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Abstract

Mental health disorders are the leading cause of disability in the United States and

Canada, accounting for 25 percent of all years of life lost to disability and premature

mortality (Disability Adjusted Life Years or DALYs) [1]. Furthermore, in the United

States alone, spending for mental disorder related care amounted to approximately $201

billion in 2013 [2]. Given these costs, significant effort has been spent on researching

ways to mitigate the detrimental effects of mental illness. Commonly, observational

studies are employed in research on mental disorders. However, observers must watch

activities, either live or recorded, and then code the behavior. This process is often long

and requires significant effort. Automating these kinds of labor intensive processes can

allow these studies to be performed more effectively.

This thesis presents efforts to use computer vision and modern interactive technolo-

gies to aid in the study of mental disorders. Motor stereotypies are a class of behavior

known to co-occur in some patients diagnosed with autism spectrum disorders. Results

are presented for activity classification in these behaviors. Behaviors in the context

of environment, setup and task were also explored in relation to obsessive compulsive

disorder (OCD). Cleaning compulsions are a known symptom of some persons with

OCD. Techniques were created to automate coding of handwashing behavior as part

of an OCD study to understand the difference between subjects of different diagnosis.

Instrumenting the experiment and coding the videos was a limiting factor in this study.

Varied and repeatable environments can be enabled through the use of virtual reality.

An end-to-end platform was created to investigate this approach. This system allows

the creation of immersive environments that are capable of eliciting symptoms. By

controlling the stimulus presented and observing the reaction in a simulated system,

new ways of assessment are developed. Evaluation was performed to measure the ability

to monitor subject behavior and a protocol was established for the system’s future use.
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Chapter 1

Introduction

Early intervention is a key aspect of treating developmental disorders: the sooner a

medical professional can intervene, the higher chance of a positive outcome. However,

by the time symptoms are severe enough to be brought to medical attention, the most

ideal window for intervention may have passed. Hence, identifying precursors to devel-

opmental disorders has received great interest by the mental health field; risk markers

that indicate an elevated risk for development of a disorder. Risk markers form a broad

category that can include genetic, social, and/or behavioral deviations from the norm.

Determining and detecting risk markers is a long and arduous process, requiring

careful observation of subjects, both control and developmentally impaired. These ob-

servations are either made live in real-time by a trained individual or recorded for later

annotation. With real-time observations, quality is impaired by the need to make an-

notations concurrent with the behaviors being exhibited. Recordings help to alleviate

this problem, but require time consuming manual annotations which can be impractical.

Both methods also suffer from the problem of inter-rater variance: different individuals

may score the same markers differently.

Many advances in recent years have been made in the use of computer vision for

human activity monitoring. Methods have been introduced for face detection [3] and

tracking [4] with robust and fast performance. With the leveraging of GPUs deep-

learning of convolutional neural networks [5] has lead to great improvements in image

classification and detection allowing for robust detection of people and their surrounding

workspaces [6]. Tracking of humans in video and other sensors is a well studied topic

1



1.1. MOTIVATION 2

in computer vision both in images [7] as well as using multi-modal sensors [8]. While

computer vision methods such as these have been validated on larger data sets, they

still need to be tested and improved in different and challenging application domains.

A challenging application domain for computer vision is in mental health assessment.

Simply observing a subject using computer vision may not be enough if risk markers do

not present themselves during the observation period.

1.1 Motivation

Computer vision research has started to examine situations in which different techniques

can be applied to risk marker detection [9, 10, 11, 12]. Often times visually observable

risk markers are rare in occurrence. This can lead to both problems in data set collection

as well as missed opportunities for detection if the symptom doesn’t manifest itself dur-

ing the observed period. The primary method in which symptoms of mental illness are

assessed are through questionnaires answered by either the clinician, patient or persons

familiar with the patient’s ailment [13, 14]. This depends on several factors including:

the nature of the illness, ability to describe particular symptoms and age of the patient.

Visually observable risk markers and symptoms may not manifest themselves over an

observation period. However external stimulus from the environment and situations in

which the subject is participating may induce symptoms to occur. For instance, in the

case of excessive handwashing compulsions in relation to obsessive compulsive disorder

(OCD), the environment and situation of washing hands at a bathroom sink can trig-

ger compulsive behavior. This presents an ecological approach, recreating situations

and surroundings, to mental health assessment with the desire to capture potential risk

markers and symptoms in a timely manner.

Virtual reality and augmented reality systems offer a medium for enabling this eco-

logical approach by providing reconfigurable ways in which to engage patients effectively.

An effective system must be able to present a symptom eliciting environment while al-

lowing the subject to interact with the environment in a natural way. In recent years

commercial depth sensors and head mounted displays (HMD) have become prevalent to

the point of enjoying commercial success outside the research community. HMDs offer

an immersing virtual reality experience while not providing much in the way of user

2



1.2. THESIS STATEMENT 3

input. Commercial depth sensors provide a means of real-time 3D sensing allowing for

natural user interaction. However, in order to use both of these technologies together

in a natural way these technologies need to be registered to each other. Once registered

together this opens up the possibilities for greater immersion in augmented/virtual re-

ality (AR/VR) experiences displayed in the HMD by making use of a RGB+D sensor

with known solutions for full body tracking [15].

This technology promises great advances in the area of human-machine interaction

with a plethora of emerging applications. A significant advantage of this approach is its

potential to combine the best of two technologies providing a result that offers simul-

taneously visual stimulation and physical interaction inside the virtual world. Without

the use of additional hardware such as wearable sensors or external interest point mark-

ers, the participant will be able to experience interactions more naturally. Efficient

techniques in human activity monitoring using vision will be required order to enable

this interaction as well as further analysis.

1.2 Thesis Statement

An application of this combined RGB+D sensor and HMD system is in mental health

assessment. A subject wearing an HMD displaying an augmented reality environment

can be elicited particular stimuli through the HMD. Their viewpoint with regards to the

stimuli can be measured using the HMD and their movements tracked by the RGB+D

sensor. A rudimentary version of this has been performed without the immersive quali-

ties of the proposed system [16, 17]. This thesis seeks to present a way in which symptom

triggering stimulus can be provided in a controlled setting which can then be observed

by a computer vision system. In effect this closes the loop for assessment by providing a

way to track responses to precisely controlled stimuli. This allows for a new framework

for mental health assessment where the clinician can work with their patients through

constructed virtual experiences and collect precise data on how they react to those ex-

periences. Certain conditions will be more amenable to this framework than others.

Traditionally a clinician would either have to recreate the situation in the real world or

have the patient recall their past experiences for assessment. This thesis also presents

new ways of interacting in virtual environments using a computer vision system that

3



1.3. APPROACH 4

does not rely on worn devices or an articulated model for part of the subject’s body.

This work, in an effort to improve on the current state of the art, aims to prove the

following thesis: Immersive environments and interaction aided by computer vision are

a valid avenue for exploration in mental health assessment.

1.3 Approach

In order to explore the merits of using immersive environments and computer vision for

mental health assessment the following tasks were performed:

• Reviewed the relevant literature with regards to mental health assessment, com-

puter vision, activity recognition, and immersive environments in Chapter 2.

• Explored the applicability computer vision to mental health assessment by using

techniques to distinguish different symptoms known to co-occur with autism in

Chapter 3.

• Investigated how environment and place can be used in mental health assessment

as well as developing techniques to make observations about the activity being

observed in Chapter 4.

• Designed and developed a system for allowing arbitrary virtual environments to

be used and interacted with for mental health application domain in Chapters 5

and 6.

• Validated the measurement capabilities of an instance of the system with one user

over several trials and established a protocol for the system’s future use in Chapter

7.

1.4 Contributions

The contributions that will be presented in this thesis are described here:

• Established an assessment of the state of the art in computer vision, behavior

imaging and AR/VR for mental health treatment and assessment.

4
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• Demonstrated the applicability of computer vision methodologies to the mental

health domain by being able to classify symptoms related to autism in video.

• Developed a method for assessing OCD related behaviors which used the scenario

and environment around the subject to elicit those behaviors.

• Developed a method for registering RGB+D sensors to HMD systems with mini-

mal additional modification.

• Presented a method for extending densely sampled trajectory features for use in

scene flow data.

• Provided a framework for further development of mental health assessment sce-

narios using immersive environments with natural interaction.

5



Chapter 2

Literature Review

In this section background material for several different aspects of this work is discussed

ranging from virtual reality, to mental health assessment, to the computer vision and

machine learning techniques that can be used to create an understanding of observed

symptoms. The categorization serves to delineate between the diverse topics investi-

gated.

2.1 Visually Observable Mental Health Risk-Markers

Risk markers and symptoms for mental illnesses manifest themselves in different ways

some of which are observable visually allowing for non-intrusive screening. Observing

these can be one source of diagnostic information as part of an involved assessment.

This is especially true in cases where risk-markers can be described in an objective

and quantifiable way. Visually observable risk markers and symptoms are present for

several mental illnesses including: obsessive compulsive disorder (OCD), schizophrenia

and autism spectrum disorder.

Obsessive-compulsive disorder is an impairing anxiety disorder that affects 2-3%

of the adult population. The disease is characterized by having unwanted, intrusive

thoughts (obsessions) and/or ritualistic behaviors (compulsions) whose purpose might

be to counteract the obsessions [14]. Like most mental illnesses, it is currently assessed

6



2.1. VISUALLY OBSERVABLE MENTAL HEALTH RISK-MARKERS 7

through different clinical measures that take the form of interviews, checklists and self-

reporting. In children, one of the most well known measures is the Children’s Yale-

Brown Obsessive Compulsive Scale (CY-BOCS) [18] checklist. Different aspects of this

disorder are visually observable. Some patients have a compulsion to ordering, arranging

or symmetrizing items in a particular way [19]. For others, obsessive and meticulous

hand washing is a compulsion. These are behaviors that are sometimes also exhibited

by a normative population and observing the differences between populations may serve

to delineate a difference.

Psychiatric researchers have reported being able to distinguish in video between

a preschizophrenic subject and those who would not [20, 21]. Walker et al. [20] as-

sessed home movies of subjects (infancy to age 15) who would later be diagnosed as

well as healthy siblings and family members. The videos were coded by raters, blind

to the diagnosis, looking for examples of: neuromotor abnormalities, motor skills, and

infant motor skills. This study found a significant correlation between high frequency

of observations of neuromotor abnormalities and the eventual diagnosis of schizophre-

nia. Neuromotor abnormalities found in the preschizophrenic subjects included: spastic

movements, postural abnormality of the trunk or legs, and musculoskeletal abnormali-

ties. In [21], a longitudinal study used videos of Danish children (ages 11-13) recorded

in 1972 along with information about the psychological outcomes of the subjects 20

years later. The researchers found that the subjects who were eventually diagnosed

with schizophrenia had scored lower on their socialability rating. The difficulty with

such an assessment however, is in the subjectivity of social behavior. Observation of

neuromotor abnormalities are perhaps the best candidate for automatic observation.

There are neuromotor precursors to autism spectrum disorder as well. In psychiatric

literature, the term motor stereotypies typically describes a class of actions performed

by both normally developing and at-risk children which are: purposeless, repetitive,

and suppressible. While these behaviors occur in both normal and at-risk populations

they are still of interest to the psychiatric community, as better understanding is essen-

tial for early diagnosis and treatment [22]. Goldman et al. [23], specifically investigate

motor stereotypies exhibited by children with developmental disorders. In their study

they found that children with autism had a greater number and variety of stereotypies

when compared against children with other development disorders. Singer et al. [24]

7



2.2. UNDERSTANDING HUMAN ACTIVITY IN VIDEO 8

attempts to provide a more precise description of the kinds of stereotypies. A common

theme in these works is an acknowledgment that motor stereotypies still have a very

elastic definition but that their presence as an observed behavior warrants further in-

vestigation in the context of understanding their link with neurological disorders. The

visually observable risk-markers and symptoms discussed here only represent a portion

of what can be observed and viable as a tool in psychiatric assessment. In all of the

work discussed in this subsection, the visual observations were recorded manually. The

following subsection discusses automatic approaches via computer vision.

2.2 Understanding Human Activity in Video

Being able to automatically identify visually observable risk-markers requires methods to

understand human activity. Several methods have been suggested for identifying salient

interest points in video. One popular approach, [25], finds space-time interest points

using a 3D version of the Harris corner detector at different scales along a video volume.

Willems et al. [26] uses an approach which involves computing the Hessian at each point

along the space-time cube and using the determinant of the Hessian to denote saliency,

or interest points in the video for further processing. Other approaches take an even

simpler route. For instance, in [27] Castrodad employs a temporal differencing scheme

across all of the images in a video, with interesting points then detected by retaining

space time volumes that exceed a certain threshold. In each method a decision is made

to select only the most salient of regions. Dense sampling is an alternative to reduce

the number of feature points in a data-agnostic way, where interest points are sampled

at regular intervals at a resolution less than the original spatio-temporal resolution of a

video [28, 29].

Given space-time interest points, different methods have been employed to describe

the appearance and motion present at or around the interest points. Histogram of

Oriented Gradients (HOG) [30] and Histogram of Oriented Flow (HOF) [31] features are

used alone and in combination by Laptev in [32]. HOG effectively captures appearance

information in a compact way by storing gradient orientation information on an image

in histograms. Optical flow methods estimate the apparent motion present between

images which are encoded as a histogram to make HOF.

8



2.2. UNDERSTANDING HUMAN ACTIVITY IN VIDEO 9

In [27], Castrodad uses only the raw intensities of the temporal difference values,

yielding decent results, likely due to the hierarchical dictionary learning framework

employed. Willems et al. [26] compute a modified version of SURF features on their

detected interest points. An exhaustive summary of methods is not given but a recent

survey on human activity recognition can be found in [33].

