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Abstract 

Iron deficiency (ID) is the most common micronutrient deficiency, affecting an estimated 

2 billion people world wide including 20-30% of pregnant women and their offspring.  

Many human studies have demonstrated negative effects of early life ID on learning and 

memory which persist beyond the period of ID despite of prompt iron treatment, 

observations which are supported by rodent models of early iron deficiency anemia 

(IDA).  In spite of a large, observational literature the mechanisms through which early 

ID causes acute and persistent brain dysfunction are largely unknown.  Mammalian target 

of rapamycin (mTOR) signaling is an attractive candidate for mediating the effects of 

early ID because it integrates cellular metabolic status to regulate fundamental aspects of 

cellular growth and differentiation.  The overall goal of the current studies is to 

understand the role of iron in regulating mTOR signaling during a critical period of 

development in the hippocampus by using unique genetic mouse models of hippocampal 

ID to: 1) Determine when iron is required for hippocampal development 2) Determine the 

role of iron in mTOR signaling 3) Manipulate iron and mTOR to determine effects on 

hippocampal structure and behavior.  The findings from these experiments demonstrate 

that mTOR signaling is upregulated by neuronal ID during the same period that rapid 

hippocampal development requires large amounts of iron.  Additionally, rescue of 

behavioral outcomes in adult animals following restoration of mTOR signaling (through 

either timely iron repletion or pharmacological suppression) provides functional evidence 

for a connection between mTOR and the persistent effects of early ID.   
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Overview 

 Deficiencies of nutrients that affect brain development and function have been 

estimated to shift the world’s IQ potential negatively by 10 points (Morris et al., 2008).  

Iron deficiency (ID) is the most common of these nutrient deficiencies, affecting an 

estimated 2 billion people world wide according to the World Health Organization, 

including 20-30% of pregnant women and their offspring.  Many human studies have 

demonstrated the negative effects of ID on learning and memory, and affective and social 

behavior (Lozoff and Georgieff, 2006).  In humans, early life ID (late gestation through 

2-3 years of age), results in learning and memory deficits which persist beyond the period 

of ID in spite of prompt iron treatment (Burden et al., 2007; Riggins et al., 2009); 

findings supported by rodent models of early iron deficiency anemia (IDA) (Schmidt et 

al., 2007).  In spite of a large, observational literature on early IDA effects on learning 

and memory in humans and rodent models, several significant gaps in knowledge exist, 

specifically how early ID causes acute brain dysfunction and why permanent deficits 

remain despite iron treatment.   

 

Iron Biology 

Iron is an essential micronutrient that has multiple biological functions, many of 

which are fundamental to cell survival.  Most iron-containing proteins are evolutionarily 

highly conserved and are involved in a wide range of cellular processes including DNA 

replication, cell cycle regulation, oxidative phosphorylation, oxygen transport, lipid 

synthesis, and neurotransmitter synthesis (Beard and Connor, 2003; De Domenico et al., 
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2008).  Not surprisingly, therefore iron is required for cell growth and survival (Le and 

Richardson, 2002).  In conditions when iron supply is insufficient to meet iron demand, 

iron prioritization determines which tissues will receive available iron.  The red blood 

cell (RBC) mass has the highest priority, which is expected considering that it is where 

the majority of the body’s iron resides (Andrews, 1999).  The heart, brain, muscle and 

liver have lower priority than RBCs (Georgieff et al., 1992).  Thus, it is not surprising 

that IDA results in brain ID, and subsequent acute and long-term neurocognitive deficits.  

 

Disruptions in Human Iron Homeostasis  

Despite regulatory mechanisms, iron homeostasis is often disrupted by inadequate 

iron supply (i.e. insufficient dietary iron intake, blood loss, parasites), and shifts in iron 

demand (i.e. rapid growth, hypoxia) (Andrews, 1999).  ID most commonly results from 

insufficient dietary intake and can be exacerbated by additional environmental factors.  

There are three populations with especially high risk for developing ID including women 

of childbearing age (i.e., increased iron loss due to menstruation) infants and toddlers 

(i.e., rapid growth, insufficient dietary intake, iron loss due to intestinal parasites), and 

late gestation fetuses/neonates (i.e., rapid intrauterine growth, severe maternal ID, 

gestational complications).  In addition to severe maternal ID, several common 

gestational complications disrupt the balance of fetal iron supply and demand, resulting 

in total body and/or tissue level ID.  These conditions include uncontrolled diabetes 

during gestation, maternal high blood pressure, maternal smoking, infection, placental 
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insufficiency, and prematurity (Siddappa et al., 2007).  Early ID is a term used to refer to 

both infant/toddler and fetal-neonatal populations. 

In adults, ID increases fatigue, affects physical work performance, and impairs 

cognitive function.  These deficits completely resolve following iron therapy with no 

residual physical or cognitive effects (Basta et al., 1979; Patterson et al., 2001).  Infants 

and children with early ID also demonstrate acute learning and memory deficits.  For 

example, 9 and 12 month old infants with IDA show altered event related potential 

processing of strangers vs. mothers face, indicating impaired development of recognition 

memory (Burden et al., 2007).  Similarly, iron deficient newborn infants of diabetic 

mothers (IDMs) show impaired auditory recognition memory processing of mother’s 

voice (Siddappa et al., 2004). 

Compared to ID in adulthood, early ID populations continue to demonstrate wide-

ranging learning and memory deficits following iron repletion.  For example, at 2-3 years 

of age, formerly iron deficient IDMs, exhibit impaired recall memory during elicited 

imitation tasks which correlates with iron status at birth (Riggins et al., 2009).  At 5 years 

of age, children with low iron stores at birth showed decreased language development, 

fine motor skills, and tractability relative to children with normal iron stores at birth 

(Tamura et al., 2002).  Additionally, at 11-14 years old, compared to normal children, 

children who were IDA as toddlers had lower psychomotor development scores, 

increased incidence of repeating a grade in school, impaired performance on visual-

spatial memory tasks and increased difficulties with anxiety, social situations, and 

attention (Lozoff et al., 2000; Lozoff et al., 2006; Shafir et al., 2006).  These deficits 
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remain in early adulthood, despite normal iron status (Lozoff et al., 2006).  Therefore, 

prevention of ID is paramount for preventing acute dysfunction of the brain as well as 

long-term sequelae. 

 

Animal Models of Early IDA 

Animal models have been utilized to access and identify developmental processes 

that underlie the persistent cognitive deficits observed in humans.  Early IDA is induced 

in rodent models by restricting maternal dietary iron during gestation and lactation.  

Observations from early dietary IDA models mirror many behavioral, and learning and 

memory deficits from human studies.  Acutely, IDA in developing rats impairs motor 

development and hippocampus-dependent trace conditioning (Beard et al., 2006; Ward et 

al., 2007; Gewirtz et al., 2008).  Formerly iron deficient anemic animals demonstrate 

persistent neurocognitive deficits including impaired spatial memory and win-shift 

performance (Felt and Lozoff, 1996; Felt et al., 2006; Schmidt et al., 2007).  

The most commonly used method to experimentally assess spatial memory in 

rodents is the Morris water maze (MWM).  The water maze was developed in the 1980’s 

by Richard Morris (Morris, 1984), and has been extensively validated as a measure of 

hippocampus-dependent learning and memory.  There are many modifications of the 

task, but the general approach remains the same.  An animal is placed into a large tank 

filled with opaque water and given the opportunity to navigate to a platform submerged 

below the surface of the water where the animal can escape from swimming.  Since the 

platform is not visible, the animal must use visual cues surrounding the tank to locate the 
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submerged platform.  Normal animals utilize the cues to develop a spatial strategy to 

locate the platform; but mechanical, pharmacological, and genetic legions to the 

hippocampus impair spatial learning and MWM performance (Maei et al., 2009).  

Formerly iron deficient anemic rats have impaired MWM performance and do not 

develop spatial search strategies as well as iron sufficient control rats, indicated by longer 

swimming distances and increased escape latencies during training, and less distance 

traveled in the platform quadrant during probe trials (Felt and Lozoff, 1996; Felt et al., 

2006). 

Furthermore, animal models have been valuable for examining structural, 

metabolic, and molecular consequences of early IDA that are not accessible in human 

research.  In the developing brain, acute IDA impairs neurometabolism, alters gene 

expression, myelination, monoamine function, and dendrite structure, and reduces 

synaptic efficacy (Beard and Connor, 2003; Jorgenson et al., 2003; Rao et al., 2003; 

Jorgenson et al., 2005; Clardy et al., 2006; Carlson et al., 2007).  Following iron 

repletion, many of these structural and functional deficits remain (Jorgenson et al., 2003; 

Jorgenson et al., 2005; Clardy et al., 2006; Carlson et al., 2007).  Together with human 

studies, these findings from animal models suggest that adequate iron is necessary during 

brain development to establish the structural and functional basis for long-term cognitive 

function.  
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Iron Homeostasis and Neuronal Development 

Three primary brain processes are postulated to be directly affected by ID in 

humans and animals models: myelination, monoamine metabolism and energy 

production.  While all three processes are important for neurodevelopment, the effects of 

early ID on neuronal energy metabolism are particularly prominent.  ID impairs the 

function of iron-containing hemoproteins (e.g., cytochromes) resulting in reduced ATP 

production and reduced neuronal energy capacity (Maguire et al., 1982; Dallman, 1986; 

de Ungria et al., 2000).  

The hippocampus is selectively vulnerable to the effects of early ID on energy 

metabolism because of the high metabolic demands of rapid growth exhibited in the late 

fetal-early neonatal period (Rice and Barone, 2000).  There are many aspects of 

hippocampal development including neurogenesis, migration, neurite formation, synapse 

generation, and synaptic refinement.  Although early ID has the potential to affect many 

of these processes, dendritogenesis and synaptogenesis are highly susceptible to reduced 

energy availability because these processes require large amounts of energy (de Ungria et 

al., 2000).  Furthermore, the hippocampus undergoes rapid dendritogenesis and 

synaptogenesis during late gestation/early neonatal development, coincident with the 

periods of highest risk for early IDA (Pokorny and Yamamoto, 1981b, a).  The presence 

of iron is needed to support this rapid growth, as evidenced by the upregulation of iron 

transport and the mobilization of iron stores in the hippocampus that occurs concomitant 

with the growth spurt (Taylor and Morgan, 1990; Siddappa et al., 2002).  Furthermore, 

the need for iron is reinforced by the vulnerability of the hippocampus to early ID as 
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evidenced by learning and memory deficits following iron repletion in humans and in 

animal models (Schmidt et al., 2007; Riggins et al., 2009).   

These findings suggest that the relationship between iron and energy metabolism 

is important for neuronal growth and differentiation in the hippocampus.  However, it is 

not known how ID-induced perturbations in energy metabolism affect the growth and 

differentiation of developing neurons. 

