with standard deviation on n = 3 

mice.  

 

 

 

 

 

 

 

 

 

 

Compound ED50 (μM) 

TrpGc 0.61 ± 0.28 
9 1.2 ± 0.49 

12 0.47 ± 0.20 
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experiment, the behaviors of mice were recorded upon intrathecal administration of 

NMDA along with simultaneous administration of either morphine alone or in the 

presence of both morphine and an Hint1 inhibitor. A dose response of NMDA evoked 

behavior was plotted against the antagonistic effect of morphine in the presence of 

inhibitors. We showed that both compound 9 and 12 were equally or more effective in 

inhibiting the NMDA evoke behavior in mice when compare to compound TrpGc 

(Figure 5). (The in vivo biochemical evaluation studies reported here was performed in 

collaboration with Dr. George Wilcox lab). 

 

Evaluation of cytotoxicity of Compound 9 and 12 on MiaPaca and U-87MG cell 

lines 

Encouraged with the in vivo results, we next wanted to ask if compound 9 and 12 would 

show side effects associated with potentially targeting on tryptophan t-RNA synthetase. 

One could speculate that the primary amino group in the side chain of the amino acid 

would be critical for the recognition of the aminoacyl-AMP ligands by t-RNA synthetase. 

If the fundamental protein translation is affected, the compounds might exhibit a side 

effects associated with cellular toxicity. Our compounds lack the primary amino group 

and hence we reasoned that the potential for such side effects would be minimal. We 

tested the effects of our compounds on a neuronal (U-87 MG) and a pancreatic (MiaPaca) 

cancer cell line. The cells were treated with the respective compounds for 48 and 72 

hours. We did not see any cytotoxicity at concentrations as high as 100 µM for TrpGc, 9 

or 12 (Figure 6). Hence, it is unlikely that the compounds are inhibitors of protein 

translation.  
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Figure 6. Cell Cytotoxicity studies performed on the MiaPaca (left) and U87 MG (right) 

in the presence of the various concentration (0.5-100 μM) of the compound 3, 9 and 12. 

5000 MiaPaca and 2500 U87-MG cells/per well treate with the inhibitors for 72 hours 

after which the cytotoxicity was measured using MTS assay.  
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Discussion 

We have designed and synthesized here first low micromolar binding nucleotidomimitic 

inhibitors of hHint1 with improved water solubility. We describe here also microwave-

assisted synthesis of carbamates, which could be of potential utility in combinatorial 

synthesis for generating nucleoside carbamate libraries. Our systematic medicinal 

chemistry efforts in this study identified critical pharmacophores important in the 

molecular recognition of ligands by the hHint1. The current study also takes a step closer 

towards understanding the potential features of the enigmatic substrate of hHint1 in vivo. 

Aminoacyl-t-RNA synthetase generated amino acyl AMP has been speculated to be 

potential natural substrate for Hint1.9 Previous x-ray crystallography studies indicated the 

potential role of cation-pi interactions between positively charged groups of the ligand 

and W123 for the molecular recognition. Our efforts to capitalize on this cation-pi 

interaction with primary amine in the side chain negatively impacted the binding to 

hHint1 for compounds 7 and 8. This result indicates that rigidity provided within the 

stereochemistry of the amino acid is critical for governing that interaction. The same 

pocket also contains a positively charged arginine and it is possible that stereochemistry 

and rigidity avoids the repulsion between the two positive charges that was absent in our 

compounds 7 and 8. Based on this observation one could potentially design a compound 

with a negatively charged carboxylate in the side chain to create a salt bridge interaction, 

which was not evaluated in the current study. Also, we did not chose to design and 

evaluate any amino acid side chains in our inhibitors due to their potential off target 

effects on t-RNA synthetases. Next, our studies focused on the optimization of the 

backbone chemistry. Replacing the carbamate backbone with a more polar and negatively 



	103	

charged acyl-sulfamate resulted in the gain in the binding affinity over TrpGc. X-ray 

crystal structure analysis of hHint1-12 complex identified an additional interaction 

between a carbonyl group in acyl-sulfamate and Ser107, which was absent in carbamate 

inhibitors. Removal of the indole side chain in compound 9 with a butyl group resulted in 

the loss in the binding affinity. This result was unexpected as the indole moiety was 

found to be not necessary for the binding of compound 4 of the carbamate series.  One 

explanation may rest on the fine role of balancing hydrophilicity/hydrophobicity in the 

molecular recognition. Finally, incorporation of an hydrophobic nucleobase 

ethenoadenosine in place of guanosine in 9, resulted in the identification of the acyl-

sulfamate 12, which exhibited approximately 16- and 300-fold higher binding affinity 

towards hHint1 than TrpGc and GMP, respectively. This result was consistent with a gain 

in the increase in interaction with Ile44 that has been previously reported to be crucial for 

the binding of the ligand to Hint1. All the ligand evaluated in the current study 

maintained the key interaction of 2ʹ 3ʹ-OH ribose sugar with the oxygen atoms in the 

aspartate residue (Asp 43). In all the hHint1-ligand complexes the ribose sugar adopted in 

an envelope conformation for its interaction with Asp 43. Hence, the role of sugar pucker 

and its impact on binding of ligands and inhibitors needs to be evaluated and addressed in 

future studies. Our studies with ITC indicate that a favorable enthalpic contribution and a 

fine balance between hydrophilicity/hydrophobicity of the ligand are likely necessary for 

maintaining the binding affinity of ligands towards hHint1. In classical terms the 

hydrophobic effect has been known for producing thermodynamic signature with 

favorable gain in entropy due to the displacement of non-ordered water molecules in the 

apolar surface on the protein. Diederich and co-workers have proposed that solvents with 
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high cohesive interactions such as water prefer to interact with bulk solvent molecules 

rather than to solvate the complementary apolar surfaces of host and guest molecules. It 

has been proposed, “water molecules around apolar surfaces participate in fewer strong 

hydrogen bonds than bulk solvent molecules”. Therefore, enthalpy is gained upon release 

of surface-solvating molecules to the bulk during the complexation step.23 Hence, in 

many cases the extension of the ligands with hydrophobic side chains manifest with gain 

in enthalpic energy. Such effects are labeled as non-classical hydrophobic effects.24, 25 It is 

possible that a part of these enthalpic contributions originate from multiple hydrophobic 

effects as seen with the complexation of arenes and aromatic substrates with biological 

receptors in water.24-26 Future studies on the free energy of solvation of the ligands, as 

well as water map calculations on the protein-ligand complex, may assist in defining the 

role of multiple hydrophobic effects on ligand molecular recognition by the hHint1 active 

site.25, 26 Finally, we also show that our most potent inhibitors 9 and 12 were cell 

permeable, non-toxic and successful in modulating the function of NMDAR in vivo.  In 

conclusion, we have not only successfully developed the first low micromolar and water-

soluble inhibitors of Hint1 but also effective pharmacological probes for the in vivo 

modulation of NMDAR function by Hint1. 
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Materials and Methods 

General Methods and Materials: 

Guanosine was purchased from Acros Organics. Chloroacetaldehyde solution (50% wt in 

water), Triphenylphosphine (cat no: T84409-1004), Methyl triphenoxy phosphonium 

iodide (MTPI, cat no: 226432-10), Chlorosulfonyl Isocynate (cat no: 142662-254), 

Sulfamide (cat no: 277310), Ethylamine (gas, cat no: 301264), Phenethylamine (cat no: 

128945) and Histamine (cat no: H7125) was purchased from Sigma-Aldrich. All solvents 

were purchased from Fischer Scientific and used as received unless otherwise noted. 

Anhydrous solvents such as DMF, Acetonitrile were used directly from solvent 

dispensing system (J. C. Meyer) packed with two columns of neutral alumina and 

dispensed under argon. DMA and Pyridine was purchased in a sure seal bottle from 

Sigma-Aldrich. Thin-layer chromatography was performed using EMD pre-coated silica 

gel 60 F-254 plates. All preparative separations were performed using Teledyne Isco 

combiflash system and using RediSepRf high performance gold silica pre-packed 

columns. Microwave synthesis was performed on Discover SP from CEM corporation 

with an automated handling arm. Analytical HPLC for the stability studies were 

performed on Agilent C18 zorbax SB-Aq column (3.5 μm, 4.6 x 150 mm) using water 

(solvent A) and acetonitrile (solvent B) with 0.1% TEA as additive. High-resolution mass 

spectrometry was performed LTQ Orbitrap Velos (Thermo ScientificTM). Samples and 

compounds during synthesis were freeze-dried with a lyophilizer available from 

Labonaco. All 1H- and 13C-NMR spectra were collected in d6-DMSO (Cambridge 

Isotope Laboratories, Cambridge, MA) at 25 °C using AscendTM Bruker spectrometer 

500 MHz at the Department of Medicinal Chemistry CCRB NMR facility at the 

University of Minnesota unless otherwise stated. All NMR chemical shifts were recorded 

in δ parts per million using d6-DMSO as internal reference. Thermodynamic 

measurements for protein-ligand association were performed in 96-well plates (Nunc 

260251 U96 DeepWell 96-Well x 1.3 ml from Thermo Scientific) using MicroCal Auto-

ITC200 system (GE Healthcare life sciences). Nickel nitrilotriacetic acid (Ni-NTA) was 

purchased from Qiagen and cobalt column agarose from Thermofishcer Scientific. 
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Biological buffers were purchased from Sigma-Aldrich. Protease inhibitor tablets were 

obtained from Roche. 

 
Protein Expression and Purification: 
 
The procedure was similar to one described in the chapter 2. 
 

Protein Crystallography: 

Crystals were grown via hanging drop vapor diffusion, with drops comprised of 2 μL of 

protein (A280 = 6-10, in 50mM HEPES, 250 mM NaCl, 10% glycerol v/v, pH 7.5 buffer) 

and 2 μL of well solution. Well solutions contained 25-35% PEG 8K, and 100 mM MES 

at pH 6.1-6.5. Crystals formed after 3 days of incubation at 20 °C. Co-crystals with 

inhibitors were prepared by soaking pre-formed crystals in mother liquor containing 2.5 

mM 9 or 25 mM for 5 and 6 for 15-60 minutes. After soaking, crystals were 

cryoprotected using 20% PEG 400 and flash vitrified with liquid nitrogen. Diffraction 

data were collected at 100K at beamline 17-ID (IMCA-CAT) using a Dectris Pilatus 6M 

Pixel Array Dectector at the Advanced Photon Source of Argonne National Laboratories 

in Argonne, IL. Molecular replacement was conducted with hHint1 coordinates (PDB ID 

3TW2) using Phaser27 within PHENIX.28 Modeling and molecular visualization were 

performed in Coot.29 Ligand restraints were calculated using JLigand,30 and refinement 

was performed using PHENIX. 

 
Isothermal Titration Calorimetry (ITC): 
 
The procedure was similar to one described in the chapter 2. 
 

Analytical HPLC studies to determine the stability of the Inhibitors: 
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Analytical studies were performed on a Beckman coulter system gold operated by Karat 

software, with an Agilent C18 Zorbax SBAq column (4.6 x 150 mm, 3.5 μm). Stock 

solutions (10 mM) of the inhibitors were prepared in a Tris buffer (10 mM Tris, 200 mM 

NaCl, pH 7.4). For stability studies, the stock solutions were diluted to a concentration of 

50-100 uM using Phosphate Buffer Saline buffer (PBS) and incubated at 37 °C. At 

indicated time points 200 μl aliquots of the sample volume were withdrawn and injected 

into the HPLC system for monitoring the stability and degradation of the compounds. 

The samples were eluted using the gradient of solvent A (Water) and B (CH3CN) with a 

0.1% triethylamine additive (0-4 min: gradient 0% B, 4-14 min: gradient 20% B, 14-29 

min: gradient 80% B, flow rate 0.5 ml/min) with detection at 168-400 nm.  

 

MTS Cell Cytotoxicity studies: 

The cell viability was carried out using standard MTS assay reagent kit from Promega 

(cell titre 96® aqueous one solution cell proliferation assay). Briefly the corresponding 

cell lines MiaPaca-2 and U-87 MG were seeded at density of 5 x 103 and 2.5 x 103 

cells/well in a 96 well plate day before incubation with the treatment. Next day, the 

media was changed and treated with the inhibitor concentration ranging from 0.5-100 

μM. The treatment was incubated for 72 h after which the media was replenished with 

100 µl of fresh media plus 20 µl of the MTS reagent. The plates were then incubated at 

37 °C for 4 h in an incubator. The data were recorded by measuring absorbance at a 490 

nm wavelength by Synergy HT microplate reader.   

 

Studies on NMDA evoked behavior in mice:  
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NMDA induced behavior test compare the number of hindlimb-directed biting behaviors 

elicited with in a mouse after i.t delivery of NMDA (0.3 nmoles). NMDAR antagonist 

and MOR agonist such as MK-801 and morphine antagonize this behavior in the dose 

dependent manner. Morphine (10 nmol) was injected i.t after 5 min of administration 

with NMDA. Inhibition of Hint1 with TrpGc has been previously shown to antagonize 

the effect of morphine. Both compounds 9 and 12 were administered 5 min after with 0.1, 

1 and 10 nmol of doses to evaluate the efficacy in mice (n=3).  For these tests, percent 

antinociception was calculated as percent inhibition ± SEM by the formula [(Control − 

Experimental)/Control] × 100%. The ED50 values were calculated by the method of 

Tallarida and Murray described previously. 

 

General procedure for the synthesis of carbamates: 

A solution of p-Cl phenyl chloroformate (1.2 eqvi 0.3708 mmoles) was added dropwise 

to a stirred solution of acetonide guanosine  (1.0 eqvi, 0.309 mmoles in 5 ml anhydrous 

pyridine at 0 °C) over a period of 30 minutes. The solution was stirred at room 

temperature until TLC and ESI MS analysis showed complete consumption of the 

starting material (2.5 hours). To the solution of an activated carbonate ester of nucleoside 

was added a respective amine (2 eqvi, 0.618 mmoles in pyridine) to form nucleoside 

carbamate in one-pot. At the end of 24 hours the reaction mixture was then evaporated to 

dryness under vacuum. The resulting crude mixture was dissolved in ethyl acetate and 

washed with NaHCO3 (2 x 15 ml) and brine (1 x 10 ml). The organic layer was dried over 

Na2SO4 (anhydrous) and evaporated. Combiflash was run to purify and isolate the 

product in yield reported over two-steps. The isolated product from the above step was 
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deprotected using a solution of TFA/H2O (4:1, 2.5 ml) at rt. The reaction was completed 

in 20 minutes as indicated by TLC. The reaction mixture was evaporated and combiflash 

was run to purify the product.  

General procedure for the synthesis of using microwave: 

A solution of p-Cl phenyl chloroformate (1.2 eqvi 0.3708 mmoles) was added dropwise 

to a stirred solution of acetonide guanosine  (1.0 eqvi, 0.309 mmoles in 5 ml anhydrous 

pyridine at 0 °C) over a period of 30 minutes. To the solution of an activated carbonate 

ester of nucleoside was added a respective amine (2 eqvi, 0.618 mmoles in pyridine) to 

form nucleoside carbamate. The reaction vessel was sealed and prestirred for 30 sec. 

Next with high stirring; the vessel was heated at temperature of 50 °C, with power of 200 

watt for 10 min in the microwave synthesizer. The resulting crude mixture was dissolved 

in ethyl acetate and washed with NaHCO3 (2 x 15 ml) and brine (1 x 10 ml). The organic 

layer was dried over Na2SO4 (anhydrous) and evaporated. Combiflash was run to purify 

and isolate the product in yield reported over two-steps. The yields for each carbamate 

inhibitor are reported in Table 1. 

Synthesis of 5ʹ-O-[1-Ethyl]Carbamoyl Guanosine (4) 

Here ethylamine was commercially available in the gaseous form and was transferred in 

three neck flask under anhydrous condition and cooled under -78 C to form liquid. The 

1H NMR spectrum was (DMSO-d6): 1.01 (t, 3H), 2.99 (q, 2H), 3.99-4.05 (m, 3H), 4.17 

(m, 1H), 4.46 (m, 1H), 5.27 (t, 1H), 5.45 (t, 1H), 5.69 (t, 1H), 6.47 (s, 2H), 7.28 (m, 1H), 

7.91 (s, 1H) and 10.63 (s, 1H). 13C- DMSO-d6: 157.21, 156.26, 154.20, 152.04, 135.93, 
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117.12, 86.43, 82.80, 73.46, 71.07, 64.37, 35.52 and 15.52 ppm. Low resolution ESI-MS 

[M+H] 355.1, HRMS (ESI+) calcd for C13H18N5O5 [(M+H)+] 355.1366 found 355.1367 

 

Synthesis of 5ʹ-O-[3-Phenyl-1-Ethyl]Carbamoyl Guanosine (5) 

The 1H NMR spectrum was (DMSO-d6): 2.69 (t, 2H), 3.19 (q, 2H), 4.00 (s, 1H), 4.01 (m, 

2H), 4.01 (m, 2H), 4.17 (m, 1H), 4.48 (m, 1H), 5.28 (d, 1H), 5.44 (d, 1H), 5.70 (d, 1H), 

6.47 (s, 2H), 7.20 (d, 3H), 7.26-7.28 (m, 2H), 7.41 (t, 1H), 7.91 (s, 1H) and 10.62 (s, 1H). 

13C- DMSO-d6: 157.19, 156.38, 154.19, 152.03, 139.75, 135.95, 129.11, 128.81, 126.56, 

117.15, 86.43, 82.77, 73.45, 71.05, 64.47, 42.5 and 36.0 ppm. Low resolution ESI-MS 

[M+H] 431.1, HRMS (ESI+) calcd for C13H18N5O5 [(M+H)+] 431.1679 found 431.1675 

 

Synthesis of 5ʹ-O-[3-Benzyl-1-Ethyl]Carbamoyl Guanosine (6) 

The 1H NMR spectrum was (DMSO-d6): 4.08 (m, 3H), 4.20 (m, 3H), 4.48 (m, 1H), 5.28 

(d, 1H), 5.45 (d, 1H), 5.70 (d, 1H), 6.47 (s, 2H), 7.24-7.26 (m, 3H), 7.31-7.33 (m, 3H), 

7.88 (t, 1H) and 7.91 (s, 1H). 13C- DMSO-d6: 157.20, 156.72, 154.19, 152.04, 140.09, 

135.95, 128.77, 127.49, 127.28, 117.12, 86.42, 82.74, 73.45, 71.04, 64.69 and 40.26. 

Low resolution ESI-MS [M+H] 416.9 HRMS (ESI+) calcd for C13H18N5O5 [(M+H)+] 

417.1523 found 417.1519 

 

Synthesis of 5ʹ-O-[3-Imidazolyl-1-Ethyl]Carbamoyl Guanosine (7) 

The 1H NMR spectrum was (DMSO-d6): 2.75 (t, 3H), 3.99 (m, 1H), 4.05 (m, 2H), 4.18-

4.21 (m, 1H), 4.46 (m, 1H), 5.30 (m, 1H), 5.48 (m, 1H), 5.71 (d, 1H), 6.5 (s, 2H), 7.41 (s, 

1H), 7.47 (t, 1H), 7.86 (s, 1H), 8.90 (s, 1H), 10.66 (s, 1H) and 14.06. 13C- DMSO-d6: 
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157.20, 156.46, 154.22, 135.84, 134.38, 131.52, 129.14, 117.12, 116.71, 86.52, 82.64, 

73.51, 71.02, 64.26, 60.92 and 25.40 ppm. Low resolution ESI-MS [M+H] 421.2 HRMS 

(ESI+) calcd for C13H18N5O5 [(M+H)+] 421.1584 found 421.1519 

 

Synthesis of 5ʹ-O-[3-amino-1-Ethyl]Carbamoyl Guanosine (8) 

The 1H NMR spectrum was (DMSO-d6): 2.86 (t, 2H), 3.30 (q, 2H), 4.02 (m, 1H), 4.09-

4.13 (m, 2H), 4.25 (d, 1H), 4.45 (q, 1H), 5.31 (d, 1H), 5.51 (d, 1H), 5.70 (d, 1H), 6.50 (s, 

2H), 7.46 (t, 1H), 7.74 (s, 2H), 7.88 (s, 1H) and 10.66 (s, 1H). 13C- DMSO-d6: 157.20, 

156.46, 154.23, 151.98, 135.86, 117.10, 86.62, 82.49, 73.53, 70.98, 64.95, 39.22 and 

38.51 ppm. Low resolution ESI-MS [M+H] 370.2 HRMS (ESI+) calcd for C13H18N5O5 

[(M+H)+] 370.1475 found 370.1472 

 

General procedure for Acid-NHS ester preparations:  

N-Hydroxysuccinimide (0.62 g, 0.0053 mol, 1.0 equiv.) followed by EDC (0.00795 

mmol, 1.5 equiv.) was added to a stirred solution of the respective acid (0.0053 mol, 1.0 

equiv) in anhydrous THF (13 mL). The solution was stirred for 21 h at room temperature 

and evaporated under vacuum to dryness. The resulting crude residue was dissolved in 

ethylacetate (80 mL). The organic phase was washed with saturated NaHCO3 (2x20 mL) 

and NaCl solution (2x20 mL), dried with Na2SO4, and filtered. The organic solvent was 

removed under vacuum to give crude NHS ester. The crude product was recrystallized 

with ethylacetate/petroleum ether to obtain the desired NHS ester. The esters were used 

for coupling without any further purification. 1H and 13C NMR indicated relatively clean 

esters (see below).  
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Synthesis of 2,5-dioxopyrrolidin-1-yl-3-(1H-indol-3-yl) propanoate (22): 

Above NHS ester was prepared using general procedure above. The resulting compound 

was obtained in 46% yield. 1H NMR spectrum was (DMSO-d6): 2.82 (s, 4H), 3.05 (t, 4 

H), 6.99 (s, 1H), 7.09 (t, 1H), 7.22 (s, 1H), 7.36 (d, 1H), 7.56 (d, 1H) and 10.88 (s, 1H). 

13C- DMSO-d6: 170.31, 168.68, 136.27, 126.68, 122.82, 121.07, 118.38, 118.37, 112.06, 

111.48, 31.35, 25.62 and 19.89. Low resolution ESI-MS [M+H] 287.0 

 

Synthesis of 2,5-dioxopyrrolidin-1-yl-pentanoate (23): 

Above NHS ester was prepared using general procedure above. The resulting compound 

was obtained in 47% yield. 1H NMR spectrum was (DMSO-d6): 1.06 (t, 3H), 1.79 (q, 

2H), 2.63 (s, 2H) and 2.82 (s, 4 H). 13C- DMSO-d6: 172.00, 170.22, 33.47, 26.57, 19.24 

and 13.68.  

 

Synthesis of Sulfamoyl Chloride:  

To a 20 mL round-bottom flask charged with chlorosulfonyl isocyanate (600 μL, 6.85 

mmol) under N2 on ice bath, was added formic acid (285.5 μL, 6.85 mmol) dropwise over 

5 mins under vigorous stirring. After 10 min, the reaction was brought to the room 

temperature. A generation of white fog was detected in the flask during room 

temperature. After stirring for an additional hour, the reaction mixture slowly turned into 

a white solid, which was used directly in the next step without any purification. 