Wang, H. et al. [29] examine some of these interest-point detector and feature de-

scription combinations in a human activity classification context. The standard bag-

of-words model was used to describe the video sequences. The bag-of-words model

compactly describes a large quantity of feature descriptors by assigning each to differ-

ent “bags” of representative descriptors and relating this via a histogram. Bag-of-words

and alternative pooling, encoding and normalization approaches are explored by Wang,

X. et al. in [34].

Recent success using deep convolutional neural networks for image classification

[5], scene-labeling [35] and object detection [6] has inspired their investigation for use

in activity description in video. A natural extension is to apply this convolution to

not only space but time as well to create 3D convolutional networks as was done in

[36, 37, 38]. A challenge with this approach is finding enough labeled data to prop-

erly train such a network. In [39] the relationship of encoding temporal information

for activity classification in the context of convolutional networks was explored. They

found that while improvements could be gained through properly incorporating tempo-

ral information, the traditional CNN approach, when matched to activity classes, still

performed competitively. Optical flow-based features are often used to augment these

different approaches such as in [37, 40, 38, 41] to improve performance. Their use varies

between network architectures. CNNs have been examined in the more complex task

of detecting an activity both spatially and temporally as well. In [41] a two stream

approach is used to detect activities. Being able to identify and localize human actions

in video is still very much an active research topic.

9



2.3. BEHAVIOR IMAGING 10

2.3 Behavior Imaging

In [42], Laptev et al. used space-time interest points as correspondences when identifying

and segmenting out periodic motion from a scene. Wang, P. et al. [43] use HOF fea-

tures on interest points to examine the quasi-periodic nature of actions in social games

performed between parents and their infant children. Other works have observed peri-

odic motion in video using a more holistic approach. Cutler et al. [44] present an early

work on examining self-similarity occurrence maps for the purposes of periodic motion

analysis. Junejo et al. [45] expands on this by developing a view-invariant descriptor

for the purposes of action recognition.

In [10], Rehg et al. monitor a professional administering the Rapid ABC exam for

Autism Spectrum Disorder to a child subject. The work examines methods for predict-

ing the subject’s engagement in the activity using audio and visual information. While

the Multi-Modal Dyadic Database (MMDB) used in that work is publicly available, it

does not contain examples of the stereotypies examined in the initial findings of this the-

sis. Hashemi et al. [9] focus on engagement of the subject being examined in a protocol

similar to the Rapid ABC. Their method focuses on modeling the appearance of body

part landmarks on the subject’s face to measure the exact orientation of the face relative

to an object. Their work also examines a separate risk-marker of gait asymmetry in a

subject using body pose tracking.

Other works have also examined stereotypies using computer vision. In [12], Ciptadi

et al. tackle the task of recovering a queried stereotypic activity performed by the same

actor in other sequences. Their work focuses on the activities: jumping up from chair,

jumping on the floor, and paddling movement of the hands, whereas our work focuses

on activity classes with more subtle motion patterns (see Figure 3.2). Rajagopalan

et al. [11] use the detector and descriptor of [25] to classify motor stereotypies in a data

set comprised of YouTube videos of children at various ages. We compare our methods

on the data set of [11] as well as our own data set.

2.4 AR/VR and Mental Health

Many VR systems using HMDs need to employ some form of calibration in order to

be used in a natural way. Perhaps the most relevant work related to this thesis are

10
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systems which need to localize an HMD relative to some camera. An early system by

Kato et al. [46] used fiducial markers to calibrate an HMD for a VR video conferencing

system. These markers also served as a reference point for calibrating their camera to

the system. State of the art methods use infrared optical tracking as well as on board

sensing from the HMD to achieve very accurate results, with many commercial systems

already available [47]. These systems however, can be quite expensive and are often not

portable. Furthermore while these systems can be used for localizing both an HMD and

an RGB+D sensor, they require extra equipment and calibration of their own systems.

Therefore focus should be on systems which directly incorporate the RGB+D sensor.

There are a few examples that bring RGB+D or Depth sensors and HMDs together.

However these systems remove the challenge of localizing the HMD to the depth sensor

by rigidly attaching them together. Suma et al. [48] use a motion capture system to track

the HMD inside of a large room size workspace. The points from the rigidly attached

RGB+D sensor are then projected into the virtual world using the known configuration

of the HMD as sensed by the motion capture system. The Ovrvision product [49] is a

stereo vision system capable of being mounted on an HMD. It offers both see-through

HMD capabilities and the possibility for leveraging stereo vision for interaction.

The tracking methodology for the HMD sensor used in our experiments is discussed

in [50]. That work does not include the position camera and LEDs that were introduced

in the Rift DK2 version. It is believed that this tracking system uses actively modulated

LEDs on the HMD to provide unique signatures for the position camera to identify

points on the HMD. Doing this simplifies the registration procedure allowing for fast

acquisition of the HMD by the camera.

Consumer-grade yet powerful solutions for natural user interaction such as the Mi-

crosoft Kinect and ASUS Xtion along with middle ware such as the Microsoft SDK and

NITE have set a new bar for the field. These solutions have an advantage in that they

don’t require the user to wear any additional components to accomplish interaction.

The more sophisticated parts of the middle ware, such as human pose tracking [15], do

make assumptions on the user based on their learned models. There have been attempts

to move away from these assumptions and still provide meaningful user interaction.

In [51] calibrated RGB+D input is used to crudely estimate scene flow (pixel-wise

velocity in R3) using image-based optical flow [52] combined with depth information.

11
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This provides an estimate of point-wise forces acting on objects. They also present

a scheme for interpreting grasps of 3D objects in the presence of these forces. This

is used in conjunction with their see-through AR system called HoloDesk. The entire

system does not take into account recent advances in HMD technology and their sensing

methodology makes the assumption that all interaction will occur in the fixed workspace

of the HoloDesk. Scene flow-based force interaction for AR was extended in [53] to a

CAVE environment using multiple calibrated RGB+D sensors to provide model-free

interaction for an entire human body.

Having an immersive and portable VR system can further enhance our understand-

ing of mental health. One area where VR has found relatively large interest is in

exposure therapy. In fact it has had over ten years of study [54]. Exposure therapy

involves patients confronting anxiety triggering stimuli in a controlled environment as

a way to lessen the fear effect overtime. VR based exposure therapy has been shown

to be effective in treating PTSD caused by combat related stress [55, 56, 54]. Potential

treatments for anxiety and phobia related disorders using such techniques have also been

explored with promising potential [57]. VR has been used in management of persistent

pain as well. Schroeder et al. [58] use VR along with haptics to create different user

experiences to shift the subject’s focus away from pain. They explored three different

virtual environments for managing pain. Their approach also provides feedback to the

user that guides them through the session. This work takes advantage mobile phone-

based VR solutions that are more portable and cost effective. While these examples of

VR’s use in mental health have focused on treatment, assessment has been explored as

well to a lesser degree.

What follows are systems that have used VR to further understand mental illness

by simulating environments in a controlled way to elicit a response. Some studies have

simply used a computer monitor and a standard PC interface to elicit responses offering

the lowest level of immersion.

Van den Heuvel et al. [59] subjected participants to ‘clean’ and ‘dirty’ visual stimuli

on a monitor and measured their responses using a PET scan. This was used to local-

ize structures in the brain that could be influencing the OCD-diagnosed participant’s

symptoms. In a pilot study Simon et al. [60] attempted to create a standard set of

images and videos that provoke a strong response for a wider range of obsessions and

12
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compulsions.

More recent approaches have begun to fully incorporate virtual reality. Kim et al. [17]

used an HMD, with rotational tracking, and a joystick to simulate and interact a virtual

environment as part of an obsessive-compulsive disorder (OCD) study. The participants

were asked to complete two sets of tasks in the virtual environment as prompted by a

virtual display. They were then asked to go back and check on their accomplishment

of the first set of tasks. Using data from the HMD as well as their position in the VR

world, the study tracked the frequency of checking behaviors. They claim that this

correlated positively to self-reporting of the subjects (OCD and healthy controls). A

summary of their entire work and a survey on VR for OCD research can be found in

[16].

Nolan et al. [61] have also taken what they refer to as a “ecological approach to

neurophysical testing” by using virtual reality to simulate everyday environments. In

their study, they replicate the VIGIL-CPT [62] exam for testing attention and inhibition

in subjects. The subjects are situated in a virtual classroom in which the stimuli that

they are to focus on is displayed on a virtual whiteboard. Various distractions of the

classroom are also simulated. Through the pose of the HMD they are able to gauge

how well the subject is performing the test. They found that the method had similar

effectiveness to the VIGIL-CPT exam. However due to the limited sample size they

could not confidently make an assessment about how attention improves with the age

of the subject. Several other studies [63, 64, 65] have made use of the virtual classroom

paradigm of further evaluating its used for studying attention and inhibition in subjects.

Some works have started to incorporate physical interaction into their virtual envi-

ronments for mental health assessment. Parsons et al. [66] propose a system in which

the user is presented with a virtual grocery store that they must navigate and collect

items to assess various mental abilities. To enhance immersion they propose tracking

the hand of the user using a infrared based tracking system. The system registers that

the hand has grabbed something by detecting a gesture. The physics of the hand object

interaction however are not modeled.

Our proposed system would enhance works of the style described above by incorpo-

rating marker-less depth sensing as a natural input medium.

13
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2.5 Literature Summary and Limitations

Visually observable symptoms for different mental illnesses do exist and computer vi-

sion researchers have started to apply research from their discipline to these challenges.

A majority of the work so far has been in parsing behaviors associated with Autism

Spectrum Disorders (ASD). The use of virtual reality environments for mental health

assessment has been explored to some degree as well. However in these cases, input

hasn’t come from natural movement but from mouse or joystick. VR and AR systems

are increasingly becoming better at presenting users with configurable immersive en-

vironments. This requires precise calibration with sensing and display components of

their systems. Furthermore natural methods of interfacing using these systems have yet

to be applied to mental health assessment.

The state of these current methods provides the basis for this thesis. While each of

these components may work well in their own domain their connection to each other

warrants study.

14



Chapter 3

Activity Classification

This chapter describes the approaches explored for classifying different motor stereotyp-

ies as they appear in video sequences. It serves as an exploration into using computer

vision techniques in mental health assessment. Providing classification methods for

known neuromotor abnormalities is an important step in a detection pipeline. A view-

invariant feature is described which is amenable for use in conjunction with multi-view

tracking systems. As a comparison, a state-of-the-art feature description intended for

single views is also presented. Two methods for classifying the presented feature de-

scriptions for video are discussed and briefly compared.

3.1 Feature Description

This section covers the different feature descriptions explored during the initial findings.

The first is a viewpoint invariant feature description amenable to inclusion in multi-

camera systems such as [67]. The other is a state of the art single viewpoint feature

description.

3.1.1 Log-Polar Histogram Features

Several feature descriptions have been suggested for encapsulating the essential infor-

mation of video data for action classification. This subsection provides a description of

a view-invariant feature description proposed by Junejo et al. [45].
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Designing a view-invariant feature description requires being able to describe similar

information from multiple camera viewpoints. This particular description is based on

the observation that, while actions may appear different due to viewpoint changes, the

recurrence of the appearance remains similar. A frame-wise self similarity matrix (SSM)

can capture this recurrence and is the basis for the feature description described in this

section.

For a given nv frame long video sequence V = {vi}nv
i=1, where vi ∈ RW×H is a width

W × height H image frame, a self-similarity matrix S is computed by first computing a

frame-wise feature description on each vi. The self-similarity matrix is then constructed

on the feature descriptions by performing an all-by-all frame comparison using the

Euclidean distance between vectorized versions of the feature descriptions (referred to

as di). This can be represented as

S(i, j) = ‖di − dj‖2, (3.1)

where S(i, j) represents the element in the ith row and jth column of the nv × nv self

similarity matrix for V .

Two different frame-wise feature descriptions were chosen for investigation. The

first, optical flow, was chosen since stereotypic behavior will likely create motions on

the image plane which will repeat with time. Optical flow was computed using the

method of Bruhn et al. [68]. Figure 3.1(a) depicts an optical flow self-similarity matrix

for the hand-flapping action. Here, one can see the quick and repetitive change of the

optical flow between frames associated with this particular action. In addition to optical

flow, we also incorporated the popular HOG [30] descriptor, to add an appearance-level

feature description. Figure 3.1(b) shows an example of the self-similarity matrix of HOG

features between frames.

In order to compactly describe a self-similarity matrix the log-polar histogram (LPH)

approach was used. A semi-circular window of radius r is situated at a particular frame i

on the diagonal of a self-similarity matrix. The window is aligned along the diagonal. It

is split up into three equally spaced concentric regions, with the last two sections being

partitioned into five equally angularly spaced regions. This creates nw = 11 regions

inside of the window. Inside of each region a histogram of nh = 8 bins discretizing

the directions of the gradient of the self-similarity matrix is computed. Areas of the

16
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(a) SSM of Optical Flow (b) SSM of HOG

Figure 3.1: Example self-similarity matrices for the hand-flapping stereotypy. The
degree of similarity between frames is color coded with dark blue for most similar varying
to dark red for least similar.

window that fall outside of the matrix are assigned a gradient of zero. The histograms

are normalized such that the bins sum to one. Concatenating the histograms together

leads to an nh · nw dimensional feature vector encapsulating the self-similarity matrix

for a particular window size for a particular frame. Since the window in which an action

is performed is not known ahead of time, the LPH descriptor is computed for different

window sizes and then concatenated to form the final descriptor. The window sizes used

were r = {7, 14, 28}.
Each frame-wise feature description yields its own self-similarity matrix over the

course of an action. They can easily be fused together by concatenating their resulting

LPH descriptors. However for computational efficiency reasons, it is also important to

examine their performances separately. In [45], different features are incorporated to-

gether using a multi-channel kernel for classification, however concatenation was chosen

here to allow for comparison between the chosen classification methods.

Performing the aforementioned process for each frame and on each frame-wise feature

self-similarity matrix yields a set of LPH descriptors for a video sequence. This can then

be used as input to a classification framework.
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3.1.2 Densely Sampled Trajectory Features

This subsection serves as a brief overview of the densely sampled trajectory (DST)

features [28] explored for classifying motor stereotypies in video. Unlike the previous

LPH features, DST features have largely been used for data sets containing actions

performed from a single view.