 In spite of a large amount of observational literature, the cellular pathways that 

mediate the relationship between iron’s effect on energy production and the structural and 

functional deficits observed in ID are unknown.  In part, this is due to a lack of 

information about signaling pathways that integrate metabolic information during cell 

growth.  Recently, a particularly relevant candidate pathway has emerged, the 

mammalian target of rapamycin (mTOR) signaling pathway, which is ubiquitous in 

metabolically active cells.  mTOR is a kinase which integrates cellular metabolic status to 

regulate fundamental aspects of cellular growth and differentiation including protein 

synthesis and actin organization (Wullschleger et al., 2006).  

 Thus, the overall goal of these studies is to understand the role of iron in regulating 

mTOR signaling during a critical period of development in the hippocampus by 

addressing the following specific aims:  

1. Determine when iron is required for hippocampal development 

2. Determine the role of iron in mTOR signaling  

3. Manipulate iron and mTOR to determine effect on hippocampal structure and 

behavior 
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Introduction  

The role of iron in brain development is not well understood.  Iron deficient 

infants and children demonstrate a wide range of neurological deficits while iron 

deficient, including increased motor activity, impaired auditory and facial recognition, 

and increased fearfulness and hesitancy (Lozoff et al., 1986; Angulo-Kinzler et al., 2002; 

Siddappa et al., 2004; Burden et al., 2007).  Following iron repletion, these populations 

continue to demonstrate wide-ranging deficits including reduced processing speed, 

decreased language development, and impaired fine motor skills at 4-5 years old (Tamura 

et al., 2002; Algarin et al., 2003).  By 11-14 years old, formerly iron deficient anemic 

children have persistently lower psychomotor development scores, increased incidence of 

repeating a grade in school, impaired visual-spatial memory and increased difficulties 

with anxiety, social situations, and attention (Lozoff et al., 2000; Shafir et al., 2006).  

Despite iron repletion, these deficits persist into young adulthood (Lozoff et al., 2006), 

suggesting a sensitive window or a critical period for iron availability during 

neurodevelopment. 

Animal models of early life dietary iron deficiency (ID) have further 

demonstrated the importance of iron for neuronal development and function in adulthood.  

The most common models in rats restrict maternal dietary iron from early gestation 

through lactation, causing iron deficiency anemia (IDA) in pups and reducing brain iron 

by up to 40%, approximating human autopsy observations from infants of diabetic 

mothers (IDMs) and intrauterine growth restricted (IUGR) infants (Petry et al., 1992; 

Georgieff et al., 1996).  This rat model has demonstrated acute behavioral alterations 
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including delays in developmental milestones and trace conditioning (Beard et al., 2006; 

Ward et al., 2007; Gewirtz et al., 2008).  Like human conditions, behavioral deficits 

persist following iron repletion, including impaired spatial memory and win-shift task 

performance (Felt and Lozoff, 1996; Schmidt et al., 2007).  Together with human 

findings, these observations suggest a period during brain development that depends on 

iron availability in order to ensure appropriate neurodevelopment. 

Neurodevelopment is shaped by a variety of factors, including growth factors, 

synaptic activity and environment.  Structures are most sensitive to these factors during 

rapid development (Rice and Barone, 2000).  Humans are most vulnerable to early ID 

from late gestation through 2-3 years old, during the most rapid period of brain 

development.  Since early ID disrupts long-term cognitive development in humans and 

animals, we can therefore postulate that iron is a critical substrate for brain development.  

Of all the brain regions impacted by ID, the hippocampus is particularly vulnerable.  

Early ID occurs most frequently during rapid hippocampal development.  In humans, the 

hippocampus develops rapidly, both structurally and functionally during the first two 

years of life.  Hippocampus-dependent memory appears and matures between 3-18 

months of age (Nelson, 1995).  In rodents, the hippocampus also has a period of rapid 

development between postnatal day (P)10-25.  This rapid development involves 

extensive dendrite arborization, spine formation, and synaptogenesis (Pokorny and 

Yamamoto, 1981a, b), and requires adequate metabolic support.  Iron is a necessary 

substrate for energy production and cellular metabolism due to its role in mitochondrial 

enzymes such as cytochromes (Dallman, 1986).  ID reduces cytochrome c oxidase 
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activity in the hippocampus, ultimately reducing hippocampal metabolic activity (de 

Ungria et al., 2000; Rao et al., 2003).  Furthermore, many of the cognitive deficits 

observed in formerly iron deficient humans and rodents depend in part on the 

hippocampus, including recognition memory and limbic function (Nelson, 1995).  

Together, the timing and energy demands of hippocampal development with long-term 

deficits support the vulnerability of the structure to early life ID and suggest a critical 

developmental requirement for iron.  

Animal models have shown that early IDA impairs hippocampal 

electrophysiology, CA1 apical dendrite structure and, gene expression during ID.  In 

formerly iron deficient animals, many of these deficits persist including reduced long-

term potentiation, dendrite structure abnormalities, and altered gene expression 

(Jorgenson et al., 2003; Jorgenson et al., 2005; Carlson et al., 2007).  Despite what is 

known about the function of iron-containing proteins, the precise contribution of iron to 

these deficits has been difficult to determine because, in addition to creating neuronal ID, 

conventionally used dietary models of ID also produce maternal stress, total body ID and 

anemia in pups which may negatively alter long-term cognition independently of brain ID 

(Jorgenson et al., 2003; Carlson et al., 2009).  Due to these additional consequences of 

dietary iron restriction, the specific normative role of iron in neurodevelopment remains 

elusive. 

Recently, genetic manipulation of iron uptake genes has been utilized to generate 

non-dietary models of ID.  The classic, most prevalent mechanism of cellular iron uptake 

is via transferrin receptor-1 (TfR-1) (Fig. 2.1A).  Transferrin (Tf) is the primary 
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extracellular iron binding protein, and is present in plasma, cerebral spinal fluid and the 

extracellular fluid space (Moos and Morgan, 2000).  Diferric transferrin binds TfR-1, 

which is expressed on the neuronal membrane in a soma- and dendrite-compartment 

specific manner, and this Tf-TfR-1 complex is taken up by a clathrin-coated endosome 

(Roberts et al., 1992; West et al., 1997).  Upon endosomal acidification, iron is released 

from Tf and leaves the endosome through the divalent metal transporter 1 (DMT1), 

where it is stored or utilized by the cell.  Point mutations in Tf cause hypotransferrinemia 

due to lack of Tf.  In the brains of hypotransferrinemic mice the morphology and cellular 

distribution of iron is disrupted in the hippocampus, however these animals are also 

anemic (Bernstein, 1987; Dickinson and Connor, 1994).  Total body genetic knock out 

(KO) of TfR-1 or DMT1 in mice result in severe anemia and death by P7 (Levy et al., 

1999; Gunshin et al., 2005).   

In the brain, ID has been restricted to hippocampal neurons using Cre-loxP 

conditional KO (CKO) of Slc11a2 (the gene encoding DMT1) (Carlson et al., 2009).  

This model is not complicated by anemia or hypoxia and demonstrates the specific 

importance of iron for normal hippocampal development and function.  Compared to rat 

IDA models, adult DMT1 CKO mice show remarkably similar alterations in recognition 

memory behavior, dendrite morphology and gene expression, suggesting that the main 

pathology of dietary IDA is mediated through the lack of iron delivery to the neurons.  

Nevertheless, gene expression differences do exist between the DMT1 CKO and dietary 

IDA models (Carlson et al., 2009), suggesting that anemia contributes to at least part of 

the neuronal pathology.  A limitation of the DMT1 CKO model, however, is that it  
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Figure 2.1.  Generation of dnTfR-1 transgene. A, Schematic of TfR-1 mediated cellular 

iron uptake. B, dnTfR-1 transgene contains a g1946a point mutation resulting in R649H 

substitution in the RGD Tf binding domain.  C, tTA drives dnTfR-1 expression from the 

TRE CMV promoter.   
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permanently disrupts DMT1 function in hippocampal pyramidal neurons, making it 

impossible to differentiate the developmental effects of ID from ongoing ID or to assess 

the efficacy of iron repletion.   

 Using a novel, reversible, genetic mouse model of hippocampal neuronal ID 

generated in our laboratory, the findings presented here provide evidence that there is a 

critical requirement for iron during hippocampal development.  This model restricts ID to 

CA1 pyramidal neurons through reversible over-expression of a non-functional, dominant 

negative TfR-1 (dnTfR-1) using a tissue specific conditional, tetracycline responsive 

transgene system which can be regulated with dietary doxycyline (Gossen and Bujard, 

1992; Mayford et al., 1996).  This unique model isolates ID both spatially and temporally 

in vivo during hippocampal development.  In this study, the lack of TfR1-mediated iron 

uptake between P21 and P42 leads to abnormal learning and memory in the adult. 

 

Methods 

Generation of transgenic mice.  

dnTfR-1 Construct. Total brain RNA was isolated from C57/B6 mice and used to 

generate TfR-1 cDNA.  A total brain cDNA library was generated using oligo-dT primers 

from an Invitrogen reverse-transcriptase-PCR (RT-PCR) kit.  TfR-1 cDNA was then 

isolated via PCR with the forward primer 5’-

CGGGATCCGATGATGGATCAAGCCAGATCA-3’ (containing a BamHI restriction 

site) and the reverse primer 5’-CCATCGATGGTTAAAACTCATTGTCAATATT-3’ 

(containing a ClaI site).  This generated a ~2.3 kb cDNA of TfR-1, corresponding to its 
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predicted size.  Site-directed mutagenesis (Stratagene) was used to generate a point 

mutation (g1946a) in the TfR-1 cDNA eliciting the amino acid substitution R649H in the 

conserved Arg-Gly-Asp transferrin binding motif in the TfR-1 protein (Fig. 2.1B).  This 

fragment was then cut with BamHI and ClaI restriction enzymes, and subsequently 

ligated into the MCS of the CLONTECH eGFP vector, a PCR fragment for enhanced 

green fluorescent protein (EGFP) was isolated using the forward primer 5’-

TCCCCGCGGGGACGCCACCATGGTGAGCAAGGGA-3’ (containing a SacII 

restriction site and a Kozak consensus translation initiation site) and the reverse primer 

5’-CGCGGATCCGCGCCTTGTACAGCTCGTCCATGCC-3’ (containing a BamHI 

restriction site and omitting the stop codon).  This ~700bp fragment was successfully 

ligated into the MCS of the pTRE2-TfRcDNA construct, downstream from the TRE, but 

upstream and in frame relative to the TfR-1 cDNA and linearized with a unique PvuI site 

for pronuclear injection.  All cloning steps have been confirmed by automated DNA 

sequencing performed by the Advanced Genetic Analysis Center at the University of 

Minnesota. 

Injection and confirmation of genomic integration of Tg(TRE-eGFP-dnTfR1).  

The University of Minnesota Mouse Genetics Laboratory generated founder mice 

positive for Tg(TRE-eGFP-dnTfR1) by pronuclear injection.  C57BL/6J female mice 

(21-25 days of age) were superovulated to synchronize ovulation and then mated to 

C57BL/6J fertile males.  Fertilized embryos were collected at 0.5 days post conception.  

