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Abstract 

Background: The American Heart Association (AHA) and the American Diabetes 

Association (ADA) recommend at least two servings of oily fish a week to promote 

cardiovascular health.  Oily fish is rich in the long-chain omega-3 polyunsaturated fatty 

acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA).  These, 

along with the vegetable-derived omega-3 PUFA alpha-linolenic acid (ALA), play major 

roles in normal physiological processes.  The aim of this dissertation was to consider 

associations of fish, fish-derived omega-3 PUFAs DHA and EPA, and vegetable-derived 

omega-3 PUFA ALA with cardiovascular and glycemia outcomes, presented in three 

related manuscripts. 

Methods: All analyses utilized data from the Atherosclerosis Risk in Communities (ARIC) 

Study, a multi-center prospective study designed to investigate the etiology and natural 

history of cardiovascular disease.  There have been five visits: the baseline in 1987–89 

(visit 1) and four follow-up visits in 1990–92, 1993–95, 1996–98 and 2011–13.  Data 

from visits 1 through 4 were used in this dissertation.  Dietary data were collected at 

visits 1 and 3 via food frequency questionnaire (FFQ).  Paper 1: We studied the 

association of consumption of seafood, EPA, DHA, and ALA with fasting blood glucose 

(FBG) (n=13,173), HbA1c (n=11,575), and incident type 2 diabetes (T2D) (n=11,874).  

FBG and HbA1c were obtained using blood samples collected during study visits and 

diabetes status was identified through self-report and lab values.  To estimate 

differences across exposure categories, linear regression was used for continuous 
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outcomes (FBG, HbA1c), adjusting for repeated measures as appropriate; Cox 

proportional hazards regression with time varying covariates was used for the incident 

T2D outcome. Paper 2: We studied the association of consumption of seafood, EPA, 

DHA, and ALA with J-point height and heart rate-corrected (QTc) interval (n = 12,611). 

QTc interval and J-point height were measured using ECGs obtained during study visits.  

To estimate differences across exposure categories, generalized estimating equations 

were used to estimate odds ratios of prolonged QTc and J-point elevation and 

differences in continuous measures of QTc interval and J-point height.  Paper 3: One 

ARIC field center collected plasma biomarker values from participants at visit 1, and 

these data were used to augment self-report dietary data obtained via FFQ.  We 

imputed biomarker values for other participants using multiple imputation for chained 

equations and investigated the associations of plasma phospholipid measures of ALA, 

DHA, and EPA with prolonged QTc, HbA1c, and incident T2D. 

Results: Paper 1: In multivariable analyses, intake of seafood and DHA+EPA was 

favorably associated with FBG and HbA1c in non-diabetic participants, although the 

magnitude of the associations was small.  ALA was not associated with FBG or HbA1c in 

non-diabetic participants.  Among diabetic participants, intake of seafood, DHA+EPA, 

and ALA were adversely associated with FBG and HbA1c, with differential effects for 

seafood by sex and race.  Finally, higher intake of ALA was associated with higher risk of 

incident T2D in normoglycemics, while seafood and DHA+EPA were not.  Paper 2:  

Higher intakes of ALA+DHA+EPA and ALA were associated with a shorter QTc interval.  
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None of the exposures were associated with prolonged QTc, J-point elevation, or J-point 

height.  Paper 3:  In the full cohort (imputed) and the Minnesota (observed) populations, 

none of the exposures was significantly associated with prolonged QTc, HbA1c, or 

incident T2D.  Point estimates in both populations were similar across different 

covariate adjustments, and confidence intervals were narrower in the full cohort 

population than in the observed plasma population. 

Conclusions: Considering the dietary recommendations of the ADA and AHA, this 

dissertation examined the associations of dietary omega-3 PUFAs with cardiovascular 

and glycemia outcomes while also considering the implications of measurement error in 

the exposure of interest.  Taken together, these results suggest that consumption of 

omega-3 PUFAs are not associated with certain cardiovascular outcomes in healthy 

individuals, and may be associated with deleterious glucose homeostasis in those with 

diabetes. 
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1 BACKGROUND 

1.1 INTRODUCTION 

Cardiovascular disease (CVD) is a major public health problem. The American 

Heart Association (AHA) estimates that, in 2014, more than 30% of all deaths in the 

United States were due to CVD [1]. Similarly, diabetes, a major risk factor for CVD, is 

highly prevalent, with approximately 9% of the adult population being diagnosed with 

this condition [1]. Lifestyle factors constitute an important component of preventive 

strategies to improve cardiovascular health in the population – key among those factors 

is diet [1, 2]. 

Fish consumption has been frequently included in dietary guidelines for the 

prevention of CVD and its risk factors. Both the AHA and the American Diabetes 

Association (ADA) recommend at least two servings of oily fish a week to promote 

cardiovascular health [3, 4].  Oily fish is rich in the long-chain omega-3 polyunsaturated 

fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA).  

These, along with the vegetable-derived omega-3 PUFA alpha-linolenic acid (ALA), play 

major roles in normal physiological processes [5].   

With respect to studies considering nutrient intakes and CVD outcomes, few 

nutrients have been studied more than omega-3 PUFAs [6]. Consumption of fish and the 

fish-derived omega-3 PUFAs DHA and EPA has been associated with lower risk of 

coronary heart disease (CHD) mortality [6-8], particularly sudden cardiac death (SCD) [6, 

9].  Additionally, intake has been found to be associated with decreased levels of 

triglycerides in both non-diabetics [10-12] and persons with type 2 diabetes (T2D) [13-

15] – a finding of great importance given the propensity for elevated triglycerides in 

those with T2D. 

Even with all this evidence, the scientific picture is far from complete.  For 

example, many different studies have evaluated the association between omega-3 
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PUFAs and measures of glucose metabolism, as a major cardiovascular risk factor, but 

their results have been mixed. 

Additionally, there is scant literature regarding the mechanism by which omega-

3 PUFAs could prevent SCD. 

Thus, the existing recommendations from two large professional health 

associations to “eat more oily fish” and the existing gaps in the literature mentioned in 

the prior paragraph motivated the following three questions: 

1. Given that the ADA recommends intake of oily fish, what is the 

association between dietary intake of DHA, EPA, and ALA and various 

measures of glucose metabolism? 

2. Given that fish-derived omega-3 PUFAs are associated with lower 

incidence of SCD, can the association be elucidated by showing DHA, EPA 

and/or ALA are associated with electrocardiographic predictors of SCD? 

3. Since assessment of dietary exposures is subject to measurement error, 

does calibrating reported omega-3 PUFA exposure values using 

measurement error correction techniques alter the associations observed 

in questions 1 and 2? 

The rest of the background section will provide greater detail on the following: 

(1) the omega-3 PUFAs DHA, EPA, and ALA; (2) the physiological effects of omega-3 

PUFAs; (3) description of disorders of glucose metabolism; (4) description of SCD and 

electrocardiogram (ECG) predictors of SCD; (6) literature on the relationship between 

omega-3 PUFAs and CVD – specifically glucose metabolism and ECG predictors of SCD; 

and (7) how dietary measurement error can affect measures of association for 

outcomes where dietary data are used as the exposures (e.g., omega-3 PUFAs).  
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1.2 TYPES OF OMEGA-3 POLYUNSATURATED FATTY ACIDS 

The three types of long-chain omega-3 PUFAs most abundant in our diet and 

commonly described in epidemiological literature are ALA, EPA, and DHA.  Those PUFAs 

along with the EPA metabolite docosapentaenoic acid (DPA) can be seen in Figure 1-1.  

 

Figure 1-1. Structure of Omega-3 PUFAs. Adapted from Mozaffarian and Wu. [6] 

ALA is a plant-derived omega-3 PUFA while DHA and EPA are fish-derived.  ALA is 

an essential fatty acid – that is, the body cannot synthesize it – and dietary sources 

include flaxseed oil and walnuts. Biochemical pathways exist that allow for the 

conversion of ALA to EPA and ALA to DHA, however these metabolic conversions 

contribute very little to the body’s concentration of these fatty acids [5]. Only 0.2-0.8% 

of ALA is converted to EPA and 0-4% of ALA is converted to DHA.  Thus the primary 

dietary source of DHA and EPA are fish and shellfish [6]. Oily fish like sardines, 

swordfish, anchovies and salmon provide the richest concentration of DHA and EPA 

while white fish such as cod, haddock, tilapia, and catfish contain lower amounts of 

these fatty acids [6]. 



   4 

 

1.3 PHYSIOLOGICAL EFFECTS OF OMEGA-3 PUFAS 

Figure 1-2 summarizes the effects of omega-3 PUFAs on various organs and 

tissues suggested through human (in vitro and in vivo) and animal research. The rest of 

this section will provide details on these effects.  Greater detail regarding the 

biochemical mechanism for the potential effect of omega-3 PUFAs on glucose 

metabolism and SCD will be provided in Sections 3 and 4 (Manuscripts 1 and 2). 

 

Figure 1-2. Physiological Effects of Omega-3 PUFAs. Adapted from Mozaffarian and Wu. [6] 

1.3.1 OMEGA-3 PUFAS AND THE LIVER 

Studies have suggested two effects of omega-3 PUFAs on the liver: (1) 

triglyceride lowering and (2) glucose release via gluconeogenesis.  The triglyceride 

lowering properties of fish-derived omega-3 PUFAs has been well-established [16]. 
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Studies have suggested that omega-3 PUFAs directly regulate hepatic genes decreasing 

de novo lipogenesis [16-21]. Results from randomized clinical trials (RCTs) and 

observational studies have shown that reductions are modest with typical dietary intake 

versus the more clinically significant impact of fish oil supplements [6].  

This triglyceride lowering effect is hypothesized to affect gluconeogenesis as 

well.  The carbohydrates no longer being used for triglyceride production could instead 

be used for glucose production which would raise fasting blood glucose (FBG) [6]. 

1.3.2 OMEGA-3 PUFAS AND THE HEART 

Studies have also investigated the effect of omega-3 PUFAs on the heart.  Results 

suggest that omega-3 PUFAs are associated with (1) heart rate; (2) arrhythmia risk; (3) 

myocardial efficiency; (4) left ventricular diastolic filling; and (5) autonomic 

function/vagal tone. 

Omega-3 PUFA consumption is associated with reduced heart rate [22] and this 

reduction is hypothesized to be a result of several mechanisms including the effect of 

omega-3 PUFAs on cardiac electrophysiological pathways [6] such as the accumulation 

of DHA in myocardial cell membranes [23], slowing of the heart rate, shortening of the 

QT-interval, reduction of left ventricular systolic pressure, and prolongation of the 

electrocardiographic atrial-ventricular conduction time (P-R interval) [24]. 

It is these same pathways that are hypothesized to effect risk of arrhythmias, 

although studies in animals and humans have been inconsistent [6].  Animal 

experiments and human studies show that fish oil increased myocardial efficiency. 

Hearts from rats fed a diet high in omega-3 PUFAs did not need as much oxygen during 

high cardiac demand compared to rats fed other types of fat [25]. Fish oil 

supplementation in human cyclists reduced amount of oxygen needed during exercise 

[26]. Omega-3 PUFA consumption has also been shown to be associated with more 
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favorable measures of left ventricular cardiac filling [27-29], left ventricular ejection 

fraction [27, 30], and vagal tone [31]. 

1.3.3 OMEGA-3 PUFAS AND COAGULATION 

Studies investigating the effect of omega-3 PUFAs on thrombolytic particles 

found no association with platelet aggregation or coagulation factors [12, 32-34] and no 

excess bleeding risk in RCTs investigating fish or fish oil supplementation – even in 

patients taking aspirin or warfarin [35-37]. There were associations, however, with 

decreased production of the pro-inflammatory, pro-thrombotic arachidonic acid-derived 

eicosanoids and increased production of potentially beneficial omega-3 PUFA 

metabolites such as plasma oxylipins [38]. 

1.3.4 OMEGA-3 PUFAS AND HUMAN 

VASCULATURE 

Studies have shown that omega-3 PUFA consumption is associated with lower 

blood pressure [34, 39]. This may be due to improved flow-mediated arterial dilation 

[40-44], a marker of endothelial health.  ALA may lower blood pressure through the 

creation of eicosanoids, leading to the production of prostaglandins and leukotrienes 

that can reduce vascular tone [45]. 

1.4 OMEGA-3 PUFAS AND CARDIOVASCULAR DISEASE 

As mentioned above, both observational studies and RCTs have shown fish, fish 

oil supplements, and intake of ALA are associated with more favorable measures of 

some cardiovascular risk factors including lower plasma triglycerides [6, 16, 34], reduced 

heart rate and blood pressure [6, 34, 46], improved endothelial and autonomic 

functions [40-44, 47-49], improved cardiac filling [6, 27-29, 50], greater myocardial 

efficiency [6, 25, 26], reduced inflammation [6, 34], and anti-arrhythmic effects [6]. 
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As for fatal endpoints, observational studies have demonstrated that higher 

consumption of fish, fish-derived omega-3 PUFAs, and ALA (compared to lower) is 

associated with lower CHD mortality [6-8], particularly SCD [6, 51, 52].  ALA has been 

shown to be associated with lower incidence of CHD and stroke [34].  In 2004, a meta-

analysis of 11 published manuscripts utilizing 13 cohort studies found that eating fish at 

least once a week was associated with lower CHD mortality [7].  Additionally, a report 

from the US Physicians Health Study showed that a fish meal at least once per week was 

associated with lower incidence of SCD compared to men who consumed less than one 

fish meal a month [52]. 

1.4.1 GAPS IN DATA REGARDING THE 

RELATIONSHIP OF OMEGA-3 PUFAS 

AND CVD 

Evidence has been mixed regarding the association between omega-3 fatty acid 

consumption (ALA, DHA, and EPA) and insulin resistance and diabetes, which some 

consider CHD risk equivalents [53], although evidence has been mixed [54-56].  Section 

3 (Manuscript 1) will provide greater detail. 

1.5 CLINICAL AND EPIDEMIOLOGICAL ASPECTS OF GLUCOSE 

METABOLISM AND TYPE 2 DIABETES 

1.5.1 MEASURES OF GLUCOSE METABOLISM 

Glucose metabolism indicators can be measured in several ways.  The following 

are measures that will be used in the proposed studies. 

1.5.1.1 Glucose Concentration in Blood 

Measuring glucose levels in the blood are done internationally in terms of the 

glucose molar concentration and are measured in mmol/L (millimoles per liter). In the 

United States, measurements are done using glucose concentration mass and are 
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measured in mg/dL (milligrams per deciliter).  FBG is a measurement of blood glucose in 

plasma and is performed after the subject has been fasting, generally for 8-10 hours.  In 

contrast, a random blood glucose measurement is a measurement of blood glucose in 

plasma and is performed at any time and not based on postprandial timeframes.  

1.5.1.2 Hemoglobin A1c 

Hemoglobin A1c (HbA1c) is a measurement of type A hemoglobin subtype and 

does not vary based on time since food was last consumed.  Hemoglobin is found in red 

blood cells, and the cells’ exposure to glucose in blood plasma causes the hemoglobin to 

glycate.  The extent of the glycation gives an estimate of the average blood glucose 

levels over the past 6-8 weeks. 

1.5.2 NORMAL GLUCOSE METABOLISM 

Normal levels of blood glucose are between 70 and 110 mg/dL.  When blood 

glucose is low the pancreas decreases its secretion of insulin and releases glucagon.  

Glucagon causes the liver to convert stored glycogen into glucose [57]. 

Postprandially, the digestive system converts food into glucose, amino acids, 

fatty acids, and other nutrients that are released into the bloodstream.  This results in 

blood glucose levels that are higher than the typical range.  Insulin is released allowing 

the glucose to leave the bloodstream and fuel the body’s cells [57]. 

Glucose homeostasis is dependent on normal insulin production and normal 

insulin sensitivity.  If the body does not make enough insulin then there are not 

sufficient amounts to get blood glucose into cells.  But, even if insulin production is not 

compromised, if the body’s cells are not sensitive to insulin (i.e., there is insulin 

resistance) the glucose still cannot be utilized by cells, sometimes even if higher than 

normal amounts of insulin are secreted.  These metabolic defects result in elevated 

blood glucose.  It is thought that nutrient overload (e.g., eating too much) can lead to 

insulin resistance [58]. 
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1.5.3 DEFINITION OF DIABETES 

The generic term “diabetes mellitus” encompasses a group of metabolic diseases 

characterized by hyperglycemia. This elevated glucose state can result from defects in 

insulin secretion, insulin action, or both [59]. 

Several pathogenic processes are involved in the development of diabetes.  Type 

1 diabetes mellitus (T1D) is characterized by autoimmune destruction of the beta-cells 

of the pancreas, which produce insulin, and generally onset is in childhood or 

adolescence, although it can manifest at any age [59].  T2D represents 90-95% of all 

cases of diabetes mellitus and characterized by insulin deficiency and/or insulin 

resistance [59]. 

Diagnosis with diabetes, as defined by ADA, requires one of the following four 

criteria to be met: fasting plasma (blood) glucose (FPG) ≥ 126 mg/l (7.0 mmol/L) after a 

minimum of eight hours with no caloric intake; symptoms of hyperglycemia and a casual 

(random) plasma glucose ≥ 200 mg/dL (11.1 mmol/L); or two-hour plasma glucose ≥ 200 

mg/dl (11.1 mmol/L) during a 75-gram oral glucose tolerance test (OGTT) [60].  In 2015 

the ADA added HbA1c criteria similar to those introduced in 2011 by the World Health 

Organization (WHO) where an HbA1c cut-point 6.5% was recommended [61].  The ADA 

noted that age, race, and other clinical factors should be considered before making an 

HbA1c-related diagnosis [60].  

1.5.4 DESCRIPTIVE AND CLINICAL 

EPIDEMIOLOGY OF DIABETES 

1.5.4.1 Prevalence 

According to the National Health and Nutrition Examination Survey (NHANES) 

data from 2011-2014, diabetes affects 31.0 million Americans – 9% of the U.S. 

Population.  This number includes 23.4 million with diagnosed diabetes and 7.6 million 

with undiagnosed diabetes [59, 62].  
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Using data from NHANES and National Center for Health Statistics (NCHS) 

collected between 1984 and 2004, the total prevalence of diabetes is expected to more 

than double in the United States between 2005 and 2050 (from 5.6% to 12.0%) [1]. This 

increase will occur in all age, sex, and race/ ethnicity groups, but are projected to be 

largest in the oldest (e.g., a four-fold increase among those 75 years of age and older) 

[1].  The group with the largest increase in prevalence is projected to be blacks aged 75 

or older – a 606% increase [1]. 

1.5.4.2 Incidence 

In 2012 there were approximately 1.7 million Americans aged 20 and older that 

were newly diagnosed with diabetes [63]. Incidence varies by race, with rates higher in 

blacks (9.5%) than whites (6.3%) [1]. 

1.5.4.3 Mortality 

Diabetes is the seventh leading cause of death in the United States [62]. 

Furthermore, the risk for death among people with diabetes is about twice that of 

people of similar age but without diabetes [62]. In 2014 there were 245,016 deaths in 

the United States where diabetes was the primary or secondary cause of death [1]. 

Death rates per 100,000 people were 23.4 for white males, 43.9 for black males, 14.6 for 

white females, and 34.0 for black females [1]. 

1.5.5 POPULATIONS AT INCREASED RISK FOR 

TYPE 2 DIABETES 

Prediabetes (Pre-T2D) is a condition in which individuals have abnormal glucose 

metabolism not yet severe enough to be classified as diabetes [1, 62].  An individual is 

considered prediabetic if at least one of the following are present: (1) impaired fasting 

glucose (IFG), (2) impaired glucose tolerance (IGT), or (3) elevated HbA1c. 

IFG is a condition in which an individual’s fasting (>8 hours) blood glucose value 

is greater than 100 mg/dl but less than 126 mg/dl.  IGT is diagnosed when an individual 
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fails at least two OGTTs – i.e., the 2-hour blood glucose value is greater than 140 mg/dL 

(but below 200 mg/dl).  Finally, Pre-T2D can be established using HbA1c values. An 

HbA1c value between 6 and 6.5% is considered prediabetic.  

People with Pre-T2D have an increased risk of developing T2D, heart disease, 

and stroke [59, 62, 64] and approximately 33.9% percent of US adults (81.6 Million) 

have prediabetes [1]. NHANES data from 2005-2008 showed 35% of U.S. adults aged 20 

years or older had Pre-T2D, with half of identified individuals aged 65 years or older 

[62]. 

These prediabetic populations are of interest as studying individuals at higher 

risk may provide insight into methods to delay or prevent transition to clinical diabetes 

and to better understand the pathophysiology of the disease. 

1.5.6 OMEGA-3 PUFAS AND TYPE 2 

DIABETES 

Intake of the vegetable-derived omega-3 fatty acid ALA and the fish-derived 

omega-3 PUFAs DHA and EPA may also affect risk of T2D and markers of glucose 

homeostasis such as fasting blood glucose levels and HbA1c. 

1.5.6.1 Biological Mechanisms 

There are data to support the biological plausibility of fish-derived omega-3 

PUFAs DHA and EPA affecting glucose homeostasis in those with T2D.  

Omega-3 PUFA may favorably affect glucose homeostasis. A pro-inflammatory 

state interferes with insulin signaling and inhibits insulin action on adipocytes [58], Fish-

derived omega-3 PUFAs have anti-inflammatory properties, and inhibit the production 

of pro-inflammatory cytokines [65] and increase insulin sensitivity [66].  Furthermore, 

omega-3 PUFAs are incorporated into cell membranes where they may modify the 

activities of membrane-associated enzymes and receptors [5] and increase cell-

sensitivity to insulin [65]. 
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There are also mechanisms through which omega-3 PUFA may adversely affect 

glucose homeostasis.  A previous study showed that diabetics who took a fish-derived 

omega-3 PUFA supplement had lower glucose utilization (insulin sensitivity) and 

increased glucagon-stimulated C-peptide [67]. In another trial, diabetic subjects taking 

fish oil supplements showed reduced hepatic gluconeogenesis [68].  Obese subjects 

with T2D who took fish oil supplements had increased uptake and oxidation of non-

esterified fatty acids in the liver [69]. In another study of obese subjects with T2D, fish 

oil supplementation increased glycerol gluconeogenesis, and the authors hypothesized 

it could cause the deterioration of glycemic control during long-term treatment with 

high doses of fish-oil supplements [69]. Finally, the consumption of seafood may affect 

glucose homeostasis via contaminants in seafood.  Mouse models have shown that 

elevated blood mercury levels may interrupt insulin signaling pathways, and decrease 

plasma insulin and elevate blood glucose levels [70].  

1.5.6.2 Prior Clinical and Epidemiologic 
Research 

Contradictory epidemiologic and clinical data exist on the association of omega-3 

PUFAs and the risk of diabetes and markers of glucose homeostasis. A Cochrane review 

considering fish oil supplement trials in diabetics showed that, overall, the omega-3 

fatty acids did not affect FBG levels, HbA1c, or fasting insulin [14]. Fish oil trials in 

nondiabetic patients have been similarly null [71, 72].  In diabetics, a meta-analyses of 

fish oil supplementation studies found that supplementation was associated with more 

favorable – but non-significant – associations with HbA1c and insulin [73], although the 

AHA no longer recommends fish oil supplementation for diabetics to prevent 

cardiovascular disease [74]. 

Observational studies have provided inconsistent results. Fish and EPA/DHA 

intake have been positively associated with risk of T2D [75-78]; associated with a 
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reduction in risk of T2D [79, 80] and lower FBG [81]; or have had null associations [78, 

82-84].  

Recent reviews and meta-analyses have reported that dietary intake of fatty fish 

and the fish-derived omega-3 PUFAs DHA and EPA are associated with higher risk of T2D 

in American and European populations [85-88] but not Asians [86], but not lean fish or 

shellfish [86], or plasma measures of DHA and EPA [85].   

Studies investigating intake of the vegetable-derived ALA have been similarly 

mixed.  A meta-analysis showed lower risk of incident T2D with higher levels of intake 

[85] but a subsequent analysis two years later showed favorable associations in Asians 

only, although Americans and Europeans had a nonsignificant favorable trend [86]. 

Data from randomized and observational studies may conflict for several 

reasons: (1) study duration: trials were short term compared to observational trials and 

there may not been enough time for the effect of fish oil supplements to be fully 

realized; (2) dose: trials used DHA and EPA doses that far exceed typical dietary intake; 

(3) study populations: different study populations with different food preparation 

methods and cultural differences may not be comparable; and (4) different exposure 

levels: some studies had high levels of ALA, DHA, EPA intake (i.e., fish oil or flaxseed 

supplementation) while others only investigated typical dietary consumption. 

1.6 CLINICAL AND EPIDEMIOLOGICAL ASPECTS OF SUDDEN 

CARDIAC DEATH 

1.6.1 DEFINITION OF SUDDEN CARDIAC 

DEATH 

Definitions of SCD are varied and no agreement has been reached on an official 

definition [89].  

Definitions differ on their inclusions of temporality, geography, disease 

attribution, whether the event was witnessed, age range, and whether sudden cardiac 
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arrest is included [89]. The most widely cited definition was published in 2001 and used 

U.S. vital statistics and death certificate data from 1989 to 1998 [89, 90]. SCD was 

defined as a witnessed or un-witnessed, cardiac disease-related death within one hour 

of symptom onset, taking place out of hospital or in the ER in individuals aged 35 years 

of age or more [89, 90]. The most recent definition in the published literature was 

published in 2008 and used data collected between May 1, 2006, and April 30, 2007 [89, 

91]. That definition was very broad – it included sudden cardiac arrest, required the 

death be from a cardiac cause and occur out of hospital, but had no other restraints [89, 

91].  The most common cause of SCD is a sustained ventricular tachyarrhythmia [92]. 

1.6.2 DESCRIPTIVE EPIDEMIOLOGY 

A systematic review in 2011 [89] found only six peer-reviewed articles regarding 

SCD incidence. The estimated U.S. annual incidence of SCD varied widely from 180,000 

to >450,000 among those 6 studies. Differences were due to differences in data sources, 

year of data collection differences in SCD case definition and case ascertainment, and 

methods of extrapolating to the US population [89]. The most commonly cited source 

[90] standardized rates to the 2000 US population and found an estimated annual 

incidence of 456,076 cases of SCD – 63% of all cardiac deaths.  The most recent source 

(2008) [91] in the review was also the most conservative, with an estimated annual 

incidence of 294,851 cases of SCD.  A 2014 study cited in the AHA Heart Disease and 

Stroke Statistics Report [1] used data from the Oregon Sudden Unexpected Death Study 

and extrapolated a risk-adjusted incidence rate of 69 per 100,000 per year, or 

approximately 210,000 annual cases of SCD in the United States each year [93]. 

1.6.3 MODIFIABLE RISK FACTORS 

Studies have shown a strong concordance between risk factors for CHD and SCD, 

but no clear modifiable risk factors that are specific for SCD have been identified once 

CHD is established [92, 94, 95]. This is most likely due to risks for SCD are linked to risks 
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for CVD that create the structural damage linked to sustained arrhythmia [92]. In fact, 

the strongest predictor of SCD once CHD is established is the degree of cardiac damage 

sustained [92]. 

1.6.4 ELECTROCARDIOGRAPHIC PREDICTORS 

OF SUDDEN CARDIAC DEATH 

The ECG is a graphic recording of the electrical activity of the heart, and it is a 

noninvasive and inexpensive test in the study of cardiac function. The ECG is useful to 

detect arrhythmias, conduction disturbances, and myocardial ischemia. Also, the ECG 

can provide information on susceptibility to SCD. The two ECG variables consistently 

associated with a higher risk of SCD are long QT interval [96, 97] and J-point elevation 

[98, 99] – both are important markers of abnormal ventricular repolarization.  In an ECG, 

the QT interval represents electrical depolarization and repolarization of the left and 

right ventricles and the J-point – the junction of the QRS complex and the ST segment – 

marks the end of depolarization and the beginning of repolarization [100, 101]. 

1.6.4.1 Biological Plausibility 

Studies suggest that fish-derived PUFAs could have anti-arrhythmic effects, thus 

reducing SCD risk. Specifically, fish-derived omega-3 PUFAs may inhibit the fast, voltage-

dependent sodium current and the L-type calcium currents [102, 103] that allow pre-

SCD arrhythmias to be sustained [46].  ALA may favorably influence arrhythmias through 

modification of the eicosanoid system or modulation of L-type calcium channels in the 

sarcolemma of cardiac myocytes [104].   

1.6.4.2 Prior Clinical and Epidemiologic 
Research 

There have been a limited number of studies evaluating whether omega-3 PUFAs 

are associated with repolarization abnormalities detected in the surface ECG – 

prolonged repolarization (prolonged QT interval) [104-107] and early repolarization (J-
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point elevation, JPE) [104]. With respect to prolonged QT interval, intake of the fish-

derived omega-3 PUFAs DHA and EPA have been shown to be associated with shorter 

QT intervals in Greek adults [107] and predominately white Americans aged >65 years 

[106]. A study of white, middle-aged American adults found higher intakes of the 

vegetable-derived omega-3 PUFA ALA were associated with lower risk of prolonged QT 

[104]. With respect to JPE, a study of Japanese men found that higher intake of the fish-

derived omega-3 PUFA DHA and EPA attenuated the association between JPE and 

cardiac death [105].  To our knowledge, no studies have investigated the association of 

ALA with JPE. 

Although omega-3 PUFAs are inversely associated with SCD, and prolonged QT 

interval and JPE are positively associated with SCD, further details regarding the 

association between omega-3 PUFAs, QT interval, and JPE in a biracial cohort of middle-

aged American populations may help elucidate the mechanisms relating omega-3 fatty 

acid consumptions and SCD. 

1.7 MEASUREMENT ERROR 

One difficulty in investigating exposure-disease associations is measurement 

error.  While epidemiologists’ goal is to find the true association (causal effect) between 

exposure and outcome in a population of interest, they are limited to determining the 

association between measured exposure and outcome in a sample of the population of 

interest.  Mis-measured – or unmeasured – covariates and confounders can distort the 

desired association further.  This section will focus on measurement error issues unique 

to dietary exposures and covariates.  It will start a brief description of measurement 

error of the exposure variable, consequences of measurement error with potential 

solutions, and recommendations.  
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1.7.1 TYPES OF MEASUREMENT ERROR 

There are several ways in which dietary measurement error can occur including: 

(1) subject forgets actual consumption; (2) subject purposely misreports due to social 

desirability or other psychological factors; (3) subject accidentally misreports due to 

differences in serving size; and (4) a correctly reported food can be incorrectly 

translated into its nutrient components due to differences in food preparation [108, 

109].  The type of measurement instrument (e.g., 24-hour dietary recall versus food 

frequency questionnaire (FFQ)) can also affect the frequency and magnitude of 

measurement error.  Food records and 24-hour diet recalls are generally considered the 

gold standard for self-reported diet intake [109]. 

Measurement error can be classified as differential or non-differential.  

Differential measurement error of the exposure is one where the error in measuring the 

exposure is dependent on other variables in the analysis.  A classic example is recall bias 

in case-control studies.  Those with the disease are more likely to remember exposures 

of interest than those who do not have the disease.  Non-differential classification bias 

of the exposure is measurement error that is not dependent on other study variables.  

An example is where a technician always rounds a patient’s systolic blood pressure to 

the nearest 5 (e.g, 138 mg Hg becomes 140, 112 mm Hg becomes 100). If exposures are 

dichotomous and misclassification is perfectly non-differential and errors are 

independent then associations will be biased towards the null [110]. In cohort studies 

measurement error of the exposure is generally considered to be non-differential as 

exposure is measured before onset of disease [108] but errors are not independent as 

dietary measurement error generally has bias related to true intake with subjects with 

high intake under-reporting and subjects with low intake over-reporting [108]. This 

“flattened slope phenomenon” can bias results away from the null [111] but random 

variation usually overwhelms the flattened slope phenomenon resulting in an overall 

relative risk estimate biased towards the null [112]. 



