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Abstract

Explosive growth in data generation through science and technology calls for new computa-

tional and analytical tools. To the statistical machine learning community, one major challenge

is the data sets with dimensions larger than the number of samples. Low sample-high dimension

regime violates the core assumption of most traditional learning methods. To address this new

challenge, over the past decade many high-dimensional learning algorithms have been devel-

oped.

One of the significant high-dimensional problems in machine learning is the linear regres-

sion where the number of features is greater than the number of samples. In the beginning,

the primary focus of high-dimensional linear regression literature was on estimating sparse co-

efficient through l1-norm regularization. In a more general framework, one can assume that

the underlying parameter has an intrinsic “low dimensional complexity” or structure. Recently,

researchers have looked at structures beyond sparsity that are induced by any norm as the regu-

larizer or constraint.

In this thesis, we focus on two variants of the high-dimensional linear model, i.e., data shar-

ing and errors-in-variables where the structure of the parameter is captured with a suitable norm.

We introduce estimators for these models and study their theoretical properties. We character-

ize the sample complexity of our estimators and establish non-asymptotic high probability error

bounds for them. Finally, we utilize dictionary learning and sparse coding to perform Twitter

sentiment analysis as an application of high dimensional learning.

Some discrete machine learning problems can also be posed as constrained set function

optimization, where the constraints induce a structure over the solution set. In the second part

of the thesis, we investigate a prominent set function optimization problem, the social influence

maximization, under the novel “heat conduction” influence propagation model. We formulate

the problem as a submodular maximization with cardinality constraints and provide an efficient

algorithm for it. Through extensive experiments on several large real and synthetic networks,

we show that our algorithm outperforms the well-studied methods from influence maximization

literature.
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Chapter 1

Introduction

In recent years fields in science and technology have witnessed a rapid growth in data acquisition

rate. On the scientific front, we are collecting an unprecedented amount of data every day to

either conduct exploratory data analysis or refine existing theories. For example, the rate of data

produced at the Large Hadron Collider for a single “collision event” is 25 gigabytes per second

[2]. In the production industries, companies record minuscule interactions of the users with

their products through high-resolution sensors and analyze it to improve user experience. Smart

appliances, cars, buildings, and cities are few examples where the product-oriented industries

attempt to exploit the stored data to increase efficiency and economic benefit [3]. Online service-

oriented industries like search engines and social networks track the finest details of users’

activities with the goal of personalized content delivery [4, 5].

The central limit theorem teaches us that a larger sample size leads to a more accurate

estimation [6]. It is therefore not unreasonable to assume that larger data sets will pose no

challenges to the classical statistical learning procedures. On the contrary, most of the modern

data sets introduce new challenges for the field of statistics. Although the number of acquired

samples n increased substantially, so too has the number of measurement per sample, known

as the problem dimension p. And if p grows faster than n this violates a core assumption of

statistical learning, namely, n ≥ p [7, 8]. For example, for a rare disease, one can only recruit

a handful of patients to participate in a trial, while the number of measurements, e.g., genome

sequence, can easily exceed few thousands. Scientific fields which use high resolution images

have the same difficulty. The number of samples in any study will hardly surpass the millions of

pixels measured in each picture. The regime of p � n is the point where traditional statistical

2
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learning fails to provides us with reliable inference and prediction tools [7, 8].

Over the past decade, many novel tools have been developed to address challenges corre-

sponding to high-dimensional data [7, 8, 9, 10, 11, 12]. All of these contemporary methods

make extra assumptions to circumvent the p � n condition. The most basic form of the as-

sumptions can be summarized as follows: For a given problem with dimension p, only s � p

of the measured features are relevant, and the rest are simply noise. This simple assumption

has evolved into a more general notion of low complexity “structure” for problems in high

dimensions [7, 8, 13, 14, 12].

In this thesis, we focus on learning in finite dimensional parametric representations which

reduces to a statistical estimation problem. We investigate a set of important problems under

the assumption of p � n and provide estimation procedures for each of them. The set of

problems comprises both continuous and discrete tasks. We analyze the statistical properties

of the proposed learning algorithms, such as sample complexity and estimation error bound

and confirm our analysis with experimental results. In remainder of Chapter 1, we review the

discrete and continuous problems studied in this manuscript (Section 1.1), survey the current

state-of-the-art structures that make learning in high-dimensional regime possible (Section 1.2)

and finally summarize our contributions (Section 1.3).

1.1 Studied High Dimensional Problems

The focus of this manuscript is high dimensional problems that can be posed as statistical esti-

mation where the parameter of interest has low complexity structure. Table 1.1 summarizes the

studied problems of this thesis. We formulate these estimation problems as constrained and reg-

ularized optimizations. We study three important examples of continuous objective-continuous

constraints [1, 15, 16] and one prominent instance from discrete objective-discrete constraints

class of optimizations [17]. For the recent advances in continuous objective-discrete constraints

and other interesting connections, we refer the readers to [18, 19, 20].

More specifically, we investigate two variants of structured high dimensional linear regres-

sion, namely data sharing [15, 21] and errors-in-variables [22, 16] and provide efficient esti-

mator for them. We explore theoretical properties of our estimators and show their statistical

consistency. In addition to our theoretical contribution, we also study an application of dictio-

nary learning [1, 23] and a discrete problem from submodular set function maximization with



4
PPPPPPPPPPP

space

structure
continuous discrete

continuous

Data sharing [15]

Noisy linear model [16]

Dictionary learning [1]

–

discrete –
Subm max. with

cardinality const. [17]

Table 1.1: Thesis contribution based on parameter space and structure.

cardinality constraint [17, 24]. In the following, we review the necessary basics of the linear

model and submodular functions and introduce the studied problems in more details.

1.1.1 High Dimensional Linear Regression

Classic linear regression [6, 25] assumes the following simple linear model for observations:

yi = 〈xi,β〉+ ε, ε ∼ N(0, σ2). (1.1)

The Maximum Likelihood Estimator (MLE) of this model is the following optimization known

as the Ordinary Least Squares (OLS):

β̂ = argmin
β∈Rp

1

2n
‖y −Xβ‖22. (1.2)

Constrained and regularized version of (1.2) originally have been used as a tool for model

selection and to prevent overfitting. The well-known ridge regression, is a classic example of

the regularized linear regression [25]:

β̂ = argmin
β∈Rp

1

2n
‖y −Xβ‖22 + λ‖β‖22. (1.3)

where X ∈ Rn×p.
Under the assumption of high dimension, i.e., p � n, we study three variants of linear

model (1.1) in Chapters 3 - 5 and provide OLS-like estimator for them. We focus on the variants

of OLS objective (1.2) where instead of the l2-norm regularization of the ridge regression (1.3),

we have other norms which impose the desired structure over the parameter of interest β. More

details about these structure inducing norms will be discussed in Section 1.2. In the following

we briefly introduce the variants of the linear model studied in this manuscript.
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Data Sharing

Consider the problem of linear regression in high dimension when there are more than one

cohort/group in the population. One can ignore this side information and model the outcome of

interest using the following simple linear model:

yi = xiβ
∗ + wi.

On the other extreme, we can assume that for each group, the data comes from a different linear

model with distict parameter β∗g :

ygi = xgiβ
∗
g + wgi,

where g and i index the group and samples of each group respectively.

Here we take a middle ground that has been recently suggested in the literature [21, 26, 27,

28], and assume that output data ygi are coming from distinct linear models, but the parame-

ters are not radically different. To capture this notion, one can assume that there is a shared

parameter β∗0 between all groups which expresses the similarity between groups and a private

per-group parameter βg that captures the differences between the groups:

ygi = xgi(β
∗
0 + β∗g) + wgi, g ∈ {1, . . . , G}. (1.4)

In (1.4), we have G linear regression that share data through β∗0 . We call these set of mod-

els, “data sharing” model. Here, we are interested in estimation of both shared and private

parameters in the high dimensional regime.

Error-in-variabls

The study of regression models with errors in features predates the twentieth century [29]. In

the simplest setting for such models, we assume that instead of observing (xi, yi) from the

linear model yi = 〈β∗,xi〉 + εi, (zi, yi) is observed, where zi = f(xi,wi) is a noisy version

of xi corrupted by wi. The form of function f which we consider in this manuscript is additive

noise. Hence, our noisy measurement model of interest is:

yi = 〈β∗,xi〉+ εi, β∗ ∈ Rp (1.5)

zi = xi + wi. (1.6)

In this thesis, our goal is to estimate the parameter β∗ in high dimensional regime, given the

noisy observations.
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Dictionary Learning for Sentiment Classification

The goal of sentiment analysis is to classify a text’s “emotion” as positive or negative. One can

conduct opinion polls using sentiment analysis, in a natural and non-intrusive way by monitor-

ing social media about a given topic and analyzing the sentiments of the content [30, 31]. Much

interesting work has been done on Twitter’s sentiment analysis. Detecting major events based

on tweets’ sentiments [32, 31, 33], finding pattern of temporal happiness and mood in human

behavior [34, 35] are only some applications of the sentiment analysis for Twitter data.

In this manuscript, we represent each tweet as a vector ti which is made out of either

“happy” or “sad” mood matrices (dictionaries), Dhappy and Dsad, as follows:

ti = Dmoodβ
∗
ti + εi (1.7)

where mood is happy or sad and β∗ti is called the corresponding code of the tweet ti. We want

to solve (1.7) in the high dimensional regime, i.e., when Dmood is a fat matrix. In contrast to

previous problems, here both dictionaries and code should be learned from data {(ti, yi)}ni=1

where yi is the given happy or sad label of tweet i.

1.1.2 Submodular Maximization

Over the past decade set function optimization has become an important part of the machine

learning literature [19, 36]. Sensor placement [37], the value of information [38] and influence

maximization in social networks [17, 24] are just a few examples of problems that can be for-

mulated as constrained set function optimization where the constraints induce structure on the

solution. In its most general form, the set function optimization can be posed as follows:

Ŝ = argmin
S∈2U

σ(S) s.t. S ∈ V, (1.8)

where U is the universal set, V ⊂ 2U is the constraint set and σ is the set function of interest.

The simplest constraint can be imposed on the cardinality of the set V as |V| ≤ k. Cardinality

constraint follows the core assumption of high dimensional modeling, i.e., a small number of

set members has a large effect on the function of interest σ.

The sensor placement problem is a classic example where we are interested in deploying s

fire alarms to cover an as large area as possible. There are p possible deployment sites (dimen-

sion of the problem) and we should choose s of them as the set S (sparsly selected deployment
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area), which has the maximum coverage measured by the set function σ(S) [36]:

Ŝ = argmax
S:|S|≤s

σ(S). (1.9)

A property of function σ that makes optimizations like (1.9) tractable is submodularity [19,

36]. Submodular functions in discrete domains, similar to the convex function in continuous

domains, are easier to optimize.

Heuristically, submodularity is a diminishing return property. In our previous example, as

you add more fire detectors, the marginal coverage of the new detectors diminishes, simply

because the chance of covering already covered regions increases. We say that the “marginal

gain” of adding more detectors decreases. We call this property “diminishing return”, meaning

that enlarging the selected set has diminishing benefit for the optimization objective. Similar

to the sensor placement example, diminishing return property holds true for many real world

problems and translates to a beautiful mathematical property of submodularity.

We study the problem of social influence maximization in Chapter 6 and formulate it as

a submodular function maximization under the cardinality constraints. In the following, we

briefly introduce this problem, and leave more details for Chapter 6.

Influence Maximization

Motivated by viral marketing [39] and other applications, the problem of influence maximiza-

tion in social networks has attracted much attention in recent years. In its basic form, we are

interested in finding a small set of individuals to target for maximizing the spread of a new

product adoption. In this setting, we measure the influence of the set S of customers with the

influence function σ(S) which is the expectation of the number of customers that will purchase

a product due to the word-of-mouth phenomena. We want to maximize the influence function

under the assumption that a small set of customers with size s can have a major effect on product

sales:

Ŝ = argmax
S:|S|≤s

σ(S) (1.10)

Some basic properties of the influence function σ are determined from sociology, psychol-

ogy, economics and game theory. Any function that matches those properties is a potential

candidate for being an influence function. The mathematical nature of the assumed influence
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function σ will affect computational complexity of the algorithm needed for solving (1.10).

Here, we introduce a new influence function that captures “changes in loyalty of customers”

and under this formulation we solve (1.10).

1.2 Structure Inducing Constraints

Following our introduction of the problems of interest, in this section, we elaborate on possible

structures of the parameters involved in those problems. We first introduce variants of the classic

sparsity in Section 1.2.1. Then in Section 1.2.2 we discuss how these variants are formulated as

a constraint in an optimization, which leads us to newer forms of structures discussed in Section

1.2.3.

1.2.1 Classic Sparsity

Sparsity can be modeled as l0-pseudo-norm constraint in our optimization. Formally, l0-pseudo-

norm counts the number of non-zeros in vector β, i.e., ‖β‖0 = |Supp(β)|. In general the

sparsity structure of β can be richer than just “small support”. In classic sparsity, the parameter

β can have a sparse representation in another basis. Here we elaborate on variants of the classic

notion of sparsity.

Plain Sparsity. As mentioned, the simplest assumption of high dimensional statistics is

that out of p possible features or dimensions only s of them are relevant to a problem. In a

parametric setting, this means that the parameter of interest β is s-sparse, or in other words the

cardinality of its support is s, |Supp(β)| = s [7]. Therefore, out of all p possible standard bases

{ei}pi=1, only s of them contribute in making β, Figure 1.1a.

Sparsity in Known Basis. A parameter or signal of interest may be sparse in a basis other

than the standard basis. For example, media data like still imagery, video, and acoustic data can

be sparsely represented using other bases like Fourier or wavelet [40], Figure 1.1b.

Sparsity in Learned Dictionary. To get a sparse representation, instead of using the known

basis, sometimes it is more helpful to learn a set of basis from data. Since the goal is a sparse

representation, usually the set of basis becomes over-complete, which means that the elements

of the basis set are not linearly independent. Therefore, mathematically speaking the set is not

a basis. For this reason, each learned vector is called an atom and the collection of atoms form
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(a) Plain sparsity. (b) Sparsity in known basis.

(c) Learned over-complete dictionary.

y

x

e 2

‐e
2

e1
‐e1

(d) Set of atoms.

Figure 1.1: Illustration of classic sparsity.

a matrix known as dictionary, Figure 1.1c. Note that dictionary learning and sparse coding are

two intertwined problems and are usually formulated as an alternate optimization [41].

Sparsity in a Set of Atoms. This setting has similarity with both previous cases: the

parameter can be sparsely represented by a (possibly) overcomplete set of discrete predefined

atoms A [42]. The set of atoms A is determined by the application of interest. Consider A =

{±ei}ni=1 as the set of atoms. Set A is overcomplete (similar to dictionaries) but predefined

(similar to known basis), Figure 1.1d.

1.2.2 From Structures to Norms

As mentioned earlier, searching for the s most relevant features is a combinatorial and in-

tractable problem when solved exactly by exhaustive search. We can formulate this combi-

natorial problem as an l0-pseudo-norm constraint optimization. Here is the example for OLS:

β̂ = argmin
β:‖β‖0≤s

‖y −Xβ‖22, (1.11)

The optimal solution of (1.11) is an s-sparse vector that minimizes the OLS loss function. The

closest convex relaxation of this combinatorial constraint is known to be the l1-norm which

leads to the following program:

β̂ = argmin
β:‖β‖1≤t

‖y −Xβ‖22. (1.12)
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(1.12) is the constraint form of the well-known LASSO [9] estimator. Note that the constant

t in the problem (1.12) is different form s in the original problem (1.11) and in practice is

determined by cross validation. We can write the regularized version of (1.12) for OLS loss as:

β̂ = argmin
β

1

2n
‖y −Xβ‖22 + λ‖β‖1, (1.13)

which is the LASSO estimator. LASSO and its variants were very successful in practice, but

beyond some intuitive explanations, little were known about the conditions under which they

were guaranteed to work. Over the past decade, a body of literature has developed that pre-

cisely characterizes where and why LASSO or similar estimators will recover the actual sparse

solution [11, 12, 43, 42].

The idea of convexifying a constraint that constructed (1.12) from (1.11) has been used to

extend possible parameter structure beyond sparsity [42]. For example, when we have sparsity

in a set of atoms 1.2.1, the convex hull of A, induces a norm known as atomic norm which can

be used for efficient recovery of β via a convex program. In the case of A = {±ei}ni=1, the

atomic norm is the well-known l1 norm. The loss convexification idea leads us to a more recent

method of capturing structure which is based on general norms.

1.2.3 Structures Beyond Sparsity

In this work, β is structured if it has small value due to a suitable function that captures the struc-

ture. Often, these functions are either norms of β or submodular function over the Supp(β).

Norms are convex functions and can be used directly in a convex program, but for structures

based on submodular functions, one can derive a corresponding surrogate norm and add it as a

constraint to the optimization [18].

Structure Induced by Norms. Recently, it is proposed to use any norm to capture more

complex structures [14, 12]. So any real function R(·) that satisfies the three basic properties

of norms can be used to model the structure of the parameter. A parameter β is structured due

to the norm R(·) if R(β) is small. Note that, norm induced structures generalize atomic norms

(convex hull of a set of atoms), which itself is a generalization of the plain sparsity.

Finally, one can go one step further and consider β structured if it belongs to a feasible

set, β ∈ F . For example, if β is structured due to a norm R(·) with the value R(β), then

β ∈ R(β)ΩR where ΩR is the unit norm ball of R(·). Although our analysis readily extends

from norm balls to general feasible sets, our focus here is the structures induced by norms.
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Structure Induced by Submodular Function. For the class of discrete optimization prob-

lems, constraints can be any feasible sets but submodular constraints are easier to deal with [44].

For example, in the maximum coverage problem (1.9) both the objective (the coverage function

σ(S)) and the cardinality constraint are submodular.

In problems with a continuous objective, many types of aforementioned structures in Sec-

tion 1.2.1 can also be captured by submodular set functions over the support of the parameter

Supp(β). Therefore, the objective is continuous but constraints are discrete. To efficiently solve

the optimization problem, one should convert it to a convex program by using the continuous

convex envelope of the constraint submodular functions as the relaxed convex constraint [18].

1.3 Contributions

In this section, we briefly introduce problems studied as part of this thesis and our contributions.

1.3.1 High Dimensional Data Sharing

We study the data sharing model of (1.4) when number of dimension is larger than number

of samples. In high dimensional regime, we assume that both shared and private parameters

are structured, i.e., for suitable norms, Rg(β∗g)s are small. For example, when the structure

is sparsity the corresponding norm is l1-norm and one desirable scenario is when the shared

parameter is much denser than the private parameters. In other words, for sg-sparse β∗gs we

have s0 � sg. The shared parameter expresses the “dense similarity” and private parameters

capture “slight difference” between groups.

We propose an estimator for recovering the structured shared and private parameters where

the structure is induced by norms Rg(·). We derive the following results:

• We show high probability non-asymptotic bound on the weighted sum of component-wise

estimation error, δg = β̂g − β∗g as:

G∑
g=0

αg‖δg‖2 ≤ c
maxg∈[G] ω(Cg ∩ Sp−1) +

√
logG

√
n

, αg =

√
ng
n
, [G] = {0, . . . , G}(1.14)

where ng is number of samples per group, n = n0 is the total number of samples, and

Gaussian width of a set S is ω(S) = Eg [supu∈S〈g,u〉] [42]. Also Cg is the error cone

corresponding to β∗g exactly defined in Section 3.2.
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• The general bound of (1.14) entails following bounds for specific parameters:

∀g ∈ [G] : ‖δg‖2 ≤ c
maxg∈[G] ω(Cg ∩ Sp−1) + c

√
logG

√
ng

(1.15)

It can be observed that l2-norm of the estimation error for the shared component decays

as 1/
√
n which is similar to the well-studied high dimensional regression case [14]. So

the estimation of the shared component exploit all of the pooled data to reduce its error.

• We also show in Section 3.3 that the required sample complexity for the recovery of

parameters should be simultaneously satisfied for all groups as ng ≥ cg(ω(Cg ∩ Sp−1) +
√

logG)2 and for the shared parameter as n ≥ c0(ω(C0 ∩ Sp−1) +
√

logG)2 where ω(·)
is the Gaussian width. In other words, enough total number of samples is necessary to

recover the shared parameter. So we can show that the shared parameter benefits from

the pooled data.

• Finally we present a fast optimization algorithm that converge linearly to the solution of

our proposed estimator.

1.3.2 High Dimensional Noisy Regression

Given {(zi, yi)}ni=1 of (1.5) and (1.6), we want to compute β̂, which is l2 consistent, i.e., for

the error vector δ = β̂ − β∗, ‖δ‖2 ≤ g(n) where g(n)→ 0 for n→∞. Further, we also want

to prove non-asymptotic guarantees for statistical recovery.

We study the behavior of high dimensional estimators in the presence of noise and present

three key findings:

• First, we exploit the current bounding techniques [14, 12] and show that the error of

regularized estimators in the presence of noise based on current techniques can only be

bounded by two terms one of which shrinks as the number of samples increases and the

other one is irreducible and depends on the covariance of the noise.

• Second, when an estimate of the noise covariance is known, we show that existing estima-

tors [12, 9] provide consistent estimates for any norm regularization R(·). Our analysis

generalizes the existing estimators in the noisy setting, which have only considered sparse

regression and l1 norm regularization.
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• Finally, using LASSO as the estimator, we empirically show that in the presence of noise

in covariates, even estimation followed by significant test fails to detect all important

features, whereas our estimator, having knowledge of noise covariance, captures relevant

features more accurately.

1.3.3 Dictionary Learning for Sentiment Analysis

Twitter, a micro-blogging website, is among the most pervasive social media platforms. On a

regular basis, it’s users willingly share their thoughts, preferences, and emotions, in the form of

messages 140 characters in length (a.k.a. tweets). Although the field of social media analytics

for a rich source of information, like weblogs, is becoming mature, the microblog analysis is in

its early stages of life.

Several data mining tasks can be defined for Twitter data with various applications. Among

them sentiment analysis [45, 46] has increasingly gained attentions from both academia and

industry. The post length constraint causes the feature space of tweets to be very sparse, which

renders determining the positive or negative sense of a tweet difficult even for a human judge.

Our contribution in this work is threefold:

• To the best of our knowledge, we are the first to present a complete pipeline for Twitter

sentiment analysis.

• We introduce weighted dictionary learning for classification of uncertain-labeled tweets.

• We empirically show that sparsity of tweets enables us to perform classification with their

low dimensional random projections without losing accuracy.

1.3.4 Influence Maximization in Social Networks

In this manuscript, we propose and develop a powerful heat conduction (HC) framework for

modeling and studying the influence maximization problem under the non-progressive influence

process, where an activated node can be reverted to inactive subsequently. The non-progressive

influence diffusion process more realistically captures a wide variety of real-life applications

and scenarios where users’ opinions, interests, and behaviors can change over time when ex-

posed to different sources of influence. The HC framework unifies, generalizes, and extends the

existing non-progressive models. Our contribution in this work is summarized as follows:
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• We propose HC influence model that has favorable real world interpretations and unifies,

generalizes, and extends the existing non-progressive models.

• We show HC has three distinctive key properties which enable us solving influence max-

imization (1.10) efficiently.

• We demonstrate high performance and scalability of our algorithm via extensive experi-

ments and present the first real non-progressive cascade dataset.

1.4 Notations and Preliminaries

Notation. We denote sets with curly characters V , matrices by bold capital letters V, random

variables by capital letters V , vectors by small bold symbols v which are indexed with either

a single number as v(i) or an index set A as vA. Row i of the matrix V is shown as vi and

jth element of the vector v is shown as v(j). The (i, j)th element of the matrix V is shown in

three ways: Vij , vi(j), or vij . Throughout the manuscript ci and Ci are positive constants.

Sub-Gaussian (Sub-exponential) random variable and vector. A random variable V is sub-

Gaussian (sub-exponential) if the moments satisfies

∀p ≥ 1 : (E|V |p)1/p ≤ K2
√
p
(

(E|V |p)1/p ≤ K2p
)

(1.16)

The minimum value of K2 (K1) is called sub-Gaussian (sub-exponential) norm of V , denoted

by |||V |||ψ2
(|||V |||ψ1

) [47]. A random vector v ∈ Rp sub-Gaussian (sub-exponential) if the one-

dimensional marginals 〈v,u〉 are sub-Gaussian (sub-exponential) random variables for all u ∈
Rp. The sub-Gaussian (sub-exponential) norm of v is defined [47]:

|||v|||ψ2
= sup

u∈Sp−1

|||〈v,u〉|||ψ2
, (|||v|||ψ1

= sup
u∈Sp−1

|||〈v,u〉|||ψ1
) (1.17)

We abuse notation and use shorthand v ∼ Subg(0,Σv,Kv) for zero mean sub-Gaussian ran-

dom vector with covariance Σv and sub-Gaussian norm of Kv, although keeping in mind that

no other moments, nor the exact form of the distribution function is known. For any set V ∈ Rp

the Gaussian width of the set V is defined as ω(V) = Eg [supu∈V〈g,u〉] [42], where the expec-

tation is over g ∼ N(0, Ip×p), a vector of independent zero-mean unit-variance Gaussian.

We define the minimum and maximum eigenvalues of a matrix M restricted to the set

A ⊆ Sp−1 as λmin(M|A) = infu∈A uTMu, and λmax(M|A) = supu∈A uTMu respectively.
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All ci, c, and C represent universal constants throughout the manuscript. Set [G] = {0, . . . , G}
is the index set for both shared and private components (in the setting of data sharing model

(1.4)) and [G]\ = [G]− {0} represents only the private ones.



Chapter 2

Related Work

In this chapter, we briefly review the relevant literature of the four problems, Table 1.1, that we

are studying in this manuscript.

2.1 Data Sharing Model

The high dimensional data sharing model has recently gained attention because of its wide range

of application such as personalized medicine [26, 21], sentiment analysis and banking strategy

[21], single cell data analysis [28], road safety [27], and disease subtype analysis [26]. More

generally, in any high dimensional domain where the population consists of groups or clusters,

the data sharing framework has the potential to boost both perdition and parameter recovery.