Isolated single cell embryos displaying two pronuclei were microinjected with the Tg.  

The 22-30 injected embryos were implanted into the left oviduct of a 0.5 dpc 
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pseudopregnant CD-1 female (6-7 weeks of age).  Pups were born 19 days post implant. 

DNA was prepared from a tail snip for definitive genotyping by Southern blot and PCR.  

Genomic DNA isolated from tail snips was used to indentify the genotype of resultant 

offspring.  Three pups positive for the transgene were unique founders; each was 

propagated and maintained as heterozygotes by backcrossing to WT C57BL/6J mice.  

Here findings from a single strain, Mkg1, are presented.  Mkg1 was further mated with 

B6;CBA-Tg(Camk2a-tTA)1Mmay/J mice (purchased from Jackson Laboratories) which 

express tetracycline-OFF transactivator (tTA) under the regulatory control of a CaMKIIα 

promoter (Mayford et al., 1996).  Animals positive for dnTfR-1 and Camk2a-tTA express 

dnTfR-1 at physiologic levels sufficient to affect iron uptake, in the absence of 

doxycycline (Fig. 2.1C).  These doubly transgenic mice will be referred to as dominant 

negative (DN), while offspring positive for one or no transgenes will be referred to as 

wild type (WT) because they do not express dnTfR-1. 

Animals 

All experiments were performed in accordance with the NRC’s Guide for Care 

and Use of Laboratory Mice, and with approval of the Institutional Animal Care and Use 

Committee of the University of Minnesota.  Mice were housed in RAR facilities in a 12 

light 12 dark cycle.  All experimental animals were maintained on ad lib standard 

laboratory chow until weaning (P21).  Following weaning, animals continued on standard 

diet (WTnodox, DNnodox) or were switched to ad lib doxycycline diet (0.625mg 

doxycycline/kg, TD.01306, Harlan-Teklad, Madison, WI) at P21 (WTP21dox and DNP21dox) 
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or P42 (WTP42dox and DNP42dox).  The doxycycline diet was identical to the standard diet 

in all other nutritional aspects. 

To produce animals for morphological analysis, B6;CBA-Tg(Camk2a-

tTA)1Mmay/J animals were crossed with B6.Cg-Tg(Thy1-YFP)16Jrs/J animals, which 

expresses yellow fluorescent protein (YFP) in random subsets of neurons (Feng et al., 

2000).  Animals positive for both Tg(Camk2a-tTA)1Mmay and Tg(Thy1-YFP)16Jrs 

were then mated with C57 BL/6-Tg(TRE-eGFP-dnTfR1)Mkg1 animals.  

Tissue Collection 

Animals were euthanized by i.p. injection of Beuthanasia (10mg/kg).  Whole 

brains used for Perl’s staining and morphology analysis were then collected following 

transcardial perfusion with PBS, and by perfusion with 4% PFA.  Hippocampal tissue 

used for mRNA and protein analysis was dissected following rapid decapitation and brain 

removal.  Dissected hemispheres were then flash frozen in liquid nitrogen and stored at -

80°C until use.   

Experimental Procedures  

CHO Culture.  To test the ability of dnTfR-1 binding to transferrin in vitro, CHO 

cells (CHO AA8 Tet-Off Control Cell Line, Clontech), which stably express the Tet-OFF 

tetracycline transactivator, were transfected with PvuI-linearized pCMV:eGFP-TfR1 or 

pCMV:eGFP-dnTfR1 plasmid using Lipofectamine per manufacturer's recommendation 

(Invitrogen).  Following overnight incubation, transfected CHO cells were incubated for 

1 hour with 25µg/mL texas-red labeled tranferrin (Invitrogen).  Unbound transferrin was 

removed with PBS washes.  Bound transferrin was visualized with light microscopy 
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equipped with a CCD camera.  Images were captured and processed using Adobe 

Photoshop.  

Hematocrit. Trunk blood samples for hematocrit measures were taken following 

rapid decapitation using heparinized capillary tubes to ensure that the animals were not 

anemic and that doxycycline administration did not alter the hematologic status.  Samples 

were centrifuged at 10,000 g for 10 min and hematocrit was determined using a standard 

hematocrit reader.  

Modified Perl’s iron staining.  50µm vibratome brain sections from P70 WTnodox, 

WTP21dox, DNnodox, and DNP21dox mice were stained for storage iron using modified Perl’s 

iron stain, as described previously (Carlson et al., 2009).  Sections were imaged using a 

Nikon microscope (Eclipse 600) and staining density was measured using Photoshop.  20 

pixel square boxes were used to record the average staining intensity from a non-stained 

region and from the CA1 pyramidal cell layer and the cortex.  Background staining 

intensity was then subtracted from CA1 and cortical staining intensity to determine 

specific CA1 and cortex iron staining densities as previously described (Gewirtz et al., 

2008).  

Morris Water Maze. A modified version of the Morris water maze (MWM) was 

used to evaluate spatial memory, as previously described (Choi et al., 2006; Carlson et 

al., 2009).  Briefly, 2-3 month old male WT nodox, P21dox, P42dox and DNnodox, P21dox, P42dox 

mice were tested across 6 consecutive days.  A circular pool 120 cm in diameter was 

filled with water occluded with white non-toxic paint and divided into virtual quadrants 

(NE, NW, SE, SW).  A 10 cm diameter escape platform was submerged 1 cm below the 
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surface in the NW quadrant. Salient visual cues were located on the walls surrounding the 

tank.  The animals were habituated to the water on day 1.  During the four test days that 

followed animals were given 5 training trials with an inter-trial interval of 30 minutes.  

For each training trial the escape platform was located in a unique position within the 

NW quadrant and animals were placed into the pool facing the wall from an entry 

location chosen randomly from N, NE, E, SE, S, SW positions along the pool.  Animals 

were allowed to swim until they escaped onto the platform, if a mouse did not escape 

within 90 seconds, it was guided to the platform.  Following the 5 training trials, the 

animals were given a probe trial during which the platform was removed from the pool 

and the animals were allowed to swim for 30 seconds before being removed from the 

pool.  Performance was measured by the amount of time spent searching for the 

submerged platform in the target quadrant during probe trials.  On the 6th day, the 

animals were given visual cued task (VCT) training where a visible flag was attached to 

the submerged platform, and animals were given three 45 second training trials.  VCT 

performance was measured by escape latency as previously described (Carlson et al., 

2009).  The trials were video-captured and analyzed using Topscan software (Clever 

Systems, Reston, VA). 

Morphological Analysis. 50µm brain sections were cut using a vibratome, 

mounted on slides with Dapi and imaged using a Nikon microscope (Eclipse E600). 

Data Analysis 

Analysis of Variance was used to compare the staining intensity and hematocrit 

values.  Two-way ANOVA was used to assess genotype x time interactions for each 
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doxycycline conditions in MWM performance.  α was set at 0.05 and Bonferroni post-

hoc analysis was used. 

 

Results 

dnTfR-1 expression inhibits iron uptake. 

To test dnTfR-1 binding to transferrin in vitro, eGFP-TfR-1 and eGFP-dnTfR-1 

plasmids were transfected into CHO cells stably expressing tetracycline transactivator 

(Tet-Off) and incubated with Texas red labeled transferrin (Texas red-Tf) for one hour.  

Texas red-Tf co-localized with eGFP-TfR-1 (Fig. 2.2A) but not eGFP-dnTfR-1 (Fig. 

2.2B).  

To determine if dnTfR-1 expression is sufficient to reduce in vivo iron uptake in 

the hippocampus, storage iron was visualized with modified Perl’s staining.  dnTfR-1 

expression significantly reduces storage iron in adult DNnodox CA1 pyramidal neurons 

compared to WTnodox (Fig. 2.3A-B,E).  Iron staining in the cortex is not altered in DNnodox 

animals (Fig. 2.3A-B,E).  The mice are not anemic since the hematocrit is not altered in 

DNnodox animals compared to WTnodox controls (DNnodox 43.5±0.7% vs. WTnodox 

41.2±3.6%, p=ns).  Therefore, in this model dnTfR-1 expression specifically reduced iron 

in CA1. 

Dietary doxycyline inhibits dnTfR-1 expression and restores iron status. 

Dietary doxycyline beginning at P21 inhibits dnTfR-1 expression and restores 

normal iron status in CA1 pyramidal neurons in adult DNP21dox animals (Fig 2.3 C-D,E).  
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Cortical iron status and hematocrit are not affected by doxycyline (Fig 2.3C-D,E; 

WTP21dox 43.3±1.5% vs DNP21dox 43.3±1.9%, p=ns). 

ID in CA1 impairs adult learning and memory performance. 

In the modified Morris water maze (Choi et al., 2006; Carlson et al., 2009) adult, 

hippocampally iron deficient DNnodox mice spend less time in the target quadrant during 

probe trials across training days (Fig. 2.4A; n=10-14, F=13.96, p<0.001).  Additionally, 

DNnodox animals spend more time swimming in the perimeter of the maze during training 

trials than WTnodox animals (Fig. 2.4B, n=10-14, F=10.81, p<0.01).  VCT performance is 

not different between the groups (Table 2.1), indicating that motor and sensory deficits 

do not account for differences in spatial task performance. 

In order to determine if structural abnormalities contribute to impaired spatial 

memory in DNnodox animals, CA1 apical dendrites were visualized using transgenic thy-1 

YFP.  Compared to iron sufficient WTnodox animals, apical dendrites in adult DNnodox 

animals are truncated and disorganized (Fig. 2.5A-B).  Consistent with previous findings, 

these data demonstrate that ongoing neuronal ID impairs spatial memory learning and 

CA1 apical dendrite structure. 

Restoration of iron status at P21 but not P42 rescues learning and memory 

performance.  