 

Synthetic Procedure for the Preparation of Inhibitor 9 
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2´, 3´-O-isopropylidene Guanosine (14):  

To a cold stirred suspension of guanosine (5.01g, 17.7 mmol) in acetone (300 ml) was 

added catalytic amount of perchloric acid (1.25 ml) drop-wise. The suspension became 

gradually clear and the reaction was monitored using TLC (20:80:0.1 MeOH/CHCl3/TEA 

solvent). At the end of 2 h, ammonium hydroxide (2 equivalent to perchloric acid, 2.75 

ml) was added drop-wise to neutralize the reaction mixture under an ice bath. The 

resulting product precipitated out from the solution upon neutralization. The reaction 

mixture was then evaporated under rotary evaporator to complete dryness. The crude 

reaction mixture was then triturated with ice-cold water (200 ml) overnight. The 

insoluble material was filtered and washed with cold diethyl ether to collect the desired 

product (3.99 g, 12.39 mmol) in 70 % yield. The 1H NMR spectrum was (DMSO-d6): 

0.00 (s, TMS internal standard), 1.32 (s, 3H), 1.52 (s, 3H), 3.50-3.56 (m, 2H), 4.10-4.13 

(t, 1H), 4.97 (d, 1H), 5.04 (t, 1H), 5.18 (d, 1H), 5.93 (d, 1H), 6.5 (s, 2H), 7.91 (s, 1H) and 

10.66 (s, 1H). 13C- DMSO-d6: 157.16, 154.15, 151.20, 136.30, 117.21, 113.51, 88.87, 

87.09, 84.04, 81.64, 62.07, 27.53 and 25.71 ppm. HRMS (ESI+) calcd for C13H18N5O5 

[(M+H)+] 324.1308 found 324.1304 

 

2´,3´-O-isopropylidene-5’-O-(sulfamoyl)guanosine (15):  

A solution of 8 (0.5 g, 1.54 mmol) in dimethyl acetamide (5 mL) was stirred for 30 min 

at 0 °C. Next, sulfamoyl chloride (1.69 mmol, 194.2 mg) was added to the reaction 

mixture after which reaction was brought to the room temperature and stirred for an 

additional one hour. An excess of TEA (1.5 mL, excess) was added and stirring was 

continued for an additional 10 min. The reaction mixture was finally quenched with 



	114	

MeOH (5 ml) under ice bath. The reaction mixture was evaporated to dryness and the 

crude reaction mixture was dissolved in ethyl acetate and washed with saturated NaHCO3 

and Brine. The organic layer was collected dried over Na2SO4, filtered and evaporated to 

dryness. Purification by flash chromatography (20:80:1 MeOH/CH2Cl2/TEA) afforded 

the title compound (600 mg, 1.49 mmol) in 97% yield (with 1.5 equivalent of TEA). 1H 

NMR spectrum was (DMSO-d6): 1.18 (t, 13.45 H), 1.33 (s, 3H), 1.54 (s, 3H), 3.03 (m, 

8.86 H), 4.13-4.24 (m, 2H), 4.33 (m, 1H), 5.16 (dd, 1H), 5.25 (d, 1H), 5.33 (s, 1H), 6.05 

(d, 1H), 6.66 (s, 2H), 7.61 (s, 2H), 7.86 (s, 1H) and 10.84 (s, 1H). 13C- DMSO-d6: 156.68, 

153.74, 150.47, 136.17, 113.26, 88.49, 84.02, 83.47, 81.07, 54.77, 51.94, 45.21, 26.84, 

25.21, 8.62 and 7.20 ppm. Low resolution ESI-MS [M+H] 403.1 HRMS (ESI+) calcd for 

C13H19N6O7S [(M+H)+] 403.1036 found 403.10262 

 

5´-O-(N-(3-Indole propionic acid) sulfamoyl-2´, 3´-O-isopropylidene guanosine 

triethylammonium salt (16): 

To an ice cold stirred solution of 9 (200 mg, 0.5 mmol) and 22 (214 mg, 0.75 mmol) in 

DMF (2 mL) was added DBU (1.1 equiv, 82 µl, 0.55 mmol).  After stirring for an 

additional 10 min the reaction mixture was brought to room temperature and stirred 

overnight. Next, the volatiles were evaporated under reduced pressure and the mixture 

was directly loaded onto the C18 column. The purification was achieved using a gradient 

reverse chromatography (A-ACN, B-1% TEA in water, washed with 2% B and eluted 

with a gradient of 2-90 % of solvent A). Fractions containing the product were pooled 

and concentrated. The concentrate was freezed and lyophilized to obtain 150 mg (0.26 

mmol, 51 % yield) of the title product as TEA salt (1.0 equivalent of TEA as determined 
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by NMR). 1H NMR spectrum was (DMSO-d6): 1.16 (t, 8.61 H), 1.30 (s, 3H), 1.51 (s, 

3H), 2.37 (t, 2H), 2.85 (t, 2H), 3.07 (m, 5.00), 3.17 (m, 2 H), 3.93 (m, 1H), 4.09 (m, 1H), 

4.27-431 (m, 2H), 5.10 (d, 1H), 5.21 (d, 1H), 5.76 (s, 1H), 5.96 (d, 1H), 6.61 (s, 2H), 6.93 

(t, 1H), 7.03 (t, 2H), 7.07 (s, 1H), 7.30 (d, 1H), 7.46 (d, 1H), 7.93 (s, 1H), 10.64 (s, 1H) 

and 10.68 (s, 1H). 13C- DMSO-d6: 157.18, 154.19, 151.07, 136.67, 127.64, 122.36, 

121.17, 118.68, 118.46, 117.25, 113.40, 111.68, 89.51, 84.43, 83.95, 82.05, 79.65, 55.38, 

49.06, 46.23, 27.52, 25.65 and 9.20 ppm. Low resolution ESI-MS [M+H] 574.0, [M-H] 

572.0 HRMS (ESI+) calcd for C24H28N7O8S [(M+H)+] 574.1720 found 574.1716 

 

5´-O-[N-(3-Indole propionic acid)sulfamoyl] guanosine triethylammonium salt (9): 

A solution of 10 (25 mg, 0.044 mmol) in 80% aqueous TFA (2 ml) was stirred for 30 min 

after which the reaction mixture was evaporated to dryness (co-evaporated 1% 

TEA/ethanol for removing TFA).  The reaction mixture was loaded onto a celite packed 

cartridge and purified by using reverse phase chromatography (A-ACN, B-Water + 0.1% 

TEA). The peak eluted at 20% of ACN contained the final product. Fractions containing 

the product were combined, concentrated and lyophilized to obtain the desired final 

product in quantitative yields (with 1 equivalent of TEA). 1H NMR spectrum was 

(DMSO-d6): 1.14 (t, 10 H), 2.35 (t, 2H), 2.84 (t, 2H), 3.00 (m, 6 H), 3.98 (m, 2H), 4.13 

(s, 2H), 4.55 (m, 1H), 5.20 (s, 1H), 5.38 (s, 1H), 5.70 (d, 1H), 6.50 (s, 2H), 6.94 (t, 1H), 

7.02 (t, 1H), 7.06 (s, 1H), 7.28 (d, 1H), 7.46 (d, 1H), 7.96 (s, 1H), 10.60 (s, 1H) and 10.68 

(s, 1H). 13C-DMSO-d6: 157.22, 154.09, 151.95, 136.66, 136.22, 127.68, 122.39, 121.14, 

118.75, 118.47, 117.09, 115.28, 111.66, 86.75, 83.27, 73.79, 71.47, 67.66, 21.94 and 9.47 

ppm. Low resolution ESI-MS [M-H] 532.1 HRMS (ESI+) calcd for C21H24N7O8S 
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[(M+H)+] 534.1407 found 534.1400. The final purity of the compound was ≥99 % as 

indicated by HPLC. 

 

Synthetic Procedure for the Preparation of Inhibitor 10 

5´-O-(N-(3-butyric acid) sulfamoyl-2´, 3´-O-isopropylidene guanosine 

triethylammonium salt: 

The procedure is similar as described for 4 above using NHS ester (23). The resulting 

compound was obtained in 60% yield as TEA salt (1.2 equivalent of TEA as determined 

by NMR). 1H NMR spectrum was (DMSO-d6): 0.83 (t, 3H), 1.18 (t, 13 H, TEA), 1.30 (s, 

3H), 1.46 (m, 2H), 1.51 (s, 3H), 2.0 (t, 2H), 2.8 (broad, 7H), 3.89 (m, 1H), 4.19 (m, 1H), 

4.29 (m, 1H), 5.07 (dd, 1H), 5.19 (dd, 1H), 5.95 (d, 1H), 6.58 (s, 2H), 7.91 (s, 1H) and 

10.63 (s, 1H). 13C- DMSO-d6: 177.93, 156.64, 153.84, 150.78, 136.251, 116.88, 118.49, 

113.05, 89.09, 84.12, 83.61, 81.70, 66.78, 45.88, 41.30, 27.15, 25.27, 19.37 and 14.15 

ppm. Low resolution ESI-MS [M+H] 473.1 HRMS (ESI+) calcd for C17H25N6O8S 

[(M+H)+] 473.1455 found 473.1450. 

 

5´-O-[N-(3-Butyric acid)sulfamoyl] guanosine triethylammonium salt (10): 

The procedure is similar as described for 4 above. The resulting compound was obtained 

in 71% yield as TEA salt (1.3 equivalent of TEA as determined by NMR). The final 

product is highly hygroscopic in nature. 1H NMR spectrum was (DMSO-d6): 0.83 (t, 3H), 

1.18 (t, 12 H), 1.46 (m, 2H), 2.0 (t, 2H), 3.0 (q, 8H), 3.58 (m, 2H), 4.03 (s, 2H), 4.10-4.15 

(m, 2H), 4.48 (m, 1H), 5.24 (dd, 1H), 5.41 (dd, 1H), 5.70 (d, 1H), 6.48 (s, 2H), 7.91 (s, 

1H) and 10.61 (s, 1H). 13C- DMSO-d6: 177.93, 156.64, 153.84, 150.78, 136.251, 116.88, 
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113.05, 89.09, 84.12, 83.61, 81.70, 66.78, 45.88, 41.30, 19.37 and 14.15 ppm. HRMS 

(ESI+) calcd for C14H21N6O8S [(M+H)+] 433.1142 found 433.1134.  

 

Synthetic Procedure for the Preparation of Inhibitor 12 

2´, 3´-O-isopropylidene Adenosine (23):  

To a cold stirred solution of adenosine (2.02g, 7.56 mmol) in acetone (150 ml) was added 

catalytic amount of perchloric acid (0.91 ml) in a drop-wise manner. The milky white 

suspension turned clear after 2 h of stirring. The solution was then neutralized using 

ammonium hydroxide (2 equivalents to perchloric acid) under ice-bath. The reaction 

mixture was then evaporated to complete dryness and purified using flash silica gel 

chromatography (gradient: 0% for 4 min, 0-15% for 4-10 min and eluted at 15% 

MeOH:CH2Cl2). Fractions containing the product were evaporated to obtained the desired 

product (2.3 g, 3.58 mmol) in 99 % yield. The 1H NMR spectrum was (DMSO-d6): 1.29 

(s, 1H), 1.33 (s, 3H), 1.55 (s, 3H), 3.54-3.56 (m, 2H), 4.22 (m, 1H), 4.97 (dd, 1H), 5.23 

(t, 1H), 5.35 (d, 1H), 6.12 (d, 1H), 7.34 (s, 2H), 8.17 (s, 1H) and 8.35 (s, 1H). 13C- 

DMSO-d6: 156.60, 153.09, 149.28, 140.16, 119.57, 113.51, 90.07, 86.82, 83.68, 81.82, 

62.05, 27.55 and 25.66 ppm. HRMS (ESI+) calcd for C13H18N5O4 [(M+H)+] 308.1359 

found 308.1351. 

 

2´, 3´-O-isopropylidene EthenoAdenosine (24):  

To a stirred solution of 11 (1.1 g, 3.58 mmol) in sodium acetate buffer (100 ml, 0.1 M pH 

6.5) was added 25 ml of chlorocetaldehyde solution (50% wt), heated to 40 °C and stirred 

overnight. Next day, the reaction mixture was brought to the room temperature and 
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extracted with EtOAc (2 x 100 ml). The organic layer was then washed with saturated 

NaHCO3 and Brine. The organic layer was dried over Na2SO4 and evaporated to dryness 

under reduced pressure. Purification by flash silica gel chromatography (gradient: 0% for 

4 min, 0-15% for 4-10 min and eluted at 15:75 MeOH/CH2Cl2) afforded the title 

compound in 33% (400 mg) yield. The 1H NMR spectrum was (DMSO-d6): 1.35 (s, 3H), 

1.57 (s, 3H), 3.55-3.56 (m, 2H), 4.12-4.16 (m, 1H), 4.99 (d, 1H), 5.09 (t, 1H), 5.37 (d, 

1H), 6.27 (d, 1H), 7.58 (s, 1H), 8.10 (s, 1H), 8.53 (s, 1H) and 9.31 (s, 1H). 13C- DMSO-

d6: 140.90, 140.41, 138.39, 137.65, 133.31, 123.66, 113.61, 112.74, 90.37, 87.27, 84.35, 

81.81, 61.92, 27.51, and 25.66 ppm. Low resolution ESI-MS [M+H] 332.1 HRMS (ESI+) 

calcd for C15H18N5O4 [(M+H)+] 332.1359 found 332.1350. 

 

2´, 3´-O-isopropylidene-5´-O-(sulfamoyl)EthenoAdenosine (25):  

In a 10 ml round-bottom flask containing 12 (100 mg, 0.30 mmol, 1 eq.) was dissolved in 

anhydrous DMF (1 mL). To the cold stirred solution was added sulfamoyl chloride 

(103.4 mg, 0.90 mmol, 3 eq.) followed by the slow addition of triethylamine (40.4 μL, 

0.30 mmol, 1.0 eq.). The reaction solution was stirred for an additional 1 h at room 

temperature. DMF was evaporated under vacuum and the crude mixture was then 

purified using reverse phase chromatography to obtain (0.27 mmoles, 110 mg) desired 

product in 90% yield. The 1H NMR spectrum was (DMSO-d6): 1.37 (s, 3H), 1.59 (s, 3H), 

4.16-4.23 (m, 2H), 4.47 (m, 1H), 5.15 (d, 1H), 5.48 (d, 1H), 6.39 (d, 1H), 7.60 (s, 3H, 

broad peak overlaid with 1H), 8.13 (s, 1H), 8.50 (s, 1H) and 9.31 (s, 1H). 13C- DMSO-d6: 

140.91, 140.70, 138.18, 137.82, 133.32, 123.90, 114.15, 112.82, 90.08, 84.15, 81.53, 
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68.44, 46.18, 27.36, and 25.78 ppm. Low resolution ESI-MS [M+H] 411.1 HRMS (ESI+) 

calcd for C15H19N6O6S [(M+H)+] 411.1087 found 411.1076. 

 

2´,3´-O-isopropylidene-5´-O-[N-(3-Indolepropionicacid)sulfamoyl]EthenoAdenosine 

Triethylammonium salt (12a):  

The procedure is similar as described for 4 above using NHS ester (22). The resulting 

compound was obtained in 55% yield as TEA salt (1.1 equivalent of TEA as determined 

by NMR). 1H NMR spectrum was (DMSO-d6): 1.15 (t, 9 H), 1.33 (s, 3H), 1.57 (s, 3H), 

2.35 (t, 2H), 2.84 (t, 2H), 3.06 (broad, 6H), 4.04 (d, 2H), 4.45 (m, 1H), 5.07 (m, 1H), 5.39 

(m, 1H), 6.30 (d, 1H), 6.95 (m, 1H), 7.02 (m, 1H), 7.06 (s, 1H), 7.29 (d, 1H), 7.46 (d, 

1H), 7.56 (d, 1H), 8.08 (s, 1H), 8.59 (s, 1H), 9.30 (s, 1H) and 10.67 (s, 1H). 13C- DMSO-

d6: 140.93, 140.44, 138.47, 137.67, 136.66, 133.29, 127.66, 123.47, 122.36, 121.15, 

118.71, 118.45, 113.63, 112.71, 111.67, 90.37, 84.57, 84.34, 82.10, 46.23, 27.52, 25.62, 

21.93 and 9.28 ppm. Low resolution ESI-MS [M+H] 582.2 HRMS (ESI+) calcd for 

C26H28N7O7S [(M+H)+] 582.1771 found 582.1764. 

 

5´-O-[N-(3-Indole propionic acid)sulfamoyl]EthenoAdenosine Triethylammonium 

salt (12):  

The procedure is similar as described for 4 above. The resulting compound was obtained 

in 74% yield as TEA salt (1.3 equivalent of TEA as determined by NMR). The final 

product is highly hygroscopic in nature. 1H NMR spectrum was (DMSO-d6): 1.10 (t, 13 

H), 2.37 (t, 2H), 2.87 (t, 2H), 2.91 (broad, 6H), 4.06-4.22 (d, 5H), 4.67 (m, 1H), 5.37 (m, 

1H), 5.53 (m, 1H), 6.07 (d, 1H), 6.94 (m, 1H), 7.03 (m, 1H), 7.08 (s, 1H), 7.29 (d, 1H), 
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7.48 (d, 1H), 7.56 (d, 1H), 8.07 (s, 1H), 8.62 (s, 1H), 9.29 (s, 1H) and 10.67 (s, 1H). 13C- 

DMSO-d6: 141.01, 140.37, 139.11, 137.51, 136.66, 133.21, 127.68, 122.39, 121.14, 

118.75, 118.46, 115.30, 112.62, 111.65, 87.86, 83.66, 74.61, 71.48, 46.22 and 21.99 ppm. 

HRMS (ESI+) calcd for C23H24N7O7S [(M+H)+] 542.1458 found 542.1457. The final 

purity of the compound was ≥99 % as indicated by HPLC.  

 

5´-O-[N-(3-biotinyl-butanoic)sulfamoyl]EthenoAdenosine Triethylammonium salt 

(13) (Synthesized and purified by Andrew Zhou):  

The procedure is similar as described for 4 above. The resulting compound was obtained 

in 74% yield as TEA salt (1.0 equivalent of TEA as determined by NMR). The final 

product is highly hygroscopic in nature. 1H NMR spectrum was (DMSO-d6): 1.15 (s, 9 

H), 1.29 (m, 3H), 1.46 (m, 4H), 1.60 (m, 2H), 1.98 (s,, 2H), 2.77 (m, 1H), 3.06 (s, 7 H), 

4.11-4.25 (m, 6H), 4.25 (s, 1H), 4.64 (s, 1H), 5.35 (s 1H), 5.51 (m, 1H), 6.01 (m, 1H), 

6.31 (m, 1H), 6.40 (s, 1H), 7.55 (s, 1H), 8.08 (s, 1H), 8.56 (s, 1H) and 9.29 (s, 1H). 13C- 

DMSO-d6: 163.25, 141.23, 140.27, 139.32, 137.40, 132.93, 123.20, 112.51, 87.77, 83.62, 

74.37, 71.33, 67.66, 61.43, 59.52, 56.17, 46.20, 28.73, 28.58, 26.49 and 9.27 ppm. Low 

resolution ESI-MS [M+H] 597.1 HRMS (ESI+) calcd for C22H29N8O8S2 [(M+H)+] 

597.1550 found 597.1525 

 

Synthetic Procedure for the Preparation of Inhibitor 11 

N,N-Dimethylaminomethylene-2´,3´-O-isopropylideneguanosine (17): 

To a suspension of 8 (0.575 g, 1.78 mmol) in DMF (6 mL), N,N-dimethylformamide 

dimethyl acetal (0.891 mL, 6.7 mmol) was added under argon to yield an orange-brown 
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solution. The reaction mixture was stirred at 50 °C for 4 h. The solvent was removed 

under reduced pressure and at elevated temperatures; the white residue was then removed 

by filtration. The filtrate was dried under reduced pressure, dissolved in MeOH (2.5 mL) 

and precipitated with 5 mL of EtOAc. After storage overnight at 4 °C, the precipitate was 

removed by filtration and washed thoroughly with EtOAc. The precipitate was dried 

overnight under reduced pressure and the product was obtained as a white powder in 80% 

yield (0.538 g, 1.42 mmol). The 1H NMR spectrum was (DMSO-d6): 1.33 (s, 3H), 1.55 

(s, 3H), 3.04 (s, 3H), 3.16 (s, 3H), 3.51-3.55 (m, 2H), 4.12-4.15 (m, 1H), 4.97 (dd, 1H), 

5.05 (t, 1H), 5.28 (d, 1H), 6.04 (d, 1H), 8.02 (s, 1H), 8.57 (s, 1H) and 11.37 (s, 1H). 13C- 

DMSO-d6: 158.7, 158.03,157.86, 149.92, 137.64, 120.24, 113.58, 88.97, 86.74, 83.93, 

81.57, 61.87, 41.22, 35.12, 27.54 and 25.71 ppm. Low resolution ESI-MS [M+H] 379.0 

HRMS (ESI+) calcd for C16H23N6O5 [(M+H)+] 379.1730 found 379.1738. 

 

N,N-Dimethylaminomethylene-2´,3´-O,O-isopropylidene-5´-deoxy-5´-azido (18):  

(Preparation of N,N-Dimethylaminomethylene-2´,3´-O-isopropylidene-5´-deoxy-5´-Iodo 

(14a) as described previously) A stirred suspension of 14 (0.440g, 1.162 mmol) in anhyd 

THF (22 mL) under argon was cooled to –70 °C. To this solution was added 

Methyltriphenoxyphosphonium iodide (0.788 g, 1.742 mmol; 1.5 equiv). Due to the light 

sensitivity of the reactant and the product all subsequent steps were carried out under the 

exclusion of light. After 30 min of stirring the reaction mixture was brought to the room 

temperature and stirred for another 4 h. The reaction was stopped by the addition of 

MeOH (10 mL) and evaporated to dryness under reduced pressure to obtain an oily dark 

residue. The residue was dissolved in MeOH/CHCl3 (1:4; 2.5 mL) and subjected to silica 
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gel normal chromatography (Combiflash: CHCl2/MeOH, 9:1). After purification the 

desired product was obtained as an yellow-orange solid in 92% yield (0.522 g, 1.15 

mmol). The 1H NMR spectrum was (DMSO-d6): 1.18 (t, 1H), 1.36 (s, 3H), 1.56 (s, 3H), 

1.99 (s, 1H), 3.06 (s, 3H), 3.19 (s, 3H), 3.48-3.52 (m, 2H), 4.02 (q,  1H), 4.29 (m, 1H), 

5.00 (dd, 1H), 5.44 (dd, 1H), 6.16 (d, 1H), 8.04 (s, 1H), 8.60 (s, 1H) and 11.43 (s, 1H). 

13C- DMSO-d6: 170.82, 157.98, 158.55, 157.78, 149.53, 138.21, 120.42, 113.81, 89.70, 

86.67, 84.30, 84.22, 60.23, 41.68, 35.21, 27.31, 26.22, 25.64, 21.25, 14.57 and 7.04 ppm. 

Low resolution ESI-MS [M+H] 489.0 HRMS (ESI+) calcd for C16H22IN6O4 [(M+H)+] 

489.0747 found 489.0736. To a stirred solution of (14a) (400 mg, 0.8 mmol) in dry DMF 

(5ml) was added sodium azide (260 mg, 8 mmol). The reaction mixture was stirred under 

argon at RT overnight. Next day, the precipitate in the reaction mixture was filtered and 

washed with cold methanol. The filtrate was evaporated to dryness and the crude product 

was purified using flash chromatography. The desired peak was eluted at 10 % 

MeOH/CHCl3 mixture, which was combined and evaporated to obtain 166 mg of the 

final product in 55% yield. The 1H NMR spectrum was (DMSO-d6): 1.35 (s, 3H), 1.56 (s, 

3H), 3.06 (s, 3H), 3.19 (s, 3H), 3.54-3.59 (m, 2H), 4.26 (m, 1H), 5.00 (dd, 1H), 5.43 (d, 

1H), 6.11 (d, 1H), 8.04 (s, 1H), 8.61 (s, 1H) and 11.41 (s, 1H). 13C- DMSO-d6: 158.59, 

158.02, 157.85, 149.85, 137.82, 120.41, 114.04, 88.78, 84.78, 83.67, 81.71, 51.95, 41.68, 

35.15, 27.43, and 25.70 ppm. Low resolution ESI-MS [M+H] 404.0 HRMS (ESI+) calcd 

for C16H23N6O5 [(M+H)+] 404.1795 found 404.1786 

 

N,N-Dimethylaminomethylene-2´,3´-O,O-isopropylidene-5´-deoxy-5´-amino (19):  
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To a stirred solution of 15 (160 mg, 0.392 mmol) in dioxane (12 mL) was added H2O (1.6 

mL), TEA (65.6 uL, 0.464 mmol) and triphenylphosphine (0.312 g, 1.18 mmol). The 

reaction was then stirred for 3 h at 50 ̊C. The reaction was brought to the room 

temperature, concentrated, and the residue was purified using flash silica column 

chromatography. Then product was eluted using a gradient of 20% CH3OH/CHCl3 

(containing 0.5% TEA) over a period of 20 mins. The product eluted in a broad peak, 

which was concentrated to get the desired product (80 mg, 0.212 mmol) in 54% yield. 