The tracked points from which the trajectories are derived are initialized at regular

pixel intervals J = 5 on the image frame. This sampling occurs at several different

scales to establish the densely tracked points. Dense optical flow is computed between

frames in the video sequence. The next location of the tracked image points is then

dictated by the flow vectors of the optical flow. Post-processing is done to remove

potentially erroneous tracked points. Static trajectories and trajectories containing

extremely large variations in position between frames are pruned. Additionally, the

length of the trajectories is limited to a fixed amount of frames T = 15. This ensures

that each tracked point is indeed the same feature point across time, otherwise the

errors can accumulate over time and possibly lose track of the point.

The remaining trajectories are themselves used as a feature. For a trajectory of

frame length T , there is a sequence of displacements on the image plane I, D =

(∆It,∆It+1, ...,∆It+T−1). This is then normalized by the l2-norm to yield D′. This

process in effect encodes the shape of the trajectory. This feature will be referred to as

the dense trajectory feature.

These trajectories can also guide sampling for additional features. Each trajectory

can be used to create a spatio-temporal volume by sliding an N×N window centered on

the trajectory across time. This volume can then be further separated into subvolumes

by discretizing the image space into nσ×nσ blocks and the temporal space into nt blocks.

This creates nt × nσ × nσ subvolumes along each trajectory in which local features are

computed. In the experiments the parameters N = 32, nσ = 2, nt = 3 were used.

As with the LPH descriptor, the local features are HOG and optical flow. Each

subvolume consists of T/nt images of size N/nσ ×N/nσ. Low-level image features are

computed on each of these images as normal (image gradients for HOG and optical flow

for HOF), however instead of binning these features across solely the image plane, they

are also binned across time. This means that the HOG or HOF feature for a particular

space-time subvolume will incorporate image gradient or optical flow information from
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several frames.

The final descriptor is computed by concatenating the histograms from each space-

time subvolume to create the dense HOF or dense HOG feature (depending upon the

image feature used). The dense HOG and dense HOF histograms are l2-normalized as

is done in [30] and [31].

Optical flow is also used to compute motion boundary based features [31]. In this

case, the components of optical flow between a pair of frames is split into feature images

U and V . The gradient orientation is computed on both images independently to identify

the boundary of motion changes. The intended effect is to negate consistent motion that

would not be removed with simply using only the dense optical flow. As with HOG

and HOF features, motion boundary histograms MBHx and MBHy corresponding to

feature images U and V are computed in each space-time volume along a trajectory

and normalized in the same way. MBHx and MBHy are concatenated by space-time

subvolumes and then by feature to form the dense MBH feature.

This process leads to a dense set of features for a given video. Therefore a rich set

of information is given as input to a learning framework.

3.2 Classification

Effective feature descriptions should capture discriminating aspects of the data they

are describing. These representations then need to be interpreted. What follows are

two classification methods used to interpret the feature descriptions in an efficient way.

Depending on the classification method additional preprocessing methods may need to

be applied.

3.2.1 Dictionary-Based Classification

A dictionary is a set of basis vectors that can be linearly combined into a weighted sum

to describe another vector. Recent work, such as [69] and [70], has gone into efficiently

learning dictionaries that describe a data set of vectors well, using a weighted sum of a

small subset of basis vectors.

In [71] Guha and Ward explore different methods for classification using dictionaries

determined for sparse representation of a signal. The first method explored is very
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similar to the bag-of-words classification approach. A dictionary is learned over the

entire training set that explains the training set using a sparse weighted sum of the

vectors in the dictionary. The activated coefficients for each example feature in a video

are then counted and stored as a histogram summarizing these activations over a video

for that feature set. These histogram features are then used as the input for training an

support vector machine (SVM) classifier. As the authors of [71] point out, bag-of-words

can be related to this method by restricting the sparse recovery to a single vector, also

known as vector quantization. However, the most successful approach examined focused

on learning dictionaries that sought to represent each class. This is the method that is

examined here.

A set of nk feature descriptors Xk = {xj,k}nk
j=1 can be computed from video sequences

of subjects exhibiting an action class k. A dictionary Dk is determined for each class k

that solves the problem

minimize
αk,Dk

nk∑
j

‖xj,k −Dkαj,k‖22 + λ‖αj,k‖1. (3.2)

Classification of a query video, with nQ features XQ = {xj,Q}
nQ

j=1, is determined by

selecting the class k that solves

minimize
k,α

nQ∑
j

‖xj,Q −Dkαj,k‖22 + λ‖αj,k‖1, (3.3)

for some fixed sparsity penalty λ.

Given an arbitrary data set it is difficult to choose the appropriate λ as well as

dictionary size. Therefore several possible values are tried and the parameters are

chosen that best meet the objective. The same parameters are used for each class.

Equations (3.2) and (3.3) are solved using the online dictionary learning framework

of Mairal et al. [70]. Solving Equation (3.3) is often referred to as the LASSO problem

and is solved using the Least-Angle Regression (LARS) algorithm of [72] and is known

to be very efficient. For details on how Equation (3.2) is solved, see [70].

3.2.2 Support Vector Machine (SVM)

In addition to classification by dictionary-learning, SVM classification using the one-

vs-one approach for multi-class classification was considered. The one-vs-one approach
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was used for multi-class classification with K classes where K(K − 1)/2 classifiers are

constructed to separate pairs of classes. The one-vs-one SVM classification problem can

be formulated as

minimize
wij ,bij ,ζij

1

2
(wij)T (wij) + C

∑
t

(ζij)t

subject to (wij)Tφ(xt) + bij ≥ 1− ζijt , if xt is in class i,

(wij)Tφ(xt) + bij ≤ −1 + ζijt , if xt is in class j,

ζijt ≥ 0.

Here, xt are the training examples, w is the linear separator, b is the offset and ζt are

the slack variables. C > 0 is a tunable parameter which expresses the trade-off between

the slack variables and the margin objective. The implementation provided by [73] for

solving this problem was used.

Rather than use the features described in Section 3.1 directly, the popular bag-

of-words framework [28, 29, 32, 45] is used to create histograms of features that are

used for classification. Features from a video are vector quantized, sum-pooled and

normalized by l1 to create a histogram. The dictionary used for vector quantization

comes from computing K-means on a subset of the training data. The number of

clusters is determined experimentally for each feature. It is important to note that

using the bag-of-words approach removes the temporal association between features in

much the same way that learning class dictionaries does.

Due to the histogram features used, the χ2-kernel , defined as

k(x, y) = exp

(
−γ 1

2

∑
i

(xi − yi)2

xi − yi

)
, (3.4)

was used to transform the data supplied to the SVM algorithm. This is a popular kernel

for bag-of-words feature data and was used in several works related to action recognition

including [28], [29], and [32]. The kernel is closely related to the χ2 distance measure

between frequencies.

Tuning parameters C, the SVM tradeoff parameter, and γ, the kernel scaling param-

eter, are selected by performing a grid search on the two parameters and selecting the

pair that maximizes the accuracy on 5-fold cross-validation on the training set. Cross-

validation is performed by partitioning the training set into n equal folds (sections) and
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Total Number of Subjects 29

Number of Samples Per Action

Hand Washing 37
Ear Covering 78

Hand Flapping 38
Shoulder Shrugging 115

Head Shaking 71
Total 339

Table 3.1: Data set summary.

holding out each fold for testing, while the classifier is trained on the remaining folds. In

other works, γ is set heuristically to the inverse of the mean distance between training

examples. However we found that this approach was not competitive with searching for

γ for either motor stereotypy data set.

3.3 Results

The methods discussed in the previous sections were applied to two video data sets.

These data sets capture different action classes as well as different scenarios for recording

while being in the same problem domain.

3.3.1 Laboratory School Data set

Experiments were performed on a data set that consists of videos recorded in a pre-school

classroom in order to test the performance of the various methods described previously.

Videos were recorded with IRB approval at the Shirley G. Moore Laboratory School; A

summary of the data set can be found in Table 3.1. Since the occurrence of the behaviors

intended for classification can be rare even in a clinical setting, a “Simon Says”-like

mimicry game was employed to elicit behaviors in normal children that approximate

motor stereotypies. The game consists of a leader who performs a particular action and

child participants who are instructed to mimic the actions performed by the leader.

The leader was instructed to perform actions that approximate the following stereo-

typic behaviors: ear covering, hand flapping, hand wringing/washing, shoulder shrug-

ging and head shaking (see Figure 3.2). However, pre-school children are not always
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good at doing as they are told and so adherence is poor. Only suitable examples of the

desired actions were included in the data set. Some actions such as “ear covering” are

shorter and were repeated several times throughout the course of the game, which is

one source for differing numbers of samples across classes. In addition to children not

performing the actions, the variance in how each child performs each action is large.

This is due in part to developing motor skills but also because the children are easily

distracted by the antics of their peers.

In order to perform classification, bounding boxes for each participant were manually

annotated, providing generous bounds to account for the high variability in actions. In

effect, this assumes ideal person detection, since the primary focus of the work is on

action classification. This is similar to other activity classification data sets with a single

actor in each clip.

Given the size of the data set, the methods were validated using Leave One Person

Out cross validation. For each individual subject, a set of classifiers was learned using

examples that did not come from that particular subject performing the action.

Each feature description was examined with both classification methods as well as

with select feature combinations that were guided by tractability and time constraints.

Figure 3.3 summarizes the accuracy for each combination tested. The results presented

in that figure use the optimal parameters for the appropriate method which were found

experimentally. For the dictionary-learning based classification approach the number of

dictionary atoms and the sparsity penalty parameter were varied. SVM-based classi-

fication required selecting the number of words for the bagging procedure. Figure 3.4

shows the effect of changing the number of words. It can be seen that the optimal word

size is clearly different for the LPH features and the DST features.

Figures 3.3, 3.5 and 3.6 show that the best performing method is learning the Dense

Trajectory features using an SVM with a χ2-kernel. Figure 3.5(b) shows the discrimi-

native ability of the classifier across all the action classes. This is advantageous as the

feature descriptor size for the Dense Trajectory can be smaller than that of the other

features depending on the size of nσ and nt.

Generally speaking, ear covering was the most difficult to classify amongst all op-

tions, being most often confounded with shoulder shrugging. This could be due to the

shoulders of the subject move as part of ear covering. Other pairs of classes such as
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(washing/flapping) and (shrugging/head shaking) were confounded to a lesser degree.

This is possibly due to similar motion.

While the view-invariant LPH features perform worse, they are still able to classify

a few action categories as evidenced in Figure 3.6. These results are improved by

combining the view-invariant features for appearance and motion into a single feature,

at least when using the dictionary learning based framework as seen in Figures 3.6(a)

and 3.6(b). Figure 3.6(c) shows that the recovery of the shoulder-shrugging action

improves with the combination of features.

3.3.2 Self-Stimulatory Behaviors Database

The SSBD is a collection of 75 videos from the YouTube.com website depicting three

different behaviors (Arm Flapping, Head Banging, and Spinning). Two of these behav-

iors (Arm Flapping and Head Banging) were explored in the previously discussed data

set as (Hand Flapping and Head Shaking). The labels used for performance analysis on

this data set are kept consistent with [11] for comparison. Unlike the previous data set,

these videos vary widely in duration, kind of camera being used, setting, and camera

pose. The videos are not clipped strictly to the activity being displayed. While the data

set provides these annotations, they were ignored to keep with the protocol presented in

[11]. Leave One Group Out cross validation was performed where 5 randomly selected

videos from each group were left out from training for each fold in a 5-fold procedure

(3 for 10-fold). The procedure for choosing parameters C and γ were identical to those

used for the first experiment. The trackers for the DST Features were initialized at

J = 25 pixels to allow for computations to be tractable.

Table 3.2 provides a comparison of the methods explored in this work with respect

to [11]. The results for [11] in Table 3.2 were performed using their code and data. They

were performed independently to avoid ambiguities in the cross-fold validation assess-

ment. Note an improvement in performance over [11] when using the Dense Trajectory

features. This suggests that such behaviors might be best characterized in video by

the point-wise trajectories of the appendages in question for the stereotypic behavior.

Somewhat surprisingly, the LPH features perform slightly worse than the others exam-

ined. Since the videos depict the subjects at different viewpoints the features should

exhibit additional robustness. However since these videos are not necessarily clipped
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some examples can have lighting or viewpoint changes which can confound the repe-

tition of features required for the SSM. While both the methods presented here and

the results in [11] have a high standard deviation, it is important to keep in mind the

high degree of variability in the data set itself; the videos come from Youtube and cover

broad examples of the action categories.

n-fold (%, σ) [11] SVM+DT SVM+HOG SVM+HOF SVM+MBH SVM+ALL SVM+LPH HOG SVM+LPH OF

5 52.0 (10.95) 56 (16.7) 34.7 (5.6) 44 (10.1) 30.7 (18.0) 42.7 (16.1) 48 (8.7) 36 (13.8)

10 28.7 (13.7) 50 (13.6) 36.7 (10.5) 43.3 (22.5) 30.0 (17.2) 45 (24.9) 46.7 (24.6) 36.7 (15.3)

n-fold (%, σ) [11] DL+DT DL+HOG DL+HOF DL+MBH DL+LPH HOG DL+LPH OF

5 52.0 (10.95) 49.3 (12.1) 42.7 (15.4) 54.7 (11.0) 49.3 (11.2) 53.3 (11.5) 38.67 (3.0)

10 28.7 (13.7) 46.7 (21.9) 48.3 (12.3) 50.0 (22.2) 53.3 (10.5) 53.3 (17.2) 40.0 (11.6)

Table 3.2: Classification accuracy results on the SSBD for both classification methods.

3.4 Summary

In this chapter, different methodologies for classifying motor stereotypic behaviors were

explored to varying degrees of success. Learning one-vs-one SVM classifiers on the Dense

Trajectory feature was found to work best on video data collected from pre-school age

children participating in a “Simon Says”-like game where children performed behaviors

designed to resemble common stereotypies. The method performs well despite large

age-related variability in the actions carried out.

The ultimate goal of this work is to develop this methodology to be appropriate for

use in a classroom and/or clinical setting. In the short term, this means incorporating

the techniques presented here with an installed system at the Shirley G. Moore Labora-

tory School. For these environments it becomes necessary to distinguish between what

appears to be non-stereotypic behavior and stereotypic behavior as well as being able to

classify which behavior is being exhibited. Such a technology can provide an early pas-

sive screening mechanism for neurodevelopmental disorders, bringing those potentially

afflicted to health care professionals faster to ensure improved prognosis.