DN mice given doxycyline beginning at P21 (DNP21dox) demonstrate similar 

acquisition of the spatial learning task as WTP21dox littermates on the MWM spatial 

memory task when tested at P70 (Fig. 2.4C, n=11-14, F=0.313, p=ns).  They spend the 

same amount of time swimming in the perimeter of the maze as the WTP21dox mice (Fig.  
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Figure 2.2. dnTfR-1 expression inhibits Tf binding.  In tetOFF CHO cells, Texas red-Tf 

co-localizes with TfR-1 in CHO cells transfected with A, wild type eGFP-TfR-1 but not 

with B, eGFP-dnTfR-1.  
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Figure 2.3. dnTfR-1 expression selectively and reversibly inhibits iron uptake in whole 

brain. Storage iron staining in adult hippocampus and cortex (inset, magnification of CA1 

pyramidal cell layer indicated by arrowhead) A, WTnodox B, DNnodox C, WTP21dox and D, 

DNP21dox mice.  F, Quantification of staining intensity. **p<0.01 Data are mean±SEM 

(n=4-6), scale bar=200µm 
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Figure 2.4. Hippocampal ID impairs spatial learning.  Percentage of time spent target 

quadrant during MWM probe trails for A, WTnodox and DNnodox C, WTP21dox and DNP21dox 

E, WTP42dox and DNP42dox animals.  Percentage of time spent swimming in the perimeter 

of MWM during training trials for B, WTnodox and DNnodox D, WTP21dox and DNP21dox F, 

WTP42dox and DNP42dox animals.  Data are mean±SEM (n=10-14) 
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Figure 2.5. Hippocampal ID impairs CA1 apical dendrite morphology.  CA1 apical 

dendrite morphology in A) WTnodox B) DNnodox C) WTP21dox D) DNP21dox E) WTP42dox and 

F) DNP42doxanimals.  Scale bar=200µm 
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Table 2.1. Genotype and Doxycyeline Treatment do not Affect Visual Cued Trial Escape 

Latencies (values are mean seconds ± SD) 

 

Trial 1  Trial 2 Trial 3 Treatment 
Group WT DN WT DN WT DN 

No Dox 
(n=10-14) 10.5±8.5 15.3±8.8 9.9±6.8 9.6±4.9 6.3±2.5 8.8±3.6 

P21 Dox 
(n=14-11) 8.1±4.4 12.2±7.3 5.9±1.9 7.8±3.0 8.7±9.6 11.2±10.6 

P42 Dox 
(n=10-14) 7.5±3.0 11.9±/8.0 9.7±7.9 15.7±10.7 9.5±9.0 13.0±9.9 
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2.4D).  CA1 apical dendrite structure in DNP21dox animals is comparable to WTP21dox (Fig. 

2.5C-D).  In contrast, adult DN mice given doxycyline beginning at P42 (DNP42dox) spend 

less time in the target quadrant than WTP42dox littermates (Fig. 2.4E, n=10-14, F=11.79, 

p<0.001) and continue to show increased time spent in the perimeter of the maze, similar 

to untreated DNnodox animals (Fig. 2.4F, n=10-14, F=4.49, p<0.05).  Moreover, DNP42dox 

CA1 apical dendrite structure is disrupted, similar to untreated DN animals despite iron 

repletion (Fig. 2.5E-F).  VCT performance was not altered between doxycyline treated 

DN and WT groups, regardless of age of iron repletion (Table 2.1).  Restoration of iron 

beginning at P21, but not at P42, restores behavioral performance and dendrite structure 

in adult DN animals compared to iron deficient DNnodox animals, indicating a 

developmental requirement for iron in establishing neural circuitry that underlies learning 

and memory behavior. 

 

Discussion  

Human and animal studies of early life ID have demonstrated that there is a 

critical requirement for iron during hippocampal development.  However, due to the 

confounds of dietary animal models, determining precisely when iron is necessary to 

ensure appropriate hippocampal development has not been possible.  Using this novel 

approach to modeling reversible cellular ID, we have more narrowly defined a critical 

requirement for iron between P21-42.  Iron repletion beginning at P21 rescues the long-

term effects of ID, whereas iron repletion beginning at P42 does not.  
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The rodent hippocampus undergoes rapid development between P10-P25 

including dendritogenesis and synaptogenesis, which require large amounts of energy 

(Pokorny and Yamamoto, 1981a, b).  Brain iron uptake and utilization also peaks 

between P10-25 (Taylor and Morgan, 1990; Blanpied et al., 2003; Cheah et al., 2006).  

The rapid development of dendrites and synapses and corresponding increase in iron 

uptake between P10-25 make this a very vulnerable period for ID.  While it is logical that 

treatment at P21, near the end of this vulnerable window would be more likely to restore 

hippocampal health than treatment outside the window, it was unexpected that such late 

iron repletion could prevent long-term deficits.  

 Dietary rat models demonstrate that iron treatment as early as P7 is not sufficient 

to rescue long-term hippocampal behavioral and structural deficits.  The ability of iron 

repletion late in the window of rapid hippocampal development to rescue behavioral and 

structural impairment in DNP21dox animals suggests that early life ID may extend or delay 

the period of dendrite arborization and synaptogensis.  Extension of this period of 

development would enable cells to complete dendritogenesis if iron is restored.  

By extending the period of ID from 21 to 42 days, well beyond the end of rapid 

hippocampal dendritogenesis, iron repletion is no longer sufficient to restore behavior 

and structure in DNP42dox mice, indicating that there is a critical neuronal requirement for 

sufficient iron during development between P21 and 42 for establishing functional 

hippocampal circuitry.  
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Chapter 3 
 

 

 

 

 

 

 

 

Iron Deficiency Dysregulates mTOR Signaling During 

Hippocampal Development 
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Introduction 

There are many consequences of early iron deficiency (ID), but one of the most 

puzzling is that cognitive deficits remain in spite of relatively prompt and complete iron 

repletion (Lozoff et al., 2006), suggesting that early ID interferes with long-term 

cognitive function.  Human findings are supported by studies from rat models of early 

life dietary ID and genetic hippocampal mouse models of neuronal ID which demonstrate 

long-term cognitive deficits (Felt and Lozoff, 1996; Schmidt et al., 2007), as well as 

alterations in neuron structure (Jorgenson et al., 2003; Carlson et al., 2009).  Neuronal 

structure, particularly dendrite arborization and complexity, defines the capacity of a 

neuron to integrate synaptic inputs (Spruston, 2008).  It is likely, therefore, that the 

structural abnormalities observed in ID are in part responsible for and mediate the long-

term cognitive deficits. 

The successful construction of the hippocampus during development and its 

maintenance during adulthood (which allows for life-long plasticity and experience-

dependent learning) is a complex process.  At the most basic level, neuronal development 

requires appropriate guidance cues and growth factors, and sufficient substrates, oxygen, 

and energy (Erecinska et al., 2004; Conde and Caceres, 2009).  Disrupting any of these 

factors can significantly alter neurodevelopment.  Normative neuronal development, 

therefore, depends on the availability and integration of all these factors.   

Iron contributes to many of these basic neurodevelopmental processes.  Rapidly 

growing cells are characterized by increased iron uptake through expression of high 

levels of transferrin receptor-1 (TfR-1, an iron uptake protein) which can be stimulated 
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by exogenous growth factors and c-myc activation (Neckers and Trepel, 1986; O'Donnell 

et al., 2006).  Furthermore, exogenous transferrin (Tf, the extracellular iron chaperon 

protein) promotes growth of lymphocytes; and heme stimulates neurite outgrowth in 

cultured neurons (Ishii and Maniatis, 1978; Neckers and Trepel, 1986).  Iron uptake by 

rapidly growing cells is crucial for cellular responsiveness to oxygen availability and 

oxidative stress as well as energy production.  Iron is a co-factor for globin oxygen 

transport proteins, and is essential for the activity of prolyl-hydroxylase (Prl-H) which 

regulates hypoxia inducible factor 1α (HIF1α) stability (Siddiq et al., 2008).  HIF1α is a 

transcription factor which is stimulated by hypoxic conditions.  Many mitochondrial 

enzymes integral for oxidative phosphorylation and ATP production require iron in the 

form of heme and iron-sulfur clusters, including cytochromes, NADPH, and 

flavoproteins (Maguire et al., 1982).  

Given iron’s role in cell growth, oxygen utilization and energy production, it is 

not surprising that dietary and genetic ID interferes with these neurodevelopmental 

processes, particularly in the highly metabolic, rapidly developing hippocampus.  For 

example, acute IDA reduces expression of growth factors such as brain derived 

neurotrophic factor (BDNF) (Tran et al., 2008).  The transcriptional activity of HIF1α is 

disrupted by both dietary and genetic ID (Carlson et al., 2007; Carlson et al., 2009).  

Dietary and genetic ID reduce cytochrome oxidase c activity, and alter PCr/Cr levels in 

hippocampus, indicating reduced energy availability (de Ungria et al., 2000; Rao et al., 

2003; Carlson et al., 2009).  Together, these effects are thought to mediate the long-term 

alterations in hippocampal behavior, structure, gene expression, and electrophysiology 
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observed in adult, iron replete animals (Felt and Lozoff, 1996; Jorgenson et al., 2003; 

Jorgenson et al., 2005; Felt et al., 2006; Carlson et al., 2007; Schmidt et al., 2007; 

Brunette et al., 2010).  

These consequences of early life ID on hippocampal learning and memory have 

been largely ascribed to abnormalities in iron-containing hemoproteins (e.g., 

cytochromes) resulting in reduced neuronal energy capacity (Dallman, 1986; de Ungria et 

al., 2000; Rao et al., 2003).  As described above however, iron availability also influences 

the activity of other proteins involved in neuronal cellular metabolism including HIF1α 

and BDNF (McDonough et al., 2005; Carlson et al., 2007; Tran et al., 2008; Carlson et 

al., 2009; Tran et al., 2009).  It is unclear how these multiple iron dependent effects are 

integrated by neurons and translated into important, fundamental structural outputs such 

as dendrite arborization, which is closely linked to functional capacity in learning and 

memory behavior (Spruston, 2008).  

 During normal development, the activity of the mammalian target of rapamycin 

(mTOR) signaling pathway regulates many aspects of the growth of all cells by 

integrating growth factor stimulation and nutrient availability with energy and oxygen 

availability.  mTOR is a highly conserved Ser/Thr kinase that forms two distinct 

functional complexes (mTORC1 and mTORC2) (Fig. 3.1).  mTORC1 is sensitive to the 

drug rapamycin and its targets regulate protein translation, cell survival, gene 

transcription, and autophagy (Wullschleger et al., 2006).  mTORC2 is involved in 

regulating actin organization as well as Akt and PKC activity (Jacinto et al., 2004; 

Facchinetti et al., 2008; Ikenoue et al., 2008).  mTOR activity is determined by a balance  
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Figure 3.1.  Schematic of mTOR signaling.  Central components are highlighted in 

purple and downstream effectors in yellow.  Stimulatory upstream growth factor 

signaling in green and inhibitory upstream metabolic signaling in red.  Possible iron-

dependent regulatory factors are noted in orange. 
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of phosphorylation states and is stimulated by growth factors such as insulin and BDNF, 

and by branch chain amino acids.  mTOR activity is inhibited by reduced energy status, 

and increased oxidative stress (Wullschleger et al., 2006).  In neurons, mTOR’s 

regulation of protein synthesis and actin organization is required for neuronal 

differentiation and dendrite arborization, which in turn determine cellular structure and 

function (Jaworski et al., 2005; Kumar et al., 2005).  mTOR activity is also important for 

the maturation of oligodendrocytes and the formation of myelin which support neuronal 

structure and plasticity (Tyler et al., 2009).  Genetic and pharmacologic manipulation of 

mTOR in animal models further demonstrates the importance of mTOR signaling for 

neuronal morphology, electrophysiology, and spatial learning (Knox et al., 2007; 

Ehninger et al., 2008; Zhou et al., 2009).   

ID affects several important regulators of mTOR activity, including BDNF, 

oxidative signaling (through HIF1α), and energy availability.  Previously, a hippocampal 

microarray study identified alterations in expression of genes in the mTOR pathway at 

P15 in a dietary ID anemia (IDA) rat model (Carlson et al., 2007).  However, because 

mTOR signaling is ultimately regulated by a balance of phosphorylation states, the 

relationship between iron availability, permanent long-term hippocampal deficits, and 

mTOR signaling is unknown. 