The 1H NMR spectrum was (DMSO-d6): 0.95 (s, 1H), 1.33 (s, 3H), 1.54 (s, 3H), 2.74-

2.77 (m, 2H), 3.04 (s, 3H), 3.19 (s, 3H), 4.08 (m, 1H), 4.98 (dd, 1H), 5.34 (d, 1H), 5.99 

(d, 1H), 8.03 (s, 1H) and 8.56 (s, 1H). 13C- DMSO-d6: 158.63, 158.04, 157.81, 149.95, 

137.98, 120.46, 113.66, 89.94, 86.68, 83.38, 81.85, 46.18, 43.82, 35.14, 27.56 and 25.78 

ppm. Low resolution ESI-MS [M+H] 378.1 HRMS (ESI+) calcd for C16H24N7O4 

[(M+H)+] 378.1890 found 378.1885. 

 

N,N-Dimethylaminomethylene-2´,3´-O,O-isopropylidene-5´-deoxy-5´-N-sulfamoyl 

(20):  

To a stirred solution of 16 (0.150 g, 0.31 mmol) in 1,4-dioxane (8 ml) was added 

sulfamide (0.090 g, 0.93 mmol) and the reaction mixture was refluxed for 2 h. The 

reaction mixture was then evaporated and redissolved in CH2Cl2 (15 ml) and water (15 

ml). The organic layer was washed with brine, dried over Na2SO4 and evaporated to 

dryness under reduced pressure. The crude product (17) was dissolved in MeOH/4N 

NaOH (5 ml, 1:1) solution and heated at 60 °C for 2 h and 20 mins. At the end of the 

reaction, 1N HCl was added under ice the reaction mixture. Methanol from the reaction 
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mixture was evaporated and the aqueous solution was then lyophilized to obtain crude 

white product. The crude product was then purified using reverse phase chromatography 

to obtain desired product (0.030 g, 0.074 mmol) in 24 % yield.   1H NMR spectrum was 

(DMSO-d6): 0.941 (t, 1H), 1.34 (s, 3H), 1.54 (s, 3H), 2.43 (m, 1H), 3.12-3.22 (m, 2 H), 

4.28 (m, 1H), 5.02 (dd, 1H), 5.22 (dd, 1H), 5.93 (d, 1H), 6.60 (s, 2H), 6.72 (s, 2H), 6.97 

(s, 1H), 7.87 (s, 1H) and 10.76 (s, 1H). 13C- DMSO-d6: 157.40, 154.41, 150.71, 137.09, 

117.90, 113.70, 89.65, 84.38, 83.05, 82.19, 43.82, 27.56 and 25.77 ppm. HRMS (ESI+) 

calcd for C13H20N7O6S [(M+H)+] 402.1196 found 402.1193. 

 

5´-N-[N-(3-Indole propionic acid)sulfamoyl] guanosine triethylammonium salt (11): 

To a cold stirred solution of 17 (20 mg, 0.05 mmol) and 22 (1.5 equiv, 21.4 mg, 0.075 

mmol) in DMF (0.4 mL) was added DBU (1.1 equiv, 8.2 µl, 0.055 mmol).  After 10 min 

the reaction mixture was brought to the room temperature and stirred overnight. Next, the 

volatiles were evaporated under reduced pressure and the crude reaction mixture was 

used for the final step without any purification. To the crude reaction mixture was added 

80% aq TFA (1 ml) and stirred for 30 mins. After which the reaction mixture was 

evaporated to dryness (co-evaporated 1% TEA/ethanol for removing TFA) under reduce 

pressure.  The reaction mixture was loaded onto the combiflash and purified using 

reverse phase chromatography (A-ACN, B-Water + 0.1% TEA). The peak eluted at 20% 

of ACN contained the desired product. Fractions containing the product were pooled, 

concentrated and lyophilized to obtain the desired final product in quantitative yields 

(with 1 equivalent of TEA). 1H NMR spectrum was 700 MHz (DMSO-d6): 0.95 (t, 9 H), 

2.43 (m, 2H), 2.73 (m, 6 H), 2.87-2.97 (m, 4H), 3.87-3.92 (m, 2H), 4.11 (m, 1H), 4.41-
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4.50 (m, 3H), 5.51 (d, 1H), 5.57 (d, 1H), 6.85-6.95 (m, 4H), 7.39-7.41 (m, 2H), 7.69-7.74 

(m, 2H), and 10.71 (d, 1H). 13C-DMSO-d6: 157.58, 156.42, 154.12, 151.15, 136.83, 

128.76, 128.10, 127.44, 123.16, 121.19, 118.39, 111.64, 91.22, 88.26, 80.68, 78.38, 

72.61, 71.79, 66.19, 53.68, 52.36, 46.27 and 10.21 ppm. HRMS (ESI+) calcd for 

C21H25N8O7S [(M+H)] 533.1567 found 533.1567. The final purity of the compound was 

≥99 % as indicated by HPLC. 
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Chapter 4 
 
 
 
 

Caught Before Release: An Alternate Slow Substrate for Sofosbuvir Activating 
Enzyme, Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) 
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INTRODUCTION:  
 

The human histidine triad nucleotide binding proteins (or “hHints”) are members of the 

larger superfamily of histidine triad proteins (the HITs). These enzymes possess a broad 

range of catalytic capabilities that share a common conserved nucleotide-binding domain 

with a characteristic sequence motif (H-X-H-X-H-X-X, where X are hydrophobic 

residues).1, 2 Hints are distinctive members of the superfamily and are known for their 

ability to efficiently catalyze acyl-AMP and nucleoside phosphoramidate hydrolysis.3, 4 

They are the oldest and most widely distributed members of the HIT superfamily and are 

conserved across all the kingdoms of life, from archaea to eukaryotes, with humans 

expressing three family members (hHint1, hHint2, and hHint3).2 Although Hints have 

been associated with a variety of biological processes, including the hydrolysis of 

aminoacyl adenylates,5, 6 tumor suppression,7, 8 and multiple central nervous system 

functions,9, 10 the biological role of Hint catalysis and its endogenous substrate in cells 

remains enigmatic. 

Over the past decade, the nucleoside phosphoramidase activity of human Hint 

enzymes has been exploited to activate nucleotide prodrugs (i.e. proTides). Potential 

nucleotide-based anti-cancer and antiviral agents that are negatively charged and suffer 

from poor oral bioavailability, rapid degradation in the blood, and an inability to 

penetrate cellular membranes, limiting their therapeutic utility.11 Moreover, 

downregulation of the kinases responsible for nucleoside phosphorylation in vivo can 

lead to the rapid development of resistance and limits the use of nucleosides as an  
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Figure 1. A) Position of catalytic residues in the hHint1 active site as exemplified by 

high resolution complex with AMP (gray, PDB ID 3TW2).  Apo structures, such as 

1KPA, nearly identical. Only backbone atoms of Pro46 and Glu47 are shown. B) The 

kinetic mechanism of hHint1, shown with kinetic parameters for the substrate 1.23 
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alternative approach.12 ProTides offer an attractive opportunity to deliver antiviral and 

anticancer nucleotide-based therapies to circumvent these limitations.13 The curative 

hepatitis C drug, sofosbuvir (Sovaldi® and a component of Harvoni®), is a pyrimidine 

nucleotide prodrug that undergoes multiple steps of activation culminating in the 

intracellular release of the poorly bioavailable 2´-deoxy2´-α-fluoro-β-C-methyluridine-

5´-monophosphate (dFMU-MP) by hHint1 through P-N bond hydrolysis. dFMU-MP is 

subsequently converted by nucleotide kinases to the active metabolite, dFMU-TP.14, 15 A 

comprehensive steady-state kinetic analysis has shown that hHint1 has a modest 

preference for purine over pyrimidine based nucleotide phosphoramidate substrates.3 An 

in-depth structural understanding of the catalytic mechanism would be beneficial to fully 

exploit hHint enzymes for the pronucleotide activation. Human Hint1 has been the 

subject of a number of structural studies with16, 17 and without18, 19 bound nucleotides, 

nucleotidyl inhibitors20 and substrate mimetics.6, 16 These studies have revealed a network 

of specific hydrogen bonds involving the conserved triad of histidines (His110, His112, 

and His114), as well as His51 that are configured to promote stabilization of a cationic 

residue and binding of an anionic nucleoside monophosphates (Figure 1A). The carbonyl 

of His110 accepts a hydrogen bond from His112 (ND1H tautomer), which then enhances 

the nucleophilicity His112. (Figure 1A).  

 A detailed investigation on the kinetics of hHint1 catalysis has demonstrated a 

double-displacement or “ping-pong” mechanism for this enzyme, which results in the 

overall retention of stereochemistry (Figure 1B).23 In the first half of the mechanism, a 

nucleotide phosphoramidate substrate (S1) binds to and reacts with Histidine in the active 

site to release an alkyl amine (P1) forming a nucleotidylated enzyme intermediate (E*). 
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Pre-steady-state kinetic analysis has revealed that the rate of nucleotidylated enzyme 

formation is very rapid and nearly diffusion-limited. During the second half of the 

reaction, the nucleotidylated histidine in the active site (His112) undergoes hydrolysis 

(S2), resulting in the eventual release of a nucleotide monophosphate product (P2) from 

the active site. Based on a series of solvent viscosity studies, it has been suggested that 

the rate governing the product (P2) release maybe coupled to a kinetically silent 

conformational change in the protein structure.21  

One of the major challenges associated with the structural isolation of the 

intermediates along this reaction trajectory is that one of the partially rate-limiting steps – 

the hydrolysis of the nucleotidylated enzyme – is facilitated by ubiquitous water. In order 

to alter the kinetics so that the intermediate might be trapped using cryo-crystallography, 

we thought to employ nucleoside thiophosphoramidates as the substrates. 

Thiophosphorylhistidines have been found to be more water stable to hydrolysis than 

phosphohistidines.22 By using a more slowly hydrolyzed substrate, we have been able to 

capture the first nucleotiylated-Histidine intermediate during hHint1 catalysis (E*), and 

the product-bound complex (EP2). This information should facilitate mechanistic and 

theoretical studies of nucleotidylated histidine formation, as well as the design of new 

ProTides. 
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Results  

Design of the slow substrate and synthesis.  

Previous work in our laboratory has shown that fluorogenic purine nucleoside 

tryptamine phosphoramidates such as 1 and 2 (Figure 2A, Table 1) are excellent 

substrates for hHint1-mediated hydrolysis.3 Therefore making it difficult to trap the 

covalent histidine phosphate intermediate. In order to reduce the chemical reactivity of 

these substrates and thus potentially trap the nucleotidylated-His intermediate (E*), we 

envisioned an analog in which the 5' oxygen atom is replaced with a less electronegative 

sulfur atom (3; TrpGMPS; Figure 2A). We expected this substitution would reduce the 

acid-liability of the bond between the nitrogen of His112 and the nucleotide phosphorus. 

Thus providing a longer lifetime for the E* complex.  

 

To install the 5'-sulfur onto guanosine, we adopted the strategy previously 

reported by Hodgson and co-workers for the one-step aqueous preparation of N,S-

dialkylthiophosphoramidates23 (Scheme 1).  We investigated the stability of 3 at pH 2.0, 

4.0 and 7.0 and found it to be stable at pH 7, but showed decomposition at pH 2 and 4 

(Figure 3). We investigated the steady state hydrolysis of 2 and 3 (Table 1) using a 

continuous fluorescence assay described previously.3 (Figure 2B) Steady-state kinetics 

with hHint1 revealed that the turnover rate (kcat) for 3 is 120-fold slower than that for 2, 

resulting in a 177-fold decrease in the substrate specificity (kcat/Km) over 2 (Table 1 and 

Figure 2B). As predicted, incorporation of a sulfur atom resulted in a significantly slower 

rate of hydrolysis by Hint1. 
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We performed NMR titration experiments to monitor hydrolysis of 3 in the 

presence of hHint1. Upon incubation at a protein to ligand ratio of 1:100, the half-life of 

3 was found to be 88 min (Figure 2C). The observed half-life can be converted to 

velocity using the initial substrate concentration (v=[S]x0.693/t1/2). Accordingly, the 

calculated velocity was found to be 39 μM/min and turnover rate to be 0.013 s-1(enzyme 

concentration 50 μM), which is consistent with the kcat value obtained using fluorescence 

assay. Therefore, the rate of hydrolysis of the thionucleotidylhistidine has been 

significantly reduced, when compared to the nucleotidylhistidine intermediate. Thus we 

believed that we can trap the intermediate using time-lapse cryo-crystallography. 
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Scheme 1: Synthesis of TrpGMPS  
 
 

 
aReagents and conditions: i) PPh3, Imidazole, I2, RT,61%; ii) a) Tryptamine, PSCl3, 1M 
NaOH, water, b) 5, 30%; 
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Table 1. Steady State Kinetic parameters comparison of substrate hydrolysis by hHint1. 

Values are reported from triplicate measurements as mean ± S.D. 

 

Compound Km (μM) kcat (s-1) kcat/Km (x 107, s-1 M-1) kcat/Km / kcat/Km
(3) 

1 0.13 ± 0.02 2.1 ± 0.1 1.5 ± 0.3 242 
2 0.21 ± 0.02 2.3 ± 0.1 1.1 ± 0.1 177 
3 0.305 ± 0.04 0.019 ± 0.001 0.0062 ± 0.002 1 
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Figure 2. A) Chemical structures of hHint1 substrates (1 and 2) and the designed slow 

substrate of hHint1 (3). B) Steady state kinetics and Michaelis-Menten analysis of the 

hydrolysis of 3 by hHint1. C) Time-dependent analysis of 3 hydrolysis by hHint1 (1:100 

ratio protein:ligand) as monitored under non-steady state via 31P NMR. 
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Figure 3: HPLC stability studies performed by monitoring the UV trace at absorbance 

168-254 nm for the nucleoside. Samples containing 50 μM of 3 at pH A) 7.0 B) 4.0 and 

C) 2.0 were incubated at 37 °C in PBS. At indicated time intervals 200 μl of the solution 

were injected on the HPLC and monitored for any appearance of degradation peaks. Area 

under the curve was obtained from the traces and plotted against the time and fitted with 

an exponential decay curve equation using graph pad prism.  
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Figure 4. A) X-ray crystal structure complex of E* (brown, 5IPD). Inversion of the 

phosphorus center and standard 2'-endo pucker is observed in the E* complex. B) 

Comparison of product complexes. The catalytic product GMPS (5IPE, purple) is 

overlaid with AMP (3TW2). 
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Capture of Nucleotidylated-Histidine Complex (E*). 
 

In order to potentially capture the nucleotidylated histidine intermediate along the 

reaction trajectory, 3 was soaked into apo wild-type protein crystals, which were then 

flash-frozen in time-course experiments. A 15-minute soak of an apo crystal using 5.5 

mM 3 at 4 °C yields a complex with 1.75 Å resolution. The complex appears to show the 

full conversion of the enzyme to the guanylated intermediate E* with no remaining 

density for the tryptamine portion of the substrate (Figure 5). 

The nucleotide portion of the molecule shows reasonable overlap with previously 

determined product complexes through the 5' carbon, with an RMSD of 0.6 Å for those 

atoms. A small shift likely result from the longer bonds required to accommodate the 

sulfur atom that replaces the 5' oxygen. This shift does not alter hydrogen bonding and 

puckering of the ribose sugar, (standard 2'-endo pucker). (Figure 4B) 

  In the covalent E* complex, one phosphoryl oxygen is hydrogen bonded to the 

backbone NH atoms of Ser107 and Val108, as well as the side chain of Ser107, while the 

other is hydrogen bonded to the side chains of Asn99 and His114.  
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Figure 5. Omit map (mFo-DFc) stereo views of ligand density, contoured at 3σ. (B) The 

E* complex, 5IPD. (C) The EP2 complex, 5IPE. 
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 Enzymes that perform similar hydrolytic reactions involving a covalently 

modified histidine have significantly different active site compositions. Comparing these 

enzymes to hHint1 reveals a number of differentiating factors that may impact details of 

catalysis. In the phospholipase D and histidine phosphatase families, the positively 

charged covalent histidine-intermediate is usually stabilized by ion pairing to a nearby 

acidic residue.24, 25 Maintenance of the protonated state of the nucleophilic histidine is 

necessary to facilitate the hydrolytic step of the reaction. In other family members, such 

as E. coli phosphoglycerate mutase, the covalently modified and positively charged 

histidine is only stabilized by hydrogen bonding to a carbonyl; consequently lower 

stability may explain the low crystallographic occupancy of the covalent intermediate in 

reported crystal structures.25, 26 In hHint1, this stabilization is achieved by hydrogen 

bonding to the carbonyl of His110. 

For the hydrolytic step in related enzymes, water is often activated for attack by a 

nearby histidine with assistance from an aspartic acid (PLD and Tpd1), or by an acidic 

residue alone (PAP and fructose-2,6-biphosphatase).27, 28 However, there are no nearby 

acidic residues in hHint1 to perform this function. Therefore, we propose that water 

serves as the nucleophile and is deprotonated by a phosphoryl oxygen. The step is 

partially rate-limiting, likely due to the poor nucleophilicity of water. There are no 

crystallographic waters that are positioned to perform a nucleophilic attack in the E* 

structure. The electrophilicity of the phosphorus center may be enhanced by strong 

interactions between the phosphoryl oxygens and nearby hydrogen bond donors: Asn 99 

ND2 (2.8 Å), Gly105 N (2.5 Å) Ser107 sidechain (3.4 Å), Val108 N (3.1 Å), and His114 

NE2 (3.0 Å) (Figure 7, left). Collapse of the second pentacoordinate transition state 
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would thus yield a neutral His112 and neutral AMP molecule. Of the HIT family 

members that have been structurally characterized, only Galactose-1-phosphate 

uridyltransferase (GalT) has been previously captured in the E* state. In GalT, the usual 

HIT family motif (H-X-H-X-H-X-X) has been replaced with (H-X-H-X-Q-X-X).29 The 

function of this enzyme is to transfer a UMP molecule from UDP-glucose to galactose-1-

phosphate. Since it acts as a transferase rather than a hydrolase, the E* state must be 

significantly more stable than in hHint1, to ensure that the uridylated histidine is 

available during substrate exchange. Indeed, a similar E* complex of the E. coli GalT 

enzyme was prepared and described in 1996 by Wedekind et al., by soaking crystals in 5 

mM UDP-glucose, the native substrate, for two or more hours at 4 °C (PDB ID 1HXQ).29 

The E* complex formed but did not undergo hydrolysis during this extended incubation 

time. Given our proposed mechanism, the GalT intermediate could be hydrolyzed by the 

same water nucleophile. However, hydrogen bonding surrounding the phosphate in the 

GalT E* intermediate complex is significantly poorer than that observed in hHint1 

(Figure 7, right). Consequently, the electrophilicity and reactivity of the intermediate 

phosphorous is significantly reduced, thus allowing direct observation of the E* state in 

GalT; the comparable state in hHint1 catalysis could only be trapped using a substrate 

engineered for slow turnover.  
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Figure 6: The small structural change necessary to accommodate ligand binding. In apo 

structures such as 1KPA (white), the sidechain of Ser107 is in the phosphate pocket. 

When any type of ligand is observed to bind, such as AMP in 3TW2 (gray), Ser107 and 

the surrounding backbone moves to allow it.  
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Figure 7. Comparison of hHint1 and GalT E* active site configurations. The hHint1 

active site (5IPD) has a hydrogen bonding sphere that increases the electrophilicity of the 

phosphorus (left). In the GalT active site (1HXP), the analogous interactions are longer, 

and only one significant hydrogen bond to the intermediate is made (right). 
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Hint1-Product Complex (EP2). 

Structure 5IPE, the 1.45 Å resolution product EP2 complex, was achieved by 

soaking the substrate 3 (5.5 mM) into a crystal at room temperature for 45 minutes 

(Figure 5C). There is no density in this structure to indicate a phosphorus-nitrogen bond, 

either to the tryptamine nitrogen or His112. Therefore, this structure represents a fully 

hydrolyzed EP2 complex.  

  This structure is largely indistinguishable from other product complexes in the 

literature, with an RMSD of 0.3 Å to the AMP in 3TW2 (Figure 4C). Minor differences 

are attributable to the sulfur substitution which must accommodate a more acute P-S-C5' 

angle (107°) compared to the same angle in AMP (120°). The hydrogen bond network is 

largely preserved from the covalent E* complex, though the phosphorus-His112 covalent 

bond in the E* complex is replaced by a phosphoryl oxygen-His112 hydrogen bond in 

the EP2 complex.  

 Catalytic turnover of 3 is not observed during our time-dependent crystallographic 

experiments with the wild-type enzyme. This is consistent with the understanding of 

catalysis reached from detailed analysis of enzyme kinetics, where final product release is 

shown to be partially rate limiting, and a partially rate-limiting conformational change 

has been proposed to accompany nucleotide (P2) release.21 In our crystallographic 

experiment, evidence for turnover would be the presence of overlapping species in the 

EP2 complex density, as new S1 substrate would diffuse into the recycled active site. 

However, density for only the P2 product is observed. We speculate that the observed 

conformational change to recycle the active site may be inhibited by crystal packing. 

There is only one small structural change that consistently distinguishes E state structures 
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such as 1KPA18 from ligand-bound structures; the backbone surrounding Ser107, which 

overlies the phosphate binding area, shifts by about 1 Å to accommodate any bound 

nucleotide-type ligand (Figure 6). Nevertheless, the nature of any structural change 

required for product release will require further investigation. Complementary techniques 

to investigate protein dynamics such as NMR spectroscopy may provide an insight into 

the nature of the conformational change accompanied during the product release step. 

 

Solvent Kinetic Isotope Studies 

Phosphoramidate hydrolysis formally requires the transfer of a proton to the 

leaving primary amine group and hydrolysis of the intermediate via water in the catalytic 

cycle of hHint1 (Figure 1B). To probe the role of proton transfer in hHint1 catalysis, we 

carried out solvent kinetic isotope effect studies. The Solvent Kinetic Isotope Effect 

(SKIE), expressed as the ratio of rate constants when protons from H2O are replaced with 

deuterium from D2O, will be pronounced when the rate limiting reaction step involves 

proton transfer. We evaluated solvent kinetic isotope effects on the overall rate of Hint1 

reaction (kcat) over the accessible pH (or pD) range of 6-9 using steady-state kinetics.  

For rate studies, 1 was used as the substrate (Figure 2); H/Dkcat values of 4.0 and 

2.7 were obtained at pD 6.6 and pD 8, respectively (Table 2). The pD dependence on kcat 

showed an intrinsic SKIE of 2.1 (Figure 8). To determine whether the SKIE of 2.1 could 

result from a higher relative viscosity of D2O (ŋrel = 1.24) compared to H2O (ŋrel = 1), 

control assays were conducted in HEPES buffer containing varying amounts of sucrose 

(0, 14, 24, or 32%) (data not shown). Since the kcat decreases by 1.13 fold in buffer with a 

viscosity of equal to 100% D2O correction.  
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Table 2. Proton inventory experiments of pre-steady state WT hint1 and H114A 

adenylation rate measured using 1 at pL 6.6 and 8.0. 

 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Protein 
H2O D2O Solvent isotope 

effect 
k2  (s-1) k2  (s-1) H/Dk2 

wild type (pL 6.6) 470 ± 20 226 ± 3 2.1± 0.1 

H114A (pL 6.6) 479 ± 30 480 ± 20 1.0 ± 0.1 

wild type (pL 8.0) 587 ± 10 519 ± 18 1.0 ± 0.1 

H114A (pL 8.0) 183 ± 4 190 ± 3 1.0 ± 0.03 
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Figure 8. Solvent kinetic isotope effect studies and comparison of pH (▲, 1) dependence 

and pD (Δ, 1) dependence of steady state kinetic parameters (kcat). The pH profile data 

were fit by eq 5 yielding pK1= 6.68 ± 0.09, pK2= 8.03 ± 0.16, r = 0.72 ± 0.11, (k2)lim = 

673 ± 50 s-1, while the pD profile data yield pK1 = 7.53 ± 0.18, pK2 = 8.15 ± 0.10, r = 

7.35 ± 2.05, q = 1.68 ± 0.16, (k2)lim= 416 ± 14 s-1, thus the intrinsic solvent isotope effect 

is H/D(k2)lim = 1.85. 
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of the SKIE for the viscosity effect gave a corrected SKIE of 1.85 (calculated by 

2.1/1.13=1.85). These SKIE results indicate that proton transfer occurs during the 

catalysis by hHint1. 