Still this is not the only technique from computer vision that can be amenable to

mental health assessment. The next chapter explores a situation in which environment,

place and task are used to elucidate behaviors in OCD and healthy subjects. Computer
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vision methods are presented for automatically assessing part of their performance on

these tasks.

26



3.4. SUMMARY 27

(a)

(b)

(c)

(d)

(e)

Figure 3.2: Example image sequences for different motor stereotypies. Subfigures depict
ear covering (a), hand flapping (b), hand washing (c), shoulder shrugging (d), and
head shaking (e). Note the subtlety of actions (d) and (e). Faces blurred to preserve
anonymity.
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Figure 3.3: A comparison of accuracy rates across different feature combinations and
learning methods.

Figure 3.4: Accuracy results for different numbers of words.

28



3.4. SUMMARY 29

(a) Dense MBH (b) Dense Trajectory

(c) Dense HOF (d) Dense HOG

Figure 3.5: Confusion matrices for different DST features classified using a χ2-kernelized
SVM. Each row indicates the distribution for how each class is labeled.

(a) Optical Flow (b) HOG (c) HOG + Optical Flow

Figure 3.6: Confusion matrices for different LPH features classified using the Dictionary-
Based Approach. Each row indicates the distribution for how each class is labeled.

29



Chapter 4

Environments for Mental Health

Assessment

This chapter explores an ecological approach to mental health assessment. In the previ-

ous chapter certain behaviors were preselected and acted out by participants. While this

is useful for showing that such behaviors can be classified, an ecological approach may

induce such behaviors to occur naturally. Certain behaviors of obsessive-compulsive

disorder (OCD) were examined in verifying this approach.

OCD is an impairing anxiety disorder that affects 1-3% of youth. Children and ado-

lescents with OCD experience debilitating obsessions and compulsions that often dis-

rupt their daily activities and interactions. Many of these behaviors manifest themselves

through elements of the physical environment, and yet very little research has focused

on understanding how OCD relates to aspects of interior and exterior spaces. Previous

research has examined the relations between children with autism spectrum disorder

(ASD), which shares some overlapping features with OCD, and their interactions with

the physical environment [74, 75]. Much of this research is devoted to implementing

design and architectural strategies to enhance the physical environment to better facil-

itate social interactions and learning in children with ASD. A multidisciplinary study

was conducted at the University of Minnesota investigating the environmental factors

related to OCD provides the data used for this chapter [76].

The study observes youths with OCD and matched healthy controls engaging in
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everyday tasks. The tasks take place in the Travelers Innovation Lab in the Col-

lege of Design and are videotaped. The automated analysis of such videos can also

enable data analysis on a much larger scale. One of the tasks in the study is hand-

washing, as ritualistic handwashing is a common compulsion observed in individuals

with OCD. This work focuses on the analysis of handwashing videos recorded by an

overhead camera. Figure 4.4 depicts the handwashing station, which was only one

section of the exam room. A method is presented for automatically labeling differ-

ent steps of a handwashing activity from overhead videos. The labeled steps include:

turnsOnWater, turnsOffWater, appliesSoap and rinsesSoap. Areas of interest are

labeled a priori and tracked throughout the activity. Figure 4.1 shows an example

frame from one video with the areas of interest annotated. These steps were chosen

for their determinability and the availability of annotation from the study. Background

subtraction is then used to indicate when these areas of interest become activated. The

system is validated by comparing results to hand-labeled ground truth.

This following section provides a detailed explanation of our approach. The results

of applying our approach are then presented in Section 4.2 with conclusions and closing

remarks following in Section 4.3.

4.1 Approach

4.1.1 Participants

Videos come from a larger OCD study where 18 youths with OCD and 21 healthy

controls (males and females), ages 5-17, were studied. Mean age was 11.5 years for

OCD participants and 10.7 years for controls. There were no significant differences

between groups on age, gender, or ethnicity. Children with OCD had a mean score of

21.8 on the CY-BOCS, which is in the moderate severity range. Of children with OCD,

78% were receiving psychotropic medications and 61% were receiving therapy for OCD.

After obtaining written informed consent and assent, the project coordinator ad-

ministered the CY-BOCS assessment [18]. Parents completed the Child Obsessive-

Compulsive Impact Scale – Revised (COIS-R) and Behavioral Assessment System for

Children-2 (BASC-2), and children completed the COIS-R and Multidimensional Anxi-

ety Scale for Children (MASC-2). Participants completed tasks designed by the research
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Figure 4.1: Example of an annotated frame from one of the handwashing videos. Note
the additional red ROIs for the tracked soap dispenser objects.

team, including preferences of pattern images, free arrangement, arrangement in con-

trasting environments, and handwashing. The tasks required subjects to interact with

their physical surroundings and were expected to elicit observable behavioral differences

between OCD and control groups.

This work recorded handwashing at a portable sink and selected data for experiments

using automatic annotation. A downward-facing camera was placed above the sink

environment to observe the participants. Each video was cropped temporally to include

only the handwashing activity and cropped spatially to center the sink. This cropped

video was used as input to the automated annotation procedure. The algorithm was

used to detect four incident times: when the faucet is turned on (turnsOnWater), when

the faucet is turned off (turnsOffWater), when soap is applied (appliesSoap), and
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when soap is rinsed (rinsesSoap). Each video had regions for soap dispensers, sink,

and faucet handles which the authors manually annotated (see Figure 4.1). Not all

videos contained all of the annotated regions, but all possible regions are ‘soap’, ‘b soap’,

‘o soap’, ‘l handle’, ‘r handle’, ‘sink’, ‘towel’, ‘paper towel’, and ‘trash’.

4.1.2 Algorithm

The handwashing activity of interest consists of several substeps. Participants are ex-

pected to turn on the water, apply soap, lather the soap, rinse the soap, turn off the

faucet, and then dry their hands. Comparing these different aspects between healthy

controls and subjects with OCD can help determine important differences between the

two populations. For instance, a participant with a handwashing compulsion may spend

an abnormally long time lathering soap (measured as the time between appliesSoap

and rinsesSoap). Another commonly observed difference occurring for OCD patients

is spending extra attention in washing between fingers, both when applying soap and

drying. Each substep of the handwashing activity involves interactions with some object

in the environment. To apply soap, participants must interact with one of several pos-

sible soap dispensers (either a soap dispenser built into the portable sink or stand-alone

dispensers on the countertop). Participants must activate the faucet handles to turn

on the water, and they must put their hands into the sink bowl to rinse. Therefore,

the landmarks can be monitored to see when the participant interacts with them to

determine which step of the handwashing procedure the participant is doing.

The observed sink environment is assumed to be stationary and the background

is modeled using a multi-layer statistical approach [77]. The background subtraction

method uses local binary patterns and a photometrically invariant color measure to build

statistical models for each pixel. Given an image sequence, {It}t=1,...,N , the background

model at timestep t is defined asMt = {M t(x)}x, where x is a pixel in the image. The

per-pixel model is defined as

M t(x) = {Kt(x) , {mt
k(x)}k=1,...,Kt(x) , B

t(x) },

where Kt(x) is a scalar that denotes the number of mt
k(x) modes, and the first Bt(x)

modes represent stable background observations. Each mode is defined as

mk = { Ik, Îk, Ǐk,LBPk, wk, ŵk, Lk},
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where Ik is the average RGB vector, Îk and Ǐk are the estimated maximal and minimal

RGB vectors, LBPk is the average local binary pattern, wk denotes the weight factor,

and ŵk is the maximal value to which mk belongs with k = 1, ...,Kt(x). Lk = 0 implies

the mode does not belong to a stable background layer.

Figure 4.2: Example of a background subtraction result (right) from one frame (left) of
a handwashing video. Higher brightness indicates higher confidence that a particular
pixel is foreground.

Updating the model creates a background distance map, which is analogous to a

foreground probability map. This distance map consists of the distance to the closest

mode for each pixel in the input image. If the matching mode does not belong to a known

background layer (Lk = 0 and k > Bt(X)), then the distance is set above the foreground

threshold. When two modes are matched, if the distance is above a threshold a new

mode is created, otherwise the modes are combined, with a learning parameter affecting

how much emphasis is put on the newly matched mode. The distance equation between

a pixel and the modes at that pixel location as well as the model update equation can

be found in [77].

An example frame from this method is depicted in Figure 4.2. While this background

subtraction approach worked well in practice, there are many alternatives; see [78] and

[79] for recent surveys.

The foreground probabilities are used to determine when certain regions of the sink

area become activated. These regions are annotated a priori and represent areas like the

soap dispenser, sink faucet, sink bowl, etc. Within the annotated ROI, the foreground
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score for each pixel is averaged into one value, which yields a noisy indication of when

the subject is passing over (“activating”) a ROI. This creates an activation signal which

can then be analyzed to determine when different substeps of the handwashing activity

are performed. Each ROI will generate its own activation signal, generally leading to

one activation signal related to each substep. Figure 4.3 shows an example of these

activation signals for one particular handwashing video.

Some of the soap dispensers are able to be moved from the sink, breaking the static

assumption. These objects are tracked using the TLD tracker [80]. This tracker con-

tinuously updates its understanding of the tracked object by maintaining a pair of P-N

experts that estimate the number of missed detections and false alarms, respectively.

The tracker performs at near real-time rates. These objects have two annotated bound-

ing boxes in the initial frame: one that encompasses the entire object and is updated by

the tracker and one that is fixed relative to the object bounding box to encompass the

activation point (see Figure 4.1). The activation bounding box is stored as an offset to

the object bounding box and maintains a rigid position relative to the object bounding

box. In the case of multiple movable objects in the scene, each one is initialized with

its own tracker. Interactions between the trackers are not considered. When the object

is occluded and tracking is lost—as is likely when it is in use—the last known location

and bounding box dimensions are used.

Three different methods were explored for translating the noisy activation signals

into measures of substep start and end frames. Each method takes a time series of

averaged foreground scores SR = {s1, s2, ..., sT }, where T is the number of frames in the

series for an annotated region R.

gm thresh method

This method considers sequence entries si above a certain threshold to be valid acti-

vations. Rather than selecting a threshold arbitrarily, the threshold is learned from

the data. A two-mean Gaussian mixture model is learned from one of the sequences.

Every entry in SR is then compared against this model. If an entry in SR is assigned to

the larger mean, then it is considered an activation. Start times are selected when the

sequence changes from a non-activation state to an activation. End times are recorded

for the converse as well.
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conv method

This method identifies changes in the sequence SR using convolution with a 1D Prewitt

filter (kernel size = 21). First, the sequence is smoothed using a moving average

filter. The signal is then convolved with the filter to identify changes in the sequence

marking an activation. Non-maximal suppression is then applied to single out the largest

responses. The remaining responses are stored as start frames for activities. The filter

is then flipped and a similar procedure is performed for falling edges and end frames.

findpeaks method

This method attempts to locate peaks in each SR, which then guides selection of the

start and end of each peak [81]. The start and end of each peak are converted to the

start frame and end frame of an activation, respectively. Peaks in SR are found by

taking the discrete derivative of the sequence and locating zero crossings. Candidate

peaks are selected from the zero crossing points if they have a slope in the derivative and

amplitude in the original sequence SR above certain thresholds. A Gaussian function is

fitted for each candidate peak around a fixed window (w = 15) to establish its shape.

The data is assumed to follow the Gaussian function

yw =
1

σ
√

2π
exp

(
−(xw − µ2)

2σ2

)
. (4.1)

A linear system is formed by taking the logarithm of the previous equation, resulting

in

Ax̂ = b (4.2)

where

b =
[
log(yw)

]T
,

x̂ =
[
− 1

2σ2
2µ
2σ2 ln

(
1

σ
√

2π

)
− 1

2

(µ
σ

)2]T
, (4.3)

A =
[
xw

2 xw 1
]
.

Solving this system yields a σ surrounding a peak, by this conversion,

σ =
1√
−2x̂1

. (4.4)
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Start and end frames are selected to be at ±(1.77)σ, from the candidate peak.

The shape of SR is interpreted differently by each method. Classifying activation

signals in two categories is done by gm thresh , which attempts to distinguish transitions

between the two classes. The conv method ignores this classification, instead acting

directly on transitions detected by the filter. The findpeaks method attempts to more

rigorously identify the whole transition scenario at once by identifying peaks in the

transition and fitting a curve to the portion of the signal around the peak. This is the

most computationally intensive method of the set.

In order to compare against the ground truth, the start/end times from the char-

acterized activation signals must be coded into incident times for the four activities

of interest: turnsOnWater, turnsOffWater, appliesSoap, and rinsesSoap. This was

done by creating a set of rules for which start time indicates the beginning of an activity.

For instance, the water cannot be turned off before it is turned on and water cannot be

turned off before soap is rinsed, so turnsOffWater is characterized as the first faucet

activation that occurs after rinsesSoap. The appliesSoap activity is characterized

as the first soap activation that occurs. The rinsesSoap activity is characterized as

the first sink bowl activation that occurs after turnsOnWater and appliesSoap. The

turnsOnWater activity is characterized as the first faucet activation that occurs.

4.1.3 Defining Accuracy

As part of the larger study, the videos were coded to indicate the time at which each

activity occurs. This coding was performed manually by 3 individuals, and those codes

were combined to create a consensus score. These manual annotations were used as

a ground truth for comparing against the automated coding methods. Accuracy was

calculated by comparing the difference between algorithm-computed and ground truth

times for each activity. Algorithm-computed times were deemed correct if they fell

within a time window centered on the ground truth time. Accuracy for an activity is

defined as the ratio of correctly computed times versus the number of videos containing

the activity. The size of the time window was varied in order to characterize the sen-

sitivity of accuracy to the time window. Accuracy was chosen over the more common

precision/recall since it is not possible to have a false positive; the number of activities

is fixed so there will always be a coded start time for each activity. This can lead to
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a false negative if the algorithmically-generated code is not within the time window.