Here, in order to isolate the effect of ID, a permanent, genetic, hippocampus 

specific conditional knock out (CKO) of divalent metal transporter-1 (DMT1) was used 

to investigate mTOR signaling as a potential effector of disrupted hippocampal neuronal 

development in ID.  Results showed that mTOR activity is developmentally regulated in 
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wild type (WT) animals, corresponding to both peak iron uptake and dendritogenesis, and 

that mTOR signaling is dysregulated by ID at the peak of this developmental period at 

P25.  

 

Methods 

Animals 

All experiments were performed in accordance with the NRC’s Guide for Care 

and Use of Laboratory Mice, and with approval of the Institutional Animal Care and Use 

Committee of the University of Minnesota.  Mice were housed in RAR facilities in a 12 

light 12 dark cycle and given ad lib access to water and standard laboratory diet. 

The DMT1 CKO model was generated by crossing Slc11a2flox/flox mice (Gunshin 

et al., 2005) with CamKIIα-Cre mice as previously described (Carlson et al., 2009).  

Resulting offspring positive for Cre will be referred to as DMT1 CKO, and Cre negative 

littermates will be referred to as DMT1 WT.  Animals were killed by i.p. injection of 

Beuthanasia (10mg/kg).  Hippocampal tissue used for mRNA, polysome isolation, and 

protein analysis was dissected from DMT1 CKO and WT littermates at postnatal days 5, 

10, 15, 20, 25, and 45, flash frozen in liquid nitrogen and stored at -80°C until use.  

Whole brains were collected following transcardial perfusion with PBS, followed by 

perfusion with 4% PFA in PBS.  The brains were removed, and submerged O/N in 4% 

PFA.  
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Experimental Procedures 

Western Blot. Protein samples were prepared from individual dissected 

hippocampal hemispheres by sonication in cytoskeletal lysis buffer. 30 µg of total protein 

was separated using  NuPAGE 4-12%, or 12% Bis-Tris gels (Invitrogen).  Protein was 

transferred onto nitrocellulose membrane (Pierce), blocked in Rockland Near-

Fluorescence blocking solution, and incubated overnight with primary antibody diluted in 

blocking buffer.  Following primary incubation, the blots were washed using PBS + 0.1% 

Tween-20, and incubated for 45 minutes in secondary antibody diluted in blocking buffer 

plus 0.01% Tween-20 and 0.001% SDS.  Then blots were then washed again and imaged 

with Odyssey infrared scanning (LiCor Bioscience, Lincoln, NE).  Unless otherwise 

noted, all primary antibodies were obtained from Cell Signal Technology (Danvers, CO) 

and used at a 1:1000. 

qPCR. Quantative PCR (qPCR) was performed as previously described (Tran et 

al., 2009).  Briefly, mRNA was isolated from individual hippocampal hemispheres using 

an RNA isolation kit (Applied Biosystems), and cDNA was synthesized using a kit from 

Applied Biosystems (Carlsbad, CA).  qPCR was performed using MX3000P 

thermocycler (Stratagene) and TaqMan master mix and probes at according to 

manufacturer’s recommendations (Applied Biosystems).  

Polyribosome Analysis. Polyribosomes were isolated and fractionated as 

previously described (Larsson et al., 2006).  Briefly, 6, P25 hippcampal hemispheres 

from each genotype were pooled together and homogenized.  The homogenate was 

placed on a sucrose gradient, ultricentrifuged, and fractionated into 10 fractions.  RNA 
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was isolated from each fraction, cDNA was synthesized, and qPCR was performed for 

targets of interest using Taqman probes as described above.  

Data Analysis 

Analysis of Variance, α=0.05, with Bonferroni post-hoc analysis, was used to 

compare soma size, developmental protein and mRNA expression. Student t-tests were 

used to compare individual proteins at P25 

 

Results 

ID disrupts developmental regulation of mTOR activation.  

In iron sufficient WT animals, mTOR activity measured by S6K(Thr389) 

phosphorylation, a direct mTORC1 target, demonstrated developmental activation, with 

peak activity occurring at P10 (Fig. 3.2, solid bars).  In iron deficient DMT1 CKO mice, 

S6K(Thr389) activity showed a higher and more sustained increase in activity throughout 

development with significantly higher levels of activation at P5 and P25 compared to 

DMT1 WT (Fig. 3.2, white bars; n=3-4, F=16.82 p<0.001 ).  S6K(Thr389) levels 

normalize by P45. 

Overall mTOR activity was increased by ID at P25. 

Due to the rapid dendritic development occurring in the hippocampus, the effect 

of ID on mTOR signaling was examined in more detail at P25.  Consistent with increased 

downstream S6K(Thr389) activation, central components were also activated by ID at 

P25, including mTOR(Ser2448) phosphorylation (Fig 3.3A), reflecting increased  
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Figure 3.2. Developmental profile of mTOR signaling.  S6K(Thr389) phosphorylation 

relative to total S6K protein and actin in DMT1 WT (Black bars) and DMT1 CKO 

(white bars) mice over postnatal development. * p<0.05, ** p<0.01 
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Figure 3.3. ID dysregulates mTOR signaling at P25. A, Protein phosphorylation of 

central components relative to total protein and actin of mTOR signaling  B, 

Phosphorylation and total protein quantification of insulin signaling protein  at P25  C, 

Relative mRNA expression of ddit at P25.  D, Relative phosphorylation of AMPK 

protein at P25.  *p<0.05, **p<0,01, ***p<0.001 
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Figure 3.4. Downstream mTOR effectors are not altered by ID at P25.  A, Neuronal 

soma size across hippocampal region  B, LCIII protein levels in hippocampus at P25 C, 

Developmental expression of mRNA transcripts important for myelination. 
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mTORC1 activity. mTORC2 activity was also increased, measured by Akt(473) 

phosphorylation (Fig. 3.3A).  

Positive and negative mTOR regulatory signaling was stimulated by ID at P25.  

Insulin stimulated phosphorylation of Akt(Thr308) increased in DMT1 CKO 

animals compared to WT (Fig. 3.3B).  In addition, ID reduced PTEN activity and 

stability, indicated by decreased total PTEN protein and increased PTEN phosphorylation 

(Fig. 3.3B, (Gericke et al., 2006)), which leads to increased Akt stimulation of mTOR.  

Iron dependent mTOR inputs were also activated in iron deficient DMT1 CKO animals 

compared to iron sufficient DMT1 WT, including increased ddit4 expression (Fig. 3.3C), 

a HIF1α transcriptional target that inhibits mTOR, and AMPK(Thr172) activation (Fig. 

3.3D), reflecting low ATP availability.  Together, these findings indicated that despite the 

activation of iron-dependent negative mTOR regulators, the overall phosphorylation 

patters suggest that ID stimulates mTOR activity. 

Downstream mTOR effectors were not altered in DMT1 KO hippocampus.  

In order to determine if the alteration in phopshorylation patterns reflected 

functional outputs, several downstream mTOR effectors were assessed at P25.  Protein 

translation rates were analyzed for mRNA transcripts known to be affected by mTOR 

activity (eif4, eEF2), transcripts involved in iron homeostasis (TfR-1, FPN, IRP1 and 

IRP2), and transcripts important for synaptic plasticity (CamKIIα, PSD95, Grin2a, 

Grin2b).  While there were subtle genotype differences in translation rate profiles for 

some individual transcripts, there was no overall trend suggesting global shifts in protein 

translation rates in DMT1 CKO hippocampus (data not shown).   Neuronal soma size, 
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which is maintained by mTOR activity (Kwon et al., 2003), was not altered by ID in any 

hippocampal region at P25 (Fig. 3.4A).  LCIII protein levels, an indicator of autophagic 

activity, were not altered in DMT1 CKO hippocampus (Fig. 3.4B). In addition, mRNA 

expression of myelination markers (MBP, Plp1, CNPase) were not altered across 

development in CKO hippocampus (Fig. 3.4C).  Despite consistent increases in 

phosphorylation indicative of mTOR activity, the direct downstream effectors assayed 

here were not obviously altered by ID. 

 

Discussion 

In iron sufficient WT animals, developmental activation of mTOR activity 

between P5-25 completely overlaps the period of peak brain iron uptake, hippocampal 

growth factor expression, and energy production (Dallman and Schwartz, 1964; Dallman 

and Spirito, 1977; Taylor and Morgan, 1990; Moos and Morgan, 2000; Siddappa et al., 

2002; Erecinska et al., 2004; Tran et al., 2008).  This pattern of mTOR activation is 

consistent with developmental increases in stimulatory growth factors, including 

insulin/Akt, and Ras/MAPK signaling (Ma et al., 2005; Wullschleger et al., 2006).  

mTOR activity serves to increase energy production by modulating mitochondrial 

activity through retrograde signaling (Liu and Butow, 2006; Schieke et al., 2006), and 

there is limited evidence that mTOR activity increases cellular iron uptake in HeLa cells 

by increasing surface expression of TfR-1 (Galvez et al., 2007).  In this way, increased 

mTOR activity may serve to enlarge metabolic capacity necessary to respond to 

stimulation by growth factor signaling.  Considering the importance of mTOR signaling 
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for supporting protein synthesis and actin organization needed for dendritogenesis and 

synaptogenesis, these observations suggest that mTOR is a central integrator of metabolic 

signaling during hippocampal development. 

Iron is a critical substrate for cellular metabolism.  Previous studies in cancer cells 

and bacteria have found that these rapidly dividing and differentiating cells require 

proportionately large amounts of iron to support their metabolism.  For example, targeted 

blocking of TfR mediated Tf uptake is considered a viable strategy to “starve and kill” 

cancer cells (Crepin et al., 2010).  Similarly, the role of iron in bacterial multiplication 

and differentiation was considered to be the reason iron supplementation in malaria 

endemic areas resulted in increased malarial incidence and virility (Prentice, 2008).  The 

stimulation of mTOR by nutrient availability, growth factors, and oxygen (which are all 

acknowledged substrates for cellular metabolism) is well established (Wullschleger et al., 

2006).  The importance of iron as a metabolic substrate suggests that in normal 

conditions iron could be an additional metabolic regulator of mTOR.  The results 

presented in this chapter examine the specific influence of iron on mTOR in developing 

neurons. 