   18 

 

1.7.2 CONSEQUENCES OF MEASUREMENT 

ERROR 

There are three main consequences of exposure measurement error: biased 

measures of association, loss of power, and invalidation of statistical tests. 

1.7.2.1 Biased Measures of Association 

Section 1.7.1 mentioned non-differential measurement error with a 

dichotomous exposure and independent errors will bias towards the null and that over- 

and under-reporting of intake based on actual intake is generally not sufficient to alter 

that trend.   

Two analytic approaches to decrease or eliminate the bias are (1) adjust for 

energy intake and (2) correct the measured exposure values.  Adjusting for energy 

intake [109, 113] allows for exposures to be assessed as part of overall diet composition 

– that is, it addresses the problem that an individual may have consumed more fish than 

another individual simply because he is taller and has more muscle mass.  This type of 

energy adjustment can improve attenuation [108] but there can still be significant bias 

towards the null.  Another potential solution is use of regression calibration [108] or 

multiple imputation [114] to correct the mis-measured exposures using an appropriate 

reference instrument. Reference instruments need to have measurement errors that 

are not correlated with the original exposure measurements [112, 115], so 24-hour 

recalls and food diaries are imperfect solutions [108].  Other reference instrument 

options, however, are recovery biomarkers and concentration biomarkers [116]. These 

are objective measures of intake that indicate how much of the nutrient was absorbed 

(bioavailability), is may be a good measure of usual intake provided between-season 

variability in an individual’s intake is not large [109].  Unfortunately biomarkers can be 

affected by potential confounders – and if these confounders are dietary in nature they 

may be subject to the measurement error inherent in self-report measures resulting in 

additional bias [109]. 
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1.7.2.2 Loss of Power 

All exposure measures are subject to random variation, and the greater the 

deviation from the true value the greater the loss of power [117]. There are two sample-

size related techniques researchers use to increase power: (1) increase sample size of 

individual studies; and (2) increase sample size by performing meta-analyses. 

The first technique researchers use to increase power is to increase sample size, 

oftentimes by establishing large cohort studies such as the Atherosclerosis Risk in 

Communities (ARIC) Study [118]. Unfortunately, increasing sample size may not be 

sufficient to completely address power lost through FFQ measurement error [108]. One 

study found that to maintain desired power calculated assuming no exposure 

measurement error, the measurement error inherent in a FFQ resulted in a needed 

sample size 25-100 times larger for a total energy exposure [108]. 

 Another technique to increase power is to perform meta-analyses of several 

studies – generally observational – thus harnessing the power of each component study 

[108]. Unmeasured confounders, however, can distort results from observational 

studies and meta-analyses can generate very precise but equally distorted measures of 

association [119].  Additionally, heterogeneity of study methods can be an obstacle to 

meta-analyses [120]. 

1.7.2.3 Invalidation of Statistical Tests 

If there is only one mis-measured dietary exposure in the disease model then, 

theoretically, the standard exposure-disease regression (null-hypothesis: no association) 

is statistically appropriate although measures of association may be attenuated [108]. In 

multivariable models with multiple (mis-measured) dietary exposures, the standard 

exposure-disease regression may no longer be statistically valid and the direction of the 

bias is unpredictable [108].  This phenomenon is due to residual confounding resulting 

from the correlated nature of the dietary variables [108]. 
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1.7.2.4 Recommendations 

At a minimum, most dietary exposure models should include total energy as a 

covariate [108, 113].  Another recommendation for addressing dietary measurement 

error is combining dietary data with biomarker data [108]. This technique not only 

reduces exposure measurement error [108, 121], but also allows for an increase in the 

power to detect measures of association [108, 114, 121]. This approach will be 

described further in Section 5 (Manuscript 3). 

Another method for addressing dietary measurement error is regression 

calibration [122, 123] using data from a validation study [108].  Unfortunately the most 

common validated study instrument is a more detailed self-report (e.g., food diary, 24-

hour recall) [108] – these instruments are limited as their measurement errors are 

correlated with true intake and the FFQ [112, 115].  An alternative is to use biomarker 

validation data as a reference instrument to compute attenuation and contamination 

factors [108, 123].  While some studies have shown that regression calibration with self-

report validation data and regression calibration using biomarker data can yield similar 

results [108], this cannot be guaranteed.  Finally, multiple imputation is an approach for 

calibrating mis-measured exposure data [114] and will be discussed in greater detail in 

Section 5 (Manuscript 3). 

1.8 SUMMARY OF THE INTRODUCTION 

In this section, we have described the public health importance of T2D and SCD 

in the United States.  We reviewed biological and epidemiological evidence for long-

chain omega-3 PUFAs, focusing on the potential association of long-chain omega-3 PUFA 

intake with glucose homeostasis and the risk of diabetes, with the risk of CVD and, 

particularly, SCD.  Additionally, we provided an overview of the issues created by 

measurement error in nutritional epidemiology, which could influence the associations 

found when dietary omega-3 PUFAs are the exposure of interest. Overall, we highlight 
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the need for studies that clarify the impact of omega-3 PUFA intake on diabetes risk, 

that assess electrophysiological mechanisms responsible for the association between 

omega-3 PUFA intake and SCD, and that evaluate methods for correction of 

measurement error using biomarker data. In the next section, we provide a description 

of the Atherosclerosis Risk in Communities (ARIC) cohort, which we used to address the 

aims of this dissertation. 
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2 THE ATHEROSCLEROSIS RISK IN COMMUNITIES (ARIC) 

STUDY – DATA AND DATA COLLECTION 

2.1 STUDY OVERVIEW 

This dissertation utilized data from the Atherosclerosis Risk in Communities 

(ARIC) Study.  The three aims were to investigate (1) association of seafood and omega-

3 PUFA intake with measures of glucose metabolism; (2) association of seafood and 

omega-3 PUFA intake with ECG predictors of SCD; and (3) if addressing potential 

measurement error in our dietary exposures modifies select outcomes from aims 1 and 

2.  In this section, we describe the ARIC study and how data were obtained for the 

exposures, outcomes, potential confounders, and other covariates of interest. 

2.2 THE ATHEROSCLEROSIS RISK IN COMMUNITIES STUDY 

The ARIC study is a multi-center prospective study designed to investigate the 

etiology and natural history of cardiovascular disease. The health of each participant – 

including a comprehensive physical exam, medical history, interview, and measurement 

of traditional and novel risk factors for CVD, diabetes, and other important health 

outcomes – was assessed at baseline and during follow-up exams using standardized 

protocols.  The study design and methods have been described previously [118].  This 

section summarizes the study population and timeline.  

ARIC is a cohort of 15,792 subjects from four communities.  ARIC participants 

were chosen via probability sampling from four economically and socially diverse US 

communities: Forsyth county, North Carolina; Jackson, Mississippi; suburban 

Minneapolis, Minnesota; and Washington County, Maryland. The Jackson sample 

includes African Americans only.  The other field center samples are representative of 

the populations in their respective communities: mostly white in suburban Minneapolis 

and Washington County, white and African American in Forsyth county.  There were 
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15,792 subjects (8,710 women, 7,082 men; 11,478 whites and 4,314 nonwhites) aged 

45-64 at baseline (visit 1). 

There have been five visits, although this dissertation only utilizes data from 

visits 1 through 4.  The first four visits were approximately 3 years apart: visit 1 (1987-

89), visit 2 (1990-92), visit 3 (1993-95), and visit 4 (1996-98); visit 5 was fifteen years 

later: 2011-13.  Baseline response rates were 46% of the target population in Jackson 

and 65% of the target population in the other communities.  Additionally, survivor 

retention proportions were 93% for visit 2, 86% for visit 3, 80% for visit 4, and 65% for 

visit 5.  Participants were contacted yearly by phone – twice a year starting in 2012 – to 

obtain information about hospital admissions and ascertain vital status. 

   The same data were not collected at every visit. The details of the data 

collection procedures are covered in the next section, focusing on exposures, outcomes, 

potential confounders, and other covariates of interest. 

2.3 EXPOSURE VARIABLE MEASUREMENT 

For our exposures, we focused on dietary consumption of fish and shellfish, the 

fish-derived omega-3 fatty acids DHA and EPA, and the vegetable-derived omega-3 

PUFA ALA.  Biomarker values for circulating concentrations of DHA, EPA, and ALA were 

available for a subset of participants.  Detailed descriptions appear below.   

2.3.1 THE FOOD FREQUENCY 

QUESTIONNAIRE 

Participants’ usual dietary intake was assessed by using an interviewer-

administered, 66-item FFQ administered to all subjects at visit 1 (1987-1989) and visit 3 

(1993-1991). The FFQ was based on the 61-item instrument developed by Willett et al. 

[124].  Three modifications were made for the ARIC version: (1) separation of some 

items into detailed subcategories (notably, the one question on fish intake was broken 

down into three fish categories of dark meat fish, other fish, and shellfish); (2) addition 
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of several food items such as biscuits and donuts; (3) detailed questions were added to 

assess the consumption of beer, wine, and hard liquor. 

The ARIC questionnaire was also validated in a sample (n=419) of black and 

white ARIC participants who repeated the FFQ after three years [125]. The study found 

that, after adjusting for total caloric intake, the median reliability coefficient for blacks 

was 0.42 and the reliability for white ARIC participants was 0.49 – a value similar to that 

of other studies of white subjects.  The study found no difference in the median 

reliability coefficients of men and women after adjusting for total calorie intake. 

Another study investigated the validity of the ARIC FFQ by comparing Minnesota 

field center participants’ dietary fat FFQ data against their plasma fatty acid 

concentrations [126].  Plasma measures reflect the types of fats proportionally 

consumed over the past several weeks to months [127] and the proportionate 

composition in plasma was moderately correlated with dietary intake, with highest 

correlations in the fish-derived omega-3 fatty acids DHA and EPA (r=0.42 and r=0.20 for 

plasma phospholipid measures of DHA and EPA, respectively) [126]. 

2.3.1.1 Fish/Shellfish Servings 

Fish and other seafood intake was assessed through four FFQ questions with 

nine response categories. The questions asked how often they consumed: 3–4 ounces of 

canned tuna fish; 3–5 ounces of dark meat fish such as salmon, mackerel, swordfish, 

sardines, and bluefish; 3–5 ounces of other fish such as cod, perch, catfish, etc.; and 

shrimp, lobster, scallops as a main dish. Interviewers used food models to help 

participants with portion size estimation.  Subjects could provide answers to each 

question ranging from ‘‘never or less than once per month’’ to ‘‘6 times per day.’’  

Applying the same methodology used in another study of seafood intake in the 

ARIC cohort [128], each of the participants’ seafood-related FFQ responses were 

grouped into three exposure categories – (1) omega-3 rich fish (tuna + dark); (2) total 
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fish (tuna + dark+ other); and (3) total seafood (tuna + dark + other + shellfish) – and 

further translated into four weekly serving categories: none, less than one, one to two, 

and more than two.   

2.3.1.2 Intake of ALA, DHA, and EPA 

Data from the FFQ were coded for nutrients and food groups by Harvard 

University.  Nutrient values for each food were obtained from the Harvard database 

[124], which was predominately based on the US Department of Agriculture 

publications [129]. Daily intake of nutrients was calculated by multiplying the nutrient 

content of each food in the portion specified by the frequency of daily consumption and 

then summing the results.  This calculation yielded consumption of ALA, EPA, and DHA 

in grams/day.  Three different classifications of omega-3 fatty acids were investigated: 

(1) vegetable-derived ALA, (2) fish-derived DHA+EPA; and (3) ALA+DHA+EPA. 

2.3.2 BIOMARKER MEASURES OF ALA, 
DHA, AND EPA 

Blood samples were obtained from Minnesota field participants at visit 1 (n= 

3,757) and plasma fatty acids were measured in cholesterol esters and phospholipids 

using gas chromatography [126].  Wang et al. contains a very detailed description of the 

chemical processes used to extract and measure the plasma fatty acids [83].  Since 

cholesterol esters reflect medium-term dietary intake of fatty acids (weeks)  and 

phospholipids reflect intake over a slightly longer duration (weeks to months) [127], we 

used phospholipid measurements in our analyses.  Circulating concentrations of 

individual fatty acids were expressed as a percentage of total fatty acids – we 

investigated concentrations of ALA, DHA+EPA, and ALA+DHA+EPA grouped into 

quartiles. 

It should be noted that there are certain instances where plasma measures may 

not perfectly reflect dietary intake. Things to consider are: (1) sensitivity to intake (do 
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plasma measures change with changes in diet); (2) if the body attempts to maintain 

plasma fatty acid homeostasis; (3) if the measure is sensitive to consumption; and (4) 

usual intake over a year versus the seasonality of plasma levels [109].  Thus, when using 

plasma measures of omega-3 PUFAs as an exposure, the association may not describe 

usual dietary intake but bioavailability. 

Keeping this in mind, previous analyses have shown that plasma measurements 

of omega-3 PUFAs correlate with dietary intake (as measured via a FFQ) in ARIC [126] 

and similar heterogeneous European populations [130].  However, as previously 

mentioned, plasma measurements of fatty acids are not a perfect measurement of 

dietary intake as many factors (e.g., alcohol intake, obesity, chronic diseases) affect fatty 

acid metabolism [126]. 

2.4 OUTCOME MEASURES 

We had two main classifications of outcome variables: glycemia and ECG 

markers of ventricular repolarization associated with SCD.  In these next sections, we 

describe how outcome data were obtained. 

2.4.1 MEASURES OF GLYCEMIA 

Three measures of glycemia were used in this study: FBG, HbA1c, and incident 

T2D.  Detailed descriptions of blood draw [131] and chemistry analyses [132] can be 

found in the ARIC Manual of Operations.   

2.4.1.1 Fasting Blood Glucose 

Data on FBG were obtained during visits 1-4.  Fasting blood samples were drawn 

from an antecubital vein with minimal trauma.  FBG was then measured by a hexokinase 

method on a Coulter DACOS (Coulter Instruments).  In a small validation study blood 

samples from volunteers (n=40) were taken two weeks apart.  For serum glucose the 

intraclass correlation was 0.84, the within-person coefficient of variation (CV) was 4% , 

and the laboratory CV was 2% [133]. 
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2.4.1.2 Hemoglobin A1C 

HbA1c was measured from whole blood samples using high-performance liquid 

chromatography.  HbA1c values capture the average blood glucose concentration over 

approximately the past three months.  The blood was collected during visit 2 (1990-92) 

and stored at -70 Cº for 14-18 years until HbA1c measurements could be obtained.  

Selvin et al. give a detailed description of the measurement process [134].  

Briefly, measurements were obtained in the same laboratory during two 

separate time periods using two different instruments: n=4,918 subjects in 2003-04 

using Tosoh 2.2 Plus HPLC (Tosoh Bioscience, South San Francisco, CA) and n=9,151 

subjects in 2007-08 using Tosoh G7 HPLC.  Both instruments were certified by the 

National Glycohemoglobin Standardization Program (NGSP).  This calibration provides 

stable results despite changes in HbA1c methodologies over time. 

A convenience sample (n=383) was analyzed using both instruments.  Pearson's 

correlation coefficient between the two samples was high (r=0.99) but there was a slight 

bias with 2007-08 values showing a 0.29 higher %HbA1c (p<0.0001).  The intraclass 

correlation coefficient was 0.99 (95% CI: 0.97-0.99) and within-sample CV of 3.9% (95% 

CI: 3.6% to 4.2%).  CVs of 5% or less generally reflect good method performance. 

2.4.1.3 Incident T2D 

Diabetes status was defined based on information collected at visits 1-4.  

Specifically, diabetes was defined as (1) self-report of physician-diagnosed diabetes; (2) 

self-reported use of diabetes medication in the past two weeks; (3) fasting glucose level 

≥ 7.0 mmol/liter (126 mg/dl); or (4) non-fasting glucose level > 11.1 mmol/liter (200 

mg/dl).  For incident T2D, prevalent cases will be excluded at visit 1 and cases newly 

identified at subsequent visits will be considered incident. 

Although this methodology does not distinguish between type 1 diabetes (T1D) 

and T2D, T2D is the most commonly occurring variant of diabetes and rarely occurred 

before age 30 in individuals who were middle-aged in the 1980’s [135].  Other 
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researchers have defined T1D in ARIC as diabetic subjects with age of onset before age 

30 [136].  

2.4.2 ECG PREDICTORS OF SUDDEN CARDIAC 

DEATH 

For each visit in ARIC, a standard, resting, supine 12-lead ECG was obtained for 

each subject a minimum of 1 h after any smoking or caffeine ingestion using MAC PC 

personal cardiography equipment (Marquette Electronics, Inc., Milwaukee, WI).  An 

electrode locator was used to determine and standardize the positioning of chest 

electrodes.  Tracings were sent to be computer coded at the ARIC ECG Reading Center.  

All records with significant Minnesota Code [137] findings as determined by the 

computer, as well as a random sample of tracings, were sent to the ECG coding center 

to be visually coded.  Discrepancies between the computer code and visual code were 

adjudicated by a senior coder. Subsequent processing of the ECGs took place at EPICARE 

(Epidemiological Cardiology Research Center at Wake Forest University, Winston-Salem, 

NC, USA).  We considered four ECG-derived outcomes: QT interval, prolonged QT, J-

point height, and JPE. 

2.4.2.1 QT Interval and Prolonged QT 

The QT interval represents electrical depolarization and repolarization of the 

ventricles.  A participant’s visit 1 QT interval was derived by the Dalhousie ECG analysis 

program using the digital 12-lead ECG.  Subsequent visits used the GE Marquette 12-SL 

analysis program, which generated an average waveform derived from all 12 

simultaneously measured leads. 

We used a heart rate-corrected QT interval (QTc) – as recommended by the AHA, 

the American College of Cardiology, and the Heart Rhythm Society for the 

Standardization and Interpretation of the Electrocardiogram [138].  The most 

appropriate formula for correction is the one resulting in the least amount of correlation 
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between heart rate and the calculated rate-corrected QT [139].  We tested Framingham 

[140] and Hodges [141] and found that the Framingham formula had the least 

correlation with heart rate in our study population (r= -0.23 and r=-0.38, respectively). 

Thus 𝑄𝑇𝑐 = 𝑄𝑇 + 154(1 −
60

𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒
); where heart rate is in beats per minute. 

In addition to the continuous measure of QT interval, we defined prolonged QTc 

as QTc values of 460 ms or longer in women and 450 ms or longer in men [138]. 

2.4.2.2 J-Point Height and J-Point 
Elevation 

The ST amplitude at the J-point was determined the 2001 version of the GE 

Marquette 12-SL program.  We calculated a continuous measure of the J-point (J-point 

height) as the maximum amplitude of the 12 STJ leads. As has been done in other ARIC 

studies, JPE was defined as a ST amplitude greater than 100 microvolts in at least two 

contiguous leads [142]. 

2.5 POTENTIAL CONFOUNDERS 

We selected potential confounders a priori based on their hypothesized 

relationship with exposure and outcome.  While most variables were measured at 

multiple visits, potential confounders were measured contemporaneously with 

exposure values (visits 1 and 3) to avoid adjusting for confounders measured after our 

exposure of interest [143]. Potential confounders were grouped into four main 

categories: sociodemographic, lifestyle, dietary, and clinical variables. 

2.5.1 SOCIODEMOGRAPHIC VARIABLES  

Sociodemographic variables included age, sex, race, field center, and education 

level.  Age, sex, self-reported race, and field center were obtained at visit 1 and 

confirmed at subsequent visits. For race, participants were handed a card and asked to 

tell the interviewer which best described his or her race. Choices offered were: white, 
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black, American Indian/ Alaskan native, Asian/Pacific Islander, other: specify.  Over 99% 

identified as either white or black race. Education level was measured at visit 1 via self-

report and categorized based on years of education: basic (no high school degree), 

intermediate (completed high school), and advanced (at least some college). 

2.5.2 LIFESTYLE VARIABLES  

Lifestyle variables included body mass index (BMI), physical activity, smoking 

status, and drinking status and amount. Technicians measured height and weight, and 

BMI was calculated as weight (kilograms) divided by height squared (meters2). Physical 

activity was measured at visits 1 and 3 using the Baecke questionnaire [144]. The 

questionnaire included 16 items about usual exertion, and three indexes ranging from 1 

(low) to 5 (high) were derived for physical activity at work, during leisure time, and in 

sports. The reliability and validity of the Baecke questionnaire are good for both male 

and female subjects, and equal to many other physical activity instruments [145]. The 

three physical activity scores were summed and then translated into tertiles of physical 

activity (low, medium, and high). Smoking status was assessed via self-report and 

participants classified as current smokers, former smokers (more than 100 cigarettes in 

the past), and never smokers. Alcohol intake status (current, former, never) and amount 

(grams/day) were measured at visits 1 and 3. 

2.5.3 DIETARY VARIABLES  

Dietary variables included trans fatty acids, saturated fatty acids, and dietary 

fiber. Intake of trans fatty acids, saturated fatty acids, and dietary fiber were measured 

at visits 1 and 3 via FFQ and translated into nutrient values as described in Section 

2.3.1.2. 
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2.5.4 CLINICAL VARIABLES  

Clinical variables included hypertension, LDL, HDL, and triglycerides. During each 

visit, three blood pressure measurements were taken with a random-zero 

sphygmomanometer after 5 minutes of the participant in the sitting position; the mean 

of the last two measurements was used.  Hypertension was defined as a systolic blood 

pressure above 140 mmHg, a diastolic above 90 mmHg, or self-reported use of 

antihypertensive medication.  For metrics requiring phlebotomy, blood was drawn after 

a minimum 8-hour fasting period with minimal trauma from an antecubital vein [146]. 

Plasma total cholesterol and triglycerides were measured by enzymatic methods [132], 

and LDL cholesterol was calculated using the Friedewald formula [147]. HDL cholesterol 

was measured after dextran-magnesium precipitation of non-HDL lipoproteins [132]. 

2.6 OTHER COVARIATES OF INTEREST 

Other variables of interest include self-reported medication use, variables used 

for inclusion/exclusion criteria that had not yet been defined, and variables used to 

stratify participants into sub-populations of interest. 

2.6.1 PRESCRIPTION AND NON-PRESCRIPTION 

MEDICATION 

Prior to each visit, participants were asked to bring all prescription and non-

prescription medications used in the two weeks leading up to the visit.  Trained 

interviewers collected information on the medications that participants reported taking, 

and these were coded according to drug category. 

2.6.2 INCLUSION AND EXCLUSION CRITERIA  

For all analyses, participants with prevalent or incident CVD – defined as 

coronary heart disease (CHD), heart failure (HF) or stroke – were excluded from analysis.  
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Prevalent disease was established at visit 1.  Incident disease was identified at 

subsequent visits, or through three surveillance methods: (1) ARIC Study participants 

were contacted annually by phone (twice a year after 2012) and all hospitalizations and 

deaths during the previous year were identified; (2) local hospitals provided lists of 

cardiovascular disease discharges, which were examined for participant hospitalizations 

and qualifying CVD outcomes; and (3) death certificates.  

Prevalent CHD was defined by a positive history of angina or intermittent 

claudication by the Rose questionnaire [148, 149], a self-reported physician-diagnosed 

history of a heart attack, evidence of old myocardial infarction by electrocardiogram, or 

a self-reported history of cardiovascular surgery or angioplasty [150].  Incident CHD was 

defined as fatal CHD, definite or probable MI, and/or coronary revascularization.   

HF prevalence criteria (at visit 1) included current medication use for HF and/or 

having manifest HF as defined by Gothenburg criteria stage 3, which requires the 

presence of specific cardiac and pulmonary symptoms as well as medical treatment for 

HF [151].  Incident HF was defined as either (1) a hospitalization which included an 

International Classification of Diseases, 9th revision (ICD-9), discharge code of 428 in any 

position; or (2) a death certificate with a ICD-9 code of 428 or an ICD-10 code of I50 in 

any position.  Non-hospitalized, non-fatal HF was not captured. 

Prevalent stroke (visit 1) was defined as a self-reported history of physician-

diagnosed stroke [152].  Incident stroke (definite or probable) was defined as evidence 

of sudden or rapid onset of neurological symptoms lasting for >24 hours or leading to 

death.  Furthermore, these neurological symptoms could not have been attributable to 

non-stroke causes including major brain trauma, neoplasm, coma due to metabolic 

disorders or disorders of fluid or electrolyte balance, vasculitis involving the brain, 

peripheral neuropathy, hematologic abnormalities, or central nervous system infections.  
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2.6.3 GLYCEMIA STATUS  

Manuscript 1 (omega-3 PUFAs and glycemia) will involve analyzing different 

populations of subjects, specifically non-diabetic participants, diabetic participants, and 

those with pre-diabetic conditions.  As such, the ARIC population will need to be divided 

into subgroups defined below.  Variables involved in classifying participants were 

collected at each visit. 

2.6.3.1 Type 2 Diabetes (T2D) 

As previously mentioned, diabetes status was updated at each visit and defined 

as (1) self-report of physician-diagnosed diabetes; (2) self-reported use of diabetes 

medication in the past two weeks; (3) fasting glucose level ≥ 7.0 mmol/liter (126 mg/dl); 

or (4) non-fasting glucose level ≥ 11.1 mmol/liter (200 mg/dl). 

2.6.3.2 Pre-Diabetics (Pre-T2D) 

FBG was tested at each visit.  Those with FBG between 100-125 mg/dL were 

classified as having pre-diabetes (Pre-T2D). 

2.6.3.3 Normoglycemics (NGT) 

The normoglycemic (NGT) population was defined as participants without T2D or 

Pre-T2D. 

2.7 SUMMARY 

This dissertation used data from the ARIC study collected over four visits from 

1987 through 1998.  Use of these data offer many strengths.  It is a population-based, 

biracial cohort who were followed over several years with repeated measures of 

exposures, outcomes, and covariates.  



   34 

 

3 MANUSCRIPT 1: INTAKE OF LONG-CHAIN OMEGA-3 

POLYUNSATURATED FATTY ACIDS, INCIDENCE OF DIABETES, 

AND MARKERS OF GLUCOSE HOMEOSTASIS IN THE 

ATHEROSCLEROSIS RISK IN COMMUNITIES (ARIC) STUDY 

3.1 SYNOPSIS 

Background: The incidence and prevalence rates of type 2 diabetes are high in the 

United States, with blacks disproportionately affected. The evidence regarding the 

association of dietary intake of fish, fish-derived omega-3 fatty acids, and vegetable-

derived omega-3 fatty acids has been mixed.  

Methods: We studied the association of consumption of seafood, the fish-derived 

omega-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), and the vegetable-derived omega-3 PUFA alpha-linoleic 

acid (ALA) with fasting blood glucose (FBG) (n=13,173), HbA1c (n=11,575), and incident 

type 2 diabetes (T2D) (n=11,874) in a bi-racial cohort of individuals aged 45–64 

participating in the Atherosclerosis Risk in Communities (ARIC) study.  Intake of seafood, 

DHA, EPA, and ALA were measured via food frequency questionnaire. FBG and HbA1c 

were obtained using blood samples collected during study visits and diabetes status was 

identified through self-report and lab values.  To estimate differences across exposure 

categories, linear regression was used for continuous outcomes (FBG, HbA1c) adjusting 

for repeated measures as appropriate.  Cox proportional hazards regression with time 

varying covariates was used for the incident T2D outcome. 

Results: In multivariable analyses, intake of seafood and DHA+EPA was favorably 

associated with FBG and HbA1c in non-diabetic participants, although the magnitude of 

the associations were very small ranging between a decrease of 0.35 to 1.35 mg/dL for 

FBG and a decrease of 0.01 to 0.10 percentage points for HbA1c when comparing 

extreme categories.  ALA was not associated with FBG or HbA1c in non-diabetic 
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participants.  Among diabetic participants, intake of seafood, fish-derived DHA+EPA, and 

the vegetable derived ALA was adversely associated with FBG and HbA1c, with 

differential effects for seafood in men (favorable) versus women (adverse) and whites 

(favorable) versus blacks (adverse).  Finally, higher intake of the vegetable derived ALA 

was associated with higher risk of incident T2D in normoglycemics (HR=4.0, 95% CI: 1.7, 

9.6, comparing extreme quartiles), while seafood and the fish-derived DHA+EPA were 

not. 

Conclusions: In this population based cohort, dietary intake of seafood and all omega-3 

nutrients – including ALA – were adversely associated with FBG and HbA1c in diabetic 

participants, although there were differential effects by sex and race for seafood.  In 

contrast, neither seafood nor DHA+EPA was associated with time to incident T2D, but 

higher intake of ALA was associated with higher risk. 

3.2 INTRODUCTION 

Approximately 9% of the adult population in the United States aged 20+ years 

has been diagnosed with type 2 diabetes (T2D), with the highest age-adjusted 

prevalence among non-Hispanic black adults with less than a high school education 

(16.0%) and the lowest among non-Hispanic white adults with more than a high school 

education (6.6%) [1].  Having diabetes is associated with a greater clustering of 

cardiovascular disease (CVD) risk factors compared to those without diabetes [1, 153].  

Lifestyle factors are an important component of preventive strategies to improve 

cardiovascular health, and key among those factors is diet [2].    

Fish consumption has been frequently included in dietary guidelines for the 

prevention of CVD and its risk factors. Both the American Heart Association and the 

American Diabetes Association recommend at least two servings of oily fish a week to 

promote cardiovascular health [3, 154].  Oily fish is rich in the long-chain omega-3 

polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic 
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acid (EPA).  These, along with the vegetable-derived omega-3 PUFA alpha-linolenic acid 

(ALA) play major roles in physiological processes [5]. 

Studies investigating seafood intake and intake of fish-derived and vegetable-

derived omega-3 PUFAs with markers of glucose homeostasis have been mixed.  Recent 

reviews and meta-analyses have reported that dietary intake of fatty fish and the fish-

derived omega-3 PUFAs DHA and EPA are associated with higher risk of T2D in American 

and European populations [85-88] but not Asians [86].  There was no association found 

between dietary intake of lean fish or shellfish with T2D [86]; and plasma measures of 

DHA and EPA were also not associated with a higher risk of T2D [85].  In diabetics, a 

meta-analyses of fish oil supplementation studies found that supplementation had 

favorable – but non-significant – associations with HbA1c and insulin [73], although the 

AHA no longer recommends fish oil supplementation for diabetics for the prevention of 

cardiovascular disease [74]. 

Studies investigating intake of the vegetable-derived ALA have been similarly 

mixed.  A meta-analysis found higher intake of ALA was associated with lower risk of 

incident T2D [85] but a subsequent analysis two years later showed favorable 

associations in Asians only, although Americans and Europeans had a nonsignificant 

favorable trend [86]. 

Given the inconsistent nature of the previous literature, we tested the 

associations among dietary intakes of seafood, the fish-derived omega-3 PUFAs DHA 

and EPA, and the vegetable derived omega-3 PUFA ALA with glycemia outcomes in the 

Atherosclerosis Risk in Communities (ARIC) study – a population-based, biracial cohort, 

with twelve years of follow-up data and repeated measures for the exposures and 

outcomes of interest. 
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3.3 METHODS 

3.3.1 STUDY POPULATION 

The ARIC study has been described previously [155]. Briefly, ARIC is a prospective 

study of cardiovascular disease including 15,792 men and women 45–64 years of age at 

baseline (visit 1). Participants were recruited from four US communities using 

probability sampling techniques. The communities and racial composition were: 

predominately white subjects from suburbs of Minneapolis, Minnesota, and Washington 

County, Maryland; black subjects from Jackson, Mississippi; and white and black 

subjects from Forsyth County, North Carolina. 