However, no false positives can be generated, so precision will remain static as the time

window is varied in size.
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Figure 4.3: Average foreground scores over time for one video. Peaks correspond to the
ROI being used. The names ‘r handle’ and ‘l handle’ correspond to the ROIs for the
sink handles from the viewpoint of the rater. The different soap dispensers are referred
to as ‘soap’ and ‘b soap’ and are observed as independent ROIs.
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4.2 Experimental Results

The methods discussed in Section 4.1 were applied to the 33 videos from the OCD

environmental factors study. A single video was recorded for each subject. However, 6

videos were not suitable due to recording errors. Each video was cropped to center the

sink at the bottom of the image and provide a resolution of 640x480 at 30 frames per

second. Recordings were taken based upon subject availability, so time of day as well as

weather conditions vary. Coupled with the sink being placed in front of a large window

(see Figure 4.4), this leads to a large variation in illumination both between different

videos and often within the same video.

Figure 4.4: Setup of the handwashing station. The stool pictured was non-functioning
and placed near the sink to create a more realistic environment. This was deemed
important as it may be a trigger for contamination obsessions.

In order to prevent abrupt changes in foreground probability at the beginning of a

recording, a background subtraction model was learned for each recording individually,
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and that learned model was then applied to the same recording again. Several parame-

ters must also be tuned for the background subtraction. First, the input is scaled down

by a factor of 2, since the full resolution is not necessary and the down-sampled images

process considerably faster. Additionally, the inputs are smoothed with a Gaussian

with a sigma of 0.7. An important parameter is the learning rate for the background

subtraction method. It was found that a faster learning rate (0.75) performs far better

than a slower learning rate (0.5). Figure 4.5 depicts the performance comparing the

faster learning rate (fr) and the slower learning rate (sr).

Accuracy was computed for the activities: appliesSoap, rinsesSoap, turnsOnWater,

and turnsOffWater. In order to provide a reasonable summary of performance, all ac-

curacy values were averaged across each video in the data set. The time window is varied

from 0s to 4s. If a method predicts an occurrence within the time window relative to

the ground truth it is considered correct. The accuracy at 0s is always 0%, but this is

expected because 0s is below the resolution of the ground truth, so any exact matches

within the window would have to occur due to chance. Ground truth was generated by

using timestamp information in the video playback rather than frame numbers. Addi-

tionally, while disagreement amongst labelers was generally low, it was not uncommon

to have several seconds of difference between each labeler. A time window of 2s is the

most appropriate as it falls within the margin of error of the ground-truth labelers. A

time window of 4s and beyond risks losing too much information.

Figure 4.6 shows a plot of the average accuracy from three different signal character-

ization methods. To provide a good summary of performance for each activation signal

characterization, accuracy is averaged across all activities. From this, it is clear that

the findpeaks method performs best. Each method also has a sharp drop-off where

the accuracy begins to plateau.

Figure 4.7 highlights in more detail the performance of the findpeaks method,

showing the average accuracy for each activity. From this, detection of turnsOnWater,

turnsOffWater, and appliesSoap events all perform well. At a time window of 2s, there

is an average accuracy of 90%, 83.3%, and 86.6%, respectively. This approaches the best

performance we could hope to accomplish given our assumptions. For instance, in one

video the operator enters the scene and shows the subject where different items on the

sink top are and touches the different soap dispensers. Given the current assumptions,
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Figure 4.5: Accuracy averaged across each video and across each behavior comparing a
slower (sr) and faster (fr) background learning rate.

examples like this will always fail for appliesSoap.

While 3 of the 4 activities perform well, the accuracy for rinsesSoap barely exceeds

60%. The ‘sink’ ROI corresponding to the sink bowl is near the ‘l handle’ and ‘r handle’

ROIs for the sink handles. The subject’s hand can trigger the ‘sink’ ROI when reaching

for the sink handles. The participants also cast shadows over the sink that can disrupt

the background segmentation. These effects can be seen in Figure 4.3, where a noisy

signal for the ‘sink’ ROI precedes a high activation for ‘r handle’.
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Figure 4.6: Accuracy averaged across each video and across each behavior.

4.3 Summary

This chapter explored the use of computer vision tools as part of an OCD study on

how environment and place affect behavior in OCD subjects and healthy controls. In

corresponding psychiatric study [76] it was found that longer duration of handwashing

was highly correlated to higher scores from the CY-BOCS scores of subjects in the

ordering/repeating and forbidden thoughts dimensions. This chapter shows that the

time for annotating these handwashing videos can be reduced from hours down to

minutes using an automated methodology. Videos of handwashing recorded as part of

a study at the University of Minnesota were automatically annotated for start times of

different subactivities of handwashing (turnsOnWater, turnsOffWater, appliesSoap,

rinsesSoap). The automatically generated annotations were compared to hand-labeled
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Figure 4.7: Accuracy averaged across each video for the findpeaks classifier with each
behavior displayed.

annotations to validate the methods. Allowing for a 2 second time difference between

ground truth and automatic method, an average accuracy across all activities of 81%

was achieved. While there is room for improvement, some failures are difficult to avoid,

such as outside actors interfering (a researcher or another individual in the room), or

the participant deciding not to fully cooperate because he/she is distracted or for some

other unknown reason.

Accuracy on this task can be improved in various ways. One such strategy would be

characterizing the different substeps using a hidden Markov model (HMM). Using an

HMM can allow a graphical model to be used to add more constraints to the relationship

between the handwashing substeps. Another possibility that is popular amongst other

works that examine handwashing is to track the hands of subjects within the video.

Additionally, we would like to consider more handwashing activities, particularly
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activities related to drying (such as picking up a towel and dropping the towel). There

are other aspects as well that were coded manually but do not yet have an automated

coding, such as how many towels were used (for disposable towels), how much soap was

used (in terms of number of pumps on the dispenser), and other miscellaneous behaviors

like if the subject wiped down the sink top with a towel. The data set also includes videos

from a frontal view point and the overhead videos that were used. Incorporating these

frontal views could provide another avenue for automated coding. These techniques

could be applied to the other activities included in the study, especially the free arrange

and arrangement in contrasting environments.

Drawbacks of using an ecological approach like the one presented in this chapter

are clear. It requires having the setting and equipment in place in order to do the

examination. If such setting and equipment are found to be useful in eliciting de-

tectable behavioral makers then it would be desirable to replicate this elsewhere. Doing

so for each useful setting and equipment can quickly become expensive. Virtual and

augmented reality solutions provide a way in which to deliver these settings in a cost

effective way. The following chapters provide detail has to how this can be made a

reality.
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Chapter 5

Enabling Immersive

Environments

The work in this chapter describes the steps taken to enable immersive environments.

Section 5.1 describes a methodology for localizing an HMD in an RGB+D sensor’s

view for the purpose of recovering the RGB+D sensor’s relative pose in Section 5.2.

This is a crucial first step in being able to use both of these technologies together in a

single system. Once this achieved, the next section describes how to use this registered

depth data in an interactive environment that is both real-time and natural. The

presented system consists of an Asus XTION RGB+D sensor and an Oculus Rift DK2

HMD, however our methodology is designed to be agnostic to the type of HMD and

depth sensor used. The HMD has a position camera that uses IR LEDs on the HMD

to perform localization and pose estimation. In order to register the two devices, the

transformation between the RGB+D sensor and the position camera must be recovered.

Since it is assumed the pose of the HMD is provided, if the pose of the HMD can be

recovered in the frame of reference of the RGB+D sensor, then the transformation

between the RGB+D and position cameras can be computed.

5.1 HMD Localization

The first step is detecting the HMD with the RGB+D sensor, in order to recover the

HMD pose in the RGB+D sensor’s frame of reference. The HMD detection method
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Figure 5.1: Example of the additional markings used on the Oculus Rift DK2 HMD.
The placement was chosen to cover the maximum area of the faceplate as well as avoid
the active marker LEDs on the device.

must satisfy a number of important constraints, including computational efficiency,

consistency, and being independent from the HMD tracking system. Additionally, any

solution must meet challenging aspects, such as being robust, smooth, and continuously

detecting the HMD.

Our approach makes the assumption of having a controlled environment and con-

sistent illumination conditions. We utilize a color detection scheme in the HSV color

space combined with a background subtraction algorithm to localize the HMD in each

RGB image. A custom blue mask in a distinct pattern was placed carefully to avoid

interference with the infrared LEDs on the front part of the HMD (see Figure 5.1).

A visualization of each step of the HMD detection process is shown in Figure 5.2 and

the whole process is summarized in Algorithm 1. Geometric constraints applied on the

3D data from the RGB+D frame are exploited for the fine tuning of the methodology.

The software developed utilizes the PCL [82] and OpenCV [83] libraries and the input

data consist of RGB and depth video sequences registered to correctly overlap.

Initially, a mixture of Gaussians background subtraction algorithm [78] is applied to

remove static portions of the scene from the image (line 6), since the only moving agent

in the process is the HMD. Each RGB frame is converted into the HSV colorspace –

a hue, saturation, and intensity value is computed for each pixel. Empirically selected
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(a) Initial RGB image.
(b) Image after apply-
ing thresholds in HSV.

(c) Recovered rectan-
gle mask.

(d) Localized coordi-
nate frame in point
cloud.

Figure 5.2: Results of performing each step in the localization pipeline. The two
localized frames in (d) are the virtual world frame and the HMD frame.

thresholds in each of the three channels (H,S,V) are used to segment out the distinctive

pattern on the HMD mask (line 7) under the constant ambient illumination. The HSV

colorspace was chosen for its property to make objects of a particular hue, such as the

blue pattern on the mask, stand out. Morphological operations are used to link weakly

connected sections in the thresholded image, followed by a blob detection scheme on the

resulting binary image, which then detects the largest blob as belonging to the HMD

(lines 8-10). An affine bounding box is fit and superimposed upon the blue markings

(line 11) resulting in significantly fewer 3D points to be considered in the subsequent

steps of the methodology.

The coordinates of the RGB points within the bounding box are used as a mask to

extract the position of the front part of the HMD inside the synchronized depth frame.

Knowledge of the intrinsic calibration parameters for both the RGB and depth cameras

of the RGB+D sensor allows for the accurate registration of the output images and the

correct recovery of the 3D points that correspond to the bounding box (line 12).

The geometry of these 3D points forms a bounded planar surface in three dimensions.

The centroid of this surface can be used to estimate the translation of the HMD with

respect to the RGB+D camera (line 13).

In order to estimate the rotation and validate the other estimates, an artificial

planar bounding box of the size of the known HMD faceplate is created. This planar

surface is initialized at the centroid of the points encompassing the mask. Instead of

being described by a mathematical model, the artificial plane was discretized as a set

of 3D points (line 14). The Iterative Closest Point (ICP) algorithm [84] is used to

recover a transformation between the artificial plane and the points lying on the fit
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Algorithm 1: Pseudocode of the HMD localization process.

Result: D
ST : transformation matrix describing the sensed frame S on the HMD
mask w.r.t. the RGB+D sensor frame D.

1 Initialization:
2 I : streaming input RGB image from RGB+D sensor
3 D : streaming input depth image from RGB+D sensor

4 Main Loop:
5 while Localization == ON do
6 Ifg = RemoveStaticBackground( I );
7 Ihsv = HSVThreshold( Ifg );
8 Imorph = MorphClosing( Ihsv );
9 ICC = ConnectedComponents( Imorph );

10 Ipattern = max( ICC );
11 Ibb = BoundingBox( Ipattern );
12 Dmask = Extract3DPoints( Ibb, D );
13 t = Centroid( Dmask );
14 ArtificalP lane = GenerateArtificialPlane( t );

15
D
ST = ICP( Dmask, ArtificialP lane )

16 end

plane model. The result of this procedure gives a measure of DST , the transformation

matrix describing the sensed frame S on the HMD mask w.r.t. the RGB+D sensor

frame D, and a confidence of the fitted transform (line 15). In cases that the ICP

algorithm does not converge within a threshold, the initial estimation can be considered

invalid and discarded.

This approach satisfies the desired constraints since it provides a consistent detection

of the desired object and even validates the results. Furthermore, it is computationally

viable, straightforward to implement, and is completely decoupled from the tracking

system of the HMD.

5.2 Registration of the RGB+D Sensor

Using the notation of [85], we will show how to recover the position of the Depth cam-

era in the virtual world frame. Figure 5.3 outlines the relationships between the several

frames discussed in this section. The important frames are H, the pose of the HMD,
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Figure 5.3: Illustration of the registration system, highlighting frames and transforma-
tions. Gray letters denote the names of the different frames: H, D, W, and P (See
Section 5.2). Blue text denotes transformations. The arrows denote the direction of the
transformation with the arrowhead indicating the resulting reference frame. Solid lines
are transformations known a priori. Dash lines indicate transformation that need to be
recovered.

P the pose of the HMD position camera, D the pose of the RGB+D sensor, and W

an arbitrary world frame. There are also a series of already provided transformations,
W
PT the transformation from the HMD position camera to the world frame and W

HT the

transformation from the HMD to the world frame. And finally, there are the transfor-

mations that need to be recovered: D
HT the transformation from the HMD pose to the

RGB+D sensor, WDT the transformation from the RGB+D sensor to the world frame,

and P
DT the transformation from the RGB+D sensor to the HMD position camera.

Each frame transformation T is described by a transformation matrix storing rotation

R ∈ SO(3) and position t ∈ R3.

T =

[
R t

0 1

]
(5.1)

The first step is to recover the transformation from the RGB+D sensor to the HMD, DHT .

However, the method in Section 5.1 doesn’t necessarily measure the same HMD pose

as the position camera, which needs to be corrected for. Instead, the transformation

recovered by Section 5.1 is DST , which is the sensed frame S of the HMD recovered w.r.t.

the RGB+D sensor frame D. The transformation that registers the frame H that is
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detected by the position camera w.r.t the sensed frame S on the HMD is referred to

as S
HT . In practice this was set to the identity but in the future can be determined

empirically. With S
HT , we can compute

D
HT = D

ST
S
HT. (5.2)

The HMD system is then able to obtain a measurement of the pose of the HMD that we

wish to calibrate to called P
HT . These two frames can be linked through a transformation

as follows,
P
HT = P

DT
D
HT. (5.3)

Thus the transformation between the two sensors observing the HMD can be recovered

using,
P
DT = P

HT
D
HT
−1. (5.4)

In the case of the transformation matrices used here, the inverse transformation is

computed as the inverse of the transformation matrix [85].