In the context of ID, there are at least three direct points in the mTOR pathway 

that ID is likely to affect: 1) BDNF stimulation of Akt activity (Patapoutian and 

Reichardt, 2001), 2) AMPK activity determined by ATP availability (Hardie, 2007), and 

3) HIF1α transcription of ddit4 (Peyssonnaux et al., 2007).  Iron, therefore, likely exerts a 

complex effect on mTOR signaling, which has multiple feedback and feedforward loops 

(Wullschleger et al., 2006).  Iron chelation studies in COS and myeloid leukemia cells 
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demonstrate that reduction of intracellular iron inhibits overall mTOR activity (Ndong et 

al., 2009; Ohyashiki et al., 2009).  Additionally, expression of mTOR pathway genes is 

downregulated by IDA in rats at P15 (Carlson et al., 2007).  These observations of mTOR 

downregulation by ID are consistent with the established impact of iron on these direct 

mTOR inputs.  Furthermore, downregulation of mTOR signaling inhibits dendritogenesis 

and electrophysiology similarly to observations from early IDA models (Jorgenson et al., 

2003; Jaworski et al., 2005; Jorgenson et al., 2005; Kumar et al., 2005; Ehninger et al., 

2008).  However, because early IDA also induces anemia (i.e., tissue hypoxia which can 

also influence mTOR signaling), it is not possible to distinguish the specific effect of iron 

in an early IDA model.  Instead, we utilized the DMT1 CKO model of hippocampal 

neuronal ID to isolate at the effects of iron on mTOR signaling in the hippocampus.   

Consistent with the known effects of ID on HIF1α transcriptional activity and 

ATP production, ddit4 mRNA and AMPK activation are increased by cellular ID at P25.  

Surprisingly, these iron-dependent effects were not sufficient to inhibit overall mTOR 

activity, which was increased throughout development by ID.  Normative developmental 

activation of mTOR signaling is extended by cellular ID, with pronounced increases in 

activity at P25.  Activity normalizes in iron deficient hippocampus by P45.  Upstream, 

mTOR stimulation by insulin-Akt activity is also extended by ID at P25, and may 

mediate the observed increase in mTOR activity.  

Despite upregulation of overall mTOR activity, however, downstream 

consequences of mTOR signaling including overall protein translation, soma size, 

autophagy, and markers of myelination, are not altered by ID.  Therefore, increased 
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mTOR activity may be stimulated by and effectively compensate for more direct effects 

of iron on protein synthesis or other downstream processes.  Alternatively, there are 

several genetic human conditions and animal models characterized by neurocognitive 

impairments that are caused by aberrant mTOR upregulation.  Pharmacological inhibition 

of mTOR signaling in these models can resolve many of the negative effects of mTOR 

upreglation (Ehninger et al., 2008; Zhou et al., 2009), making it possible that mTOR 

upregulation is not a beneficial compensation of ID but instead may contribute to the 

structural and behavioral deficits observed in this model.   

The upregulation of mTOR by ID, contrary to previous findings and lack of 

observed immediate downstream consequences presents the question of how tissue-level 

ID influences mTOR signaling.  One major difference between the DMT-1 CKO model 

and other models used to examine mTOR signaling, is that the CKO model is less severe 

and decreases neuronal metabolic activity without creating total body anemia, hypoxia, or 

genetically ablating components of mTOR signaling.  It is possible that, in the absence of 

additional negative factors common to previous studies, decreased metabolic activity may 

stimulate mTOR in order to generate energy production.  In iron sufficient conditions, 

increased mTOR would facilitate energy production to meet the demands of hippocampal 

growth by increasing metabolic output and mitochondriogenesis as well as facilitating 

iron uptake (Liu and Butow, 2006; Cunningham et al., 2007; Galvez et al., 2007).  In 

conditions of ID however, the cell may not be able to successfully increase metabolic 

activity in order to support the consequences of mTOR upregulation.  This lack of 

balance between supply and demand created by increased mTOR activity concurrent with 
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ID could then impair neuronal differentiation and dendrite arborization.  This impairment 

of structural development during early ID, particularly during the period of rapid 

hippocampal development, likely contributes to the persistent cognitive deficits which 

remain following iron repletion.  

Ultimately, these findings highlight the interrelationship of cell growth, metabolic 

need, iron uptake, and the maintenance of optimal mTOR signaling as an important 

aspect of understanding the role of iron in the developing brain.   
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Chapter 4 

 

 

 

 

 

 

 

mTOR Activity Responds to Cellular Iron Status and 

Contributes to Long-Term Hippocampal Behavioral 

Outcomes 
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Introduction 

The hippocampus undergoes a period of rapid structural and functional 

development in humans (birth-2 years) and rodents (postnatal day (P)10-25).  During this 

period of rapid growth, neurons establish complex dendritic arbors and form synaptic 

connections (Pokorny and Yamamoto, 1981b, a).  Protein synthesis and actin 

organization are required to generate and maintain the cytoskeletal structure required for 

dendrite arbors and synapse formation.  Supporting the demands of dendritogenesis and 

synaptogenesis requires sufficient substrates for protein synthesis (ie amino acids and 

ribosomes) and sustained energy production (oxygen, mitochondria, glucose, iron) 

(Dallman, 1986; Pollard et al., 2000).  In addition, neurotrophic growth factors and 

guidance cues are necessary to stimulate dendrite growth and synapse formation.  In the 

rodent hippocampus, the activity of all of these factors is increased during rapid postnatal 

growth (Dallman and Schwartz, 1964; Taylor and Morgan, 1990; Siddappa et al., 2002; 

Erecinska et al., 2004; Tran et al., 2008).  Reduction of cellular metabolism during 

hippocampal development, through hypoxia or iron deficiency (ID), results in structural 

abnormalities including reduced dendrite complexity and altered spine morphology 

(Pokorny and Trojan, 1986; Brunette et al., 2010).  

Together, these observations demonstrate that precise regulation of cellular 

metabolism is an essential requirement for hippocampal development.  Mammalian target 

of rapamycin (mTOR) is an important signaling pathway that integrates metabolic 

demand (growth factor stimulation) and metabolic supply (oxygen, branch chain amino 

acid availability, energy status) in order to support cell growth and morphology 
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(Wullschleger et al., 2006).  mTOR activity stimulates protein synthesis and actin 

organization and also increases metabolic activity by increasing mitochondrial gene 

expression, oxygen consumption and increasing iron uptake (Cunningham et al., 2007; 

Galvez et al., 2007).  Through this coordinated regulation, mTOR activity not only 

promotes cell growth, but also modulates the metabolic activity required to support it.   

Recently developed genetic models of hippocampal neuronal ID by our group 

have laid a foundation for assessing mTOR activity in ID.  First, the divalent metal 

transporter1 conditional knock out (DMT1 CKO) model, which permanently disrupts 

Slc11a2 (DMT1 gene, an iron transporter) expression in hippocampal neurons, 

demonstrates that neuronal ID upregulates mTOR signaling (Chapter 3), extending the 

period of developmental mTOR activation compared to iron sufficient animals.  This 

sustained activation of mTOR extends throughout the peak of rapid hippocampal 

development.  Second, the dominant negative (DN) model induces reversible ID in CA1 

hippocampal pyramidal neurons through overexpression of a dominant negative non-

functional transferrin receptor-1 (dnTfR-1, Chapter 2).  Manipulation of the timing of 

iron repletion in this model identified a critical requirement for iron between P21-P42 to 

ensure appropriate hippocampal development.  Iron repletion at P21, near the end of peak 

hippocampal development and during extended mTOR activity in the DMT1 CKO 

hippocampus, prevents long-term behavioral and structural deficits.  These findings 

suggest that mTOR activity could be related to the ability of P21 repletion to prevent 

long-term deficits. 
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Sustained upregulation of mTOR activity during hippocampal development could 

be beneficial or detrimental to long-term outcomes in the context of ID.  mTOR activity 

stimulates protein synthesis, increases metabolic activity and corresponds to increased 

transferrin (Tf) uptake (Liu and Butow, 2006; Wullschleger et al., 2006; Galvez et al., 

2007).  Therefore increased activity may compensate for direct effects of ID on protein 

synthesis/stability or actin organization, or even moderate ID by stimulating iron uptake 

and increasing metabolic activity.  However, there are many genetic disorders and animal 

models characterized by increased mTOR activity which result in cognitive, structural, 

and electrophysiological impairments.  Many of these impairments can be improved or 

even rescued through pharmacological normalization of mTOR signaling (Ehninger et al., 

2008; Meikle et al., 2008; Zhou et al., 2009).  Therefore, it is possible that ID-induced 

increased mTOR signaling during development could contribute to rather than ameliorate 

the structural and behavioral deficits which persist following iron repletion (Felt and 

Lozoff, 1996; Jorgenson et al., 2003).  

Using two unique genetic models of cellular ID the relationship between iron and 

mTOR signaling can be explored.  The data presented here first shows that ongoing ID in 

the DN model dysregulates mTOR signaling in CA1, confirming findings from the 

DMT1 CKO model (Chapter 3).  Additionally, mTOR activity was reduced by iron 

repletion at P21 in DN animals.  The functional importance of mTOR responsiveness to 

iron availability during hippocampal development to long-term behavioral outcomes was 

then examined by pharmacologically decreasing mTOR activity using rapamycin 

treatment between P10-42 in the iron deficient DMT1 CKO. 
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Methods 

Animals 

All experiments were performed in accordance with the NRC’s Guide for Care 

and Use of Laboratory Mice, and with approval of the Institutional Animal Care and Use 

Committee of the University of Minnesota.  Mice were housed in RAR facilities in a 12 

light 12 dark cycle.  

DN Model.  Animals were generated and euthanized as described in Chapter 2.  

Male and female hippocampal region CA1 was isolated and collected from WTnodox and 

DNnodox animals at P21, P30, and P42, and from WTP21dox and DNP21dox animals at P30 

and P42.  Due to the restriction of ID to CA1 region neurons in the DN model (Chapter 

2), CA1 tissue was microdissected from freshly removed brains by cutting thin sections 

with a razor blade and isolating CA1 using a dissection microscope and two fine gauge 

needles.  Tissue was immediately sonicated in cytoskeletal buffer, aliquoted and stored at 

-80°C until use. 

DMT Model. Animals were generated as described in Chapter 3.  6 mg/kg 

rapamycin or vehicle was delivered via i.p. injection every other day beginning at P10-12 

and continuing through P40-42.  Rapamycin was dissolved in 100% EtOH and diluted in 

5% PEG and 5% Tween-80 as previously described (Meikle et al., 2008).  Tissue was 

collected as described in Chapter 3 from male and female vehicle and rapamycin treated 

animals at P25, and from male and female adult (P60-P90) animals following behavioral 

testing. 
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Experimental Procedures 

Behavioral Assays.  An enabled Morris water maze (EMWM) was utilized as 

previously described (Carlson et al., 2009).  Males and females were tested separately. 

Briefly, the animals were first habituated to handling, and then observed in an open field 

as previously described (Sun et al., 2007).  Mice were then habituated to the water maze, 

and the following day were given 4, 1 minute, visual cued task (VCT) trials.  In the VCT 

the animals could escape from swimming onto a 10 cm diameter platform with a visually 

salient flag attached, the animals were allowed to swim for one minute or until they 

escaped to the platform.  On each of the next 5 days the animals were given 6, 90 second 

training trials, followed by a 30 second probe trial.  In the EMWM trials, the platform 

location was fixed in the center of a predetermined target quadrant, however, to make the 

task less difficult the size of the platform changed across trials.  During the first two days 

of training (training trials 1-12), trials 1-4 used a 20 cm diameter platform, trials 5-8 used 

a 15 cm platform, and trials 9-12 used a 10 cm diameter platform.  For the remaining 3 

days of training, the first two daily trials used the 20 cm platform, followed by two 15 cm 

platform trials, and finally two 10 cm platform trials.  During probe trials, the platform 

was removed from the water and the animal was allowed to swim for 30 seconds before 

being removed by the experimenter.  Video was captured and analyzed using Topscan 

(Clever Systems, Reston, VA). 