 

Proton Inventory Studies 

The solvent kinetic isotope effect may originate from proton transfer involved in 

the rate-limiting step. To elucidate how many protons are “in flight” at each of the step, 

proton inventory experiments were conducted by determining rates of reaction in buffers 

with different mole fractions of D2O and H2O. A linear change in reaction rate with the 

mole fraction of D2O indicates a single proton transfer event. We began by investigating 

the role of proton transfer during the first step in the catalysis by examining the rate of 

adenylation (k2) using stop flow experiments. Adenylation in the wild-type enzyme was 

found to be linearly dependent on the atom fraction of D2O (n) (Figure 9A and B). The 

plots were fit into a simplified Gross-Butler equation, with the isotopic fractionation 

factor for the transition state proton being 0.42 for 1 (SKIEapp = 2.1) at pL 6.6 and 0.88 

for 1 (SKIEapp = 1.1) at pL 8.0 (Table 2). Thus, one proton is apparently transferred 

during the adenylation step. 

Based on the crystallographic evidence in this study, His114 forms a hydrogen 

bond (distance 2.8 Å) with one of the phosphate oxygens in both the hHint1 H112N-

substrate and nucleotidylated intermediate complexes. Protonation of His114 at ND1 

might allow a protonated NE2 to transfer a proton to the primary amine leaving group as 

the ND1H tautomer of the histidine is adopted. To test this hypothesis, we performed 
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comparable the proton inventory studies with a hHint1 enzyme with His114 mutated to 

alanine (H114A).21 The adenylation rate, k2, for the H114A mutant remained unchanged 

with deuterium fraction at both pL values (Figure 9A and B, Table 2). This data 

suggests that His114 is not involved in proton transfer during the adenylation step.  

Next, we performed proton inventory studies under steady state kinetic conditions 

with wild type hHint1. We observed that the kcat decreased proportionally relative to the 

atom fraction of deuterium water (n). The fractionation factor for the transition state 

proton was 0.21 and 0.34 for compound 1 (SKIEapp = 4.0) (Figure 9C and D and Table 

3). This indicates that there is a transfer of a single proton that is involved in the rate-

limiting steps, which includes including the chemical hydrolysis and possible  
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Figure 9. Proton inventory experiments of pre-steady state enzyme adenylation at pL 6.6. 

(A) and pL 8.0 (B). The enzyme adenylation rate constants (k2) were obtained by fitting 

the data to eq 1 and 2. 0k2 represents the k2 in 0 mole fraction D2O, and nk2 represents the 

k2 in n mole fraction D2O. According to eq 4, the normal solvent isotope effect for WT 

hH1 catalyzed 1 hydrolysis (Δ) hydrolysis fit best to a line with a slope of -0.58 (R2= 

0.97, 1)  at pL 6.6 (A), -0.12 (R2= 0.99, 1) at pL 8.0 (B). Assays were also conducted on 

H114A catalyzed 1 hydrolysis reactions at both pLs (×). No SKIE on the rates of H114A 

adenylation was observed. Proton inventory experiments on steady state enzyme kinetics 

at pL 6.6 (C) and pL 8.0 (D). Under saturated concentration of substrates, the rate 

constants (kcat) were obtained by fitting the data to eq 3. 0kcat represents the kcat in 0 mole 

fraction D2O, and nkcat represents the kcat in n mole fraction D2O. According to eq 4, the 

normal solvent isotope effect for WT hH1 catalyzed 1  
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Table 3. Proton inventory experiments of steady state wild-type hHint1 turn over rate 

measured using 1 at pL 6.6 and 8.0. Values are reported from triplicate measurements as 

mean ± S.D. 

Protein 

H2O D2O Solvent isotope 
effect 

kcat  (s-1) kcat  (s-1) H/Dkcat 

wild-type (pL 
6.6) 

1.7 ± 0.04  0.42 ± 0.002 4.4 ± 0.57 

   wild-type (pL 
8.0) 

1.7 ± 0.02 0.64 ± 0.02 2.7 ± 0.07 
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Figure 10.  Water binding in the hHint1 active site. (Left) Three water molecules, W1, 

W2, and W3, are bound behind the phosphoramidate (5IPC, teal) or sulfamate (5I2E, 

magenta) portion of the ligand. They also appear in the apo structure (1KPA, white) 

(Center) The same three water molecules are bound identically in the E* state (5IPD, 

tan), overlaid with the apo structure (white). (Right) An additional water molecule, W4, 

is found in product complexes 5IPE (purple) and 3TW2 (gray) changing the hydrogen 

bonding patterns, overlaid with the apo structure (white). 
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conformational changes associated with product release. 

 

Role of structural waters 

 Our biochemical results above clearly indicate the transfer of two protons during the 

catalytic mechanism of hHint1. In addition, the transfer is not dependent on H114 

protonation, consistent with the observed protonation state of NE1 and its hydrogen 

bonding to the phosphoryl oxygen atom in the X-ray crystal structures. This raises an 

alternative possibility of the transfer of the proton via a Grothuss mechanism, whereby 

protons move rapidly in an aqueous environment. Such a mechanism is easily facilitated 

in cases where an acceptor and a donor site are connected via ordered water molecules.30 

Conventional diffusion would be extremely slow because of reliance on a concentration 

gradient and the aqueous neutral solution contains a low concentration of protons (~ 10-7 

M).  

Upon close inspection of the x-ray crystal structure of hHint1, we identified a 

string of three structural waters that are well ordered and strongly hydrogen bonded 

(Figure 10, left). These water molecules are highly coordinated and are buried within the 

core of the protein, forming a chain of hydrogen bonds between the active site and 

residues on the opposite side of the protein. Water W1 participates in four strong 

hydrogen bonds to the backbone amine of Ile63 (2.9 Å), the Gln106 sidechain amine (2.8 

Å), Water W2 (3.0 Å) and the backbone carbonyl of Asn99 (3.2 Å). Water W2 

participates in three strong hydrogen bonds to the backbone amine of His112 (3.1 Å), 

Water W1 (3.0 Å) and Water W3 (2.9 Å). Water W3 participates in four hydrogen bonds 
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to the backbone amine of Asn99 (2.8 Å), Water 2 (2.9 Å), the backbone carbonyl of 

His112 (2.7 Å) and the phosphoryl oxygen (2.9 Å) of the substrate, intermediate and 

product. In addition, other weaker hydrogen bonds (3.4-3.9 Å) can be found to each of 

the channel waters. Thus, regardless of substrate or product occupancy or the presence of 

the intermediate, each of the conserved waters in the water channel participates in 

multiple hydrogen bonds. (Figure 10, left and center panels).  

In the hHint1 product complexes (3TW2, 5IPE), an additional water (W4) is 

present in the active site, presumably to help disperse the charge of the nucleoside 

monophosphate. When present, both water W2 and water W3 donate a hydrogen bond to 

water W4 (3.0 and 2.8 Å, respectively), and water W4 donates hydrogen bonds to His112 

CO (2.8 Å) and a phosphoryl oxygen (2.9 Å) (Figure 10, right). The appearance of water 

W4 in the product complexes has led us to speculate that the conformational change 

required for product release may correspond to the reorganization of this ordered solvent 

structure.  

Such a chain of waters could potentially serve as a ‘proton wire’ to transfer a 

proton through the enzyme, as has been proposed for proteins such as 

bacteriorhodopsin31, carbonic anhydrase32, and green fluorescent protein33. There are a 

small number of evolutionary differences among human HIT family members, which 

may have had an impact on the proton wire mechanism. In human Fhit, (5FIT), the three 

water molecules are conserved, while in human DcpS (3BL9)34, there does not appear to 

be a solvent-connected end of the wire opposite the active site. However in human 

aprataxin (4NDH)35 and human GalT (5IN3), the channel is completely solvent-exposed, 

which may facilitate its function. It is also possible that the water channel in hHint1 
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might act as a lubricant, easing rearrangements of the peptide amide-carbonyl hydrogen 

bonding network that participate in conformational dynamics and ligand molecular 

recognition. Such dynamic changes might not be easily captured by x-crystallography.  

 

Discussion 

The thiophosphroamidate GMP (3) has the optimal geometry and resistance to 

hydrolysis required to make it an effective surrogate for investigating the hHint1 

catalyzed hydrolysis of nucleotide phosphoramidates. The three snapshots of the hHint1 

catalytic cycle achieved using 3 provide valuable insight into this pharmaceutically 

relevant enzyme. In order to capture different intermediates along the reaction trajectory, 

the compounds were soaked into apo protein crystals, which were then flash-frozen and 

characterized using x-ray crystallography.  

 The crystal structures that capture states in the catalytic cycle of hHint1 are 

consistent with the kinetic mechanism proposed by Zhou et al.21 The mechanism 

employed by hHint1, and by extension, other Hint enzymes, is unique among phospho-

histidine enzymes given the paucity of charged residues in the active site. In enzymes of 

similar nature in the PLD and histidine phosphatase families, charged residues perform 

critical roles: binding to poly-charged substrates (i.e. DNA, IP6, fructose-2,6-

bisphosphate), stabilizing the covalent adduct, serving as a proton donor, and activating 

water.24, 25, 28, 36-39 In hHint1, the only potentially charged residue, His114, does not appear 

to be charged during the catalytic cycle. In addition, little or no evidence of immediate 

water availability for the hydrolysis of the nucleotidylated intermediate was observed by 

x-ray crystallographic analysis. Our structural studies, SKIE and proton inventory 
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experiments suggest that transfer of one proton is associated with each the adenylation of 

hHint1 and the rate-limiting intermediate hydrolysis step. Despite the presence of a 

potential proton-donating residue, His114, in the active site, proton transfer during the 

catalytic steps appears to be mediated by a highly conserved water channel. How this 

channel facilitates proton transfers during attack of the His112 nucleophile to form the 

intermediate or during water attack during intermediate hydrolysis is not clear. 

The application of NMR structural experiments coupled with biochemical 

mutagenesis and computational studies could shed light on the driving forces governing 

formation and hydrolysis of the nucleotidylated hHint1 intermediate, as well as the 

impact of the structure of nucleoside phosphoramidates on hHint1 substrate specificity. 
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Materials and Methods 
 
Synthesis 

Installation of a 5’-sulfur onto guanosine first involves in situ thiophosphorylation 

of tryptamine using thiophosphoryl chloride (SPCl3) under basic aqueous conditions to 

generate tryptamine thiophosphoramidate.23 This step is relatively fast and the reaction 

can be easily monitored using phosphorus NMR. Addition of the 5'-iodo guanosine to the 

reaction mixture then resulted in nucleophilic displacement by the sulfur with the final 

desired compound obtained in 30% yield. The details on the synthetic procedures are 

available in the supplemental information. (Scheme 1) 

 

Synthetic Procedure for the Preparation of 3 

 

Synthesis of 5’-Deoxy-5’-Iodo-Guanosine (5):  

To a stirred solution of guanosine hydrate (4, 0.75 g, 2.5 mmol), triphenyl phosphine 

(2.16 g, 8.25 mmol), and imidazole (1.13, 16.5 mmol) in N-methyl-2-pyrrolidinone (10 

ml), iodine was added (2.01 g, 7.9 mmol) over a period of 5 minutes. The reaction 

mixture warmed up during the addition and was stirred for 3 hours at room temperature. 

After 3 hours, the solution was diluted with dichloromethane (100 ml) and water (30 ml). 

A white solid precipitated from the solution and was collected by filtration to obtain 0.6 g 

(61 %) of the desired product. The 1H NMR spectrum was (DMSO-d6): 3.47 (m, 1H), 

3.56 (m, 1H), 3.95 (m, 1H), 4.07 (m, 1H), 4.64 (m, 1H), 5.40 (d, 1H), 5.53 (d, 1H), 5.72 

(d, 1H), 6.49 (s, 2H), 7.93 (s, 1H) and 10.66 (s, 1H). 13C- DMSO-d6: 156.73, 153.69, 

151.43, 135.85, 116.74, 86.56, 83.75, 73.10, 72.68 and 8.03 ppm. Low resolution ESI-
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MS [M+H] 393.9, HRMS (ESI+) calcd for C10H13IN5O4 [(M+H)+] 394.0012 found 

394.0016 

General Synthesis of nucleoside thiophosphoramidate:  

Alkyl or aryl amine (1eq, 0.68 mmol) was added to a solution of 1M NaOH (5 eq, 3.4 

mmol) and water (0.45 ml) in a round bottom flask and stirred for 20 minutes. A solution 

of thiophosphoryl chloride (1 eq, 0.68 mmol) dissolved in dry THF (2ml) was added 

dropwise to the reaction mixture over the period of 10 minutes. Aliquots of the reaction 

mixture were withdrawn to monitor the formation of thiophosphoramidate using 32P-

NMR. The reaction was completed within 20-40 minutes, after which a portion of 5’-

Iodo nucleoside was added (1.5 eqiv, 1.02 mmol) to the reaction mixture and heated at 

50°C overnight. After 3 hours, another half eqiv of the 5’-Iodo nucleoside was added and 

the reaction mixture was monitored using 32P-NMR. The next day, the reaction mixture 

was neutralized using 1N HCl and lyophilized. The crude reaction mixture was passed 

through cation exchange resin to remove of excess tryptamine, salts and sodium ions. The 

eluent from the cation ion exchange column was again lyophilized and purified using 

reverse phase chromatography. All the nucleoside thiophosphoramidates were finally 

purified using reverse phase chromatography.  

 

Synthesis of 5’-Deoxy-5’-S-Guanosine Tryptamine thiophosphoramidate (3):  

The compound was prepared using the general procedure described above.  

The final product was obtained in 30 % yield. The 1H NMR spectrum was (DMSO-d6): 

2.82 (m, 4H), 3.02 (m, 3H), 3.62 (m, 1H), 3.99 (m, 1H), 4.41 (m, 1.0), 4.48 (m, 1H), 5.15 

(d, 1H), 5.65 (d, 1H), 6.96 (t, 1H), 7.03 (t, 1H), 7.13 (s, 1H), 7.31 (d, 1H), 7.53 (m, 1H), 
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7.87 (s, 1H) 10.64 (s, 1H) and 10.76 (s, 1H). 32P- DMSO-d6: 17.24, 13C- DMSO-d6: 

157.31, 154.35, 136.41, 127.84, 122.87, 121.20, 118.89, 118.50, 117.37, 113.18, 111.71, 

88.31, 84.53, 74.73, 72.15, 45.90, 43.27, 32.40, 28.04 and 27.98 ppm. Low resolution 

LC_ESI-MS [M+H] 522.2, [M-H] 520.1 HRMS calcd for C20H23N7O6PS [(M-H)] 

520.1174 found 520.1145 

 

General Kinetic Methods.  

Human Hint1 kinetics were monitored using phosphorus NMR and was 

performed in buffer (20 mM Tris, 200 mM NaCl and 1mM MgCl2 at pH 7.4). All the 

buffer reagents were purchased from Sigma Aldrich unless otherwise stated. All NMR 

chemical shifts were recorded in δ parts per million using d6-DMSO (Sigma- cat no: 

570672) as internal reference. Fluorescence measurement studies were performed using 

Varian Cary Eclipse fluorescence spectrophotometer. 

 

Protein purification.  

The H114A mutant was prepared and purified from the plasmid as described 

previously.23 The wild type hHint1 protein was expressed in the similar fashion. The 

constructs in a pMCSG725 vector (N-terminal, TEV-cleavable His6-tag) were grown 

Rosetta2 pLysS cells in TB media using ampicillin (100 μg/mL, GoldBio) and 

chloramphenicol (30 μg/mL, Fisher Scientific) at 37 °C and shaking at 270 rpm until 

OD600 = 1.0, when they where induced to an IPTG (TekNOVA) concentration of 1 mM. 

The cultures were incubated at 18 °C overnight with shaking at 270 rpm. The cultures 

were harvested by centrifugation at 5,000 x g, and the cell pellets were resuspended in 
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Buffer A (50 mM HEPES (Sigma), 300 mM NaCl (Macron Fine Chemicals), 10% 

glycerol (Fisher Scientific), 0.5 mM TCEP (Thermo Scientific), 10 mM imidazole 

(Sigma), pH 7.0), adjusted to 1 mM MgCl2 (EMD) and 1 mg/mL lysozyme (bioPLUS). 

Benzonase nuclease (1.5-2 μL, Sigma) was added. The cells were lysed by sonication (8-

16 x (30 s on, 30 s off)), and cell debris was removed by centrifugation at 40,000 x g for 

45 minutes. The lysate was clarified by syringe filtration (0.45 μm, Merk Millipore Ltd.) 

and applied to 2 x 5 mL GE HisTrapFF columns. The protein was eluted with an 

imidazole gradient to Buffer B (50 mM HEPES, 300 mM NaCl, 10% glycerol, 0.5 mM 

TCEP, pH 7.0).  

The His6 tag was cleaved with TEV protease, used at 2% (m/m) during an 

overnight dialysis step at 4 °C against TEV cleavage buffer (50 mM HEPES, 300 mM 

NaCl, 5% glycerol, 0.5 mM TCEP, pH 7.0). The cleaved protein mixture was reapplied to 

the nickel column, and the flow-through portion was collected. The flow-through 

fractions were concentrated to approximately 5 mL and applied to a HiPrep 16/60 

Sephacryl S-100 HR column using SEC buffer (20 mM Tris (Fluka), 300 mM NaCl, 5% 

glycerol, pH 7.0). The pure fractions were pooled. In the wild type preparation, these 

fractions were concentrated to A280 = 10, aliquoted and frozen without further treatment.  

 

Structural Biology.  

Crystals of wild-type hHint1 was prepared using hanging-drop vapor diffusion at 

20 °C. For wild-type crystals, drops were set up consisting of 2 uL of protein (A280 = 5) 

and 2 uL of well solution (1 M MES (Sigma) pH 6.1-6.4, PEG 8K (Acros Organics) 34-

39%). For H112N crystals, drops consisted of 2 uL of protein (A280 = 3) and 2 uL of well 
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solution (1 M MES pH 6.5, 37% PEG 8K). The details on the soaking and crystallization 

conditions of each structure are described in detail in the supplemental information. 

Data for structures 5IPB, 5IPC, and 5IPD, were collected at APS beamline 17-ID-

B (IMCA-CAT) of Argonne National Labs equipped with a Dectris Pilatus 6M Pixel 

Array Detector. The data were processed using AutoPROC.40 Data for structure 5IPE 

were collected at ALS Beamline 4.2.2 of Lawrence Livermore National Labs and were 

processed using XDS.41  

The structures were solved using Phaser42 and the coordinates from structure 

3TW2.17 The structures were refined using REFMAC543 in the CCP4 suite44 and Phenix45, 

and they were visualized and modified using coot.46 Ligand restraints were calculated 

using JLigand or elbow.47, 48 Data processing and refinement statistics are available in 

Supplemental Table 2. 

Crystal packing does noticeably impact substrate binding in these crystals; we 

observe substrate binding and catalysis in only one of the two, seemingly equivalent 

monomers of the hHint1 homodimer, a fact attributed to crystal packing. In this 

monoclinic (C2) crystal form, the active site of the B chain is partially occupied by the 

β1-β2 loop of the B chain of a symmetry mate, thus precluding binding in that site.  

Structures that are compared have been overlaid using the “HIT-NBD” (Histidine 

Triad protein-Nucleotide Binding Domain) core substructure overlay method available at 

https://drugsite.msi.umn.edu/.49 
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Solvent Kinetic Isotope Effect 

 The solvent isotope effect experiments were conducted in phosphate buffers (100 

mM) made of 98% deuterium water at pD 6.6 and 8, where the pD values = pH meter 

reading + 0.4. The solvent isotope effect was expressed as the ratio of the kinetic 

parameter in water and in deuterium water (H/D). For solvent isotope effect in pre-

steady-state kinetics, the reaction rates of the adenylation of Hint1 were monitored at 

25°C using a fluorescence stopped flow apparatus with 1 (5-40 μM) in one syringe and 

hHint1 (wild-type, 69 μg/ml, 5 μM) in the other syringe, as described previously.23 The 

time-course curves were fit by a single exponential equation with a steady-state term (Eq. 

1) using JMP IN 7 software, where A is the amplitude of the burst, klin is the linear rate of 

increase of fluorescence, and kb is the burst rate, or the observed pseudo-first-order rate 

constant.23 The results represent the average of six experiments. The kinetic parameters 

k2, Km
adenylyl, k2/Km

adenylyl for 1 turnover were obtained by non-linear fitting to the data by Eq. 

1 and Eq. 2, and [S] is the substrate concentration. 

P(t) = Ae-k
b

*t + klin . t + C                    Eq. 1 

                                   Eq. 2 

 

 For solvent isotope effect in steady state kinetics, the steady state fluorescence 

assay was performed at 25°C using Varian/Cary Eclipse Fluorimeter as described 

previously.23 The initial velocity of hydrolysis was measured with hHint1 or H114A 

mutant (6 nM - 50 nM) and varied concentrations of 1 (0-10 μM). The curves were fit to 

Eq. 3 to yield the first order rate constant kcat and apparent Michaelis-Menten constant Km 

[ ]
[ ]

2
b adenyl

m

k S
k

K S
×

=
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using JMP7 software, where v is the initial velocity, [E]t is the total enzyme 

concentration, and [S] is the substrate concentration. 

 

                          Eq. 3 

 

The pH dependence of the pre-steady state parameters were calculated using equation, 

 

  

Proton Inventory Studies     

Proton inventory studies were performed for both pre-steady state and steady state 

kinetic studies. Phosphate buffers for the proton inventory studies with different 

deuterium atom fractions n were prepared gravimetrically by mixing appropriate 

quantities of buffers made up in H2O and D2O. The pD was adjusted according to pD = 

pH meter reading + 0.4. For pre-steady state kinetics using a stopped-flow instrument, the 

final concentration of enzyme was 2.5 μM and final concentrations of 1 (5-60 μM). The 

results represent the average of six experiments. In each H2O-D2O system, k2, Km
adenylyl, 

and k2/Km
adenylyl were calculated. The plot of nk2/0k2 vs. n was made at pL 8.0, where nk2 

represents k2 rate constant in the n mole fraction of D2O, 0k2 represents k2 rate constant in 

H2O, and n is the solvent mole fraction of D2O. For steady state experiments, nkcat/0kcat 

was plotted at pL 6.6 against n, where kcat is the observed first-order rate constant. Proton-

inventory data were fit to the simplified Gross-Butler equation for a one-proton-transfer 

[ ] [ ]
[ ]

cat t

m

k E S
v

K S
=

+
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                          Eq. 15  

 

pH dependence of steady state kinetic parameters    

The pH-rate profiles of steady state hydrolysis of phosphoramidate by hint1 and mutants 

were determined with saturated concentration of substrate (50µM) and appropriate 

enzyme concentration (0.0625µM-0.25µM) in phosphate buffer (100mM, pH 5.8-9). The 

kcat vs. pH data were fit with eq 15. 

 

Theoretically, two models have been proposed and used to discriminate the effects of 

conformational change on the viscosity dependence (91). According to Kramers’ model 

(92, 93), a rate limiting product release associated with conformational change would be 

manifested in the linear dependence on η-δ (eq 16) (94), whereas in the model from 

Somogyi et al, the dependence of kcat on η would obey the function e-γη2 if merely product 

dissociation is rate limitng, without a conformational change (95). In our case, a linear 

plot of ln (kcat) vs. ln (η) (Fig. 5a) and a non-linear plot of ln(kcat) vs. η2 (data not shown) 

were obtained, indicating our experimental results are in reasonable agreement with 

Kramers’ model. Kramers’ theory linked the increased solvent friction with decreased 

rate of structural fluctuations (96), and has been used successfully to elucidate the 

important conformational changes of protein (91, 97). The slope δ (0< δ <1) indicates the 

degree of coupling of the active site to solvent, where a value of 1 shows a tight coupling 

and a value of 0 shows no coupling. A slope of 0.75 was obtained, reflecting the coupling 

Eq. 5 



	167	

model (Eq. 7), where j is the fractionation factors of the transition state proton, and it can 

be calculated from the slope (j-1) of the PI plot. 