In spite of the recent surge in applying the data sharing framework to different domains,

there is little known about statistical properties of the proposed estimators. In fact, non-asymptotic

statistical properties of the regularized estimator for the data sharing model is still an open ques-

tion [21, 27]. To the best of our knowledge, the only theoretical guarantee for data sharing is

provided in [28] where the authors, under the stringent irrepresentability condition of the de-

sign matrix, prove sparsistency of their proposed method. Beyond sparsity and l1-norm, no

other structure has been investigated for these models.

Like any high dimensional model, questions about the data sharing model concerns sample

complexity required for recovering the parameters and the non-asymptotic rate of estimation

error. Here, the more interesting question is about the shared parameter. Does the sample

complexity of β∗0 depend on the data of all groups? What about the rate of the error bound? In

16
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other words, we are investigating the conjecture that data pooled from all groups will facilitate

estimation of the shared parameter in regards of sample complexity and error rate. In this work,

we explicitly answer these questions.

2.2 Error-in-Variable Models

Over the past decade considerable progress has been made on the sparse and structured esti-

mation problems for linear models. Such models assume that the observed pair (xi, yi) fol-

low yi = 〈β∗,xi〉 + εi, where β∗ is sparse or suitably structured according to a norm R

[48, 14, 42, 12]. In real world settings, often covariates are noisy, and one observes xi cor-

rupted by noise wi, generally stated as zi = f(xi,wi). Two popular model for f are additive,

zi = xi + wi, and multiplicative noise zi = xi ◦ wi [49, 22, 50] where ◦ is the Hadamard

product. Two common noise models for wi are uniformly bounded [51, 50] and centered sub-

Gaussian [49, 22]. In noisy models, a key challenge is to develop estimation methods that are

robust to corrupted data, particularly in the high-dimensional regime. Recent work [49, 50]

has illustrated empirically that standard estimators like LASSO and Dantzig Selector (DS) [11]

perform poorly in the presence of measurement errors. Thus, many recent papers proposed

modifications to LASSO, DS or Orthogonal Matching Pursuit (OMP) [51, 49, 22, 50, 52] for

handling noisy covariates. However, such estimators may become non-convex [22], or require

extra information about optimal β∗ [49, 22]. Further, most of proposed estimators for sub-

Gaussian additive noise require an estimate of the noise covariance Σw in order to establish

statistical consistency [51, 49, 22, 52] or impose more stringent condition, like element-wise

boundedness on W, the random noise matrix [51, 50].
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Name Estimator Conditions Bound for ‖∆‖2

MU

[50]

min ‖β‖1 s.t.

‖ 1
n
ZT (y − Zβ)‖∞

≤ (1 + δ)δ‖β‖1 + τ

‖ 1
n
ZT ε‖∞ ≤ τ

∀Wij , |Wij | ≤ δ

c
√
s(δ + δ2)‖β∗‖1
+C
√

s log p
n

IMU

[52]

min ‖β‖1 s.t.

‖ 1
n
ZT (y − Zβ) + Σ̂wβ‖∞
≤ µ‖β‖1 + τ

σ2
j = 1

n

∑n
i=1 EW

2
ij

Σw = diag(σ1, . . . , σp)

wi ∼ Subg(0,Σw,Kw)

C‖β∗‖1
√

s log p
n

NCL

[22]

min 1
2
βT
(
1
n
ZTZ − Σw

)
β

− 1
n
βTZTy + λ‖β‖1
s.t. ‖β‖1 ≤ b1

wi ∼ Subg(0,Σw,Kw) max{c
√
sλ,C‖β∗‖2

√
s log p

n
}

NCC

[22]

min 1
2
βT
(
1
n
ZTZ − Σw

)
β

− 1
n
βTZTy

s.t. ‖β‖1 ≤ b2

wi ∼ Subg(0,Σw,Kw) C‖β∗‖2
√

s log p
n

OMP

[49]

OMP to recover indecies S:

β̂S = (ZT
S ZS − ΣS

w)(ZT
S y)

wi ∼ Subg(0,Σw,Kw)

∀β∗i 6= 0

|β∗i | ≥ (c‖β‖2 + C)
√

log p
n

(c+ C‖β∗‖2)
√

s log p
n

Table 2.1: Comparison of estimators for design corrupted with additive sub-Gaussian noise.

Table 2.1 presents key recent literature on regression with additive measurement error in

high dimension focusing on sparsity. The first paper in this line of work [50] introduces matrix

uncertainty selector (MU) which belongs to constraint family of estimators. As the first attempt

for addressing estimation with measurement error in high dimension, MU imposes restrictive

conditions on noise W , namely each element of matrix W needs to be bounded. It worth men-

tioning that MU does not need any information about the noise covariance Σw but as presented

in Table 2.1, it is not consistent. The term c
√
s(δ+ δ2)‖β∗‖1 in the upper bound is independent

of the number of samples n. This theme repeats in the literature: when Σw is available proposed

estimators are consistent otherwise there is no l2 recovery guarantee.

The improved matrix uncertainty selector (IMU) [52] assumes the availability of the diago-

nal matrix Σ̂w as the covariance of the noise and uses it to compensate the effect of the noise.

The compensation idea also recurs in the literature where one mitigates ZTZ by subtracting

Σw, and as a result the estimator becomes consistent. Note that both MU and IMU are variants

of DS where ‖β‖1 appears in both constraint and objective of the optimization program. For

IMU each row of the noise matrix wi is sub-Gaussian and independent of wj , xi and εi. Also,
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the off diagonals of Σw are zero meaning Wij are uncorrelated. Following IMU all subsequent

work assume sub-Gaussian independent noise. The MU and [51] are only estimators that allow

general dependence in noise.

Loh and Wainwright [22] proposed a non-convex modification of LASSO (NCL) [9] along

with constraint version of it (NCC) which are equivalent by Lagrangian duality (Table 2.1). In

both estimators, they substitute the quadratic term XTX of the LASSO objective with ZTZ −
Σw which makes the problem non-convex. An interesting aspect of this method is that although

a projected gradient algorithm can only reach a local minimum, yet any such local minima is

guaranteed to have consistency guarantee. Note that for the feasibility of both objectives, [22]

requires extra information about the unknown parameter β∗, particularly b1 and b2 should be

set to a value greater than ‖β∗‖1.

In [49], Chen and Caramanis use the OMP [53] for support recovery of a sparse regression

problem without knowing the noise covariance. They established non-asymptotic guarantees

for support recovery while imposing element-wise lower bound on the absolute value of the

support. However, for achieving l2 consistently, [49] still requires an estimate of the noise

covariance Σw, which is in accordance with the requirements of other estimators mentioned

above.

Although the literature on regression with noisy covariates has only focused on sparsity, the

machine learning community recently has made tremendous progress on the structured regres-

sion, i.e., beyond l1-norm, that has led to several key publications. The work [12] provided a

general framework for analyzing regularized estimators with decomposable norm of the form

minβ L(β;y, X) +λR(β), and established theoretical guarantees for Gaussian covariates. Re-

cent papers [54, 55] have generalized this framework for analyzing estimators with hierarchical

structures [56], atomic norms [54] and graphical model structure learning [55]. Lately, [14]

established a framework for analyzing regularized estimators with any norm R(·) and sub-

Gaussian covariates. For constraint estimators, [57] has recently generalized the DS for any

norm R(·). Building upon these advances, we extend the literature of high-dimensional regres-

sion with noisy covariates beyond l1-norm.
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2.3 Dictionary Learning

Sparse modeling techniques have gained popularity among the signal processing and machine

learning communities for their ability to provide efficient representations of a great variety of

signals such as audio and natural images. This efficiency is achieved by approximating a signal

with a linear combination of a few elements (atoms) of some (often) redundant bases. When

these bases are learned from the data itself, they are called dictionaries [40].

Formally, we aim at learning a dictionary D ∈ Rm×k such that a training set of signals

X = {xi ∈ Rm | i = 1, . . . , n} (and later testing data from the same class) can be well

represented by linearly combining a few of the basis vectors formed by the columns of D. This

problem can be cast as the optimization

min
D,αi

i=1,...,n

1

n

n∑
i=1

1

2
‖xi −Dαi‖22 + λ‖αi‖1, (2.1)

which is convex with respect to the variables αi when D is fixed and viceversa (here λ a

positive constant). The optimization is then commonly solved by alternatively fixing one and

minimizing over the other.

Sparse modeling has been previously employed for supervised classification tasks, exhibit-

ing state-of-the-art performance in visual and audio applications such as face recognition and

the PASCAL challenge [58].

Classification is often done by learning, following the above optimization, a dictionary Dc

for each class c ∈ C using only training data from the set {xi ∈ X | yi = c}. Classification is

then performed with testing data Xtest, assigning a label c∗ = f(x) to each x ∈ Xtest where

f(x) = argmin
c∈C

`(x,Dc)

where `(x,Dc) = min
α

1

2
‖x−Dcα‖22 + λ‖α‖1.

In this work we generalize the dictionary learning problem (2.1) for the case of weighted

input data and present an algorithm for solving the weighted dictionary learning problem. The

proposed algorithm is then applied to the tweet sentiment analysis problem as discussed in Sec-

tion (1.1.1). For example, using the probabilistically labeled tweets we learn two dictionaries

representing “happy” and “sad” moods, Figure 2.1a, and use them to determine the label of the

new tweets, 2.1b.
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(a) Learning dictionary for sentiments. (b) Labeling new tweet.

Figure 2.1: Weighted dictionary learning for classification [1].

2.4 Influence Maximization

Most influence maximization studies have focused on the progressive influence processes where

once a node is activated, it cannot be reverted. Figure 2.2 shows the progressive process of

buying a new cell phone. When someone buys the new product the increase in the revenue

progresses and the new buyer may influence others to purchase the product too.

In the seminal work [24], Kempe et al show that the progressive influence maximization

problem under both the linear threshold (LT) and independent cascade (IC) diffusion models

is NP-hard. On the other hand, the progressive influence maximization problem can be well

approximated by establishing that the influence function is submodular. In practice, however,

solving the progressive influence maximization problem is still computationally expensive for

large social networks, due to the need for estimating the influence function σ(S) which has no

known closed-form and is estimated by Monte Carlo simulation. As mentioned in Section 1.3.4,

the choice of influence model is important because it determines the computational hardness of

computing and operating with the influence function σ(S). In other words, although the oracle1

complexities of the submodularity based algorithms are reasonable, since computation of σ(S)

is expensive, they are not scalable for influence maximization.

The follow-up studies [59][60][61][62][63][64] attempt to speed up this process by avoiding

or decreasing the need for the Monte Carlo simulation. The CELF method of Leskovec et al.

[59] attempts to speed up the original greedy method, proposed by Kempe et al. [24], by

reducing the number of calls to the Monte Carlo routine for spread computation. The CELF

lazy method is based on the submodularity of the influence spread and can be applied to any
1 Where given S the oracle provides us with function value σ(S)
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t=1 t=2

t=3t=4

Figure 2.2: An example of progressive influence model.

submodular maximization problem. Although lazy evaluation improves the running time of the

original greedy method by up to 700 times [59], it still does not scale to large graphs [60].

Recently heuristics have been proposed to approximate influence spread for LT [60] and IC

[61] which enables the greedy method to scale for large networks. Chen et al. [60] suggest

using a local directed acyclic graph (LDAG) per node, instead of considering the whole graph,

to approximate the influence flowing to the node. Goyal et al. propose SIMPATH method [62]

under the LT model which is built on the CELF method [59]. They approximate the influence

spread by enumerating the simple paths starting from the seeds within a small neighborhood.

Both of these methods have parameters to be tuned which control the trade-off between running

time and accuracy of influence spread estimation. Methods presented in [60, 62] accelerate the

greedy method [24] substantially and achieve high performance in influence maximization.

Gomez-Rodriguez et al. [63] propose a progressive continuous time influence model with

dynamics similar to IC and show that influence maximization is NP-hard for this model as

well. They show submodularity of influence spread and exploit the same greedy algorithm. In

contrast to all other progressive models, influence spread has a closed form for this model, but

the computation is not scalable for large scale networks. A recent work [64] has scaled influence

computation by developing a randomized algorithm for approximating it.

Beyond progressive influence models, little work has been done on non-progressive models.
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Figure 2.3: Switching between carriers makes the revenue of companies non-progressive.

Non-progressive models are better at modeling market shares of different products and captur-

ing the spread of the products where customer’s loyalty is the source of revenue. For example,

users can switch between cell-phone carriers at any time, Figure 2.3 which changes the market

share of each carrier and the overall loyalty of the customers determines the total revenue.

Kempe et al. [24] introduce a non-progressive version of the LT influence model (NLT)

and try to tackle the influence maximization problem under NLT by reducing the model to

(progressive) LT, discussed in Chapter 6. Voter model, as the most well-known non-progressive

model, is originally introduced in [65, 66] and adopted for viral marketing in [67]. Even-Dar

and Shapira show that under Voter model, highest degree nodes are the solution of influence

maximization [67]. Unfortunately, since the Voter model reaches consensus, i.e. one product

remains in the long term, it can not explain the coexistence of multiple product adoptions, which

is a typical case in many real product adoptions.

Kempe et al. [24] try to tackle the influence maximization problem under NLT by reducing

the NLT model to (progressive) LT. For this purpose, they replicate the social network for each

time step where each node has a copy in each time and connects to its neighbors in the previous

copy of the network. This trick reduces the non-progressive model to a progressive one but

obviously increases the computational complexity and clearly does not work for infinite time

horizon. Here, we propose a powerful non-progressive influence model named heat conduction

(HC) model, and study the influence maximization problem for it. We show that HC model

unifies, generalizes, and extends the existing non-progressive models, specifically we generalize

the NLT and present a scalable algorithm to solve the influence maximization under NLT.
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Chapter 3

Structured High Dimensional Data
Sharing Model

The high dimensional structured data sharing model describes groups of observations by shared

and per-group private parameters, each with its own structure such as sparsity or group sparsity.

In this chapter we consider the general form of data sharing where data comes in a fixed but

arbitrary number of groups G and the structure of both shared and private parameters can be

characterized by any norm. We propose a simple estimator for the high dimensional data shar-

ing model and provide conditions under which it consistently estimates both shared and private

parameters. We also characterize sample complexity of the estimator and present high proba-

bility non-asymptotic bounds on estimation errors of all parameters. Interestingly the sample

complexity of our estimator translates to conditions on both per-group sample size and total

number of samples. To the best of our knowledge, this is the first thorough statistical analysis

of data sharing models. This is important because of its recent wide spread.

The rest of this chapter is organized as follows: We start with the details of the problem

setup and introduce our estimator in Section 3.1. In Section 3.2, we characterize the error

set of our estimator and provide a deterministic error bound. In Section 3.3 we discuss the

restricted eigenvalue condition and calculate the per-group and total sample complexity required

for recovery of the true parameters by our estimator. In Section 3.4 we close the statistical

analysis by providing high probability error bounds. Finally, we provide a linearly convergent

algorithm for finding the solution of our estimator in Section 3.5. We present experimental
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results on Section 3.6. The proofs of all technical results are detailed in Section 3.7.

3.1 Problem Setup and The Estimator

Given G group and ng samples in each one as {{xgi, ygi}
ng

i=1}Gg=1, we can form the per group

design matrix Xg ∈ Rng×p and output vector yg ∈ Rng . The total number of samples is

n =
∑G

g=1 ng. The data sharing model takes the following vector form:

yg = Xg(β
∗
0 + β∗g) + ωg, ∀g ∈ [G]\ (3.1)

where each row of Xg is xTgi and ωTg = (ωg1, . . . , ωgng) consists of i.i.d. centered unit-variance

sub-Gaussian elements with |||ωgi|||ψ2
≤ K. The shared parameter among all groups is β∗0 and

the private parameter of the group g is β∗g . We focus on independent isotropic sub-Gaussian

random vectors xgi where |||xgi|||ψ2
≤ k and ExTgixgi = Ip×p. Extension to anisotropic sub-

Gaussian case is straightforward by techniques developed in the recent literature [14, 68].

For shared and private parameters recovery, we propose the following estimator :

β̂ = (β̂T0 , . . . , β̂
T
G) ∈ argmin

β0,...,βG

1

n

G∑
g=1

‖yg −Xg(β0 + βg)‖22, ∀g ∈ [G] : Rg(βg) ≤ Rg(β∗g) (3.2)

Interestingly, we can write a compact optimization problem that is equivalent to (3.2) as:

β̂ ∈ argmin
β

1

n
‖y −Xβ‖22, ∀g ∈ [G] : Rg(β) ≤ Rg(β∗), (3.3)

where yT = (yT1 , . . .y
T
G) ∈ Rn, β = (β0

T , . . . ,βG
T )T ∈ R(G+1)p and

X =


X1 X1 0 · · · 0

X2 0 X2 · · · 0
...

...
. . . · · ·

...

XG 0 · · · · · · XG

 ∈ Rn×(G+1)p (3.4)

For simplicity we denote X = [W D] which is the concatenation of W ∈ Rn×p that represents

the whole design matrix consists of all data points as rows and D ∈ Rn×pG which is the

diagonal part of the X where all Xgs are on the diagonal.
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3.2 Error Set and Deterministic Error Bound

Since β̂g = β∗g +δg is a feasible point of the optimization (3.2), δg will blelong to the following

restricted error set, which is the set of all descent directions at β∗g on Rg(·) :

Eg =
{
δg|R(β∗g + δg) ≤ R(β∗g)

}
, g ∈ [G]

We name the cone of the error set as Cg = Cone(Eg) and the spherical cap corresponding to it

as Ag = Cg ∩ Sp−1. Subsequently, we define the following set:

H =

δ = (δT0 , . . . , δ
T
G)T

∣∣∣∀g ∈ [G] : δg ∈ Cg,
G∑
g=0

αg‖δg‖2 = 1

 , αg =

√
ng
n
.

Starting from the optimality of β̂ = β∗ + δ as 1
n‖y −Xβ̂‖22 ≤ 1

n‖y −Xβ∗‖22 we derive:

1

n
‖Xδ‖22 ≤ 1

n
2ωTXδ (3.5)

where ω = [ωT1 , . . . ,ω
T
G]T ∈ Rn is the vector of all noises.

Using the basic inequality (3.5) we can establish the following deterministic error bound.

Theorem 3.1 For the estimator proposed in (3.3), assume that there exist 0 < κ ≤ infu∈H
1
n‖Xu‖22.

Then we have the following upper bound for weighted sum of error:

G∑
g=0

αg‖δg‖2 ≤
2 supu∈Hω

TXu

nκ
, αg =

√
ng
n
.

3.3 Restricted Eigenvalue Condition for Data Sharing Model

The main assumption of Theorem 3.1 is known as Restricted Eigenvalue (RE) condition in the

literature of high dimensional statistics [14, 12, 69]:

inf
u∈H

1

n
‖Xu‖22 ≥ κ > 0 (3.6)

The RE condition (3.6) assumes that the minimum eigenvalues of the matrix XTX in directions

restricted to H is strictly positive. In this section, we want to show that for the data sharing

design matrix X defined in (3.4), the RE condition (3.6) holds with high probability when we

have enough number of samples, known as sample complexity.
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Note that each of the linear models of (3.1) is a superposition [70] or dirty statistical model

[71]. Therefore, we have a set of coupled superposition models, and the goal is to estimate their

parameters. Another similar model is the one used in [72], but the authors are not emphasizing

on a distinct shared component. The straightforward way to get the sample complexity for

satisfying the RE condition is to use results from the superposition literature directly. Here we

focus on the state-of-the-art estimator proposed in [70], and show it will not lead to a reasonable

sample complexity.

Proposition 1 Using the RE condition analysis of superposition model of [70], recovering the

shared parameter β∗0 requires at least one group to have ng ≥ ω2(A0). To recover each

private parameter we also need at least ng ≥ max(ω(A0)2, ω(Ag)2) samples in the group.

In other words, by separate analysis of superposition estimators neither the recovery of shared

parameter benefits from the pooled n samples, nor the private parameters.

Proof: Note that yg = Xg(β
∗
g + β∗0) + ωg is a superposition model and as shown in [70]

the sample complexity required for the RE condition and subsequently recovering β∗0 and β∗g is

ng ≥ c(max(ω(A0), ω(Ag)) +
√

log 2)2.

Note that Proposition 1 suggests that the sample complexity for the recovery of the shared

parameter and private parameters are coupled together based on the current state-of-the-art anal-

ysis while one hopes to get a decoupled version of them. To improve this sample complexity and

exploit all data for recovering the shared parameter, the key is to use the block decomposition

of the design matrix as X = [W D]. Using this decompostion the RE condition becomes:

inf
δ∈H
‖Xδ‖22 = inf

δ∈H
‖Wδ0 + Dδ1:G‖22,

where δ1:G = [δT1 , . . . , δ
T
G]T . We want to reduce the RE condition on set H with design X, to

the RE conditions of δ0 ∈ C0 and δ1:G with designs W and D respectively. In the following,

we elaborate this decoupling step. The below lemma is a reverse of triangle inequality which

plays a key role in our decoupling step.

Lemma 3.2 (Proposition A.2. of [73]) If there exists ε ∈ (0, 1] such that −〈x, y〉 ≤ (1 −
ε)‖x‖2‖y‖2, then:

‖x+ y‖22 ≥ ε(‖x‖22 + ‖y‖22) (3.7)
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Next lemma establishes the RE condition for individual isotropic sub-Gaussian designs and

provides us with the essential tool for proving high probability bounds.

Lemma 3.3 (Theorem 11 of [14]) To unify the illustration assume, n0 = n and X0 = W. For

all g ∈ [G], for the matrix Xg ∈ Rng×p with independent isotropic sub-Gaussian rows, i.e.,

|||xgi|||ψ2
≤ k and E[xgix

T
gi] = I, following results hold on the spherical cap Ag = Cg ∩ Sp−1

with probability at least 1− 2 exp
(
−γg(ω(Ag) + τ)2

)
for τ > 0:

ng − cg
√
ngω(Ag)− Cg

√
ngτ ≤ inf

u∈Ag

‖Xgu‖22

≤ sup
u∈Ag

‖Xgu‖22 ≤ ng + cg
√
ngω(Ag) + Cg

√
ngτ

where cg, Cg > 0 are constants.

The statement of Lemma 3.3 characterizes the distortion in the Euclidean distance between

points ug ∈ Cg when the matrix Xg is applied to them and states that any sub-Gaussian design

matrix is approximately isometry, with high probability:

(1− α)‖ug‖2 ≤ ‖Xgug‖22 ≤ (1 + α)‖ug‖2

where α = cg
ω(Ag)√
ng

.

Using the result of Lemma 3.3, in the following lemma, we show that the assumption of the

Lemma 3.2 holds for the two n-dimensional vectors Wδ0 and Dδ1:G with high probability.

Lemma 3.4 For Wδ0 ∈ Rn and Dδ1:G ∈ Rn where W and D defined as (3.4), when we

have enough number of samples in each group as ng ≥ (cgω(Ag) + Cgτ + Cg

√
logG
γ )2 and

enough total number of samples as n ≥ (c0ω(A0) + C0τ + C0

√
logG
γ )2 where τ > 0 and

γ = ming∈[G] γg, with probability at least 1 − 2 exp(−γ(ming∈[G] ω(Ag) + τ)2) there exists

an ε ∈ (0, 1] where:

−〈Wδ0,Dδ1:G〉 ≤ (1− ε)‖Wδ0‖2‖Dδ1:G‖2, δ ∈ H

Results of Lemma 3.2 and Lemma 3.4 together suggest the following:

‖Wδ0 + Dδ1:G‖22 ≥ ε(‖Wδ0‖22 + ‖Dδ1:G‖22)

which is our desired decoupling. The following theorem uses the decoupling result of previous

lemmas to establish the RE condition for the design matrix X (3.4).
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Theorem 3.5 Assume xgi to be a sub-Gaussian random variable with E[xTgixgi] = Ip×p and

|||xgi|||ψ2
≤ k. Then, for all δ ∈ H, when we have enough number of samples in each group

as ng ≥ (cgω(Ag) + Cgτ +
√

logG
γ )2, and large enough total number of samples as n ≥

(c0ω(A0) +C0τ +
√

logG
γ )2 where τ and γg > 0, there exist a corresponding ε ∈ (0, 1] where

with probability at least 1− 4 exp(−γ(ming∈[G] ω(Ag) + τ)2) we have:

inf
δ∈H

1

n
‖Xδ‖22 ≥ εκmax, κmax = max

g∈[G]

1−
cgω(Ag) + Cgτ +

√
logG
γ

√
ng

 .

Remark 3.6 Note that the necessary number of samples to recover each private parameter, i.e.,

the sample complexity, is only
√

logG
γ worse than the known sample complexity of structured

linear regression [14].

Remark 3.7 Theorem 3.5 establishes the relation between the recovery condition for the shared

parameter β∗0 and the total number of samples n. It characterizes the exact total number of

samples that are necessary to recover β∗0 and interestingly the sample complexity is only
√

logG
γ

worse than the case of structured linear regression with single parameter, i.e., y = Wβ∗0 + ω

[14].

3.4 General Error Bound

In this section, we provide a high probability upper bound for the estimation error of the shared

and private components under general norm R(·). Theorem 3.9 establishes a high probability

upper bound for the deterministic bound of Theorem 3.1, i.e., 1
n2ωTXu, in terms of the Gaus-

sian width of the spherical caps corresponding to each error cone, i.e., ω(Cg ∩Sp−1). Following

lemma provides us with the results necessary to prove Theorem 3.9.