While not strictly necessary, there is commonly a virtual world frame that the HMD

position is transformed into, as in Figure 5.3. In this case, it is more practical to

recover the RGB+D camera frame w.r.t. the virtual world frame W . Using the re-

sult from Equation (5.2) and the method presented in Section 5.1, we can recover the

transformation to the world frame with

W
DT = W

HT
D
HT
−1. (5.5)

This transformation then allows us to transform 3D points from the RGB+D sensor

into the virtual world frame.

5.3 Experimental Results

Experiments were performed using the Oculus Rift DK2 HMD and its corresponding

IR-based position tracking camera. The RGB+D device used was an ASUS Xtion PRO

sensor. It is capable of producing RGB and Depth frames at 320 X 240 resolution each

at 60 frames per second. An example setup can be seen in Figure 5.4.

Our implementation is run on a desktop computer with an Intel R© Xeon R© CPU E3-

1270 v3 processor running at 3.5GHz with 32GB RAM and a NVIDIA R©Quadro R© K2000
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Figure 5.4: Physical example of the registration system.

graphics card. The average time for processing a single RGB and Depth pair with the

proposed method is 84ms. This allows the possibility of real-time execution. However,

this is not necessary as the sensor is presumed stationary. Once the transformation W
DT

is recovered, it only needs to be stored so that it can be used to transform incoming

depth images from the RGB+D sensor. The RGB camera on the RGB+D sensor was

calibrated using the Caltech calibration toolbox [86] to recover the intrinsic matrix used

for depth point projection. The depth images were coregistered with the RGB images

making the RGB camera calibration appropriate.

5.3.1 Verification with Point-Tracking system

In order to verify both positional accuracy as well as rotational accuracy, testing was

performed with a Vicon point-tracking system. This system is comprised of ten Van-

tage T161 cameras and is used to track IR-reflective markers. Even though the Oculus

system also uses IR for position tracking there was no evidence of system interference.

1 https://www.vicon.com/products/camera-systems/vantage
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Figure 5.5: Tracking fixtures used for the point-tracking system.

Figure 5.6: An example of the result from running the registration system. The frame
of the HMD is being drawn as well as the frame of the RGB+D sensor and the position
camera. The largest coordinate frame corresponds to the virtual world frame. The
RGD+D sensor is correctly localized as being approximately 1m away.

Fixtures shown in Figure 5.5 were attached to both cameras and tracked as indepen-

dent objects using the Tracker software provided by Vicon. Even though the tests are

performed with stationary position and RGB+D cameras, tracking the objects allowed
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for quick reconfiguration for each trial.

Several trials were performed to see how well the method performs for different

situations. The result of one trial is depicted in Figure 5.6. The relative transformation
P
DT between the two cameras is determined by the presented method and compared

using the measurement from the point-tracking system, P̂
D̂
T , as ground truth. The

point-tracking system recovers P̂
Ŵ
T and D̂

Ŵ
T , in the point-tracking system world frame

Ŵ , which are related by,
P̂
D̂
T = P̂

Ŵ
T D̂
Ŵ
T−1 (5.6)

Both the measurements from the presented method
(
P
HT,

D
HT
)

and the point-tracking

system
(
P̂
Ŵ
T, D̂

Ŵ
T
)

are averaged independently over successive samples in time then

combined using equation (5.4) and (5.6) for comparison. The rotation part of the trans-

formation matrix is averaged by summing element-wise the quaternion representation

of each rotation component of the measured transformations and normalizing [87].

The placement of the RGB+D sensor was modified across different trials and the

configuration of each trial is presented in Table 5.1. Various different configurations

were tried to explore the range of the system while using point-tracking as ground

truth. The results for each of the trials is presented in Table 5.2. Offset error, ∆T , is

defined as the Euclidean distance between the measured transformation and the ground

truth. Since offset error might mask information about which dimension an error occurs

in, the absolute difference for each dimension is reported as well.

Rotations are compared by decomposing the rotational component of the measured
P
DT from the proposed method into RXY Z(γ, β, α) fixed angles. The same is done

for the observation from the point-tracking system. The absolute difference in these

component angles is recorded. This is inspired by the Euclidean distance between Euler

angles metric discussed in [88]. To remove ambiguity in decomposition the following

restrictions were imposed: α, γ ∈ [−π, π);β ∈ [−π/2, π/2).

In general the rotational accuracy is within an acceptable limit with most trials

having a rotation error of < 8◦ in any axis. The offset error could be improved with

the worst magnitude being > 14cm. In practice, while having this error, the intent

of the proposed method is still accomplished. Figure 5.7 indicates this is a reasonable

assumption as the error in alignment is imperceptible.

Several potential sources for error exist in both the proposed methodology as well as
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Trial #
RGB-D Camera Position

Lateral Location Vertical Location Distance

1 50cm to right Same Height Same Distance

2 50cm to right 20cm Above Same Distance

3 50cm to right Same Height 25cm Behind

4 50cm to right 20cm Above 25cm Behind

5 50cm to left Same Height Same Distance

6 50cm to left 20cm Above Same Distance

7 50cm to left Same Height 25cm Behind

8 50cm to left 20cm Above 25cm Behind

9 Inline 20cm Above Same Distance

10 Inline 20cm Above 25cm Behind

Table 5.1: Point-tracking verification test configurations. RGB-D camera position is
relative to position camera. Perspective is from user facing cameras.

Figure 5.7: Stereo pair from the perspective of the HMD user of registered RGB+D
data as a point cloud. During this example, the user is moving a paper cube and an
insulated can holder. This gives an indication to the accuracy of registration and shows
it is suitable for the proposed application. The gaps occur as a result of occlusions from
the viewpoint of the RGB+D sensor. See supplemental material for a full video.

54



5.4. SUMMARY 55

# ∆T [m] ∆X [m] ∆Y [m] ∆Z [m] ∆α [◦] ∆β [◦] ∆γ [◦]

1 0.0187 0.0027 0.0102 0.0155 2.1035 3.0524 4.4305

2 0.0276 0.0129 0.0059 0.0236 5.8999 5.0165 6.4910

3 0.0472 0.0288 0.0364 0.0085 9.4734 5.0327 5.1919

4 0.0461 0.0079 0.0398 0.0220 2.6004 4.6107 2.6127

5 0.1201 0.0311 0.0350 0.1106 1.5183 7.7690 5.7229

6 0.1276 0.0133 0.0787 0.0996 6.9229 7.5071 6.6108

7 0.1408 0.0662 0.0537 0.1121 4.8242 8.4543 6.3108

8 0.1195 0.0519 0.0495 0.0956 0.3570 8.6709 1.1453

9 0.0528 0.0250 0.0149 0.0441 5.4605 4.1343 3.9555

10 0.0786 0.0583 0.0258 0.0460 7.3932 5.4458 5.6639

Table 5.2: Results for each trial using the point-tracking system

the comparison for ground truth. The proposed methodology is limited by the resolution

of each camera involved in the system in terms of being able to measure the (x,y) position

of the HMD in the image plane. This accuracy is decreased as the HMD is moved away

from any of the image sensors. In our experiments, the HMD was never more than

1m away from either the position camera or RGB+D sensor. The estimation of the

intrinsic calibration parameters of the RGB camera can also effect measurements done

by the proposed system as it relies on this for accurate 3D projections. The resolution

and accuracy of the depth sensor can also effect the overall accuracy of the proposed

method.

Verification using the point-tracking Vicon system also has limitations. Of course

the same limitations with image resolution occurs with these systems as well. Locating

the camera centers for the position and RGB+D cameras is prone to error. Without

disassembling the cameras, these positions have to be approximated by placing fixtures

near where the camera centers are likely to be. In light of these sources of error the

measured errors are minimal.

5.4 Summary

This chapter provided a method for bringing together RGB+D sensors and HMD dis-

plays. The use of a registered RGB+D sensor with an HMD system can enable natural
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interaction as well as provide the user with increased user presence in a virtual world.

The following chapter addresses how this realized using a markerless interaction ap-

proach.

Potential improvements could be made to the methodology presented in this chap-

ter. Using robust markers for localization such as ArUco markers [89] could improve

reliability. The effective placement of such markers would need to be studied as they

may occlude the HMD in such a way that its pose cannot be recovered from it’s posi-

tion system. An ideal methodology would require no modification to any of the devices

involved. An alternative way for locating the faceplate of the HMD might me possible

using advancements in object detection such as in [6].
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Chapter 6

Markerless Interaction

This chapter discusses an approach for markerless interaction using an RGB+D sensor.

Markerless interaction allows a subject to interact naturally with the virtual environ-

ment. Any sensing and computation done to facilitate natural interaction must be done

quickly to minimize the amount of compensation the user has to afford for interaction.

Recent advances in graphical processing units (GPUs) and highly parallel algorithms

make this possible. Modern GPUs can have over a thousand processing cores and multi-

ple gigabytes of on board memory enabling highly parallel tasks. Each core is optimized

for parallel access to memory and arithmetic operations and unlike CPU cores performs

poorly when branching. This architecture was initially designed for purely rendering

purposes by allowing programmers to write per-pixel programs known as shaders to add

increased detail to graphical rendering. Application programming interfaces (APIs) such

as CUDA1 and OpenCL2 have opened this hardware up to general purpose computing.

The following sections detail how this markerless interaction can be made possible.

Using an RGB+D sensor, 3D points from the observed scene can be recovered using

the method discussed in Section 6.1. The information from successive RGB+D frames

are used to infer 3D motion as discussed in Section 6.2. By having information on the

3D structure and motion in the scene it is possible to track trajectories over time as

presented in Section 6.3. Tracking these trajectories provides input to a particle based

physics engine discussed in Section 6.4.

1 http://www.nvidia.com/object/cuda_home_new.html
2 https://www.khronos.org/opencl/
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6.1 Projective Geometry and RGB+D cameras

This section describes information regarding projective geometry and its use with RGB+D

cameras. These cameras provide a color and depth image D : Ω → R at each time in-

stance t over an image domain Ω = {x, y} ⊂ R2. The color image components (red,

green, blue) can be averaged at each pixel to derive an intensity image I : Ω → R.

For the purposes of this work, the RGB+D cameras are modeled as a pinhole cameras.

Since only the depth camera is used for geometric reconstruction all of the remaining

discussion in this section refers to that camera. The camera matrix P is a 3× 4 matrix

that maps a homogeneous 3D coordinate xw =
[
X Y Z 1

]T
in the world frame to

a 2D pixel xi =
[
x y 1

]T
in the image,

xi = Pxw. (6.1)

World frame refers to an arbitrary frame tat is used as the global frame of reference

to which each device is calibrated. It is comprised of the 3 × 3 matrix K, known as

the intrinsic matrix, and the extrinsic parameters of 3× 3 rotation matrix R and 3× 1

inhomogeneous translation vector t that transform the point xw into the reference frame

of the camera.

P = K
[
R t

]
(6.2)

K =


αx s x0

0 αy y0

0 0 1

 , (6.3)

where αx, αx are the focal length parameters, s is the skewness factor and x0, y0 are the

camera center offsets. These parameters can be found experimentally using the method

first discussed in Section 5.3. A thorough examination of camera models and calibration

approaches can be found in [90].

The inverse of P is a 4× 3 matrix given by the equation,

P−1 =

[
R−1 −Rt
0T 1

][
K−1

0 0 1

]
, (6.4)
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where 0 is a 3 × 1 zero vector. This can be used to map an image point (x, y) to

homogeneous world point. However this requires knowing the depth Z for that point,

which is provided by image D from an RGB+D camera. Therefor when recovering the

world coordinate using Equation (6.4), Z should be used like so,

xi =


xZ

yZ

Z

 . (6.5)

Applying this equation at every pixel in D yields a collection of 3D points O often

referred to as a point cloud. In practice, not every pixel in D is a valid pixel. The

reasons for this occurring include the depth sensed at the pixel is outside of the sensor’s

prescribed range and occlusions created specific to the sensor’s design. These can be

masked as Dx,y = 0.

6.2 Scene Flow

Scene flow is the 3D extension of optical flow, first introduced in [91]. Instead of

describing the velocity of a pixel from frame to frame, it is the velocity of a 3D point

from frame to frame. In traditional cameras this is impossible to compute without

simplifying assumptions. Some works have presented methods for computing scene flow

using stereo cameras [91, 92, 93], thus providing a constraint in which to recover changes

in depth. RGB+D cameras provide this depth information with every frame, offloading

potentially expensive stereo computation.

A simple way to recover scene flow using the image I and depth D information at

every frame t from an RGB+D camera source is to compute the optical flow between

frames It and It+1 and use that mapping to recover the change in depth. This has been

done in [51] however it is not the most accurate as the optical flow computation is not

in any way constrained by the depth information provided. Jaimez et al. [94] present

a real-time method for computing scene flow from pairs of RGB+D frames that does

incorporate depth information. The algorithm attempts to determine the scene flow

vector s =
[
u v w

]T
, which is comprised of the optical flow (u, v)and range flow w,

at each pixel between pairs of image and depth frames by solving the problem

minimize
s

ED(s) + ER(s). (6.6)
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The first term

ED(s) =

∫
Ω
|%I(s, x, y)|+ µ(x, y)|%Z(s, x, y)|dxdy (6.7)

encourages solutions for s that maintain brightness consistency,

%I(s, x, y) = I0(x, y)− I1(x+ u, y + v) = 0, (6.8)

and geometric consistency,

%Z(s, x, y) = w −D1(x+ u, y + v) +D0(x, y) = 0. (6.9)

µ(x, y) =
µ0

1 + kµ

(
∂Z
∂x

2
+ ∂Z

∂y

2
+ ∂Z

∂t

2
) , (6.10)

balances the contribution of the geometric term with the brightness consistency term,

emphasizing the geometric consistency in areas with low depth gradients. The param-

eters µ0 and kµ are tunable. The second term

ER(s) = λt

∫
Ω

∣∣∣∣(rx∂u∂x, ry ∂u∂y
)∣∣∣∣+ ∣∣∣∣(rx ∂v∂x, ry ∂v∂y

)∣∣∣∣ dxdy + λD

∫
Ω

∣∣∣∣(rx∂w∂x , ry ∂w∂y
)∣∣∣∣ dxdy

(6.11)

where

rx =
1√

∂X
∂x

2
+ ∂Z

∂x

2
, ry =

1√
∂Y
∂y

2
+ ∂Z

∂y

2
(6.12)

regularizes the output s by considering the total variation while also respecting the

geometry of the scene by scaling using rx, ry which favors close points as opposed to

distant ones. The data term ED is non-convex, leading the authors of [94] to adopt a

coarse-to-fine scheme where an image pyramid is built and solutions from lower levels

of the pyramid are upscaled and used in linearized versions of %I(s, x, y) and %Z(s, x, y).