                                Eq. 4 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

( )0/ 1 n jn k k n= − + ×
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Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) 
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INTRODUCTION:  
 

Histidine triad nucleotide binding protein 1 (Hint1) has emerged as a key 

regulator of pain, opioid tolerance and addiction properties in the central nervous system 

(CNS).1-3 Hint1 belongs to the histidine triad (HIT) superfamily which are characterized 

by their conserved nucleotide binding motif, His-X-His-X-His-XX, where X is a 

hydrophobic residue. hHint1 exists as a homodimer and possesses nucleoside 

phosphoramidase and acyl-AMP hydrolase activity, with a preference for substrates with 

purine over pyrimidine nucleosides.4 The nucleoside phosphoramidase activity of hHint1 

has been shown to be necessary for the activation of several preclinical and clinically 

approved antiviral and anticancer phosphoramidate pronucleotides.5-8 In addition, Chou 

and Wagner et al. have demonstrated that lysyl t-RNA synthetase generated lysyl-AMP is 

a substrate for hHint1 in vitro.9  

Hint1 has been shown to paly a role in modulating in N-methyl-D-aspartate 

(NMDA) receptors activation.10 The interaction between Hint1 and NMDA receptor has 

been proposed to mediate the co-association of NMDAR with several G-protein coupled 

receptors (GPCRs) in vivo, including the µ-opioid receptor (MOR).11, 12 Consistent with 

this observation, Hint1-/- mice exhibit an increased morphine analgesic response and 

sensitivity to amphetamine, while reduced nicotine dependence has been observed in self-

administration studies.1-3 In addition, mutations or aberrant expression of hHint1 is been 

associated with inherited peripheral neuropathy, schizophrenia and bipolar disorders.13, 14 

Nevertheless, the identity of the endogenous substrate that presumably is participating in 

these signaling events has yet to be determined.  
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Based on the results of our substrate specificity analysis of Hint1,4 we have 

designed several competitive inhibitors.15 Neuropharmacological studies with one of 

these inhibitors, 3 (TrpGc, see Chapter 2), revealed that it enhanced morphine analgesia, 

blocked the development of tolerance and relieved neuropathic pain in mice.16 Thus these 

demonstrate that Hint1 regulates the function of MOR via its interaction with the NMDA 

receptor.16 To facilitate interrogation of the molecular mechanisms governing the cellular 

function of Hint1, a fluorescent probe that switches on when bound to the protein would 

be a valuable mechanistic tool. In addition, a fluorescent switch on probe of the Hint1 

active site would aid in the development of high throughput assays for the screening of 

potential Hint1 inhibitors. 

Currently, there are two classes of small molecule based switch-on fluorescent 

probes: enzymatic activity-dependent probes and enzymatic activity independent 

probes.17 In the later case, generally, a solvatochromic fluorophore is attached to the 

ligand specific to a target protein of interest. Upon binding to the target of interest, the 

change in the polarity of the environment results in an increase in the fluorescence 

intensity of the probe.18 Unfortunately, these probes exhibit high background 

fluorescence and hence a low ratio of signal to background fluorescence is observed. 

Herein we report the first fluorescent reporter ligands for hHint1 with switchable 

properties guided by the principle used in the design of DNA or aptamer-based molecular 

beacons.19 Upon binding to hHint1, these switchable probes undergo a conformational 

change resulting in the quencher becoming less hybridized with the fluorophore and thus 

exhibiting and increased fluorescence intensity. In the current work, we demonstrate the 
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utility of such probes in performing hHint1-ligand dissociation studies and the selective 

detection of hHint1 in vitro. 

 

RESULTS 

Design and synthesis of intramolecularly quenched fluorescent nucleotidomimetic 

probes for hHint1 

We envisioned two important criteria for the successful development of fluorescent 

switch-on probes for hHint1: a) the probe should exhibit selectivity for hHint1 and b) a 

substantial difference in the fluorescence property of the free and the bound probe. One 

of the characteristic features of hHint1 is its nucleoside-binding motif, which exhibits a 

preference for binding purine over pyrimidine nucleoside monophosphates. Hence, we 

selected the fluorescent non-natural nucleosides, 1, N6-ethenoadenosine (EtAd, exλmax 

278, emλmax 410 nm) (7) and thG (exλmax 331, emλmax 450 nm), (8) to incorporate into the 

design of our fluorescent probes (Figure 1A).20, 21 The selection of EtAd and thG was 

based on their high quantum yields (Ø = 0.56 for EtAd and Ø = 0.34 for thG) and long 

fluorescent lifetimes (𝝉 ~ 20-25 ns) in aqueous buffers. The guanosine mimic, thG, has an 

additional advantage since it’s excitation and emission maxima are at higher wavelengths 

compared to EtAd (Figure 1B) To address the second criteria, we decided to incorporate 

an indolyl group as a fluorescent quencher. A wide variety of chemical moieties can act 

as a quencher of fluorescence, For example tryptophan is known to induce quenching of 

certain dyes and fluorophores over relatively short distances via photon-induced electron 

transfer (PET).22 Attachment of an indole side chain using a water-soluble acyl-sulfamate 

linker to the fluorophore nucleoside nearby resulting in quenching of the fluorescence  
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Figure 1. Non-natural fluorescent nucleosides A) Chemical structures of the fluorescent 

nucleosides thG (left) and EtAd (right) and B) Absorption (dashed lines) and Emission 

(solid lines) spectra of the respective nucleosides recorded in an aqueous buffer (20mM 

Tris, 150 mM NaCl, pH 7.4) at room temperature. 
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Figure 2. Extended conformer driven switch-on probes A) Concept of the designed 

intramolecularly quenched probes for hHint1 B) Upon incubation with hHint1, the probe 

hybridizes with the complementary active site, resulting in the extended conformer and 

hence regain in the fluorescence C) Chemical structures of the designed intramolecular 

quenched probes 7 and 8. Circled in red is a quencher (indole ring) and blue is the 

fluorescent nucleobase. 
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(Figure 2A). We therefore chose to prepare and investigate the fluorescence properties of 

5’-indole-3-propionic acid ribose 1, N6-Ethenoadenosine sulfamate (7) and 5’-indole-3-

propionic acid ribose-2-aminothieno[3,4-d]pyrimidin-4(3H)-one sulfamate (8) (Figure 

2C). Compound 7 has been recently reported as a sub-micromolar (Kd = 0.23 μM) 

inhibitor of hHint1 and was prepared as previously described.15 The synthesis of 

compound 8 began with the preparation of 2-Aminothieno[3,4-d]pyrimidine G mimic 

nucleoside (thG) as reported by Shin et. al20 with minor modifications (Method and 

materials for details). Next, we carried out the acetonide protection of the 2´, 3´- hydroxyl 

of the ribose sugar of thG, followed by sulfomyla-tion of the 5’-hydroxyl with sulfamoyl 

chloride to yield 6 (Scheme 1). Coupling of 6 with the activated NHS-ester of an indole-

3-propionic acid (22) in the presence of DBU and subsequent removal of the acetonide 

group with aqueous TFA generated 8 in 60 % overall yield. When compared to the parent 

nucleosides, EtAd and thG, the quantum yields of compounds 7 and 8 exhibited a 49- and 

19- fold decrease, respectively (Table 1).  

 

Both probes exhibit intramolecular static and dynamic quenching of fluorescence in 

an aqueous solution 

The quantum yield of a fluorophore depends on the ratio of the number of photons 

emitted via a radiative process to the number of photons absorbed upon excitation of an 

electron. The average time the electron spends in the excited state determines the lifetime 

of fluorescence. Typically, quenchers act by either reducing the quantum yield or the 

lifetime of a fluorophore. The mechanism of quenching of fluorescence can by either 

static or dynamic process. In static quenching, the quencher forms a dark ground-state 
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Scheme 1: Synthesis of compound 8  

 
aReagents and conditions: i) perchloric acid and acetone 2 h, ii) NH2SO2Cl, DMA, 85%; 

iii) 22, DBU, DMF 55%; iv) 80 % aq. TFA quant 
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Table 1: Photophysical properties for the fluorescent nucleoside analogues used in the 

current study 

Compound Quantum 

yield 
(Ø) 

Lifetime 

𝝉 (ns) 

Extended 

conformer 

𝛾 (%) 

Stacked 

conformer  

1- 𝛾 (%) 

kq (1/s) 

EtAd 0.56 25 - - - 

dGth 0.34 20 - - - 

7 0.011 4.7 10.8 89.2 1.7 x 108 

8 0.018 4.5 23.0 77 1.7 x 108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	181	

Figure 3. Time-resolved fluorescence studies on ethenoadenosine (black, fluorophore) 

and compound 7 (red, fluorophore + quencher). The decrease in the lifetime of 

fluorescence of 7 in comparison to parent nucleoside indicates dynamic quenching of the 

fluorophore. 
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Figure 4. A) Fluorescent spectra changes of compound 7 and 8 (3 µM) upon addition of 

hHint1 (0.5-6 µM) (λex= 278 nm for 7 and 330 nm for 8) in an aqueous assay buffer with 

slit width of 5 nm for both excitation and emission. B) Specific binding of probes to 

hHint1 (0.25 or 1 µM) observed with increasing concentration of ligands. The total 

increase in the fluorescence (λex= 278 nm for 7, λem= 410 slit 10 and 330 nm for 8, λem= 

453 slit 5) was subtracted from the background intensity and plotted against the 

concentration of the respective compounds. Data points represent three measurements 

including the standard deviations. 
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complex with the fluorophore and hence it reduces the quantum yield. In contrast, the 

collisional quenching reduces the average lifetime of an electron spent in the 

electronically excited state and hence reduces the lifetime of a fluorophore. The observed 

decrease in the quantum yields clearly indicates intramolecular static quenching in 

compound 7 and 8 likely via proximity pairing between the nucleobase and the indole 

ring. In addition, our studies on the measurement of an average fluorescence lifetime 

reflected a 4 to 5 fold reduction in the lifetime of our probes when compared to the parent 

nucleosides (Table 1 and Figure 3). Based on the decrease in the fluorescence intensity 

and lifetime of the fluorophore, we estimate that in an aqueous solution, 89 % of the 

population of 7 and 77 % of probe 8 exists in the stacked conformation (Table 1). The 

decrease in the average lifetime also indicates that both our probes continuously undergo 

end-to-end dynamic collisional quenching. The unimolecular rate constant (kq) for this 

process was calculated to be 1.7 x 108 per second. In conclusion, both compounds 7 and 8 

undergo static and dynamic quenching. 

 

Both probes exhibit switch-on fluorescence properties upon incubation with 

hHINT1 in an aqueous solution 

Our rationale in the design of the quenched probes was that upon binding in the active 

site of hHint1, both the quencher and the fluorophore would become separated by 

sufficient distance (extended conformation) to result in unquenching and hence an 

increase in the fluorescence intensity (Figure 2B). Such phenomenon of 

fluorescence/FRET behavior has been previously observed upon binding of the cofactor 
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NADH to human 17-B-dehydrogenase complex, but has not been exploited in the design 

of an inhibitor for a target protein.23 As expected, we observed an increase in the 

fluorescence intensity upon incubation of these probes in the presence of hHint1 (Figure 

4A). Titration of these probes with an increasing amount of hHint1 yielded a fluorescence 

intensity curve, indicative of active site binding dependent phenomenon (Figure 4B). As 

a control, each probe by itself showed a linear increase in the emission signal intensity 

resulting from the auto or background fluorescence of the fluorophore (Figure 5). Fitting 

the observed data with a one site-binding model provided the dissociation constant of 7 to 

be 0.121 ± 0.02 µM and 8 to be 2.2 ± 0.36  µM. The binding affinity of the 7 is well in 

agreement with the previously reported dissociation constant obtained via ITC 

measurement. The dissociation constant of 8 was observed to be four fold lower than the 

recently reported guanosine analog of 8 by Shah and Wagner et al. This result indicates 

that the replacement of nitrogen’s in the purine ring and the incorporation of a sulfur 

atom at C8 led to a decrease in the binding affinity.  

 

X-ray crystal structure analysis of compound 7 bound with hHint1 

To validate our hypothesis, that the extended conformation of the probe is driving the 

increase in fluorescence upon binding to hHint1, we obtained a high-resolution (1.6-Å) 

X-ray crystal structure of hHint1 bound with compound 7 (Figure 6). Comparing with 

the structure of AMP (pdb: 3TW2), additional hydrogen bonding between the carbonyl of 

the acyl-sulfamate of 7 and active site Ser 107 was observed. When compared with the 

hHint1-AMP structure, a rotation around the 5’ O-S bond is observed for 7 compared to  
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Figure 5. Standard curves: Measure fluorescence intensity of compound 7 and 8 in the 

absence of hHint1. The total increase in the fluorescence (λex= 278 nm for 7, λem= 410 slit 

10 and 330 nm for 8, λem= 453 slit 5) in the absence of hHint1 was plotted against the 

concentration of the respective compounds. Data points represent three measurements 

including the standard deviations. 
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Figure 6. (Left) High-resolution x-ray crystal structure of compound 7 bound to hHint1. 

Extended conformer of the compound 7 is observed. (Right) X-ray crystal structure 

analysis of AMP (yellow; pdb: 3TW2) overlaid with the compound 7 (cyan) in 

interaction with hHint1 (blue; pdb: 5I2E) complex. H-bond interactions between the 

sugar and side chain are shown in dotted black lines. Different orientations of isoleucine 

side chains observed in the hydrophobic nucleotide-binding pocket for AMP and 

compound 7 bound hHint1 structures are shown in yellow and blue respectively. 
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the 5’ O-P for AMP binding, thus positioning the Ser 107 further away and 2.6-Å from 

the carbonyl. These results are consistent with the gain in the binding affinity and 

observed increase in the enthalpic contribution reported in the previous chapter. Several 

additional sets of molecular interactions were observed in both the enzyme-inhibitor 

structure. Examination of the ribose ring, revealed that as observed for all Hint-nucleotide 

structures, active site binding of the ribose sugar 2ʹ 3ʹ- hydroxyl is driven by hydrogen 

bond interactions with the side chain oxygen atoms of Asp 43 (2.6-Å and 2.4-Å). With 

regard to the inhibitor side-chain, stabilizing van der Waals interactions were observed 

between the linking methylene’s and the indole ring of Trp 123 (3.5-Å) in compound 7. 

In addition, the planar tricyclic ring of the nucleobase is well accommodated by the 

hydrophobic S1 pocket (which is comprised largely of Ile 18, Phe 19, Ile 22, Ile 27, and 

Ile 44). When compared to the AMP bound structure, minor changes were observed in 

the side chain of the isoleucines in the S1 pocket and no significant variation in the 

backbone structure. As expected compound 7 is observed in fully extended conformation 

when bound in the active site of hHint1 (Figure 6). The bound structure shows that the 

surface area of 7 complements with the active site of hHint1. Moreover, no significant 

changes in the overall conformation of the protein were observed when compared to the 

apo or nucleotide bound structures. 

 

Utility of switch-on probes in hHint1-ligand displacement studies 

Since probes 7 and 8 occupy the active site of hHint1, monitoring their displacement by 

non-fluorescent ligands would allow us to determine the dissociation constants of the 

ligands. As can be seen in Figure 7, titration of the hHint1-7 or 8 complex with the 
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inhibitors Bio-AMS or TpGc yielded a dose-dependent decrease in fluorescence. IC50 

values obtained from the plot of the % decrease in fluorescence intensity vs. log dose  

Figure 7. A) Competitive displacement studies (Left) Titration of Bio-AMS (0.025-12 

μM) with hHint1 (0.25 μM) incubated with 0.4 μM of compound 7. (Right) Titration of 

compound 3 (TrpGc, 1-40 μM) with hHint1 (1.0 μM) incubated with 12 μM M of 

compound 8. B) (Left) Specific binding of compound 8 to hHint1_H112A (0.5) observed 

with increasing concentration of the ligand. The total increase in the fluorescence (λex= 

330 nm and λem= 453 nm, slit 5) was plotted against the concentration of the compound 8. 

Data points represent three measurements including the standard deviations. (Right) 

Titration of Hint1 substrate (TrpAMP, 0.025-12 μM) with hHint1_H112A (0.25 μM) 

incubated with 2.0 μM of compound 8. One site-binding model was used to fit the 

displacement curves. Data points represent three measurements, including the standard 

deviations.  

 

A) 

B) 
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Figure 8. (Left) X-ray crystal structure analysis of AMP bound to hHint1 (pdb: 3TW2) to 

measure the distance between W123 and the nucleobase for FRET pairing (dotted line 

13Å). (Right) FRET signal measurement upon incubating 8 μM of hHint1 alone (red) or 

in the presence of 8 (2 μM) (blue, λex= 280 nm for 8, slit 5) in an aqueous assay buffer. 

The decrease in the emission intensity (λem= 360 nm for tryptophan, slit 5) of the protein 

was observed upon incubation with compound 8.  
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response curve were then converted using the Cheng-Prusoff equation to provide the 

inhibition constant (Ki) values. The values for both the inhibitors were found to be very 

similar to the previously reported dissociation constant values of 0.32 and 3.65 μM for 

Bio-AMS and TrpGc via ITC.15 In similar fashion, the values of the inhibition constants 

for the nucleoside monophosphates (NMPs) to hHint1 ranged from 20-40 µM with a rank 

order of GMP≈AMP>CMP>UMP (Table 2). The inhibition constant value for GMP (24 

μM) is nearly identical to the previously reported value of the dissociation constant value 

(67 μM) measured by NMR 15N-1H HSQC titration experiment.24 

 

We next sought to evaluate whether the probes could be used to determine the 

binding affinity of nucleoside phosphoramidate substrates of hHint1. Instead of the 

catalytically active enzyme, we employed the catalytically inactive mutant of hHint1, 

H112A, in which the nucleophilic imidazole was replaced with an alanine residue.9 As 

observed for the wild-type enzyme, incubation of hHint1_H112A mutant with 8 resulted 

in an increase in fluorescence intensity. Interestingly, the hHint1_H112A mutant 

exhibited a moderate gain (~4 fold) in the binding affinity for 8 compared to the wild-

type enzyme (Figure 7B, Table 2). When the hHint1-8 complex was then titrated with 

variable concentrations of the hHint1 substrate, TpAd, a dose-dependent decrease in 

fluorescence was observed corresponding to a dissociation constant of 0.5 ± 0.01 𝜇M 

(Figure 7B, Table 2), which is in agreement with the calculated value of 1.33 μM based 

on the association and dissociation rates observed in the kinetic mechanism.25 
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Table 2: hHint1-ligand binding constants calculated using fluorescence displacement 

studies with switch-on probes. 

Ligand Wild type hHint1 hHint1_H112A 

IC50 (µM) Ki (µM) IC50 (µM) Ki (µM) 

Bio-AMSa 1.77 ± 0.05 0.32 ± 0.01 - - 

3 (TrpGc)b 6.71 ± 0.04 1.04 ± 0.03 - - 

AMPb 141.9 ± 1.8 22.1 ± 2.1 - - 

GMPb 153.99 ± 2.0 23.9 ± 1.9 - - 

UMPb 246.82 ± 2.8 38.3 ± 2.3 - - 

CMPb 219.95 ± 2.4 34.1 ± 2.4 - - 

2 (TrpAMP)b - - 1.94 ± 0.05 0.50 ± 0.01 
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A fluorescent switch-on FRET probe: compound 8 as a FRET acceptor for 

tryptophan in the structure of hHint1  

One of the key motivations in the development of 8 was the realization that the maximum 

excitation wavelength of thG (exmax = 330-360 nm) overlaps with the fluorescence 

emission maxima wavelength for tryptophan (emmax = 340 nm). The critical Föster 

resonance distance (R0) between tryptophan and the fluorescent nucleoside (thG) has been 

reported to be 22 Å.26 Inspection of the x-ray crystal structure revealed the presence of a 

single tryptophan residue (W123) located in the active site that is 13 Å away from the 

nucleobase-binding pocket (S1) (Figure 8A). Such proximity provides an opportunity for 

the development of a fluorescence resonance energy transfer (FRET) based switch-on 

probe for hHint1. FRET was verified by measuring the fluorescence emission spectra of 

hHint1 alone and in the presence of compound 8 (Figure 8A). Upon incubation with an 

excess amount of hHint1 and excitation at 280 nm; the emission at 360 nm was decreased 

with an increase in emission signal intensity at 450 nm. This observation is in agreement 

with those typically seen with FRET pairing molecules. Since the structure of 8 also 

incorporates an indole moiety, one might expect FRET from intramolecular indole side 

chain. Since the structure of 8 incorporates an indole moiety, one might expect FRET 

from not only W123 but also from the intramolecular indole side chain. Distinguishing 

between the two overlaps would be difficult. Our attempts to abolish FRET with a 

W123A mutation led to the loss of dimerization of hHint1 (data not shown). Mutations 

associated with a loss in dimerization of hHint1 have been reported to decrease its 

substrate specificity and Michaelis-Menten constant for the substrates.27 Hence, we did 
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not observed fluorescence unquenching of compound 8 in the presence of 

hHint1_W123A mutant (data not shown). 

 

Selectivity of Switch-on fluorescence probes 
 
The human genome encodes for three different isoforms of Hint proteins: hHint1, 2 and 

3, while prokaryotes such as Escherichia coli encodes only a single protein with 

phosphoramidase activity (ecHint). Our kinetic and substrate specificity studies with Hint 

enzymes have clearly shown differences among these isoforms. Incubation of compound 

8 with each hHint1 isoforms resulted in differential amounts of fluorescence 

unquenching. Among them, hHint1 showed the highest, while both hHint3 and echinT 

exhibited the lowest amount of fluorescence intensity upon incubation with compound 8 

(Figure 9A). The difference in the amount of unquenching also manifests the ability of 

the Hint isoforms to differentially bind acyl-NMP and their potential as in vivo 

regulators. These results are in agreement with the decrease in the Michaels-Menten 

constant observed for both hHint3 and echinT when the substrate specificity studies of 

the isoforms and the hHint1 are compared. Interestingly, among these isoforms, only 

hHint1 and 2 contains a tryptophan, in the active site but not the others. Consequently, we 

observed the FRET signal only in the presence of hHint1 and 2 (Figure 10).  

 

Next, we wanted to ask if compound 8 would display similar switch-on properties 

in the presence of other adenylating or nucleoside binding proteins. We chose an 

aminoacyl t-RNA synthetase (lysRs) as a representative example and dihydrofolate 

reductase (DHFR) for its ability to bind a nucleotide-based cofactor NADPH. We also  
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Figure 9. Selectivity test of compound 8 with other proteins: Compound 8 (12 μM) was 

tested with A) 1 μM of Hint isoforms and three other nucleoside/nucleotide binding 

proteins or B) E.coli lysate (1 mg/ml) without/with hHint1. Student t-test perform on the 

values indicate, **** p-values < 0.0001, *** p-values ≥ 0.0001  
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Figure 10. Comparison of signal from FRET pairing of compound 8 with tryptophan in 

the active site of Hint1 or 2 to other Hint proteins that lacks such tryptophan: Compound 

8 (12 μM) was tested with 1 μM of Hint isoform proteins. The observed signal in Hint3-2 

and echinT is resulting from the background fluorescence of the unbound probe and 

hasn’t been normalized to that. Student t-test perform on the values indicate, *** p-values 

≥ 0.0001.  
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used an aminopeptidase protein trypsin in the study. We monitored the increase in the 

fluorescence intensity of Compound 8 (λex = 330 nm, λem = 450 nm) in the presence of 

both proteins.  Incubation of these proteins with Compound 8 yielded little or no increase 

in the fluorescence intensity (Figure 9A). Furthermore, incubation of 8 with the lysate of 

Escherichia coli (total protein 1 mg) yielded little or no increase in the fluorescence 

intensity. However, incubation of 8 with E.coli lysate (total protein concentration 1 

mg/ml) obtained from cells transfected with hHint1 plasmid and induced to express 

hHint1 (1.5 h) resulted in a significant increase in the fluorescence intensity (Figure 9B). 