Lemma 3.8 For xgi defined in Theorem 3.5 and ω consists of i.i.d. centered unit-variance sub-

Gaussian elements with |||ωgi|||ψ2
≤ K, with probability at least 1−σg

G exp
(
−min

[
νgng − logG, t2

η2gk
2

])
we have:

‖ωg‖2 sup
ug∈Ag

〈XT
g

ωg
‖ωg‖2

,ug〉 >
√

(2K2 + 1)ng

(
ζgkω(Ag) + ρg

√
logG+ τ

)
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Theorem 3.9 Assume xgi to be a sub-Gaussian random variable with E[xTgixgi] = Ip×p and

|||xgi|||ψ2
≤ k and ω consists of i.i.d. centered unit-variance sub-Gaussian elements with

|||ωgi|||ψ2
≤ K, with probability at least 1− σ exp

(
−ming∈[G]

[
νgng − logG, τ2

η2gk
2

])
we have:

2

n
ωTXδ ≤

√
8K2 + 4

n
max
g∈[G]

(
ζgkω(Ag) + ρg

√
logG+ τ

)
The following corollary characterizes the general error bound and results from the direct

combination of Theorem 3.1, Theorem 3.5, and Theorem 3.9.

Corollary 3.10 For isotropic sub-Gaussian xgi with |||xgi|||ψ2
≤ k and i.i.d. centered unit-

variance sub-Gaussian noise with |||ωgi|||ψ2
≤ K when we have ∀g ∈ [G] : ng ≥ (cgω(Ag) +

Cgτ +
√

logG
γ )2 which lead to κ = εκmax > 0, the following general error bound holds with

probability at least1− σg exp
(
−ming∈[G]

[
νgng − logG, τ2

η2gk
2

])
for estimator (3.2):

G∑
g=0

√
ng
n
‖δg‖2 ≤

kC maxg∈[G] ω(Cg ∩ Sp−1) + ρ
√

logG+ τ
√
n

(3.8)

where C = (8K2 + 4) maxg∈[G] ζg and ρ = maxg∈[G] ρg.

Corollary 3.11 Note that from (3.8) one can immediately entail the error bound for estimation

of the shared parameter and all private ones as follows:

∀g ∈ [G] : ‖δg‖2 ≤
kC maxg∈[G] ω(Cg ∩ Sp−1) + ρ

√
logG+ τ

√
ng

Remark 3.12 Comparing the result of Corollary 3.11 with the case of regression with the single

structured parameterβ∗g is interesting. Based on Corollary 3.11, ‖δg‖2 = O((maxg∈[G] ω(Ag)+
√

logG)/
√
ng) while sharp error bound for the single regression withβ∗g is ‖δg‖2 = O(ω(Ag)/

√
ng).

So basically by solving a more complicated data sharing model we only pay a price of
(

maxg∈[G] ω(Ag)−
ω(Ag) +

√
logG

)
/
√
ng in estimation error, and O(logG) in sample complexity.

Remark 3.13 On the other hand, without any direct observation regarding the parameter β∗0
we exploit all of the groups data and get the decay rate of 1/

√
n for ‖δ0‖2 by only paying a

price of
(

maxg∈[G] ω(Ag)−ω(A0)+
√

logG
)
/
√
n in estimation error, andO(logG) in sample

complexity of the total number of samples n.



32

Remark 3.14 For the case of sparsity, assume that each β∗g is sg-sparse and s0 ≥ sg, i.e., the

shared parameter is the densest. Then we have the following error bounds with high probability:

‖δ0‖2 ≤ c
√
s0 log p+

√
logG

n
, ‖δg‖2 ≤ c

√
s0 log p+

√
logG

ng

Note that here the recovery of the shared parameter is at most c
√√

logG
n worse than the case of

single regression with β0 as the parameter. Also for the private parameters, the bound is only

c
(
√
s0−
√
sg)
√

log p+
√√

logG√
ng

weaker than the case of single regression.

3.5 Estimation Algorithm

We propose a projected gradient descent-like algorithm, where the corresponding private step-

sizes appear as scalings in the update of the shared parameter. Therefore, we call our proposed

algorithm Scaled Projected Gradient Descent (SPGD).

Algorithm 1 SPGD: SCALED PROJECTED GRADIENT DESCENT

1: input: X,y, (µ0, . . . , µG),β(1) = 0

2: output: β̂
3: for t = 1 to T do
4: for g=1 to G do
5: β

(t+1)
g = ΠΩRg

(
β

(t)
g + µgX

T
g

(
yg −Xg

(
β

(t)
0 + β

(t)
g

)))
6: end for

7: β
(t+1)
0 = ΠΩR0

β(t)
0 + µ0W

T

y −Wβ
(t)
0 −


µ1X1β

(t)
1

...

µGXGβ
(t)
G





8: end for

Note that the SPGD algorithm is not exactly PGD, because of µgs in the second update of

line 7. Also β(t+1)
0 update of line 7, is using β(t)

g instead of the most recent value of other

parameters, β(t+1)
g , hence, our algorithm is not block coordinate descent either. The closest

method to SPGD is the one presented in [74], where authors show linear convergence rate

for their proposed projected gradient descent method for the constraint OLS objective. In the

following we show that the proposed SPGD algorithm has linear convergence rate.
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3.5.1 Convergence Rate Analysis

In this section we want to upper bound the error of each iteration of the SPGD algorithm. Let’s

δt = βt − β∗ be the error of iteration t of SPGD, i.e., the distance from the true parameter

(not the optimization minimum, β̂). The goal of this section is to show that ‖δt‖2 decreases

exponentially fast in t to the statistical error ‖δ‖2 = ‖β̂ − β∗‖2. In other word, we show that

the optimization error ‖β̂ − βt‖2 linearly converges to zero. We first start with the required

definitions for our analysis.

Definition 3.15 We define the following constants, where for simplification we assume X0 =

W and w0 = w:

ρg(µg) = sup
u,v∈Bg

vT
(
Ig − µgXT

gXg

)
u, g ∈ [G]

ξg(µg) = µg sup
v∈Bg

vTXT
g

wg

‖wg‖2
, g ∈ [G]

ηg(µg) = µg sup
v∈Bg ,u∈B0

−vTXT
gXgu, g ∈ [G]\

where Bg = Cg ∩ Bp is the intersection of the error cone and the unit ball.

In the following lemma we establish a recursive relation between errors of consecutive

iterations which leads to a bound for the tth iteration.

Lemma 3.16 We have the following recursive dependency between the error of t+1th iteration

and tth iteration:

‖δ(t+1)
g ‖2 ≤ ρg(µg)‖δtg‖2 + ξg(µg)‖wg‖2 + ηg(µg)‖δt0‖2

‖δ(t+1)
0 ‖2 ≤ ρ0(µ0)‖δt0‖2 + ξ0(µ0)‖w‖2 + µ0

G∑
g=1

ηg(µg)‖δtg‖2

From Lemma 3.16 we have:

G∑
g=0

‖δt+1
g ‖2 ≤

ρ0 +
G∑
g=1

ηg

 ‖δt0‖2 +
G∑
g=1

(ρg + µ0ηg) ‖δtg‖2 +
G∑
g=0

ξg‖wg‖2 (3.9)

By recursively applying the inequality (3.9), we can easily derive the following theorem for

the upper bound of error in each iteration.
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Theorem 3.17 For x ∈ Rp, any norm R(·), and initialization β(0) of the SPGD 3. We have the

following bound for error at iteration t+ 1 of SPGD:

‖δt+1‖2 ≤ αt
G∑
g=0

‖β∗g‖2 +
1− αt

1− α

G∑
g=0

ξg(µg)‖wg‖2, (3.10)

where α = max
(

maxg∈[G]\(ρg + µ0ηg), ρ0 +
∑G

g=1 ηg

)
.

The RHS of (3.10) consists of two term. If we keep α < 1, the first term approaches zero

exponentially fast, i.e., with linear rate. The first term corresponds to the optimization error, i.e.,

‖βt+1 − β̂‖2. We will show that the second term approximates the upper bound for statistical

error, i.e., ‖β̂ − β∗‖2 = ‖δ‖2 =
√∑G

g=1 ‖δg‖22 where we characterized a scaled version of it

as
∑G

g=1

√
ng

n ‖δg‖2 in (3.8). Therefore, if we can make α < 1, the estimation error of SPGD

algorithm linearly converges to the approximate statistical error bound.

One way for having α < 1 is to keep the coefficients of all ‖δtg‖2 in (3.9) strictly below one,

simultaneously: ρ0(µ0) +
G∑
g=1

ηg(µg)

 < 1 (3.11)

∀g ∈ [G]\ : (ρg(µg) + µ0ηg(µg)) < 1 (3.12)

To this end, we first establish high probability upper bound for ρg and ηg and then try to

keep the coefficients of ‖δtg‖2s below one.

Lemma 3.18 We can establish the following high probability upper bounds for the coefficients:

ρg(µg) ≤1− µgdg, w.p. 1− 2 exp
(
−γg(ω(Ag) + τ)2

)
ηg(µg) ≤ µgsg, w.p. 1− 4 exp

(
−γ (min(ω(A0), ω(Ag)) + τ)2

)
where dg = ng−cg

√
ngω(Ag)−Cg

√
ngτ , sg = ng+cg

√
ng max(ω(A0), ω(Ag))+Cg

√
ngτ ,

and γ = ming∈[G] γg.

The following theorem shows that for a specific set of step-sizes both (3.11) and (3.12)

holds with high probability.
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Theorem 3.19 For τ > 0, when per group and total number of samples are large enough, i.e.,

ng ≥
(
cgω(Ag) + Cg

√
logG
γ + Cgτ

)2

, and we select the following step sizes:

µ0 < max
g∈[G]\

(√
ng − cgω(Ag)− Cg

√
logG
γ − Cgτ

)
(√

ng + cg max(ω(A0), ω(Ag)) + Cg

√
logG
γ + Cgτ

)
∀g ∈ [G]\ : µg <

µ0

(√
n− c0ω(A0)− C0

√
logG
γ − C0τ

)
G
(√

ng + cg max(ω(A0), ω(Ag)) + Cg

√
logG
γ + Cgτ

) ,
with probability at least 1−10 exp

(
−γ
(
ming∈[G] ω(Ag) + τ

)2), α of Theorem 3.17 becomes

less than one and the Algorithm 3 linearly converges to the scaled error of
√
n

1−α
(
maxg∈[G] ω(Ag) +

√
logG

)
Remark 3.20 One can readily perform the same analysis for the scaled version of the error

presented in Theorem 3.1 as
∑G

g=1 αg‖δtg‖2 where αg =
√

ng

n . The only difference is that the

step-size for the shared parameter scales as µ0

√
ng

n where µ0 is the step size of Theorem 3.19.

Then the upper bound of error
∑G

g=1 αg‖δtg‖2 converges to the upper bound of the statisti-

cal error
∑G

g=1 αg‖δg‖2 computed in Theorem 3.10, i.e., c
(
maxg∈[G] ω(Ag) +

√
logG

)
/
√
n,

similar to (3.8).

We can simplify the result of Theorem 3.19 to have a better guideline for choosing the step

size. The following corollary characterizes such step sizes.

Corollary 3.21 If the number of samples satisfies ng ≥
(
cgω(Ag) + Cg

√
logG
γ + 1

)2

then for

the following step sizes SPGD algorithm linearly converges to an approximate error bound with

probability at least 1− 10 exp
(
−γ
(
ming∈[G] ω(Ag)

)2).

µ0 ≤
(√

n+ cmax
g∈[G]

ω(Ag) + C
√

logG+ 1

)−1

∀g ∈ [G]\ : µg ≤
µ0

G

(
√
ng + cmax

g∈[G]
ω(Ag) + C

√
logG+ 1

)−1

Remark 3.22 For the example of sparse shared and private parameters of Remark 3.14, where

β∗g is sg-sparse and s0 ≥ sg, we can pick the following step sizes to have linear convergence
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with high probability for the SPGD algorithm:

µ0 =
(√

n+ c
√
s0 log p+ C

√
logG+ 1

)−1

∀g ∈ [G]\ : µg ≤
µ2

0

G

3.6 Experiment

In this section we supplement our theoretical results with a simple synthetic experiment. We

focus on the case of two groups, i.e., G = 2. The dimension p = 1000 and the structure is

sparsity induced by l1-norm. The parameters β∗0 , β∗1 , and β∗2 are 20, 10, and 5-sparse respec-

tively. The sparsity pattern is as follows:β∗0 = (1, . . . , 1︸ ︷︷ ︸
1−20

, 0, . . . ),β∗1 = (. . . , 0, 2, . . . , 2︸ ︷︷ ︸
51−60

, 0, . . . ),

and β∗2 = (. . . , 0,−2, . . . ,−2︸ ︷︷ ︸
96−100

, 0, . . . ).

For the distribution of input and noise we have xgi ∼ N(0, σ2
xI) and ωgi ∼ N(0, σ2

w)

with σ2
x = .3 and σ2

w = .1. We use the SPGD method (Algorithm 1) to solve the optimization

problem (3.2). The projection to the l1 ball can be efficiently performed by the method proposed

in [75].

While changing n in the experiments, we keep the ratio n1
n2

= 2
3 fixed. Figure 3.1b shows

the per-group error for different sample size which follows 1/
√
ng decay. Finally, Figure 3.1a

shows the decay of the error as sample size increases for the shared component recovery and

the error for summation of the form (1.14). As expected errors decay as 1/
√
n.

3.7 Proofs

3.7.1 Proof of Theorem 3.1

Starting from (3.5), for the lower bound we get:

1

n
‖Xδ‖22 ≥ 1

n
inf
u∈H
‖Xu‖22

 G∑
g=0

αg‖δg‖2

2

(3.13)

≥ κ

 G∑
g=0

αg‖δg‖2

2
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(a) Estimation error for the shared parameter

β∗0 .

(b) Estimation error for private group parame-

ters β∗1 and β∗2 .

Figure 3.1: Estimation error with different sample size. 3.1a compares the error with the LHS

of (1.14). Each point on the diagram is an average over 10 experiments.

where 0 < κ ≤ 1
n infu∈H ‖Xu‖22 is known as Restricted Eigenvalue (RE) condition. The upper

bound will factorize as follows:

2

n
ωTXδ ≤ 2

n
ωTXu

 G∑
g=0

αg‖δg‖2

 , u ∈ H (3.14)

Putting together both inequalities (3.13) and (3.14) completes the proof.

3.7.2 Proof of Lemma 3.4

In the following we show that (3.8) holds with high probability as long as we have enough num-

ber of samples both in each group and totally. The LHS of (3.8) is equal to−
∑G

g=1〈Xgδ0,Xgδg〉,
to which we can apply the Cauchy-Shwarz inequality and get:

−〈Wδ0,Dδ1:G〉 = −
G∑
g=1

〈Xgδ0,Xgδg〉 ≤
G∑
g=1

‖Xgδ0‖2‖Xgδg‖2
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So the problem reduces to finding the 0 ≤ 1− ε < 1 satisfying:

G∑
g=1

‖Xgδ0‖2‖Xgδg‖2 ≤ (1− ε)‖Wδ0‖2‖Dδ1:G‖2 (3.15)

= (1− ε)

√√√√√
 G∑
g=1

‖Xgδ0‖22

 G∑
g=1

‖Xgδg‖22

 (3.16)

= (1− ε)

√√√√ G∑
i,j=1

(‖Xiδ0‖2‖Xjδj‖2)2

A simple upper bound for the RHS can be derived from
√∑

i a
2
i ≤

∑
i ai, for ai ≥ 0. To have

1 − ε strictly less than one, we need and strict inequality. More specifically if 0 <
√∑

i a
2
i

then at least one of the ai is non-zero, which leads to a strict inequality. In other words, ∀ai ≥
0,
√∑

i a
2
i > 0 :

√∑
i a

2
i <

∑
i ai. So let’s assume ‖Wδ0‖2‖Dδ1:G‖2 > 0 and use the strict

inequality
√∑

i a
2
i <

∑
i ai:

G∑
g=1

‖Xgδ0‖2‖Xgδg‖2 ≤ (1− ε)

√√√√ G∑
i,j=1

(‖Xiδ0‖2‖Xjδj‖2)2

< (1− ε)
G∑

i,j=1

‖Xiδ0‖2‖Xjδj‖2

The terms of LHS are subset of terms on RHS summation, so if ‖Wδ0‖2‖Dδ1:G‖2 is bounded

away from zero, there always exist an 0 < ε ≤ 1 for which we have:∑G
g=1 ‖Xgδ0‖2‖Xgδg‖2∑G
i,j=1 ‖Xiδ0‖2‖Xjδj‖2

≤ (1− ε) < 1 (3.17)

Now we show that the assumption ‖Wδ0‖2‖Dδ1:G‖2 > 0 holds with high probability for

enough number of samples. It is equivalent to show that the square of terms are bounded away

from zero.

‖Wδ0‖22‖Dδ1:G‖22 ≥ ‖Wδ0‖22

 G∑
g=1

‖Xgδg‖22

 , δ ∈ A

≥ ‖δ0‖2 inf
u0∈C0∩Sp−1

‖Wu0‖22

 G∑
g=1

‖δg‖2 inf
ug∈Cg∩Sp−1

‖Xgug‖22

(3.18)
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To avoid cluttering, we nameAg = Cg∩Sp−1 the corresponding spherical cap of the error cone.

We want to bound the RHS of (3.18) away from zero, so we call the following event, the bad

event:

E = inf
u0∈A0

‖Wu0‖22

 G∑
g=1

inf
ug∈Ag

‖Xgug‖22

 < nκ0(τ)
G∑
g=1

ngκg(τ). (3.19)

where κg(τ) = 1− cg ω(Ag)√
ng
− Cg τ√

ng
and for enough number of samples κg > 0. Remember

the following result from Lemma 3.3:

inf
δg∈Ag

‖Xgδg‖22 ≥ ngκg(τ), w.p. (1− 2 exp(−γg(ω(Ag) + τ)2) (3.20)

In the following with the help of Lemma 3.3 we upper bound the probability of the bad event

happening using the law of total probability.

P

 inf
u0∈A0

‖Wu0‖22

 G∑
g=1

inf
ug∈Ag

‖Xgug‖22

 < nκ0(τ)
G∑
g=1

ngκg(τ)


≤ P

(
inf

u0∈A0

‖Wu0‖22 < nκ0(τ)

)
+ P

 G∑
g=1

inf
ug∈Ag

‖Xgug‖22 <
G∑
g=1

ngκg(τ)


≤ P

(
inf

u0∈A0

‖Wu0‖22 < nκ0(τ)

)
+ P

 G∑
g=2

inf
ug∈Ag

‖Xgug‖22 <
G∑
g=2

ngκg(τ)


+ P

(
inf

u2∈A2

‖X2u2‖22 < n2κ2(τ)

)
(X0 = W, n0 = n) ≤

G∑
g=0

P
(

inf
ug∈Ag

‖Xgug‖22 < ngκg(τ)

)
(3.20) ≤ Gmax

g∈[G]
P
(

inf
ug∈Ag

‖Xgug‖22 < ngκg(τ)

)
≤ 2G exp(−γ( min

g∈[G]
ω(Ag) + τ)2)

where γ = ming∈[G] γg. Now to remove the multiplicative G in the probability we set τ =

a+
√

logG
γ . This translates to requiring slightly more number samples, because to keep κg > 0

we need ng ≥ (cgω(Ag) + Cga+
√

logG
γ )2.
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3.7.3 Proof of Theorem 3.5

As shown in Lemma 3.4 the assumption of Lemma 3.2 holds with high probability. Therefore

we have the conclusion of the Lemma 3.2 with high probability. More concretely, for the bad

event E of (3.19), when ¬E happens we have:

‖Wδ0 + Dδ1:G‖22 ≥ ε
(
‖Wδ0‖22 + ‖Dδ1:G‖22

)
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So we can write the following bound:

P

 1

n
inf
δ∈H
‖Xδ‖22 ≤ ε

G∑
g=0

ng
n
‖δg‖22κg


= P

‖Wδ0 + Dδ1:G‖22 ≤ ε
G∑
g=0

ng‖δg‖22κg


= P

‖Wδ0 + Dδ1:G‖22 ≤ ε
G∑
g=0

ng‖δg‖22κg
∣∣∣E
P(E)

+ P

‖Wδ0 + Dδ1:G‖22 ≤ ε
G∑
g=0

ng‖δg‖22κg
∣∣∣¬E

P(¬E)

≤ P

ε (‖Wδ0‖22 + ‖Dδ1:G‖22
)
≤ ε

G∑
g=0

ng‖δg‖22κg

+ P(E)

= P

‖Wδ0‖22 +
G∑
g=1

‖Xgδg‖22

 ≤ G∑
g=0

ng‖δg‖22κg

+ P(E)

≤ P

‖δ0‖22 inf
u∈A0

‖Wu0‖22 + ‖δg‖22
G∑
g=1

inf
u∈Ag

‖Xgug‖22

 ≤ G∑
g=0

ng‖δg‖22κg

+ P(E)

≤ P

 G∑
g=0

‖δg‖22 inf
u∈Ag

‖Xgug‖22 ≤
G∑
g=0

ng‖δg‖22κg

+ P(E)

≤ P

 G∑
g=0

1

ng
inf

u∈Ag

‖Xgug‖22 ≤
G∑
g=0

κg

+ P(E)

≤
G∑
g=0

P
(

1

ng
inf

u∈Ag

‖Xgug‖22 ≤ κg(τ)

)
+ P(E)

≤ 2G exp(−γ( min
g∈[G]

ω(Ag) + τ)2) + 2G exp(−γ( min
g∈[G]

ω(Ag) + τ)2)

≤ 4G exp(−γ( min
g∈[G]

ω(Ag) + τ)2)

where γ = ming∈[G] γg and ε ∈ (0, 1]. Like before, to remove the multiplicative G in the

probability we set τ = a+
√

logG
γ . This translates to requiring slightly more number samples,

because to keep κg > 0 we need ng ≥ (cgω(Ag) + Cga+
√

logG
γ )2.
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Therefore we have:

1− 4 exp(−γ( min
g∈[G]

ω(Ag) + τ)2) ≥ P

 1

n
inf
δ∈H
‖Xδ‖22 ≥ ε

G∑
g=0

ng
n
‖δg‖22κg


(κmax = max

g∈[G]
κg) ≥ P

 1

n
inf
δ∈H
‖Xδ‖22 ≥ εκmax

G∑
g=0

ng
n
‖δg‖22


(

√
ng
n
‖δg‖2 ≥

ng
n
‖δg‖22) ≥ P

 1

n
inf
δ∈H
‖Xδ‖22 ≥ εκmax

G∑
g=0

√
ng
n
‖δg‖2


(δ ∈ H) = P

(
1

n
inf
δ∈H
‖Xδ‖22 ≥ εκmax

)

3.7.4 Proof of Lemma 3.8

To avoid cluttering let fg(ωg,Xg) =
√

n
ng
‖ωg‖2 supug∈Ag

〈XT
g

ωg

‖ωg‖2 ,ug〉, hg = ζgkω(Ag) +

ρg
√

logG+ τ , where rg =
√

n
ng

√
(2K2 + 1)ng.

P (fg(ωg,Xg) > hgrg) (3.21)

= P
(
fg(ωg,Xg) > hgrg

∣∣∣√ n

ng
‖ωg‖2 > rg

)
P
(√

n

ng
‖ωg‖2 > rg

)
+ P

(
fg(ωg,Xg) > hgrg

∣∣∣√ n

ng
‖ωg‖2 < rg

)
P
(√

n

ng
‖ωg‖2 < rg

)
≤ P

(√
n

ng
‖ωg‖2 > rg

)
+ P

(
fg(ωg,Xg) > hgrg

∣∣∣√ n

ng
‖ωg‖2 < rg

)
≤ P

(
‖ωg‖2 >

√
(2K2 + 1)ng

)
+ P

(
sup

ug∈Cg∩Sp−1

〈XT
g

ωg
‖ωg‖2

,ug〉 > hg

)

≤ P
(
‖ωg‖2 >

√
(2K2 + 1)ng

)
+ sup

v∈Sp−1

P

(
sup

ug∈Cg∩Sp−1

〈XT
g v,ug〉 > hg

)
We first focus on the first term. Since ωg consists of i.i.d. centered unit-variance sub-Gaussian

elements with |||ωgi|||ψ2
< K, ω2

gi is sub-exponential with |||ωgi|||ψ1
< 2K2. Let’s apply the

Bernstein’s inequality to ‖ωg‖22 =
∑ng

i=1 ω
2
gi:

P
(∣∣‖ωg‖22 − E‖ωg‖22

∣∣ > τ
)
≤ 2 exp

(
−νg min

[
τ2

4K4ng
,
τ

2K2

])
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We also know that E‖ωg‖22 ≤ ng [14] which gives us:

P
(
‖ωg‖2 >

√
ng + τ

)
≤ 2 exp

(
−νg min

[
τ2

4K4ng
,
τ

2K2

])
(3.22)

Finally, we set τ = 2K2ng:

P
(
‖ωg‖2 >

√
(2K2 + 1)ng

)
≤ 2 exp (−νgng) (3.23)

=
2

G
exp (−νgng + logG)

Now we upper bound the second term of (3.21). Given any fixed v ∈ Sp−1, Xgv is a sub-

Gaussian random vector with
∣∣∣∣∣∣XT

g v
∣∣∣∣∣∣
ψ2
≤ Cgk [14]. From [14, Theorem 9] for any v ∈ Sp−1

we have:

P

(
sup

ug∈Ag

〈XT
g v,ug〉 > υgCgkω(Ag) + t

)
≤ λg exp

(
−
(

t

θgCgkφg

)2
)

(3.24)

where φg = supug∈Ag
‖ug‖2 and in our problem φg = 1. We now substitute t = τ +ρg

√
logG

where ρg = θgCgk.