The solution to Equation (6.6) is then computed using an iterative primal-dual solver

[95] whose pixel-wise updates are amenable to a parallel computation on a GPU.

Implementation of this method (PD-Flow) is compared against GPU based optical

flow methods provided by OpenCV [83]. Per-frame run-times for alternative methods

and the proposed method are shown in Table 6.1. While it is not the fastest method

presented, the method does incorporate depth information into its optimization for scene

flow leading to more accurate results as depth can disambiguate issues with occlusion.

Scene flow vectors at each pixel provide important information for longer term tracking.
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Method Per-frame run-time (ms)

Farneback 22.534
Brox 99.585

PD-Flow 80.264

Table 6.1: Scene flow implementation runtimes

6.3 Trajectory Tracking in RGB+D cameras

Using the method described previously for computing scene flow and the following

function, 
U

V

W

 =


Z
αx

0 X
Z

0 Z
αy

Y
Z

0 0 1



u

v

w

 , (6.13)

applied at each pixel, gives us a tensor F ∈ Rm×n×3 that describes the estimated velocity

F tx,y = (U, V,W ) from each projected pixel in time t to t+ 1.

In order to understand the motion of points through successive frames we adopt an

approach similar to [28] extended to scene flow. This is desired because it produces

features amenable to activity classification as discussed in Chapter 3 as well as allowing

for correct progression of points from frame to frame for the purpose of input for 3D

interaction.

Each tracker Ti = {xj}Lj=1 where i = 1, ..., k is initialized at a regular interval

horizontally and vertically along the image. Each tracked point T ji ∈ R3 is mapped

back to a pixel coordinate (x, y) using Equation (6.2). Median filtering is applied to

current pixel and the 8-connected neighbors around F tx,y to produce an estimate of the

motion (U, V,W ) to apply to that point in the next frame. Filtering is done to reduce

noise from the scene flow computation. That point is then progressed given the filtered

estimate of (U, V,W ) to determine T j+1
i . Tracked points that were not matched, such

as in the case when Dx,y = 0, are discarded immediately. A dense sampling pass then

occurs again creating new tracks at regularly sampled intervals that do not have a track

in that frame associated with them. A given track is updated for a fixed lifetime L before

it is then removed from tracking. As with [28], this is done to improve the correctness

of tracks as accuracy is likely to drift over time. Complete tracks of length L can be

stored for offline analysis.
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Figure 6.1: An example of 3D trajectory tracking. Progress of the tracks proceed from
dark green to light green. Blue points represent the end of the tracks. The subject is
moving their arm downward.
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This approach yields a set of trajectories over different time intervals that describe

more complex motions of the observed point cloud O than simply using scene/optical

flow. An example of the result of this algorithm can be seen in Figure 6.1. The endpoint

positions of the current tracks and their respective velocities are then provided as input

at each time step for interaction with virtual objects.

6.4 Interaction using Scene Flow and Trajectory Tracking

Being able to track points from to Ot to Ot+1 makes it possible to assign a velocity

to each point. This opens up the possibility to potentially track thousands of points

at each time frame. Directly using these points as entities inside a physics simulation

can lead to a large amount of entity to entity interaction that needs to be performed

efficiently.

An efficient way to handle particle-based physics using GPUs is presented in [96]

and implemented in the FLeX engine [97]. Their approach is a position-based dynamics

method that accepts particle positions, velocities, masses and constraints Ci as inputs

and simulates the dynamics for a fixed timestep by solving the optimization problem

minimize
∆x

1

2
∆xTM∆x

subject to Ci(x+ ∆x), i = 1, ..., n,

(6.14)

where M = diag(m1, ...,mp) is the mass matrix, x ⊂ Rp×3 are p particle positions,

and ∆x ⊂ Rp×3 are the corresponding particle displacements. The constraints describe

different relationships between particles that must be obeyed throughout a simulation

step. They are usually non-linear and non-convex functions preventing a closed form

for solution to Equation (6.14). Instead the constraints are locally linearized creating a

quadratic program with linear constraints that is solved using successive over relaxation.

The displacements are solved for in two stages. First, collisions are determined between

particles in parallel using an efficient-hash grid methodology [98]. This imposes collision

constraints that are then solved for. Each particle is assigned to a single contact group.

A contact group is a set of particles that have the same interaction characteristics. The

group can either allow for self collisions between particles in the same group or not.

For instance, the particles of each rigid object are declared as their own group and are
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Figure 6.2: An example of depth peeling stripping away successive layers with each
pass. After every odd layer, particles (blue) are populated along the rays (red). The
leftmost surfaces are represented as thick black lines. The hidden surfaces are depicted
as thin black lines and gray lines represent peeled away surfaces.

not self-colliding. This has the benefit of pruning unnecessary collision and dynamics

computations. After which the remaining constraints are solved for and this can be

done in either a contact group or per particle fashion in parallel.

Solid objects with a structure more complex and sizes larger than a particle are

modeled as a collection of particles with rigid body constraints keeping the structure

of the object enforced. This complex shape is described using a tri-mesh or a list of

3D vertices and a list of triplets connecting vertices to denote triangles. A watertight

tri-mesh is required for this method. Given a tri-mesh describing the size and shape of

an object it is possible to transform that object into a collection of particles of arbitrary

size using a method referred to as depth peeling. Depth peeling is the process of ray

casting from an arbitrary direction to test tri-mesh intersection (See Figure 6.2). In

each ray cast pass, the tri-mesh touched by the ray cast is removed or peeled away.

In the next iteration the next level of the tri-mesh, which is exposed, is removed [99].

Particles are populated at regular intervals along the ray at each alternate peeling (e.g.

the first intersection begins the process of adding particles then the second intersection

terminates until the third intersection etc.).

The result is a particle representation of the tri-mesh (See Figure 6.3b). A drawback

of this approach for modeling rigid objects inside of the physics engine as particles of

fixed sizes is it limits how large an object can be while remaining tractable. Larger

objects require even more particles and reducing the resolution of depth peeling can

lead to a situation known as tunneling where objects interpenetrate each other. As
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(a) (b)

Figure 6.3: The result of depth peeling the object depicted in (a) is shown in (b).

a result large static objects such as walls are represented using a traditional tri-mesh

description and modeled in the physics engine as static constraints.

Individual tracked points are modeled as particles in the physics engine. The radius

of the particles should be set to span half the minimum distance between two points in

a point cloud O. In practice this was set to r = 3cm. This means that hand-held virtual

objects are still able to retain tractability being representable in hundreds of particles

each.

6.5 Summary

This chapter presented a method for markerless interaction using RGB+D data. It

was made possible by selecting approaches amenable for a high degree of parallelization

realized on a GPU. A key aspect effectively working with a GPU for computation is

minimizing the communication load between the CPU and the GPU. Further improve-

ments to performance can be made by keeping the results of subsequent steps local to

the GPU.

The speed of the capture sensor, scene flow calculation, and physics update can

all affect the interactivity of this approach and are coupled together. The lower the
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sensor framerate, the slower the motions of the subject will need to be in order to be

captured by the scene flow algorithm. Large displacements sensed through a low frame

rate can mean that particles which should interact with objects instead jump past what

the subject intended to interact with.

The ability to interact with virtual objects naturally enables a more believable expe-

rience and facilitates the experiment discussed in the following chapter. What remains

is creating proper scenarios that elicit symptoms and provide measurable diagnostics.

These diagnostics can then be used as part of an overall understanding of a subject.
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Chapter 7

Study In Immersive

Environments

This chapter describes how the findings and methodologies in the previous chapters

are brought together to provide an end-to-end immersive system for mental health as-

sessment. Having an immersive system allows for a controlled environment that is

repeatable, reconfigurable and allows the user to naturally interact with the environ-

ment. This system also has the potential to allow for a greater variety of scenarios when

studying subjects. In contrast, performing an ecologically based assessment like the one

presented in Chapter 4 required furnishing various location settings with equipment in

order to examine different conditions. By using a virtual environment the system is only

limited by the computational power of the computer rendering the scene and processing

the simulation.

An overview of the entire system is given in Section 7.1. The diagnostic measures

collected by the system and their potential clinical relevance are discussed in Section 7.2.

An example scenario and protocol for executing that scenario are given in Section 7.3.

Measurements from each of the trial runs were collected for a single subject performing

different behaviors showcasing the measurement qualities of the system. The results

from these trials are presented in Section 7.4. A discussion on the lessons learned for

designing future scenarios is presented in Section 7.5.
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7.1 System Overview

The hardware of the system consists of an HMD with pose tracking capability and an

RGB+D sensor both connected to a computer. The subject is seated in an unobstructed

space that allows the user to be observed by the necessary sensors (see Figure 7.1). This

system assumes that no other occupants are in the observed range. This assumption is

important because it simplifies locating the subject and also safely allows the subject

to move without obstruction.

Scenarios are designed using an authoring tool such as the Unity3D1 editor. Typ-

ically these tools are associated with a rendering engine that provides a means for

rendering and controlling the virtual environment. Numerous user friendly tools for

authoring environments have been created. NeuroVR2 is one example of these tools

particular to the psychiatric domain. While being easier to design environments, the

tool lacked extensibility in being able to collect additional sources of measurement [66].

The scenario is then presented to the user via the HMD and they are able to interact

with objects in the scenario. The RGB+D sensor is calibrated using the methodology

discussed in Chapter 5. The methodology for resolving interaction with virtual object

displayed in the scenario is discussed in Chapter 6.

These scenarios can vary up to the implementation and purpose for the disease and

symptoms examined. One possibility would be to create a virtual handwashing station

similar to the one presented in Chapter 4. As a stepping stone to such a scenario the

example scenario implemented looks at cleaning compulsions with relation to larger more

easy to simulate rigid objects instead of water. Another potential scenario would be to

have an arrangement task inside of the virtual environment. This has the advantage

that objects are already tracked as part of the simulation and would not require a visual

tracking methodology to be implemented. Example diagnostic measures are presented

in the following section. An example scenario is discussed further in Section 7.3.

The general processing pipeline for display and interaction remains fixed for every

scenario (see Figure 7.2). After initialization, the system continuously captures RGB+D

frames. Each pair of frames is used to compute scene flow. Only pixels corresponding to

a specified depth interval are retained. This has the benefit of trivially segmenting out

1 https://unity3d.com/
2 http://www.neurovr2.org/
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Computer

HMD

Sensor Pair

Figure 7.1: Diagram of the equipment setup for the proposed system. The area around
the user should be unobstructed (as expressed by the red boundary.) The user should
also be situated such that they are in the view frustum of the camera.
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Figure 7.2: VR System Processing pipeline.

the subject from the environment observed by the RGB+D sensor. The latest frame

is used for input in the point cloud computation. The retained 3D points and their

corresponding scene flow vectors, as associated by projection onto the image plane, are

input into the physics solver. This solver also takes input from the state of the particle

representation of the objects employed in the particular scenario. As a result of the

physics solver, the objects in the scenario are progressed in time. While the scenario

executes the subject is monitored for various diagnostic measures as discussed in the

following section.

7.2 Diagnostic Measures

The RGB+D sensor and HMD in use by the subject can provide a great amount of

information about how they are interacting and reacting to the environment. In previous
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psychiatric literature [17, 61, 63, 64], information about the head pose of the subject was

of interest particularly in relation to the other tasks that were being performed as part

of the scenario. As an improvement on these works, we propose maintaining statistics

about the subject over time, as their reaction will likely evolve as the scenario progresses.

This in vivo understanding has been desired by other researchers and lamented as a

deficiency in earlier platforms [66].

7.2.1 Head Pose Tracking

Head pose tracking is necessary for VR delivered by an HMD to the user’s eyes to

function. It allows for the correct projection of the 3D virtual world. This information

can also be used for diagnostic purposes. What follows are proposed measures that can

be derived from the head pose information situation in the world frame.

Head Pose Attention measure The position (Xt, Yt, Zt) and orientation (αt, βt, γt)

of the pose at any time instant t during the scenario provides a coarse understanding

of the user’s attention. The object of interest will be in the field of view of the subject.

Analyzing the change in position and orientation, of the worn HMD, over time can

provide a measure of how long the user fixates on any one object. This can be extended

to categories of objects as it can provide an indication of preference or aversion to that

category.

Head Pose History measures The history of the head pose throughout the time

of the session is an important measure. It can provide an indication of how active

the subject is during the session by gauging how their head moves around in their

observation of the environment. Subjects may have a revulsion to some objects, which

may manifest itself as sudden jerks in head pose. The following realizations of these

measures are presented:

1. Total standard deviation in position, orientation, velocity, and angular velocity;

2. Sliding-window history of the standard deviations over time.

Total standard deviation in position and orientation over time characterizes how much

the subject moved around during the the observed session. Total standard deviation in
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velocity characterizes how varied the head motions are during the session. Providing a

time-series of these measures computed over an interval in a sliding-window can provide

insight into how these motions evolve over the course of a session. Selection of the size

of the window varies the nature of what is examined. If the window is short, every

variation will be captured but general trends may not be observed. Choosing too large

of a window and transitions between low and high standard deviation could be missed.

7.2.2 Scene Flow Tracking

In addition to tracking the head pose, the motion of the subject’s body in general is

tracked via scene flow, as described in Section 6.3. This is important for capturing

the level of activity and kinds of activity performed by the subject during the scene.

One possibility is to encode the scene flow tracking data in a similar way as described

in Section 3.1.2 for activity classification. This is the ideal use for this information as

it brings a higher level understanding to the observed motion. This requires a data

collection effort which is left as future work.