Together, these results demonstrate the ability of hHint1 to bind selectively and switch-

on the fluorescence of 8. 

 

Utility of 8 in monitoring hHint1-substrate complex (ES) under steady state 

conditions 

One of the key characteristics of a competitive inhibitor is its reversibility in binding and 

inhibiting an enzyme. In addition, any given amount of a competitive inhibitor can be 

displaced and maximum reaction velocity (Vmax) of an enzyme can be reached under 

saturating substrate concentrations. Accordingly, a competitive inhibitor only changes the 

Michaels-Menten constant (Km, becomes Kmapp) and not the Vmax value. It is also 

interesting to conceive that 8 is not only a competitive inhibitor, but can also serve as a 

reporter in monitoring active site occupancy of hHint1 in real time. Hence, we envisioned 

that under saturating concentrations of our reporter/inhibitor incubate with hHint1, we 

expect the fluorescence intensity will correspond to nearly complete occupancy (> 90%) 

of the hHint1 active site. Under such conditions, upon the addition of an excess amount  
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Figure 11. Monitoring hHint1-substrate complex using compound 8 as a displacement 

probe. A) Schematic representation of the concept. Incubation of hHint1 (E) with excess 

of compound 8 (I) results in a certain amount of fluorescence intensity arising from the 

EI complex. Addition of the excess amount of the substrate (S >> Km) results in the 

displacement of the inhibitor and formation of the ES complex.  B) Displacement of 

compound 8 (12 μM) bound to hHint1 (1 μM) via the addition of excess substrate 

(compound 2, S >> Km). The formation of ES complex is seen over a period of a few 

seconds after which the gain in the fluorescence intensity is due to the decreased substrate 

concentration (S << Km). The excitation wavelength was 330 nm and slit width of 5 nm 

for both excitation and emission. C) Increasing the substrate concentration (compound 2) 

leads to increased inflection time (X0) or mean residence transit time (MRTT). D) The 

plot of MRTT vs concentration of 2 yields a linear response. The catalytic turnover rate is 

calculated using the 1/slope= Vmax/[E]*60 (s-1). The intercept of the line on the x-axis 

represents the minimum concentration of the substrate required to observe ES complex at 

a steady state. Data points represent three measurements including the standard 

deviations 
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Table 3: Kinetic parameters for hHint1 substrates obtained using transit assay 
 

Compound Regular assay Transit assay 

Kcat (s-1) Kcat (s-1) 

TrpAMP 2.1 ± 0.1 2.20  

TrpGMPS 0.019 ± 0.001 0.017  

L-ala AMP - 1.38  

D-ala AMP - 2.0  
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Figure 12. A) Monitoring and comparison of the ES complex formation between 2 (left) 

or 11 (right) incubated with hHint1 (1 or 2 μM) and 8 (12 μM). 50 μM of the 

concentration of 2 or 11 was used in the comparison above. The decrease in the turn over 

rate of 11 is seen with increased duration of the ES complex break down. B) Label free 

detection of the D-alanine (12, left) and L-alanine (13, right) side chains containing 

adenosine phosphoramidate substrates of hHint1. The colors of the traces correspond to 

the concentration of the substrate added in the presence of hHint1 (1 μM) and 8 (12 μM). 

The preference is clearly seen in the steepness of the slope of 12 in comparison to the 

slope of 13.  
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of the substrate (above saturating concentrations), one would expect a rapid dissociation 

of hHint1-8 complex and hence a drop/decrease in the fluorescence intensity of the 

reporter. Such a drop in the fluorescence intensity would be expected until the substrate 

level reaches below 2Kmapp values, and a sigmoidal response curve would be expected 

(Figure 11A). An analogy to explain this model involves the transit method used by 

NASA’s Kepler telescope to detect exoplanets revolving around a star in the galaxy. 

Upon transit of an exoplanet through the region between the star and the observer, it 

forecasts a shadow on the star disc, resulting in the decrease of the observed brightness of 

the star. The brightness of the star returns to its original intensity after completion of the 

transit.  

 

To test this hypothesis, we incubated hHint1 (1 𝜇M) in the presence of excess 

amounts of 8 (12 𝜇M), which resulted in a stable fluorescence intensity monitored over a 

period of time. Upon quick addition of the Hint1 substrate (TrpAMP, 100 𝜇M) to this 

reaction mixture, we observed a drop in the fluorescence intensity of the bound 

compound 8. The intensity was reduced to the background level indicating the complete 

displacement of the probe from the active site of hHint1 and formation of the ES 

complex. This ES complex remained steady for a few seconds, after which a steady 

recovery in the fluorescence intensity was observed, likely due to decreased 

concentration of the substrate after enzymatic hydrolysis (Figure 11B). The amount of 

steady time observed for the ES complex was directly proportional to the amount of 

substrate added (Figure 11C). Interestingly, upon increasing the concentration of the 
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substrate, the amount of recovery in the final fluorescence intensity at the end of the 

enzymatic reaction was also decreased (Figure 11C). The decreased final observed 

intensity indicates product inhibition (AMP or NMP) that is consistent with the reported 

kinetic mechanism of hHint1.  

 

Label free detection of hHint1-substrate complex via monitoring transit turnover 

time 

We next asked if we could extrapolate turn over rates of TrpAMP from the dose 

dependent sigmoidal curves above. In theory, if we define the influx point X0 (Figure 

11B) at each concentration of substrate as the mean transit time (MRTT) required for the 

substrate concentration to fall below twice the Km value, plotting MRTT values against 

the substrate concentration should yield a linear response curve and the slope should 

provide the velocity of the enzymatic reaction. We used the model plateau followed by 

one phase association equation to define X0 into the sigmoidal curves. Fitting of the 

model at each concentration of the substrate provided us with the inflection points (X0). 

Next, we plotted those values again each substrate concentration to provide a linear curve 

(Figure 11D). Upon dividing the slope of the linear curve by the enzyme concentration 

used in the reaction, we derived a rate of 2.1 ± 0.1 s-1. The observed rate is in perfect 

agreement with the Kcat value obtained with our regular florescence assay (Table 3). 

Next, we asked if we could use this assay to define kinetic parameters for a substrate of 

hHint1 with a slower turnover rate such as TrpGMPS. The incorporation of a sulfur atom 

should make the adenylated intermediate less hydrolytically labile and hence should 

exhibit a poor turnover rate by hHint1. Steady state kinetics analysis with our regular 
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assay revealed a 120-fold decrease in the turnover rate (kcat) and a 170-fold decrease in 

the substrate specificity (kcat/Km) of TrpGMPS (Table 3). Consistent with this result, our 

transit assay displayed a slower breakdown of an ES complex as seen by an increased 

transit turnover time (Figure 12A). Finally, we display the utility of this approach in 

performing label free detection of hHint1 specificity with substrates containing non-

tryptamine side chains. We chose alanine side chains due to their wide utility in the 

design of preclinical/clinical antiviral and anticancer phosphoramidate pronucleotides. 

We made adenosine phosphoramidate analogs containing either L or D alanine side 

chains. The preference for D-alanine over L-alanine side chain was clearly visible by 

looking at the sigmoidal curves (Figure 12B). The turn over rates obtained with transit 

assay confirmed a preference for D over L-alanine side chains by hHint1 (Table 3).  
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Discussion 

We report here the design, synthesis, and evaluation of the first switch-on fluorescence 

probes for hHint1. We utilized the principle of molecular beacons to create the small 

molecule switch-on probes. The design consists of an intramolecular quencher connected 

via a linker to a fluorophore such that the proximity of the quencher in a solution results 

in the intramolecular quenching of the fluorescence in solution.  Calculation of the 

quantum yield showed a significant decreased by 30 to 50 fold when compared to the 

fluorophore in the absence of a quencher. The decrease in the fluorescence was primarily 

due to stacked conformations of the probes in an aqueous buffer. Such minimal 

background is rarely observed in the design of solvatochromic fluorescent probes. Upon 

incubation with hHint1, an increase in the fluorescence intensity was observed due to the 

extended conformation of 7 bound to hHint1. These dependencies resulted in the 

observed selectivity of our probes to switch on only in the presence of hHint1. Minimal 

background interference and a significant increase in the fluorescence intensity upon 

incubation allowed for the detection of hHint1 with high signal-to-noise ratio (5-20 fold). 

One could exploit such strategy using the appropriate linker, fluorophore and quencher 

pairs in the design of fluorescent reporters for other non-enzymatic or enzymatic proteins.  

 

Opioid tolerance, addiction, and hyperalgesia are dependent on the molecular 

changes associated with events at both the pre and postsynaptic levels of the central 

nervous system. Hint1 is a postsynaptic protein proposed to be involved in the regulation 

of the NMDAR receptor upon exposure of opioids in animals.12 We have recently shown 

that blocking of the hHint1 active site with an inhibitor (3) results in increased morphine 
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analgesia and reduced tolerance in animal studies. Hence, the development and 

identification of new inhibitors is of potential therapeutic value. Our fluorescent probes 

allow for a rapid mix and measurement of fluorescence for a displacement assay for 

hHint1. The assay circumvents the high protein concentration required for the recently 

reported ITC studies with hHint1 inhibitors.  

 

Compound 8 and its cognate fluorescent nucleoside displays properties that make 

them suitable for the development of a high-throughput-screening (HTS) assay for the 

identification of new nucleoside or non-nucleoside inhibitors of hHint1. One of the 

significant limitations that commonly arise in fluorescent-based high throughput assays is 

the interference from the library compounds that are fluorescent, resulting in false 

negative or positive hits.28 Typically, fluorescent compounds in the screening library have 

a fluorescence lifetime of less than 5 ns. Hence, the use of fluorescence lifetime as the 

readout parameters for HTS has been shown to increase the robustness against associated 

artifacts and compound related interferences.29, 30 Both our probes exhibit a remarkable 

change in their fluorescence lifetime (4-5 fold) when unquenched or bound to hHint1. 

This exceptionally long lifetime (20-25 ns) would offer a robust assay with high quality 

primary screening data.  

 

To fully understand the correlation between the hHint1 conformational changes in 

the regulation of the function in CNS, it is essential to comprehend the principle 

governing the molecular recognition of ligands by Hint1. The structure of hHint1 consists 

of a nucleoside-binding fold, and it is likely that the binding of an endogenous nucleoside 
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acyl-NMP or NMP in the active site could potentially modulate its interaction with other 

proteins. The ability of our probes to light up upon binding to hHint1 provides a simple 

and easy means to evaluate the impact of the perturbations on the protein structure on the 

acyl-NMP binding. Notably, an increase in the binding affinity was clearly evident with 

the catalytically inactive H112A mutation in hHint1. The relative increase in the 

fluorescence intensity of 8 upon binding to hHint1 provides an insight into the first step 

in the formation of the ES complex. The ability of 8 to differentiate between hHint1 and 

Hint2 despite their high sequence and structural similarity indicates the underlying 

differences in their ability to form an ES complex. Recently, numerous point mutations in 

hHint1 were identified from clinical patients and were hypothesized to contribute to the 

cause of peripheral neuropathy associated with neuromyotonia.13, 31 In such a scenario, 

our probes could serve as valuable tools in evaluating the impact of these mutations on 

the binding of nucleosides or acyl-NMPs for hHint1. Using a catalytically inactive 

mutant in the displacement studies, we report the first binding affinities for a nucleoside 

phosphoramidate (2) for hHint1. Compound 8 could also serve as a non-covalent label for 

hHint1 or hHint1_H112A to probe interactions between hHint1 and neuronal proteins, 

which are still largely unknown. In addition, the probe could be used as a FRET pairing 

probe with green fluorescent protein (GFP) or dye-labeled protein of interest to monitor 

hHint1-protein interactions in vitro.  

 

Protein-protein and protein-ligand interactions are fundamental molecular process 

governing cellular signaling processes. Such interactions could be easily monitored using 

a simple FRET or fluorescence lifetime experiment. For e.g. Rizo and Sudhöf co-workers 
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used a FRET experiment to confirm the calcium dependent binding of a phospholipid to 

synataxin.32 In the study, FRET measurement was performed between a dansyl labeled 

phospholipid and the tryptophan in the binding pocket of the target protein. In similar 

fashion, compound 8 could serve as a non-covalent label for hHint1 or hHint1_H112A to 

probe for interactions between hHint1 and neuronal proteins involved in NMDAR 

signaling regulation, which are still largely unknown. The probe could be used as a FRET 

pairing probe with green fluorescent protein (GFP) or dye-labeled protein of interest to 

monitor hHint1-protein interactions in vitro.  

 

Apart from the role of hHint1 in the CNS, the nucleoside phosphoramidase 

activity of hHint1 is of interest to many pharmaceutical companies. Several anticancer 

nucleosides prodrugs rely on the catalytic activity of hHint1 in the metabolic activation of 

the drug. One such example is the blockbuster Hepatitis C drug, sofosbuvir (Sovaldi® 

and a component of Harvoni®), which undergoes multiple steps of activation to 

overcome the poor bioavailibity of the parent nucleoside. The bioactivation is mediated 

by the hHint1-catalyzed hydrolysis of the phosphoramidate backbone in the pyrimidine-

based nucleoside prodrug. Sovaldi contains an L-alanine side chain, which contributes 

the amine to form the phosphoramidate backbone. Determination of side chain preference 

with regard to hHint1 substrate specificity has hitherto been limited by the dependence of 

our existing assay on the spectroscopically active indole side chain. In the current study, 

we show the utility of compound 8 in label free monitoring of the hHint1-susbtrate 

complex. The indirect assay is independent of the spectroscopic properties of the 

substrate. Using a catalytically inactive mutant in the displacement studies, we report the 
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first binding affinity value obtained for a nucleoside phosphoramidate (2) for hHint1. 

These displacement studies and assay with 8 provides a valuable tool to measure the 

binding affinity and evaluate the substrate specificity of hHint1, which could help enable 

the design of future nucleoside based prodrugs.  

In conclusion, we have developed a novel fluorescent/FRET probes with switch 

on properties for selective detection of hHint1. The probes would serve as a valuable tool 

for the future discovery of hHint1 inhibitors and towards gaining insights into the role of 

conformational dynamics in the molecular recognition of ligands by hHint1. 
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Materials and Methods 

Fluorescence Spectroscopy: hHint1-Ligand binding and displacement studies  

All fluorescence measurements were performed in an aqueous assay buffer (20 mM Tris, 

150 mM NaCl pH 7.4). All fluorescence measurements were performed in a 1 cm four 

sided, 2 ml quartz cuvette. The total sample of 600-μl solution including the protein and 

ligand was used in the cuvettes to perform fluorescence measurements. All the readings 

were recorded at room temperature. The excitation and emission wavelengths and the slit 

width are described in the legends of the respective figures. The excitation wavelength 

for thG and 8 was 330 nm and the emission spectral scan was recorded from 360-530 nm. 

The excitation wavelength for EtAd and 7 was 280 nm, and the emission spectral scan 

was recorded from 320-530 nm. In the case of FRET measurement, the excitation 

wavelength for 8 was done at 280 nm, and emission spectra were recorded from 320-520 

nm. 

For hHint1-ligand binding studies hHint1 was incubated with successive increase in the 

concentration of 7 (0.05 -3 μM) or 8 (0.25-40 μM). The mixture was incubated for 30 s 

before the excitation and following with emission spectral intensity recording at 410 nm 

and 450 nm. The increase in the fluorescence intensity upon successive increase of the 

ligand concentration was subtracted from the blank measurement. A blank was recorded 

in the presence of just the ligand and no protein to yield a linear curve. The resulting 

sigmoidal dose response curve was plotted in the graph pad prism and fitted using one 

site-binding model to yield the dissociation constant (Kd) values.  
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For hHint1-ligand displacement studies hHint1 was incubated with either 7 or 8 at 

saturating concentrations. The mixture was incubated for 60 s before the addition of the 

desired ligand for the displacement of the fluorescence. The excitation and emission 

intensity was recorded. The decrease in the fluorescence intensity upon successive 

addition of the ligand was normalized to the blank and the resulting dose response curve 

was plotted in the graph pad prism. The dose response curve was fitted with one site-

binding model to yield the IC50 values. The values were then converted to the inhibitory 

constant (Ki) values using Cheng-Prusoff equation.  

 

Fluorescence Spectroscopy: Quantum yield, Fluorescence lifetime and Quenching 

studies 

All the fluorescence and absorbance measurement was performed in the assay buffer. All 

the readings were recorded at the room temperature. The UV visible measurements were 

performed in the cary eclipse UV spectrophotometer. 5 nm slit width was used for all the 

measurements. 

Quantum yields (ØF) for the thG, nucleoside analogs 7 and 8 were calculated using the 

following equation. 

             ØF(x) = (As/Ax)(Fx/Fs)(nx/ns)2 ØF(s)   

Where s is the standard, x is the nucleoside, A is the absorbance at the excitation 

wavelength, F is the area under the emission curve, n is the refractive index of the solvent 

and ØF is the quantum yield. The standard compound used in the study was EtAd and its 

reported quantum yield (0.56). The excitation wavelength of 280 nm for 7 and 330 nm 

for dGth and 8 was used in the calculation of the quantum yields.  
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Time resolved fluorescence spectroscopy or fluorescence decay curve measurements 

were recorded using time correlated single photon count (TCSPC). Samples (1 μM 

ligands) were excited with tunable dye laser range of 280-305 nm (instrument MatrixUV 

scientific) with excitation wavelength set at 305 nm for EtAd and 7. A subnanosecond 

pulse diode laser 355 ± 5 nm was used for thG and 8. Emission was selected using a band 

pass filter (405 ± 5 nm and 430 ± 5 nm). To avoid anisotropy effects, emission polarizer 

was set at the magic angle (54.7°) during lifetime measurements. The instruments 

response function was acquired on the sample containing assay buffer using scattered 

excitation light detected with emission light polarizer set to vertical (0°) but without an 

emission filter. The PMT voltage for the emission detection was set to 600 V. The details 

on the instrument set up is described elsewhere. Fluorescent lifetime decay curves were 

analyzed using multi exponential decay simulation and nonlinear least square 

minimization. The observed waveform was fit by the decay simulation which had been 

iteratively convolved with the measured instrument response function (IRF) using fargo 

fit analysis software.32, 33 

Based on the quantum yields and fluorescence lifetime studies, the fraction of population 

of 7 and 8 in stacked conformation resulting in the static quenching was calculated using 

equation,  

                         𝛾 = (F/F0) (𝝉/ 𝝉0) 

Where 𝛾 is the fraction of population in open conformer, 1- 𝛾 gives population in closed 

conformer. F and F0 is the fluorescence in the presence and absence of the quencher. 

Parent nucleoside served as control for the absence of an intermolecular quencher. 𝝉 and 

𝝉0 is the fluorescence lifetime in the presence and absence of the quencher. The ratio of 𝝉/ 
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𝝉0 gave the fraction of the population under dynamic quenching. The unimolecular rate 

constant (kq) for the dynamic intramolecular quenching was calculated using equation,  

(𝝉/ 𝝉0) = 1  + kq (𝝉0) 

kq = 1/ 𝝉 - 1/ 𝝉0 

 

hHint1 substrate kinetics using mean residence transit turnover assay (MRTT): 

To a solution containing hHint1 (1 μM) in an assay buffer was incubated with a 

saturating concentration of 8 (12 μM). The fluorescence of the solution (600 ul) in a 

quartz cuvette was measured at excitation wavelength of 330 nm and emission 450 nm. 

The intensity was measured over a minute and was stable. To this fluorescent solution, 50 

-500 μM of the desired nucleoside phosphoramidate was added and rapidly mixed. The 

displacement of the fluorescence in real time was monitored at steady state kinetics over 

a period of 1-150 minutes. The resulting data was exported into the excel file and 

replotted using graph pad prism. The real time fluorescence vs intensity sigmoidal plot 

was fitted using plateau followed by one phase association equation as shown below. The 

inflection time (X0), described as mean residence transit time (MRTT), measured was 

then plotted against the substrate concentration to obtain a linear curve. The MRTT plot 

was fitted with a linear curve. The inverse of the slope divided by the hHint1 

concentration provided the turn over rate of the substrate by hHint1. The x-axis intercept 

provides the measurement of the binding affinity and hence the apparent Kmapp values. 

The original Km value was obtained by using Cheng-Prusoff like equation shown below.  

 

Y = Y0 + (Plateau – Y0) * (1 – exp (-K * (X-X0)) 
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If X<X0 

X0 is the time where association begins 

Y0 is the average Y value up to time X0  

Plateau is the Y value at infinite times 

K is the rate constant, expressed in the reciprocal of the X-axis time units 

 

Synthesis and characterization of compound 8 

2-Aminothieno[3,4-d]pyrimidin-4(3H)-one (S2) 

Same as described previously in reference.20 Yield obtained 73.6%. The 1H NMR 

spectrum was (DMSO-d6): 6.07 (s, 2H), 6.96 (s, 1H) and 8.23 (s, 1H). 13C- DMSO-d6: 

159.01, 151.01, 150.74, 127.55, 124.18 and 109.22 ppm. Low resolution ESI-MS [M+H] 

168.0  

 

N2-DMF 2-aminothieno[3,4-d]pyrimidin-4(3H)-one (S3) 

Same as described previously in reference.20 Obtained in 95.9% yield. The 1H NMR 

spectrum was (DMSO-d6): 2.74 (s, 1H), 2.90 (s, 1H), 3.03 (s, 3H), 3.15 (s, 3H), 7.23 (d, 

1H), 8.27 (d, 1H) and 8.61 (s, 1H). 13C- DMSO-d6: 127.96, 127.13, 126.08, 112.14, 

41.18, 36.25, 35.03 and 31.24 ppm. Low resolution ESI-MS [M+H] 223.0  

 

N2-DMF 2-aminothieno[3,4-d]pyrimidine G mimic 2,3,5-tri-O-benzoylnucleoside 

(S4) 
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Same as described previously in reference.20 Obtained in 20% yield. The crude product 

from this step was used without purification towards the next step. Low resolution ESI-

MS [M+H] 667.2 

 

2-Aminothieno[3,4-d]pyrimidine G mimic nucleoside (S5) 

Same as described previously in reference with minor modification in this step.20 

Treatment with saturated methanolic ammonia was found to result in the partial 

deprotection after overnight heating at 65 °C. Hence, the reaction was evaporated to 

dryness next day and stirred in 4N NaOH/MeOH (1:1, 5ml each) for 2 h. The reaction 

was then neutralized and organic was evaporated. The aqueous solvent was frozen and 

lyophilized to obtain the crude material. The material was loaded onto the reverse phase 

chromatography to purify and yield final product in 58.4% yield. The 1H NMR spectrum 

was (DMSO-d6): 3.52 (m, 2H), 3.78 (m, 1H), 3.94 (m, 1H), 4.02 (t, 1H), 4.85 (s, 1H), 

5.12 (d, 1H), 6.21 (s 2H) and 8.131 (s, 1H). 13C- DMSO-d6: 161.06, 153.22, 147.71, 

124.88, 124.81, 85.54, 77.42, 77.05, 72.29, 62.85 and 40.91 ppm. Low resolution ESI-

MS [M+H] 300.0  

 

2ʹ , 3ʹ-O-O-isopropylidene-2-Aminothieno[3,4-d]pyrimidine G mimic nucleoside (5) 

To a cold stirred suspension of S5 (50.0 mg, 0.177 mmol) in acetone (3 ml) was added 

catalytic amount of perchloric acid (12.5 𝜇l). The reaction was monitored using TLC 

(20:80:0.1 MeOH/CHCl3/TEA solvent). After 2 h ammonium hydroxide (2 equivalent to 

perchloric acid, 27.5 𝜇l) was added to neutralize the reaction mixture under an ice bath. 
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The reaction mixture was then evaporated under rotary evaporator to complete dryness. 