P

(
sup

ug∈Ag

〈XT
g v,ug〉 > υgCgkω(Ag) + ρg

√
logG+ τ

)
≤ λg exp

(
−
(
τ + ρg

√
logG

ρg

)2
)

≤ λg exp

(
− logG−

(
τ

θgCgk

)2
)

≤ λg
G

exp

(
−
(

τ

θgCgk

)2
)

Now let’s:

P
(
fg(ωg,Xg) >

√
n

ng

√
(2K2 + 1)ng

(
υgCgkω(Ag) + ρg

√
logG+ τ

))
≤ σg

G
exp

(
−min

[
νgng − logG,

t2

θ2
gC

2
gk

2

])
≤ σg

G
exp

(
−min

[
νgng − logG,

t2

η2
gk

2

])
where σg = λg + 2, ζg = υgCg, ηg = θgCg.
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3.7.5 Proof of Theorem 3.9

Before taking the expectation we massage the equation as follows:

ωTXδ = 〈WTω, δ0〉+
G∑
g=1

〈XT
g ωg, δg〉

= ‖δ0‖2〈WT ω

‖ω‖2
,
δ0

‖δ0‖2
〉‖ω‖2 +

G∑
g=1

‖δg‖2〈XT
g

ωg
‖ωg‖2

,
δg
‖δg‖2

〉‖ωg‖2

From now on, to avoid cluttering the notation assume W = X0 and ω = ω0:

ωTXδ =

G∑
g=0

√
ng
n
‖δg‖2〈XT

g

ωg
‖ωg‖2

,
δg
‖δg‖2

〉
√

n

ng
‖ωg‖2

Assume ag =
√

ng

n ‖δg‖2 and bg = 〈XT
g

ωg

‖ωg‖2 ,
δg
‖δg‖2 〉

√
n
ng
‖ωg‖2. Then the above term is

the inner product of two vectors a = (a0, . . . , aG) and b = (b0, . . . , bG) for which we have:

sup
a∈H

aTb = sup
‖a‖1=1

aTb

(definition of the dual norm) ≤ ‖b‖∞

= max
g∈[G]

bg

Now we can go back to the original form:

sup
δ∈H

ωTXδ ≤ max
g∈[G]
〈XT

g

ωg
‖ωg‖2

,
δg
‖δg‖2

〉
√

n

ng
‖ωg‖2

≤ max
g∈[G]

√
n

ng
‖ωg‖2 sup

ug∈Cg∩Sp−1

〈XT
g

ωg
‖ωg‖2

,ug〉 (3.25)

To avoid cluttering we name fg(ωg,Xg) =
√

n
ng
‖ωg‖2 supug∈Ag

〈XT
g

ωg

‖ωg‖2 ,ug〉 and eg(τ) =√
n
ng

√
(2K2 + 1)ng

(
υgCgkω(Ag) + ρg

√
logG+ τ

)
. Then from (3.25), we have:

P
(

sup
δ∈H

ωTXδ > max
g∈[G]

eg(τ)

)
≤ P

(
max
g∈[G]

fg(ωg,Xg) > max
g∈[G]

eg(τ)

)
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To simplify the notation, we drop arguments of fg for now. From the union bound we have:

P
(

max
g∈[G]

fg > max
g∈[G]

eg(τ)

)
≤

G∑
g=0

P
(
fg > max

g∈[G]
eg(τ)

)

≤
G∑
g=0

P (fg > eg(τ))

≤ Gmax
g∈[G]

P (fg > eg(τ))

≤ σ exp

(
− min
g∈[G]

[
νgng − logG,

τ2

η2
gk

2

])
where σ = maxg∈[G] σg.

3.7.6 Proof of Theorem 3.17

First of all, a quick note regarding the coefficients. If we assume that all of the coefficients

defined in Definition 3.15 are positive, we can reduce the constraint set of each definition to the

spherical cap Ag = Cg ∩ Sp−1:

ρg(µg) = max

(
0, sup

u,v∈Ag

vT
(
Ig − µgXT

gXg

)
u

)
, g ∈ [G]

ξg(µg) = max

(
0, µg sup

v∈Ag

vTXT
g

wg

‖wg‖2

)
, g ∈ [G]

ηg(µg) = max

(
0, µg sup

v∈Ag ,u∈A0

−vTXT
gXgu

)
, g ∈ [G]\

So keeping in mind that none of the ρg(µg), ξg(µg), and ηg(µg) can be negative we work with

the latter forms, i.e., where the restricted sets are spherical caps Ags.

We can break down the error at iteration t + 1 to its components because of the triangle

inequality at = ‖δ(t+1)‖2 ≤
∑G

g=0 ‖δ
(t+1)
g ‖2 = bt. We analyze the convergence properties of

the bt series and the results holds automatically for at, since at ≤ bt. Next we upper bound the
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private error ‖δ(t+1)
g ‖2 and shared one ‖δ(t+1)

0 ‖2 in the followings.

‖δ(t+1)
g ‖2 = ‖β(t+1)

g − β∗g‖2

=

∥∥∥∥ΠΩRg

(
βtg + µgX

T
g

(
yg −Xg

(
βt0 + βtg

)))
− β∗g

∥∥∥∥
2

=

∥∥∥∥ΠΩRg−{β∗g}

(
βtg + µgX

T
g

(
yg −Xg

(
βt0 + βtg

))
− β∗g

)∥∥∥∥
2

=

∥∥∥∥ΠEg

(
δtg + µgX

T
g

(
yg −Xg

(
βt0 + βtg

)
−Xg

(
β∗0 + β∗g

)
+ Xg

(
β∗0 + β∗g

)))∥∥∥∥
2

=

∥∥∥∥ΠEg

(
δtg + µgX

T
g

(
wg −Xg

(
δt0 + δtg

)))∥∥∥∥
2

≤
∥∥∥∥ΠCg

(
δtg + µgX

T
g

(
wg −Xg

(
δt0 + δtg

)))∥∥∥∥
2

≤ sup
v∈Cg∩Bp

vT
(
δtg + µgX

T
g

(
wg −Xg

(
δt0 + δtg

)))
= sup

v∈Bg
vT
(
δtg + µgX

T
g

(
wg −Xg

(
δt0 + δtg

)))
, Bg = Cg ∩ Bp

≤ sup
v∈Bg

vT
(
Ig − µgXT

gXg

)
δtg + µg sup

v∈Bg
vTXT

gwg + µg sup
v∈Bg

−vTXT
gXgδ

t
0

≤
∥∥δtg∥∥2

sup
u,v∈Bg

vT
(
Ig − µgXT

gXg

)
u + µg‖wg‖2 sup

v∈Bg
vTXT

g

wg

‖wg‖2
+ µg‖δt0‖2 sup

v∈Bg ,u∈B0
−vTXT

gXgu

= ρg(µg)‖δtg‖2 + ξg(µg)‖wg‖2 + ηg(µg)‖δt0‖2 (3.26)

We define the following matrix:

D̃ =


µ1X1 0 · · · 0

0 µ2X2 · · · 0
...

. . . · · ·
...

0 · · · · · · µGXG

 ∈ Rn×Gp
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Then for the shared parameter have:

‖δ(t+1)
0 ‖2 = ‖β(t+1)

0 − β∗0‖2

=

∥∥∥∥ΠΩR0

(
βt0 + µ0W

T
(
y −Wβt0 − D̃βt1:g

))
− β∗0

∥∥∥∥
2

=

∥∥∥∥ΠΩR0
−{β∗0}

(
βt0 + µ0W

T
(
y −Wβt0 − D̃βt1:g

)
− β∗0

)∥∥∥∥
2

=

∥∥∥∥ΠE0

(
δt0 + µ0W

T
(
y −Wβt0 − D̃βt1:g −Wβ∗0 − D̃β∗1:g + Wβ∗0 + D̃β∗1:g

))∥∥∥∥
2

=

∥∥∥∥ΠE0

(
δt0 + µ0W

T
(
w −W

(
βt0 − β∗0

)
− D̃

(
βt1:g − β∗1:g

)))∥∥∥∥
2

=

∥∥∥∥ΠE0

(
δt0 + µ0W

T
(
w −Wδt0 − D̃δt1:g

)))∥∥∥∥
2

≤
∥∥∥∥ΠC0

(
δt0 + µ0W

T
(
w −Wδt0 − D̃δt1:g

)))∥∥∥∥
2

≤ sup
v∈C0∩Bp

vT
(
δt0 + µ0W

T
(
w −Wδt0 − D̃δt1:g

)))
= sup

v∈B0
vT
(
δt0 + µ0W

T
(
w −Wδt0 − D̃δt1:g

)))
, B0 = C0 ∩ Bp

≤ sup
v∈B0

vT
(
I− µ0W

TW
)
δt0 + µ0 sup

v∈B0
vTWTw + µ0 sup

v∈B0
−vTWT D̃δt1:g

≤ sup
v∈B0

vT
(
I− µ0W

TW
)
δt0 + µ0 sup

v∈B0
vTWTw − µ0 inf

v∈B0
vT

G∑
g=1

µgX
T
gXgδ

t
g

≤ ‖δt0‖2 sup
u,v∈B0

vT
(
I− µ0W

TW
)
u + µ0‖w‖2 sup

v∈B0
vTWT w

‖w‖2

+ µ0 sup
v∈B0

−vT
G∑
g=1

µgX
T
gXgδ

t
g

= ρ0(µ0)‖δt0‖2 + ξ0(µ0)‖w‖2 + µ0 sup
v∈B0

−vT
G∑
g=1

µgX
T
gXgδ

t
g (3.27)
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Now we focus on the third term of (3.27):

µ0 sup
v∈A0

G∑
g=1

−µgvTXT
gXgδ

t
g = µ0 sup

v∈A0

G∑
g=1

−µgvTXT
gXg

δtg
‖δtg‖2

‖δtg‖2

≤ µ0

G∑
g=1

µg sup
vg∈A0

−vTg XT
gXg

δtg
‖δtg‖2

‖δtg‖2

≤ µ0

G∑
g=1

µg sup
vg∈A0,ug∈Ag

−vTg XT
gXgug‖δtg‖2

= µ0

G∑
g=1

ηg(µg)‖δtg‖2

So we rewrite the (3.27) as:

‖δ(t+1)
0 ‖2 ≤ ρ0(µ0)‖δt0‖2 + ξ0(µ0)‖w‖2 + µ0

G∑
g=1

ηg(µg)‖δtg‖2

To avoid cluttering we drop µg as the arguments. Putting together (3.26) and (3.28) inequalities

we reach to the followings:

‖δ(t+1)
g ‖2 ≤ ρg‖δtg‖2 + ξg‖wg‖2 + ηg‖δt0‖2

‖δ(t+1)
0 ‖2 ≤ ρ0‖δt0‖2 + ξ0‖w‖2 + µ0

G∑
g=1

ηg‖δtg‖2

Also for simplicity of the notation let w0 = w. Now we write the total error:

bt =

G∑
g=0

‖δt+1
g ‖2

≤

ρ0 +

G∑
g=1

ηg

 ‖δt0‖2 +

G∑
g=1

(ρg + µ0ηg) ‖δtg‖2 +

G∑
g=0

ξg‖wg‖2
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Let’s name α = max
(

maxg∈[G]\(ρg + µ0ηg), ρ0 +
∑G

g=1 ηg

)
, we have:

bt ≤ αbt−1 +
G∑
g=0

ξg‖wg‖2

≤ α2bt−1 + (α+ 1)
G∑
g=0

ξg‖wg‖2

≤ αtb1 +

(
t−1∑
i=0

αi

)
G∑
g=0

ξg‖wg‖2

= αt
G∑
g=0

‖β1
g − β∗g‖2 +

(
t−1∑
i=0

αi

)
G∑
g=0

ξg‖wg‖2, β1 = 0

≤ αt
G∑
g=0

‖β∗g‖2 +
1− αt

1− α

G∑
g=0

ξg‖wg‖2

3.7.7 Proof of Lemma 3.18

First we upper bound each of the coefficients:

ρg(µg) = sup
u,v∈Bg

vT
(
Ig − µgXT

gXg

)
u, g ∈ [G]

≤ 1− µg inf
u∈Bg

‖Xgu‖22

≤ 1− µg inf
u∈Ag

‖Xgu‖22, Ag = Cg ∩ Sp−1

= 1− µgd(Xg)

ηg(µg) = µg sup
v∈Bg ,u∈B0

−vTXT
gXgu

≤ µg
2

sup
v∈Ag ,u∈A0

‖Xgv‖22 + ‖Xgu‖22

≤ µg
2

(
sup
v∈Ag

‖Xgv‖22 + sup
u∈A0

‖Xgu‖22

)
= µgs(Xg)

ξg(µg) = µg sup
v∈Ag

vTXT
g

wg

‖wg‖2
, g ∈ [G]
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where s(Xg) = 1
2

(
supv∈Ag

‖Xgv‖22 + supu∈A0
‖Xgu‖22

)
≥ 0 and d(Xg) = infu∈Ag ‖Xgu‖22.

Note that d(Xg) > 0 with high probability of 1 − 2 exp
(
−γg(ω(Ag) + τ)2

)
for enough per

group number of samples, i.e., ng > (cgω(Ag) + Cgτ)2.

Now writing the tail bound for each of the coefficients, starting with ρg(µg):

P(ρg(µg) ≥ 1− µgdg) ≤ P(1− µgd(Xg) ≥ 1− µgdg)

≤ P(d(Xg) ≤ dg)

Lemma 3.3 ≤ 2 exp
(
−γg(ω(Ag) + τ)2

)
For upper bound for ηg(µg) we use the law of total probability. To avoid cluttering we name

sg = ng + cg
√
ng max(ω(A0), ω(Ag)) + Cg

√
ngτ , s̃g = ng + cg

√
ngω(Ag) + Cg

√
ngτ and

s̃0 = ng + cg
√
ngω(A0) + Cg

√
ngτ .

P(ηg(µg) > µgsg) ≤ P(µgs(Xg) > µgsg)

= P(s(Xg) > sg)

≤ P(2s(Xg) > s̃0 + s̃g)

= P

(
2s(Xg) > s̃0 + s̃g

∣∣∣ sup
u∈Ag

‖Xgu‖22 > s̃g, sup
u∈A0

‖Xgu‖22 > s̃0

)
P( sup

u∈Ag

‖Xgu‖22 > s̃g
∣∣ sup
u∈A0

‖Xgu‖22 > s̃0)P( sup
u∈A0

‖Xgu‖22 > s̃0)

+ P

(
2s(Xg) > s̃0 + s̃g

∣∣∣ sup
u∈Ag

‖Xgu‖22 > s̃g, sup
u∈A0

‖Xgu‖22 < s̃0

)
P( sup

u∈A0

‖Xgu‖22 < s̃0

∣∣ sup
u∈Ag

‖Xgu‖22 > s̃g)P( sup
u∈Ag

‖Xgu‖22 > s̃g)

+ P

(
2s(Xg) > s̃0 + s̃g

∣∣∣ sup
u∈Ag

‖Xgu‖22 < s̃g, sup
u∈A0

‖Xgu‖22 > s̃0

)
P( sup

u∈Ag

‖Xgu‖22 < s̃g| sup
u∈A0

‖Xgu‖22 > s̃0)P( sup
u∈A0

‖Xgu‖22 > s̃0)

≤ 2P( sup
u∈A0

‖Xgu‖22 > s̃0) + P( sup
u∈Ag

‖Xgu‖22 > s̃g)

Lemma 3.3 ≤ 4 exp
(
−γ0(ω(A0) + τ)2

)
+ 2 exp

(
−γg(ω(Ag) + τ)2

)
≤ 4 exp

(
−γ (min(ω(A0), ω(Ag)) + τ)2

)
where γ = minγg∈[G] γg.
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From the above proof, following two inequalities will be used in future, so we separate them

here:

P(s(Xg) > sg) ≤ 4 exp
(
−γ (min(ω(A0), ω(Ag)) + τ)2

)
(3.28)

P(d(Xg) < dg) ≤ 2 exp
(
−γg(ω(Ag) + τ)2

)
(3.29)

3.7.8 Proof of Theorem 3.19

Throughout the proof, we assume ∀g ∈ [G] : dg > 0 which happens if we have enough number

of samples ng (to be determined in the proof). We show that the sufficient condition for keeping

α < 1 holds with high probability, i.e., with probability at least 1−10 exp
(
−γ
(
ming∈[G] ω(Ag) + a

)2):ρ0 +

G∑
g=1

ηg

 < 1

∀g ∈ [G]\ : (ρg + µ0ηg) < 1

Now we want to show that (3.11) condition holds with high probability. Let’s simplify the

condition of (3.11):

ρ0 +
G∑
g=1

ηg ≤1− µ0d(X0) +
G∑
g=1

µgs(Xg)

⇒1− µ0d(X0) +

G∑
g=1

µgs(Xg)< 1

⇒
G∑
g=1

µgs(Xg) < µ0d(X0)

We write the undesirable event probability and replace the µg with its Lemma’s upper bound:

P(

G∑
g=1

µgs(Xg) > µ0d(X0)) ≤ P(

G∑
g=1

µ0d0

Gsg
s(Xg) > µ0d(X0))

≤ P(d0

G∑
g=1

s(Xg)

sg
> Gd(X0))
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Now we write the law of total probability:

P

d0

G∑
g=1

s(Xg)

sg
> Gd(X0)


= P

d0

G∑
g=1

s(Xg)

sg
> Gd(X0)

∣∣∣d0 < d(X0)

P(d0 < d(X0))

+ P

d0

G∑
g=1

s(Xg)

sg
> Gd(X0)

∣∣∣d0 > d(X0)

P(d0 > d(X0))

≤ P

d0

G∑
g=1

s(Xg)

sg
> Gd(X0)

∣∣∣d0 < d(X0)

+ P(d0 > d(X0))

≤ P

 G∑
g=1

s(Xg)

sg
> G

+ P(d0 > d(X0))

= P

s(X1)

s1
+

G−1∑
g=1

s(Xg)

sg
> G

∣∣∣s(X1) > s1

P(s(X1) > s1)

+ P

s(X1)

s1
+
G−1∑
g=1

s(Xg)

sg
> G

∣∣∣s(X1) < s1

P(s(X1) < s1) + P(d0 > d(X0))

≤ P

 G∑
g=2

s(Xg)

sg
> G− 1

+ P(s(X1) > s1) + P(d0 > d(X0))

recurse ≤ P
(
s(XG)

sG
> 1

)
+
G−1∑
g=1

P(s(Xg) > sg) + P(d0 > d(X0))

≤
G∑
g=1

P(s(Xg) > sg) + P(d0 > d(X0))

≤ 2G max
g∈[G]\

P(s(Xg) > sg) + P(d0 > d(X0))

≤ 8G exp

(
−γ min

g∈[G]
(min(ω(A0), ω(Ag)) + τ)2

)
+ P(d0 > d(X0))

≤ 8G exp

(
−γ
(

min
g∈[G]

ω(Ag) + τ

)2
)

+ 2 exp
(
−γg(ω(Ag) + τ)2

)
≤ 10G exp

(
−γ
(

min
g∈[G]

ω(Ag) + τ

)2
)

(
τ = a+

√
logG

γ

)
≤ 10 exp

(
−γ
(

min
g∈[G]

ω(Ag) + a

)2
)

(3.30)
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Note that (3.30) suggests ng ≥ (ω(Ag) + Cg

√
logG
γ + Cga)2.

Similarly, let’s simplify the condition of (3.12):

ρg + µ0ηg ≤ 1− µgd(Xg) + µ0µgs(Xg)

⇒1− µgd(Xg) + µ0µgs(Xg)< 1

⇒µ0µgs(Xg) < µgd(Xg)

⇒µ0s(Xg) < d(Xg)

Writing the law of total probability for the event that we do not desire:

P(µ0s(Xg) > d(Xg)) = P(µ0s(Xg) > d(Xg)|d(Xg) > dg)P(d(Xg) > dg)

+ P(µ0s(Xg) > d(Xg)|d(Xg) < dg)P(d(Xg) < dg)

≤ P(µ0s(Xg) > dg) + P(d(Xg) < dg)

= P(

(
max
i∈[G]\

di
si

)
sg
dg
s(Xg) > sg) + P(d(Xg) < dg)

≤ P(s(Xg) > sg) + P(d(Xg) < dg)

(3.28), (3.29) ≤ 4 exp
(
−γ (min(ω(A0), ω(Ag)) + τ)2

)
+ 2 exp

(
−γg(ω(Ag) + τ)2

)
≤ 6 exp

(
−γ (min(ω(A0), ω(Ag)) + τ)2

)
≤ 6 exp

(
−γ
(

min
g∈[G]

ω(Ag) + τ

)2
)

(
τ = a+

√
logG

γ

)
≤ 6 exp

(
−γ
(

min
g∈[G]

ω2(Ag) + a2

))
Finally, we want to bound the ξg(µg)‖wg‖2 = µg‖wg‖2 supv∈Ag

vTXT
g

wg

‖wg‖2 . We can readily

use Lemma 3.8 to get the following bound:

P
(
ξg(µg)‖wg‖2 >

√
(2K2 + 1)ng

(
ζgkω(Ag) + ρg

√
logG+ τ

))
≤ σg

G
exp

(
−min

[
νgng − logG,

t2

η2
gk

2

])
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So with probability 1− σg exp
(
−min

[
νgng − logG, t2

η2gk
2

])
we have:

G∑
g=1

ξg(µg)‖wg‖2 ≤
√

(2K2 + 1)

G∑
g=1

µg
√
ng

(
ζgkω(Ag) + ρg

√
logG+ τ

)
(µg ≤

1

G
) ≤

√
(2K2 + 1)n

(
ζk max

g∈[G]
ω(Ag) + ρ

√
logG+ τ

)



Chapter 4

Structured Regression with Noisy
Covariates

Error in features is known with different names in the literature such as measurement error,

errors-in-variables, or noisy covariates, and has applications in various areas of science and

engineering [76, 29, 50]. The importance of measurement error models is amplified in the

era of big data, since large scale and high dimensional data are more prone to noise [22, 50].

In high dimensional setting where p � n the classical assumptions required for treatment

of measurement error break down [76, 29] and new estimators and methods are required to

consistently estimate β∗. Such challenges have revived measurement error research and several

papers have addressed high dimensional issues of those models in recent years [51, 49, 22, 50,

52].

Many recent papers have reported unstable behavior of standard sparse estimators like

LASSO [9] and Dantzig selector (DS) [11] under measurement error. These observations, led to

suggestion of new estimators [51, 49, 22, 50, 52] for which some knowledge of noise wi, and/or

β∗ are required for consistent estimation. None of the existing estimators is able to consistently

estimate parameters from noisy measurements without noise information, but there is still no

theoretical result to show inachievability.

Here, we consider regularized (LASSO type) estimators with general norms R(·), when the

design matrix X, with xi as its rows, is corrupted by additive independent sub-Gaussian noise

matrix W (precise definition of sub-Gaussian random variable follows). Therefore, the additive

55
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noise model in matrix form becomes:

Z = X + W, Z,X,W ∈ Rn×p (4.1)

y = Xβ∗ + ε, y,β, ε ∈ Rp,

where matrix Z is the noisy observation (design) matrix with zis as its rows which follow

additive noise model of (1.6) and y is generated from linear model of (1.5). Our regularized

estimator takes the form:

β̂ = argmin
β∈C

L(Z,y,β) + λR(β), (4.2)

where L is a loss function, C ⊆ Rp and R(·) is a general norm used for regularization and

induces some structure (like sparsity) over the unknown parameter β∗ .

To the best of our knowledge none of the previous work in high dimensional measure-

ment error literature (see Section 2.2 on the related work) has considered structures other than

sparsity, i.e. R(β∗) = ‖β∗‖1. However, other structures of β∗ are of interest in different ap-

plications [48, 14, 42, 12]. These structures are formalized as having a small value for R(β∗)

where R is a suitable norm.

In this chapter, we first study the properties of the estimator (4.2) where no knowledge of the

noise W is available. This is in the sharp contrast to the recent literature [49, 22, 50] where the

noise covariance Σw = E[WTW] ∈ Rp×p or an estimate of it, is required as a part of estimator.

[22] uses a maximum likelihood estimator, which always requires estimation of Σw in order to

establish restricted eigenvalue conditions [69, 47, 53] on the estimated sample covariance Σx.

[49] used orthogonal matching pursuit to recover the support of β∗ without any knowledge of

Σw, but it can not establish l2 consistency without estimating Σw directly. Our analysis of

estimator (4.2) when Σw is unknown characterizes the upper bound on ‖δ‖2 ≤ g(n) + c(Σw),

where g(n) decays by the rate of O(1/
√
n) but the constant c(Σw), is not vanishing. Thus,

the upper bound on the statistical error does not decay to zero, but remains bounded within a

norm ball. Second, we prove that when Σw is available, the regularized estimators like (4.2) are

consistent which generalizes the recent work of [22] for the case of R(·) = ‖ · ‖1.

The rest of the chapter is organized as follows. First, in Section 4.1 we formulate the struc-

tured estimation problem under noisy designs assumption using regularized optimization and

establish non-asymptotic bounds on the error for sub-Gaussian designs and sub-Gaussian noise.
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In Section 4.2, we prove consistency of estimators when an estimate Σ̂w of noise covariance is

known. We present supportive numerical simulation results in Section 4.3.

4.1 Statistical Properties

We consider the linear model, where covariates are corrupted by additive noise yi = 〈xi,β∗〉+
εi, zi = xi + wi, where xi ∼ Subg(0,Σx,Kx), εi ∼ Subg(0, σε,Kε) are i.i.d and also

independent from one another. Error vector wi ∼ Subg(0,Σw,Kw) is independent from both

xi and εi. Since wi and xi are independent, we have Σz = Σx +Σw and zi ∼ Subg(0,Σz,Kz)

for Kz ≤ c1Kx + c2Kw. In matrix notation, given samples {(xi, yi)}ni=1, we obtain

y = Xβ∗ + ε, Z = X + W . (4.3)

The regularized family of estimators in high dimensions is generally characterized as

β̂r = argmin
β

1

2n
‖y − Zβ‖22 + λrR(β), (4.4)

where λr > 0.

In noiseless scenario, i.e. Z = X, (4.4) is called RegularizedM -estimators (RME) [14, 12].

R encodes the structure of β∗. For example, if β∗ is sparse, i.e. has many zeros, R(β) = ‖β‖1
and RME (4.4) corresponds to the LASSO problem [9]. When Z = X, statistical consistency

of RME has been shown for general norms [14].