Visit 1 data were collected in 1987–89 and three additional exams were 

performed at approximately 3-year intervals (1990–92, 1993–95, 1996–98). A fifth exam 

was conducted in 2011-13 (visit 5), but those data were not utilized in this study as 

outcomes would have occurred more than 20 years after our exposure assessment. 

Our exclusion criteria were as follows (see Figure 3-1).  We excluded participants 

with missing values for exposures, outcomes, or covariates.  Those whose race was 

neither black nor white (n = 48) were excluded, and we further excluded black 

participants at the Minneapolis and Washington County sites (n = 55) due to small n.  

We excluded those participants who had prevalent or incident coronary heart disease, 

heart failure, or stroke as (1) prevalent conditions influence how patients have their 

comorbidities managed, diagnosed and treated; and (2) diagnoses may result in changes 

to previously reported dietary and lifestyle behaviors.  Finally, participants who reported 

implausible caloric intakes were excluded for potentially unreliable exposure data. 

Implausible was defined as less than 500 kcal/day for women and 700 kcal/day for men 

or more than 3500 kcal/day for women and 4500 kcal/day for men.  These ranges 

represent the sex-specific first and 99th percentiles for ARIC energy intake distributions – 

see Tell et al. for the initial description of the exclusion methodology and justification 

[156] and Steffen et al. for first use of current ranges [157]. 
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3.3.2 FASTING STATUS 

All participants self-reported 8-hour and 12-hour fasting status.  Compliance was 

high in non-diabetics, with approximately 98% reporting having fasted for at least 8 

hours and 96% reporting fasting for at least 12 hours.  Compliance was lower in those 

with diabetes, with approximately 88% reporting 8 or more hours and 84% reporting 12 

or more hours fasting. 

3.3.3 GLYCEMIA STATUS POPULATION 

ASSIGNMENT 

At each visit, participants who met the inclusion/exclusion criteria were 

categorized by glycemia status: diabetic participants, those with pre-diabetic conditions, 

and normoglycemic participants. 

Diabetic participants were identified at each visit based on the following criteria 

(1) self-report of physician-diagnosed diabetes; (2) self-reported use of diabetes 

medication in the past two weeks; (3) fasting glucose level ≥ 7.0 mmol/liter (126 mg/dl); 

or (4) non-fasting glucose level > 11.1 mmol/liter (200 mg/dl).  If a participant was not 

diabetic, then the participant was defined as having pre-diabetes (Pre-T2D) if his/her 

fasting blood glucose value was between 100 mg/dl and 125 mg/dl.  The normoglycemic 

(NGT) population was defined as those who had neither Pre-T2D nor diabetes. 

3.3.4 OUTCOME ASSESSMENT 

Three measures of glucose metabolism are used in this study: Fasting Blood 

Glucose (FBG), HbA1c, and incident T2D.  Detailed descriptions of blood draw [146] and 

chemistry analyses [132] can be found in the ARIC Manual of Operations. For outcomes 

that could be influenced by use of anti-hyperglycemic medications (i.e., FBG, HbA1c), a 

correction factor was applied (see the Correction Factor section 3.3.4.4). 
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3.3.4.1 Fasting Blood Glucose   

FBG was measured at visits 1-4.  Fasting blood samples were drawn from an 

antecubital vein with minimal trauma.  FBG was then measured by a hexokinase method 

on a Coulter DACOS (Coulter Instruments).  In a small validation study blood samples 

from volunteers (n=40) were taken two weeks apart.  For serum glucose the intraclass 

correlation was 0.84, the within-person coefficient of variation (CV) was 4%, and the 

laboratory CV was 2% [133]. 

3.3.4.2 Hemoglobin A1c 

HbA1c was measured from whole blood samples using high-performance liquid 

chromatography.  The blood was collected during visit 2 (1990-92) and stored at -70 Cº 

for 14-18 years until HbA1c measurements could be obtained.   

Selvin et al. give a detailed description of the HbA1c measurement process [158], 

but briefly, measurements were obtained in the same laboratory during two separate 

time periods using two different instruments: n=4,918 subjects in 2003-04 using Tosoh 

2.2 Plus HPLC (Tosoh Bioscience, South San Francisco, CA) and n=9,151 subjects in 2007-

08 using Tosoh G7 HPLC.  Both instruments were certified by the National 

Glycohemoglobin Standardization Program (NGSP) and standardized to the Diabetes 

Control and Complications Trial assay. This calibration provides stable results despite 

changes in HbA1c methodologies over time.  A convenience sample (n=383) was 

analyzed using both instruments.  Pearson's correlation coefficient between the two 

samples was high (r=0.99) but there was a slight bias with 2007-08 values showing a 

0.29 higher %HbA1c (p<0.0001).  The intraclass correlation coefficient was 0.99 (95% CI: 

0.97-0.99) and within-sample coefficient of variation (CV) of 3.9% (95% CI: 3.6% to 

4.2%). 
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3.3.4.3 Incident Type 2 Diabetes 

As previously mentioned, diabetes was defined as (1) self-report of physician-

diagnosed diabetes; (2) self-reported use of diabetes medication in the past two weeks; 

(3) fasting glucose level ≥ 7.0 mmol/liter (126 mg/dl); or (4) non-fasting glucose level > 

11.1 mmol/liter (200 mg/dl).   

Although investigators did not distinguish type 1 diabetes mellitus from T2D, T2D 

is the most commonly occurring variant of diabetes and rarely occurs before age 30 in 

individuals who were middle-aged in the 1980’s [135].  Defining participants who met 

these criteria as having T2D is consistent with other ARIC studies where type 1 diabetes 

was defined as subjects with age of onset before age 30 [136]. 

Analyses with incident T2D as the outcome of interest excluded participants who 

had prevalent diabetes at visit 1.  Participants who met the diabetes criteria at 

subsequent visits were considered to have incident T2D and date of onset was defined 

as the visit date. 

3.3.4.4 Correction Factor 

For those participants who reported taking anti-hyperglycemic medications – 

insulin (mixed, beef, pork, human, or unspecified), sulfonylureas or sulfonylurea 

combinations, biguanides, meglitinides, aldose reductase inhibitors, alpha-glucosidase 

inhibitors, thiazolidinediones, or other – we applied a correction factor using the 

approach described in Tobin et al. [159] and other studies with glycemia outcomes [160, 

161].  Specifically, for medicated participants, we added a constant of 1 mmol/dl (18 

mg/dl) to fasting blood glucose measures and 1 percentage point to HbA1c values.  

These constants were based on pharmaceutical studies, systematic reviews, and meta-

analyses of the effect of medication on glycemia biomarkers [162-166]. 
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3.3.5 EXPOSURE ASSESSMENT 

In this study, we focused on dietary consumption of fish and shellfish, the fish-

derived omega-3 fatty acids DHA and EPA, and the vegetable-derived ALA. 

Participants’ usual dietary intake was assessed by an interviewer-administered, 

66-item food frequency questionnaire (FFQ). The FFQ was based on the instrument 

developed by Willett et al. [167], with three principal modifications: (1) Data regarding 

alcohol consumption were obtained using a separate, more detailed instrument; (2) 

Several food items were added (e.g., donuts, biscuits, and cornbread); and (3) Some 

items were split into detailed subcategories – notably a single item on fish consumption 

was separated into three specific fish items. 

The 61-item Willett version has been validated against 28-day food record, but 

the validation took place in a population of educated, predominately white women 

[124, 167]. The ARIC questionnaire was also validated in a sample (n=419) of black and 

white ARIC participants who repeated the FFQ after three years [125]. The study found 

that, after adjusting for total caloric intake, the median reliability coefficient for blacks 

was 0.42 and the reliability for white ARIC participants was 0.49 – a value similar to that 

of other studies of white subjects.  The study found no difference in the median 

reliability coefficients of men and women after adjusting for total calorie intake. 

Another study investigated the validity of the ARIC FFQ by comparing Minnesota 

field center participants’ intake of dietary fat as measured via FFQ against their plasma 

fatty acid concentrations [126].  Plasma measures reflect the types of fats proportionally 

consumed over the past several weeks to months [127] and the proportionate 

composition in plasma was moderately correlated with dietary intake, with highest 

correlations in the fish-derived omega-3 fatty acids DHA and EPA (r=0.42 and r=0.20 for 

plasma phospholipid measures of DHA and EPA, respectively) [126]. 
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3.3.5.1 Fish/Shellfish Servings 

Fish and other seafood intake was assessed through four FFQ questions with 

nine response categories. Participants were asked how often they consumed: 3–4 

ounces of canned tuna fish; 3–5 ounces of dark meat fish such as salmon, mackerel, 

swordfish, sardines, and bluefish; 3–5 ounces of other fish such as cod, perch, catfish, 

etc.; and shrimp, lobster, scallops as a main dish. Interviewers used food models to help 

participants with portion size estimation. Subjects could provide answers to each 

question ranging from ‘‘never or less than once per month’’ to ‘‘6 times per day.’’  

Applying the same methodology used in another study of seafood intake in the 

ARIC cohort [128], each of the participants’ seafood-related FFQ responses were 

grouped into three exposure categories: (1) omega-3 rich fish (tuna + dark); (2) total fish 

(tuna + dark+ other); and (3) total seafood (tuna + dark + other + shellfish). Exposure 

categories were categorized into four weekly serving categories: none, less than one, 

one to two, and more than two. 

3.3.5.2 Quartiles of Omega-3 PUFA 

Daily intake of macro- and micronutrients was calculated via the FFQ by 

multiplying the nutrient content of each food by the frequency of daily consumption 

and then summing the results [124]. This process yielded daily intake of nutrients 

expressed as grams per day. Three different classifications of omega-3 fatty acids were 

investigated: (1) vegetable-derived ALA, (2) fish-derived DHA+EPA; and (3) 

ALA+DHA+EPA. 

Intake of nutrients was adjusted using the residual method [168, 169]. In this 

method, nutrient residuals (observed intake – predicted intake) are obtained from the 

regression of total nutrient intake on total energy intake.  The nutrient residuals are 

then rescaled by adding the overall mean nutrient intake to each participant’s residual.  

For this manuscript, we created rescaled residuals for the three nutrient classifications – 

ALA, DHA+EPA, and ALA+DHA+EPA – and categorized these into quartiles.   
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We selected the residual method rather than the standard multivariable method 

(quartiles of raw nutrient values as the exposure with total energy intake as a covariate) 

because (1) with the residual method, differences in exposure values amongst 

participants are due to differences in nutrient intake from the nutrient composition of 

the diet (versus overall variation in nutrient intake, which is due to diet composition and 

calorie amount) [169]; (2) when dietary exposure variables are categorized, the residual 

and the standard multivariable models are no longer mathematically equivalent [168-

170]; and (3) the residual model allows for greater precision [168].  All regression 

models where residual-adjusted nutrients were the exposure of interest included total 

energy intake (kcal/day) as a covariate. 

3.3.6 POTENTIAL CONFOUNDERS 

We selected potential confounders a priori based on their hypothesized 

relationship with exposure and outcome.  While most variables were measured at 

multiple visits, potential confounders were measured contemporaneously with 

exposure values (visits 1 and 3) to avoid adjusting for confounders measured after our 

exposure of interest [143]. Potential confounders were grouped into four main 

categories: sociodemographic, lifestyle, dietary, and clinical variables. 

3.3.6.1 Sociodemographic Variables 

Sociodemographic variables included age, sex, race, field center, and education 

level.  Age, sex, and self-reported race were obtained at visit 1 and confirmed at 

subsequent visits. Education level was measured at visit 1 via self-report and 

categorized based on years of education. We grouped education level as basic (no high 

school degree), intermediate (completed high school), and advanced (at least some 

college). 
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3.3.6.2 Lifestyle Variables 

Lifestyle variables include body mass index (BMI), physical activity, smoking 

status, and drinking status and amount.  Technicians measured height and weight, and 

BMI was calculated as weight (kilograms) divided by height squared (meters2). Physical 

activity was measured at visits 1 and 3 using the Baecke questionnaire [144]. The 

questionnaire included 16 items about usual exertion, and three indexes ranging from 1 

(low) to 5 (high) were derived for physical activity at work, during leisure time, and in 

sports. The reliability and validity of the Baecke questionnaire are good for both male 

and female subjects, and equal to many other physical activity instruments [145]. The 

three physical activity scores were summed and then translated into tertiles of physical 

activity (low, medium, and high). Smoking status was assessed via self-report and 

participants were classified as current smokers, former smokers (more than 100 

cigarettes in the past), and never smokers. Alcohol intake status (current, former, never) 

and amount (grams/day) were measured at visits 1 and 3.  

3.3.6.3 Dietary Variables 

Dietary variables included trans fatty acids, saturated fatty acids, and dietary 

fiber.  Intake of trans fatty acids, saturated fatty acids, and total dietary fiber from all 

plant sources (fruits, legumes, cereals, and vegetables) were measured at visits 1 and 3 

via FFQ and translated into nutrient values as described in the exposure section (Section 

3.3.5). 

3.3.6.4 Clinical Variables 

Clinical variables included hypertension, LDL, HDL, and triglycerides.  During each 

visit, three blood pressure measurements were taken with a random-zero 

sphygmomanometer and the mean of the last two measurements was used.  

Hypertension was defined as a systolic blood pressure above 140 mmHg, a diastolic 

above 90 mmHg, or self-reported use of antihypertensive medication.  Participants with 
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missing hypertension values (n=62 visit 1; n=56 visit 3) were imputed as not having 

hypertension (no disease). For metrics requiring phlebotomy, blood was drawn after a 

minimum 8-hour fasting period with minimal trauma from an antecubital vein [146]. 

Plasma total cholesterol and triglycerides were measured by enzymatic methods [132], 

and LDL cholesterol was calculated using the Friedewald formula [147]. HDL cholesterol 

was measured after dextran-magnesium precipitation of non-HDL lipoproteins [132]. 

3.3.7 STATISTICAL ANALYSES 

The statistical methods used varied by the study design used to investigate the 

relationship between the exposure and outcome of interest.  Outcome-specific study 

populations, study designs, and statistical methods are described in this section. 

For clarity, Figure 3-2 depicts the study design for all three outcomes of interest 

including the temporality of the exposure, outcomes, covariates, and subpopulations 

based on glycemia status.   

The green ovals represent exposures and covariates obtained at visit 1 and visit 

3.  Visit 1 values were used in regressions involving outcomes obtained at visit 1 and 

visit 2, whereas visit 3 values were used for outcomes obtained at visits 3 and 4.  The 

blue arrow gives the timeline for each of the ARIC visits.  The grey boxes represent that 

participants’ glycemia status (T2D, Pre-T2D, NGT) and was updated at each of the four 

ARIC visits (where applicable).  Similarly, the pink box demonstrates that 

inclusion/exclusion criteria were updated and applied at each visit (where applicable). 

All statistical analyses were performed with SAS (version 9.4, Enterprise guide 

7.1, SAS Institute Inc., Cary, NC, USA). 

3.3.7.1 Fasting Blood Glucose 

For this outcome, we used a quasi-repeated cross-sectional design where each 

participant who met the inclusion/exclusion criteria at visit 1 could be included in the 

analysis up to four times (visit 1, plus once for each subsequent visit where he/she met 
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the inclusion/exclusion criteria).  For each visit meeting the inclusion/exclusion criteria, 

we noted the participant’s glycemia status and outcome (FBG).  As previously 

mentioned, exposure and confounder values from visit 1 were used in observations for 

visits 1 and 2, and observations for visits 3 and 4 used exposure and covariate values 

from visit 3.  Associations between fish/shellfish servings, quartiles of omega-3 PUFA 

intake, and FBG were estimated using generalized estimating equations to account for 

repeated measures, using a normal distribution and an identify link, and assuming an 

independent working correlation structure.  A sensitivity analysis was conducted 

evaluating the impact of assuming an unstructured working correlation structure and 

this modification did not appreciably alter our results.  Because our sample size was 

large, we did not test for violations of the normality assumptions [171]. 

3.3.7.2 Hemoglobin A1c 

For this outcome, we used a modified cross-sectional study design.  Exposures 

and covariates were measured at visit 1, glycemia status and HbA1c were measured at 

visit 2, and inclusion/exclusion criteria were applied at both visits 1 and 2.  Associations 

between fish/shellfish servings, quartiles of omega-3 PUFA intake, and HbA1c were 

estimated using linear regression.  Because our sample size was large, we did not test 

for violations of the normality assumptions [171]. 

3.3.7.3 Incident Type 2 Diabetes 

For this outcome, we used a prospective study design.  Those free of diabetes at 

visit 1 were followed through each of the subsequent visits until either diagnosis or 

censoring.  We used Cox proportional hazards regression models to estimate hazard 

ratios (HRs) for incident T2D by level of fish/shellfish consumption and quartiles of 

omega-3 PUFA intake. Exposure status and potential confounders were modeled as 

time-dependent covariates with visit 1 data used for the period between visit 1 and visit 
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3, and visit 3 data afterwards.  Because we used time-varying covariates, we did not test 

for violations of the proportional hazards assumption. 

3.3.8 COVARIATE ADJUSTMENT MODELS 

Three models were used to adjust for potential confounders measured 

contemporaneously with exposure values: Model 1 adjusted for sociodemographic 

variables (age, sex, race, center, education); Model 2 further adjusted for lifestyle 

variables (BMI, physical activity, smoking status, drinking status and amount) and 

dietary variables (trans fatty acids, saturated fatty acids, and dietary fiber); Model 3 

further adjusted for clinical variables (hypertension, HDL, LDL, triglycerides).  All models 

included total energy intake (kcal/day) as a covariate.  

3.3.9 GLYCEMIA STATUS AS AN EFFECT 

MEASURE MODIFIER 

For all outcomes, we evaluated whether glycemia status (NGT, Pre-T2D, and, if 

applicable, T2D) was an effect measure modifier on the multiplicative scale by including 

the interaction term (glycemia status*exposure) in the regression models and 

considering the term’s p-value.  If the interaction term was significant (p<0.1), the term 

was kept in the model and results were presented for each sub-population (i.e., one set 

of results for those with NGT, another for those with Pre-T2D, and if applicable, another 

for those with T2D).  If the interaction term was not significant, then we presented one 

set of results for the full cohort.  In either instance, we tested for a linear trend in the 

association between our exposure and outcome by modeling the exposure category 

medians as a continuous variable. 

3.3.10 RACE AND SEX AS EFFECT MEASURE 

MODIFIERS 

Where appropriate, we tested for effect modification by race and sex by 

considering race*exposure and sex*exposure interaction terms.  For HbA1c and FBG 
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outcomes, if we had previously found that glycemia status was an effect modifier, race 

and sex interaction terms were tested in glycemia status-stratified subsets of data to 

avoid testing a three-way interaction (race*exposure*glycemia status; or 

sex*exposure*glycemia status).   

For Incident T2D, if we had previously found that glycemia status (NGT vs. Pre-

T2D) was an effect modifier, we could not subset the data as we did for continuous 

outcomes without introducing an overly complicated person time model.  Consider a 

participant who was NGT at visit 1 and transitioned to Pre-T2D at visit 2 and then was 

diagnosed with T2D at visit 3.  If we were to subset the data based on diabetes status, 

that participant would contribute three years of person time to the NGT time-to-event 

dataset and three years of person time to the Pre-T2D dataset.  For simplicity, we used a 

single dataset and tested the interaction term –exposure*race (or sex)*glycemia status 

(NGT or Pre-T2D).   

Finally, to avoid being overly reliant on p-values across multiple 

exposure/outcome/glycemia status models, we qualitatively compared the measures of 

association by race and by sex.  That is, we reviewed exposure/outcome results for 

white participants and compared them to results for black participants.  We performed 

the same qualitative analysis for male- and female-specific results. 

3.3.11  SENSITIVITY ANALYSES 

We performed several sets of sensitivity analyses.  In Section 3.3.7 we described 

the working correlation structure sensitivity analyses (independent vs. unstructured).  

We also examined if including protein (grams/day) as a covariate altered our 

associations, as seafood is high in protein and protein has been shown to be associated 

with incident T2D [172, 173].  For FBG outcomes, we investigated if limiting our analysis 

to those who self-reported compliance with the 12-hour fasting request appreciably 
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altered our results.  Finally, among those with T2D, we considered results stratified 

based on antihyperglycemic medication use.  

3.4 RESULTS 

The characteristics of the 13,173 participants who met the least restrictive 

inclusion/exclusion criteria (FBG analyses) by categories of total seafood intake (total 

fish + shellfish) are shown in Table 3-1. 

The greatest proportion of participants consumed one to two servings of 

seafood per week (45%).  The fewest number of participants fell into the lowest 

exposure category with zero servings of seafood per week (8%).  Those who consumed 

more seafood tended to be younger, female, and more educated.  Additionally, there 

was a greater proportion of black participants at higher levels of total seafood compared 

consumption compared to lower levels of consumption.  Clinically, cardiovascular risk 

profiles varied across seafood consumption categories.  Prevalence of hypertension and 

BMI were higher with greater amounts of seafood consumption; smoking rates were 

lower with greater seafood consumption.   

3.4.1 ASSOCIATIONS WITH FASTING BLOOD 

GLUCOSE 

For each of the three food exposures (total seafood, total fish, total omega-3 rich 

fish) and the three omega-3 PUFA exposures (quartiles of ALA, DHA+EPA, and ALA+ 

DHA+EPA) the exposure*glycemia status interaction term was significant.  P-values for 

the interactions along with glycemia status-specific results are reported in tables 3-2 

through 3-7.  Including protein as a covariate in the regression models did not 

substantively change our results (data not shown). 
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3.4.1.1 Normoglycemic and Pre-Diabetic 
Populations 

3.4.1.1.1 Fish/Shellfish Servings and Quartiles of Fish-Derived Omega-3 PUFAs 

(DHA+EPA) 

In most models, intake of seafood and DHA+EPA was associated with lower FBG 

in both NGT and pre-T2D populations, though these associations were of small 

magnitude and possibly not clinically relevant (tables 3-2 through 3-5). With zero 

servings/week as the reference category for the food exposures, differences in FBG for 

those consuming less than one, one to two, or more than 2 servings were all less than 

1.26 mg/dl.  With the first quartile as the reference category for DHA+EPA, all 

differences in FBG were less than 1.35 mg/dl. 

3.4.1.1.2 Quartiles of Vegetable-Derived Omega-3 PUFAs (ALA) 

In both NGT and pre-T2D populations, intake of ALA was not associated with FBG 

(tables 3-3 and 3-5). 

3.4.1.2 Diabetic Populations 

3.4.1.2.1 Fish/Shellfish Servings 

In those with T2D, intake of fish/shellfish was associated with higher FBG (Table 

3-6).  Total fish had the largest association with FBG, with those consuming two or more 

servings per week having 16.1 mg/dl higher FBG compared to those consuming no fish 

(Model 3, 95% CI: 6.5, 25.6, p=0.003).  Results for total seafood were similar to those for 

total fish (Figure 3-3).  Differences in FBG among categories of omega-3 rich fish were 

smaller than the differences in FBG for total fish or total seafood, but also statistically 

significant.  Participants who consumed two or more servings of omega-3 rich fish per 

week had 7.8 mg/dl higher FBG values on average compared to those who consumed 

none (Model 3, 95% CI: -0.9, 16.5, p=0.003).  Figure 3-3 shows all three exposures and 

their association with FBG.  Limiting the populations to those who self-reported fasting 
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for 12 or more hours did not substantively change our results; and stratifying by 

antihyperglycemic medication use also yielded similar results (data not shown). 

3.4.1.2.2 Omega-3 PUFA Intake 

Among participants with T2D, intake of vegetable-derived ALA, fish-derived 

DHA+EPA, and total omega-3 PUFA (ALA+DHA+EPA) was associated with higher FBG 

values (Table 3-7).  The largest difference in FBG for the highest quartile of intake 

(compared to quartile 1) was in DHA+EPA+ALA (Model 3, Q4 vs. Q1 = 23.4 mg/dl, 95% 

CI: 16.3, 30.5).  When considered separately, ALA and DHA+EPA were also statistically 

significantly associated with FBG, with differences across quartiles of ALA (compared to 

the first quartile) slightly larger than those for DHA+EPA (Model 3, Q4 vs. Q1 (95% CI): 

ALA = 18.1 mg/dL, 95% CI: 11.2, 25.0; DHA+EPA = 16.6 mg/dL 95% CI: 9.4, 23.7).  Figure 

3-4 shows all three omega-3 PUFA exposures and their associations with FBG.  Limiting 

the populations to those who self-reported fasting for 12 or more hours did not 

substantively change our results; and stratifying by antihyperglycemic medication use 

also yielded similar results (data not shown). 

3.4.1.3 FBG Race and Sex Effect 
Modifier Analyses 

Among those with NGT and Pre-T2D, and where the race*exposure or 

sex*exposure interaction terms were statistically significant, the differences in 

associations amongst race- and sex-stratified groups were so small as to be clinically 

irrelevant. 

For those with T2D, there was no evidence of effect modification by race or sex 

for the three omega-3 PUFA quartile exposures (ALA, DHA+EPA, ALA+DHA+EPA).  

However, there was evidence of effect modification by race and sex for total seafood 

intake and total fish intake.  The association between total seafood and FBG in diabetic 

women suggested an adverse effect whereas there was no association in diabetic males.  
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Intake of total fish had similar point estimates, but overall the interaction term was non-

significant (figures 3-5 and 3-6).  The association between total seafood and FBG and 

total fish and FBG in blacks and whites suggested there may be effect modification by 

race, although the interaction term was not statistically significant (figures 3-7 and 3-8).  

3.4.2 ASSOCIATIONS WITH HBA1C 

As seen in Figure 3-1, there were n=11,575 participants who met the 

inclusion/exclusion criteria for the HbA1c analysis.  For each of the three food exposures 

(total seafood, total fish, total omega-3 rich fish) and the three omega-3 PUFA 

exposures (quartiles of ALA, DHA+EPA, and ALA+ DHA+EPA) the exposure*glycemia 

status interaction term was significant.  Glycemia status-specific results are reported in 

tables 3-8 through 3-13.  Including protein as a covariate in the regression models did 

not substantively change our results (data not shown). 

3.4.2.1 Normoglycemic Populations 

3.4.2.1.1 Fish/Shellfish Servings 

As seen in Table 3-8, intake of total seafood (Model 3, p=0.07) and total fish 

(Model 3, p=0.06) had borderline significant p-values, with higher intake of fish/seafood 

associated with lower HbA1c values, but the associations were of small magnitude; the 

largest point estimate was 0.11 percentage points (Model 3, 2+ servings total seafood 

versus none, 95% CI: -0.19, -0.02). Omega-3 rich fish was not associated with HbA1c 

(Model 3, p=0.33). 

3.4.2.1.2 Omega-3 PUFA Intake 

Intake of DHA+EPA was significantly associated with lower HbA1c values in NGT 

populations (Table 3-9).  Compared to those in the lowest quartile of DHA+EPA intake, 

those in the fourth quartile of intake had 0.09 percentage points lower HbA1c (Model 3, 
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95% CI: -0.16, -0.03).  Neither ALA nor ALA+DHA+EPA intake was significantly associated 

with HbA1c (Table 3-9). 

3.4.2.2 Pre-Diabetic Populations 

Neither fish/shellfish servings nor quartiles of fish-derived omega-3 PUFAs 

DHA+EPA were associated with HbA1c among participants with Pre-T2D (tables 3-10 

and 3-11).  Associations resulting from Model 1 showed a significant positive association 

between intake of ALA and HbA1c (Q4 - Q1 = 0.09 percentage points, 95% CI: 0.01, 

0.16), the association disappeared after additional adjustment (p=0.32 Model 2; p=0.29 

Model 3). 

3.4.2.3 Diabetic Populations 

3.4.2.3.1 Fish/Shellfish Servings 

In those with T2D, higher intakes of total seafood and of total fish (compared to 

lower) were associated with higher HbA1c.  There was no association between omega-3 

rich fish intake and HbA1c. (Table 3-12; Figure 3-9) 

Of the three seafood exposures, total fish had the largest point estimate among 

the fully adjusted model results, with those consuming two or more servings per week 

having 0.28 percentage points higher HbA1c compared to those consuming no fish 

(Model 3, p=<0.0001, 95% CI: 0.05, 0.51).  Results for total seafood followed a similar 

pattern.  Stratifying by antihyperglycemic medication use also yielded similar results 

(data not shown). 

3.4.2.3.2 Omega-3 PUFA Intake 

In those with T2D, intake of DHA+EPA and ALA was associated with higher HbA1c 

values (Table 3-13).  The largest difference in HbA1c, when comparing quartile 4 to 

quartile 1, was in DHA+EPA+ALA (Model 3, Q4 vs. Q1 = 1.06 percentage points, 95% CI: 

0.89, 1.22).  The fish-derived omega-3 PUFAs DHA+EPA and the vegetable-derived 
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omega-3 PUFA ALA were also statistically significant, with differences in HbA1c across 

quartiles of ALA slightly larger than those for DHA+EPA (Model 3, Q4 vs. Q1 (95% CI): 

ALA = 0.88 percentage points (0.71, 1.04), DHA+EPA = 0.50 percentage points (0.34, 

0.66). (Figure 3-10.)  Stratifying by antihyperglycemic medication use also yielded similar 

results (data not shown). 

3.4.2.4 HbA1c Race and Sex Effect 
Modifier Analyses 

Among those with NGT and Pre-T2D, in instances where the race*exposure or 

sex*exposure interaction terms were significant, the differences in the 

exposure/outcome relationship by race and sex categories were so small as to be 

clinically irrelevant (data not shown).   

For those with T2D, there was no evidence of effect modification by race or sex 

for the three PUFA exposures (DHA+EPA+ALA, DHA+EPA, ALA) but there was evidence of 

effect modification by race and sex for total seafood intake and total fish intake.   

The association between total seafood and HbA1c in diabetic women suggested 

an adverse effect whereas results for diabetic males showed a non-significant beneficial 

association. Intake of total fish had similar point estimates, but the interaction term was 

not significant (figures 3-11 and 3-12).   

The association between total seafood and HbA1c and total fish and HbA1c in 

blacks and whites suggested there may be effect modification by race, although the 

interaction term was not statistically significant (figures 3-13 and 3-14).  

3.4.3 ASSOCIATIONS WITH INCIDENT T2D 

As seen in Figure 3-1, there were n=11,874 participants who met the 

inclusion/exclusion criteria for the incident T2D analysis.  Results are reported in tables 

3-14 through 3-16.  Including protein as a covariate in the regression models did not 

substantively change our results (data not shown). 
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3.4.3.1 Normoglycemic and Pre-Diabetic 

3.4.3.1.1 Fish/Shellfish Servings and Fish-Derived Omega-3 

As shown in tables 3-14 and 3-15, neither the whole food exposures (total 

seafood, total fish, omega-3 rich fish) nor the fish-derived omega-3 fatty acids DHA+EPA 

were significantly associated with incident T2D.  There was no evidence of effect 

modification by diabetes status (NGT and Pre-T2D). 

3.4.3.1.2 Vegetable-Derived Omega-3 PUFA (ALA) Intake 

As seen in Table 3-16, ALA intake was adversely associated with incident T2D.  

The population*exposure interaction was significant, likely because associations in NGT 

were strong (Model 3, Q4 vs. Q1, HR=4.0, 95% CI: 1.65, 9.64) and those in Pre-T2D were 

mostly null (Model 3, Q4 vs. Q1, HR=1.1, 95% CI: 0.75, 1.6). 