Western Blot.  Western blot analysis was performed as described in Chapter 3 

using 20ug of total protein.   
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Hematocrit.  Blood collected at euthanization was used to measure hematocrit as 

described in Chapter 2. 

Data Analysis 

Analysis of Variance, α=0.05, with Bonferroni post-hoc analysis, was used to 

compare demographic and behavioral data.  Student t-tests were used to compare 

individual proteins at P21 and P42. 

 

Results   

mTOR signaling is disrupted in the DN model of hippocampal ID 

Neither genotype nor doxycycline treatment affected body weight, total body iron 

status, or brain/body weight ratios (Table 4.1).  Phosphorylation of several key mTOR 

proteins including S6K(Thr389), Akt(Ser473) and S6(Ser235/236) was increased at P21 

in DNnodox animals compared to WTnodox (Fig. 4.1A, see Fig 3.1 for pathway reference)  In 

addition, total mTOR and S6 protein was also increased in DNnodox CA1 (Fig. 4.1B).  The 

increase in active phosphorylation suggested increased mTOR activity resulting from 

cellular ID, consistent with results from DMT1 CKO (Chapter 3).  To examine if 

increased active phosphorylation states are responsive to iron repletion, doxycycline 

treatment at P21 was used to restore normal iron status and phosphorylation was then 

examined at P42 in DNP21dox CA1.  Iron repletion normalized phosphorylation of 

S6K(Thr389), Akt(Thr308) and S6(Ser235/236) by P42 in DNP21dox CA1 compared to 

DNnodox CA1 (Fig. 4.2).   
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Table 4.1 Genotype and Doxycyline have no Effect on Body Weight, Brain/Body 

Weight Ratio, or Percentage of Red Blood Cells (values are mean±SD)  

 

Postnatal Age, Genotype, 
and Treatment 

Body 
Weight (g) 

Brain/Body 
Weight (%) Hematocrit (%) 

WT (n=15) 9.7 ± 0.9 4.2±0.3 38.6±3.6 P21 
DN (n=4) 9.1 ± 1.2 4.3±0.2 38.1±1.7 
WT (n=8) 17.9 ± 1.6 2.4±0.2 39.8±4.8 P30 
DN (n=6) 16.1 ±1.3 2.6±0.1 41.9±1.5 
WT (n=9) 16.2±1.8 2.6±-.3 40.5±1.7 P30P21dox 

DN (n=3) 14.5±4.1 2.5±0.4 39.5±2.8 
WT (n=4) 20.2±3.1 2.2±0.5 48.6±1.7 P42 
DN (n=4) 20.4 ±3.2 2.1±0.2 45.8±1.9 

WT (n=15) 22.3±3.4 2.1±0.3 44.0±4.9 P42P21dox 
DN (n=4) 19.3±1.3 2.3±0.2 42.6±3.4 
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Figure 4.1. mTOR signaling is dysregulated at P21 in DNnodox CA1. Quantification of 

A, phospho protein and B, total protein relative to actin from WTnodox and DNnodox CA1.  

*p<0.05 
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Figure 4.2. mTOR phosphorylation responds to iron repletion.  White bars represent 

percent change of phosphorylated protein in iron deficient P42 DNnodox compared to 

WTnodox animals (dashed line), **p<0.01.  Dark bars represent percent change of 

phosphorylated protien in iron repleted CA1 from P42 DNP21dox animals compared to 

WTP21dox animals (dashed line). +p<0.1, ++p<0.05 indicates differences in 

phosphorylation between iron deficient DNnodox and iron replete DNP21dox groups.  
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Pharmacological inhibition of mTOR activity by rapamycyin between P10-42 

improved behavioral outcomes in females. 

Rapamycin treatment altered total body growth over development (Fig. 4.3), but 

brain growth was spared relative to body weight indicated by increased brain/body 

weight ratios in rapamycin treated animals (Table 4.2).  There was no effect of genotype 

or treatment on total body iron status measured by hematocrit (Table 4.2).  In order to 

verify that rapamycin treatment inhibited mTOR activity in the hippocampus, 

S6K(Thre389) phosphorylation was assessed.  Consistent with previous findings from the 

DMT1 CKO, mTOR activity is increased in vehicle treated DMT1 CKO animals 

compared to vehicle treated DMT1 WT animals (Fig. 4.4).  Rapamycin reduced 

S6K(Thr389) phosphorylation in both DMT1 WT and CKO mice (Fig. 4.4, n=7, 

F=14.77, p<0.001). 

Vehicle treated DMT1 WT and CKO females both spent increasing amounts of 

time searching in the target quadrant across consecutive probe trials.  However, DMT1 

CKO mice had a slower improvement and did not reach WT performance levels, 

consistent with previous findings (Fig. 4.5A, solid bars, n=4-6, F=3.227, p=0.08).  

Rapamycin treatment impaired the ability of DMT1 WT females to learn the task 

compared to vehicle treated WT, (Fig. 4.5A, dark hatched bars, n=4, F=10.31, p=0.06).  

Rapamycin treatment in DMT1 CKO animals however, increased the percentage of time 

spent searching in the target quadrant compared to vehicle treated DMT1 CKO animals 

(Fig. 4.5A, light hatched bars, n=6-7, F=2.868, p=0.1).  Male, vehicle treated DMT1 

CKO and WT animals did not show any differences in performance on the maze (Fig. 
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4.5B, solid bars), making the interpretation any rapamycin findings difficult (Fig. 4.5B, 

hatched bars).  Gender, genotype, and rapamycin treatment did not impair escape 

latencies on VCT (data not shown).  Furthermore, there were no gender, genotype or 

treatment effects on open field measurements including time spent in center of field, total 

distance travelled (data not shown).  In summary, rapamycin administration between 

P10-P42 effectively reduces mTOR signaling in the hippocampus and results in modest 

spatial memory behavior improvement in iron deficient adult female DMT1 CKO mice. 

 

Discussion 

mTOR is an important mediator of neuronal growth and function.  mTOR 

signaling is altered by ID, and may play a role in the long-term consequences of early life 

ID.  However, the relationship between iron and mTOR is complex.  In vitro studies have 

shown that iron chelation suppresses mTOR activity (Ndong et al., 2009; Ohyashiki et 

al., 2009), consistent with mTOR inhibition by reduced energy availability and increased 

oxidative stress.  In vivo evidence supports an inhibitory relationship between ID and 

mTOR signaling.  Iron deficiency anemia (IDA) in rats suppresses hippocampal 

expression of genes in the mTOR pathway and reduces mTOR protein phosphorylation in 

total brain lysates (Carlson et al., 2007; Ndong et al., 2009).  However, it has also been 

demonstrated in vitro that mTOR activity can stimulate iron uptake (Galvez et al., 2007), 

consistent with mTOR increasing metabolic activity to support cell growth.  In a genetic 

mouse model, in vivo cellular ID increases hippocampal mTOR activity (Chapter 3),  



 

 71 

 

 

 

 

 

 

 

 

 

Figure 4.3. Rapamycin inhibits growth (weight gain, g) over postnatal development. 
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Table 4.2 Rapamycin Treatment and Genotype do not Affect Brain/Body Weight Ratio 

or Percentage of Red Blood Cells (values are mean±SD) 

 

Brain/Body 
Weight Ratio (%) Hematocrit (%) 

Postnatal Age and Genotype Vehicle Rapamycin Vehicle Rapamycin 
DMT1 WT 3.0±0.4 3.1±0.3 40.5±1.8 44.8±2.3 P25 

DMT1 CKO 3.0±0.4 3.5±0.3 41.3±1.5 44.7±1.7 
DMT1 WT 1.6±0.2 1.8±0.2 47.5±1.0 51.2±2.4 Adult 
DMT1 KO 1.8±0.3 1.9±0.2 48.7±1.6 49.7±2.6 
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Figure 4.4. Rapamycin inhibits S6K(Thr389) phosphorylation.  Quantification of 

phosphorylation in vehicle and rapamycin treated DMT1 WT and CKO animals at P25. + 

p<0.1, ** p<0.01 
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Figure 4.5. Rapamycin treatment during development affects spatial memory behavior in 

female DMT1 CKO mice. Percentage time spent searching in target quadrant during 

probe trials in EMWM for Vehicle treated (solid bars) and rapamycin treated (hatched 

bars) A, female mice and B, male mice. 
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which may reflect a compensatory mechanism to increase iron uptake.  In the 

experiments presented here, iron and mTOR signaling were independently manipulated 

during development to examine both the impact of cellular iron status on mTOR activity 

and the functional significance of mTOR dysregulation during hippocampal 

development. 

In the repletable DN model of ID, mTOR activity was increased in CA1 by 

neuronal ID, confirming findings from the permanent DMT1 CKO model (Chapter 3).  

mTOR activity normalizes following iron repletion beginning at P21, demonstrating that 

mTOR activity is responsive to cellular iron status.  Galvez and colleagues (2007) 

demonstrated that mTOR activity stimulates iron uptake, and these findings suggest a bi-

directional relationship, through which increased iron demand resulting from ID may 

stimulate mTOR activity.  Restoration of mTOR activity following iron repletion could 

therefore reflect reduced iron demand.  

The functional impact of the interaction between cellular iron homeostasis and 

mTOR on hippocampal development is not clear.  It is possible that mTOR activation by 

ID could be beneficial—providing compensation for reduced energy and protein 

synthesis caused by ID, or harmful—taxing the cell beyond what it can metabolically 

support during this important window in development, causing more stress and 

contributing to lasting structural and behavioral deficits.  

Reduction of mTOR activity from P10-42 using rapamycin improved spatial 

memory behavior in female DMT1 KO animals, despite ongoing ID.  P10-P42 

encompasses the most rapid period of hippocampal growth, iron uptake, and the 
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developmental increase in mTOR activity.  Although the beneficial effects of normalizing 

mTOR signaling with rapamycin were only observed in female mice, these preliminary 

findings indicate that decreasing mTOR activity and preventing prolonged mTOR 

activation during development may be protective for long-term outcomes.  mTOR 

dysregulation resulting from early ID is therefore detrimental, not compensatory, for the 

establishment of hippocampal circuitry, suggesting that optimal mTOR activity is 

fundamental for successful hippocampal development. 