For noiseless designs, considerable progress has been made in recent years in the analysis

of non-asymptotic estimation error ‖δ‖2 = ‖β̂ − β∗‖2 [14, 77, 57, 12, 78]. In this paper,

we follow the established analysis techniques, while discussing some of the subtle differences

in the results obtained due to presence of the noise in covariates. First we discuss the set of

directions which contain the error δ.

Lemma 4.1 (Error Set [14]) Choosing λr ≥ αR∗( 1
nZ

T (y−Zβ∗)) for some α > 1, the error

vector δ of RME (4.4) belongs to the restricted error set Er [14]

Er =

{
δ ∈ Rp

∣∣∣R(β∗ + δ) ≤ R(β∗) +
1

α
R(δ)

}
(4.5)

We name the cone of Er as Cr = Cone(Er).

Proof is straightforward and similar to [14], which only depends on the optimality of β̂.

Next, we discuss the Restricted Eigenvalue (RE) condition on the design matrix that almost all

of the high-dimensional consistency analysis relies on [14, 42, 57, 22, 12, 50, 52].
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Definition 4.2 (Restricted Eigenvalue) The design matrix Z ∈ Rn×p satisfies the restricted

eigenvalue condition on the spherical cap A ⊂ Sp−1, where Sp−1 is the unit l2 sphere, if
1√
n

infv∈A ‖Xv‖2 ≥ κ > 0 or in other words, for γ =
√
nκ:

inf
v∈A
‖Xv‖2 ≥ γ > 0 . (4.6)

Intuitively RE condition means that although for p� n the matrixX is not positive definite

and the corresponding quadratic form is not strongly convex but in the certain desirable direc-

tions represented by A, ||Xv‖22 is strongly convex. In RME these are error vector δ directions

formulated as Ar = Cr ∩ Sp−1.

For the noiseless case Z = X when xi are Gaussian or sub-Gaussian RE condition is satis-

fied with high probability after a certain sample size n > n0 is reached, where n0 determines the

sample complexity [14, 12]. Interestingly, recent work has shown that the sample complexity is

the square of the Gaussian width of A, n0 = O(ω2(A)) [14].

Theorem 4.3 (Deterministic Error Bound [14, 57]) Assume λr ≥ αR∗( 1
nZ

T (y − Zβ∗)) for

some α > 1 and sample size n > n0 such that RE condition (4.6) holds over the error directions

Ar = Cr ∩ Sp−1, then following deterministic bound holds for RME:

‖δr‖2 ≤
α+ 1

α

λr
κ

Ψ(Cr) , (4.7)

where Ψ(C) = supu∈C
R(u)
‖u‖2 is the restricted norm compatibility constant.

Next, we analyze the additive noise case, by (i) obtaining suitable bounds for λ, which sets

the scaling of the error bound, and (ii) the sample complexity n0 for which the RE condition is

satisfied with high-probability even with a noisy design Z. Without loss of generality, we will

assume ‖β∗‖2 = 1 for the analysis, noting that the general case follows by a direct scaling of

the analysis presented.

4.1.1 Restricted Eigenvalue Condition

For linear models with the square loss function, RE condition is satisfied if (4.6) holds, where

A ⊆ Sp−1 is a restricted set of directions. Recent literature [14, 42, 12] has proved that the RE

condition holds for both Gaussian and sub-Gaussian design matrices. In the following theorem

we show that RE condition holds for additive noise in measurement with high probability:
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Theorem 4.4 For the design matrix of the additive noise in measurement Z = X+W where in-

dependent rows of X and W are drawn from xi ∼ Subg(0,Σx,Kx), and wi ∼ Subg(0,Σw,Kw),

for absolute constants η, c > 0, with probability at least (1− 2 exp(−ηω2(A))), we have:

inf
v∈A

1

n
‖Zv‖22 ≥ λmin(Σx + Σw|A)

(
1− cω(A)√

n

)
, (4.8)

where A ⊆ Sp−1.

Proof: Note that Z = X + W and since rows of X and W are centered independent and sub-

Gaussian, as mentioned in Section 4.1 rows of Z are also sub-Gaussian following distribution

zi ∼ Subg(0,Σx + Σw, cKx +CKw). Now we apply Theorem 10 of [14] for RE condition of

independent anisotropic sub-Gaussian designs and result follows.

In the noisy design problem, our quantity of interest is the Gaussian width ω(Ar). For

example, l1 norm in LASSO is a simple special case of this model where β∗ is s-sparse and

we obtain ω(A) ≤
√
s log p [14, 42]. Further, Group-LASSO is the generalization of LASSO

to group-sparse norms, where one considers that the dimensions 1, . . . , p are grouped into nG
disjoint groups each of size at most mG, and β∗ consists of sG groups. In this scenario, one

obtains ω(A) ≤ √mG +
√
sG log nG [56, 79]. The k-support norm was introduced in [48]

and [57] provided recovery guarantees for k-support norm for linear models. It was shown

in [57] that the Gaussian width of the unit ball of the k-support norm is bounded as ω(Ω‖·‖spk
) ≤(√

2k log
(pe
k

)
+
√
k
)

. For related results we refer the readers to [80].

4.1.2 Regularization Parameter

The statistical analysis of RME requires λ ≥ αR∗( 1
nZ

T (y−Zβ∗)). For the noiseless case, we

note that y−Zβ∗ = y−Xβ∗ = ε, the noise vector, so thatR∗( 1
nZ

T (y−Zβ∗)) = R∗( 1
nX

T ε).

Using the fact that X and ε are sub-Gaussian and independent, recent work has shown that

E[R∗( 1
nX

T ε)] ≤ c√
n
ω(ΩR), where ΩR = {u ∈ Rp|R(u) ≤ 1}. For l1 norm, i.e., LASSO,

ΩR is the unit l1 ball, and ω(ΩR) ≤ c2
√

log p. Here we have the following bound on λ:

Theorem 4.5 Assume that X and W are matrices with iid rows drawn from zero mean sub-

Gaussian distributions. Then,

E
[
R∗
(

1

n
ZT (y − Zβ∗)

)]
≤ νR(β∗) +

Cω(ΩR)√
n

, (4.9)



60

where ν = supu∈ΩR
‖Σ1/2

w u‖22, and C > 0 is a constant dependent on the sub-Gaussian norms

of the X and W.

Remark 4.6 For the intuitive interpretation of (4.31), note that when the number of samples n

increases sample covariance converges as 1
nW

TW→ Σw = I , therefore E
[
R∗
(

1
nW

TWβ∗
)]

=

R∗ (β∗) which is not decaying by number of samples. Moreover, R∗ (β∗) = supu6=0
〈β∗,u〉
R(u) =

R(β∗) supu6=0
〈β∗/R(β∗),u〉

R(u) = R(β∗) supu∈ΩR
‖u‖22 which is exactly RHS when n→∞.

Remark 4.7 Theorem 4.5 illustrates that λ does not decay to 0 with increasing sample size, but

approaches the operator norm of the covariance matrix Σw. Particularly, when the noise W is

i.i.d. with variance σ2
w, the error is bounded above by σ2

w.

Remark 4.8 The main consequence of Theorem 4.5 is to illustrate that the existing technique

for proving consistency for the statistical error ‖δ‖2 of the noiseless estimator fails for RME.

We note that in (4.7), when n > n0, κ is a positive quantity that approaches the minimum

eigenvalue of Σx + Σw with increasing sample size. Therefore, the scaling of λ determines the

error bounds. Theorem 4.5 proves that the error bound can be as small as the variance of the

noise. When W = 0, consistency rates are exactly the same as the noiseless case [14].

4.2 Consistency With Noise Covariance Estimates

Theorem 4.5 shows that with no informations about the noise, current analyses can not guaran-

tee statistical consistency for noisy covariates model. At the same time, appearance of Σw in

the upper bound of (4.9), suggests the use of noise covariance estimate to make the estimators

consistent. Motivated by this observation and recent line of work [22, 81], we focused on sce-

narios in which an estimate of the noise covariance matrix Σ̂w is available, e.g., from repeated

measurements Z for the same design matrix X, or from independent samples of W. We follow

[22] and assume that independent observation from zero mean noise matrix W is possible, from

which we estimate the sample covariance as Σ̂w = 1
nW

T
0 W0. Having Σ̂w in hand we modify

RME in the following way. Consider the matrix Γ̂ = 1
nZ

TZ− Σ̂w where Σ̂w compensates the

effect of noise W, then:

Noisy RME: β̂r = argmin
R(β)≤b

βT Γ̂β − βT 1

n
ZTy + λR(β) , (4.10)



61

Program (4.10) can be non-convex, because Γ̂ = 1
nZ

TZ − Σ̂w may be indefinite. In such

a situation the objective is unbounded below. So we need to impose further constraint of the

form R(β) ≤ b where for the feasibility of β∗ we set b = R(β∗). Our consistency guarantee

considers the global solution β̂r of the non-convex problem (4.10). The relation between global

and local solutions has been investigated in [22] for the special case of l1 norm, and for general

norms we leave it for the future work. Note that (4.10) “extends” estimator of [22] for any norm,

i.e., for R(·) = ‖ · ‖1, (4.10) reduces to the objective of [22].

To show the statistical consistency of β̂ of noisy RME (NRME), similar to the noiseless

case, we need three ingredients, i.e., restricted error set, bound on regularization parameter, and

RE condition. The restricted error set of NRME is determined by feasibility of β̂ as follows:

Ew =
{
δ ∈ Rp

∣∣∣R(β∗ + δ) ≤ R(β∗)
}

(4.11)

Note that the restricted error set of the noisy case is a subset of that of noiseless case, i.e.,

Ew ⊆ Er. Following lemmas shows bounds on λ and RE condition for NRME.

Lemma 4.9 (Bound on λ for NRME) With probability 1− c1 exp {−min(c2τ
2, c3n)}:

R∗
(

1

n
ZTy − Γ̂β∗

)
≤ cω(ΩR) + Cτ√

n
. (4.12)

Lemma 4.10 (RE condition for NRME) For matrix Γ̂ = 1
nZ

TZ− Σ̂w in the NRME objective

with Z = X+W where independent rows of X and W are drawn from xi ∼ Subg(0,Σx,Kx),

and wi ∼ Subg(0,Σw,Kw), and Σ̂w = 1
nW

T
0 W0, for absolute constants η, ci > 0, with

probability at least (1− 2 exp(−ηω2(Aw))), we have:

inf
v∈Aw

vT Γ̂v (4.13)

≥ λmin(Σx|Aw)

(
1− c1

ω(Aw)√
n

)
− c2(λmin(Σw|Aw) + λmax(Σw|Aw))

ω(Aw)√
n

,

where Aw ⊆ Cone(Ew) ∩ Sp−1.

Note that if we set Σw = 0 in (4.13) we get the established RE condition of the noiseless

case [14].
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(b) Noisy RME

Figure 4.1: l2 error vs. number of samples n.
Corollary 4.11 When number of samples n passes n0 = O(ω2(Aw)), the objective of NRME

(4.10) becomes strongly convex in the direction of restricted error set Ew.

The following theorem shows that NRME (4.10) consistently estimates β∗.

Theorem 4.12 For the design matrix of the additive noise in measurement Z = X + W

where independent rows of X and W are drawn from xi ∼ Subg(0,Σx,Kx), and wi ∼
Subg(0,Σw,Kw), and for the noise covariance estimate Σ̂w = 1

nW
T
0 W0 discussed above

we have the following error bound for regularized estimator (4.10):

‖δ‖2 ≤
2cΨ(Cr)

κ

ω(ΩR)√
n

, (4.14)

with probability greater than (1− c3 exp(−c4ω
2(Aw))), where c3, c4 > 0 are constants.

Remark 4.13 Note that when R is the vector l1-norm ω(ΩR) ≤
√
s log p, and we get the rate

of O(
√

s log p
n ) for (4.14) which matches the NCL bound of [22]. Note that the NCL [22] bound

hinges on the decomposability of the l1 norm regularizer. Our analysis for (4.14) does not

assume decomposability, and follow arguments developed in [57].

4.3 Experiments

In this section we provide numerical simulations to confirm our theoretical results of Section

4.1. We focus on sparse recovery using noisy RME, i.e., R(β) = ||β||1 and investigate l2-norm

consistency.
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4.3.1 l2 Error Bound

Experiments with l2 norm consistency involves observing the norm of the error ‖∆‖2 which

theory predicts it should decrease with the rate of 1√
n

and converge to some positive num-

ber depending on Σw. We generate synthetic data from the model of Section 4.1 with β∗ =

(

s/2︷ ︸︸ ︷
−2,−2, . . . ,−2,

s/2︷ ︸︸ ︷
1, 1, . . . , 1,

p−s︷ ︸︸ ︷
0, . . . , 0), xi ∼ N(0, Ip×p), wi ∼ N(0, σ2

wIp×p), and εi ∼
N(0, 0.1) where p = 100, σ2

w ∈ {0, 0.1, 0.3, 0.5, 1} and s = 10. Note that setting σ2
w = 0

results in the standard noiseless linear model. Figure 4.1 shows that ‖β̂r − β‖2 decreases with

increasing number of samples. Each point is an average of 50 runs of the experiment. Clearly,

when we increase the noise variance σ2
w, LASSO is unable to recover the true parameter vector:

with 200 samples in noiseless case error drops to ‖δ‖2 ' 0.08 while with noise of σw = 1 it

stays around 3. Next we use the Noisy RME estimator and depict the same diagram in Figure

4.1b. In all level of noise, ‖δ‖2 error drops with the similar rate and with 200 samples converges

to smaller value than the original estimator.

4.3.2 Noisy RME vs. Stable Feature Selection

Different level of noise in the covariates will effect the features being picked by LASSO. We

perform significance test and show that in the case of noisy covariates it is helpful in recovering

the true support of the parameter vector. The major problem with significance testing is that,

first, one should solve the estimation problem, e.g., LASSO, several times which is not desir-

able. Secondly, if LASSO de-selects a feature in first place there is no chance that permutation
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(b) LASSO followed by permuta-

tion test.
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Figure 4.2: Comparison between stability of LASSO, LASSO + significance test, and NRME.
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test can pick it up. We show that Noisy RME can be a suitable replacement for LASSO followed

by significance testing.

We pick permutation test [82, 83] as our significance testing method. In permutation test

we randomly shuffle the output variables y for v = 1000 times and each time perform the

estimation using LASSO on {(xi, π(yi))}ni=1 where π is the permutation function. Name the

output of LASSO on each permuted data set as β̃ and the output of the LASSO on original

samples as β̂. Then we compute the following probability:

pi =
count(|β̃i| ≥ |β̂i|)

v + 1
(4.15)

For β̂i to be a significance coefficient, pi should be greater than 0.05. We call those β̂is signifi-

cance factors. For this experiment we setβ∗ = (

1−10︷ ︸︸ ︷
−2,−2, . . . ,−2, 0, . . . , 0,

51−60︷ ︸︸ ︷
1, 1, . . . , 1, 0, . . . , 0).

Figure 4.2 show the result of stability experiment. Each row of diagrams represent the

sparsity pattern (i.e., support) of the estimated vector β̂ except the lowest row which represent

the sparsity pattern of true parameter vector β∗. Figure 4.2a illustrates the features picked by

LASSO. As we expect when the noise level increases LASSO starts selecting incorrect support

and missing the correct support. To avoid this we perform permutation test after LASSO and

get the 4.2b which clearly conforms more to the support of β∗. Although permutation test

removes most of the non-support features, at the same time it discards some support feature

for even small amount of noise. In contrast noisy RME of 4.2c consistently selects most part

of support even for σw = 1. As we expect number of nonzero elements (selected features) by

permutation test (101) is less than features selected by LASSO (127), since significance test

only select important subset of picked features. Note that number of features picked by noisy

RME (115) is the closest (on average) to actual number of support (120 = 6× 20).

4.4 Proofs

4.4.1 Proof of Theorem 4.5

Proof: Noting Z = X + W we can see that

ZT (y − Zβ∗) = ZT (y −Xβ∗ −Wβ∗) = ZT ε− ZTWβ∗ . (4.16)
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Note that there is an additional term ZTWβ∗ as a consequence of the noise. Now, by triangle

inequality

R∗(
1

n
ZT (y − Zβ∗)) ≤ R∗( 1

n
ZT ε) +R∗(

1

n
ZTWβ∗) . (4.17)

By existing analysis, we know that E[R∗( 1
nZ

T ε)] ≤ c1√
n
ω(ΩR), along with suitable concentra-

tion around the expectation [14]. Therefore, the new component of the analysis focuses on the

second term R∗( 1
nZ

TWβ∗), which is a consequence of the noise. For simplicity, we consider

the case when X is an isotropic bounded sub-Gaussian vectors such that Σx = Ip×p, with sub-

Gaussian norm K1, and W is composed of independent rows sampled from Subg(0,Σw,Kw).

The following lemma provides a suitable upper bound for the expectation of the second term

R∗( 1
nZ

TWβ∗). Note that lemma can be easily extended to anisotropic bounded sub-Gaussian

X.

Lemma 4.14 Assume that the statistical parameter β∗ has unit L2 norm, and the matrices X

and W consist of isotropic bounded sub-Gaussian entries with sub-Gaussian norm K1. Then,

the following upper bound holds for the expectation.

EX,W

[
R∗
(

1

n
ZTWβ∗

)]
≤ R(β∗)ν +K1c

ω(ΩR)√
n

(4.18)

+R(β∗)
[
η0λmax(Σw)ω(ΩR)√

n

]
(4.19)

where ν = supu∈ΩR
‖Σ1/2

w u‖22 and c, c2 > 0 are constants.

Proof: Note that

E
[
R∗
(

1

n
ZT Wβ∗

)]
≤ E

[
R∗
(

1

n
XTWβ∗

)]
+ E

[
R∗
(

1

n
WTWβ∗

)]
. (4.20)

We upper bound the two terms as follows. First, consider the first term.

EX,W

[
R∗
(

1

n
XTWβ∗

)]
= EW

[
1

n
‖Wβ∗‖2

]
EX

[
R∗
(
XTu

)]
(4.21)

where u = Wβ∗/‖Wβ∗‖2 ∈ Sp−1 is an unit vector and since X and W are independent the

expectation factorizes. Since Wβ∗ and XTu are sub-Gaussian vectors with i.i.d. rows (Wβ∗)i

and (XTu)i, each of which is sub-Gaussian with sub-Gaussian norm smaller thanK1, we have:

EW

[
1

n
‖Wβ∗‖2

]
≤ 1

n
K1

√
n (4.22)

EX

[
R∗
(
XTu

)]
≤ cω(ΩR) , (4.23)
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so that

EX,W

[
R∗
(

1

n
XTWβ∗

)]
≤ K1c

ω(ΩR)√
n

(4.24)

Next, we consider the second term, and note that

EW

[
R∗
(

1

n
WTWβ∗

)]
=

1

n
EW

[
sup
u∈ΩR

〈Wu,Wβ∗〉

]
(4.25)

(a)
=

R(β∗)

n
EW

[
sup
u∈ΩR

〈Wu,Wv〉

]
(4.26)

(b)
≤R(β∗)EW

[
sup
u∈ΩR

1

n
‖Wu‖22

]
(4.27)

(4.28)

where (a) follows from noting that v = β∗/R(β∗) ∈ ΩR, and (b) follows from the inequality

2〈Wu,Wv〉 ≤ ‖Wu‖22 + ‖Wv‖22, and taking supremum over all u ∈ ΩR.

[47] shows that if W consists of i.i.d. sub-Gaussian rows wi ∼ Subg(0,Σw,Kw), then∣∣∣∣ 1n‖Wu‖22 − ‖Σ
1/2
w u‖22

∣∣∣∣ ≤ max(δ, δ2) ∀u ∈ ΩR (4.29)

with probability at least 1 − 2 exp(−η1τ
2), where δ = η0λmax(Σw)ω(ΩR)√

n
+ τ√

n
, and η0, η1 are

constants dependent on Kw. Therefore, we obtain

sup
u∈ΩR

1

n
‖Wu‖22 ≤ ν +

η0λmax(Σw)ω(ΩR)√
n

+
τ√
n
, (4.30)

with probability at least 1− 2 exp(−η1τ
2), where ν = supu∈ΩR

‖Σ1/2
w u‖22.

Therefore,

E
[
R∗
(

1

n
WTWβ∗

)]
≤ R(β∗)

[
ν +

η0λmax(Σw)ω(ΩR)√
n

]
(4.31)

4.4.2 Proof of Lemma 4.9

Proof of this lemma follows the same line of proof of Theorem 4.5, except in this case instead

ofR∗
(

1
nW

TWβ∗
)

we end up withR∗
(

1
nW

TWβ∗ − 1
nW

T
0 W0β

∗) where W and W0 have

same distributions and cancel out each others effects in expectation. Thus the statement follows.
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4.4.3 Proof of Lemma 4.10

Proof: First we right the RE condition as follows:

inf
v∈Aw

vT Γ̂v (4.32)

=
1

n
XTX +

1

n
WTW − Σw + Σw − Σ̂w

=
1

n
XTX +

1

n
WTW − Σw + Σw −

1

n
WT

0 W0

Now we lower bound 1
nX

TX, 1
nW

TW − Σw, and upper bound 1
nW

T
0 W0 − Σw. Note that

rows of both W and W0 are iid sampled from same distribution. Therefore, we need lower and

upper RE condition for 1
nW

TW−Σw. The result can be instantiated from Theorem 12 of [14]

where we have following bounds with probability at least (1− 2 exp(−ηiω2(Aw)))

(4.33)

λmin(Σx|Aw)

(
1− c1

ω(Aw)√
n

)
≤ inf

u∈Aw

1

n
‖Xu‖22

−c2λmin(Σx|Aw)
ω(Aw)√

n
≤ inf

u∈Aw

1

n
WTW − Σw

c2λmax(Σx|Aw)
ω(Aw)√

n
≥ sup

u∈Aw

1

n
WTW − Σw

Putting together the inequities the lemma follows.

4.4.4 Proof of Theorem 4.12

Proof: We start from the optimality of β̂r:

β̂T Γ̂β̂ − β̂T 1

n
ZTy + λR(β̂)

≤ β∗T Γ̂β∗ − β∗T 1

n
ZTy + λR(β∗)

⇒ δT Γ̂δ ≤ δT
( 1

n
ZTy − Γ̂β∗

)
+ λ(R(β∗)−R(β̂))

⇒ δT Γ̂δ ≤ δT
( 1

n
ZTy − Γ̂β∗

)
+ λR(δ)

(4.34)
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Equation (4.33) shows that the LHS is lower bounded, with probability at least (1−2 exp(−η∗ω2(Aw)))

where η∗ > 0 is a constant, by RE condition as 0 ≤ κ‖δ‖22 ≤ δT Γ̂δ, where

κ = λmin(Σx|Aw)

(
1− c1

ω(Aw)√
n

)
− c2(λmin(Σw|Aw) + λmax(Σw|Aw))

ω(Aw)√
n

is a positive constant when n = O(ω2(Aw)). Next, we bound the first term of the RHS,
1
nδ

TZTy using Holder’s inequality:

δT
( 1

n
ZTy − Γ̂β∗

)
≤ R(δ)R∗(

1

n
ZTy − Γ̂β∗)

≤ R(δ)λ

(4.35)

where the last inequality is from the definition of λ. Putting the bound back to the original

inequality (4.34) we get:

‖δ‖22 ≤ 2R(δ)
λ

κ
≤ 2Ψ(Cr)‖δ‖2

λ

κ
, (4.36)

and using Lemma 4.10 completes the proof.



Chapter 5

Weighted Dictionary Learning for
Twitter Sentiment Analysis

Social media have become an important part in the everyday life of millions of people around

the world. Data is being produced by users with tremendous rate which is providing many

scientific disciplines a wealth of data to analyze, with wide variety of applications. Recent

studies [32, 31, 30, 84] empirically have shown the predictive value of social media content in

domains such as marketing, business and politics.

Twitter data presents two fundamental and almost contradictory properties: it is at the same

time overabundant at the global scale but scarce at the individual level. On the one hand, be-

cause of its widespread use and streaming nature, it can be considered as big data with all the

computational constraints that this implies. On the other hand, the 140 characters limit (a max-

imum of about fifty words but only six on average, according to our experiments), severely

restricts the amount of information per tweet, rendering the per-tweet analysis, the main goal of

this paper, very challenging. The information is so scarce that sometimes even a human cannot

analyze tweets accurately without prior information such as information about author. Includ-

ing context knowledge, like geographic location and age may lead to different interpretation of

a tweet.

Although twitter sentiment analysis increasingly gained attentions, there are several issues

that limit its usage in practical applications. In general tweets do not always contain sentiments.

They may contain information, facts or any other kind of objective expressions. Thus, before

69
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any sentiment analysis polar tweets (i.e., those with sentiment) should be separated from neutral

ones. Knowing this fact, twitter analysis literature have moved from just sentiment analysis to

considering neutral tweets in classification [85, 33].

Ignoring the objects, individuals or products that sentiment has been expressed about them

is another major gap between current state of the art approaches and practical applications of

twitter sentiment analysis. Because in practice we are interested in discovering people’s feelings

about a certain product, topic or in general a target [86]. There have been initial work on

target-dependent sentiment analysis [86] which exploits history of users’ tweets to do sentiment

analysis.

Now we can delineate three steps required for sentiment analysis which are detecting tweets

related to target of interest, separating tweets that have feelings and finally distinguishing senti-

ment types. The first step toward realistic sentiment analysis is topic classification, by which we

mean distinguishing the tweets that are related to our topic of interest from unrelated ones [86].

This is a 2-class classification that has strong relation with topic modeling and classification.

Topic modeling/classification are mature techniques when applied to usual texts [87, 88] and re-

cent works have addressed topic modeling for Twitter data [89, 90, 91], but topic classification

for micro-blogs has not been explored yet.

The second step is carried out with the goal of determining which tweets have emotional

content (i.e., if it is subjective and express some kind of sentiment). This is sometimes referred

to as the polar-neutral identification problem [33, 92, 93, 85].