3.4.3.2 Incident T2D Race and Sex Effect 
Modifier Analyses 

There was no evidence of effect modification by race or sex in the incident T2D 

analyses. 

3.5 DISCUSSION 

In this population-based study of middle aged adults, our investigation of the 

relationship among seafood, omega-3 PUFA, and markers of glycemia is summarized in 

Table 3-18. 

Among those participants who were diabetic, we found consistent evidence that 

higher intake of fish and shellfish, the fish-derived omega-3 PUFAs DHA+EPA, and the 

vegetable derived omega-3 PUFA ALA was adversely associated with both FBG and 

HbA1c.  Moreover, there was evidence of effect modification, with adverse associations 

in blacks and females and non-significant favorable associations in whites and males – 

although the interaction terms often failed to reach statistical significance. 
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Among those participants who were not diabetic (NGT and Pre-T2D), we found 

that while intake of fish and shellfish and of the fish-derived omega-3 PUFA DHA+EPA 

was associated with lower values of FBG and HbA1c in those with NGT and Pre-T2D, 

these differences were quite small and of uncertain clinical relevance.  Furthermore, 

while intake of the vegetable-derived omega-3 PUFA ALA was not associated with FBG 

or HbA1c in those with NGT or Pre-T2D, intake of ALA was associated with higher risk of 

incident T2D. 

3.5.1 DIABETIC POPULATIONS 

3.5.1.1 Fish/Shellfish Servings and Fish-
Derived Omega-3 PUFA 
(DHA+EPA) Intake 

Our results for seafood intake and intake of fish-derived omega-3 PUFA in 

diabetics are consistent with other studies.  A recent systematic review and meta-

analysis evaluated the associations of DHA, EPA, and seafood with incident type 2 

diabetes (T2D) and found that consumption of fish-derived omega-3 PUFAs higher risk 

of T2D in Americans; although risk was reduced in Asians and Australians [86]. Another 

meta-analysis of cohort studies found that intake of fish and fish-derived omega-3 

PUFAs might be weakly positively associated with T2D, especially in American (versus 

Asian) populations [174]. 

There are data to support the biological plausibility of fish-derived omega-3 

PUFAs DHA and EPA adversely affecting glucose homeostasis in those with T2D. A 

previous study showed that diabetics who took a FDn3FA supplement had lower glucose 

utilization (insulin sensitivity) and increased glucagon-stimulated C-peptide [67]. In 

another trial, diabetic subjects taking fish oil supplements showed reduced hepatic 

gluconeogenesis [68].  Obese subjects with T2D who took fish oil supplements had 

increased uptake and oxidation of non-esterified fatty acids in the liver [69]. In another 

study of obese subjects with T2D, fish oil supplementation increased glycerol 
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gluconeogenesis, and the authors hypothesized it could cause the deterioration of 

glycemic control during long-term treatment with high doses of fish-oil supplements 

[69]. Finally, the associations may be due to contaminants in seafood.  Mouse models 

have shown that elevated blood mercury levels may interrupt insulin signaling 

pathways, and decrease plasma insulin and elevate blood glucose levels [70]. 

The relationship between fish and omega-3 PUFAs with FBG and HbA1c in those 

with T2D was similar but not exact.  While higher intakes of omega-3 PUFA (in quartiles) 

was associated with higher values of both FBG and HbA1c, the relationship across 

servings of seafood was less consistent (figures 3-15 and 3-16).  These differences may 

be an artifact of residual confounding by total energy intake as, consistent with other 

researchers, we did not apply the residual method to whole foods [175, 176], although 

we did adjust for total energy intake.  It may also be a result of protein in seafood, as 

protein has been found to be associated with T2D [172].  However, when we did a 

sensitivity analysis including total protein (grams/day) as a covariate, the measures of 

association did not appreciably change.  It could be that these differences offer insight 

into omega-3 PUFAs influence on biological pathways.  FBG is a marker for impaired 

fasting glucose (IFG) while HbA1c can be used to diagnose impaired glucose tolerance 

(IGT). The progression from NGT to IFG results from a decrease in insulin secretion 

followed by changes in hepatic insulin sensitivity. In contrast, progression from NGT to 

IGT is a consequence of low whole-body insulin sensitivity followed by beta cell 

compensation and exhaustion [177, 178].  The mechanism through which omega-3 

PUFA acts on FBG may be similar to the mechanism through which NGT transitions to 

IFG (decreases in insulin secretion and sensitivity) whereas the mechanism through 

which omega-3 PUFA acts on HbA1c may be similar to that of NGT to IGT (beta cell 

exhaustion).  Further studies may help determine if differences in association are due to 

bias, biological mechanism, or due to chance.  
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3.5.1.2 Effect Modification by Race and 
Sex in Type 2 Diabetics 
(Fish/Shellfish Servings) 

There was a significant interaction by sex for the associations of servings per 

week of total seafood (shellfish + total fish) with FBG, with females showing adverse 

associations and males non-significant favorable associations.  This finding was mirrored 

in the association of total fish intake with FBG and in the associations of HbA1c with 

total seafood and total fish, although none of these last three findings reached statistical 

significance. 

A recent meta-analysis found evidence of sex-specific differences of omega-3 

PUFAs effect insulin resistance, but the relationship was reversed with favorable results 

in women but not men [179]. Lack of consistency of our results with previous studies 

should make us cautious in the interpretation of the sex interaction found in the ARIC 

study. 

Results also suggested that there may be effect modification by race for servings 

per week of total fish and total seafood with FBG and HbA1c – while associations were 

null for whites and adverse for blacks, all interaction terms were non-significant.  

Regardless, this finding suggests that the relationship between dietary intake of 

fish/shellfish and glycemic control may differ by race or region.  Because data were not 

collected on food preparation methods, differences could be due to regional/cultural 

differences in food preparation. 

3.5.1.3 Vegetable-Derived Omega-3 
PUFA (ALA) Intake 

Previous studies have found null [180-182] or favorable associations with ALA 

intake and glycemic control in diabetics [183] or those glucose intolerance [184, 185].  

Our finding that ALA intake is associated with reductions in glycemic control in diabetics 

is novel.  A potential mechanism to explain our findings is that while ALA is not 
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efficiently converted to DHA and EPA – only 0.2-0.8% of ALA is converted to EPA and 0-

4% of ALA is converted to DHA [186] – this conversion could explain the adverse 

associations of ALA with glycemic control in diabetics.  There is also the potential for a 

Type 1 error given the number of analyses we performed. 

3.5.1.4 Limitations in Diabetic 
Population Sub-Studies  

The results in the diabetic populations should be interpreted with caution.  

Individuals with diabetes lack the feedback mechanisms that regulate insulin and 

glucose levels, and daily variance in glucose measures can be influenced by medication 

type and adherence, lifestyle habits like diet, exercise, sleep hygiene, and stress 

management, and clinician protocols.  We attempted to adjust for confounding by 

including physical activity and education level (proxy for socioeconomic status) in our 

regression models, but there may still be residual confounding.  Additionally, there is 

likely unmeasured confounding by sleep quality, stress level, provider-specific treatment 

plans, non-diabetic mediation use, diet quality, and other variables.   

FBG is also influenced by fasting status.  Among diabetics that met the FBG 

inclusion/exclusion criteria, self-reported 8-hour fasting compliance ranged from 86.2% 

(visit 3) to 91.2% (visit 2), with an overall average of 88.3%.  Self-reported 12-hour 

fasting compliance was similar, with a minimum of 81.2% compliance (visit 4) and a 

maximum of 85.6 (visit 2), with an overall average of 83.7%.  When we limited our 

analyses to those who reported fasting for at least 12 hours, results were not 

substantively different. 

We also could not account for intra-individual variability in glucose 

measurements, and studies have shown daily variation in FBG levels can be 15% or more 

[187].  Even if we were to assume that any single FBG measure falls within an 

individual’s range, and that the distribution of measurements in the lower, medium, and 



   60 

 

upper parts of individuals’ ranges were nondifferential across exposure categories, that 

quasi-misclassification could bias our estimates away from the null [188, 189]. 

Despite these limitations, our results for FBG and HbA1c were relatively 

consistent across exposures, with diabetics consuming greater amounts of omega-3 

PUFAs having higher FBG and HbA1c values than diabetics who consumed less.  We also 

performed sensitivity analyses where diabetic participants were stratified based on 

antihyperglycemic medication use.  Results in the subpopulations were not different 

than those found in the full diabetic population.  Further studies designed to address 

the limitations described could provide additional insight into the relationship between 

seafood and omega-3 PUFA intake and glycemic control in those with diabetes. 

3.5.2 NORMOGLYCEMIC AND PRE-DIABETIC 

POPULATIONS 

3.5.2.1 Fish/Shellfish Servings and Fish-
Derived Omega-3 PUFA 
(DHA+EPA) Intake 

While the effect of fish, shellfish, and DHA+EPA was favorable but modest in 

non-diabetics, this is consistent with other studies that have shown fish oil improves 

insulin secretion, resistance, and sensitivity in non-diabetics [190-192]. 

3.5.2.2 Vegetable-Derived Omega-3 
PUFA (ALA) Intake 

Our findings regarding ALA and incident T2D are novel.  With respect to its 

association with incident diabetes, previous meta-analysis studies have found that 

higher intake of ALA was not associated with incident T2D [85, 174] or that it was 

associated with reduced risk of T2D in Asian populations but not in Americans [86]. 

There is also the potential for a Type 1 error given the number of analyses we 

performed. 
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3.6 STRENGTHS AND LIMITATIONS 

This study has many strengths.  It is a population-based, biracial cohort of 

participants who were followed over several years with multiple measures of exposures, 

outcomes, and covariates.  Furthermore, we could study the same individuals over time 

as some moved among NGT, Pre-T2D, and T2D, provided they met our 

inclusion/exclusion criteria. Finally, we had multiple markers of glucose homeostasis.  

However, our study is not without limitations.  There are the limitations we 

listed in section 3.5.1.4 that are specific to our diabetes sub-population analyses.  

Furthermore, with dietary data, there is always the potential for misclassification bias.  

FFQs have been shown to underestimate total caloric intake when compared to doubly 

labeled water, and our dietary data were based on FFQ [193]. Additionally, data were 

not available on fish preparation technique. Analysis in the Cardiovascular Health Study 

have shown that fish preparation method differentially effects the association between 

fish-derived omega-3 PUFAs and CHD, with only intake of tuna and other baked or 

broiled fish associated with cardiovascular benefits, with no or deleterious associations 

for fried fish or fish sandwiches [8].  Fish preparation technique may also effect the 

relationship among seafood, fish-derived and vegetable-derived omega-3 PUFAs, and 

markers of glucose homeostasis.  A similar hypothesis was suggested by Muley et al. 

[86] – that different preparation methods may results in differential effects; and while 

that study was focused on country-specific differences, there are differences in 

preparation techniques among different regions of the United States as well.  Our FFQ 

rolled up fish into very broad categories – different types of fatty fish may have different 

composition of fish-derived omega-3 FA which may significantly alter the overall effect 

of fish. As previously mentioned, the range of seafood intake in the ARIC population was 

limited.  Finally, there is potential for unmeasured confounding. 
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3.7 CONCLUSION 

In summary, our results suggest that higher dietary intake of omega-3 fatty acids 

is associated with higher values of FBG and HbA1c amongst diabetics, and with greater 

risk of incident T2D amongst non-diabetics. 

  



   63 

 

3.8 FIGURES 

 

Figure 3-1. Inclusion Exclusion Criteria, ARIC, 1987-1998. 

 

Figure 3-2.  Outcome-specific study design depiction with variable temporality, ARIC, 1987-1998. 

  

Exclusion Criteria Visit 1 Visit 2 Visit 3 Visit 4

Cohort 15,792           15,792           15,792           15,792           

Not at Visit -                 1,444             2,905             4,136             

Race Criteria 103                91                   80                   69                   

Covariate Exclusions 1,042             888                2,238             2,248             

Prevalent CVD 1,443             962                845                1,963             

Outcome Exclusions 31                   67 14                   68

Final Visit N (FBG) 13,173           12,340           9,710             7,308             

HbA1c Outcome N Incident T2D Outcome N

Met FBG criteria @ Visit 1 13,173           Met FBG criteria @ Visit 1 13,173           

Not at Visit 2 833 Prevalent T2D 1,299             

No HbA1c value 765 Final Incident T2D Dataset 11,874          

Final HbA1c dataset 11,575          
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Figure 3-3. Associations among seafood types (servings/week) and FBG (mg/dL) in those with diabetes 
(Model 3), ARIC, 1987-1998. 

 

Figure 3-4. Associations among omega-3 PUFA (quartiles) and FBG (mg/dL) in those with diabetes 
(Model 3), ARIC, 1987-1998. 
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Figure 3-5. Sex modifies the associations between total seafood (servings/week) and FBG (mg/dL) in 
those with diabetes (Model 3), p for interaction = 0.01, ARIC, 1987-1998. 

 

Figure 3-6. Sex modifies the associations between total fish (servings/week) and FBG (mg/dL) in those 
with diabetes (Model 3), p for interaction = 0.26, ARIC, 1987-1998. 



   66 

 

 

Figure 3-7. Race modifies the associations between total seafood (servings/week) and FBG (mg/dL) in 
those with diabetes (Model 3), p for interaction = 0.20, ARIC, 1987-1998. 

 

Figure 3-8. Race modifies the associations between total fish (servings/week) and FBG (mg/dL) in those 
with diabetes (Model 3), p for interaction = 0.32, ARIC, 1987-1998. 
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Figure 3-9. Associations among seafood types (servings/week) and HbA1c in those with diabetes (Model 
3), ARIC, 1987-1993. 

 

Figure 3-10. Associations among omega-3 PUFA (quartiles) and HbA1c in those with diabetes (Model 3), 
ARIC, 1987-1993. 
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Figure 3-11. Sex modifies the associations between total seafood (servings/week) and HbA1c in those 
with diabetes (Model 3), p for interaction = 0.14, ARIC, 1987-1993. 

 

Figure 3-12. Sex modifies the associations between total fish (servings/week) and HbA1c in those with 
diabetes (Model 3), p for interaction = 0.40, ARIC, 1987-1993. 
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Figure 3-13. Race modifies the associations between total seafood (servings/week) and HbA1c in those 
with diabetes (Model 3), p for interaction = 0.75, ARIC, 1987-1993. 

 

Figure 3-14. Race modifies the associations between total fish (servings/week) and HbA1c in those with 
diabetes (Model 3), p for interaction = 0.60, ARIC, 1987-1993. 
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Figure 3-15. Deltas for FBG (mg/dL) and HbA1c (percentage points) across servings of total seafood, 
total fish, and total omega-3 rich fish in those with diabetes; fully adjusted model; ARIC, 1987-93 
(HbA1c), 1987-1998 (FBG). 

 

Figure 3-16. Deltas for FBG (mg/dL) and HbA1c (percentage points) across quartiles of ALA+DHA+EPA, 
DHA+EPA, and ALA in those with diabetes; fully adjusted model; ARIC, 1987-93 (HbA1c), 1987-1998 
(FBG). 
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3.9 TABLES 

Table 3-1. Baseline characteristics of ARIC participants (n=13,173) by weekly servings of seafood (total 
fish + shellfish), 1987–1989. Values correspond to mean (SD) or N (%) 

   Zero 
Svgs/Week 

Less Than 1 
Svgs/Week 

One to Two 
Svgs/Week 

Two or More 
Svgs/Week 

N   989 (7.5%) 1,624 (12.3%) 6,046 (45.9%) 4,514 (34.3%) 

Sociodemographic Covariates      
  Age (years) 54.7 (5.8) 54.0 (5.8) 53.9 (5.7) 53.8 (5.7) 

  Male 535 (54.1%) 762 (46.9%) 2,678 (44.3%) 1,785 (39.5%) 

  White 903 (91.3%) 1,419 (87.4%) 4,597 (76.0%) 2,951 (65.4%) 

  Education     
  Basic 272 (27.5%) 313 (19.3%) 1,338 (22.1%) 956 (21.2%) 

  Intermediate 440 (44.5%) 779 (48.0%) 2,529 (41.8%) 1,706 (37.8%) 

  Advanced 277 (28.0%) 532 (32.8%) 2,179 (36.0%) 1,852 (41.0%) 

Lifestyle Covariates      
  BMI (kg/m2) 26.7 (4.9) 26.8 (4.7) 27.3 (5.2) 28.0 (5.4) 

  Physical Activity^     
  Low 359 (36.3%) 578 (35.6%) 2,112 (34.9%) 1,418 (31.4%) 

  Medium 317 (32.1%) 551 (33.9%) 2,035 (33.7%) 1,514 (33.5%) 

  High 313 (31.6%) 495 (30.5%) 1,899 (31.4%) 1,582 (35.0%) 

  Current Smokers 273 (27.6%) 439 (27.0%) 1,562 (25.8%) 1,096 (24.3%) 

  Current Alcohol Drinkers 517 (52.3%) 991 (61.0%) 3,551 (58.7%) 2,523 (55.9%) 

Dietary Covariates      
  Total Energy Intake (kcal/day) 1,519 (610) 1,522 (582) 1,583 (579) 1,752 (621) 

  Cereal Fiber (grams/day) 3.4 (2.5) 3.3 (2.2) 3.4 (2.2) 3.8 (2.5) 

  Dietary Fiber (grams/day) 15.0 (8.2) 14.8 (6.8) 16.2 (7.3) 19.7 (8.8) 

  Saturated Fats (grams/day) 21.5 (10.6) 22.0 (10.8) 21.9 (10.5) 22.6 (10.6) 

  Trans Fats (grams/day) 3.0 (1.9) 3.0 (1.8) 3.0 (1.8) 2.9 (1.8) 

Clinical Covariates      
  Hypertension 989 (25.9%) 1,624 (27.1%) 6,046 (30.5%) 4,514 (34.0%) 

  
Systolic Blood Pressure, 
mmHg 120.0 (17.2) 119.6 (17.2) 120.6 (18.4) 121.3 (19.0) 

  
Diastolic Blood Pressure, 
mmHg 72.4 (10.4) 72.7 (10.8) 73.5 (11.0) 74.0 (11.4) 

  
High Density Lipoprotein 
Cholesterol, mg/dL 50.2 (15.7) 51.8 (16.7) 52.5 (16.9) 53.5 (17.3) 

  
Low Density Lipoprotein 
Cholesterol, mg/dL 137.5 (15.7) 135.5 (38.1) 136.9 (38.7) 138.0 (40.4) 

  Triglycerides, mg/dL 126.8 (63.8) 124.2 (64.7) 122.2 (62.7) 122.4 (64.1) 

*Svgs=Servings 
^Work+Leisure+Sport Averaged and Divided into Low/Medium/High 
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Table 3-2. Associations of seafood consumption (servings/week) with fasting blood glucose in participants who are normoglycemic, ARIC, 1987-1998. Mg/dL 
deltas and 95% confidence intervals from generalized estimating equations. 

  

Zero 
Servings/Week 

Less Than 1 
Servings/Week 

One to Two 
Servings/Week 

Two or More 
Servings/Week P Model  P Trend P Interaction 

Total Seafood Total N (all Visits) 1,809 3,015 9,400 6,349    

 FBG Mean (Std) 92.5 (5.3) 92.3 (5.5) 92.5 (5.2) 92.6 (5.3)    

 Model 1 0 (ref) -0.3 (-0.7, 0.1) -0.6 (-1.0, -0.2) -0.9 (-1.4, -0.5) 0.001 0.0004 0.003 

 Model 2 0 (ref) -0.3 (-0.7, 0.1) -0.6 (-1.0, -0.2) -1.1 (-1.7, -0.6) 0.0003 0.0001 0.003 

 Model 3 0 (ref) -0.3 (-0.7, 0.1) -0.6 (-1.0, -0.2) -1.1 (-1.6, -0.5) 0.001 0.0003 0.003 

Total Fish Total N (all Visits) 2,275 3,637 9,549 5,112    

 FBG Mean (Std) 92.5 (5.3) 92.4 (5.4) 92.4 (5.2) 92.6 (5.3)    

 Model 1 0 (ref) -0.3 (-0.6, 0.1) -0.7 (-1.1, -0.4) -1.0 (-1.5, -0.5) <.0001 <.0001 0.001 

 Model 2 0 (ref) -0.3 (-0.6, 0.1) -0.8 (-1.2, -0.4) -1.3 (-1.8, -0.7) <.0001 <.0001 0.001 

 Model 3 0 (ref) -0.2 (-0.6, 0.1) -0.7 (-1.1, -0.4) -1.2 (-1.7, -0.7) <.0001 <.0001 0.001 

Omega-3 Rich Fish Total N (all Visits) 4,562 5,525 7,506 2,980    

 FBG Mean (Std) 92.6 (5.3) 92.4 (5.3) 92.4 (5.3) 92.6 (5.3)    

 Model 1 0 (ref) -0.1 (-0.4, 0.2) -0.3 (-0.6, 0.0) -0.3 (-0.8, 0.1) 0.19 0.08 0.02 

 Model 2 0 (ref) -0.1 (-0.4, 0.2) -0.4 (-0.7, -0.1) -0.7 (-1.2, -0.2) 0.03 0.01 0.02 

 Model 3 0 (ref) 0.0 (-0.3, 0.3) -0.4 (-0.7, 0.0) -0.5 (-1.0, 0.0) 0.05 0.02 0.01 

FBG: fasting blood glucose 
Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides)  
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Table 3-3. Associations of fatty acid intake (in quartiles) with fasting blood glucose in participants who are normoglycemic, ARIC, 1987-1998. Mg/dL deltas 
and 95% confidence intervals from generalized estimating equations. 

  Q1 Q2 Q3 Q4 P Model  P Trend P Interaction 

ALA + DHA + EPA Total N (all Visits) 5,265 5,296 5,152 4,860    

 FBG Mean (Std) 92.5 (5.3) 92.5 (5.2) 92.5 (5.3) 92.4 (5.3)    

 Model 1 0 (ref) 0.0 (-0.3, 0.3) -0.3 (-0.6, 0.0) -0.6 (-0.9, -0.3) 0.0003 <.0001 <.0001 

 Model 2 0 (ref) -0.1 (-0.4, 0.2) -0.5 (-0.9, -0.2) -1.0 (-1.4, -0.5) <.0001 <.0001 <.0001 

 Model 3 0 (ref) 0.0 (-0.4, 0.3) -0.4 (-0.8, -0.1) -1.0 (-1.4, -0.5) <.0001 <.0001 <.0001 

DHA + EPA Total N (all Visits) 5,220 5,303 5,072 4,978    

 FBG Mean (Std) 92.7 (5.3) 92.4 (5.3) 92.4 (5.3) 92.5 (5.3)    

 Model 1 0 (ref) -0.5 (-0.9, -0.2) -0.9 (-1.2, -0.5) -1.1 (-1.5, -0.7) <.0001 <.0001 0.0002 

 Model 2 0 (ref) -0.6 (-0.9, -0.3) -1.0 (-1.3, -0.6) -1.4 (-1.8, -0.9) <.0001 <.0001 0.0002 

 Model 3 0 (ref) -0.6 (-0.9, -0.2) -1.0 (-1.3, -0.6) -1.3 (-1.7, -0.8) <.0001 <.0001 0.0001 

ALA Total N (all Visits) 5,311 5,330 5,032 4,900    

 FBG Mean (Std) 92.5 (5.4) 92.4 (5.3) 92.5 (5.2) 92.5 (5.3)    

 Model 1 0 (ref) -0.1 (-0.3, 0.2) 0.0 (-0.3, 0.3) 0.1 (-0.2, 0.3) 0.84 0.28 <.0001 

 Model 2 0 (ref) 0.0 (-0.4, 0.3) 0.0 (-0.4, 0.5) 0.1 (-0.5, 0.7) 0.87 0.56 <.0001 

 Model 3 0 (ref) -0.1 (-0.4, 0.3) 0.1 (-0.3, 0.5) 0.2 (-0.4, 0.8) 0.59 0.41 <.0001 

FBG: fasting blood glucose 
Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
  



   74 

 

Table 3-4. Associations of seafood consumption (servings/week) with fasting blood glucose in participants with pre-diabetes, ARIC, 1987-1998. Mg/dL 
deltas and 95% confidence intervals from generalized estimating equations. 

  

Zero 
Servings/Week 

Less Than 1 
Servings/Week 

One to Two 
Servings/Week 

Two or More 
Servings/Week P Model  P Trend P Interaction 

Total Seafood Total N (all Visits) 1,309 2,142 7,334 5,008    

 FBG Mean (Std) 107.6 (6.2) 107.9 (6.2) 108.0 (6.3) 107.9 (6.3)    

 Model 1 0 (ref) 0.2 (-0.2, 0.7) -0.2 (-0.7, 0.2) -0.8 (-1.3, -0.3) 0.0003 <.0001 0.003 

 Model 2 0 (ref) 0.3 (-0.2, 0.7) -0.3 (-0.7, 0.2) -1.0 (-1.6, -0.4) <.0001 <.0001 0.003 

 Model 3 0 (ref) 0.3 (-0.2, 0.7) -0.2 (-0.7, 0.3) -1.0 (-1.6, -0.4) 0.0001 <.0001 0.003 

Total Fish Total N (all Visits) 1,680 2,610 7,447 4,056    

 FBG Mean (Std) 107.8 (6.2) 107.9 (6.2) 108.0 (6.3) 107.9 (6.3)    

 Model 1 0 (ref) -0.1 (-0.5, 0.4) -0.5 (-1.0, -0.1) -1.1 (-1.6, -0.5) <.0001 <.0001 0.001 

 Model 2 0 (ref) -0.1 (-0.5, 0.4) -0.6 (-1.0, -0.2) -1.3 (-1.9, -0.7) <.0001 <.0001 0.001 

 Model 3 0 (ref) -0.1 (-0.5, 0.4) -0.6 (-1.0, -0.1) -1.3 (-1.9, -0.7) <.0001 <.0001 0.001 

Omega-3 Rich Fish Total N (all Visits) 3,585 4,116 5,849 2,243    

 FBG Mean (Std) 108.0 (6.3) 107.9 (6.2) 108.0 (6.3) 107.7 (6.2)    

 Model 1 0 (ref) 0.1 (-0.3, 0.4) -0.1 (-0.5, 0.2) -0.5 (-0.9, 0.0) 0.20 0.04 0.02 

 Model 2 0 (ref) 0.0 (-0.3, 0.4) -0.3 (-0.6, 0.1) -0.8 (-1.3, -0.3) 0.03 0.002 0.02 

 Model 3 0 (ref) 0.1 (-0.3, 0.4) -0.2 (-0.6, 0.1) -0.8 (-1.3, -0.3) 0.02 0.003 0.01 

FBG: fasting blood glucose 
Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides)  
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Table 3-5. Associations of fatty acid intake (in quartiles) with fasting blood glucose in those with pre-diabetes, ARIC, 1987-1998. Mg/dL deltas and 95% 
confidence intervals from generalized estimating equations. 

  Q1 Q2 Q3 Q4 P Model  P Trend P Interaction 

ALA + DHA + EPA Total N (all Visits) 4,198 3,926 3,830 3,839    

 FBG Mean (Std) 107.9 (6.3) 107.8 (6.1) 108.0 (6.3) 108.0 (6.3)    

 Model 1 0 (ref) -0.3 (-0.6, 0.1) -0.2 (-0.6, 0.1) -0.6 (-1.0, -0.2) 0.0004 <.0001 <.0001 

 Model 2 0 (ref) -0.5 (-0.8, -0.1) -0.5 (-1.0, -0.1) -1.1 (-1.6, -0.6) <.0001 <.0001 <.0001 

 Model 3 0 (ref) -0.4 (-0.8, 0.0) -0.4 (-0.9, 0.0) -1.0 (-1.5, -0.5) <.0001 <.0001 <.0001 

DHA + EPA Total N (all Visits) 4,071 3,985 3,886 3,851    

 FBG Mean (Std) 107.9 (6.2) 107.9 (6.3) 107.9 (6.2) 107.9 (6.3)    

 Model 1 0 (ref) -0.3 (-0.7, 0.1) -0.8 (-1.2, -0.3) -1.0 (-1.5, -0.6) <.0001 <.0001 0.0002 

 Model 2 0 (ref) -0.4 (-0.7, 0.0) -0.9 (-1.4, -0.5) -1.3 (-1.8, -0.8) <.0001 <.0001 0.0002 

 Model 3 0 (ref) -0.3 (-0.7, 0.1) -0.9 (-1.3, -0.4) -1.3 (-1.8, -0.8) <.0001 <.0001 0.0001 

ALA Total N (all Visits) 4,128 3,993 3,855 3,817    

 FBG Mean (Std) 108.0 (6.3) 107.7 (6.2) 108.0 (6.3) 107.9 (6.2)    

 Model 1 0 (ref) -0.4 (-0.7, 0.0) -0.1 (-0.5, 0.2) -0.1 (-0.5, 0.2) 0.45 0.56 <.0001 

 Model 2 0 (ref) -0.4 (-0.8, 0.0) -0.2 (-0.7, 0.3) -0.1 (-0.8, 0.5) 0.34 0.51 <.0001 

 Model 3 0 (ref) -0.4 (-0.8, 0.0) -0.1 (-0.6, 0.4) 0.0 (-0.6, 0.6) 0.31 0.63 <.0001 

FBG: fasting blood glucose 
Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 3-6. Associations of seafood consumption (servings/week) with fasting blood glucose in those with diabetes, ARIC, 1987-1998. Mg/dL deltas and 95% 
confidence intervals from generalized estimating equations. 

  

Zero 
Servings/Week 

Less Than 1 
Servings/Week 

One to Two 
Servings/Week 

Two or More 
Servings/Week P Model  P Trend P Interaction 

Total Seafood Total N (all Visits) 334 535 2,158 1,756    

 FBG Mean (Std) 174.8 (71.7) 176.5 (72.5) 185.0 (76.0) 190.7 (79.4)    

 Model 1 0 (ref) 1.4 (-10.1, 12.8) 9.4 (-0.5, 19.3) 14.6 (4.3, 24.8) <.0001 <.0001 0.003 

 Model 2 0 (ref) 1.3 (-10.1, 12.7) 9.3 (-0.6, 19.2) 14.3 (4.0, 24.5) <.0001 <.0001 0.003 

 Model 3 0 (ref) 1.5 (-9.9, 12.9) 9.2 (-0.7, 19.1) 14.2 (4.0, 24.5) <.0001 <.0001 0.003 

Total Fish Total N (all Visits) 406 644 2,250 1,483    

 FBG Mean (Std) 173.9 (71.1) 176.9 (72.0) 185.8 (76.8) 191.8 (79.5)    

 Model 1 0 (ref) 2.5 (-7.5, 12.6) 10.8 (1.8, 19.8) 16.5 (6.9, 26.0) <.0001 <.0001 0.001 

 Model 2 0 (ref) 2.5 (-7.5, 12.5) 10.7 (1.7, 19.7) 16.1 (6.6, 25.6) <.0001 <.0001 0.001 

 Model 3 0 (ref) 2.5 (-7.4, 12.5) 10.6 (1.6, 19.6) 16.1 (6.5, 25.6) <.0001 <.0001 0.001 

Omega-3 Rich Fish Total N (all Visits) 992 1,130 1,878 783    

 FBG Mean (Std) 180.7 (77.5) 179.9 (73.1) 189.8 (77.8) 189.1 (77.9)    

 Model 1 0 (ref) -0.5 (-7.8, 6.8) 9.3 (2.2, 16.5) 8.6 (-0.1, 17.3) 0.01 0.03 0.02 

 Model 2 0 (ref) -0.7 (-7.9, 6.6) 9.0 (1.9, 16.2) 8.0 (-0.7, 16.7) 0.002 0.003 0.02 

 Model 3 0 (ref) -0.8 (-8.1, 6.4) 8.8 (1.7, 16.0) 7.8 (-0.9, 16.5) 0.003 0.01 0.01 

FBG: fasting blood glucose 
Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides)  
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Table 3-7. Associations of fatty acid intake (in quartiles) with fasting blood glucose in those with diabetes, ARIC, 1987-1998. Mg/dL deltas and 95% 
confidence intervals from generalized estimating equations. 