In conditions of ID, oxidative stress and hypoxia inducible factor 1α (HIF1α) 

activity are increased and energy production is decreased (Bianchi et al., 1999; Lee and 

Andersen, 2006), which have been observed in dietary and genetic models of early ID 

(Rao et al., 2003; Carlson et al., 2007; Carlson et al., 2009).  These well-documented 

effects of reduced iron availability are known to suppress mTOR activity, contrary to our 

observations of increased mTOR activity during cellular ID.  It is possible to speculate 

then, that in a tissue specific, cellular ID context, reduced energy availability and/or 

increased iron demand stimulates mTOR activity.  This ID-induced mTOR activation 

could be detrimental because the iron deficient cell may not be able to support the 

consequences of increased mTOR activity, including increased protein synthesis and 

metabolic activity.  Exuberant mTOR activity and its attendant metabolic demands on 

differentiating cells during this important window of rapid hippocampal growth may 

contribute to impaired structural and functional development. 

It is possible, therefore, to postulate that restoration of mTOR activity may enable 

iron repletion at P21, well beyond the normal period for mTOR activation and peak 
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dendritogenesis, to successfully rescue behavioral and structural deficits in the DN model.  

The recovery of deficits following P21 repletion, suggests that early ID may extend the 

window of development, so that upon iron repletion, even late in development, the 

neurons are able to complete dendrite arborization and synaptogenesis.  Normalization of 

mTOR signaling may facilitate this developmental extension by restoring sustainable 

metabolic supply and demand.  mTOR activation is developmentally quiescent in both 

iron sufficient and iron deficient animals by P42, when iron repletion is no longer 

sufficient to rescue long-term outcomes (Chapter 3).  This observation suggests that 

mTOR, in part, may regulate a definitive window during which iron repletion can restore 

the developmental processes involved in hippocampal dendritogenesis and 

synaptogenesis. 

What is currently known about mTOR was discovered using very broad and often 

severe tools such as genetic ablation of mTOR pathway proteins, iron chelation, total 

body IDA, or hypoxia.  This is the first time that it has been possible to examine the 

effect of subtle neurometabolic manipulation on mTOR activity.  These in vivo findings 

suggest additional complexity for the regulation of mTOR activity and provide avenues 

for further investigation of the relationship between mTOR and cellular metabolism.   
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Chapter 5 

 

 

 

 

 

 

 

 

Concluding remarks and future directions 
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Early life iron deficiency (ID) is a significant problem in humans that results in 

acute and long-term learning and memory deficits, indicating abnormal hippocampal 

function.  The cellular mechanisms mediating both the acute and persistent cognitive 

deficits resulting from ID have been largely unknown.  However, one repeated 

observation from multiple studies in animal models is that early ID induces significant 

structural abnormalities in pyramidal cell neurons of the hippocampus and a reduced 

overall hippocampal volume (Jorgenson et al., 2003; Ranade et al., 2008; Carlson et al., 

2009; Brunette et al., 2010).  It is not unreasonable to postulate that these gross and 

microscopic structural abnormalities have a significant role in mediating the concomitant 

behavioral and electrophysiological deficits seen in these models of early ID (Jorgenson 

et al., 2005).  The overall goal my research was to understand how lack of iron causes 

these structural deficits.  My unique contribution to iron deficiency and 

neurodevelopmental research is the identification of mammalian target of rapamycin 

(mTOR) as a candidate signaling pathway through which iron regulates neuronal 

structural development. 

 The experiments reported here demonstrated that mTOR signaling is 

dysregulated by neuronal ID during the same time period that rapid hippocampal 

development requires large amounts of iron.  Previous genetic and pharmacologic studies 

established that normal mTOR activity is required for dendrite branching and complexity 

in vitro (Jaworski et al., 2005; Kumar et al., 2005), and that conditions that result in 

increased hippocampal mTOR activity are characterized by in vivo structural and 

functional (i.e., learning and memory) abnormalities (Kwon et al., 2003; Ehninger et al., 
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2008; Zhou et al., 2009).  Similarly, ID-induced upregulation of mTOR resulted in 

hippocampal structural, functional, and cognitive abnormalities comparable to those 

observed in the genetic models with mTOR upregulation (Chapters 2-4).  The 

experiments demonstrating rescue of behavioral outcomes in adult animals following 

restoration of mTOR signaling (through either timely iron repletion or pharmacological 

suppression) provide functional evidence for a connection between mTOR and the long-

term structural and cognitive effects of ID.  Therefore, I conclude that mTOR is a likely 

cellular mechanism through which the metabolic effects of ID are translated into 

impaired neuronal development. 

These findings are among the first to establish the responsiveness of neuronal 

mTOR signaling to cellular iron status during development.  The mechanisms (i.e., the 

exact entry points into the mTOR pathway) which mediate this responsiveness are 

unknown but there are several likely ways ID might affect mTOR regulation, including 

reduced growth factor signaling, HIF1α activation, and activation of AMPK by low ATP 

availability (Lee et al., 2006; Hardie, 2007; Tran et al., 2008) (see Fig. 3.1).  It is possible 

that ID might also influence mTOR through additional known or unknown regulatory 

signals, however, the most likely avenue connecting cellular iron status and mTOR is via 

the effects of ID on mitochondrial enzymes essential for energy production (Dallman, 

1986).  Reduced energy production resulting from ID would impair the ability of mTOR 

to successfully integrate cellular metabolism to provide optimal outputs. 

Until now, the influence of cellular metabolism on the regulation of signaling 

pathways like mTOR has only been explored using drastic metabolic insults such as 
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hypoxia-ischemia, iron deficiency anemia (IDA), or glucose deprivation (Ndong et al., 

2009; Carloni et al., 2010; Jezek et al., 2010).  The general conclusion of previous 

findings is that conditions which suppress energy production and metabolic activity also 

suppress mTOR signaling.  However, the models of restricted cellular ID utilized in the 

current studies are relatively mild manipulations of cellular energy production.  Increased 

mTOR signaling in response to cellular ID demonstrates that the relationship between 

cellular metabolism and mTOR is not as straightforward as previous studies have 

indicated.  Therefore it is possible, particularly during periods of rapid growth, that 

mTOR activity responds differentially to varying cellular metabolic activity and demand. 

The regulatory relationship between neuronal metabolic activity and mTOR 

activity could be addressed in future studies using in vitro approaches in primary 

neuronal culture.  Pharmacological agents make it is possible to independently 

manipulate signaling pathways that affect mTOR signaling (such as AMPK, HIF1α and 

PI3K) while simultaneously altering metabolic activity by varying oxygen, glucose, iron, 

or even neuronal activity.  Such an approach to dissecting the regulation of mTOR 

signaling could provide molecular explanations for the discrepancies between the 

stimulatory effect of cellular ID and the inhibitory effect of total body IDA on mTOR 

signaling.  A likely explanation for the differential response of mTOR to IDA (Carlson et 

al., 2007) and ID without anemia (Chapters 3-4) is the presence of tissue hypoxia in 

addition to ID in the former.  Hypoxia may influence more regulatory entry points than 

ID alone, thus changing the balance of signaling with the pathway. 
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During hippocampal development, peak energy utilization and production, and 

increased iron uptake and storage utilization converge at the time when pyramidal cell 

dendrites are undergoing extensive arborization.  Here, for the first time, it is clear that 

developmental mTOR activation coincides with these critical and interrelated cellular 

processes.  Together, these observations indicate that mTOR signaling has an integral 

role in coordinating metabolic supply and demand required to support neuronal 

differentiation, as such, its optimal regulation is crucial for supporting successful 

development.  In the instance of ID, the coordination of these developmental processes is 

disrupted, altering gene expression, neuronal structure, electrophysiological plasticity, 

and ultimately behavior.  Future work should address how the regulatory relationship 

between mTOR and iron affects fundamental developmental processes.   

In addition to the acute effects of ID on mTOR signaling, recent studies have 

demonstrated acute and lasting consequences of early ID on the expression of genes 

involved in establishing and maintaining neuronal structure such as BDNF (Tran et al., 

2009).  A potential mechanism through which these alterations in BDNF might act in 

concert or individually with dysregulation of mTOR signaling by ID is illustrated through 

the successful rescue of behavioral and structural impairments following iron repletion at 

P21 in the DN model.  P21 is remarkably late in the traditional window of hippocampal 

apical dendrite differentiation (Pokorny and Yamamoto, 1981b, a), and thus it was 

surprising to observe such a robust recovery in animals treated at that time.  These data 

suggest the possibility that early life neuronal ID adaptively extends or delays the 

primary period of dendrite arborization and synaptogenesis, enabling cells to complete 
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dendritogenesis if iron becomes available.  Our group and others have shown that ID is 

capable of delaying aspects of neurodevelopment such as trace conditioning (Gewirtz et 

al., 2008) and eye opening (Beard et al., 2006).  Such a delay in hippocampal 

development may provide a functional adaptation for the developing system wherein it 

would allow the system to retain plasticity at unexpectedly late times, thereby resulting in 

no or minimal long-term impairment.  Thus, if the substrate is provided within an 

appropriate and, perhaps slightly extended period, allows for recovery even beyond 

traditional periods of development. 

Recently, significant progress has been made in understanding mechanisms that 

regulate critical periods, particularly in the visual cortex.  The balance of inhibitory and 

excitatory activity is a hallmark of critical periods, and the onset and duration of critical 

periods have been attributed to the maturation of parvalbumin positive GABA 

interneurons and the formation of extracellular perineuronal nets (Hensch, 2005).  A 

recent study provides evidence that at P12 early IDA reduces parvalbumin mRNA 

expression in whole brain, suggestive of delayed GABA-ergic development (Bastian et 

al., 2010).  In the visual cortex, BDNF has been shown to promote interneuron 

development, and chronic increases in BDNF expression result in precocious critical 

periods, whereas chronic reduction of BDNF reduces inhibitory synaptic transmission 

and impairs long term potentiation (Hanover et al., 1999; Huang et al., 1999; Abidin et 

al., 2008).  Early IDA reduces developmental BDNF expression in both total brain and 

hippocampus (Tran et al., 2008; Bastian et al., 2010).  In light of evidence from the visual 
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cortex, reductions in BDNF may mediate delayed hippocampal development resulting 

from early ID.   

mTOR has recently been implicated in the differentiation and maturation of 

oligodendrocytes (Tyler et al., 2009).  While it is unknown if mTOR has a role in 

interneuron maturation, it is not unlikely considering that BDNF can stimulate mTOR 

signaling.  It is possible that the effects of ID on mTOR signaling and BDNF gene 

expression work in concert to delay hippocampal development.  Alternatively, prolonged 

mTOR activation caused by cellular ID could reflect delayed interneuron maturation and 

subsequent excitatory/inhibitory imbalance caused by reduced BDNF.  In order to 

determine the mechanisms underlying delayed development in ID, future studies could 

utilize the DN model alongside pharmacological treatments to independently manipulate 

BDNF, iron status, and mTOR activity and examine critical period markers such as 

perineuronal nets and parvalbumin expression.  

In conclusion, the findings presented here demonstrate that mTOR is a 

mechanistic link between the acute iron-dependent effects of early ID and the 

hippocampal abnormalities that mediate long-term behavioral and cognitive deficits 

following iron repletion.  
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