Finally, sentiment analysis is performed only on tweets with emotional content. Many emo-

tional dimensions can be extracted from rich text data such as weblogs, but because of the

meager information contained in single tweets, they are usually classified into two main groups,

according to their emotional energy: negative emotions (e.g., fear, hatred, resentment, anger,

hostility), and positive emotions (e.g., enthusiasm, laughter, empathy, happiness).

Considering sentiment analysis as a three-step process of per-tweet classification is one

approach. The other popular method which attempts to circumvent the scarcity of per-tweet

information, is sentiment analysis for batches of tweets. These batches can be built using dif-

ferent criteria such as spatial (geographical location of senders), temporal (time of postings), or

by history of author’s posts. The common methods for batch analysis are lexicon-based, which

use pre-compiled lists of polar words as indicators of the sentiment type [32, 31, 34, 35]. As
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expected, these approaches perform poorly on a per-tweet basis as later shown in our experi-

ments. Overall, standard text analysis techniques are not suited to work with the limited data

available in single tweets. Moreover, batch analysis methods are not suited for cases in which

the grouping criteria are not trivial to obtain (e.g., when grouping by age, or gender), or are

unknown (then the goal might actually be to find those groups). Finally, there is no criteria

for validating the result of batch sentiment analysis methods in literature other than results that

show obtained sentiments are aligned with world’s events [32, 31].

This work is devoted to analyze the emotional content of single tweets and is, to the best of

our knowledge, the first attempt to address all the aforementioned classification tasks together.

In addition, as a matter of completeness, we supplement our work with results of aggregated

tweets analysis. All tasks have been formulated as 2-class classification problems and several

supervised learning methods have been used to perform classification. Unlike many previous

works that uses sophisticated language features [92, 85, 33] with heavy pre-processing we just

use bag-of-words as the input of classification. We also provide a new method for polar-neutral

identification problem exploiting a fact from experimental psychology [34]. Also we exper-

imentally show that classification can be performed on random reconstructible projection of

high dimensional sparse input data without losing performance accuracy. Finally, we utilized

the available soft labels, provided by aggregation of assigned labels by group of evaluators, and

supplement our work with weighted variant of all presented classification methods.

The rest of this chapter is organized as follows. Labeling, pre-processing and classification

algorithms are discussed in 5.1. In Section 5.2 we present experimental results and detailed

comparisons of several methods.

5.1 The Classification Pipeline

In this section we discuss the whole classification process. We begin by explaining how the data

is labeled for training. Then we comment on the parsing and preprocessing procedures which

output tweets represented by high-dimensional feature vectors using a bag-of-words approach.

Following literature [94, 95] and our preliminary experiment results, support of the bag-of-

words vector is used as input feature vector. High dimension and sparsity of input vector enable

us to use random reconstructible projection, to reduce its dimensionality. Experiments show that

using the resulted vector is proper for classification purposes and also accelerates algorithms by
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reducing the computational complexity of operations.

5.1.1 Labeling the Data

Supervised learning algorithms obviously rely on the availability of labeled data. The use of

specific words to label tweets is common. For example, [31] use the phrase “I feel” to label

tweets as polar (i.e., expressing emotions) and [93] use an emoticon list as indicators for pos-

itive or negative content. Other works [96, 92] gather noisy labels from multiple sources, like

unevaluated sentiment analysis tools, and then incorporate this uncertainty into the classification

algorithm.

In the last few years, crowdsourcing has emerged as a cost-effective way to carry out labor-

intensive tasks, thus becoming popular in the machine learning community [97]. In this work,

the process of data labeling is crowdsourced as part of the Dialogue Earth Project,1 and the

data was kindly provided for the experiments of this report.

Since we are facing a dataset which is growing with the rate of 200 million data point per

day it would be wise to prune it using simple techniques at the first step. The first task in the

hierarchy of aimed tasks is topic classification. So it is reasonable to decrease data size based

on goal of topic classification. Thus, we perform gross filtering on a collection of tweets based

on an extensive list of words associated to the topic of interest and filter out tweets that do

not contain any of indicator words. For example if the target topic is weather, by using a list

of words that relates to weather (like snow, cold, hot etc.) we separate relevant tweets. But

still there are many irrelevant tweets in our dataset which makes the topic classification task a

necessity. We may also miss some topic-related tweets that do not contain any of our compiled

words which is inevitable because of the size of data. In this article, we use databases collected

for weather and gas price topics.

The data is then hand labeled by several trustworthy evaluators (i.e., people that consistently

showed good accuracy during quality control tests) with 4 labels: positive, negative, neutral, and

not related to the target topic. An additional label is reserved for cases in which the evaluator

cannot assign a tweet to any of the aforementioned classes. It must be noted that the quality

control tests ensure that the labels are not too noisy, and when an evaluator cannot label a

tweet, it can be interpreted as if there is no context-independent information in it. It should

be mentioned that having trustworthy evaluators makes our data source different from other
1 www.dialogueearth.org
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crowdsourced data whose annotation quality should be evaluated itself [97]. Thus, disagreement

of evaluators shows the inherent difficulty of the task at hand.

Let C be the set of all classes. For each tweet i, evaluator j choose a label Lij that is a

|C| dimensional vector in which one element is equals 1 and all remaining elements are zero.

By normalizing sum of these vectorial labels for each tweet i we get our soft vector label as

ωi = (
∑m

j=1 Lij)/m where ωi is the |C| dimensional label vector representing the confidence

of each label for tweet i.

Having confidence vector ωi in hand we can work with two variants of label set. First one is

just soft labels contained in each ωi which is Y = {ωic ∈ [0, 1] | i = 1, . . . , n; c = 1, . . . , |C|},
where ωic represents the confidence of label c for data point i. On the other hand we can

consider hard labels derived from ωi that is Ỹ = {yi = argmaxc∈Cωic | i = 1, . . . , n}, and

thus falling back into usual classification configuration in which each data point has only single

label. Since we have worked with both soft label Y and hard label Ỹ we name the members of

latter set dominant labels for convenience. Also when we discuss weighted algorithms we refer

to algorithms that use soft label set Y .

Finally, since in each three steps of sentiment analysis we perform 2-class classification on

two subsets of C, (e.g., related vs. not related which contains neutral, positive and negative) we

should compute the weights of these subsets. Assume that we want to classify C1, C2 ⊂ C where

C1 ∩ C2 = ∅ and they are not necessarily partition C. Then for each tweet i we should compute

two weights ωiC1 and ωiC2 which are simply sum of the labels’ weights that are present in C1

and C2: ωiCj =
∑

ck∈Cj ωik, j = 1, 2.

5.1.2 Parsing and Preprocessing

In this work, we use the bag-of-words model for representing the tweets. One of the main

advantages of this approach is that the parsing procedure is very simple. Many previous works

have included language level features, like part of speech tags in input [93, 92, 33, 85] which

makes the pre-processing step complicated.

We begin by extracting the words in a tweet. Here we use the term word in a broad sense,

which for us encompasses actual words but also numbers, usernames, emoticons, URLs, etc.

Some of them however receive special treatment. We do not care about the actual value/content

of numbers, usernames, and URLs, and thus replace them by special generic identifiers. Notice

that simply removing these words would be harmful, since these type of words are common
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in neutral tweets which just share information between the sender and the receivers. We do

remove re-tweet signs (RT), special characters (not contained in emoticons), and stop words

(e.g., ‘the,’ ‘of,’ ‘about’). Note that we have removed all polar words (e.g., ‘great,’ ‘bad,’ ‘bet-

ter’) from stop word list to prevent loss of emotional signals. Also all negation words (e.g.,

‘not,’ ‘never’) have been removed from stop word list, because they can change the sentiment

completely [93]. Hashtags are a special kind of keywords used in Twitter that are often a con-

catenation of words (e.g., ‘#rainymorning,’ ‘#loveThisWeather’); when the words in a hashtag

begin with an uppercase character we break it into separate words.

We automatically spell check the words using three dictionaries: an English dictionary,

a Twitter dictionary which contains specific lingo, and an emoticon dictionary. The Twitter

dictionary has been gathered from several online Twitter dictionaries that list popular words

coined by Twitter users. After spell checking we remove words that are not in any of the

mentioned dictionaries. We found that stemming did not improve the classification results and

thus we omit it from the preprocessing procedure.

After cleaning raw tweets using all of above steps, we perform another step which empiri-

cally proved to be effective in both speed and accuracy of classifications. Words that appeared

in cleaned database less than thrice are pruned. Also based on the desired task, highly frequent

non-distinctive words are being removed. A word named high frequent in a class, if it appears

on average more than a “high frequency threshold” in each tweet of that class. Among high

frequent words of two classes those with average frequency closer than “similarity threshold”

are called non-distinctive.

5.1.3 Representing and Compressing Tweets

The bag-of-words model is one of the most commonly employed feature extraction approaches

in text (and image) classification. A text (document) is simply represented as an unordered

collection (i.e., a set that may contain repeated elements) of words W . A predefined set of

words L = {li | i = 1, . . . , d} is then used to build an d-dimensional feature vector v for each

document W such that (∀i = 1, . . . , d) v(i) = #(W, li), where #(W, li) is the number of

times word li appears inW .

Usually d is counted in the tens of thousands (e.g., in our experiments d ≈ 104), but since

the length of a tweet is limited to 140 characters, the bag-of-words approach produces extremely

sparse feature vectors when dealing with twitter data.
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Although we have done experiments using original bag-of-words data, we extend our ex-

periments and also use low dimensional projection of it as input. Working in original high-

dimensional domain impose computational difficulties which naturally lead to dimensionality

reduction techniques. Here we show that working with (extremely) sparse d-dimensional fea-

ture vectors directly is not necessary, one can instead reduces their dimensionality using random

reconstructible projection and perform classification in the resulted domain without consider-

able loss of accuracy. Since random reconstructible projection is a well-know technique in

compressed sensing literature [40] we use compression and projection terms interchangeably.

Recent result [98] shows theoretically that learning can be done in compressed domain without

significant loss in classification accuracy for support vector machine. In this paper we show

empirically that compressed learning (i.e., learning in compressed domain) is also possible for

other well-known classification algorithms.

In this framework anm×dmatrix P (m� d) is used to create a compressed representation

x = Pv of a feature vector v in such a way that m is as small as possible and v can be

reconstructed from x. The best reconstruction performance is obtained when P is a random

matrix, i.e., when its entries pij are sampled from i.i.d. random variables [99]. In this paper we

build P by sampling its entries pij from a Gaussian distribution N (0, 1/m). The value of m is

chosen such that m = O(h log(d/h)) where h = maxv∈V ‖v‖0 (while d ≈ 104, h ≈ 20). We

have tried other types of methods for generating P [99] in preliminary experiments and based

on performance chose to work with Gaussian random projection.

To conclude, the set of (one per-tweet) feature vectors V = {vi | i = 1, . . . , n} is rep-

resented in the compressed domain by a set of vectors X = {xi | i = 1, . . . , n}, where

xi = Pm×d vi. The goal is now to learn to classify the tweets based on this compressed

representation.

It worth mentioning that random projection (RP) has been used as a dimensionality re-

duction technique previously in the literature [100] and its classification performance has been

compared with other dimensionality reduction methods like PCA [101]. The result of this com-

parison is that PCA outperforms RP but RP is computationally more efficient. In this work,

we also used PCA and surprisingly it underperforms random reconstructible projection (RRP)

in almost all classification methods. This is in accordance with the theoretical result of [98]

that shows when original input vector is sparse classification with high accuracy in compressed

domain constructed by RRP is possible.
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5.1.4 Classification Methods

Several well-known supervised learning algorithms and their weighted variant have been chosen

for performing classification. Among them Support Vector Machine(SVM) [102], K Nearest

Neighbor(KNN) [25] and Naı̈ve Bayes(NB) [25] are well known. Hence, we only explain the

classification algorithm which is based on dictionary learning [58] in detail, along with brief

descriptions of weighted variants of other methods.

Sparse Modeling Approach to Classification

For each step of tweet classification |C| = 2 and Y is the set of binary values that represent

dominant label of each data point. For utilizing the possible available information in the non-

binary confidence ωic introduced in 5.1.1, we propose to redefine the cost function for each

datum xi and each class dictionary Dc as

`ω(xi,Dc) = min
α

ωic

[
1

2
‖x−Dcα‖22 + λ‖α‖1

]
.

thereby using this cost instead of ` when learning each class dictionary. The contribution of

the sample xi to the class c is then weighted by its non-binary label ωc(x) = ωic. The closer

ωic is to one, the more xi contributes to class c. In the extreme case that ωic = 0, xi does not

contribute at all to the learning of the dictionary for class c.

We then solve the optimization problem

min
D

1

n

n∑
i=1

`ω(xi,D) (5.1)

for each class c, by alternating the minimization over D and the sparse codes αi.

Sparse coding: Minimizing Equation (5.1) over the sparse codes αi with D fixed involves

solving for each i = 1, . . . , n,

min
αi

ωic

[
1

2
‖xi −Dαi‖22 + λ‖αi‖1

]
.

Since for each subproblem ωic is constant, this is a classical LASSO problem and there is no

need for designing particular minimization techniques and methods like LARS [103] can be

used directly.
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Dictionary learning: Because of its streaming nature and widespread use, twitter data can be

considered as a massive data source. Therefore, online learning algorithms arise as an obvious

choice for analyzing them. Following the online dictionary learning approach of [23], for min-

imizing Equation (5.1) over D (one such Dc per class c), with the sparse codes αi fixed for all

i, we rewrite it as

min
D

1

n

(
1

2
Tr(DTDA)− Tr(DTB)

)
(5.2)

where A =
∑n

i=1 ωi αiα
T
i and B =

∑n
i=1 ωi xiα

T
i (since in this case for simplicity we

dropped the subindex c from D, for consistency we write ωi when meaning ωic). [23] have

shown that there is a closed form for updating each column of D, and this also follows when

we add the weights as in Equation (5.2).

The complete optimization scheme for this online weighted dictionary learning algorithm

is depicted in Algorithm 2 (recall that we learn one dictionary per class). The implementation

is obtained by adding the weights to the publicly available SPAMS library.2

We wrap up dictionary learning classification with a discussion about dictionary learning in

original (uncompressed) domain. Dictionary learning in original domain would try to minimize

`(vi,D) = 1
2‖vi −Dαi‖22 + λ‖αi‖1 for each feature vector vi. But it is well known that for

l2 penalty we assume that error vi − Dαi is Gaussian noise [104] and since text documents

does not usually satisfy this assumption, in this article we only perform dictionary learning

in compressed domain. Recently Kasiviswanathan et al. [91] have presented an alternative

formulation using l1 reconstruction error for novel topic detection in twitter.

Naı̈ve Bayes

Naı̈ve Bayes classifier in its general form assign to each test data point the maximum a posteriori

class

yi = argmax
c∈C

P (c|vi).

Using Bayes’ rule P (c|vi) = P (c)P (vi|c)/P (vi) and the fact that P (vi) is constant for all

classes we will have

yi = argmax
c∈C

P (c)P (vi|c)

2 http://www.di.ens.fr/willow/SPAMS/
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Algorithm 2 Weighted Online Dictionary Learning [23]

1: input: a random variable x ∈ Rm with p.d.f. p(x) (the training data), a weighting function

ω : Rm → [0, 1], a regularization parameter λ ∈ R, an initial dictionary D0 ∈ Rm×k, the

number of iterations T .

2: output: the dictionary DT .

3: A0 ∈ Rk×k ← 0 , B0 ∈ Rm×k ← 0

4: for t = 1 to T do
5: Draw xt from p(x)

6: Sparse coding: compute (e.g., using LARS)

αt = argmin
α∈Rk

1

2
‖xt −Dt−1α‖22 + λ‖α‖1.

7: At ← At−1 + ω(xt) αtα
T
t

8: Bt ← Bt−1 + ω(xt) xtα
T
t

9: Compute Dt with Dt−1 as warm restart, solving

Dt = argmin
D

1

t

t∑
i=1

ω(xt)

[
1

2
‖xi −Dαi‖22 + λ‖αi‖1

]
= argmin

D

1

t

(
1

2
Tr(DTDAt)− Tr(DTBt)

)
. (5.3)

10: end for



79

which will be simplified by assuming the conditional independence of input vector’s features:

yi = argmax
c∈C

P (c)
d∏
j=1

P (vij |c), (5.4)

where P (c) and P (vij |c)s are computed from their corresponding frequencies in training data.

Now we should incorporate confidence weights of data points in Naı̈ve Bayes formulation.

So instead of computing P (c) using class frequency we use weighted class frequency

P (c) =

∑
i ωic∑

c

∑
i ωic

,

in which each data point vi contributes to the class c’s probability the amount that is proportional

to its label confidence ωic. Also for each feature P (vij |c) probability should be computed based

on weights of data:

P (vij |c) =

∑
i ωic × vj∑

i ωic
.

K Nearest Neighbor

In K Nearest Neighbor class label is assigned to each test data point based on the labels of

K closest training examples in the feature space. In order to use weight information in KNN

instead of majority voting between K nearest neighbor of vi we add their K confidence vector

and pick the label with highest confidence:

yi = argmax
c∈C

∑
j∈KNN(i)

ωjc

Support Vector Machine

Support vector machine (SVM) tries to find a separating hyperplane which maximizes the mar-

gin between two classes. In its original formulation following optimization should be solved

W∗ = argmin
W

Φ(W) =
1

2
||W||2 +B

n∑
i=1

ξi s.t.

yi(〈W, φ(vi)〉) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., n,
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where W is the normal vector to the hyperplane and φ maps vi to higher dimensional space.

Constant B determines the trade off between margin maximization and classification violation.

For minimizing Φ(W ) one can maximize its dual

α∗ = argmax
α

W (α) =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj)

s.t.
n∑
i=1

yiαi = 0, 0 ≤ αi ≤ B, i = 1, ....n,

where K(xi, xj) = (〈φ(xi)φ(xj)〉) is the kernel.

For including weight in SVM we are following [105] which introduced weighted SVM

(WSVM) to decrease the effect of outliers in SVM. In [105] they have weights from kernel-

based possible c-means, but here we use the confidence scores of two classes (C1 and C2) that

we want to do classification for them as weights.

The key idea is that for point vi that we are sure about its label (i.e., |wiC1 − wiC2 | is

near 1) we should have larger penalty which reinforce correct classification more that margin

maximization. So primal will change to the following

W∗ = argmin
W

Φ(W) =
1

2
||W||2 +B

n∑
i=1

|ωiC1 − ωiC2 |ξi

s.t. yi(〈W, φ(vi)〉) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., n.

And relatively the dual will change to:

α∗ = argmax
α

W (α) =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj)

s.t.
n∑
i=1

yiαi = 0, 0 ≤ αi ≤ |ωiC1 − ωiC2 |B, i = 1, ....n.

As it is clear the only difference of WSVM with SVM is in the upper bound of box constraint

for each lagrange multiplier.

Testing Procedure

Once labels have been assigned to the testing data following the classification procedure, a loss

function is usually used to determine the accuracy of the assignment. When the label set is
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binary (i.e., each datum belongs to only one class), testing dataXtest = {xi | i = 1, . . . , ntest} is

accompanied by a label set Ỹtest = {yi = argmaxc∈Cωic | i = 1, . . . , ntest}, and the per-sample

loss function is usually

1[f(xi)6=yi],

where f is the mapping of input to output produced by classification algorithm and 1[•] is the

indicator function. Therefore, classification error is defined as∑n
i=1 1[f(xi) 6=yi]

n
.

In our weighted framework, the testing label set takes the form Ytest = {ωic | i = 1, . . . , ntest; c =

1, . . . , C}. As mentioned in Section 5.1.1, at each step needed for sentiment analysis we per-

form 2-class classification to classify two disjoint subsets of C namely C1 and C2. So the

weighted per-tweet loss would be

ωiCd
· 1[f(xi) 6=Cd], (5.5)

instead of regular loss where d is computed as

ωiCj =
∑
c∈Cj

ωic, d = argmax
j

ωiCj , j = 1, 2.

Here we reiterated the definition of ωiCj from Section 5.1.1. In words, based on the task we

aggregate the weights to only two weights ωiC1 and ωiC2 . Then we consider the bigger one as

the label of the data point. The higher the weight of a datum is, the more it costs to classify it

mistakenly. Accordingly, we should redefine the error as the total loss over all data, normalized

by total possible loss: ∑n
i=1 ωicd · 1[f(xi)6=cd]∑n

i=1 ωicd
.

Note that prior for weighted methods should also be computed accordingly.

5.2 Experimental Validation

For the main part of the experiments, we used three collections of tweets. Two of them (DB1,

DB2) are about weather and the last one is about gas price (GP) and they encompass 4490, 8850

and 12770 tweets respectively. We have used DB2 to adjust and validate our parameters. Then

based on the best setting of parameters we perform experiments for all databases.



82

The databases are built by first collecting tweets with the Twitter API.3 After crude filtering

based on topic related word list, a few human evaluators, as explained in Section 5.1.1, were

asked to assign to each tweet one of the following C = 5 classes:

• “Not related:” the tweet is not about the target topic;

• “Neutral:” the tweet contains no emotion;

• “Positive:” the tweet reflects positive feelings;

• “Negative:” the tweet reflects negative feelings;

• “I can’t tell:” none of the above can be assessed.

Finally each tweet i receives a soft label, a weight ωic for each class c = 1 . . . 5, equal

to the proportion of evaluators that have chosen that class for the tweet. As commented in

Section 5.1.1, notice that the “I can’t tell” class simply means that the evaluator could not

assign the tweet to any of the other classes, thus indicating the tweet actually has no label.

We therefore discard from our analysis those tweets for which the “I can’t tell” class gets the

maximum weight, and we have C = 4 classes.

Next, preprocessing steps are performed as explained in Section 5.1.2. We picked 0.05 as

high frequency threshold and select words that appeared on average more that 0.05 in each

tweet as the candidate for removal. On average less than 30 words satisfy this condition in all

databases. Then we remove those candidates that are close to each other. Here we consider

words close if their distance in average frequency sense (i.e., similarity threshold defined in

Section 5.1.2) is less than 0.2. We found that although numbers and links are high frequent in

many tasks, they are usually distinctive (i.e., not close) for tasks involving neutral tweets. One

possible explanation is that the neutral tweets which are about weather and gas price usually

share information that contains numbers and a link to the source of information.

After preliminary phases, we will have 4-class classification problem. One approach is to

perform multi-class classification. But since these classes have a natural hierarchical structure,

we can solve the classification problem with a cascade type of approach. The steps in the

cascade are the following: (1) topic classification, filtering out “not related” tweets; (2) polar-

neutral classification; and (3) sentiment classification. We will present results for all these steps.
3 https://dev.twitter.com/
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We present the results obtained with Dictionary Learning (DL), Support Vector Machines

(SVM), Nearest Neighbors (KNN), Naı̈ve Bayes (NB) and weighted variants of all of them. For

DL and WDL, the number of atoms and λ were fixed for all experiments.

Although in natural scenario, first task is topic classifications, because sentiment analysis

is at the center of attention in literature, we start from it and subsequently discuss other tasks.

Also we use sentiment analysis as a platform to explain our further parameters and their assigned

values. All reported results are obtained using 10-fold cross validation.

5.2.1 Classifying Tweets by Sentiment

In this section we focus on sentiment analysis. In order to test the performance of the algorithms

for this single task, we only consider tweets which have an associated positive or negative

sentiment. For unweighted experiments we consider only dominant labels and for weighted

experiments we use aggregated weights ωiC1 and ωiC2 , all defined in Section 5.1.1.

For each algorithm different parameter settings have been verified and results of best con-

figurations are reported. Multinomial Naı̈ve Bayes (MNB) outperformed other variants of NB

in original domain, and in compressed domain using kernel density estimation was most help-

ful. K for KNN is set to 10 and since l1 and l2 distance metrics’ performances were similar we

report only results of l2 distance. Linear kernel SVM performed better than other kernels like

RBF, quadratic and polynomial. Also results of SVM in original and compressed domains were

very close to each other which is what we expected from [98] theoretical guarantee. The main

parameter in DL and WDL is the number of atoms in the dictionary. Our experiments showed

that under-complete dictionaries (i.e., tall matrices) yield to higher accuracy. We introduced

ratio parameter for dictionary to control the ratio of number of atoms to length of atoms (i.e,

feature vector length). For all experiments we set aspect ratio to 0.5. All weighted experiments

are done with the same parameter setting of their unweighted variants.

We consider two ways that input vector can be modified for experiments. First we can use

support (i.e., binary version) of original word-count vector. Notice that tweets are themselves

near binary, but empirically using support of input vectors improves the classification accuracy

for all methods. Secondly, each of word-count or binary vectors can be projected to a com-

pressed domain using random projection. So we end up with four different configurations for

input vector. The result of each setting is presented for sentiment analysis task in Table 5.1 just

for DB2. Based on theoretical reasons explained in 5.1.4 we do not perform DL in original
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Table 5.1: Classification results for the positive vs. negative experiment for DB2 with different

version of input vector. Prior of the experiment is 64.44%.

Binary? Compressed? SVM NB KNN DL

True True 79.19 75.04 74.50 78.94

True False 80.16 82.95 75.01 -

False True 77.67 71.49 73.60 77.02

False False 76.86 81.33 74.17 -

domain. In addition we compared RRP with PCA in our preliminary experiments with similar

destination dimension. In all classification methods except SVM, RRP outperform PCA. Since

computational cost of PCA for large feature vector is high and increase in SVM’s performance

using PCA in comparison with RRP is negligible (less than 2%) we report only results of RRP

dimensionality reduction.

Based on result of this step we picked for each method the setting for input vector which

yields to best accuracy. NB and KNN best results are achieved with uncompressed binary

vectors. SVM performance and speed increased using compressed binary vectors. Finally DL

perform better when fed with binary vectors. From here on we only report results with these

settings. Table 5.2 shows these results for all three databases. Note that prior of GP is much

higher than other databases this is the reason why all methods perform better for GP database.

It is interesting that most of tweets pertaining to gas price are negative.