  Q1 Q2 Q3 Q4 P Model  P Trend P Interaction 

ALA + DHA + EPA Total N (all Visits) 856 1,086 1,351 1,490    

 FBG Mean (Std) 169.2 (68.4) 182.9 (77.8) 188.3 (76.3) 194.1 (79.4)    

 Model 1 0 (ref) 13.1 (5.7, 20.5) 18.3 (11.2, 25.4) 23.9 (16.9, 31.0) <.0001 <.0001 <.0001 

 Model 2 0 (ref) 12.9 (5.5, 20.3) 18.0 (10.9, 25.1) 23.4 (16.4, 30.5) <.0001 <.0001 <.0001 

 Model 3 0 (ref) 12.7 (5.4, 20.1) 17.9 (10.8, 25.0) 23.4 (16.3, 30.4) <.0001 <.0001 <.0001 

DHA + EPA Total N (all Visits) 971 1,056 1,320 1,436    

 FBG Mean (Std) 173.8 (69.7) 186.3 (77.8) 186.1 (78.3) 192.1 (78.4)    

 Model 1 0 (ref) 11.7 (4.4, 19.1) 11.1 (4.0, 18.3) 16.9 (9.7, 24.1) <.0001 <.0001 0.0002 

 Model 2 0 (ref) 11.7 (4.4, 19.0) 11.1 (3.9, 18.3) 16.5 (9.4, 23.7) <.0001 <.0001 0.0002 

 Model 3 0 (ref) 11.7 (4.3, 19.0) 11.0 (3.8, 18.1) 16.5 (9.4, 23.7) <.0001 <.0001 0.0001 

ALA Total N (all Visits) 909 1,031 1,368 1,475    

 FBG Mean (Std) 171.5 (69.6) 184.0 (76.9) 191.2 (79.2) 189.8 (77.7)    

 Model 1 0 (ref) 12.3 (4.9, 19.7) 19.2 (12.2, 26.2) 17.9 (11.0, 24.8) <.0001 <.0001 <.0001 

 Model 2 0 (ref) 12.4 (5.0, 19.8) 19.3 (12.3, 26.3) 18.0 (11.0, 24.9) <.0001 <.0001 <.0001 

 Model 3 0 (ref) 12.4 (5.0, 19.8) 19.2 (12.2, 26.2) 18.1 (11.2, 25.0) <.0001 <.0001 <.0001 

FBG: fasting blood glucose 
Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 3-8. Associations of seafood consumption (servings/week) with HbA1c in participants who are normoglycemic, ARIC, 1987-1993. Percentage point 
deltas and 95% confidence intervals. 

  

Zero 
Servings/Week 

Less Than 1 
Servings/Week 

One to Two 
Servings/Week 

Two or More 
Servings/Week P Model  P Trend P Interaction 

Total Seafood Total N 495 792 2,862 2,116    

 HbA1c Mean (Std) 5.4 (0.5) 5.3 (0.5) 5.4 (0.4) 5.4 (0.5)    

 Model 1 0 (ref) 0.0 (-0.1, 0.1) -0.1 (-0.2, 0.0) -0.1 (-0.2, 0.0) 0.07 0.0244 0.002 

 Model 2 0 (ref) 0.0 (-0.1, 0.1) -0.1 (-0.2, 0.0) -0.1 (-0.2, 0.0) 0.07 0.02 0.005 

 Model 3 0 (ref) 0.0 (-0.1, 0.1) -0.1 (-0.2, 0.0) -0.1 (-0.2, 0.0) 0.07 0.0155 0.005 

Total Fish Total N 614 999 2,927 1,725    

 HbA1c Mean (Std) 5.4 (0.5) 5.3 (0.5) 5.4 (0.5) 5.4 (0.5)    

 Model 1 0 (ref) 0.0 (-0.1, 0.1) -0.1 (-0.1, 0.0) -0.1 (-0.2, 0.0) 0.08 0.02 <.0001 

 Model 2 0 (ref) 0.0 (-0.1, 0.1) -0.1 (-0.1, 0.0) -0.1 (-0.2, 0.0) 0.06 0.01 <.0001 

 Model 3 0 (ref) 0.0 (-0.1, 0.1) -0.1 (-0.1, 0.0) -0.1 (-0.2, 0.0) 0.06 0.01 <.0001 

Omega-3 Rich Fish Total N 1,309 1,601 2,347 1,008    

 HbA1c Mean (Std) 5.4 (0.5) 5.4 (0.4) 5.4 (0.5) 5.4 (0.4)    

 Model 1 0 (ref) 0.0 (-0.1, 0.0) 0.0 (-0.1, 0.0) -0.1 (-0.1, 0.0) 0.36 0.10 <.0001 

 Model 2 0 (ref) 0.0 (-0.1, 0.0) 0.0 (-0.1, 0.0) -0.1 (-0.1, 0.0) 0.31 0.07 <.0001 

 Model 3 0 (ref) 0.0 (-0.1, 0.0) 0.0 (-0.1, 0.0) -0.1 (-0.1, 0.0) 0.33 0.08 <.0001 

Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 3-9. Associations of fatty acid intake (in quartiles) with HbA1c in participants who are normoglycemic, ARIC, 1987-1993. Percentage point deltas and 
95% confidence intervals. 

  Q1 Q2 Q3 Q4 P Model  P Trend P Interaction 

ALA + DHA + EPA Total N 1,570 1,614 1,564 1,517    

 HbA1c Mean (Std) 5.3 (0.4) 5.4 (0.4) 5.4 (0.4) 5.4 (0.5)    

 Model 1 0 (ref) 0.0 (0.0, 0.1) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.84 0.60 <.0001 

 Model 2 0 (ref) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.0) -0.1 (-0.1, 0.0) 0.31 0.06 <.0001 

 Model 3 0 (ref) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.0) -0.1 (-0.1, 0.0) 0.31 0.06 <.0001 

DHA + EPA Total N 1,600 1,584 1,547 1,534    

 HbA1c Mean (Std) 5.4 (0.5) 5.4 (0.4) 5.4 (0.5) 5.4 (0.4)    

 Model 1 0 (ref) -0.1 (-0.1, 0.0) -0.1 (-0.1, 0.0) -0.1 (-0.2, 0.0) 0.04 0.02 <.0001 

 Model 2 0 (ref) -0.1 (-0.1, 0.0) -0.1 (-0.1, 0.0) -0.1 (-0.2, 0.0) 0.03 0.01 <.0001 

 Model 3 0 (ref) -0.1 (-0.1, 0.0) -0.1 (-0.1, 0.0) -0.1 (-0.2, 0.0) 0.03 0.01 <.0001 

ALA Total N 1,562 1,633 1,547 1,523    

 HbA1c Mean (Std) 5.3 (0.4) 5.4 (0.4) 5.4 (0.4) 5.4 (0.6)    

 Model 1 0 (ref) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.1 (0.0, 0.1) 0.28 0.09 <.0001 

 Model 2 0 (ref) 0.0 (-0.1, 0.0) 0.0 (-0.1, 0.0) 0.0 (-0.1, 0.1) 0.62 0.66 <.0001 

 Model 3 0 (ref) 0.0 (-0.1, 0.0) 0.0 (-0.1, 0.0) 0.0 (-0.1, 0.1) 0.60 0.67 <.0001 

Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides)  
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Table 3-10. Associations of seafood consumption (servings/week) with HbA1c in participants with pre-diabetes, ARIC, 1987-1993. Percentage point deltas 
and 95% confidence intervals. 

  

Zero 
Servings/Week 

Less Than 1 
Servings/Week 

One to Two 
Servings/Week 

Two or More 
Servings/Week P Model  P Trend P Interaction 

Total Seafood Total N 313 531 2,039 1,426    

 HbA1c Mean (Std) 5.6 (0.6) 5.5 (0.5) 5.7 (0.7) 5.7 (0.8)    

 Model 1 0 (ref) -0.1 (-0.2, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.13 0.07 0.002 

 Model 2 0 (ref) -0.1 (-0.2, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.16 0.06 0.005 

 Model 3 0 (ref) -0.1 (-0.2, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.15 0.05 0.005 

Total Fish Total N 409 663 2,051 1,186    

 HbA1c Mean (Std) 5.6 (0.6) 5.6 (0.6) 5.7 (0.7) 5.7 (0.8)    

 Model 1 0 (ref) -0.1 (-0.2, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.21 0.07 <.0001 

 Model 2 0 (ref) -0.1 (-0.2, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.17 0.05 <.0001 

 Model 3 0 (ref) -0.1 (-0.2, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.17 0.05 <.0001 

Omega-3 Rich Fish Total N 945 1,104 1,582 678    

 HbA1c Mean (Std) 5.6 (0.6) 5.6 (0.5) 5.7 (0.8) 5.7 (0.9)    

 Model 1 0 (ref) -0.1 (-0.1, 0.0) 0.0 (0.0, 0.1) 0.0 (-0.1, 0.1) 0.10 0.09 <.0001 

 Model 2 0 (ref) -0.1 (-0.1, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.14 0.10 <.0001 

 Model 3 0 (ref) -0.1 (-0.1, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.15 0.10 <.0001 

Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 3-11. Associations of fatty acid intake (in quartiles) with HbA1c in those with pre-diabetes, ARIC, 1987-1993. Percentage point deltas and 95% 
confidence intervals. 

  Q1 Q2 Q3 Q4 P Model  P Trend P Interaction 

ALA + DHA + EPA Total N 1,180 1,052 1,051 1,026    

 HbA1c Mean (Std) 5.6 (0.6) 5.6 (0.6) 5.7 (0.8) 5.7 (0.8)    

 Model 1 0 (ref) 0.0 (-0.1, 0.1) 0.1 (0.0, 0.1) 0.1 (0.0, 0.1) 0.42 0.15 <.0001 

 Model 2 0 (ref) 0.0 (-0.1, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.48 0.15 <.0001 

 Model 3 0 (ref) 0.0 (-0.1, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.51 0.14 <.0001 

DHA + EPA Total N 1,109 1,108 1,054 1,038    

 HbA1c Mean (Std) 5.6 (0.6) 5.6 (0.5) 5.7 (0.9) 5.7 (0.8)    

 Model 1 0 (ref) -0.1 (-0.1, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.12 0.06 <.0001 

 Model 2 0 (ref) 0.0 (-0.1, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.10 0.04 <.0001 

 Model 3 0 (ref) 0.0 (-0.1, 0.0) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.11 0.04 <.0001 

ALA Total N 1,168 1,087 1,032 1,022    

 HbA1c Mean (Std) 5.6 (0.7) 5.6 (0.6) 5.7 (0.8) 5.7 (0.8)    

 Model 1 0 (ref) 0.0 (-0.1, 0.1) 0.1 (0.0, 0.1) 0.1 (0.0, 0.2) 0.02 0.004 <.0001 

 Model 2 0 (ref) 0.0 (-0.1, 0.0) 0.0 (0.0, 0.1) 0.0 (0.0, 0.1) 0.32 0.42 <.0001 

 Model 3 0 (ref) 0.0 (-0.1, 0.0) 0.0 (0.0, 0.1) 0.0 (0.0, 0.1) 0.29 0.38 <.0001 

Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 3-12. Associations of seafood consumption (servings/week) with HbA1c in those with diabetes, ARIC, 1987-1993. Percentage point deltas and 95% 
confidence intervals. 

  

Zero 
Servings/Week 

Less Than 1 
Servings/Week 

One to Two 
Servings/Week 

Two or More 
Servings/Week P Model  P Trend P Interaction 

Total Seafood Total N 57 101 449 394    

 HbA1c Mean (Std) 8.4 (2.5) 8.2 (2.6) 8.5 (2.4) 8.7 (2.5)    

 Model 1 0 (ref) -0.2 (-0.5, 0.1) 0.1 (-0.2, 0.3) 0.1 (-0.1, 0.4) 0.001 0.001 0.002 

 Model 2 0 (ref) -0.2 (-0.5, 0.0) 0.0 (-0.2, 0.3) 0.1 (-0.1, 0.4) 0.002 0.002 0.005 

 Model 3 0 (ref) -0.2 (-0.5, 0.0) 0.0 (-0.2, 0.3) 0.1 (-0.1, 0.4) 0.002 0.001 0.005 

Total Fish Total N 69 118 473 341    

 HbA1c Mean (Std) 8.3 (2.4) 8.1 (2.5) 8.5 (2.5) 8.7 (2.5)    

 Model 1 0 (ref) -0.2 (-0.4, 0.1) 0.1 (-0.1, 0.3) 0.3 (0.1, 0.5) <.0001 <.0001 <.0001 

 Model 2 0 (ref) -0.1 (-0.4, 0.1) 0.1 (-0.1, 0.3) 0.3 (0.1, 0.5) <.0001 <.0001 <.0001 

 Model 3 0 (ref) -0.1 (-0.4, 0.1) 0.1 (-0.1, 0.3) 0.3 (0.1, 0.5) <.0001 <.0001 <.0001 

Omega-3 Rich Fish Total N 186 230 414 171    

 HbA1c Mean (Std) 8.6 (2.5) 8.3 (2.4) 8.7 (2.5) 8.5 (2.4)    

 Model 1 0 (ref) -0.3 (-0.4, -0.1) 0.1 (0.0, 0.3) 0.0 (-0.2, 0.2) <.0001 0.20 <.0001 

 Model 2 0 (ref) -0.3 (-0.5, -0.1) 0.1 (-0.1, 0.2) -0.1 (-0.3, 0.1) <.0001 0.20 <.0001 

 Model 3 0 (ref) -0.3 (-0.5, -0.1) 0.1 (-0.1, 0.2) -0.1 (-0.3, 0.1) <.0001 0.21 <.0001 

Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 3-13. Associations of fatty acid intake (in quartiles) with HbA1c in those with diabetes, ARIC, 1987-1993. Percentage Point deltas and 95% confidence 
intervals. 

  Q1 Q2 Q3 Q4 P Model  P Trend P Interaction 

ALA + DHA + EPA Total N 155 222 295 329    

 HbA1c Mean (Std) 7.6 (2.3) 8.4 (2.5) 8.8 (2.5) 8.8 (2.4)    

 Model 1 0 (ref) 0.8 (0.6, 1.0) 1.1 (0.9, 1.3) 1.1 (0.9, 1.3) <.0001 <.0001 <.0001 

 Model 2 0 (ref) 0.7 (0.6, 0.9) 1.1 (0.9, 1.3) 1.1 (0.9, 1.2) <.0001 <.0001 <.0001 

 Model 3 0 (ref) 0.7 (0.6, 0.9) 1.1 (0.9, 1.2) 1.1 (0.9, 1.2) <.0001 <.0001 <.0001 

DHA + EPA Total N 176 232 284 309    

 HbA1c Mean (Std) 8.1 (2.4) 8.4 (2.5) 8.6 (2.5) 8.8 (2.4)    

 Model 1 0 (ref) 0.2 (0.0, 0.4) 0.3 (0.2, 0.5) 0.5 (0.4, 0.7) <.0001 <.0001 <.0001 

 Model 2 0 (ref) 0.2 (0.0, 0.4) 0.3 (0.2, 0.5) 0.5 (0.3, 0.7) <.0001 <.0001 <.0001 

 Model 3 0 (ref) 0.2 (0.0, 0.4) 0.3 (0.2, 0.5) 0.5 (0.3, 0.7) <.0001 <.0001 <.0001 

ALA Total N 168 212 302 319    

 HbA1c Mean (Std) 7.7 (2.3) 8.4 (2.6) 8.9 (2.5) 8.7 (2.4)    

 Model 1 0 (ref) 0.6 (0.4, 0.8) 1.0 (0.9, 1.2) 0.9 (0.7, 1.1) <.0001 <.0001 <.0001 

 Model 2 0 (ref) 0.6 (0.4, 0.8) 1.0 (0.9, 1.2) 0.9 (0.7, 1.0) <.0001 <.0001 <.0001 

 Model 3 0 (ref) 0.6 (0.4, 0.8) 1.0 (0.9, 1.2) 0.9 (0.7, 1.0) <.0001 <.0001 <.0001 

Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 3-14. Associations of seafood consumption (servings/week) with incident T2D in non-diabetics, ARIC, 1987-1998. Hazard Ratios and 95% confidence 
intervals. 

  

Zero 
Servings/Week 

Less Than 1 
Servings/Week 

One to Two 
Servings/Week 

Two or More 
Servings/Week P Model  P Trend P Interaction 

Total Seafood Total N 907 1,486 5,478 4,003    

 Incident T2D N (%) 69 (7.6%) 113 (7.6%) 468 (8.5%) 372 (9.3%)    

 Model 1 1 (ref) 0.9 (0.6, 1.5) 1.0 (0.7, 1.5) 0.9 (0.6, 1.4) 0.89 0.96 0.30 

 Model 2 1 (ref) 0.9 (0.5, 1.3) 1.0 (0.6, 1.4) 0.9 (0.6, 1.4) 0.88 0.70 0.30 

 Model 3 1 (ref) 0.9 (0.5, 1.3) 1.0 (0.7, 1.4) 0.9 (0.6, 1.4) 0.86 0.69 0.33 

Total Fish Total N 980 1,562 3,892 1,940    

 Incident T2D N (%) 90 126 400 244    

 Model 1 1 (ref) 1.0 (0.6, 1.4) 1.0 (0.7, 1.5) 1.0 (0.7, 1.6) 0.94 0.70 0.18 

 Model 2 1 (ref) 0.9 (0.6, 1.3) 1.0 (0.7, 1.5) 1.1 (0.7, 1.6) 0.80 0.47 0.16 

 Model 3 1 (ref) 0.9 (0.6, 1.3) 1.0 (0.7, 1.5) 1.0 (0.7, 1.5) 0.79 0.60 0.17 

Omega-3 Rich Fish Total N 1,933 2,304 3,047 1,090    

 Incident T2D N (%) 184 216 331 129    

 Model 1 1 (ref) 1.1 (0.8, 1.5) 1.0 (0.8, 1.3) 1.0 (0.7, 1.5) 0.85 1.00 0.63 

 Model 2 1 (ref) 1.2 (0.9, 1.6) 1.0 (0.8, 1.4) 1.1 (0.7, 1.6) 0.74 0.88 0.54 

 Model 3 1 (ref) 1.2 (0.9, 1.6) 1.0 (0.8, 1.4) 1.0 (0.7, 1.5) 0.79 0.97 0.57 

T2D: type 2 diabetes 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 3-15. Associations of fatty acid intake (in quartiles) with incident T2D in non-diabetics, ARIC, 1987-1998. Hazard Ratios and 95% confidence intervals. 

  Q1 Q2 Q3 Q4 P Model  P Trend P Interaction 

DHA + EPA Total N 2,125 2,098 2,102 2,049    

 Incident T2D N (%) 214 (10.1%) 179 (8.5%) 229 (10.9%) 238 (11.6%)    

 Model 1 1 (ref) 0.9 (0.7, 1.2) 1.0 (0.7, 1.3) 0.9 (0.6, 1.2) 0.80 0.51 0.60 

 Model 2 1 (ref) 0.9 (0.7, 1.2) 1.0 (0.7, 1.3) 0.9 (0.7, 1.2) 0.89 0.71 0.54 

 Model 3 1 (ref) 0.9 (0.7, 1.3) 1.0 (0.7, 1.3) 0.9 (0.7, 1.3) 0.94 0.67 0.55 

T2D: type 2 diabetes 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 

 

  



   86 

 

Table 3-16. Associations of fatty acid intake (in quartiles) with incident T2D among normoglycemic participants, ARIC, 1987-1998. Hazard Ratios and 95% 
confidence intervals. 

  
Q1 Q2 Q3 Q4 P Model  P Trend P Interaction 

ALA + DHA + EPA Total N 1,291 1,293 1,269 1,190    

 Incident T2D N (%) 37 (2.9%) 30 (2.3%) 46 (3.6%) 58 (4.9%)    

 Model 1 1 (ref) 1.0 (0.4, 2.6) 1.5 (0.7, 3.6) 2.1 (1.0, 4.8) 0.17 0.03 0.10 

 Model 2 1 (ref) 1.0 (0.4, 2.6) 1.6 (0.7, 3.7) 2.3 (1.0, 5.2) 0.12 0.02 0.06 
 Model 3 1 (ref) 1.1 (0.4, 2.8) 1.7 (0.7, 4.0) 2.4 (1.1, 5.4) 0.10 0.02 0.05 

ALA Total N 1,297 1,335 1,247 1,164    

 Incident T2D N (%) 35 (2.7%) 35 (2.6%) 50 (4.0%) 51 (4.4%)    

 Model 1 1 (ref) 1.8 (0.7, 4.7) 1.6 (0.6, 4.2) 3.4 (1.4, 7.9) 0.02 0.004 0.01 

 Model 2 1 (ref) 2.0 (0.8, 5.1) 1.7 (0.6, 4.5) 3.8 (1.6, 9.1) 0.01 0.002 0.01 

 Model 3 1 (ref) 2.0 (0.8, 5.2) 1.8 (0.6, 4.8) 4.0 (1.6, 9.6) 0.01 0.001 0.01 

T2D: type 2 diabetes 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 3-17. Associations of fatty acid intake (in quartiles) with incident T2D among participants with pre-diabetes, ARIC, 1987-1998. Hazard Ratios and 95% 
confidence intervals. 

  Q1 Q2 Q3 Q4 P Model  P Trend P Interaction 

ALA + DHA + EPA Total N 868 807 847 809    

 Incident T2D N (%) 156 (18.0%) 152 (18.8%) 199 (23.5%) 182 (22.5%)    

 Model 1 1 (ref) 1.0 (0.7, 1.4) 1.2 (0.9, 1.7) 0.9 (0.6, 1.2) 0.17 0.08 0.10 

 Model 2 1 (ref) 1.0 (0.7, 1.3) 1.3 (0.9, 1.8) 0.9 (0.6, 1.2) 0.12 0.05 0.06 
 Model 3 1 (ref) 1.0 (0.7, 1.4) 1.3 (0.9, 1.8) 0.9 (0.6, 1.2) 0.10 0.04 0.05 

ALA Total N 844 831 817 839    

 Incident T2D N (%) 162 (19.2%) 152 (18.3%) 193 (23.6%) 182 (21.7%)    

 Model 1 1 (ref) 0.9 (0.6, 1.2) 1.4 (1.1, 1.9) 1.0 (0.7, 1.4) 0.02 0.01 0.01 

 Model 2 1 (ref) 0.8 (0.6, 1.2) 1.4 (1.0, 2.0) 1.1 (0.7, 1.6) 0.01 0.01 0.01 

 Model 3 1 (ref) 0.9 (0.6, 1.2) 1.5 (1.0, 2.0) 1.1 (0.7, 1.6) 0.01 0.004 0.01 

T2D: type 2 diabetes 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
P Interaction: Significance of the exposure*glycemia population term 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 3-18. Summary of results for fish/shellfish consumption (servings/week), DHA+EPA, and ALA with glycemia outcomes in normoglycemic, pre-diabetic, 
and diabetic populations, ARIC, 1987-1998. 

 

Normoglycemic and Pre-
Diabetic 

Diabetic 
Effect Modification in 
Diabetic Population 

FBG HbA1c 
Incident 

T2D 
FBG HbA1c 

Black vs. 
White 

Females 
vs. Males 

Fish/Shellfish Favorable Null Null Adverse Adverse 

n.s. 
Adverse 
(blacks) 

n.s. 
Favorable 
(whites) 

Adverse 
(females) 

n.s. 
Favorable 

(males) 

DHA+EPA Favorable 

Favorable 
(NGT) 

n.s. 
Favorable 
(Pre-T2D) 

Null Adverse Adverse None None 

ALA Null Null 
Adverse 
(moreso 
in NGT) 

Adverse Adverse None None 

NGT: normoglycemic 
FBG: fasting blood glucose 
T2D: type 2 diabetes 
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4 MANUSCRIPT 2: INTAKE OF OMEGA-3 POLYUNSATURATED 

FATTY ACIDS AND ELECTROCARDIOGRAPHIC PREDICTORS 

OF SUDDEN CARDIAC DEATH IN THE ATHEROSCLEROSIS 

RISK IN COMMUNITIES (ARIC) STUDY 

4.1 SYNOPSIS 

Background: Intake of omega-3 polyunsaturated fatty acids (PUFAs) has been associated 

with lower incidence of sudden cardiac death (SCD).  ECG predictors of SCD include 

prolonged QT interval and elevation of the QRS-ST junction or J-point elevation, and 

these may be markers of the mechanism underlying the association observed by intake 

of omega-3 PUFAs.  

Methods: We studied the association of consumption of seafood, fish-derived omega-3 

PUFAs (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), and vegetable-

derived omega-3 PUFAs (alpha-linoleic acid (ALA)) with J-point height and heart rate-

corrected QT (QTc) interval in individuals initially aged 45–64 from the Atherosclerosis 

Risk in Communities (ARIC) cohort (n = 12,611). Intake of seafood, DHA, EPA, and ALA 

were measured via food frequency questionnaire. QTc interval, and J-point height were 

measured using ECGs obtained during study visits.  Generalized estimating equations 

were used to estimate odds ratios of prolonged QTc and J-point elevation and 

differences in continuous measures of QTc interval duration and J-point height by 

servings/week of seafood and quartiles of omega-3 PUFAs or by fish intake. 

Results: The 12,611 participants contributed exposure/outcome data for a mean of 3.0 

visits between 1987 and 1998.  In multivariable analyses, higher intakes of 

ALA+DHA+EPA and ALA were associated with a shorter QTc interval (-0.8 ms, 95% CI -

1.5, -0.2 and -1.0 ms, 95% CI -1.7, -0.3 comparing the top to the bottom quartile of 

ALA+DHA+EPA and ALA alone intake, respectively). The other exposures (DHA+EPA, 
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total fish + shellfish, total fish, and omega-3 rich fish) were not associated with QTc 

internal.  None of the exposures were associated with the other outcomes examined 

(prolonged QTc, J-point elevation, J-point height). 

Conclusions: Results from this population-based cohort provided limited evidence that 

omega-3 fatty acids are associated with prolonged QT interval, J-point height, or J-point 

elevation after controlling for potential confounders. 

4.2 INTRODUCTION 

Findings from observational and experimental trials indicate that individuals who 

regularly consume fish high in omega-3 polyunsaturated fatty acids (PUFAs) have lower 

incidence of sudden cardiac death (SCD) compared to those who consume no or little 

fish [46, 51, 194, 195], but the exact mechanisms underlying this association are 

unconfirmed. Alpha linoleic acid (ALA), a vegetable-derived omega-3 PUFA, has also 

been shown to be inversely associated with SCD [196]. 

Two ECG-measured variables associated with a higher risk of SCD are presence of 

prolonged QT interval and J-point elevation (JPE) [96-99, 142]. In an ECG, the QT interval 

represents electrical depolarization and repolarization of the left and right ventricles 

and the J-point – the junction of the QRS complex and the ST segment – marks the end 

of depolarization and the beginning of repolarization [100, 101]. A prolonged QT interval 

is indicative of abnormally prolonged repolarization and is associated with SCD [96, 97]. 

Additionally, early repolarization characterized by an elevation of the J-point has been 

associated with idiopathic ventricular fibrillation and SCD [98, 99]. 

There have been a limited number of studies evaluating whether omega-3 PUFAs 

are associated with repolarization abnormalities – prolonged repolarization (prolonged 

QT interval) [104-107] and early repolarization (JPE) [104]. With respect to prolonged QT 

interval, intake of the fish-derived omega-3 PUFAs docosahexaenoic acid (DHA) and 

eicosapentanoic acid (EPA) have been shown to be associated with shorter QT intervals 
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in Greek adults [107] and predominately white Americans aged >65 years [106]. A study 

of white, middle-aged American adults found higher intakes of the vegetable-derived 

omega-3 PUFA ALA were associated with lower risk of prolonged QT [104]. With respect 

to JPE, a study of Japanese men found that higher intake of the fish-derived omega-3 

PUFA DHA and EPA attenuated the association between JPE and cardiac death [105].  To 

our knowledge, no studies have investigated the association of ALA with JPE. 

Although omega-3 PUFAs are inversely associated with SCD, and prolonged QT 

interval and JPE are positively associated with SCD, further details regarding the 

association between omega-3 PUFAs, QT interval, and JPE in a biracial cohort of middle-

aged American populations may help elucidate the mechanisms relating omega-3 fatty 

acid consumptions and SCD. Thus, this study investigates whether consumption of 

seafood, the fish-derived omega-3 PUFAs DHA and EPA, and the vegetable-derived 

omega-3 PUFA ALA are associated with heart rate-corrected QT interval (QTc) or the 

height of the QRS-ST junction (J-point) in the Atherosclerosis Risk in Communities (ARIC) 

study. We hypothesize that higher dietary intake of fish, DHA, EPA, and ALA will be 

associated with shorter QTc intervals and lower J-points. 

4.3 METHODS 

4.3.1 STUDY POPULATION 

The ARIC study has been described previously [155]. Briefly, ARIC is a prospective 

study of cardiovascular disease including 15,792 men and women 45–64 years of age at 

baseline (visit 1). Participants were recruited from four US communities using 

probability sampling techniques. The communities and racial composition were: 

predominately white subjects from suburbs of Minneapolis, Minnesota, and Washington 

County, Maryland; black subjects from Jackson, Mississippi; and white and black 

subjects from Forsyth County, North Carolina. 
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Visit 1 data were collected in 1987–89 and three additional exams were 

performed at approximately 3-year intervals (1990–92, 1993–95, 1996–98). A fifth exam 

was conducted in 2011-13 (visit 5), but those data were not utilized in this study as 

outcomes would have occurred more than 20 years after our exposure assessment. 

Our exclusion criteria were as follows (Figure 4-1).  We excluded participants 

with missing values for exposures, outcomes (missing ECG data), or covariates.  Those 

whose race was neither black nor white (n = 48) were excluded, and we further 

excluded black participants at the Minneapolis and Washington County sites (n = 55) 

due to small n.  We excluded those participants who had prevalent or incident coronary 

heart disease, heart failure, or stroke as (1) prevalent conditions influence how patients 

have their comorbidities managed, diagnosed and treated; and (2) diagnoses may result 

in changes to previously reported dietary behaviors.  We excluded participants who self-

reported use of antiarrhythmic medications and those whose duration of the QRS 

complex was ≥120 ms, as those individuals have major conduction defects that make 

the interpretation of primary repolarization abnormalities inappropriate [197].  Finally, 

participants who reported implausible caloric intakes were excluded for potentially 

unreliable exposure data. Implausible was defined as less than 500 kcal/day for women 

and 700 kcal/day for men or more than 3500 kcal/day for women and 4500 kcal/day for 

men.  These ranges represent the sex-specific first and 99th percentiles for ARIC energy 

intake distributions – see Tell et al. for the initial description of the exclusion 

methodology and justification [156] and Steffen et al. for first use of current ranges 

[157]. 

4.3.2 OUTCOME ASSESSMENT 

At each visit, a standard, resting, supine 12-lead ECG was obtained for each 

subject a minimum of 1 hour after any smoking or caffeine ingestion using MAC PC 

personal cardiography equipment (Marquette Electronics, Inc., Milwaukee, WI). 
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Subsequent processing of the ECGs took place at EPICARE (Epidemiological Cardiology 

Research Center at Wake Forest University, Winston-Salem, NC, USA).  Outcomes of 

interest were assigned using these ECG data where the participant met the 

inclusion/exclusion criteria. 