The crude material was purified using reverse phase chromatography to isolate desired 

product (39.9 mg, 0.124 mmol) in 70 % yield. The 1H NMR spectrum was (DMSO-d6): 

1.31 (s, 3H), 1.50 (s, 3H), 3.53 (m, 2H), 3.90 (m, 1H), 4.71 (m, 1H), 4.81 (m, 1H), 4.97 

(t, 1H), 5.33 (d, 1H), 6.20 (s, 2H) and 8.25 (s, 1H). 13C- DMSO-d6: 158.77, 151.25, 

148.17, 126.79, 124.31, 123.90, 114.20, 86.10, 85.08, 82.21, 79.65, 62.16, 27.82, and 

27.79 ppm. Low resolution ESI-MS [M+H] 340.1 HRMS (ESI+) calcd for C14H18N3O5S 

[(M+H)+] 340.0967 found 340.09524  

 

2ʹ , 3ʹ-O-O-isopropylidene-5’-O-(sulfamoyl)-2-Aminothieno[3,4-d]pyrimidine G 

mimic nucleoside (6) 

A solution of 4 (30 mg, 0.088 mmol) in dimethyl formamide (5 mL) was stirred for 30 

min at 0 °C. Next, sulfamoyl chloride (0.26 mmol, 30.6 mg) was added to the reaction 

mixture after which the reaction was brought to the room temperature and stirred for an 

additional one hour. An excess of TEA (12 μl, excess) was added and stirring was 

continued for an additional 10 min. The reaction mixture was finally quenched with 

MeOH (5 ml) under ice bath. The reaction mixture was evaporated to dryness and the 

crude reaction mixture was then purified by reverse phase chromatography to afford the 

title compound (33 mg, 0.079 mmol) in 89.6 % yield. 1H NMR spectrum was (DMSO-

d6): 1.32 (s, 3H), 1.53 (s, 3H), 4.15 (m, 3H), 4.83-4.90 (m, 2H), 5.37 (m, 1H), 6.24 (s, 

broad 2H), 7.81 (s, 2H), 8.28 (s, 1H) and 10.58 (s, 1H). 13C- DMSO-d6: 158.76, 151.37, 

148.31, 127.13, 124.36, 123.1, 114.55, 85.94, 81.88, 81.75, 79.30, 68.76, 46.24, 27.72 
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and 25.81 ppm. Low resolution ESI-MS [M+H] 419.1 HRMS (ESI+) calcd for 

C14H19N4O7S2 [(M+H)+] 419.0695 found 419.0679 

 

5´-O-[N-(3-Indole propionic acid)sulfamoyl]-2-Aminothieno[3,4-d]pyrimidine G 

mimic nucleoside (8) 

To an ice cold stirred solution of 6 (20 mg, 0.072 mmol) and 22 (30.8 mg, 0.108 mmol) 

in DMF (0.2 mL) was added DBU (1.1 equiv, 11.8 µl, 0.079 mmol). After stirring for 10 

min the reaction mixture was brought to room temperature and stirred overnight. Next, 

the volatiles were evaporated under reduced pressure and the mixture was used further 

for next step without any purification. In the next step, the crude mixture was dissolved in 

80% aqueous TFA (0.2 ml) and stirred for 30 min. The reaction mixture was evaporated 

to dryness (co-evaporated 1% TEA/ethanol for removing TFA) and purified using reverse 

phase chromatography (A-ACN, B-Water + 0.1% TEA). The eluted peak was 

concentrated and lyophilized to obtain the desired final product in 60% yields (16.5 mg 

with 1.0 equivalent of TEA). 1H NMR spectrum was (DMSO-d6): 1.10 (s, 12.0 H), 2.34 

(m, 2.0 H), 2.85 (m, 9H), 3.88-3.96 (m, 4H), 5.12-5.18 (m, 2H), 6.18 (s, broad 2H), 6.94 

(m, 1H), 7.07 (m, 2H), 7.29 (d, 1H), 7.48 (d, 1H), 8.16 (s, 1H), 10.48 (s, 1H) and 10.68 

(s, 1H). 13C-D2O: 183.35, 135.98, 126.74, 122.48, 121.54, 118.82, 118.50, 113.93, 

111.34, 82.25, 76.24, 71.01, 68.81, 46.64, 38.78, 21.15 and 8.19 ppm. Low resolution 

ESI-MS 550.1 HRMS (ESI+) calcd for C22H24N5O8S2 [(M+H)+] 550.1066 found 

550.1045 

  

General synthesis of nucleoside phosphoramidate:  
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1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (4.5 equiv) was added 

to a solution of nucleoside 5’monophosphate and L-or D-alanine methylester (5 equiv) in 

water (pH adjusted to 6.5 with 1N NaOH) at room temperature for 3 hour and 

lyophilized. The resulting solid was then purified using flash chromatography 

(CH3Cl3/MeOH/H2O 5:3:0.5 with 0.5% NH4OH). The desired product peak was isolated 

and purified using cation exchange column to exchange sodium as the counter ion. The 

eluent from the cation ion exchange column was again lyophilized and purified using 

reverse phase to get the desired final product.  

 

2(R)-[Adenosyl-5′-(phosphorylamino)]-Alanine Methyl Ester (12) 

Synthesized as described above. Obtained in 50% yield. The 1H NMR spectrum was 

(DMSO-d6): 1.15 (d, 3H), 3.72 (s, 3H), 3.99 (m, 1H), 4.22 (m, 1H), 4.57 (m, 1H), 5.75 

(m, 1H), 5.90 (d, 1H), 7.25 (s, 2H), 8.15 (s, 1H) and 8.44 (s, 1H). 32P-DMSO-d6: 3.84 13C- 

DMSO-d6: 176.47, 156.43, 153.05, 150.17, 139.85, 119.24, 87.25, 84.82, 84.77, 74.73, 

71.84, 64.14, 51.82, 50.69, and 21.50 ppm. Low resolution ESI-MS [M-H] 431.3 HRMS 

(ESI+) calcd for C14H21N6O8P [(M+H)+] 433.1237 found 433.1220 

 

2(S)-[Adenosyl-5′-(phosphorylamino)]-Alanine) Methyl Ester (13) 

Synthesized as described above. Obtained in 30% yield. The 1H NMR spectrum was 

(DMSO-d6): 1.17 (d, 3H), 3.52 (s, 3H), 3.72 (m, 3H), 3.99 (S, 1H), 4.21 (s, 1H), 4.57 (m, 

1H), 5.67 (d, 1H), 5.89 (d, 1H), 7.25 (s, 2H), 8.16 (s, 1H) and 8.44 (s, 1H). 32P-DMSO-d6: 
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3.85 13C- DMSO-d6: 176.49, 156.43, 153.02, 150.13, 139.84, 119.24, 87.33, 84.73, 74.80, 

71.77, 64.03, 51.76, 50.68, and 21.57 ppm. Low resolution ESI-MS [M-H] 431.3 HRMS 

(ESI+) calcd for C14H21N6O8P [(M+H)+] 433.1237 found 433.1220 
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Chapter 6 
 
 

Structure and Functional Characterization of Human Histidine Triad Nucleotide 
Binding Protein 1 mutations associated with Inherited Axonal Neuropathy with 

Neuromyotonia	
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INTRODUCTION:  
 
Inherited peripheral neuropathies (IPNs) are a group of neurodegenerative disorders that 

primarily develop due to the damage of the peripheral nervous system (PNS). IPNs are 

classified based on their pathology (axonal or demyelinating), neurophysiology 

(including motor or sensory functions), and mode of inheritance.1, 2 Most of the genetic 

mutations linked to peripheral neuropathies are associated with the maintenance of 

Schwann cells and components of the axons in the peripheral nervous system.3 Defects in 

such components result in the alteration of nerve conduction velocity in the PNS. 

Although sensory nerves are mainly affected, the more prominent symptoms of IPNs are 

associated with motor difficulties such as steppage gait, pes cavus, sensory loss in feet 

and lower calves and atrophy in hands. Because of these prominent features, the 

diagnosis of IPNs mainly includes electromyography and nerve conduction velocities.4  

Currently, more than fifty different genes associated with the various forms of hereditary 

motor and sensory neuropathies have been identified. The most common types are 

autosomal dominant inherited demyelinating (Charcot Marie Tooth 1 [CMT1], 40% to 

50% of all IPNs) and autosomal dominant axonal (CMT2, 10% to 50%) neuropathies. 

One rare form is autosomal recessive axonal neuropathy with neuromyotonia. Patients 

diagnosed with neuromyotonia mainly exhibit persistent muscle contraction after 

voluntary movement, resulting from the hyperexcitability of the peripheral nervous 

system and not the muscle itself. Genetic mutations in KCNA1, which encodes a voltage-

gated potassium channel, have been diagnosed and associated with the peripheral nerve 

excitability disorders. 5, 6 
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Recently, genetic mutations in human Histidine triad nucleotide-binding protein 1 

(hHint1) have been identified in clinical patients suffering from axonal peripheral 

neuropathy with neuromyotonia.7-10 Human Hint1 belongs to the histidine triad (HIT) 

superfamily characterized by their conserved sequence motif, His-X-His-X-His-XX, 

where X is a hydrophobic residue. Human Hint1 exists as a homodimer and possesses 

nucleoside phosphoramidase and acyl-AMP hydrolase activity.11 In total, eight mutations 

including both homo and heterozygous hHint1 variants were identified from a group of 

33 families. These mutations are recessive in nature meaning mutant copies from each 

parent are necessary to develop the pathophysiology. Table 1 includes the list of the 

mutations and the number of families affected. Most of these patients exhibited 

symptoms associated with motor difficulties such as gait impairment and myotonia in the 

hands and feet.  

The studies also demonstrated that single copies of each mutant protein were unable to 

rescue the growth of a yeast strain devoid of Hint1 ortholog under restrictive conditions7. 

The authors of this work concluded that loss of the function was primarily responsible for 

the observed phenotype. Surprisingly, a recent study failed to produce the 

pathophysiology of axonal degeneration or motor deficit in Hint1 KO mice.12 This clearly 

indicates that the loss of Hint1 function alone could not only account for the observed 

pathophysiology in clinical patients. One possible explanation might be that these 

mutations exhibit dual gain-of and loss-of-function properties. Hence, a detailed 

biochemical characterization of these mutations will help in developing better mice 

models to understand the pathophysiology of neuropathy with neuromyotonia. In this  
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Table 1: hHint1 mutations identified from patients suffering from autosomal recessive 

peripheral neuropathy with neuromyotonia and their symptoms  
 

Alterations Number of 

families  

Symptoms 
Amino acid change Nucleotide change 

p.[Arg37pro] + p.[Arg37pro] c.[110G>C] + c.[110G>C] 23 GI, myotonia 

hands, foot 

deformities 

p.[Arg37pro] + p.[Cys84R] c.[110G>C] + c.[250T>C] 1 GI, stiffness legs 

p.[Arg37pro] + p.[Gly89V] c.[110G>C] + c.[266G>T] 2 GI, stiffness legs, 

GI, stiffness legs 

p.[Arg37pro] + p.[His112Asn] c.[110G>C] + c.[334C>A] 1 GI 

p.[His51Arg] + p.[C84R] c.[152A>G] + c.[250T>C] 1 Cramp, weakness, 

thumbs 

p.[Gln62*] + p.[Gly93Asp] c.[182C>T] + c.[278G>A] 1 GI, muscle 

stiffness 

p.[ His112Asn] + p.[ His112Asn] c.[334C>A] + c.[334C>A] 3 GI, falling 

p.[ Trp123*] + p.[ Trp123*] c.[368G>A] + c.[368G>A] 1 GI 

Total 8 mutations  33  
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study, we report in vitro biochemical characterization of the hHint1 mutations associated 

with axonal neuropathy with neuromyotonia. 

RESULTS 

Expression and purification of hHint1 mutations associated with peripheral 

neuropathy 

Six mutations of hHint1 associated with peripheral neuropathy were studied (Figure 1). 

Site-directed mutagenesis was used to insert point mutations (C84R, G89V, R37P, 

W123*, H112N, and G93D) and most of the constructs were expressed in the soluble 

fractions with the molecular weight of 55 kDa as per the SDS page analysis (Figure 1). 

Mutant H51R showed reduced expression and stability and could not be purified in a 

non-aggregated form (data not shown). The Q62* truncation mutation would lack a well-

formed hHint1 active site (Figure 2); therefore we chose not to express and perform 

characterization on the Q62* mutant. Previously, we developed a purification protocol 

using affinity chromatography by taking advantage of Hint proteins’ ability to bind 

nucleoside monophosphates such as adenosine monophosphate (AMP). However, 

mutations in hHint1 could alter the ability of the mutants to bind AMP. Hence, we 

designed a maltose binding protein (MBP) fusion construct encoding an N-terminal His6 

tag to purify hHint1 mutants using Ni-NTA affinity column (Figure 2). The MBP fusion 

may aid in folding and solubility of the mutant proteins. The fusion plasmid encodes a 

TEV protease cleavage site that can be exploited to separate hHint1 from MBP. Next, the 

fusion proteins were purified on the Ni-NTA resin, dialyzed and stored in -80 °C before 

further purification on the size exclusion chromatography (SEC). The fusion protein was 
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treated with TEV protease under dialysis, and the MBP was separated using Ni-NTA 

resin before characterization. The final yields of all the constructs ranged from 5-10 mg 

per liter of E.coli culture.  

 

Size Exclusion Chromatography analysis of hHint1 mutants 

Based on the known structure of WT hHint1, the mutations associated with peripheral 

neuropathy are scattered throughout the hHint1 fold. Many are in proximity to the 

dimeric interface or active site, though some are simply surface residues (Figure 3). 

Because some of the known mutations affect resides at the dimeric interface, we 

investigated the impact of hHint1 mutations on homodimer stability. We used a 

Superdex-200 (SEC) column in line with the UV-absorption detector to monitor the 

apparent elution time and molecular weight of the purified proteins. The resolution limit 

of the column precludes separation dimeric (28 kDa) and monomeric (14 kDa) species. 

We chose instead to investigate the MBP fusion proteins with SEC to determine the 

molecular weight of the mutant proteins (55 kDa (monomer MBP-hHint1) or 110 kDa 

(dimer)) in order to circumvent the resolution limit of the column. As shown in Figure 3, 

a fusion of Dihydrofolate Reductase (DHFR-DHFR) with a molecular weight of 36 kDa 

elutes at approximately 34 minutes and the wild-type dimeric MBP-hHint1 fusion protein 

at 28 minutes. Both proteins were used as controls for the molecular weight 

determination of the mutant proteins. The retention time of the mutants H112N, C84R, 

and G89V was identical to the wild-type protein indicating they exist as dimers in 

solution (Figure 4), while the mutations R37P, G93D and W123* elute at approximately  
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Figure 1. SDS-PAGE gel analysis of the expression and purity of hHint1G93D_MBP. 

Lane 1 is the standard protein ladder with black arrow indicating the molecular weight 

standard of 50 kDa. Lanes 2 and 3 are the E.coli cell lysate and the flow through of the 

lysate loaded onto the Ni-NTA column, respectively. Lanes 3-12 illustrate the wash and 

the fractions collected after elution of the protein from the column using an elution buffer 

containing high imidazole (250 mM). 

 

 

 

 

 

 

 

 

 

!!!!!1!!!!!2!!!!!3!!!!4!!!!!5!!!!6!!!!7!!!!!8!!!!!9!!!10!!!!11!!!!12!!
!!!!!!!!

!!!!
!
!!!!
TEV!protease!for!removing!MBP:!!
!

• Dialyze the protein overnight with incubation of TEV protease (dialysis buffer- 
50mM HEPES, 200 mM NaCl, 5% (*v/v*) glycerol, 1 mM DTT, 0.5 mM EDTA, pH = 7.5) 
overnight at 4 ºC. 
 

• Gel: 
 
               1   2    3    4               

 
!!!

• After!purifying!the!protein!from!the!Amylose!resin!we!got!7!mg!of!Hint1!
G89V.!

!
!
!
!
!
!
!
!

Lane!1:!Ladder!
Lane!2:!Lysate!!
Lane!3:!Flow!through!
Lane!4:!Wash!
Lane!5:!fraction!3!
Lane!6:!fraction!5!
Lane!7:!fraction!7!
Lane!8:!fraction!9!
Lane!9:!fraction!11!
Lane!10:!fraction!13!
Lane!11:!fraction!15!
Lane!12:!fraction!19!

Lane!1:!Ladder!
Lane!2:!MBP!hint1!fusion!(G89V)!
Lane!3:!After!incubation!with!TEV!
protease!

Lane!4:!After!passing!if!through!
Amylose!Resin!

50 kDa 



	228	

Figure 2: (Top) Primary amino acid sequence of Human Hint1. Highlighted in blue are 

the residues associated with peripheral neuropathy in clinical patients. Residues in the red 

are the Histidines in the active site involved in the catalysis of hHint1. (Bottom) 

Construction of the plasmid encoding Hexa Histidine tag along with maltose binding 

protein at the N-terminus of the fusion hHint1 protein. The fusion protein contains a TEV 

linker sequence to cleave and separate hHint1 protein from the MBP protein.    
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Figure 3: Structure mapping of the location of the hHint1 mutations associated with 

peripheral neuropathy onto one monomer (green) of the wild-type protein. The dimeric 

interface is stabilized by a long alpha helix connected with a loop to a β-strand of each 

monomer subunit. The G93D mutation resides in this loop, while the C84R and G89V 

mutations are located on the long alpha helix. The H51R, H112N and W123* mutations 

are located in the active site of hHint1. C-terminal residues including residues 123-126 

form a dimer-stabilizing crossover, but residues 124-126 are absent in the W123* 

mutation. 
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Figure 4: Dimeric hHint1 mutants: Size exclusion chromatography analysis of the 

hydrodynamic radius of mutant hHint1 proteins expressed as a maltose binding protein 

(MBP) fusion. Red trace and elution at 33 minutes is the fusion of dihydrofolate 

reductase with the molecular weight of 34 kDa. Black trace and elution at 28 minutes is 

the fusion of wild type MBP-hHint1 fusion protein with the molecular weight of 110 kDa 

as dimer. The mutant proteins H112N, G89V and C84R in green, pink and blue traces 

eluted around 28 minutes aligned with the molecular weight of the wild type protein as a 

dimer. 
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Figure 5: Monomeric hHint1 mutants: Size exclusion chromatography analysis of the 

hydrodynamic radius of mutant hHint1 proteins expressed as a maltose binding protein 

(MBP) fusion. Red trace and elution at 33 minutes is the fusion of dihydrofolate 

reductase with the molecular weight of 34 kDa. Black trace and elution at 28 minutes is 

the fusion of wild type MBP-hHint1 fusion protein with the molecular weight of 110 kDa 

as dimer. The mutant proteins R37P, G93D and W123* in blue, brown and violet traces 

eluted around 33 minutes aligned with the molecular weight of a monomer hHint1. 
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Figure 6. Size exclusion chromatography analysis of the hydrodynamic radius of mutant 

hHint1 proteins expressed as maltose binding protein (MBP) fusions. Blue trace and 

elution at 28 minutes is the fusion of wild type MBP-hHint1 fusion protein with the 

molecular weight of 110 kDa as dimer. The mutant proteins (A) W123A (B) P124A, (C) 

P125A and (D) P126A in purple, pink, dark green and light green traces eluted around 33 

minutes aligned with the molecular weight of a monomer hHint1. 
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B)  hHint1_P124A 
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D) hHint1_G126A 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

Minutes
0 5 10 15 20 25 30 35 40 45 50

m
A

U

0

10

20

30

40

50

60

70

80

90 Det 168-280nm
MBP hint1 WT rs

Det 168-280nm
MBP hint1 G126A



	235	

 

33 minutes indicating they exist as monomers in solution (Figure 5). Our result with 

W123* mutant was intriguing; deletion of the four C-terminal amino acids prevents 

dimer formation. Interestingly, a brief alanine scan performed on these four residues 

resulted in consistently monomeric hHint1 proteins (Figure 6A-D). 

 

Secondary structure analysis  

Circular dichroism (CD) spectra of the wild-type and mutant proteins were collected in 

the far-UV region (190-260 nm) to assess the potential impact of mutations on secondary 

structure. As seen in Figure 7A, mean residual ellipticity (MRE) traces of the dimeric 

mutant proteins (C84R, H112N, and G89V) superimpose well on the wild-type protein 

suggesting identical composition in alpha-helical and beta secondary structure elements. 

In contrast, the monomeric R37P (blue trace, Figure 7B) showed a partial loss of 

secondary structure compare to wild type (red trace). The near UV-absorption was 

reduced in the R37P mutant indicating incorrect or improper folding. Interestingly, the 

other monomeric mutants G93D and W123* were nearly identical to each other with only 

minimal differences in the 200-210 nm region, suggesting minor changes in their 

conformations.  

 

Characterization of a catalytically inactive hHint1 H112N mutant.  

A mutated enzyme was prepared wherein the active site nucleophile, His112, was 

replaced with isosteric but catalytically inactive asparagine (hHint1 H112N).36 The 

H112N mutant enzyme was expressed in E. coli and purified using procedures similar to  
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Figure 7: CD spectroscopy. CD spectra of the wild type and mutants of hHint1 were 

collected in the far-UV region from 190 to 260 nm at 23 °C with protein concentration of 

10-15 μM. The results are expressed as the mean residue ellipticities. A) hHint1 (red 

trace), G89V (black trace), C84R (yellow) and H112N (green) were found to nearly 

identical to wild type hHint1. These mutants were found to be dimeric in structure. B) 

hHint1 (red trace), G93D (yellow) and W123* (brown) were found to be slightly 

different in the region compared to the 190- to 210-nm region. In contrast, R37P mutant 

(purple) was found to have lost secondary structure.  
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those applicable to the wild-type protein. However, crystallization and crystallography 

revealed that the mutant enzyme co-purified with bound cellular AMP, which extensive 

dialysis could not remove (data not shown). Thus, to remove the contaminating   

nucleotide, it was necessary to denature and refold the protein. The need for a different 

purification protocol suggested that the affinity of H112N for nucleotides might be 

increased, so isothermal titration calorimetry (ITC) was used to determine the binding 

affinity of AMP in both the wild-type and H112N mutant enzymes. The KD of the mutant 

enzyme for AMP was determined to be 385 ± 5 nM, 150-fold tighter binding than that 

determined for the wild-type enzyme (59 ± 7 μM). In addition, the KD of TrpAMP was 

measured using ITC in H112N; the affinity for TrpAMP was found to be (78 ± 7 

nM)(Table 2).  

Following refolding, apo H112N could be crystallized under conditions similar to 

the wild-type hHint1. The substitution of the nucleophilic histidine for asparagine does 

not significantly change the active site architecture, and only a slight difference in the 

position of residue 112 is observed, possibly to make a hydrogen bond with His114, 

when compared to the wild-type protein.  

 

Steady-state kinetic characterization of hHint1 mutations 

To evaluate the impact of the mutations on hHint1 catalytic activity, we performed 

steady-state enzyme kinetics using tryptamine adenosine phosphoramidate substrate 

(TpAd) in a previously described fluorogenic assay.11 Both the dimeric mutants C84R 

and G89V exhibited the same specificity and activity compared to wild-type enzyme 

(Table 3). Interestingly, the Michaelis-Menten kinetic constant (Km) increased 10-40 fold  
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Table 2: Isothermal titration calorimetry results. Values are reported from triplicate 

(AMP and TrpAMP) measurements as mean ± S.D. 

Compound Protein  KD (μM) 
AMP Wild-type 59 ± 7 
AMP H112N 0.385 ± 0.005 
TrpAMP H112N 0.078 ± 0.007 
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Table 3: Comparison of steady-state kinetic parameters of hydrolysis of a fluorogenic 

phosphoramidate substrate by Hint1 mutants 

 

 
 

 
 

Mutation Km (μM) Kcat (s-1) Kcat/Km x 106 

(M-1s-1) 

Ratio Kcat/Km 

W.T 0.106 ± 0.01 2.36 ± 0.27 22.26 ± 3.78 1.0 

C84R 0.157 ± 0.01 2.84 ± 0.10 18.23 ± 1.63 0.82 

G89V 0.137 ± 0.03 2.87 ± 0.08 22.02 ± 4.89 0.99 

W123* 1.0 ± 0.35 0.038 ± 0.01 0.038 ± 0.068 0.0017 

G93D 4.06 ± 0.26 0.017 ± 0.01 0.004 ± 0.001 0.00018 

R37P ND ND ND ND 

I44F 1.14 ± 0.13 0.82 ± 0.12 0.64 ± 0.086 0.029 

D43N 5.14 ± 0.21 5.70 ± 0.08 1.11 ± 0.01 0.050 
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for the monomeric mutants indicating the significant negative impact of breaking the 

dimeric interface on the ability of mutants to bind the substrate and possibly to bind 

nucleoside monophosphate products. We also observed a 50-150 fold decrease in the 

catalytic turnover rate (Kcat) for hydrolysis in the monomeric mutants. Moreover, the 

overall specificity for TpAd was reduced up to 5000 fold in the monomeric mutants when 

compared to the wild type enzyme. The homodimeric structure is critical to the stability 

of the protein, for binding to the ligand as well as for the hHint1 catalytic mechanism. 