We also compare our results with a lexicon-based methods specifically designed for twitter

sentiment analysis . Following an extensive (and crowdsourced) study of words’ sentiment in

[35], they generated a list of words with happiness score from 1 to 10. After eliminating neutral

words (i.e., with score around 5), they compute the weighted average happiness (WAH) of a

batch of tweets by also taking into account word frequencies. The presented method [35] has

been implemented and tested for our databases. As expected WAH is not proper for per-tweet

tasks based on Table 5.2. As shown in Table 5.2, NB almost always outperforms other methods

and KNN always has the worst performance.

Table 5.3 presents the results of weighted variants of different algorithms for weighted loss

functions introduced in 5.1.4. It worth mentioning that when we train weighted algorithms with

weighted data but use binary loss, accuracy stays the same or slightly improve from the case
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Table 5.2: Classification results of unweighted algorithms for the positive vs. negative experi-

ment for all databases with binary loss.

DB1 DB2 GP

DL 78.72 ± 2.52 78.94 ± 0.96 86.46 ± 1.15

SVM 78.99 ± 2.65 79.19 ± 1.79 87.34 ± 1.46
KNN 75.20 ± 2.97 75.01 ± 2.30 86.88 ± 1.28

NB 82.23 ± 3.24 82.95 ± 2.10 87.29 ± 1.25

WAH 59.55 75.01 19.43

Prior 51.72% 64.44% 83.29%

Table 5.3: Classification results of weighted algorithms for the positive vs. negative experiment

for all databases with weighted loss.

DB1 DB2 GP

WDL 81.12 ± 2.97 81.43 ± 1.82 86.50 ± 1.02

WSVM 78.84 ± 3.77 82.13 ± 1.58 87.53 ± 1.18

WKNN 76.34 ± 3.80 78.92 ± 1.76 86.32 ± 1.62

WNB 80.35 ± 2.93 83.28 ± 2.34 88.01 ± 1.28

Prior 73.40% 56.99% 83.28%

in which unweighted algorithm are used with binary loss. Since the improvements are less

than 2% we omit them from tables and only present weighted loss. Note that weighted priors

of Table 5.3 is different from unweighted prior of Table 5.2. Here again WNB has the highest

accuracy in almost all databases but its margin with WSVM and WDL is reduced in comparison

with the accuracy margin of NB.

Also in this step we investigated the effect of projections. In order to mitigate possible

“randomness”-related effects, we used ten different random projection matrices P and then

merge the results (by using majority voting). Since the accuracy of each method appeared robust

to number of projection, less than 1% variation was observed, we use only one projection from

here on.
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Table 5.4: Classification results of unweighted algorithms for the polar vs. neutral experiment

for all databases with binary loss.

DB1 DB2 GP

DL 80.29 ± 2.56 82.19 ± 1.65 74.00 ± 1.25

SVM 77.53 ± 2.35 79.80 ± 1.39 73.94 ± 1.50

KNN 74.26 ± 1.94 78.49 ± 1.88 70.47 ± 1.38

NB 80.77 ± 2.00 82.53 ± 1.49 74.77 ± 1.15

Prior 59.95% 58.22% 50.06%

Table 5.5: Classification results of weighted algorithms for the polar vs. neutral experiment for

all databases with weighted loss.

DB1 DB2 GP

WDL 84.29 ± 2.66 85.50 ± 1.31 74.37 ± 1.38

WSVM 81.92 ± 2.86 84.45 ± 1.20 73.43 ± 0.95

WKNN 80.49 ± 2.78 82.89 ± 1.14 70.44 ± 1.46
WNB 84.58 ± 2.04 86.04 ± 1.46 74.14 ± 1.59

Prior 59.10% 61.96% 50.06%

5.2.2 Detecting tweets with sentiment contents and topic classification

Different algorithms have been recently applied to sentiment analysis and polar-neutral classi-

fication, such as NB [93], SVM [92] and AdaBoost.MH [85]. All these approaches use rich

feature vectors, that incorporate higher-level grammatical or semantical knowledge of some

form. However we show that high accuracy can be achieved even with simple bag-of-words

approach.

As in the previous section, we assume to have an oracle that discards tweets not related to

the topic of interest. We therefore use only tweets for which the dominant label is positive,

negative or neutral. Results for unweighted algorithms are shown in Table 5.4 and weighted

algorithms’ results with none-binary loss function are presented in Table 5.5. In both cases NB

(WNB) performance is the best and is followed closely by DL (WDL).
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Table 5.6: Classification results for the polar vs. neutral experiment for all databases using

positive vs. background and negative vs. background classifiers.

DB1 DB2 GP

DL 79.95 79.51 72.00

SVM 71.41 74.34 73.67
KNN 68.59 71.97 68.42

NB 78.56 81.56 72.78

Prior 59.95% 58.22% 50.06%

Table 5.7: Classification results of unweighted algorithms for topic classification experiment of

weather databases with binary loss.

DB1 DB2

DL 80.85 ± 2.12 81.15 ± 1.15

SVM 80.00 ± 1.04 78.73 ± 1.58

KNN 77.04 ± 2.03 75.51 ± 2.51

NB 82.64 ± 1.93 81.93 ± 1.43

Prior 72.24% 72.06%

Experimental psychology studies show that positive and negative sentiments are not oppo-

site extremes of the same dimension but are, on the contrary, independent [34]. Based on this

point, we introduce a new method for polar-neutral classification. We train two independent

classifiers for separating positive (negative) tweets from all the rest. Then we use a simple ag-

gregation scheme for classifying neutral and polar tweets. If a tweets is classified as positive

or negative by one of the mentioned classifier it will be polar otherwise neutral. Results this

classification scheme are shown in Table 5.6. Although the resulted accuracies are not as high

as direct polar-neutral classification, quality of results shows possible promising direction.

We now turn our attention to the detection of tweets belonging to a given topic of interest.

Since required label for GP database is not available we only report results of DB1 and DB2. Ta-

bles 5.7 and 5.8 show the results of topic classification for unweighted and weighted algorithms

respectively. Again NB (WNB) and DL (WDL) are competing for the best performance.
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Table 5.8: Classification results of unweighted algorithms for topic classification experiment of

weather databases with binary loss.

DB1 DB2

WDL 83.07 ± 2.29 82.85 ± 1.14
WSVM 82.55 ± 2.04 81.18 ± 1.69

WKNN 79.28 ± 2.39 73.32 ± 1.50

WNB 83.93 ± 2.08 82.59 ± 1.03

Prior 74.75% 74.85%

Table 5.9: Statistics of the error per state for the agglomerated WDL result. SD stands for

standard deviation.

Error (in %)

mean SD min max

GP 5.21 3.71 0.00 13.76

5.2.3 Spatially Aggregated Results

We close the experimental section by showing spatially agglomerated results of the positive/negative

classification. As mentioned at the begining of the chapter, sentiment analysis sometimes is be-

ing done on batches of tweets instead of single tweet. One common way of making batches is

aggregation of tweets based on the geographic location of the authors (e.g., state or county). In

this way we can discover the sentiment of people in that location, maybe in specific time, and

interpret it.

Despite the fact that our methods are not specifically designed for processing batches of

tweets, batch results are easily obtained once the individual classification is done. For this

experiment, we only use the database for which the topic is gas prices. Figures 5.1 shows,

the results aggregated per state for the gas price database using WDL and the ground truth

map. Both maps and the additional statistics provided in Table 5.9 show that the state mood is

correctly recovered by the proposed classification procedure.



89

(a) Ground truth map.

Page 1 of 1

4/4/2012file:///I:/My%20Documents/Codes/Python/mapping/src/twitter_31_gaspricessbweightedDL...

(b) Aggregated WDL result.

Figure 5.1: Comparison of WDL aggregated result with ground truth map. Red and green

represent negative and positive sentiments respectively.
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Chapter 6

Influence Maximization in
Non-progressive Models

Motivated by viral marketing and other applications, the problem of influence maximization in a

social network has attracted much attention in recent years. Given a social network where nodes

represent users in a social group, and edges represent relationships and interactions between the

users (and through which they influence each other), the basic idea of influence maximization

is to select an initial set of “most influential” users (often referred to as the seeds) among all

users so as to maximize the total influence under a given diffusion process (often referred to as

the influence model) on the social network. In the context of viral marketing, this amounts to

by initially targeting a set of influential customers, e.g., by providing them with free product

samples, with the goal to trigger a cascade of influence through “word-of-mouth” or recom-

mendations to friends to maximize the total number of customers adopting the said product.

Domingos and Richardson [106] introduced this algorithmic problem to the Computer Science

community and Kempe et al. [24] made the topic vastly popular under the name of influence

maximization. They studied two influence models, the independent cascade (IC) model and the

linear threshold (LT) model, and applied a greedy method to tackle the influence maximization

problem [24]. Unfortunately Kempe et al.’s approach [24] for calculating the influence spread

is based on Monte Carlo simulations which does not scale to large networks [60, 61]. As the

result, it motivated researchers to either improve the scalability [60, 61] or study more tractable

influence models [63, 64].
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The focus of almost all of these earlier studies are, however, progressive influence models,

including LT and IC models, in which once a costumer adopts a product or a user performs an

action she cannot revert it. Retweeting news and visiting a commercial webpage by clicking

on an advertisement sharing videos in online social network websites, are examples of progres-

sive, i.e. irreversible actions. Nevertheless, there are numerous real world instances where the

actions are non-progressive especially in technology adoption domain. For example, adopting

a cell phone service provider, such as AT&T and T-mobile, is a non-progressive action where

a user can switch between providers. The objective of influence maximization in this example

is to persuade more users to adopt the intended provider for a longer period of time. Thus to

gain more from the social influence of a costumer it is desirable not only make her purchase the

product but also hold on to it for a long time. To capture the reversibility of choices in real sce-

narios, we present Heat Conduction (HC) model which has favorable real-world interpretation.

We also show that HC unifies, generalizes, and extends the existing non-progressive models,

including non-progressive LT (NLT) [24] and Voter model [67] (see Section 6.4). In contrast to

the Voter model, HC does not necessarily reach consensus, where one product dominates and

extinguishes the others after finite time, so the proposed HC model can explain the coexistence

of multiple product adoptions, which is a typical phenomena in real world. In addition, HC

model incorporates both “social” and “non-social” factors, e.g., intrinsic inertia or reluctance of

some users in adopting a new idea or trying out a new product, external “media effect” which

exerts a “non-social” influence in promoting certain ideas or products.

We tackle the influence maximization problem under HC influence model with a scalable

and provably near-optimal solution. Kempe et al.’s approach [24] for influence maximization

under NLT model, is to reduce the model to (progressive) LT by replicating the network as many

as time progresses and compute the influence spread by the same slow Monte Carlo method for

the resulted huge network. This approach is practically impossible for large networks, specially

for the infinite time horizon. We also prove that contrary to the Voter, for which the influ-

ence maximization can be solved exactly in polynomial time [67], the influence maximization

for HC is NP-hard. We develop an approximation (greedy) algorithm for influence maximiza-

tion under HC for infinite time horizon with guaranteed near-optimal performance. Exploiting

probability theory and novel Markov chain metrics, we are able to provide closed form solution

for both computing the influence spread and greedy selection step which entirely removes the
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need to explicitly evaluate each node as the best seed candidate; our fast and scalable algo-

rithm, C2GREEDY, for influence maximization under HC removes the computational barrier

that prevented the literature from considering the non-progressive influence models.

We show that the non-progressive influence maximization problem under our HC frame-

work is NP-hard. However, unlike the progressive influence maximization problem considered

in [24], we demonstrate that the non-progressive influence maximization problem under HC

can be well approximated using a scalable and provable near-optimal algorithm. Our fast and

efficient algorithm benefits from two key properties of the proposed HC framework, where we

establish closed-form expressions for the influence function computation and the greedy seed

selection. Through extensive experiments on several real and synthetic networks, we validate

the efficacy of our algorithm and demonstrate that it outperforms the state-of-the-art methods.

Our extensive experiments on several and large real and synthetic networks validate the

efficiency and effectiveness of our method which outperforms the state-of-the-art in terms of

both influence spread and scalability. We show that the most influential nodes under progres-

sive models not necessarily act as the most influentials under non-progressive models and a

designated non-progressive algorithm is necessary. Moreover, we present the first real non-

progressive cascade dataset which models the non-progressive propagation of research topics

among network of researchers.

The rest of this chapter is organized as follows. First, we introduce our HC model in Section

6.1. Next, we show how to compute the influence spread for HC in closed form in Section 6.2.

In Section 6.3, we present our efficient algorithm C2GREEDY for influence maximization under

the HC model. Section 6.4 explains how HC unifies other non-progressive models and provides

a more complete view of the HC model. Finally we conduct comprehensive experiments in

Section 6.5 to illustrate performance of our algorithm.

6.1 Heat Conduction Influence Model

The heat conduction (HC) influence model is inspired by the resemblance of influence diffusion

through a social network to heat conduction through an object, where heat is transferred from the

part with higher temperature to the part with lower temperature. We provide a simple description

of HC in this section and defer the complete view of it as well as its unification property to

Section 6.4.
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Considering directed graphG = (V, E) which represents the social (influence) network, the

directed edge from node i to node j declares that i follows j (or equivalently j influences i).

Edge weight ωij indicates the amount that i trusts j and unless specified 0 ≤ ωij ≤ 1. The

set of i’s neighbors, representing the nodes that influence i, is denoted by N (i). The influence

cascade can be assumed as a binary process in which a node who adopts the “desired” product

is called active, and inactive otherwise. Note that this assumption holds for the cases with

multiple products as well, where the objective is to maximize the influence (publicity) of the

“desired” product, and the rest are all considered “undesired”. Seed is a node that has been

selected for the direct marketing and remains active during the entire process. In HC model, the

influence cascade is initiated from a set of seeds S and arbitrary values for other nodes. The

choice of node i to become active or inactive at time t+ 1 is a linear function of the choices of

its neighbors at time t as well as its intrinsic (or non-social) bias toward activeness:

P
(
δi(t+ 1) = 1|N (i)

)
= βib+ (1− βi)

∑
j∈N (i)

ωijδj(t), (6.1)

where βi ∈ (0, 1), b ∈ [0, 1], and
∑

j∈N (i) ωij = 1. Indicator function δi(t) is 1 when node i

adopts the desired product at time t and 0 otherwise. We refer to (6.1) as the choice rule. The

dependence on neighbors in (6.1) represents the “social” influence and the bias value b accounts

for “non-social” influence which comes from any source out of the neighbors, e.g. media. The

“non-social” influence can explain the cases where the “social” influence alone fails to model

the cascades [107]. We discuss further interpretation and extensions of HC in Section 6.4.

Replacing the choice rule (6.1) in P
(
δi(t + 1)

)
=
∑

P(δi(t + 1)|N (i))P(N (i)) results in

the following probabilistic interpretation of the original binary HC model. Each node i has a

value at time t denoted by u(i, t) which represents the probability that she adopts the desired

product at time t:

u(i, t+ 1) = βib+ (1− βi)
∑

j∈N (i)

ωiju(j, t), (6.2)

Simple calculation shows that the bias value b can be integrated into the network by adding a

bias node n (assuming that the network has n−1 nodes) with adoption probability b. Therefore,

HC dynamics converts to the following:

u(i, t+ 1) =
∑

j∈EN (i)

Piju(j, t), (6.3)

where EN (i) = N (i) ∪ {n} is the extended neighborhood, Pin = βi, u(n, t) = b, and
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∀j 6= n : Pij = (1 − βi)ωij . Rewriting (6.3) in the following form shows that HC follows

the discrete form of Heat Equation [108], which reveals the naming reason of HC influence

model: u(:, t+ 1)− u(:, t) = (P− I)u(:, t), where L = I−P is the Laplacian matrix, u(i, t)

is the temperature of particle i at time t, and “:” denotes the vector of all entries.

6.2 HC Influence Spread

Influence spread of set S for time t is defined as the expected number of active nodes at time

t of a cascade started with S. Knowing that u(i, t) is the probability of node i being active at

time t, influence spread (or function) σ(S, t) is computed from:

σ(S, t) =
∑
i∈V

u(i, t). (6.4)

Motivated by the classical heat transfer methods, the initial and the boundary conditions should

be specified to solve the heat equation and find u(i, t) uniquely. In HC, the seeds S and the bias

node are the boundary nodes and the rest are interiors. Assuming S = {n−1, n−2, ..., n−|S|}
and n as the bias node, HC is defined by the following heat equation system:

Main equation : u(:, t+ 1)− u(:, t) = −Lu(:, t)

Boundary conditions : u(n, t) = b,

u(s, t) = 1 ∀s ∈ S (6.5)

Initial condition : u(:, 0) = z + [0, ..., 0, 1, ..., 1︸ ︷︷ ︸
|S|

, b]′,

where, as indicated in this formula, initial value u(:, 0) is the sum of two vectors: the initial

values of the interior nodes (z) and the initial values of boundaries (the second vector). The

corresponding entries of boundaries in z are zero. In the continue, exploiting probability theory

and novel Markov chain metrics, we provide a closed form solution to this heat equation system.

Social network G can be interpreted as an absorbing Markov chain where the absorbing

states (boundary set B) are the seeds and bias node, B = S ∪ {n}, and Pij is the probability of

transition from i to j. The adoption probability of the nodes at time t, i.e. u(:, t), can be written

as a linear function of initial condition (6.3):

u(:, t) = Ptu(:, 0), (6.6)
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where P is row-stochastic and has the following block form: P =

[
R B

0 I

]
. The superscript

indicates the time here. The boundary set by definition have fixed values over time and do not

follow any other nodes which leads to the zero and identity blocks I(|S|+1)×(|S|+1). Blocks

R and B represent transition probabilities of interior-to-interior and interior-to-boundary re-

spectively. Note that different boundary conditions in (6.5), like different seed set, result in a

different P. Therefore both P and u(:, t) implicitly depend on S.

When t goes to infinity, transient part of u vanishes and it converges to the steady-state

solution v = u(:,∞), which is independent of time and is Harmonic, meaning that it satisfies

Pv = v [109]. Assume v =
(
vI ,vB)T where I = V \ B is the set of interior nodes, then the

value of interior nodes is computed from boundary nodes [109]:

vI = (I−R)−1BvB = FBvB = QvB. (6.7)

where F = (I−R)−1 is the fundamental matrix and Fij indicates the average number of times

that a random walk started from i passes j before absorption by any absorbing (boundary) nodes

[109]. Also, the absorption probability matrix Q = FB is a (n − |S| − 1) × (|S| + 1) row-

stochastic matrix, where Qij denotes the probability of absorption of a random walk started

from i by the absorbing node j [109].

From here on, without loss of generality, we assume b to be zero in equation (6.5). Using

(6.6) and (6.7), the influence spreads for infinite time can be computed in closed form:

σ(S,∞) =
n∑
i=1

v(i) = |S|+
∑
i∈I

∑
s∈S

QSis. (6.8)

The superscript in QS and PS explicitly indicates that they are functions of seed set S. Note

that in fact they are depending on the total boundary set, B = S ∪ {n}, but since the bias node

is always a boundary, throughout this paper we discard it from the superscripts to avoid clutter.

6.3 Influence Maximization for HC

In this section we solve the influence maximization problem for infinite time horizon under HC

model, formulated as follows:

S∗ = argmax
S⊆V

σ(S,∞), s.t. |S| ≤ K. (6.9)
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6.3.1 Influence maximization for K = 1

Based on (6.8) and (6.9), the most influential person (MIP) is the solution of the following

optimization problem: argmaxV\{n}
∑

i∈V\{s,n}Q
{s}
is . This equation states that to find the MIP,

we need to pick each candidate s and make it absorbing and compute the new P as P{s} which

in turn changes Q to Q{s}, and repeat this procedure n − 1 times for all s. This procedure is

problematic because for each Q{s} we require to recompute matrix F{s} which involves matrix

inversion. But, in the following theorem we show that we are able to do this by only one matrix

inversion instead of n − 1 matrix inversions, and having matrix F∅ is enough to find the most

influential person of the network (∅ sign indicated no seed is selected):

Theorem 6.1 MIP under HC (6.1) when t → ∞ can be computed in closed form from the

following formula:

MIP = argmax
s∈V\{n}

∑
i∈V\{n}

F∅is
F∅ss

= argmax1′F̆∅, (6.10)

where F̆∅ is F∅ when each of its columns is normalized by the corresponding diagonal entry.

Note that left multiplication of all ones row vector is just a column-sum operation.

6.3.2 Influence maximization for K > 1

Although the influence maximization can be solved optimally for K = 1 , the general problem

(6.9) under HC for K > 1 is NP-hard:

Theorem 6.2 Given a network G = (V, E) and a seed set S ⊆ V , influence maximization for

infinite time horizon (6.9) under HC defined by (6.1) is NP-hard.

In spite of being NP-hard, we show that the influence spread σ(S,∞) is submodular in the

seed set S which enables us to find a provable near-optimal greedy solution. A set function

f : 2V → R maps subsets of a finite set V to the real numbers and is submodular if for

T ⊆ S ⊆ V and s ∈ V \ S , f(T ∪ {s}) − f(T ) ≥ f(S ∪ {s}) − f(S) holds, which is the

diminishing return property. Following theorem presents our established submodularity results.

Theorem 6.3 Given a network G = (V, E), influence spread σ(S,∞) under HC model is non-

negative monotone submodular function.
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The greedy solution adds nodes to the seed set S sequentially and maximizes a monotone sub-

modular function with (1 − 1/e) factor approximation guarantee [110]. More formally the

(k + 1)-th seed is the node with maximum marginal gain:

(k + 1)th-MIPt = argmax
s∈V\{Sk∪{n}}

σ(Sk ∪ {s}, t)− σ(Sk, t), (6.11)

where Sk is the set of k seeds which have been picked already. Although we can compute

the above objective function in closed form, for selecting the next seed we have to test all s to

solve the problem which is the approach of all existing greedy based method in the literature.

Previously a lazy greedy scheme have been introduced to reduce the number testing candidate

nodes s [59]. In the next section we go one step further and show that under HC model and for

infinite time horizon we can solve the marginal gain in closed form.

6.3.3 Greedy Selection
An important characteristic of the linear systems, like HC when t→∞, is the “superposition”

principle. We leverage this principle to calculate the marginal gain of the nodes efficiently and

pick the one with maximum gain for the greedy algorithm. Based on this principle, the value

of each node in HC for infinite time, and for a given seed set S, is equal to the algebraic sum

of the values caused by each seed acting alone, while all other values of seeds have been kept

zero. Therefore, when a node s is added to the seed set Sk, its marginal gain can be calculated

as the summation of values of the nodes when all of the values of Sk have been turned to zero

and node s is the only seed in the network, whose value is 1−vSk(s). In this new problem, the

vector of boundary values v
Sk∪{s}
B is a vector of all 0’s except the entry corresponding to the

node s with value 1− vSk(s), and the value of interior node i is obtained from (6.7):

v
Sk∪{s}
I (i) = Q

Sk∪{s}
is (1− vSk(s))

Substituting Q from lemma 3 result (see Supplementary), the k+ 1-th seed is determined from

the following closed form equation:

(k + 1)th-MIP

= argmax
s∈V\{Sk∪{n}}

∑
i∈V\{Sk∪{n}}

FSkis

FSkss

(
1− vSk(s)

)
,

= argmax(1− vSk)′F̆Sk (6.12)
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Note that vector vSk is obtained in step k and is known, and matrix FSk can be calculated

from FSk−1 without any need for matrix inversion (see Supplementary, lemma 1). One may

observe that equation (6.12) is the general form of Theorem 1, since vS0 = v∅ = 0. Notice

that equation (6.12) intuitively uses two criteria for selecting the new seed: its current value

should be far from 1 (higher value for (1 − vSk(s)) term) which suggests that it is far from

the previously selected seeds, and at the same time it should have a high network centrality

(corresponding to the FSkis /F
Sk
ss term). Algorithm 3 summarizes our C2GREEDY method for

t → ∞: a greedy algorithm with 2 closed form steps. Operator ⊗ in step 10 denotes the

Hadamard product.

Algorithm 3 C2GREEDY

1: input: extended directed network G = (V, E) with bias node n, maximum budget K.

2: output: seed set SK ⊆ V with cardinality K.

3: compute matrix P from G.

4: S0 := ∅
5: FS0 := (I−PS0)−1

6: s = argmax1′F̆∅, and S1 = S0 ∪ {s}
7: vS1 = F̆S0(:, s)

8: for k = 1 to K − 1 do
9: ∀i, j ∈ I : F

Sk∪{s}
ij = FSkij −

F
Sk
is F

Sk
sj

F
Sk
ss

10: s = argmax(1− vSk)′ ⊗ 1′F̆Sk

11: Sk+1 = Sk ∪ {s}
12: vSk+1 = vSk + (1− vSk(s))F̆Sk(:, s)

13: end for

6.4 Discussion

In this section, we present the comprehensive view of HC model and elaborate its (unifying)

relation to the other models by providing multiple interpretations.
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Model
Non-Social

influence

Weighted

Edges

Boundary Init. Cond. Eq. Physical Heat

Conduction SystemH: T = 1 L: T < 1 = 0 6= 0

NLT1
√ √ √ √ Circular ring with

a fixed-temp. point

NLT2
√ √ √ √ √ A rod with fixed-temp.

ends, one high one low

NLT3
√ √

(Isolated) circular ring

NLT4
√ √ √ Circular ring with

a fixed-temp. point

Voter
√

(Isolated) circular ring

GLT
√ √ √ Circular ring with

a fixed-temp. point

Table 6.1: Specifying the equal heat system for existing non-progressive influence models.

6.4.1 Social interpretation

HC can be simply extended to model many real cases that the other influence models fail to

cover. As briefly mentioned in Section 6.1, the original HC (6.1), models both “social” and

“non-social” influences which cover the observations from the real datasets [107]. The exten-

sion of HC which is more flexible in modeling real world cascades is as follows:

u(i, t+ 1) = mαi + rγi + (1− γi − αi)
∑

j∈N (i)

ωiju(j, t), (6.13)

where,
∑

j∈N (i) ωij = 1, γi, αi ∈ [0, 1],m = 1, and r = 0. Factor r models the “discouraging”

factor like intrinsic reluctance of customers toward a new product, and m represents “encour-

aging” factor like media that promotes the new product. These two factors can explain cases

where all neighbors of a node are active but the node remains inactive, or when a node becomes

active while none of her neighbors are active [107]. Note that all of the formulas and results

stated so far is simply applicable to the general HC model (6.13).