4.3.2.1 QTc Interval 

We used a heart rate-corrected QT interval (QTc) – as recommended by the AHA, 

the American College of Cardiology, and the Heart Rhythm Society for the 

Standardization and Interpretation of the Electrocardiogram [138].  The most 

appropriate formula for correction is the one resulting in the least amount of correlation 

between heart rate and the calculated rate-corrected QT [139].  We tested Framingham 

[140] and Hodges [141] and found that the Framingham formula had the least 

correlation with heart rate in our study population (r= -0.23 and r=-0.38, respectively). 

In addition to the continuous measure of QT interval, we defined prolonged QT as QTc 

values of 460 ms or longer in women and 450 ms or longer in men [138]. 

4.3.2.2  J-Point Elevation 

We calculated a continuous measure of the J-point as the maximum amplitude 

of the 12 STJ leads. As has been done in other ARIC studies, JPE was defined as a ST 

amplitude greater than 100 microvolts in at least two contiguous leads [142]. 

4.3.3 EXPOSURE ASSESSMENT 

In this study, we focused on dietary consumption of fish and shellfish, the fish-

derived omega-3 fatty acids DHA and EPA, and the vegetable-derived ALA. 

Participants’ usual dietary intake was assessed by an interviewer-administered, 

66-item food frequency questionnaire (FFQ). The FFQ was based on the instrument 

developed by Willett et al. [167], with three principal modifications: (1) Data regarding 
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alcohol consumption were obtained using a separate, more detailed instrument; (2) 

Several food items were added (e.g., donuts, biscuits, and cornbread); and (3) Some 

items were split into detailed subcategories – notably a single item on fish consumption 

was separated into three specific fish items. 

The 61-item Willett version has been validated against 28-day food record, but 

the validation took place in a population of educated, predominately white women 

[124, 167]. The ARIC questionnaire was also validated in a sample (n=419) of black and 

white ARIC participants who repeated the FFQ after three years [125]. The study found 

that, after adjusting for total caloric intake, the median reliability coefficient for blacks 

was 0.42 and the reliability for white ARIC participants was 0.49 – a value similar to that 

of other studies of white subjects.  The study found no difference in the median 

reliability coefficients of men and women after adjusting for total calorie intake. 

Another study investigated the validity of the ARIC FFQ by comparing Minnesota 

field center participants’ dietary fat FFQ data against their plasma fatty acid 

concentrations [126].  Plasma measures reflect the types of fats proportionally 

consumed over the past several weeks to months [127] and the proportionate 

composition in plasma was moderately correlated with dietary intake, with highest 

correlations in the fish-derived omega-3 fatty acids DHA and EPA (r=0.42 and r=0.20 for 

plasma phospholipid measures of DHA and EPA, respectively) [126]. 

4.3.3.1 Fish/Shellfish Servings 

Fish and other seafood intake was assessed through four FFQ questions with 

nine response categories. Participants were asked how often they consumed: 3–4 

ounces of canned tuna fish; 3–5 ounces of dark meat fish such as salmon, mackerel, 

swordfish, sardines, and bluefish; 3–5 ounces of other fish such as cod, perch, catfish, 

etc.; and shrimp, lobster, scallops as a main dish. Interviewers used food models to help 
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participants with portion size estimation. Subjects could provide answers to each 

question ranging from ‘‘never or less than once per month’’ to ‘‘6 times per day.’’  

Each of the participants’ seafood-related FFQ responses were grouped into three 

exposure categories: (1) omega-3 rich fish (tuna + dark); (2) total fish (tuna + dark + 

other); and (3) total seafood (tuna + dark + other + shellfish). Exposure categories were 

categorized into four weekly serving categories: none, less than one, one to two, and 

more than two. 

4.3.3.2 Quartiles of Omega-3 PUFA 

Daily intake of macro- and micronutrients was calculated via the FFQ by 

multiplying the nutrient content of each food by the frequency of daily consumption 

and then summing the results [124]. This process yielded daily intake of nutrients 

expressed as grams per day. Three different classifications of omega-3 fatty acids were 

investigated: (1) vegetable-derived ALA, (2) fish-derived DHA+EPA; and (3) total omega-

3 PUFA ALA+DHA+EPA. 

Intake of nutrients was adjusted using the residual method [168, 169]. In this 

method, nutrient residuals (observed intake – predicted intake) are obtained from the 

regression of total nutrient intake on total energy intake.  The nutrient residuals are 

then rescaled by adding the overall mean nutrient intake to each participant’s residual.  

For this manuscript, we created rescaled residuals for the three nutrient classifications – 

ALA, DHA+EPA, and ALA+DHA+EPA – and categorized each into quartiles.   

We selected the residual method rather than the standard multivariable method 

(quartiles of raw nutrient values as the exposure with total energy intake as a covariate) 

because (1) with the residual method, differences in exposure values amongst 

participants are due to differences in nutrient intake from the nutrient composition of 

the diet (versus overall variation in nutrient intake, which is due to diet composition and 

calorie amount) [169]; (2) when dietary exposure variables are categorized, the residual 
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and the standard multivariable models are no longer mathematically equivalent [168-

170]; and (3) the residual model allows for greater precision [168].  All regression 

models where residual-adjusted nutrients were the exposure of interest included total 

energy intake (kcal/day) as a covariate. 

4.3.4 POTENTIAL CONFOUNDERS  

We selected potential confounders a priori based on their hypothesized 

relationship with exposure and outcome.  While most variables were measured at 

multiple visits, potential confounders were measured contemporaneously with 

exposure values (visits 1 and 3) to avoid adjusting for confounders measured after our 

exposure of interest [143]. Potential confounders were grouped into four main 

categories: sociodemographic, lifestyle, dietary, and clinical variables. 

4.3.4.1 Sociodemographic Variables  

Sociodemographic variables included age, sex, race, field center, and education 

level.  Age, sex, self-reported race, and center were obtained at visit 1 and confirmed at 

subsequent visits. Education level was measured at visit 1 via self-report and 

categorized based on years of education. We grouped education level as basic (no high 

school degree), intermediate (completed high school), and advanced (at least some 

college). 

4.3.4.2 Lifestyle Variables  

Lifestyle variables included body mass index (BMI), physical activity, smoking 

status, and drinking status and amount. Technicians measured height and weight, and 

BMI was calculated as weight (kilograms) divided by height squared (meters2). Physical 

activity was measured at visits 1 and 3 using the Baecke questionnaire [144]. The 

questionnaire included 16 items about usual exertion, and three indexes ranging from 1 
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(low) to 5 (high) were derived for physical activity at work, during leisure time, and in 

sports. The reliability and validity of the Baecke questionnaire are good for both male 

and female subjects, and equal to many other physical activity instruments [145]. The 

three physical activity scores were summed and then translated into tertiles of physical 

activity (low, medium, and high). Smoking status was assessed via self-report and 

participants classified as current smokers, former smokers, and never smokers. Alcohol 

intake status (current, former, never) and amount (grams/day) were measured at visits 

1 and 3. 

4.3.4.3 Dietary Variables  

Dietary variables included trans fatty acids, saturated fatty acids, and dietary 

fiber. Intake of trans fatty acids, saturated fatty acids, and dietary fiber were measured 

at visits 1 and 3 via FFQ and translated into nutrient values as described in the exposure 

section (Section 4.3.3). 

4.3.4.4 Clinical Variables  

Clinical variables included hypertension, LDL, HDL, and triglycerides. During each 

visit, three blood pressure measurements were taken with a random-zero 

sphygmomanometer and the mean of the last two measurements was used.  

Hypertension was defined as a systolic blood pressure above 140 mmHg, a diastolic 

above 90 mmHg, or self-reported use of antihypertensive medication.  Participants with 

missing hypertension values (n=62 visit 1; n=56 visit 3) were imputed as not having 

hypertension (no disease).  For metrics requiring phlebotomy, blood was drawn after a 

minimum 8-hour fasting period with minimal trauma from an antecubital vein [146]. 

Plasma total cholesterol and triglycerides were measured by enzymatic methods [132], 

and LDL cholesterol was calculated using the Friedewald formula [147]. HDL cholesterol 

was measured after dextran-magnesium precipitation of non-HDL lipoproteins [132]. 
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4.3.5 STUDY DESIGN 

Figure 4-2 depicts the study design for all three outcomes of interest including 

the temporality of the exposure and outcomes.  The blue arrow gives the timeline for 

each of the ARIC visits.  The green ovals represent exposures and covariates obtained at 

visit 1 and visit 3.  As mentioned in the potential confounder section (Section 4.3.4), visit 

1 values were used in regressions involving outcomes obtained at visit 1 and visit 2, 

whereas visit 3 values were used for outcomes obtained at visits 3 and 4.  The green 

oval shapes represent that participants’ outcomes and inclusion/exclusion criteria 

updated at each of the four ARIC visits (where applicable).  The pink box lists the 

inclusion/exclusion criteria, and demonstrates the consistency across all four visits. 

As depicted in the Figure 4-2, we used a quasi-repeated cross-sectional design 

where each participant who met the inclusion/exclusion criteria at visit 1 could be 

included in the analysis up to four times (once at visit 1 and again for each subsequent 

visit where he/she met that visit’s inclusion/exclusion criteria).  Outcome data were 

obtained from each visit meeting the inclusion/exclusion criteria.  As previously 

mentioned, exposure and confounder values from visit 1 were used in observations for 

visits 1 and 2, and observations for visits 3 and 4 used exposure and covariate values 

from visit 3.   

4.3.6 STATISTICAL ANALYSES 

To evaluate the associations of fish/shellfish servings and quartiles of omega-3 

PUFA intake with continuous outcomes (QTc, J-point height), we used generalized 

estimating equations to account for repeated measures, using a normal distribution and 

an identity link.  Associations with dichotomous outcomes (prolonged QTc, JPE) were 

estimated using generalized estimating equations, with a binomial distribution, a logit 

link.  All analyses assumed an independent working correlation structure.  A sensitivity 

analysis was conducted evaluating the impact of assuming an unstructured working 
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correlation structure and this modification did not appreciably alter our results.  Finally, 

we tested for a linear trend across categories of intake by modeling the category 

medians as a continuous variable. 

All statistical analyses were performed with SAS (version 9.4, Enterprise guide 

7.1, SAS Institute Inc., Cary, NC, USA). 

4.3.6.1 Covariate Adjustment Models  

Three models were used to adjust for potential confounders measured 

contemporaneously with exposure values: Model 1 adjusted for sociodemographic 

variables (age, sex, race, center, education); Model 2 further adjusted for lifestyle 

variables (BMI, physical activity, smoking status, drinking status and amount) and 

dietary variables (trans fatty acids, saturated fatty acids, and dietary fiber); Model 3 

further adjusted for clinical variables (hypertension, HDL, LDL, triglycerides).  All models 

included total energy intake (kcal/day) as a covariate. 

4.4 RESULTS 

During the first four ARIC visits (1987-1998), the 12,611 participants contributed 

exposure/outcome data for a mean of 3.0 visits (range 1-4, standard deviation 1.1) 

generating 38,345 observations. J-point elevation was identified in 2,071 ECGs among 

1,205 (9.6%) participants, while prolonged QTc was measured in 558 ECGs among 452 

(3.6%) participants.  Baseline characteristics of the 12,611 eligible participants by 

categories of total seafood intake (total fish + shellfish) are shown in Table 4-1. 

The greatest proportion of participants (46%) consumed one to two servings of 

seafood per week, while only 8% reported no seafood consumption at all. Those who 

consumed more seafood tended to be younger, female, and were more educated. 

Additionally, there was a greater proportion of black participants at higher levels of total 

seafood consumption compared to lower levels. Clinically, cardiovascular risk profiles 
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varied across seafood categories. Prevalence of hypertension was higher with greater 

seafood consumption, as was average BMI; smoking rates were lower with greater 

seafood consumption.  

4.4.1 ASSOCIATIONS WITH QTC RELATED 

OUTCOMES 

4.4.1.1 Prolonged QTc 

4.4.1.1.1 Fish/Shellfish Servings 

Overall, fish intake was not associated with prolonged QTc (Table 4-2). The fully 

adjusted multivariable odds ratio of prolonged QTc in those consuming >2 servings 

seafood/week was 1.1 (95% CI: 0.74, 1.60) when compared to those who did not 

consume any seafood (p for trend = 0.71). Results were similar for total fish (OR=1.0, 

95% CI: 0.73, 1.50) and omega-3 rich fish (OR=1.2, 95% CI: 0.86, 1.65), comparing >2 

servings/week to no intake in the fully adjusted model. 

4.4.1.1.2 Omega-3 PUFA Intake 

Intake of ALA+DHA+EPA was not associated with prolonged QTc interval.  The 

fully adjusted multivariable odds ratio of prolonged QTc in those in the highest quartile 

of ALA+DHA+EPA was 0.9 (95% CI: 0.67, 1.17).  Results were similar when considering 

DHA+EPA (Model 3 OR=1.0; 95% CI: 0.74, 1.33) and ALA (Model 3 OR=0.7; 95% CI: 0.54, 

1.02) separately. See Table 4-3 for detailed results. 

4.4.1.2 QTc Interval 

4.4.1.2.1 Fish/Shellfish Servings 

Higher total seafood intake was associated with shorter mean QTc interval, 

though this association was not statistically significant (Model 3 highest vs. lowest 
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intake: -0.7 ms, 95% CI: -1.59, 0.16 comparing highest versus lowest category, p for 

trend = 0.07). Neither total fish nor omega-3 rich fish was associated with QTc interval 

(Table 4-4). 

4.4.1.2.2 Omega-3 PUFAs Intake 

QTc interval was shorter in individuals with higher intake of ALA+DHA+EPA, with 

0.8 ms shorter QTc in the top versus bottom quartiles (Model 3: 95% CI: -1.51, -0.22, p 

for trend = 0.01) (Table 4-5). This association was mostly due to an association between 

ALA intake and QTc duration. Individuals in the highest quartile of ALA intake had a 1 ms 

shorter QTc compared to the lowest in the fully adjusted models (95% CI: -1.73, -0.30, p 

for trend = 0.01). No association was observed between DHA+EPA intake and QTc 

duration. 

4.4.2 ASSOCIATIONS WITH J-POINT RELATED 

OUTCOMES 

4.4.2.1 J-Point Elevation 

4.4.2.1.1 Fish/Shellfish Servings 

Overall, consumption of total seafood, total fish, or omega-3 rich fish was not 

associated with the odds of JPE.  Total seafood and total fish each had their highest 

point estimates in the “less than one serving/week” category (Total Seafood Model 3 

OR= 1.2, 95% CI: 0.89, 1.53; Total Fish Model 3 OR= 1.1, 95% CI: 0.89, 1.44), but overall 

the association was null (Table 4-6). 

4.4.2.1.2 Omega-3 PUFA Intake 

As with fish/shellfish intake, intake of ALA+DHA+EPA was not associated with JPE 

(Model 3, Q4 vs. Q1 OR= 1.0, 95% CI: 0.86, 1.24).  Results were similar when considering 

DHA+EPA (fish-derived) and ALA (vegetable derived) separately (Table 4-7). 
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4.4.2.2 J-Point Height 

Consistent with the analysis for presence of J-point elevation, neither 

fish/shellfish consumption, nor omega-3 fatty acid intake (all, fish-derived, or vegetable-

derived) were associated with J-point height (tables 4-8 and 4-9). 

4.5 DISCUSSION 

In this population-based study of middle-aged adults, our investigation of the 

relationship among seafood, omega-3 PUFA, and ECG predictors of SCD suggested that 

higher total omega-3 fatty acid intake, particularly from the vegetable-derived ALA, was 

associated with shorter QTc interval and lower odds of prolonged QTc in multivariable 

adjusted models.  All other analyses were null. 

4.5.1 QTC INTERVAL 

Our null findings regarding the association of fish and fish-derived PUFA with QTc 

did not replicate the results of previous studies, but there were differences in 

population attributes.  While intake of fish-derived omega-3 PUFAs was shown to be 

associated with shorter QT intervals in Greek adults [107] and predominately white 

Americans aged >65 years [106], the ARIC study included black participants whereas the 

other two did not. Also, while intake of seafood and fish-derived omega-3 PUFAs was 

similar in the two studies, the U.S. study participants were significantly older at baseline 

compared to ARIC participants (65 versus 45 years) [106]. 

Our finding that ALA is favorably associated with QTc is similar to a study of 

white, middle aged adults in the U.S. that found higher intakes of ALA were associated 

with lower risk of prolonged QT [104].  The authors posited many biological mechanisms 

through which ALA could affect arrhythmias including modification of the eicosanoid 

system and modulation of L-type calcium channels in the sarcolemma of cardiac 

myocytes [104].   
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4.5.2 J-POINT ELEVATION AND J-POINT HEIGHT 

We did not find any significant association between seafood intake and 

measures of J-point height or JPE.  Nor did we find any significant associations with 

omega-3 fatty acids as the exposure of interest.  In a single study that investigated 

middle-aged Japanese men, the authors found a relationship between omega-3 PUFAs 

and J-point elevation [105]. It is possible that the Japanese study was better powered to 

detect an association as it had a much higher consumption of seafood compared to the 

ARIC population (half of the Japanese subjects had fish-derived omega-3 fatty acid 

intake ≥0.35% of total energy intake compared to ≥0.12% in ARIC participants). 

In spite of the lack of strong and consistent epidemiological evidence, there is 

biological plausibility for an effect. Studies suggest that fish-derived PUFAs could have 

anti-arrhythmic effects, thus reducing SCD risk. Specifically, fish-derived omega-3 PUFAs 

may inhibit the fast, voltage-dependent sodium current and the L-type calcium currents 

[102, 103] that allow pre-SCD arrhythmias to be sustained [46].  

4.6 STRENGTHS AND LIMITATIONS 

This study has many strengths.  It is a population-based, biracial cohort of 

participants who were followed over several years with multiple measures of exposures, 

outcomes, and covariates.  However, our study is not without limitations. With dietary 

data, there is always the potential for misclassification bias.  FFQs have been shown to 

work reasonably well at ranking subjects’ food intake.  While absolute values may not 

be reflective of actual intake, they are reflective of intake relative to other study 

participants [169, 198].  FFQs have also been shown to underestimate total caloric 

intake when compared to doubly labeled water [193].  Additionally, data were not 

available on fish preparation technique. Analysis in the Cardiovascular Health Study has 

shown that fish preparation method differentially affects the association between fish-

derived omeag-3 PUFAs and CHD, with only intake of tuna and other baked or broiled 
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fish associated with cardiovascular benefits, but no or deleterious associations for fried 

fish or fish sandwiches [8]. Also, as previously mentioned, the range of seafood intake in 

the ARIC population was limited, and this inhibits our ability to find associations that 

exist at higher intake levels.  Finally, as with all observational epidemiology studies, 

there is potential for unmeasured confounding.  While we attempted to adjust for 

confounders in our analysis, there may be common causes of fish intake and ECG results 

that we have missed or mis-measured. 

4.7 CONCLUSION 

In summary, our results suggest that higher dietary intake of omega-3 fatty 

acids, particularly of vegetable-derived ALA, is associated with favorable differences in 

QT measures but not J-point height.  However, given the number of statistical tests 

carried out, our finding regarding QTc may be due to type I error.  Additional studies in 

different populations are needed to substantiate our results. 
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4.8 FIGURES 

 

Figure 4-1. Flowchart of inclusion/exclusion criteria, ARIC, 1987-1998 
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Figure 4-2. Study design depiction with variable temporality, ARIC, 1987-1998 
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4.9 TABLES 

Table 4-1. Baseline characteristics of ARIC participants (n=12,611) by weekly servings of seafood 
consumption (tuna, dark meat fish, other fish, and shellfish), 1987–1989. Values correspond to mean 
(SD) or N (%) 

  
  

Zero 
Svgs/Week 

Less Than 1 
Svgs/Week 

One to Two 
Svgs/Week 

Two or More 
Svgs/Week 

N   945 (7.5%) 1,560 (12.4%) 5,791 (45.9%) 4,315 (34.2%) 

Sociodemographic Covariates 
 

      

  Age (years) 54.6 (5.8) 53.9 (5.8) 53.9 (5.7) 53.8 (5.7) 

  Male 502 (53.1%) 718 (46.0%) 2,531 (43.7%) 1,706 (39.5%) 

  White 864 (91.4%) 1,362 (87.3%) 4,399 (76.0%) 2,825 (65.5%) 

  Education         

  Basic 259 (27.4%) 300 (19.2%) 1,279 (22.1%) 903 (20.9%) 

  Intermediate 423 (44.8%) 749 (48.0%) 2,418 (41.8%) 1,646 (38.1%) 

  Advanced 263 (27.8%) 511 (32.8%) 2,094 (36.2%) 1,766 (40.9%) 

Lifestyle Covariates 
 

      

  BMI (kg/m2) 26.8 (4.9) 26.8 (4.7) 27.3 (5.2) 27.9 (5.4) 

  Physical Activity^         

  Low 342 (36.2%) 558 (35.8%) 2,022 (34.9%) 1,344 (31.1%) 

  Medium 302 (32.0%) 527 (33.8%) 1,963 (33.9%) 1,455 (33.7%) 

  High 301 (31.9%) 475 (30.4%) 1,806 (31.2%) 1,516 (35.1%) 

  Current Smokers 260 (27.5%) 429 (27.5%) 1,499 (25.9%) 1,056 (24.5%) 

  Current Alcohol Drinkers 498 (52.7%) 953 (61.1%) 3,405 (58.8%) 2,420 (56.1%) 

Dietary Covariates 
 

      

  
Total Energy Intake 
(kcal/day) 1,512 (609) 1,521 (579) 1,580 (577) 1,749 (620) 

  Cereal Fiber (grams/day) 3.4 (2.5) 3.3 (2.2) 3.4 (2.2) 3.8 (2.5) 

  
Dietary Fiber 
(grams/day) 15.0 (8.1) 14.7 (6.7) 16.2 (7.3) 19.7 (8.8) 

  
Saturated Fats 
(grams/day) 21.4 (10.6) 21.9 (10.7) 21.8 (10.4) 22.5 (10.6) 

  Trans Fats (grams/day) 3.0 (1.9) 3.0 (1.8) 2.9 (1.8) 2.9 (1.8) 

Clinical Covariates 
 

      

  Hypertension 945 (25.6%) 1,560 (26.8%) 5,791 (30.3%) 4,315 (33.7%) 

  
Systolic Blood Pressure, 
mmHg 120.1 (17.2) 119.4 (17.3) 120.5 (18.5) 121.2 (18.9) 

  
Diastolic Blood Pressure, 
mmHg 72.4 (10.4) 72.7 (10.8) 73.5 (11.1) 73.9 (11.3) 

  
High Density Lipoprotein 
Cholesterol, mg/dL 50.3 (15.8) 51.8 (16.7) 52.6 (17.0) 53.5 (17.3) 

  
Low Density Lipoprotein 
Cholesterol, mg/dL 137.6 (15.8) 135.3 (38.4) 136.6 (38.7) 137.8 (40.3) 

  Triglycerides, mg/dL 126.8 (63.7) 124.0 (64.6) 121.7 (62.4) 122.2 (63.8) 

*Svgs=Servings 
^Work+Leisure+Sport Averaged and Divided into Low/Medium/High  
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Table 4-2. Associations of seafood consumption (in servings/week) with prolonged QTc in ARIC participants (n=12,611), 1987-1998. Odds ratios and 95% 
confidence intervals from generalized estimating equations. 

  

Zero 
Servings/Week 

Less Than 1 
Servings/Week 

One to Two 
Servings/Week 

Two or More 
Servings/Week P Model  P Trend 

Total Seafood N 3,213 5,355 17,574 12,203   

 Prol QTc n (%) 40 (1.2%) 85 (1.6%) 251 (1.4%) 182 (1.5%)   

 Model 1 1.0 (ref) 1.3 (0.9, 2.0) 1.1 (0.8, 1.6) 1.2 (0.8, 1.7) 0.62 0.95 

 Model 2 1.0 (ref) 1.3 (0.9, 1.9) 1.1 (0.8, 1.6) 1.1 (0.7, 1.6) 0.63 0.70 

 Model 3 1.0 (ref) 1.3 (0.9, 1.9) 1.1 (0.8, 1.6) 1.1 (0.7, 1.6) 0.64 0.71 

Total Fish N 4,070 6,436 17,926 9,913   

 Prol QTc n (%) 54 (1.3%) 106 (1.6%) 239 (1.3%) 159 (1.6%)   

 Model 1 1.0 (ref) 1.3 (0.9, 1.8) 1.0 (0.7, 1.3) 1.1 (0.8, 1.6) 0.21 0.80 

 Model 2 1.0 (ref) 1.2 (0.9, 1.8) 0.9 (0.7, 1.3) 1.1 (0.7, 1.5) 0.21 0.98 

 Model 3 1.0 (ref) 1.2 (0.9, 1.8) 0.9 (0.7, 1.3) 1.0 (0.7, 1.5) 0.21 0.96 

Omega-3 Rich Fish N 8,524 10,018 14,208 5,595   

 Prol QTc n (%) 116 (1.4%) 141 (1.4%) 206 (1.4%) 95 (1.7%)   

 Model 1 1.0 (ref) 1.1 (0.8, 1.4) 1.1 (0.8, 1.4) 1.2 (0.9, 1.7) 0.63 0.18 

 Model 2 1.0 (ref) 1.0 (0.8, 1.4) 1.0 (0.8, 1.3) 1.2 (0.9, 1.7) 0.75 0.28 

 Model 3 1.0 (ref) 1.0 (0.8, 1.4) 1.0 (0.8, 1.3) 1.2 (0.9, 1.7) 0.74 0.28 

Prol QTc: Prolonged QTc 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 4-3. Associations of fatty acid intake (in quartiles) with prevalence of prolonged QTc in ARIC participants (n=12,611), 1987-1998. Odds ratios and 95% 
confidence intervals from generalized estimating equations. 

  Q1 Q2 Q3 Q4 P Model  P Trend 

ALA + DHA + EPA N 9,701 9,795 9,459 9,390   

 Prol QTc n (%) 137 (1.4%) 141 (1.4%) 126 (1.3%) 154 (1.6%)   

 Model 1 1.0 (ref) 1.0 (0.7, 1.3) 0.8 (0.6, 1.0) 1.0 (0.7, 1.2) 0.17 0.57 

 Model 2 1.0 (ref) 0.9 (0.7, 1.2) 0.7 (0.5, 1.0) 0.9 (0.7, 1.2) 0.12 0.35 

 Model 3 1.0 (ref) 0.9 (0.7, 1.2) 0.7 (0.5, 1.0) 0.9 (0.7, 1.2) 0.13 0.32 

DHA + EPA N 10,372 9,007 9,514 9,452   

 Prol QTc n (%) 138 (1.3%) 133 (1.5%) 128 (1.3%) 159 (1.7%)   

 Model 1 1.0 (ref) 1.0 (0.8, 1.4) 0.9 (0.7, 1.2) 1.0 (0.8, 1.4) 0.71 0.79 

 Model 2 1.0 (ref) 1.0 (0.8, 1.3) 0.9 (0.7, 1.2) 1.0 (0.7, 1.3) 0.66 0.97 

 Model 3 1.0 (ref) 1.0 (0.8, 1.3) 0.9 (0.7, 1.1) 1.0 (0.7, 1.3) 0.64 0.97 

ALA N 9,872 9,566 9,615 9,292   

 Prol QTc n (%) 144 (1.5%) 136 (1.4%) 146 (1.5%) 132 (1.4%)   

 Model 1 1.0 (ref) 0.8 (0.6, 1.0) 0.8 (0.6, 1.1) 0.8 (0.6, 1.1) 0.23 0.27 

 Model 2 1.0 (ref) 0.7 (0.6, 1.0) 0.8 (0.6, 1.0) 0.8 (0.5, 1.0) 0.14 0.12 

 Model 3 1.0 (ref) 0.7 (0.6, 1.0) 0.8 (0.6, 1.0) 0.7 (0.5, 1.0) 0.12 0.10 

Prol QTc: Prolonged QTc 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, LDL, HDL, triglycerides) 
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Table 4-4. Associations of seafood consumption (in servings/week) with QTc interval (in milliseconds) in ARIC participants (n=12,611), 1987-1998. 
Millisecond deltas and 95% confidence intervals from generalized estimating equations. 

  

Zero 
Servings/Week 

Less Than 1 
Servings/Week 

One to Two 
Servings/Week 

Two or More 
Servings/Week P Model  P Trend 

Total Seafood Total N (all Visits) 3,213 5,355 17,574 12,203   

 QTc Mean (Std) 412.7 (17.0) 412.6 (16.3) 412.2 (17.1) 412.3 (16.9)   

 Model 1 0.0 (ref) -0.2 (-1.1, 0.7) -0.4 (-1.2, 0.4) -0.3 (-1.1, 0.6) 0.81 0.47 

 Model 2 0.0 (ref) -0.3 (-1.2, 0.6) -0.6 (-1.4, 0.2) -0.7 (-1.6, 0.1) 0.34 0.05 

 Model 3 0.0 (ref) -0.4 (-1.2, 0.5) -0.6 (-1.4, 0.2) -0.7 (-1.6, 0.2) 0.39 0.07 

Total Fish Total N (all Visits) 4,070 6,436 17,926 159 (9,913)   

 QTc Mean (Std) 412.3 (16.8) 412.2 (16.4) 412.3 (17.0) 412.4 (17.1)   

 Model 1 0.0 (ref) -0.3 (-1.1, 0.5) -0.1 (-0.9, 0.6) -0.1 (-0.9, 0.7) 0.86 0.86 

 Model 2 0.0 (ref) -0.4 (-1.2, 0.4) -0.4 (-1.1, 0.4) -0.6 (-1.4, 0.2) 0.56 0.25 

 Model 3 0.0 (ref) -0.5 (-1.3, 0.3) -0.4 (-1.1, 0.3) -0.6 (-1.4, 0.2) 0.53 0.28 

Omega-3 Rich Fish Total N (all Visits) 8,524 10,018 14,208 5,595   

 QTc Mean (Std) 411.8 (16.8) 412.1 (16.8) 412.5 (17.0) 412.9 (17.0)   

 Model 1 0.0 (ref) -0.1 (-0.7, 0.5) 0.2 (-0.4, 0.8) 0.4 (-0.4, 1.1) 0.57 0.26 

 Model 2 0.0 (ref) -0.2 (-0.8, 0.4) -0.1 (-0.6, 0.5) -0.1 (-0.9, 0.6) 0.92 0.85 

 Model 3 0.0 (ref) -0.2 (-0.8, 0.4) 0.0 (-0.6, 0.5) -0.1 (-0.8, 0.7) 0.90 0.99 

Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 4-5. Associations of fatty acid intake (in quartiles) with QTc interval (in milliseconds) in ARIC participants (n=12,611), 1987-1998. Millisecond deltas 
and 95% confidence intervals from generalized estimating equations. 