The scene flow trajectory data can be used to evaluate level of activity and how the

subject moved in the scene. These trajectories, of which there can be thousands per

recording, can be encoded for “at a glance” evaluation of activity. The total displace-

ment of each scene flow trajectory, can be spatially binned, for a given time interval in an

accumulation matrix A. Total displacement is computed by summing the lengths along

a scene flow trajectory. First, the subject is localized by projecting all of the points

along each trajectory in the time interval into the image plane and taking the maximal

extents. A grid is then defined on this image region to summarize motion over the given

time interval and location. Each cell of the grid is associated with an element of A. The

total displacement of each trajectory is then accumulated into the appropriate cell in A.

This occurs for every time interval. The resulting images A1, ..., Ak are then normalized

to the dynamic range of all of the accumulating images. The result is a representation

of the motion of the subject summarized over arbitrary time intervals. This allows for

quick examination of the amount and location of motion during the session.

Computing the average total displacement over the entire observed sequence can

also provide an assessment of how active the subject was. This can be used in conjunc-

tion with the head pose measure as the subject may have had their head still for the
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entire session but the rest of their body did move around. Before averaging, low total

displacement tracks should be removed as they likely exist due to noise in observation

as opposed to actual movement by the subject.

Figure 7.3: An example of the scene layout of the scenario’s VR environment.

7.3 Scenario and Protocol

The proposed scenario has the subject sitting in a moderately sized room depicted

in Figure 7.3. In that scenario they are able to view a point-cloud representation of

themselves as seen in the Figure 7.4. This gives the subject the ability to reconcile

their actual body movements with regards to the VR world. Each session should be run

for five minutes to ensure that trends in behavior can be found. Throughout the five

minute scenario, objects are projected towards the individual causing most of them to
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Figure 7.4: An example of the user’s view in the proposed scenario’s VR environment.
The point cloud shows the points on the user that are tracked and included as part of
the interaction of the system.

rest against the point cloud representation of the subject. Figure 7.6 depicts the virtual

objects used in the proposed scenario. The subject is asked to try and clean away the

objects from their body. An example of a subject clearing away objects can be observed

in Figure 7.5. However more objects will continue to be projected towards the subject

for the remainder of the scenario.

Figure 7.5: An example of a subject clearing off a waste paper object. The red box
highlights the object touched by the user.
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(a) Apple Core (b) Banana Peel

(c) Milk Carton (d) Crumpled Pop Can

(e) Rotten Tomato (f) Waste Paper

Figure 7.6: Interactive Objects Gallery.
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This example scenario’s purpose is to highlight the potential of this methodology

to study behavior relating to cleaning compulsions. The objects selected for inclusion,

depicted in Figure 7.6, were meant to represent examples of discarded items. It is

expected that a normative subject would be indifferent to the objects as they approach

in the virtual environment. However someone who suffers from a cleaning compulsion

might be more active in trying to remove the mounting virtual objects from their person.

Not all of the objects may have the same inciting effect which is why it may be important

to track which objects the subject tends to focus on.

7.4 Experiment

The following experiment demonstrates the ability of the system to characterize the

movement of the subject. This is important as it gauges how the subject reacts to the

controlled immersive environment. The controlled environment allows for comparison

between trial runs.

7.4.1 Setup

The example scenario was implemented using Unity3D version 5.4.2f2. The simulation

was executed on a Windows 10 PC with an Intel R© i7-6700K@4GHz processor with

32GB RAM and a NVIDIA R© M5000 GPU. An ASUS Xtion PRO RGB+D sensor and

Oculus Rift DK2 HMD were used for sensing the subject and displaying the virtual

world to the subject respectively. Five trials were performed observing a single subject

using the system.

The motions acted in each of the trials are described in the Table 7.1. In each

trial the subject is tasked with cleaning the virtual objects flying towards them. If the

subject does not clean away the objects, they can come to rest on the subject. Most of

the cleaning occurs on the lower half of the subject’s body.

7.4.2 Results

Each of these trials is meant to display the different types of motions that can be

captured from observing the pose of the HMD and the motion of the subject during

a session. For instance, Trial #1 and Trial #2 have the subject performing different
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Trial # Description

1 Head nodding up and down while trying to complete task.

2 Head shaking left to right while trying to complete task.

3 Staying still and not trying to complete task.

4 High level of activity while trying to complete task.

5 A typical attempt to try and complete task.

Table 7.1: Descriptions of the behavior exhibited during each of the trials.

Trial #

Measure 1 2 3 4 5

X 00.0124 00.0752 00.0064 00.0203 00.0715

Y 00.0603 00.0347 00.0215 00.0407 00.0516

Z 00.0254 00.0560 00.0119 00.0256 00.0327

α 24.0516 07.2349 08.7961 10.9967 15.8274

β 03.5415 39.1323 02.6964 06.7433 15.7990

γ 02.9255 04.1224 01.4549 03.4291 04.5316

Ẋ 00.0003 00.0017 00.0001 00.0003 00.0005

Ẏ 00.0015 00.0003 00.0002 00.0005 00.0007

Ż 00.0006 00.0012 00.0001 00.0003 00.0003

α̇ 00.6189 00.1159 00.0664 00.1682 00.2292

β̇ 00.0651 00.8930 00.0345 00.1331 00.2185

γ̇ 00.0726 00.1399 00.0124 00.0689 00.0923

Table 7.2: Standard deviation in head pose and velocity over five trials.
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Figure 7.7: Mean Total Displacement of scene flow trajectories for each trial.

types of head movement during the scenario. Trials #3-5 have the subject performing

different levels of activity. The total standard deviation statistics for each of the five

runs is shown in the Table 7.2. Here it is shown that the dominant head motion for Trial

#1 and Trial #2 is recovered. It is also possible to distinguish low levels of activity by

the subject. In Trial #3 where the subject is performing the least amount of motion,

the lowest standard deviation is reported for all measures. However the level of activity

in the subject cannot really be distinguished between Trial #4 and Trial #5 based on

head motion alone. This difference in activity is instead distinguished by comparing

mean scene flow trajectory total displacement scores as shown in Figure 7.7. Scene flow

trajectories with a total displacement < 0.006 were discarded before computing the

mean. This measure also captures the comparatively low activity shown in Trial #3.

Figure 7.8 and Figure 7.9 show the time-series plots of the head pose statistics for Trial

#1 using a sliding window of 30 frames. Note the change in the standard deviation of

α over time as the subject has to rest from head nodding. By having this time-series

information it can highlight changes in the dominant head motion.

Figure 7.12 shows the amount of time the subject focused on each object during

Trial #5. The subject intended to focus on the tomato objects to demonstrate the
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Figure 7.8: Time series of statistics recorded from the VR system during Trial #1 of
the scenario.
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Figure 7.9: Time series of statistics recorded from the VR system during Trial #1 of
the scenario.
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effectiveness of the system in capturing focus of attention. The remaining object cate-

gories received less and approximately equal attention. With a measure like this it may

be important to query the subject after they have completed the session to determine

if their fixation to a particular object category has a motivation.

Figure 7.10 shows a summarization of the scene flow tracking result using the tech-

nique discussed in Section 7.2.2 during Trial #1 where the subject’s head is nodding up

and down as they attempt to complete the task. These images offer an “at a glance”

assessment of the movement of the subject during the scenario. The primary motion ex-

hibited in Figure 7.10 comes from the subject’s head nodding and their arms deflecting

objects in the virtual environment. It can be observed in frames 1351–1951 that most of

this motion came from head nodding. This occurs again from 2251–2701. In the other

intervals the activity is mixed between arm and head motion with the relative intensity

encoded in the image. At the end of the session the subject needed to approach the

computer to end the session. This explains the high degree of motion seen in 3901–4010,

where the whole body of the subject moves towards the RGB+D sensor.

As a contrast, the same summarization was performed for Trial #4 in Figure 7.11. A

majority of the motion performed by the subject during this trial is in their arms trying

to clean away objects. The similar images suggest this motion is similar throughout the

entire session. Unlike in Trial #1, barely any head motion occurs at the same intensity

as the subject’s arms. Executing these trials provided some insight into future scenarios.

7.5 On Designing Scenarios

A key challenge in designing scenarios for use with this system is one that is true for

all virtual environments. That is the creation of 3D models and textures for objects

that populate the environment as well as the environment itself. Fortunately there are

repositories of available models on the Internet that can supplement in the construction

of an environment. A remaining challenge is ensuring that these objects have the same

relative scaling to each other. This is a mathematically trivial operation but it still

requires work on behalf of the scenario implementer. Simply by changing the environ-

ment and the object used in interaction can alter the behavior of subjects and elucidate

differences.
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The task required for completion by the subject should take advantage of the sensing

modalities available. For instance, in the default configuration of the proposed system,

interaction may only take place in front of the RGB+D sensor. If the subject faces away

from the sensor they will likely be occluding the view of their hands making interaction

impossible. Furthermore it is not straight forward to signal to the subject in VR to

stimuli behind them. Some clues may come from 3D audio or from peripheral vision.

It is for these reasons that the activity should be available in front of the user.

Creating a new task for subjects to perform requires some consideration. The task

that is required of the user should be simple and intuitive. This means that it should

be as close to how the subject would naturally interact with real world objects. Even

though the proposed methodology is designed to enable intuitive motion the subject will

likely be new to the system. In the proposed scenario this was accomplished by having

the task be swiping away objects. This way the user would not have to be concerned

with understanding how to precisely interact with the objects allowing them to behave

freely.

7.6 Summary

This chapter showed how the presented methodologies in this work can be brought

together for mental health assessment. They extend upon previous approaches in several

ways. They demonstrate the possibility to not only measure total movement of the head

pose but also measures that vary in time which can characterize the subject’s behavior

over time. This is further augmented by the scene flow tracking based measures which

give a measure of the total body activity of the subject. Measuring activity (or motion)

serves as a indicator of engagement or reaction to eliciting stimulus.

Incorporation of 3D audio was only discussed briefly however its addition can cer-

tainly add to the level of immersion. Commercially available headphone systems exist

for presenting 3D audio. Since all of the components are calibrated relative to the world

frame and the pose of the subject’s ears can be inferred using the pose of the HMD.

The best validation for the proposed approach would be to evaluate the system and a

scenario in a study incorporating both a normative and affected population. Performing

this validation would provide information on how the measures vary between groups
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making modifications to the virtual environment and seeing how that changes behavior

is an important question for further investigation.
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Figure 7.10: Scene flow tracking summary over 150 frame intervals from Trial #1. The
amount of motion in a cell varies from low (blue) to high (red).
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Figure 7.11: Scene flow tracking summary over 150 frame intervals from Trial #4. The
amount of motion in a cell varies from low (blue) to high (red).
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Figure 7.12: Time spent focusing attention on each type of object during Trial #5.
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Chapter 8

Conclusion

This thesis investigated the use of computer vision and immersive environments in the

application domain of mental health assessment. Computer vision tools were demon-

strated to be usable in characterizing behaviors related to mental illness. By using a

structured environment, behaviors related to symptoms of a mental illness were eluci-

dated and quantified using computer vision. Novel methods for human computer in-

teraction were developed which facilitate using reconfigurable immersive environments

as another avenue for assessment. The impact of these tools can be manifold. Having

tools that can collect quantitative data on observed subjects can enable additional ob-

jective data. By using immersive environments, enabled by VR and natural interaction,

clinicians will be able to use safe, repeatable environments that should elicit discernible

responses over the observation period.

While these methods were developed as tools for mental health assessment they

can be extended for other uses. Proper HMD and RGB+D sensor calibration has the

potential to greatly impact the VR user experience. By being able to reproject the

sensed world to the user, they can navigate that space without removing their headset.

Having externally affixed RGB+D sensors has its advantages as well. Since the cameras

are static traditional background subtraction methodologies or depth thresholding can

be employed. This approach also allows the user to interact beyond the view point of

the HMD, which is inhibited in the case of HMD mounted RGB+D sensors.
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8.1 Contributions

The contributions of this thesis are described here:

• Established an assessment of the state of the art in computer vision, behavior

imaging and AR/VR for mental health treatment and assessment.

• Demonstrated the applicability of computer vision methodologies to the mental

health domain by being able to classify symptoms related to autism in video.

• Developed a method for assessing OCD related behaviors which used the scenario

and environment around the subject to elicit those behaviors.

• Developed a method for registering RGB+D sensors to HMD systems with mini-

mal additional modification.

• Presented a method for extending densely sampled trajectory features for use in

scene flow data.

• Provided a framework for further development of mental health assessment sce-

narios using immersive environments with natural interaction.

8.2 Future Work

This work makes significant strides towards using immersive environments and computer

vision to aid in mental health assessment although more work can be done to improve

this system. Inexpensive commercially available RGB+D sensors and head-mounted

displays have only been around for less than a decade. Their total potential has yet to

be seen. There are specific directions relevant to the work of this thesis that warrant

further study.

• Pilot Study — This thesis established that environment and scenario can play a

role in eliciting behaviors that can then be observed by computer vision. Further

validation needs to be done to see if this approach holds when transferred to a

virtual environment when interacting with objects that are virtual.
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• Scenario Development — A key advantage of this approach is being able to present

different scenarios to a subject without changing the essential equipment. Inves-

tigating and establishing different scenarios that elicit discernible behaviors will

increase the ubiquity of this approach.

• Fine Grain Interaction — Improvements can be made to the point cloud-based

interaction methodology. The resolution of the sensor as well as the speed and

description of the physics simulation limit the precision in which virtual objects

can be manipulated. This has an impact on immersion.

• Activity Detection — Still an important research problem in computer vision,

activity detection requires not only determining which activity occurred but when

it occurred over the observed sequence.

• Feature Examination — Features extracted along densely sampled trajectories

derived from scene flow can be investigated. The advantage of these features is

two-fold. Unlike image based methods, trajectories towards the camera can be

tracked and distinguishable from noise. Features derived along the trajectory can

be computed from 3D data.

• Multiple Sensor Registration — Natural marker less interaction using point cloud

data can be improved through incorporating information from multiple views. The

precision required for this calibration is significant with respect to other RGB+D

sensors as misalignment is easily noticeable in point clouds from two views.
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