6.4.2 Unification of existing non-progressive models

HC (6.1) unifies and extends many of the existing non-progressive models. In the Voter model, a

node updates its choice at each time step by picking one of its neighbors randomly and adopting

its choice. In other words, the choice rule of node i is the ratio of the number of her active

neighbors to her total number of neighbors. Thus, Voter’s choice rule is the simplified form of
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HC’s choice rule (6.1) where ωij is equal to 1
di

(di is the out-degree of node i) and all βis are set

to zero. Also, note that having βi = 0 indicates that the Voter does not cover the “non-social”

influence.

In the non-progressive LT (NLT) [24], each node is assigned a random threshold θ at each

time step and becomes active if the weighted number of its active neighbors (at previous time

step) becomes larger than its threshold:
∑

j∈N (i) ωijδj(t) ≥ θi(t+ 1), where the edge weights

satisfy
∑

j∈N (i) ωij ≤ 1. Thus, the choice rule of node i at time (t + 1) under the NLT is

obtained from the following equation:

P
(
δi(t+ 1) = 1|N (i)

)
= P

(
θi(t+ 1) ≤ ΣωNLT

ij δj(t)
)

= ΣωNLT
ij δj(t), (6.14)

where the second equality is the result of sampling θi(t + 1) from the uniform distribution

U(0, 1). Equation (6.14) is the simplified form of HC’s choice rule (6.1), where b = 0 and

(1− βi)ωHC
ij = ωNLT

ij . Note that since in the NLT b accepts only zero value, this influence model

also cannot cover encouraging “non-social” influence. Moreover, if the edge weights’ gap in

NLT, i.e. gi = 1 −
∑

j∈N (i) ω
NLT
ij , is zero for all the nodes, it cannot model the “non-social”

influence at all, since the corresponding βi’s in (6.1) would be equal to zero in that case.

Generalized linear threshold (GLT) is another non-progressive model proposed in [111] to

model the adoption process of multiple products. Assigning a color c ∈ C to each product, a

node updates its color, at each time step, by randomly picking one of its neighbors based on

its edge weights and adopts the selected neighbor’s color. For binary case |C| = 2, where we

only distinct between adoption of a desired product (active) and the rest of products (inactive),

GLT’s choice rule reduces to the following equation: P
(
δi(t + 1) = 1|N (i)

)
= β

2 + (1 −
β)
∑

j∈N (i) ωijδj(t). It is easy to see that this is the restricted form of HC’s choice rule (6.1),

where nodes are all connected to the bias node with equal weight of β and bias value b has to

be β
2 .

6.4.3 Physical interpretation

We showed that the existing non-progressive models are special cases of HC, and in this part

we describe their equal heat conduction system which are uniquely specified by the initial and

boundary conditions. Table 6.1 summarizes the heat interpretation of the influence models. We

introduce four variants of non-progressive LT, based on two factors: seed and gap gi. NLT1
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and NLT2 support non-zero gaps, and NLT2 and NLT4 allows seeds, i.e. nodes in the network

that always remain active. The non-progressive LT model presented in [24] is equivalent to

NLT2. Reluctance factor and seeds in all models are equivalent to the low and high temperature

boundaries respectively, and initial condition addresses the interiors’ initial values (z in (6.5)).

The non-social influence and edge weights factors appear in the Laplacian matrix calculation

of (6.5). The equivalent physical heat conduction systems are easy to understand, here we just

briefly point out the equivalence of the Voter model and the isolated circular ring. Circular ring

is a rod whose ends are connected to each other and do not have any energy exchange with

outside which explains why the Voter conserves the total initial heat energy, and reaches to an

equilibrium with an equal temperature for all of the nodes, i.e., consensus.

6.4.4 Random walk interpretation

Beside the heat conduction view, the random walk prospect helps to gain a better understanding

of the models and their relations. Assume that active and inactive nodes are colored black

and white respectively. Consider the original view of any influence model which is the actual

process that unfolds in time, so we look at the time-forward direction. We take a snapshot of

the colored network at each time step t. Putting together the sequence of snapshots, the result

is a random walk in the “colored graphs” state space with 2n states. On the other hand, the

dual view looks at the time-reverse direction of influence models. It is known for both IC-based

models (like IC [24] and ConTinEst [64]) and LT-based models (Table 6.1 as well as HC and

LT) that a single node from N (i) is responsible for i’s color switch, which we name it as the

parent of i. Now assuming that the process has advanced up to the time t, we reverse the process

by starting from each node i and follow its ancestors. Here is the point where IC and LT based

models separate from each other: due to
∑

j∈N (i) ωij ≤ 1 constraint, ancestors of i in the

LT-based models form a random walk starting from node i, which is not the case in IC-based

models. Note that we have n random walks that can meet and merge, thus they are known as

coalescing random walks [112]. This view also helps us to demonstrate the essential difference

between progressive and non-progressive models. Dual view of progressive LT model is a

coalescing self-avoiding walks which is the outcome of randomizing the threshold θ only once

at the beginning of the process for the nodes in each realization. This bounds the number of

“live” edges [24] connected to each node by one which prevents the creation of “loop” in the

influence paths. Note that both counting and finding the probability of self-avoiding walks are
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Table 6.2: List of networks used in experiments.

|V| |E| Params

Synthetic

Networks

Random 1024 - [0.5, 0.5; 0.5, 0.5]

Hier. 1024 - [0.9, 0.1; 0.1; 0.9]

Core. 1024 - [0.9, 0.5; 0.5, 0.3]

ForestFire 1K-300K 2.5|V| [0.35, 0.25]

Real

Networks

KClub 34 501 -

PBlogs 1490 19087 -

WikiVote 7115 103689 -

MLWFW 10604 168918 -

#P hard [60].

6.5 Experiments

In this section, we examine several aspects of C2GREEDY and compare it with state-of-the-art

methods. Experiments mainly focus on influence maximization and timing aspects. Finally, we

present one example of real non-progressive data and illustrate the result of C2GREEDY.

6.5.1 Dataset
Table 6.2 summarizes the statistics of the networks that we use throughout the experiments. We

work with both synthetic and real networks which we briefly discuss next.

Synthetic network generation. We consider the following types of Kronecker network for

extensive performance comparison of our method with the state-of-the-art methods: random

[113] (parameter matrix [0.5, 0.5; 0.5, 0.5]), hierarchical [114] ([0.9, 0.1; 0.1; 0.9]), and core-

periphery [115] ([0.9, 0.5; 0.5, 0.3]). We generate 10 samples from each network and report the

average performance of each method. Edge weights are drawn uniformly at random from [0, 1]

and weights of each node’s outgoing edges is normalized to 1. For timing experiment, we use

ForestFire [114] (Scale-free) network with forward and backward burning probability of 0.35

and 0.25, respectively, and set the outgoing edge weights of node i to 1/|N (i)|. The expected

density, i.e., number of edges per node, for the resulted ForestFire networks is 2.5.

Real Networks. Zachary’s karate club network (KClub) is a small friendship network with

34 nodes and 501 edges [116]. The political blogs network (PBlogs) [117], is a moderate size
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directed network of hyperlinks between weblogs on US politics with 1490 nodes and 19087

edges. Wikipedia vote network (WikiVote), is the network of who-vote-whom from wikipedia

administrator elections [118] with 7115 nodes and 103689 edges. Finally, MLWFW is the

network of who-follow-whom in the machine learning research community which we extract

from citation networks of combined ACM and DBLP citation network which is available as a

part of ArnetMiner [119]. For more information about MLWFW refer to Section 6.5.4.

For all synthetic and real networks, after constructing the network, we add the bias node to

the network and connect all nodes to it with weight βi = 0.1 and re-normalize the weight of the

other edges accordingly.

6.5.2 Influence Maximization
In this section we investigate the performance of C2GREEDY in the main task of influence

maximization i.e., solving the set function optimization (6.9). Since finding the optimal solution

for (6.9) is NP-hard, we compare C2GREEDY with optimal solution only for a small network,

then for a large network we show that C2GREEDY result is close to the online bound [59]. We

also compare the performance of C2GREEDY with the state-of-the-art methods proposed for

solving (6.9) under different (mostly progressive) influence models.

C2GREEDY vs. optimal. For testing the quality of C2GREEDY method, we compare its

performance with the best seed set (determined by brute force) on a small size network. We

work with the KClub network for the brute-force experiment with K = 5. As Figure 6.1a

shows C2GREEDY selects nodes that match the performance of the optimal seed set. In the

next step, on a larger network, we show that the performance of C2GREEDY is close to the

known online upper bound [59]. We compute the online and offline bounds of greedy influence

maximization [59] with K = 30 for PBlogs network. Figure 6.1b illustrates that C2GREEDY

result is close to the online bound and therefore close to the optimal solution’s performance.

C2GREEDY vs. state-of-the-art. Next, we compare C2GREEDY with the state-of-the-art

methods of influence maximization over three aforementioned synthetic networks and WikiVote

real network. Among baseline methods PMIA [61] and LDAG [60] are approximation for IC

and LT models respectively and SP1M [120] is a shortest-path based heuristic algorithm for

influence maximization under IC. ConTinEst [121] is a recent method for solving continuous

time model of [63] and PageRank is the well-known information retrieval algorithm [122].

Finally, Degree selects the nodes with highest degree as the most influential and Random picks
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Figure 6.1: For small network (a) shows C2Greedy matches the optimal performance. For a larger

network (b) compares performance of C2Greedy with online and offline bounds.

the seed set randomly.

The comparison results are depicted in Figure 6.2. Interestingly, our algorithm outper-

formed all of the baselines. Strangely, ConTinEst performs close to Random (except in the

random network). A closer look at the results for three synthetic networks reveal that except

ConTinEst’s odd behavior all other methods have persistence rank in performance. C2GREEDY

is the best method and is followed by PMIA and LDAG, both in second place, which are closely

followed by SP1M. PageRank, Degree and Random are next methods in order. In WikiVote real

network of Figure 6.2d surprisingly most of the state-of-the-art methods perform terribly poor

and Degree (as the KMIP solution to Voter model) is the only competitor of C2GREEDY. Re-

sult of experiment with WikiVote shows that most influential nodes in a progressive models are

not necessary influential in non-progressive ones, and designing non-progressive-specific algo-

rithms (like C2GREEDY) is required for influence maximization under non-progressive models.

6.5.3 Speed and Scalability
In this part we illustrate the speed benefits of having two closed form updates in the greedy

algorithm and also deal with the required single inverse computation of C2GREEDY to prove

the scalability of our method.

Closed form benefits. As discussed in Section 6.3, our main algorithm C2GREEDY benefits

from closed form computation for both influence spread (6.8) and greedy selection (6.12). To
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(WikiVote)

Figure 6.2: Comparing performance of C2Greedy with state-of-the-art influence maximization meth-

ods. Networks of (a), (b), and (c) are synthetic and (d) is a real network.

show the gain of these closed form solutions, we run the greedy algorithm in three different set-

tings. First without using any of (6.8) and (6.12) which we call GREEDY and uses Monte Carlo

simulation to estimate the influence spread. Second we only use (6.8) to have the closed form

for influence spread without closed form greedy update of (6.12) which results in C1GREEDY,

and finally C2GREEDY which uses both (6.8) and (6.12). Note that we can add lazy update

of [59] (see Supplementary) to GREEDY and C1GREEDY to get LGREEDY and LC1GREEDY

respectively. Finally we include the original greedy method [24] of solving LT model (progres-

sive version of our model) and its lazy variant, with 100 iteration of Monte Carlo simulation.

Note that for having a good approximation of influence spread in LT model, simulations are run

for several thousand iterations, but here we just want to illustrate that the greedy algorithm for

HC is much faster than LT, for which 100 iterations is enough. Figure 6.3a illustrates the speed

in log-scale of all seven algorithms for K = 10 over the Pblogs dataset [117]. Note that the

required time of inverse computation (6.7) is also included. The results confirm that both closed

forms decrease the timing significantly (1 sec vs. 461 sec for the next best variation) and help

the greedy algorithm far more than the lazy update.

Per-seed selection time. The major computational bottleneck of our algorithm is the inverse

computation of (6.7). But fortunately this is needed once and at the beginning of the process.

Here assuming offline inverse computation, we are interested in the cost of adding each seed.

Figure 6.3b compares the cost of selecting k-th seed for the five variation of our algorithm,

plus LT and LazyLT all described previously. As expected C2GREEDY requires the lowest

computation time per seed. Also, the timing per seed for C2GREEDY is strictly decreasing over

the size of S, because the matrix N shrinks, while per seed selection time of LT is increasing
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Figure 6.3: In (a) we compare the total timing of seven algorithms to investigate the effect of closed

updates on speed and in (b) we show the per-seed required time for the same experiment.

on average, because more seeds probably lead to bigger cascades.

Inverse approximation. Going beyond networks of size 104 makes the inverse computation

problematic, but fortunately we have a good approximation of the inverse through the following

expansion: F = (I−R)−1 ≈ I+R1+R2+...+RT . Since all eigenvalues of R are less than or

equal to 1 contribution of (R)i to the summation drops very fast as i increases. The question is

how many terms of the expansion, T , is enough for our application. Heuristically we choose the

(effective) diameter of the graph as the number that provides us with a good approximation of

F−1. Note that the ith term of the expansion pertains to the shortest paths of size i between any

pair of nodes. Since the graph diameter is the longest shortest path between any pair of nodes,

having that many terms gives us a good approximation of F−1. This is also demonstrated by the

experimental result of Figure 6.4a where we compare the result of the influence maximization

on the WikiVote network with diameter 15, with actual F−1 and its approximation for different

T ’s. As discussed when T reaches to the diameter, the result of the algorithm that uses inverse

approximation coincides with the algorithm that uses the exact inverse.

Scalability. Finally to show the scalability of C2GREEDY we perform influence maximiza-

tion on networks with sizes up to 3×105. For speeding up the large scale matrix computation of

the Algorithm 3 we developed an MPI version of our code which allows us to run C2GREEDY

on computing clusters. Figure 6.4b shows the running time of C2GREEDY for ForestFire net-

works of sizes varying between 1K to 300K with edge density 2.5 (i.e. ratio of edges to nodes)
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Figure 6.4: Timing for inf. max. in large scale networks by exploiting (a) inverse approximation and

(b) parallel programming. Results of (b) are on FF networks with edge density 2.5.

and effective diameter of 10. The MPI code was run on up to 400 cores of 2.8 GHz. As Figure

6.4b indicates even for the largest tested network with 0.3 million nodes and 0.75 million edges

C2GREEDY takes less than 10 minutes for K = 10.

To give a sense of our achievement in scalability we briefly mention the result of one of

the state-of-the-art methods: The scalable ConTinEst [64] runs with 192 cores for almost 60

minutes on ForestFire network of size 100K and edge density of 1.5 to select 10 seeds, where

our C2GREEDY finishes in less than 2 minutes for the similar ForestFire network (100K nodes

and density 1.8) with 200 cores.

6.5.4 Real Non-progressive Cascade
Collaboration and citation networks are two well-known real networks that have been studied

in social network analysis literature [24, 123]. Here we introduce a new network that represents

who-follows-whom (WFW) in a research community. Note that the nodes in the collaboration

and citation networks are authors and papers respectively but in WFW network nodes are au-

thors and edges are inferred from citations. A directed edges (u, v) means that author u has

cited one of the papers of author v which reveals that u follows/reads papers of v. Here we in-

vestigate the “research topic adoption” cascade. Researchers adopt new research topics during

their careers and influence their peers along different research communities. The process starts

with an arbitrary research topic for each author and they are influenced by the research topic
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Figure 6.5: In (a) we show the existence of non-progressive cascade of ML research topic where white

means all papers of the author is about ML. In (b) we compare C2Greedy result with other baselines

such as most cited author.

of those they follow and switch to another topic. For example a data mining researcher that

follows mostly the papers of machine learning authors is probably going to switch his research

topic to machine learning.

For illustration, we consider only the authors who have published papers in Machine Learn-

ing (ML) conferences and journals in a given time period. For the list of ML related conferences

and journal we use resources of ArnetMiner project [119]. We consider each time step a year

and study the years 2001 - 2012. An author is an active ML author in a given year if at least

half of his publications in that year was published in ML venues. Figure 6.5a shows the change

in the percentage of ML publication of ML authors who has more than 70 publication in years

between 2001 and 2012. As Figure 6.5a suggests, cascade of ML research topic is a non-

progressive process and researcher switch back and forth between ML and other alternatives.

Among 1049 authors of Figure 6.5a about 400 of them are core ML authors who have rarely

published in any other topic, but the non-progressive nature of the process is more visible in the

rest (bottom part of Figure 6.5a).

Next we perform influence maximization on the inferred WFW network which we call

MLWFW network. We extract the MLWFW network from the combined citation network of

DBLP and ACM which is publicly available as a part of ArnetMiner project [119] and learn the
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edge weights similar to the weighted cascade model of [24]. The MLWFW network of 2001 -

2012 time frame consists of 10604 authors and 168918 edges. Figure 6.5b compares the result

of influence maximization using C2GREEDY and other baselines. Note that other than regular

baselines in this specific domain we have another well-known method which is “most cited

author” that is equal to selecting authors with highest weighted in-degree in MLWFW network.

As Figure 6.5b illustrates, C2GREEDY outperforms all of the other methods. Note that the list

of K most influential authors in this experiment means that “if” those authors were switching

to the ML topic completely (becoming a member of seed set S) they would make the topic

vastly popular. Therefore, although the seed set contains the familiar names of well-known

ML authors (e.g., Michael I. Jordan and John Lafferty in first and second places), sometimes

we encounter exceptions. For example, in the list of top 10 authors selected by C2GREEDY

we have “Emery N. Brown” who is a renowned neuroscientist with publications in “Neural

Computation” journal.

6.6 Proofs

6.6.1 Proof of Theorem 1

For proving this theorem we need the following lemmas.

Lemma 6.4 When an interior node s is added to the current absorbing set S, the new funda-

mental matrix F can be calculated from the previous one using the following equation:

F
S∪{s}
ij = FSij −

FSisF
S
sj

FSss
,

Proof: The proof is straightforward based on Schur complement theorem [124]. This lemma

helps avoiding the matrix inversion required for computing the new FS∪{s} whenever an interior

node s is added to the seed set S.

Lemma 6.5 The expected number of passages through an interior node and the expected num-

ber of passages through its interior neighbors has the following relation:

FSij =


∑

k F
S
ikR

S
kj i 6= j

1 +
∑

k F
S
ikR

S
kj i = j
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Proof: We know FS = (I−RS)−1. Start with (I−RS)−1(I−RS) = I and after multiplication

and rearranging we get to the lemma’s statement: FS = I + FSRS

Lemma 6.6 Starting from node i the absorption probability by node s, when S ∪ {s} is the

absorbing set, can be obtained from the expected number of passages through node s when it

was not absorbing:

Q
S∪{s}
is =

FSis
FSss

. (6.15)

Proof:

Q
S∪{s}
is =

∑
j∈V\{S∪{s}}

F
S∪{s}
ij B

S∪{s}
js

=
∑

j∈V\{S}

F
S∪{s}
ij RS

js

=
∑

j∈V\{S}

(FSij −
FSisF

S
sj

FSss
)RS

js

=
∑

j∈V\{S}

FSijR
S
js −

FSis
FSss

∑
j∈V\{S}

FSsjR
S
js

= FSis −
FSis
FSss

(FSss − 1)

=
FSis
FSss

,

where the third and fifth equalities come from lemma 1 and lemma 2 respectively.

Proof of Theorem 1 is simply an instantiation of Lemma 3 for the case that we add node

s as the first seed to the network and get Q{s}is =
F∅is
F∅ss

, where ∅ emphasizes that the bias node

is the only boundary. Note that all of the three lemmas are general in a sense that absorbing

set can contain any type of boundary points, including zero-value node like the bias node and

one-value node like a seed node.

6.6.2 Proof of Theorem 2

Proof: Consider an instance of the NP-complete Vertex Cover problem defined by an undi-

rected and unweighted n-node graph G = (V, E) and an integer k; we want to know if there

is a set S of k nodes in G so that every edge has at least one endpoint in S . We show that this
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can be viewed as a special case of the influence maximization (6.9). Given an instance of the

Vertex Cover problem involving a graph G, we define a corresponding instance of the influence

maximization problem under HC for infinite time horizon, by considering the following settings

in (6.1): (i) ωij = ωji = 1, if edge (i− j) ∈ E , otherwise ωij = ωji = 0, (ii) bias node’s value

is zero b = 0, and (iii) βi for all i’s are equal to a known β. Note that since each interior node

is connected to the zero-value bias node with edge weight β it cannot have value larger than

1 − β. Hence, if there is a vertex cover S of size k in G, then one can deterministically make

σ(A,∞) = k + (n− k)(1− β) by targeting the nodes in the set A = S; conversely, this is the

only way to get a set A with σ(A,∞) = k + (n− k)(1− β).

6.6.3 Proof of Theorem 3

As mentioned in Section 6.3.3 when t → ∞ superposition principle applies for HC model.

We exploit this fact to prove the submodularity of influence spread. First note that σ(S,∞)

computed from (6.8) is the sum of node values and since the conic combination of submodular

functions is also submodular it is enough to show that each node value, i.e., v(i) is submodular

to proof Theorem 3. Here we need to work with the general set of bias nodes (compare to

single bias node b) which we call ground set G. We introduce a new notation where the value

of node i is shown with vS,G(i). Also seed nodes can have arbitrary value of ≥ b instead of all

1 values.For proving the submodularity of v(i) we should prove:

vT ∪{s},G(i)− vT ,G(i) ≥ vS∪{s},G(i)− vS,G(i), T ⊆ S (6.16)

We invoke superposition to perform the subtraction:

v{svL},G∪T (i) ≥ v{svR},G∪S(i), T ⊆ S (6.17)

where vL and vR emphasize that the value of the new seed node is different in left and right

hand side and is qual to vL =
(
1−vT ,G(s)

)
and vR =

(
1−vS,G(s)

)
. Note that vL ≥ vR since

T ⊆ S . We can not compare the value of nodes in two different networks unless they share

same grounds and seeds with possibly different values for each seed. Therefore, we try to make

the grounds of both sides of (6.17) identical by expanding the LHS of (6.17) using superposition

law [125]:

v{svL},G∪T (i) = v{svL},G∪S(i) + vD,G∪S∪s,(i) (6.18)
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where D = S − T . Although second term of (6.18) is complicated but for our analysis it is

enough to note that it is a non-negative number α ≥ 0. Now the submodularity inequality (6.16)

reduces to:

v{svL},G∪S(i) + α ≥ v{svR},G∪S(i) (6.19)

Now both sides have the same set of sources and grounds. Noticing that the value of the source

in LHS is larger than RHS, i.e., vL ≥ vR, and α ≥ 0 completes the proof.



Chapter 7

Conclusion

In this thesis, we presented our research in the domain of high dimensional problems in both

discrete and continuous cases. For continuous problems, we focused on the structured linear

regression where the structure is induced by a norm. In discrete problems, we studied a sub-

modular maximization problem with cardinality constraint.

Chapter 3 presented a simple estimator for joint estimation of shared and private parameters

of data sharing model. We show that the sample complexity of our estimator for estimation

of the shared parameter depends on the total number of sample n. In addition, the shared

parameter error rate decays as 1/
√
n. These results indicate that our estimator really benefits

from the pooled data in estimating the shared parameters. Both sample complexity and upper

bound of error depend on the maximum Gaussian width among the spherical caps induced by

the error cones of different parameters.

In Chapter 4, we investigated the consistency of the regularized estimators for structured

estimation in high dimensional scaling when covariates are corrupted by additive sub-Gaussian

noise. Our analysis holds for any norm R(·), and shows that when an estimate of the noise co-

variance is available, our estimators achieve consistent statistical recovery, and recently devel-

oped methods for sparse noisy regression are special cases. Finally, in the presence of additive

noise, our method is stable, i.e., selects the correct support.

Chapter 5 moves to a more applied direction and uses tools from sparse coding and dic-

tionary learning to perform tweet sentiment analysis. We presented a complete framework

for tweet sentiment analysis in which we covered steps that should be preformed before any

114
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sentiment extraction. We formulated the sentiment analysis as three sequential 2-class classifi-

cations. In the first step, we separate tweets that are about the topic of interest and then filter out

tweets that do not contain any emotion. Finally, we perform sentiment analysis on the resulted

collection of tweets. Results of several classification algorithms were presented in both orig-

inal space, i.e.,bag-of-words feature space and compressed space. Compression is performed

using random reconstructible projection borrowed from compress sensing literature. Empirical

results show that learning in compressed domain (compressed learning) is possible. Also, we

presented a modification of all classifiers (i.e., NB, SVM, KNN and DL) that can deal with our

weighted data label. Finally, we supplemented our per-tweet analysis with spatially aggregated

results and showed that our approach also works well for batch-tweet analysis.

Lastly, in Chapter 6, we introduced the Heat Conduction Model which can capture both

social influence and non-social influence, and extends many of the existing non-progressive

models. We also presented a scalable and provably near-optimal solution for influence maxi-

mization problem by establishing three essential properties of HC: 1) submodularity of influence

spread, 2) closed form computation for influence spread, and 3) closed form greedy selection.

We conducted extensive experiments on networks with hundreds of thousands of nodes and

close to million edges where our proposed method gets done in a few minutes, in sharp con-

trast with the existing methods. The experiments also certified that our method outperforms

the state-of-the-art regarding both influence spread and scalability. Moreover, we exhibited

the first real non-progressive cascade dataset for influence maximization. We believe that our

method removes the computational barrier that prevented the literature from considering the

non-progressive influence models.
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