  Q1 Q2 Q3 Q4 P Model  P Trend 

ALA + DHA + EPA Total N (all Visits) 9,701 9,795 9,459 9,390   

 QTc Mean (Std) 412.7 (16.4) 412.4 (17.3) 412.1 (16.8) 412.1 (17.1)   

 Model 1 0.0 (ref) -0.4 (-1.0, 0.2) -0.6 (-1.2, 0.0) -0.4 (-1.0, 0.2) 0.30 0.17 

 Model 2 0.0 (ref) -0.5 (-1.1, 0.1) -0.8 (-1.4, -0.2) -0.9 (-1.5, -0.2) 0.03 0.01 

 Model 3 0.0 (ref) -0.5 (-1.1, 0.1) -0.8 (-1.4, -0.2) -0.8 (-1.5, -0.2) 0.04 0.01 

DHA + EPA Total N (all Visits) 10,372 9,007 9,514 9,452   

 QTc Mean (Std) 412.1 (16.5) 412.1 (16.9) 412.4 (16.9) 412.7 (17.4)   

 Model 1 0.0 (ref) 0.1 (-0.5, 0.6) 0.3 (-0.3, 0.9) 0.1 (-0.5, 0.8) 0.79 0.66 

 Model 2 0.0 (ref) -0.1 (-0.7, 0.5) 0.0 (-0.6, 0.6) -0.3 (-1.0, 0.3) 0.67 0.32 

 Model 3 0.0 (ref) -0.1 (-0.7, 0.5) 0.0 (-0.6, 0.7) -0.3 (-0.9, 0.3) 0.68 0.35 

ALA Total N (all Visits) 9,872 9,566 9,615 9,292   

 QTc Mean (Std) 412.7 (16.5) 412.6 (17.0) 412.5 (17.6) 411.4 (16.5)   

 Model 1 0.0 (ref) -0.4 (-0.9, 0.2) -0.3 (-0.9, 0.3) -0.7 (-1.3, -0.1) 0.20 0.03 

 Model 2 0.0 (ref) -0.5 (-1.1, 0.1) -0.6 (-1.2, 0.1) -1.0 (-1.7, -0.3) 0.05 0.005 

 Model 3 0.0 (ref) -0.5 (-1.1, 0.1) -0.5 (-1.2, 0.1) -1.0 (-1.7, -0.3) 0.05 0.01 

Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 4-6. Associations of seafood consumption (in servings/week) with prevalence of J-point elevation in ARIC participants (n=12,611), 1987-1998. Odds 
ratios and 95% confidence intervals from generalized estimating equations. 

  

Zero 
Servings/Week 

Less Than 1 
Servings/Week 

One to Two 
Servings/Week 

Two or More 
Servings/Week P Model  P Trend 

Total Seafood N 3,213 5,355 17,574 12,203   

 JPE n (%) 144 (4.5%) 262 (4.9%) 910 (5.2%) 755 (6.2%)   

 Model 1 1.0 (ref) 1.1 (0.9, 1.5) 1.0 (0.8, 1.2) 0.9 (0.7, 1.2) 0.31 0.40 

 Model 2 1.0 (ref) 1.2 (0.9, 1.5) 1.0 (0.8, 1.3) 1.0 (0.8, 1.3) 0.36 0.77 

 Model 3 1.0 (ref) 1.2 (0.9, 1.5) 1.0 (0.8, 1.3) 1.0 (0.8, 1.3) 0.36 0.76 

Total Fish N 4,070 6,436 17,926 9,913   

 JPE n (%) 188 (4.6%) 328 (5.1%) 932 (5.2%) 623 (6.3%)   

 Model 1 1.0 (ref) 1.1 (0.9, 1.4) 0.9 (0.7, 1.1) 1.0 (0.8, 1.2) 0.07 0.61 

 Model 2 1.0 (ref) 1.1 (0.9, 1.5) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) 0.07 0.95 

 Model 3 1.0 (ref) 1.1 (0.9, 1.4) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) 0.07 1.00 

Omega-3 Rich Fish JPE n (Total N) 8,524 10,018 14,208 5,595   

 ST Seg Ht Mean (Std) 490 (5.7%) 518 (5.2%) 775 (5.5%) 288 (5.1%)   

 Model 1 1.0 (ref) 1.0 (0.9, 1.2) 1.0 (0.8, 1.2) 1.0 (0.8, 1.2) 0.99 0.82 

 Model 2 1.0 (ref) 1.0 (0.9, 1.2) 1.0 (0.9, 1.2) 1.0 (0.8, 1.3) 0.97 0.81 

 Model 3 1.0 (ref) 1.0 (0.9, 1.2) 1.0 (0.9, 1.2) 1.0 (0.8, 1.3) 0.98 0.87 

JPE: J-point elevation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 4-7. Associations of fatty acid intake (in quartiles) with prevalence of J-point elevation in ARIC participants (n=12,611), 1987-1998. Odds ratios and 
95% confidence intervals from generalized estimating equations. 

  Q1 Q2 Q3 Q4 P Model  P Trend 

ALA + DHA + EPA N 9,701 9,795 9,459 9,390   

 JPE n (%) 449 (4.6%) 499 (5.1%) 536 (5.7%) 587 (6.3%)   

 Model 1 1.0 (ref) 0.9 (0.8, 1.1) 0.9 (0.7, 1.0) 0.9 (0.8, 1.1) 0.55 0.50 

 Model 2 1.0 (ref) 1.0 (0.8, 1.2) 1.0 (0.8, 1.2) 1.0 (0.9, 1.3) 0.81 0.60 

 Model 3 1.0 (ref) 1.0 (0.8, 1.2) 1.0 (0.8, 1.1) 1.0 (0.9, 1.2) 0.84 0.68 

DHA + EPA N 10,372 9,007 9,514 9,452   

 JPE n (%) 506 (4.9%) 446 (5.0%) 546 (5.7%) 573 (6.1%)   

 Model 1 1.0 (ref) 0.9 (0.8, 1.1) 0.9 (0.7, 1.1) 0.9 (0.8, 1.1) 0.64 0.49 

 Model 2 1.0 (ref) 1.0 (0.8, 1.1) 0.9 (0.8, 1.1) 1.0 (0.8, 1.2) 0.80 0.94 

 Model 3 1.0 (ref) 1.0 (0.8, 1.1) 0.9 (0.8, 1.1) 1.0 (0.8, 1.2) 0.80 0.87 

ALA N 9,872 9,566 9,615 9,292   

 JPE n (%) 484 (4.9%) 500 (5.2%) 508 (5.3%) 579 (6.2%)   

 Model 1 1.0 (ref) 1.0 (0.8, 1.1) 0.9 (0.8, 1.1) 0.9 (0.8, 1.1) 0.79 0.53 

 Model 2 1.0 (ref) 1.0 (0.9, 1.2) 1.0 (0.9, 1.2) 1.1 (0.9, 1.3) 0.86 0.40 

 Model 3 1.0 (ref) 1.0 (0.8, 1.2) 1.0 (0.8, 1.2) 1.1 (0.9, 1.3) 0.92 0.50 

JPE: J-point elevation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, HDL, triglycerides) 
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Table 4-8. Associations of seafood consumption (in servings/week) with J-point height (in millivolts) in ARIC participants (n=12,611), 1987-1998. Millivolt 
deltas and 95% confidence intervals from generalized estimating equations. 

  

Zero 
Servings/Week 

Less Than 1 
Servings/Week 

One to Two 
Servings/Week 

Two or More 
Servings/Week P Model  P Trend 

Total Seafood Total N (all Visits) 3,213 5,355 17,574 12,203   

 J-Point Ht Mean (Std) 53.2 (33.6) 52.6 (34.0) 55.0 (35.8) 56.3 (36.8)   

 Model 2b 0.0 (ref) -0.1 (-2.0, 1.8) 0.0 (-1.7, 1.7) -0.8 (-2.6, 1.0) 0.47 0.20 

 Model 4b 0.0 (ref) 0.0 (-1.8, 1.9) 0.2 (-1.4, 1.9) -0.7 (-2.4, 1.1) 0.44 0.21 

 Model 5b 0.0 (ref) 0.0 (-1.8, 1.9) 0.2 (-1.5, 1.8) -0.7 (-2.5, 1.1) 0.42 0.18 

Total Fish Total N (all Visits) 4,070 6,436 17,926 159 (9,913)   

 J-Point Ht Mean (Std) 53.4 (33.7) 53.1 (34.2) 55.3 (36.0) 56.2 (37.0)   

 Model 2b 0.0 (ref) 0.2 (-1.5, 1.9) -0.1 (-1.6, 1.5) -0.6 (-2.4, 1.2) 0.74 0.29 

 Model 4b 0.0 (ref) 0.3 (-1.4, 2.0) 0.1 (-1.4, 1.7) -0.3 (-2.1, 1.4) 0.82 0.42 

 Model 5b 0.0 (ref) 0.3 (-1.4, 1.9) 0.1 (-1.5, 1.6) -0.4 (-2.2, 1.3) 0.79 0.37 

Omega-3 Rich Fish Total N (all Visits) 8,524 10,018 14,208 5,595   

 J-Point Ht Mean (Std) 55.8 (36.3) 54.3 (35.7) 55.4 (35.7) 53.6 (35.1)   

 Model 1 0.0 (ref) 0.4 (-0.9, 1.7) 0.6 (-0.7, 1.8) -0.6 (-2.2, 1.0) 0.39 0.30 

 Model 2 0.0 (ref) 0.6 (-0.7, 1.9) 0.8 (-0.5, 2.1) -0.2 (-1.8, 1.4) 0.38 0.52 

 Model 3 0.0 (ref) 0.5 (-0.8, 1.8) 0.7 (-0.5, 2.0) -0.3 (-1.9, 1.3) 0.38 0.45 

Ht: height 
Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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Table 4-9. Associations of fatty acid intake (in quartiles) with J-point height (in millivolts) in ARIC participants (n=12,611), 1987-1998. Millivolt deltas and 
95% confidence intervals from generalized estimating equations. 

  Q1 Q2 Q3 Q4 P Model  P Trend 

ALA + DHA + EPA Total N (all Visits) 9,701 9,795 9,459 9,390   

 J-Point Ht Mean (Std) 52.8 (34.5) 54.4 (35.2) 55.4 (36.1) 57.3 (37.0)   

 Model 1 0.0 (ref) -0.5 (-1.8, 0.7) -0.9 (-2.2, 0.4) -1.0 (-2.3, 0.4) 0.47 0.15 

 Model 2 0.0 (ref) -0.1 (-1.3, 1.2) -0.2 (-1.4, 1.1) -0.2 (-1.6, 1.1) 0.99 0.69 

 Model 3 0.0 (ref) -0.2 (-1.4, 1.1) -0.3 (-1.6, 1.0) -0.4 (-1.7, 1.0) 0.96 0.58 

DHA + EPA Total N (all Visits) 10,372 9,007 9,514 9,452   

 J-Point Ht Mean (Std) 53.2 (34.9) 54.8 (35.1) 55.9 (36.3) 56.0 (36.6)   

 Model 1 0.0 (ref) -0.2 (-1.5, 1.0) 0.3 (-1.1, 1.6) -0.9 (-2.3, 0.5) 0.30 0.20 

 Model 2 0.0 (ref) 0.3 (-1.0, 1.5) 0.2 (-1.1, 1.5) -1.0 (-2.4, 0.4) 0.21 0.10 

 Model 3 0.0 (ref) 0.3 (-1.0, 1.5) 0.2 (-1.1, 1.5) -0.9 (-2.3, 0.4) 0.24 0.12 

ALA Total N (all Visits) 9,872 9,566 9,615 9,292   

 J-Point Ht Mean (Std) 53.4 (34.9) 54.3 (35.1) 54.8 (36.3) 57.5 (36.6)   

 Model 1 0.0 (ref) -0.3 (-1.6, 0.9) -0.7 (-2.0, 0.5) -0.6 (-1.9, 0.6) 0.67 0.27 

 Model 2 0.0 (ref) 0.2 (-1.0, 1.5) 0.3 (-1.0, 1.6) 0.6 (-0.8, 2.0) 0.88 0.49 

 Model 3 0.0 (ref) 0.2 (-1.1, 1.4) 0.2 (-1.1, 1.5) 0.5 (-0.9, 1.9) 0.93 0.62 

Ht: height 
Std: standard deviation 
P Model: p value for the exposure term 
P Trend: p value for exposure modeled linearly using the median values in each category 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables (hypertension, HDL, LDL, triglycerides) 
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5 MANUSCRIPT 3: BIOSTATISTICAL METHODS TO ADDRESS 

DIETARY EXPOSURE MEASUREMENT ERROR (IN 

FULFILLMENT OF THE BIOSTATISTICS MINOR)  

5.1 SYNOPSIS 

Background: A common issue in studies with a dietary exposure is measurement error in 

self-reported intake.  The true (unknown) exposure value can be treated as a missing 

value problem, and it can be imputed using multiple imputation for measurement error 

(MIME).  We expand on this idea using Multiple Imputation by Chained Equations 

(MICE). 

Methods: We utilized data from the Atherosclerosis in Communities (ARIC) study, a 

prospective cohort of adults recruited from four field centers in the United States.  One 

field center collected plasma fatty acid biomarker values from participants, and these 

data were used to augment self-report dietary data obtained via food frequency 

questionnaire.  We imputed biomarker values using MICE to investigate the associations 

of biomarker measures of the omega-3 polyunsaturated fatty acids alpha linoleic acid 

(ALA), docosahexaenoic acid (DHA) + eicosapentaenoic acid (EPA), and ALA+DHA+EPA 

with prolonged QT, HbA1c, and incident type 2 diabetes (T2D).  We also qualitatively 

compared associations in the full cohort – imputed and observed plasma values – to 

associations obtained using observed plasma values only.   

Results: In both the full cohort and the observed plasma populations, none of the 

exposures were significantly associated with our outcomes of interest.  Point estimates 

in both populations were similar across three different covariate-adjustment models, 

and confidence intervals were narrower for associations from the full cohort population 

than those from the observed plasma population. 
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Conclusions: Using MICE to augment self-report dietary data with biomarker data did 

not fundamentally change the associations between exposure and outcome, but it did 

increase precision. 

5.2 INTRODUCTION 

Measurement error in dietary exposures is a significant challenge for nutritional 

epidemiological studies [199] and understanding the direction and magnitude of the 

error is necessary for accurate interpretation of nutritional epidemiology study results 

[200].  Different dietary assessment methods can have varying levels of measurement 

error [169]; this manuscript will focus on food frequency questionnaire (FFQ)-derived 

measures and biomarker measures of dietary intake of omega-3 polyunsaturated fatty 

acids (PUFAs). 

FFQs are relatively inexpensive ways to obtain dietary data from a large group of 

subjects without a high participant burden [169].  Some epidemiologists view FFQs as a 

way to qualitatively rank subjects’ dietary intake from low to high and/or to 

quantitatively estimate subjects’ absolute nutrient intakes [169].  However, many 

commentaries have been written regarding the fallibility of the data obtained from FFQs 

[201-203].  Key in those commentaries is evidence suggesting that data from FFQs are 

imprecise and subject to measurement error.   

Biomarker values are another measure of dietary intake. These are objective 

measures that indicate how much of the nutrient was absorbed (bioavailability), and 

may be a good measure of usual intake provided between-season variability in an 

individual’s intake is not large [169]. Given the potential biases that can result from 

measurement error in the exposure variable, several techniques have been developed 

to augment FFQ data using biomarker data [108, 114, 121, 122, 204-220].  For this 

manuscript, we used biomarker data collected from participants in the Minnesota (MN) 
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field center of the Atherosclerosis Risk in Communities (ARIC) Study to address potential 

measurement error in omega-3 PUFA intake as measured via FFQ.     

Specifically, we expanded upon the premise embodied in Multiple Imputation for 

Measurement Error (MIME) and imputed biomarker data for non-MN ARIC participants 

using Multiple Imputation by Chained Equations (MICE) [221-223].  We then 

investigated the associations of plasma ALA, DHA+EPA, and ALA+DHA+EPA with three 

outcomes previously analyzed with respect to their associations with FFQ exposures: (1) 

prolonged QTc, (2) HbA1c, and (3) incident type 2 diabetes (T2D).  Finally, we compared 

the measures of association in the full cohort (imputed + observed biomarker data) with 

those in the MN field center (observed biomarker data). 

The remainder of this manuscript is divided into four parts.  Part 1 introduces the 

ARIC study, our research questions of interest, and we describe the methods that are 

independent of multiple imputation.  In Part 2, we define MIME and MICE and describe 

the methods specific to the multiple imputation process.  Part 3 describes how we 

analyzed the post-imputation data and compared the results from our two populations 

of interest: results derived using observed plasma values from MN participants versus 

results derived from the full cohort (observed and imputed plasma exposure values).  

We conclude in Part 4 by describing our results and offering discussion points and 

overall conclusions. 

5.3 PART 1 – THE ASSOCIATION OF OMEGA-3 PUFA WITH 

PROLONGED QTC, HBA1C, AND INCIDENT TYPE 2 DIABETES 

5.3.1 BACKGROUND 

5.3.1.1 Omega-3 PUFA and ECG 
Predictors of SCD 

Intake of omega-3 PUFAs has been associated with lower incidence of sudden 

cardiac death (SCD) [46, 51, 194, 195].  ECG predictors of SCD include prolonged QT 

interval [96-99, 142], and prolonged QT interval may be the mechanism underlying the 
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association observed between intake of omega-3 PUFAs and SCD.  We previously 

investigated whether FFQ-measured consumption of seafood, the fish-derived omega-3 

PUFAs DHA and EPA, and the vegetable-derived omega-3 PUFA ALA were associated 

with heart rate-corrected QT interval (QTc) in the ARIC study.  In this manuscript, we 

addressed potential FFQ measurement error by utilizing a biomarker sub-study to 

augment our ALA, DHA+EPA, and ALA+DHA+EPA exposure estimates.  These updated 

exposures were used to reevaluate the association of omega-3 PUFA with prolonged 

QTc. 

5.3.1.2 Omega-3 PUFA and Markers of 
Glucose Homeostasis 

Studies investigating seafood intake and intake of fish-derived omega-3 PUFAs 

with markers of glucose homeostasis have been mixed with some reporting favorable  

[86], adverse  [85-88], and null [85, 86] associations, depending on study population and 

exposure definition. Studies investigating intake of the vegetable-derived ALA have been 

similarly mixed with both favorable [85] and null [86] results.  Given the inconsistent 

nature of the previous literature, we previously tested the associations among FFQ-

obtained intakes of seafood, DHA + EPA, and ALA with glycemia outcomes in the ARIC 

study.  In this manuscript, we addressed potential FFQ measurement error by utilizing a 

biomarker sub-study to augment our ALA, DHA+EPA, and ALA+DHA+EPA exposure 

estimates.  These updated exposures were used to reevaluate the association of omega-

3 PUFA with HbA1c and Incident T2D. 

5.3.2 METHODS 

5.3.2.1 Study Population 

The ARIC study has been described previously [155]. Briefly, it is a prospective 

study of cardiovascular disease including 15,792 men and women 45–64 years of age at 

baseline (visit 1). Participants were recruited from four US communities using 
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probability sampling techniques. The communities and racial composition were: 

predominately white subjects from suburbs of Minneapolis, Minnesota, and Washington 

County, Maryland; black subjects from Jackson, Mississippi; and white and black 

subjects from Forsyth County, North Carolina. 

For the analyses described in this manuscript, there were two sets of 

inclusion/exclusion criteria.  The first set included criteria that were specific to the 

outcome of interest and the study design used in investigating that outcome.  These are 

described later in this section (Part 1).  The second set of inclusion/exclusion criteria are 

specific to the imputation methodology.  These are described in Part 2. 

5.3.2.2 Exposures: Measures of Dietary 
Omega-3 PUFA intake 

Although our exposure of interest was circulating concentrations of omega-3 

PUFA biomarkers, we will briefly revisit the FFQ measures of omega-3 PUFA before 

describing the biomarker exposures. 

5.3.2.2.1 Food Frequency Questionnaire 

Participants’ usual dietary intake was assessed at visit 1 using an interviewer-

administered, 66-item FFQ. The FFQ was a based on the instrument developed by 

Willett et al. [167], with three principal modifications: (1) Data regarding alcohol 

consumption were obtained using a separate, more detailed instrument; (2) Several 

food items were added (e.g., donuts, biscuits, and cornbread); and (3) Some items were 

split into detailed subcategories – notably a single item on fish consumption was 

separated into three specific fish items. 

Daily intake of macro- and micronutrients was calculated via the FFQ by 

multiplying the nutrient content of each food by the frequency of daily consumption 

and then summing the results [124]. This process yielded daily intake of nutrients 

expressed as grams per day. Three different classifications of omega-3 fatty acids were 
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investigated in prior analyses: (1) vegetable-derived ALA, (2) fish-derived DHA+EPA; and 

(3) total omega-3 PUFA ALA+DHA+EPA. 

5.3.2.2.2 Biomarker Measures of Plasma Fatty Acids 

Blood samples were obtained from MN field participants at visit 1 (n= 3,757) and 

plasma fatty acids were measured in cholesterol esters and phospholipids using gas 

chromatography [126].  The fatty acid profile of cholesterol esters reflects medium-term 

(weeks) dietary intake of fatty acids while phospholipids reflect intake over a slightly 

longer duration (weeks to months) [127].  Phospholipid measurements were used for 

the present analysis.  Previous analyses in ARIC have shown that correlation coefficients 

for FFQ values compared to plasma phospholipid values are r=0.15 (ALA), r=0.20 (EPA), 

and r=0.42 (DHA) [126]. 

Biomarker values of omega-3 PUFA were expressed as percentage of total fatty 

acids.  We considered three exposure categories: ALA, DHA+EPA, and ALA+DHA+EPA.  

Each of these three exposures was categorized into quartiles. 

5.3.2.3 Outcomes: ECG Predictors of 
Sudden Cardiac Death and 
Markers of Glucose Homeostasis 

5.3.2.3.1 Prolonged QTc 

At visit 1, a standard, resting, supine 12-lead ECG was obtained for each subject 

using MAC PC personal cardiography equipment (Marquette Electronics, Inc., 

Milwaukee, WI). We defined prolonged QT as a heart rate-corrected (QTc) value of 460 

ms or longer in women and 450 ms or longer in men [138].  

5.3.2.3.2 HbA1c 

HbA1c was measured from whole blood samples using high-performance liquid 

chromatography.  The blood was collected during visit 2 (1990-92) and stored at -70 °C 
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for 14-18 years until HbA1c measurements could be obtained.  Selvin et al. give a 

detailed description of the HbA1c measurement process [158].  

5.3.2.3.3 Incident Type 2 Diabetes 

Diabetes was defined as (1) self-report of physician-diagnosed diabetes; (2) self-

reported use of diabetes medication in the past two weeks; (3) fasting glucose level ≥ 

7.0 mmol/liter (126 mg/dl); or (4) non-fasting glucose level > 11.1 mmol/liter (200 

mg/dl).   

5.3.2.4 Covariates: Potential 
Confounders 

All potential confounders were measured at visit 1.  Variables of interest 

included sociodemographic variables (age, sex, race, and education), lifestyle variables 

(physical activity, smoking status, drinking status, and drinking amount), dietary 

variables (trans fatty acids, saturated fatty acids, dietary fiber), and clinical variables 

(body mass index (BMI), hypertension, LDL, HDL, triglycerides).   

Several variables were obtained via self-report.  Age, sex, and race were 

obtained at visit 1 and confirmed at subsequent visits.  Participants’ smoking status and 

education level were obtained via self-report and categorized.  Education level was 

categorized based on years of education: basic (less than high school graduate), 

intermediate (high school graduate, no college), and advanced (at least some college). 

Smoking status had three categories: current smokers, former smokers (more than 100 

cigarettes in the past), and never smokers. 

Physical activity, alcohol intake, and dietary intake were measured using 

validated instruments.  Physical activity was measured using the Baecke questionnaire 

[144]. The questionnaire translated into three indexes ranging from 1 (low) to 5 (high) 

for physical activity at work, during leisure time, and in sports. The three physical 

activity scores were summed and then translated into tertiles of physical activity (low, 
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medium, and high).  Alcohol intake and amount (grams/day) was measured via an 

interviewer-administered questionnaire.  Dietary intake of trans fatty acids, saturated 

fatty acids, and dietary fiber were obtained with the same methodology used to 

translate FFQ responses into grams of omega-3 PUFA per day. 

Finally, the remaining variables were measured by trained technicians.  Weight 

and height were measured with the participant wearing light clothes. BMI was 

calculated as weight (kilograms) divided by height squared (meters2).  Technicians also 

obtained three blood pressure measurements with a random-zero sphygmomanometer 

and the mean of the last two measurements was used.  Hypertension was defined as a 

systolic blood pressure above 140 mmHg, a diastolic above 90 mmHg, or self-reported 

use of antihypertensive medication.  Participants with missing hypertension values were 

imputed as not having hypertension (no disease).  For metrics requiring phlebotomy, 

blood was drawn after a minimum 8-hour fasting period with minimal trauma from an 

antecubital vein [146]. Plasma total cholesterol and triglycerides were measured by 

enzymatic methods [132], and LDL cholesterol was calculated using the Friedewald 

formula [147]. HDL cholesterol was measured after dextran-magnesium precipitation of 

non-HDL lipoproteins [132].  

5.3.2.5 Statistical Analysis 

The statistical methods used were dependent on the study design used to 

investigate the relationship between the exposure and the outcome of interest.  

Outcome-specific study populations, study designs, and statistical methods are 

described below.  Figure 5-1 represents this pictorially.  All analyses were limited to 

white participants – additional details regarding rationale are in Part 2. 

5.3.2.5.1 Prolonged QTc 

Analyses investigating this outcome utilized data from a cross-sectional study 

design using data from visit 1.  Participants were excluded if they were non-white and if 
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they had prevalent cardiovascular disease (CVD) – defined as coronary heart disease 

(CHD), heart failure (HF), or stroke – as prevalent conditions influence how patients 

have their comorbidities managed, diagnosed and treated.  If a participant was missing 

data on CVD prevalence, it was assumed that the participant did not have prevalent 

CVD.  We excluded participants who self-reported use of antiarrhythmic medications 

and those whose duration of the QRS complex was ≥120 ms, as those individuals have 

major conduction defects that make the interpretation of primary repolarization 

abnormalities inappropriate [197]. 

Data were analyzed using logistic regression – prolonged QTc was the outcome 

of interest and quartiles of plasma ALA, DHA+EPA, and ALA+DHA+EPA were the 

exposures, with the lowest quartile as the reference category.  Three covariate-

adjustment models were tested.  Model 1 included age, sex, and education level.  Model 

2 was Model 1 plus BMI, physical activity, smoking status, drinking status and amount, 

and the dietary variables trans fatty acids, saturated fatty acids, and dietary fiber.  

Model 3 was Model 2 plus the clinical covariates: hypertension, LDL, HDL, and 

triglycerides. 

5.3.2.5.2 Hemoglobin A1c 

Analyses investigating this outcome utilized data from a modified cross-sectional 

study design, with exposures and potential confounders measured at visit 1 and the 

outcome measured at visit 2.  Our exclusion criteria were non-white race and CVD.  We 

excluded those participants who reported diagnoses of CHD, HF, or stroke at either visit 

1 or 2 – not only because their clinical treatment may differ from those who do not have 

those conditions, but because incident disease between visits 1 and 2 may have led to 

changes in the exposure and covariate behaviors reported at visit 1.  Finally, we 

restricted our analysis to diabetic participants as previous analyses suggested this 

population was most likely to show differences in HbA1c levels across different strata of 

omega-3 PUFA intake. 
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For those participants who reported taking anti-hyperglycemic medications, we 

applied a correction factor using the approach described in Tobin et al. [159] and used in 

other studies with glycemia outcomes [160, 161].  Specifically, for medicated 

participants, we added a constant of 1 percentage point to HbA1c values.  These 

constants were based on pharmaceutical studies, systematic reviews, and meta-

analyses of the effect of medication on glycemia lab values [162-166]. 

Data were analyzed using linear regression – HbA1c was the outcome of interest 

and quartiles of plasma ALA, DHA+EPA, and ALA+DHA+EPA were the exposures, with the 

lowest quartile as the reference category.  The same three covariate-adjustment models 

were tested: Model 1 (sociodemographic variables), Model 2 (Model 1 + lifestyle and 

dietary variables), and Model 3 (Model 2 + clinical variables).   

5.3.2.5.3 Incident Type 2 Diabetes 

This was a prospective study design, with exposures and potential confounders 

measured at visit 1 and the outcome of interest being time to incident T2D or censoring.  

Our inclusion/exclusion criteria were similar to the other two outcomes with respect to 

race and CVD.  Assignment of variables followed the algorithm depicted in Figure 5-2, 

with participants censored if lost to follow-up, experienced incident CVD, or reached 

visit 4 without developing T2D. 

Data were analyzed using Cox proportional hazards regression.  Exposures were 

quartiles of plasma ALA, DHA+EPA, and ALA+DHA+EPA, with the lowest quartile as the 

reference category.  The same three covariate-adjustment models were tested: Model 1 

(sociodemographic variables), Model 2 (Model 1 + lifestyle and dietary variables), and 

Model 3 (Model 2 + clinical variables).  We tested for violations of the proportional 

hazards assumption using a log(time)*exposure interaction term in our model and an α 

of 0.10 (Ho=no violation). 
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5.4 PART 2 – MULTIPLE IMPUTATION METHODS 

As previously mentioned, this section will describe our imputation process.  Here 

we present an overview of multiple imputation followed by our imputation-specific 

methods. 

5.4.1 OVERVIEW 

When investigating the associations between dietary exposures and an outcome 

of interest, the investigators attempt to quantify subjects’ true intake.  Researchers 

must consider participant burden and expense along with measurement error and 

accuracy.  FFQs are inexpensive and have low participant burden [169], but their output 

can have measurement error [198]. 

Our paradigm can be described as follows: consumption of omega-3 PUFA and 

other foods, behaviors (smoking, exercise), and biological factors (race, sex) influence 

how dietary omega-3 PUFA are digested and absorbed into circulating concentrations of 

biomarker omega-3 PUFA.  Data exist for diet, behaviors, and biological factors in the 

full ARIC cohort.  Data exist for biomarkers in the MN sub-study.  We can use the MN 

data to establish the relationship of diet and other variables with plasma values of 

omega-3 PUFA. 

This is not without precedent.  Several approaches exist to leverage biomarker 

data to address measurement error [108, 114, 121, 122, 209].  One such approach is 

multiple imputation for measurement error or MIME – a technique first proposed by 

Rubin in 1987 [216, 224] that treats measurement error as a missing data problem 

where the “true” value is missing.  We expand on this premise, but instead of imputing 

corrected FFQ values using data from a validation study, we impute plasma biomarker 

values utilizing the validation sub-study and FFQ data. 

The multiple imputation process can be summarized as three steps.  The first is 

that missing values are replaced with a simulated value to create a complete dataset.  

This process is repeated until there are m datasets.  After the imputation process is 
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finished, step two is to analyze each of the m complete datasets separately using 

standard methods – these are the methods that were described in Part 1.  As an 

example, for our HbA1c outcome, each dataset was analyzed using linear regression 

with the imputed exposure values and relevant covariates.  Each of the m-sets of 

analyses result in m-sets of regression results.   Finally, step three combines the m-sets 

of regression data into a single result using “Rubin’s Rules” – simplistically they are 

“averaged” to get an overall beta coefficient and standard error [220, 225, 226]. 

5.4.2 METHODS 

Our overall manuscript methods can be simplistically described in three steps: 

impute missing values, analyze the data for our two populations of interest (full cohort 

and MN only), compare the population-specific results.  This section describes the 

imputation process – specifically the inclusion/exclusion criteria, imputation method 

used, variables used in the imputation, and model specifications.  All statistical analyses 

were performed with SAS (version 9.4, Enterprise guide 7.1, SAS Institute Inc., Cary, NC, 

USA). 

5.4.2.1 Inclusion and Exclusion Criteria 

As previously mentioned, there were two sets of inclusion/exclusion criteria: 

those specific to imputation, and those specific to our outcomes (e.g., diabetics only for 

HbA1c analyses).  Here we will describe our imputation inclusion/exclusion criteria. 