 

Ability of hHint1 mutations to switch-on fluorescent probes 

Recently, we have designed novel fluorogenic non-natural nucleoside-based switch-on 

fluorescent probes to study the ability of hHint1 to bind nucleotides. The probes are non-

hydrolyzable mimics of the substrate, and a conformational change required upon binding 

to hHint1 results in an increase of fluorescence (Figure 8). A	separation	of	a	quencher	

from	 the	 fluorophore	 that	 accompanies	 the	 conformational	 change	 results	 in	 an	

increase	in	fluorescence	like	that	exploited	in	molecular	beacons. These tools provide 

a facile means to non-covalently label and monitor the impact of mutations on the 

formation of enzyme-substrate (ES) complex or transition state during catalysis. The 

increase in the amount of fluorescence upon incubation of the probe with the monomeric 

mutants proteins differed from that observed with the wild-type protein, at the similar 

protein and probe concentrations. Consistent with the kinetic studies, both dimeric 

mutants (C84R and G89V) showed a similar amount of fluorescence unquenching to WT. 

(Figure 8). Meanwhile, the H112N mutant showed approximately double the  
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Figure 8: (Top) Design of the switch-on fluorescent probe that is quenched in the 

solution and upon binding to hHint1 leads to an increase in the fluorescence intensity. 

The nucleoside acyl-sulfamate chemical structure of the probe is shown on right. 

(Bottom) The impact of the mutations on the ability of hHint1 mutations associated with 

peripheral neuropathy to bind the nucleotidomimetic analog of the substrate as 

manifested in the amount of fluorescence unquenching relative to wild type.  
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Figure 9: Structures are colored according to residue rmsd values from the corresponding 

residues in structure 3TW2. Lighter colors indicate smaller rmsd values, darker colors 

indicate larger rmsd values. (Left) Comparison of the overall structure of the H112N 

mutant (5IPB, blue shades) to the wild-type 3TW2. There is no significant difference in 

the overall structure due to the mutations. In this image, the N-terminus of one chain is 

colored red, as the rmsd value is outside of the tolerance for the color scale. The overall 

comparison of the C84R mutant is very similar. In both chains, the mutation sites are 

indicated with red dots around the alpha carbon. (Right) Comparison of active site 

residues between wild-type (3TW2, white), C84R mutant (red shades), and H112N 

mutant (5IPB, blue shades), all in apo form. The AMP molecule is included for reference 

only. There is no significant difference in the active site residues due to the mutations, 

though some residues, such as Ser107 and Ile44, are mobile. 
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Figure 10: Mutants incapable of forming homodimers. (A) Glycine 93 of one chain is 

packed tightly against Glu100 of the complementary chain. Mutation of this residue to 

aspartic acid results in a steric clash and potential charge-charge repulsion. (B) The C-

terminus of one chain participates in a significant protein-protein interaction with the 

complementary chain. Both Pro124 and Pro125 (chain B) participate in significant non-

bonded interactions with chain A (e.g., residues Gln47, Val97, Leu116, and Met121) and 

their rigidity results in superior shape complementarity to the pocket in chain A. The C-

terminal carboxylate (chain B) also forms a salt bridge with Arg119 (chain A), and it can 

hydrogen bond with His112 N (chain A). Pro125 O (chain B) may hydrogen bond with 

Arg95 (chain A). Hydrogen bonds are shown as dashed black lines. 
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fluorescence of the wild type. This is consistent with the previously observed increase in 

affinity of this mutant for nucleoside monophosphates. The monomeric mutants did not 

exhibit any increase in fluorescence when compared to the background fluorescence of 

the probe in the absence of protein. These results further support our observations that 

monomeric mutants lose their ability to bind nucleoside monophosphate (NMPs) and 

substrates. 

 

X-ray crystal structure analysis of the hHint1 mutations 

The results from our study clearly indicated that not all mutations result in the loss of the 

catalytic activity. Both C84R and G89V were found to be catalytically similar to the wild 

type protein in our biochemical studies. It is possible the mutations might alter the 

conformation in the structure of the protein without significantly altering the catalytic 

activity, which might be account for neuropathy in ways unrelated to catalysis. Hence, we 

obtained a high-resolution (1.1 Å) x-ray crystal structure of the C84R mutant for analysis 

and compared it with the previously reported hHint1_H112N (5IPB) and wild-type [ref 

3tw2]. We have demonstrated that H112N binds NMPs with high affinity when 

compared to the wild-type structure. In both H112N and C84R mutants, the overall 

structure is identical to the wild-type protein (Figure 9A). The active sites of H112N and 

C84R, too, are essentially the same as the wild-type protein, with the active site histidines 

having very low rmsds to the corresponding residues in the wild-type structure. Some 

residues that participate in ligand recognition are flexible in the absence of a ligand. 

(Figure 9B).  
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Mapping structural features that are critical for the molecular recognition of 

ligands by hHint1 

The active site of hHint1 consists of a nucleoside-binding motif and previous 1H-15N 

HSQC ligand titration experiment indicated that Ile44 in the foreground of the active site 

is critical for a stacking interaction and for molecular recognition of the nucleobase.13 

Another key residue is Asp43, which plays a significant role in the molecular recognition 

of the 2ʹ- and 3ʹ-OH groups of the ribose sugar with hydrogen-bonding interactions 

(Figure 9). We wanted to investigate the impact of point mutations on these residues on 

the catalytic activity of hHint1, as we believe that Ile44 acts as a thumb to clamp the 

binding of the nucleobase in the hydrophobic pocket (Figure 9). To accomplish this, we 

substituted a bulkier amino acid such as phenylalanine or tryptophan at position 44. Upon 

mutating the residue to phenylalanine (I44F), we observed that it decreased the Km 

approximately tenfold and Kcat by 2 to 3 fold. A 24-fold decrease in the overall specificity 

was found for the mutants compared to the wild-type. Next, we made a mutant where the 

negatively charged aspartate residue (Asp43) was mutated to a neutral asparagine 

(D43N). We observed that this mutation resulted in a 50-fold decrease in Km and a 2 to 3-

fold increase in the catalytic turnover rates. 

 

Discussion 

Human Hint1 is a homodimeric protein, and the enzymatic active site couples the cross 

talk of the GPCRs and NMDARs 14. Neuropharmacological inhibition of hHint1 has been 

recently shown to increase opioid analgesia and prevents as well as rescues the 

development of tolerance in mice. The same study also showed that inhibition of hHint1 
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reduces neuropathic pain in animals in the absence of the opioids.15 These results 

demonstrate an important role of the hHint1 active site in regulating the perception of 

pain. Recently, several genetic point mutations in hHint1 have been identified in patients 

suffering from peripheral neuropathy. One characteristic symptom associated with 

peripheral neuropathies is severe pain and tingling in the outer extremities such as fingers 

and feet.7 In contrast, the peripheral neuropathy patients identified with hHint1 mutations 

mainly exhibited motor symptoms such as stiffness, gait movements, or involuntary 

peripheral nerve excitation. In support of this difference, a recent genetic KO studies in 

mice also failed to develop symptoms associated with neuromyotonia. Clearly, there is a 

gap in our biochemical understanding and the observed phenotype. Hence, we wanted to 

investigate the structural and functional consequences of neuropathy-associated hHint1 

mutants.  

We began by examining the impact of these mutations on the homodimeric structure of 

hHint1 that might be vital in the crosstalk between GPCR and NMDA receptors. Three of 

the six mutants (R37P, G93D, W123*) were found to correlate with the size of the 14-

kDa monomer in vitro, while the other mutants (C84R, G89V, H112N) retained their 

dimeric state. The first monomeric mutation, R37P, lies in a loop connecting the first and 

second antiparallel β-strands that form part of the nucleoside-binding motif near the N-

terminus. While the impact of the mutation is not immediately clear from the structure, 

our secondary structure analysis shows that this mutant is partially unfolded. The other 

two monomeric mutants retain their secondary structure with only minor perturbations.  

The G93D mutation lies in a loop connecting an alpha helix with a beta strand at the 
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monomer:monomer interface in the native hHint1 dimer. If packed as in the dimer, both 

steric and electrostatic repulsion would result between Asp93 and the negatively charged 

Glu100 from the complementary chain (Figure 10A). This two-fold incompatability is 

likely prevents formation of a stable homodimer by this mutant. Another interesting 

observation was the inability of the mutant W123* to form a homodimer. In the wild-type 

structure, prolines 124 and 125 in the C-terminal loop provide both excellent shape 

complementarity and necessary rigidity for stabilization via a crossover interaction that 

results in the terminus being squarely packed against the opposite monomer (Figure 

10B). In addition, the free carboxylate of Glycine 126 (Chain A) can form an electrostatic 

interaction with R119 (Chain B), and the backbone amide nitrogen of Histidine 122 

(Chain A) can also interact with one of the oxygen atoms in the free carboxylate of G126 

(Chain B). Attempts to alter any of the three residues in the loop with alanine resulted in 

the destabilization of the dimer.  (Figure 10B).  

We also assessed the nucleoside phosphoramidase activity of the monomeric mutants 

G93D and W123* using steady-state kinetic analysis. The catalytic turnover rate (Kcat) 

was decreased by 130-fold for G93D and 60-fold for W123* mutant, while the 

Michaelis-Menten constants (Km) were increased by 10- to 40-fold in these mutants 

compared to wild type. The mutants are clearly less effective phosphoramidases, as 

indicated by their overall decrease in kinetic specificity (Kcat/Km). These results suggest 

that the dimeric structure is critical for the molecular recognition of the nucleoside 

monophosphate. Consistent with this result, we saw little or no increase from baseline 

upon incubation of our switch-on fluorescence probe upon incubation with the 
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monomeric mutants.  

The hHint1 mutations H112N, G89V, and C84R were all found to be dimeric. Mutant 

H112N has been previously reported to exhibit increased affinity for the nucleoside 

monophosphates and has a nearly identical x-ray crystal structure as with the wild-type 

hHint1. Glycine 89 resides in the loop connecting the long alpha helix to the last β-

strand. Mutation of this glycine with a bulkier hydrophobic and bulkier residue was 

tolerated without impact on the dimerization of hHint1. The C84R mutation resides in the 

long alpha helix at the dimeric interface, and it was found to retain the dimeric structure. 

Our kinetic analysis demonstrated equivalent enzymatic activity of the C84R and G89V 

mutants compared to the wild-type hHint1. Nevertheless, we observe decreased thermal 

stability of all the mutants compared to wild-type hHint1. A high-resolution X-ray crystal 

structure of the C84R mutant reveals no significant changes due to the mutation, 

consistent with kinetic studies. Only a minor change was observed due to the cysteine to 

arginine mutation. 

The lack of neuropathy symptoms in HINT1-/- mice indicates that mice can compensate 

the loss of Hint1 better than humans. However, such compensation may be difficult to 

detect, as the site of action is restricted to neuronal cells in this application and because 

the identity of the biochemical substrate of hHint1 is unknown. There has been 

speculation about the possible endogenous substrates, such as AP4A, in regulating hHint1 

interaction with transcription factors in tumor cells 16. The role of cyclic-AMP in the 

downstream regulation of GPCR signaling pathway and levels of AMP upon 

phosphodiesterase is well known 17. It is also possible that the levels of endogenous 
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nucleoside monophosphate could regulate hHint1 interactions and function in CNS. From 

the x-ray crystal structure, it is quite evident that nucleoside-binding motif could govern 

its in vivo function.  

In the current study, we chose to evaluate the role of the key residues involved in the 

molecular recognition of the nucleoside monophosphate. Results from the previous 1H-

15N HSQC experiments clearly indicate a significant shift in the Ile44 indicating the 

potential role of this residue in stacking with the nucleobase. We mutated residue 44 to 

larger hydrophobic rings such as phenylalanine and tryptophan. The results indicate a 

significant change in the catalytic specificity with increasing the size of the ring. One 

explanation is that incorporating the bulkier group hinders the binding of an incoming 

nucleobase. The molecular recognition of both the substrate and product by hHint1 relies 

heavily on the interaction of residue 44 with the nucleobase. It is possible that the 

decrease in the Kcat for both the mutants is due to increase in the hydrophobic stacking 

interaction that impacts the release of the product in the final step. 

 We next investigated the important interaction of the 2′- and 3′-hydroxyl groups in the 

ribose sugar with Asp43. This interaction is clearly important since it is conserved in all 

the x-ray crystal structures published of hHint1 to date. We mutated the negative charged 

aspartate to a neutral asparagine (D43N) to alter the electrostatics of the interaction. The 

mutation had significantly impacted the recognition of the nucleobase as indicated by a 

50-fold decrease in Km value and an increase in Kcat values by 2- to 3-fold in our kinetic 

assay. These results are consistent with our previous observation that decreases in NMP 

affinity for the active site can lead to the faster release of the product in the rate-limiting 
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step of hHint1 catalysis. It is clear that molecular recognition and occupancy of 

nucleoside drives the kinetics of hHint1 and potentially its endogenous function via 

nucleoside-containing ligands or substrates.  

While the endogenous function and substrate(s) of hHint1 remain unknown, we have 

recently shown that pharmacological inhibition of hHint1 could block the activation of 

the NMDAR function 15. How the catalytic activity of hHint1 is involved in the regulation 

of CNS functions and disorders including peripheral neuropathy have remained a 

mystery. We have performed a detailed structural and in vitro functional characterization 

of hHint1 in the current work. The knowledge gained from the study of these mutations 

could be applied to develop genetic mutant mouse models to understand the 

pathophysiology of peripheral neuropathy as well as the role of hHint1 in neuropathic 

pain. Of certain interest are two mutants, C84R and G89V, which retain both quaternary 

structure and catalytic activity; these mutants may be essential in understanding the role 

of hHint1 in the pathophysiology of peripheral neuropathy. Future work includes 

electrophysiological and genetic experiments to link activity and dimeric structure of 

hHint1 to the in vivo function unrelated to catalysis. 

 

 

 

 

 

 

 



	251	

Materials and Methods 

General Methods and Materials: 

Nickel nitrilotriacetic acid (Ni-NTA) was purchased from Qiagen and maltose binding 

amylose agarose from New England Bio labs. Biological buffers were purchased from 

Sigma-Aldrich. Protease inhibitor tablets were obtained from Roche. 

 
Cloning and construction of the MBP-hHint1 plasmid:  
 
The full-length gene for human histidine triad nucleotide binding protein 1 (HINT1) was 

obtained in a pGSA02 vector, and it was amplified by the polymerase chain reaction 

(PCR) using Pfu Turbo (Agilent Technologies) and the primer pairs hHint1_WT_F and 

hHint1_WT_R (Integrated DNA Technologies). The PCR products were separated by gel 

electrophoresis, and then the product of interest was purified from the agarose gel 

(Zymoclean™ Gel DNA Recovery Kit, Zymo Research). The hHint1_MBP construct 

was prepared for insertion into ligation-independent cloning (LIC) site of the pMCSG9 

vector18, 19 by treatment with T4 polymerase (Promega), then introduced into a pMCSG9 

vector (N-terminal, Tobacco Etch Virus (TEV) cleavable Maltose Binding Protein fusion; 

ampicillin resistance) that had been opened with SspI and also prepared with T4 

polymerase. 

 The hHint1_MBP-containing vectors were transformed into E. coli XL1 Blue 

supercompetent cells (prepared with Z-Competent™ E. coli Transformation Kit, Zymo 

Research) according to the manufacturer’s instructions.  Clones positive for the vector 

were selected on ampicillin agar and confirmed by colony PCR with PCR Supermix 

(Invitrogen), the TEV_forward primer, and the T7_reverse primer (Integrated DNA 
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Technologies), and a positive, confirmed clone was grown 5 mL LB broth with 

100µg/mL ampicillin; the plasmids were then harvested (Zyppy™ Plasmid Miniprep Kit, 

Zymo Research). The gene sequences were verified by DNA sequencing (Biomedical 

Genomics Center, University of Minnesota). The plasmid was transformed 

into Escherichia coli BL21 (DE3) Rosetta2 pLysS (chloramphenicol resistant) 

supercompetent cells (prepared with Z-Competent™ E. coli Transformation Kit, Zymo 

Research) according to the manufacturer’s instructions.  Positive clones were selected on 

ampicillin plus chloramphenicol agar.   

Primers: 

hHint1_WT_F: 5’ ACTTCCAATCCAATGCCATGGCAGATG  

hHint1_WT_R: 5’ TTATCCACTTCCAATGCTATTAACCAG 

T7_forward: 5’ GGTACCGAGAACCTGTACTTCCAATCCAAT 

T7_reverse: 5’ GCTAGTTATTGCTCAGCGG 

 
 
Protein Expression and Purification: 
 
The full-length sequence of hHint1 was expressed from the pMCSG9 vector (N-terminal 

His6 tag, Maltose binding protein followed a tobacco etch virus (TEV) protease cleavable 

linker followed by hHint1) in BL21 (DE3) pLysS cells. The cells were grown in 2 x 1L 

LB (Fisher Scientific) media with ampicillin (100 mg/L, Sigma-Aldrich) at 37 °C with 

shaking at 250 rpm. At OD600 = 0.7, cultures were induced to a final concentration of 1 

mM IPTG (Denville Scientific Inc) and incubated at 30°C overnight. The cultures were 

harvested by centrifugation at 7,500 g at 4 °C for 10 min and the pellets were collected, 

then resuspended in buffer A (50 mM HEPES pH 7.0, 300 mM NaCl, 10% glycerol, 
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10 mM imidazole), which was then adjusted to 1 mg·mL-1 lysozyme and 1X protease 

inhibitor from the 100X cocktail stock. The resuspended cells were lysed by sonication 

(eight cycles of 30 s on, 30 s off) at 4 °C. The cell debris was removed from the lysate by 

centrifugation at 16,000 g at 4 °C for 45 min. The supernatant was loaded onto a nickel 

affinity column, washed with buffer A, and then eluted with an imidazole gradient using 

buffer B (50 mM HEPES pH 7.0, 300 mM NaCl, 10% glycerol, 250 mm imidazole). 

Fractions containing desired protein were combined, buffer exchanged (20 mM Tris, 150 

mM NaCl, 1 mM DTT, 1mM MgCl2 at pH 7.4) and a portion was reserved to perform 

size exclusion chromatography. To the other portion was added N-terminally His-tagged 

TEV protease 2% (w/w) to cleave the MBP from the fusion protein. The resulting 

solution was transferred to a dialysis tubing (molecular weight cut-off of 6000-7000 Da) 

and dialyzed against 2 L of TEV cleavage buffer (50 mM HEPES pH 7.0, 300 mM NaCl, 

10% glycerol, 0.5 mM EDTA and 1 mM DTT) overnight at 4 °C. The dialyzed protein 

was then buffer exchanged into buffer A and passed through Ni-NTA affinity 

chromatography to remove TEV protease and maltose binding protein. The fractions 

containing protein were collected and concentrated. The protein concentration was then 

determined using A280 absorbance using calculated extinction coefficient of 8480 M-1 cm-1 

and molecular weight of 14000 Da. The purity of the protein was determined using SDS 

page analysis. The final protein was stored at −80 °C until in use. 

In the H112N preparation, the protein was refolded to remove a co-purified 

nucleotide contaminant. To refold the protein, the pooled fractions were first dialyzed 

(NMWCO = 10000 Da, Thermo dialysis cassette) against SEC buffer with the addition of 

8 M urea (J.T. Baker) overnight at room temperature. This procedure was repeated at 4 
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°C with decreasing concentrations of urea: 4 M, 2 M, and 0 M to fully refold the protein 

and remove the urea. The folding of the protein was confirmed using differential 

scanning fluorimetry. The protein was concentrated to A280 = 10, aliquotted, and frozen. 

 

X-ray crystallography: 

Crystals of hHint1 C84R were prepared using hanging-drop vapor diffusion at 20 °C. For 

crystallization, drops were set up consisting of 2 uL of protein (A280 = 5) and 2 uL of well 

solution (1 M HEPES (Sigma) pH 7.0, PEG 8K (Acros Organics) 35%). The crystal was 

then transferred to a solution containing the mother liquor supplemented with 20% PEG 

400, followed by flash vitrification in liquid nitrogen. 

Data for structure were collected at ALS Beamline 4.2.2. The data were processed 

using AutoPROC.20 The data were processed using hkl2000.21[ref] The structures were 

solved using Phaser22 and the coordinates from structure 3TW2.23 The structures were 

refined using REFMAC524 in the CCP4 suite25 and Phenix,26 and they were visualized and 

modified using coot.27 Ligand restraints were calculated using JLigand28 or elbow.  

 
 
Steady state kinetic measurement with the fluorescence assay: 
 
Steady-state kinetic studies were carried out with fluorogenic adenylate and 

phosphoramidate substrates as previously described.11 The excitation wavelength was set 

at 280 nm, fluorescence emission was measured at 360 nm, and excitation and emission 

slits were set at 10 nm for concentration of the adenylate substrate ranging from 0.5 to 2 

μM in HEPES buffer (20 mM, pH 7.2) or 5 nm for concentration ranging from 10 to 50 

μM in HEPES buffer containing 1 mM MgCl2. The fluorescence intensity was monitored 
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for 2 min to obtain the baseline and to allow the temperature to stabilize at 25 °C, and 

then enzyme (2 or 50 pmol) was added to initiate reactions. The Michaelis–Menten 

constants, Kcat (s
−1

) and Km (μM), were deter- mined by JumpIN nonlinear regression. 

Variants represented standard deviations of the fit.  

Circular dichroism spectroscopy: 
 
CD spectra of proteins were obtained at 23 °C with a J710 spectropolarimeter (Jasco). 

Proteins at concentrations of 10-15 μM in sodium phosphate buffer (10 mM, 150 mM 

NaCl, pH 7.2) were analyzed in a quartz cuvette with path length of 1 mm, and spectra 

were accumulated and averaged over nine scans. Using Excel program performed 

subtraction of buffer background from the protein spectrum. 

Size Exclusion Chromatography: 
 
The apparent molecular weight of recombinant purified proteins was analyzed by 

analytical gel filtration chromatography on Superdex 200 size exclusion columns (GE 

Healthcare). The proteins were eluted with P500 buffer (0.5 M NaCl, 50 mM potassium 

phosphate, 1 mM EDTA, pH 7.0, filtered through a 0.02 μm filter) as described. 

Retention times were monitored by protein absorbance (absorbance 280 nm).  

Fluorescence Spectroscopy: hHint1 mutants-ligand binding studies with switch-on 

probes  

All fluorescence measurements were performed in an aqueous assay buffer (20 mM Tris, 

150 mM NaCl pH 7.4). All fluorescence measurements were performed in a 1 cm four 

sided, 2 ml quartz cuvette. 600 μl of the total sample solution including the protein and 
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ligand was used in the cuvettes to perform fluorescence measurements. All the readings 

were recorded at room temperature. The excitation and emission wavelengths and the slit 

width are described in the legends of the respective figures. The excitation wavelength 

for the switch-on probe was 330 nm and the emission spectral scan was recorded from 

360-530 nm as described previously. A 12 μM of the probe was incubated with 1 μM of 

the mutant protein and the fluorescence increase in the intensity was recorded. The 

control measurement is performed in the absence of the protein. The increase in the 

fluorescence intensity in the presence of the mutant protein was compared to the wild 

type protein and the relative fold increase was plotted as the bar graph measurement. The 

concentration of the protein was determined using both using a NanoDrop 1000 

instrument (Thermo Scientific) and a BCA assay.   
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