We could not eliminate the possibility that race could be a confounder or an 

effect modifier in the relationship between dietary intake of omega-3 fatty acids and 

biomarker measures of omega-3 fatty acids. There is evidence that the translation of 

FFQ responses into nutrients can vary by race [227].  Additionally, race can be 

associated with FFQ exposure through dietary patterns and cooking methods and affect 

biomarker concentrations through potential genetic differences in converting dietary 

PUFA to plasma PUFA [228].  Because MN field center participants were overwhelmingly 
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white, we could not include race in our imputation model.  Consequently, we limited 

our analyses to white participants at the MN and other field centers. 

Additionally, we excluded those participants who did not fill out an FFQ (n=12), 

whose FFQ responses were not translatable into nutrient intakes (n=207), and those 

who had implausible responses on their FFQ (n=47; 43 males with values below 700 

kcal/day and 4 females with values above 3500 kcal/day).  The improbable calorie cut-

points (males: >4500, <700; females: >3500, <500) represent the 1st and 99th sex-specific 

percentiles of all ARIC FFQ responses [156].  Because we hypothesized biomarker 

imputation would depend on dietary intakes, we did not want implausible data to skew 

our results. 

5.4.2.2 Multiple Imputation by Chained 
Equations 

Step 1 in the imputation process is to replace missing values with a simulated 

value. We calculated our simulated values via MICE [221-223] , also known as fully 

conditional specification [212, 223].  Azur et al.[221] describes the process in five steps: 

1. Impute a placeholder value for all the missing values in your dataset.  For 

example, a random sample of observed values from your validation study. 

2. Select a single variable, and set all placeholder values for that variable back to 

missing. 

3. Regress the variable of interest on the variables of the imputation model (e.g., 

biomarker values of ALA regressed on all other variables in the dataset) 

4. Replace the missing values from step 2 with predictions from step 3.  This is like 

step 1 above except, instead of placeholders, we are imputing predicted values 

based on regression. 

5. Complete this process (steps 2-4) for all variables with missing values 
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A cycle is defined completing these steps for all variables with missing values.  

For subsequent cycles, steps 2 through 5 are repeated.  Typically at least 10 cycles are 

performed [229] and, once a predetermined number of cycles are complete, the final 

iteration is output.  This output is an imputed dataset.  This process is repeated until m 

imputed datasets are output. 

5.4.2.3 Selecting Imputation Model 
Parameters  

Here we describe how we selected our variables, regression techniques, cycles to 

run before outputting an imputed dataset, and total number of imputed datasets. 

5.4.2.3.1 Variable Selection  

We had FFQ data on all ARIC participants and biomarker measures of plasma 

fatty acids for MN field center participants.  We wanted to address FFQ measurement 

error by utilizing the biomarker values – specifically, using the MN biomarker sub-study 

to elucidate the relationship between FFQ-derived intake of omega-3 PUFA and plasma 

measures of omega-3 PUFA – and then use these findings to impute plasma measures 

for the rest of the ARIC cohort. 

As previously stated, variables with missing values are imputed by regressing 

their observed values (dependent variable) against a set of related variables 

(independent variables) [221-223].  Given our theoretical paradigm (biomarkers are a 

function of dietary intake), our imputation model for our exposure variables (plasma 

biomarkers) must at a minimum include their FFQ-derived analogs. 

For the full imputation model, we selected our variables based on two criteria 

adapted from Azur et al. [221]: (1) the imputation model should be more general than 

the models used in post-imputation analyses; and (2) impute variables at lowest level 

possible. 
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For #1, a “more general” imputation model means that the imputation model 

should include all covariates used in the post-imputation analyses [221] along with post-

imputation outcomes [217, 230].  If interaction terms will be used in post-imputation 

regressions, then those terms should be in the imputation model as well [221].  

Variables that predict missingness should also be included in the model [217].  In 

general, increasing the number of variables in the imputation model does not 

deleteriously influence precision or bias [221, 231], but failing to include important 

variables can [217, 230]. 

For #2, to impute variables at the lowest level possible means that if a 

continuous variable was categorized, we included its continuous form in the imputation 

model and re-categorized it post-imputation [221, 232].  Similarly, if a variable was a 

function of other variables (e.g., x = f(a, b, c) ) then we included a, b, and c in the 

imputation model and generated x post-imputation. 

In addition to our exposures (and dietary analogs), outcomes, potential 

confounders, and variables used for inclusion/exclusion, we included other variables in 

the imputation model that could have predicted omega-3 PUFA intake.  These included 

fish consumption in servings/week as measured via FFQ (tuna, dark fish, other fish, and 

shellfish) and dietary intake of omega-6 PUFA in grams/day as these fatty acids 

influence the bioavailability of dietary omega-3 PUFAs [233]. 

The “more general” approach for selecting covariates relies on including 

interaction terms if necessary [221].  We did not include interaction terms in our 

imputation model for two reasons.  The first is because previous analyses did not show 

evidence of interaction by sex for the association of omega-3 PUFAs and HbA1c, 

prolonged QTc, or time to incident T2D.  The second is that the MN data did not suggest 

there were differences by sex for dietary intake of omega-3 PUFAs and plasma levels 

after adjusting for total caloric intake (data not shown). 
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Figure 5-3 lists the variables that were part of our imputation model along with 

the regression method used for imputation.  

5.4.2.3.2 Regression Method  

To justify our selection of regression method (linear, logistic, or discriminant 

analysis), we will first provide some theoretical details.  There are two components to 

multiple imputation: the model (variables) and the distribution assumptions.  That is, 

imputation is a function of our data Y and distributions theta: f(Y|ϴ) [212, 

234].  Imputing a missing value is a random draw of the set of all imputed values from 

the posterior predictive distribution of the missing data: f(Ymiss|Yobs|ϴ) where ϴ is the 

vector of parameters or functions of these that uniquely define the predictive 

distribution [212].  When software performs the imputation using MICE, part of the 

process is deriving the posterior predictive distribution f(Ymiss|Yobs|ϴ) [212, 226, 234]. 

Continuous variables with missing data use linear regression derive the posterior 

predictive distribution, and categorical variables can use logistic regression or 

discriminant analysis [212, 234].  For categorical variables, we tried logistic regression 

first as it makes the fewest assumptions about model parameters [234].  However, 

sometimes maximum likelihood estimation failed to estimate a posterior predictive 

distribution without augmenting the data [235].  An alternative to augmenting data is to 

use discriminant analysis instead of logistic regression – discriminant analysis  also 

estimates categorical outcomes, but assumes covariates are approximately multivariate 

normal and the within-group covariance matrices are approximately equal [234].  We 

did not test these assumptions, but relied on our ample sample size [171]. 

Finally, regardless of regression method, all regressions were set to have a 

minimum value of zero by using the minimum option in SAS PROC MI.  Although setting 

a minimum value can introduce bias if the data are skewed [236], post-imputation 

rounding of values also introduces bias [236].  Since all plasma values were biologically 

constrained from 0 to 100 (as a percentage of total fatty acids), we set the minimum 
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value as zero.  In a sensitivity analysis, we considered how many negative values were 

imputed if we did not include the minimum option.  Six (out of 49) variables had 

negative values (across all imputations) and the percentages of negative values were all 

less than 0.1% except for the physical activity via work variable, which had 2.3% 

negative values. 

5.4.2.3.3 Cycles and Datasets 

As previously mentioned, typically at least 10 MICE cycles (burn-ins) are 

performed before outputting an imputed dataset [229].  We used 40 burn-in iterations.  

Theoretically, five imputed datasets (m=5) are sufficient for the imputation 

technique [210, 218, 237].  However, using a large number of imputed datasets (m>20) 

provides a greater ability to reduce sampling variability from the imputation process and 

better confidence interval coverage [214, 217, 218].  Table 5-1 shows the relative 

efficiency given percentage of missingness as derived using the equation  

where RE is relative efficiency,  is the percentage of missing data, and m is the number 

of datasets [211].   

Because we imputed biomarker values for all white ARIC participants who were 

not part of the biomarker subsample, we had a high proportion of missingness 

(approximately 2,500 MN participants among approximately 9,500 white participants is 

roughly 75% missingness).  We used m=40 imputations for our analysis. 

5.5 PART 3 – POST IMPUTATION 

Here we describe how we utilized the imputed data to investigate the 

associations between omega-3 biomarker exposures and our outcomes of interest, and 

how we compared results from our two populations of interest (full cohort and MN-

only). 



RE  (1


m
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5.5.1 POST-IMPUTATION ANALYSES 

Our imputation process generated m=40 datasets where all missing values were 

imputed.  Using these data, we considered our two populations.  For simplicity, we will 

use the term “imputed” for the full cohort even though those data contain both 

imputed and observed plasma values.  Similarly, we will use “observed” for the MN 

participants with observed plasma values, even though some covariates had missing 

values imputed. 

Each of the two populations were analyzed as described in Part 1.  That is, each 

of the m datasets had outcome-specific inclusion/exclusion criteria applied and were 

analyzed using the outcome-specific statistical methods.  The m sets of results were 

combined into a single set of regression results using Rubin’s rules [220, 225, 226] via 

SAS PROC MIANALYZE. 

5.5.2 COMPARING RESULTS  

All exposures of interest were categorized into quartiles with the lowest quartile 

as the reference category.  Thus, for any given exposure, we had six beta estimates and 

six standard errors – three for the full cohort (imputed) results (Q2 vs. Q1, Q3 vs. Q1, 

and Q4 vs. Q1) and three for the MN population (observed) results. 

We considered if our full cohort (imputed) results were qualitatively different 

from the observed (MN field center) results.  That is, if imputing missing plasma values 

fundamentally changed the measures of association compared to results obtained using 

observed plasma values.  We did this by comparing the beta coefficients and their 

confidence intervals for the imputed and observed populations. 

5.6 RESULTS 

In this section, we will describe the results from the imputation process first, 

followed by the results from regressions involving the three outcomes of interest.  For 
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each outcome, we report and compare the imputed (full cohort) results and the 

observed (MN-specific) results. 

5.6.1 IMPUTATION RESULTS 

Our goal was to impute plasma values for the white, non-MN participants and 

impute any missing covariates in the full cohort.  There were 11,478 white participants 

at visit 1.  Of those, n=266 were excluded for missing or implausible FFQ results.  Data 

from the remaining n=11,212 participants were available for the multiple imputation 

procedure. Table 5-2 lists variables that had missing values prior to the imputation 

process and the relative efficiency after 40 imputations.  Table 5-3 shows the baseline 

characteristics post-imputation for the MN field center participants, non-MN field 

center participants, and the full cohort.  Counts were calculated by averaging across the 

m=40 imputations.  In general, Minnesotans were more highly educated and exercised 

more.  A greater proportion of Minnesotans were current alcohol drinkers, but fewer 

were current smokers. 

5.6.2 POST IMPUTATION REGRESSION 

RESULTS:  PROLONGED QTC. 

For the prolonged QTc analysis we excluded those with prevalent CVD, those 

who used antiarrhythmic medications, and those whose QRS duration was greater than 

120 ms.  Figure 5-4 shows the inclusion/exclusion results for the prolonged QTc analysis.  

Average counts across the 40 imputations were n=8,791 full cohort; n=3,061 MN only. 

5.6.2.1 ALA, DHA+EPA, ALA+DHA+EPA 
and Prolonged QTc 

In both the full cohort and the MN-only analyses, quartiles of plasma ALA, 

DHA+EPA, or ALA+DHA+EPA were not associated with prolonged QTc.  See tables 5-4, 5-

5, and 5-6 and figures 5-5, 5-6, and 5-7. 
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5.6.2.2 Full Cohort vs. Minnesota-Only:  
Prolonged QTc 

Results for the imputed exposures (full cohort) analyses were similar to those for 

the observed exposures (MN-only).  There were no instances where the point estimate 

in one population suggested lower odds but the other population suggested higher 

odds.  Furthermore, the point estimate for one population was always within the 95% 

confidence interval for the point estimate of the other population.  Finally, the 

confidence intervals for the MN analyses were always wider than those for the full 

cohort analyses. Figure 5-8 shows all nine analyses. 

5.6.3 POST IMPUTATION REGRESSION 

RESULTS:  HBA1C. 

Analyses investigating the HbA1c outcome were limited to those with T2D at visit 

2.  Additionally, the exclusion criteria for the HbA1c outcome was prevalent CVD at visit 

1 or visit 2.  Figure 5-4 shows the inclusion/exclusion criteria.  Final counts were n=1,019 

for the full cohort; and n=299 for the MN population. 

5.6.3.1 ALA, DHA+EPA, ALA+DHA+EPA 
and HbA1c 

In both the full cohort and the MN-only analyses, there was no association of 

quartiles of plasma ALA with HbA1c.  See Table 5-7 and Figure 5-9.  

In both the full cohort and the MN-only analyses, there was a suggestion that 

higher concentrations of DHA+EPA and of ALA+DHA+EPA are associated with lower 

HbA1c in those with T2D, although the association was not statistically significant 

(ALA+DHA+EPA Q4 vs. Q1 percentage point difference (95% CI); Model 3; full cohort: -

0.4 (-1.0, 0.2); MN-only: -0.6 (-1.3, 0.2)).  See tables 5-8 and 5-9 and figures 5-10 and 5-

11. 
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5.6.3.2 Full Cohort vs. Minnesota-Only:  
HbA1c 

Results for the imputed exposures (full cohort) analyses were similar to those for 

the observed exposures (MN-only).  There were only two instances where the point 

estimate in one population suggested lower HbA1c values with higher concentrations of 

omega-3 PUFAs and the other population suggested higher HbA1c with higher 

concentrations (Q4 vs. Q1, ALA, Model 3; Q2 vs. Q1, ALA+DHA+EPA, Model 1).  

Regardless, the point estimate for one population was always within the 95% 

confidence interval for the point estimate of the other population.  Finally, the 

confidence intervals for the MN analyses were always wider than those for the full 

cohort analyses.  Figure 5-12 shows all nine analyses. 

5.6.4 POST IMPUTATION REGRESSION 

RESULTS:  INCIDENT T2D. 

Our exclusion criteria for incident T2D analysis were prevalent CVD or T2D at 

visit 1.  Figure 5-4 shows the inclusion/exclusion criteria for the incident T2D analysis.  

Final counts were n=8,638 full cohort; n=3,131 MN only.  In all analyses, the 

proportional hazards assumption was not violated (data not shown). 

5.6.4.1 ALA, DHA+EPA, ALA+DHA+EPA 
and Incident T2D 

In both the full cohort and the MN-only analyses, there was an association of 

quartiles of plasma ALA with incident T2D, with higher circulating concentrations 

associated with lower risk (Q4 vs. Q1 HR (95% CI), Model 1; full cohort: 0.6 (0.5, 0.9); 

MN-only: 0.6 (0.4, 0.9)), although this association disappeared after adjustment (Q4 vs. 

Q1 HR (95% CI), Model 3; full cohort: 0.8 (0.6, 1.1); MN-only: 0.9 (0.6, 1.3)).  See Table 5-

10 and Figure 5-13.  
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In both the full cohort and the MN-only analyses, there was no association of 

DHA+EPA or ALA+DHA+EPA with incident T2D. See tables 5-11 and 5-12 and figures 5-14 

and 5-15. 

5.6.4.2 Full Cohort vs. Minnesota-Only:  
Incident T2D 

Results for the imputed exposures (full cohort) analyses were similar to those for 

the observed exposures (MN-only).  There were no instances where the point estimate 

in one population suggested lower incidence of T2D in those with higher concentrations 

of omega-3 PUFAs and the other population suggested higher incidence, although there 

were multiple instances where one hazard ratio rounded to 1.0 and the other did not.  

Furthermore, the point estimate for one population was always within the 95% 

confidence interval for the point estimate of the other population.  Finally, the 

confidence intervals for the MN analyses were always wider than those for the full 

cohort analyses.  Figure 5-16 shows all nine analyses. 

5.7 DISCUSSION 

In this population-based study of middle aged adults, our investigation of the 

relationship among plasma omega-3 PUFA observed in MN participants suggested that 

higher circulating concentrations of ALA may be associated with lower incidence of T2D.  

The data also suggested that circulating concentrations of DHA+EPA in those with T2D 

may be associated with lower HbA1c.  Using the MN data to impute plasma values for 

other white participants at other field centers yielded similar results, and the standard 

errors were lower for the full cohort analyses compared to the MN-only analyses as can 

be seen by the narrower confidence intervals. 

Our plasma-exposure results were different from the FFQ results for some 

exposures and outcomes.  Specifically, higher intake of ALA (grams/day) was associated 

with higher incidence of T2D in Manuscript 1 results (HR 4.0, 95% CI: 1.7, 9.6, comparing 
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extreme quartiles) whereas there was a nonsignificant trend in the plasma analysis 

towards lower incidence of T2D with higher levels of circulating ALA.  Similarly, the 

HbA1c results from Manuscript 1 indicated that higher versus lower intakes of omega-3 

PUFAs, especially ALA, were associated with approximately 1 percentage point higher 

HbA1c values in those with T2D.  In contrast, plasma analyses suggested no relationship 

between circulating concentrations of ALA and HbA1c, and further suggested a non-

significant association of DHA+EPA and ALA+DHA+EPA with HbA1c, with higher 

concentrations non-significantly associated with lower HbA1c values. 

These differences could be due to measurement error in FFQ data that was 

corrected using biomarker data.  However, other plausible explanations exist.  Disease 

status (T2D) could limit the absorption of omega-3 PUFAs, so higher plasma levels could 

be an indicator for less disease (and thus result in a favorable association).  There could 

also be unmeasured confounding – dietary variables that influence the bioavailability of 

omega-3 PUFAs that that were not included in our imputation model, or geographically 

differences in the omega-3 content of foods in MN compared to other areas of the 

United States.  Finally, there was evidence of effect modification by race in the 

relationship of dietary intake of fish and seafood with HbA1c values, with whites 

showing null-to-favorable associations with seafood exposures.  Thus, differences could 

be due to limiting analyses to whites only. 

The approach used in this study was motivated by MIME, where we sought to 

address dietary measurement error by utilizing a plasma biomarker sub-study.  Other 

researchers have combined biomarker data with FFQ data where participants had both 

measures [121, 128] but, to our knowledge, ours was the first to utilize multiple 

imputation in harnessing the relationship between dietary intake and circulating 

biomarker values and expanding the analysis beyond those participants in the sub-

study.   
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In our own analysis, our comparison of the observed and imputed results is akin 

to comparing a complete case analysis (observed MN results) to imputed results (full 

cohort).  A minor difference is that our observed MN results had observed plasma 

values, but missing covariate values were imputed using MICE.   

Our results are similar to other studies comparing multiple imputation results to 

complete case analysis where point estimates were similar and confidence 

intervals/standard errors were more narrow/smaller [238, 239].  In a case-control study 

of diet and breast cancer, multiple imputation had similar point estimates and smaller 

standard errors compared to complete case analysis, but imputation also revealed 

associations between other covariates and breast cancer that the complete case 

analysis did not [240].  

One study did not perform a complete case analysis, but their design does 

demonstrate the viability of imputing a large number of missing values and obtaining an 

unbiased measure of association [241].  This study utilized an existing case-cohort 

design with waist circumference data available for the entire cohort.  The authors 

simulated a multiple imputation analysis by deleting waist circumference values for all 

participants except those the comparison sample.  This resulted in approximately 90% 

missing values for the exposure of interest.  In their analysis, the association of waist 

circumference with incident T2D using imputed data was similar to the association 

calculated using full cohort data, demonstrating that multiple imputation can provide 

unbiased estimates of association when compared to those obtained with observed 

values [241]. 

In general, multiple imputation is more efficient than complete case analysis 

when data are missing completely at random and is less biased when data are MAR [14].  

Other missing data mechanisms can lead to increased bias with multiple imputation, 

and merely comparing standard errors is insufficient because that does not account for 

bias – standard errors may be smaller because the estimate was biased towards the null 
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[14].  In general, methodologists suggest that multiple imputation and complete case 

analysis offer a tradeoff between bias and precision [114, 213] and that the increase in 

precision is reduced as the size of the validation sample increases [242].   

5.8 CONCLUSION 

While our results were predominately null, the similarity of our results between 

the observed and the imputed populations and the narrower confidence intervals in the 

imputed full cohort results suggest we gained efficiency/precision through imputation.  

Utilizing biomarker data in conjunction with self-report dietary data could be an 

important tool in investigating diet/disease relationships.  
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5.9 FIGURES 

 

Figure 5-1. Study design depiction with variable temporality, ARIC, 1987-1998 
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Figure 5-2. Assignment of outcome and time to event data for incident T2D analysis, ARIC, 1987-1998. 
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Figure 5-3. Variables and regression techniques used in multiple imputation model, ARIC, 1987-1998. 

 

 

 

 

Figure 5-4. Inclusion/Exclusion criteria, ARIC, 1987-1998. 

  

Post-Imputation Exposures Outcome or Used in Derivation of Outcome

Plasma ALA Age Saturated Fatty Acids g/day Heart Rate

Plasma DHA Sex
D

Diastolic Blood Pressure QT duration

Plasma EPA Education LevelLR
Systolic Blood Pressure HbA1c

Dietary Predictors of Plasma Omega-3 PUFA BMI HypertensionLR Antihyperglycemic medications at Visit 2D

ALA grams/day Indices from Baecke (Work, Sport, Leisure) HDL Time to event

EPA grams/day Smoking status (current, former, never)LR
LDL Censored/T2DD

DHA grams/day Drinking status (current, former, never)D
Triglycerides Inclusion Exclusion Criteria

Fish servings/week (tuna, dark, other, shell)* Drinking amount g/day QRS duration

TCAL per day Type 2 Diabetes at Visit 2
D

Trans fatty acids g/day Anti-arrhythmic medicationsLR

Dietary Fiber g/day Other Relevant Variables
D Modeled using Discriminant Function *Each parenthetical is a separate continuous variable Fasting Blood Glucose, T2D

D

LR Modeled using Logistic Regression Unlabeled variables used linear regression.  Variables Visit 1 unless noted. Antihyperglycemic medicationsD

Omega-6 fatty acids grams/day 

(octadecadienoic acid, eicosatetraenoic acid, 

and docosapentaenoic acid)*

Post-Imputation Model Covariates

Visit 1 Participants (MN, NC, MD) 11,212 3,861 Visit 1 Participants (MN Only)

With T2D @ Visit 2 1,342 377 With T2D @ Visit 2

Prolonged QTc

QRS>120 420 150 QRS>120

anti-arrhythmic Rx 1,593 533 anti-arrhythmic Rx

V1 Prevalent CVD 1,086 323 V1 Prevalent CVD

Prol QTc (all exclusions) 2,421 800 Prol QTc (all exclusions)

Total N 8,791 3,061 Total N

HbA1c

V1 Prevalent CVD 273 67 V1 Prevalent CVD

V2 Prevalent CVD 196 46 V2 Prevalent CVD

HbA1c - T2D only (all exclusions) 323 78 HbA1c - T2D only (all exclusions)

Total N 1,019 299 Total N

Incident T2D

Exclusions for Prevalant Disease 2,574 730 Exclusions for Prevalent Disease

Total N 8,638 3,131 Total N



   144 

 

 

Figure 5-5. Odds ratios for prolonged QTc by quartiles of ALA; fully adjusted model; multiple imputation 
vs. observed. 

 

 

Figure 5-6. Odds ratios for prolonged QTc by quartiles of DHA+EPA; fully adjusted model; multiple 
imputation vs. observed plasma values, ARIC, 1987-1989. 
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Figure 5-7. Odds ratios for prolonged QTc by quartiles of ALA+DHA+EPA; fully adjusted model; multiple 
imputation vs. observed plasma values, ARIC, 1987-1989. 

 

 

 

Figure 5-8. Odds ratios for prolonged QTc by quartiles of ALA, DHA+EPA, and ALA+DHA+EPA; all 
covariate adjustment models; multiple imputation vs. observed plasma values, ARIC, 1987-1989. 
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Figure 5-9. Deltas in HbA1c by quartiles of ALA; fully adjusted model; multiple imputation vs. observed 
plasma values, ARIC, 1987-1993. 

 

 

Figure 5-10. Deltas in HbA1c by quartiles of DHA+EPA; fully adjusted model; multiple imputation vs. 
observed plasma values, ARIC, 1987-1993. 
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Figure 5-11. Deltas in HbA1c by quartiles of ALA+DHA+EPA; fully adjusted model; multiple imputation 
vs. observed plasma values, ARIC, 1987-1993. 

 

 
Figure 5-12. Percentage point deltas in HbA1c QTc by quartiles of ALA, DHA+EPA, and ALA+DHA+EPA; all 
covariate adjustment models; multiple imputation vs. observed plasma values, ARIC, 1987-1993.  
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Figure 5-13. Hazard ratios for incident T2D by quartiles of ALA; fully adjusted model; multiple 
imputation vs. observed plasma values, ARIC, 1987-1998. 

 

 

Figure 5-14. Hazard ratios for incident T2D by quartiles of DHA+EPA; fully adjusted model; multiple 
imputation vs. observed plasma values, ARIC, 1987-1998. 
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Figure 5-15. Hazard ratios for incident T2D by quartiles of ALA+DHA+EPA; fully adjusted model; multiple 
imputation vs. observed plasma values, ARIC, 1987-1998. 

 

 

 

Figure 5-16. Hazard ratios for incident T2D by quartiles of ALA, DHA+EPA, and ALA+DHA+EPA; all 
covariate adjustment models; multiple imputation vs. observed plasma values, ARIC, 1987-1993.  
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5.10 TABLES 

Table 5-1. Relative Efficiency of Multiple Imputation Datasets (m) Given Percentage of Missingness (λ). 
[18] 

 
λ 

M 25% 50% 75% 90% 

3 0.92 0.86 0.80 0.77 

5 0.95 0.91 0.87 0.85 

10 0.98 0.95 0.93 0.92 

20 0.99 0.98 0.96 0.96 
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Table 5-2. Pre- and post-imputation characteristics for variables with missing values in white ARIC 
participants (n=11,212), 1987-1998. 

Variable Number 

Observed 

Values 

Number 

Missing 

Values 

% 

Missing 

Variable Category Relative 

Efficiency 

Plasma ALA 3,861 7,351 65.6% Exposure 97.9% 

Plasma DHA 3,861 7,351 65.6% Exposure 98.1% 

Plasma EPA 3,861 7,351 65.6% Exposure 98.2% 

HbA1c 10,338 874 7.8% Outcome 99.9% 

Antihyperglycemic Rx at Visit 2 10,497 715 6.4% Outcome 99.8%* 

QT Duration 11,094 118 1.1% Outcome 100.0% 

Heart Rate 11,094 118 1.1% Outcome 100.0% 

LDL 11,001 211 1.9% Confounder 99.9% 

Sport Physical Activity 11,179 33 0.3% Confounder 100.0% 

HDL 11,188 24 0.2% Confounder 100.0% 

Triglycerides 11,188 24 0.2% Confounder 100.0% 

Alcohol Intake 11,196 16 0.1% Confounder 100.0% 

Education Level 11,199 13 0.1% Confounder 100.0%* 

Drinking Status 11,202 10 0.1% Confounder 100.0%* 

Leisure Physical Activity 11,204 8 0.1% Confounder 100.0% 

BMI 11,204 8 0.1% Confounder 100.0% 

Work Physical Activity 11,205 7 0.1% Confounder 100.0% 

Smoking Status 11,205 7 0.1% Confounder 100.0%* 

Diastolic Blood Pressure 11,208 4 0.0% Confounder 100.0% 

Systolic Blood Pressure 11,208 4 0.0% Confounder 100.0% 

T2D (Visit 2) 10,476 736 6.6% Inclusion/Exclusion 99.8%* 

Fasting Blood Glucose (Visit 2) 10,486 726 6.5% Related Variable 99.9% 

QRS Duration 11,091 121 1.1% Inclusion/Exclusion 100.0% 

T2D (Visit 1) 11,187 25 0.2% Related Variable 100.0%* 

Fasting Blood Glucose (Visit 1) 11,200 12 0.1% Related Variable 100.0% 

*Calculated using (1+(% missing/40))-1 
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Table 5-3. Baseline characteristics of ARIC participants (n=11,212) by field center, 1987–1989. Values 
correspond to mean N (%) or Mean (min, max), m=40 imputations. 

 
 Non-MN MN Full Cohort 

N  7,351 3,861 11,212 

Sociodemographic Variable    

 Age (years) 54.6 (44, 66) 54.0 (44, 65) 54.4 (44, 66) 

 Male 3,428 (49.9%) 1,855 (50.0%) 5,283 (49.9%) 

 Education    

 Basic 1,673 (22.8%) 239 (6.2%) 1,913 (17.1%) 

 Intermediate 3,267 (44.4%) 1,812 (46.9%) 5,079 (45.3%) 

 Advanced 2,410 (32.8%) 1,810 (46.9%) 4,221 (37.6%) 

Lifestyle Variables    

 BMI 27.0 (14, 56) 27.1 (14, 51) 27.0 (14, 56) 

 Physical Activity^    

 Low 2,817 (38.3%) 1,156 (29.9%) 3,973 (35.4%) 

 Medium 2,345 (31.9%) 1,314 (34.0%) 3,659 (32.6%) 

 High 2,189 (29.8%) 1,391 (36.0%) 3,580 (31.9%) 

 Current Smokers 1,907 (25.9%) 862 (22.3%) 2,769 (24.7%) 

 Current Alcohol Drinkers 4,061 (55.2%) 3,213 (83.2%) 7,274 (64.9%) 

Dietary Covariates    

 Total Energy Intake (kcal/day) 1,644 (501, 4,179) 1,640 (508, 4,176) 1,642 (501, 4,179) 

 Dietary Fiber (g/day) 18.4 (1, 82) 16.3 (2, 73) 17.7 (1, 82) 

 Saturated Fats (g/day) 22.4 (1, 82) 22.9 (3, 90) 22.6 (1, 90) 

 Trans Fats (g/day) 2.9 (0, 17) 3.2 (0, 17) 3.0 (0, 17) 

Clinical Covariates    

 Hypertension 2,061 (44.9%) 976 (43.5%) 3,037 (44.4%) 

 Systolic Blood Pressure 118.3 (61, 208) 118.8 (61, 198) 118.5 (61, 208) 

 Diastolic Blood Pressure 70.4 (12, 130) 73.7 (42, 116) 71.5 (12, 130) 

 High Density Lipoprotein 49.6 (4, 135) 52.1 (12, 143) 50.5 (4, 143) 

 Low Density Lipoprotein 138.7 (1, 505) 137.2 (4, 452) 138.2 (1, 505) 

 Triglycerides 142.3 (1, 1876) 129.6 (4, 1599) 137.9 (1, 1876) 

Nutrient Intake (g/day)    

 Alpha-linolenic acid (ALA) 0.7 (0, 3) 0.7 (0, 3) 0.7 (0, 3) 

 Docosahexaenoic acid (DHA) 0.2 (0, 4) 0.2 (0, 2) 0.2 (0, 4) 

 Eicosapentaenoic acid (EPA) 0.1 (0, 2) 0.1 (0, 1) 0.1 (0, 2) 

^Work+Leisure+Sport Averaged and Divided into Low/Medium/High   
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Table 5-4. Association of plasma quartiles of ALA with prolonged QTc, ARIC, 1987-1989.  Odds ratios and 
95% confidence intervals. 

   Q1 Q2 Q3 Q4 

Fu
ll 

C
o

h
o

rt
  

(I
m

p
u

te
d

) 

ALA FA% mean (min, max) 0.1 (0.0, 0.1) 0.1 (0.1, 0.1) 0.2 (0.1, 0.2) 0.2 (0.2, 0.4) 

 Total N 2,277 2,123 2,208 2,184 
 Prolonged QTc (%) 19 (0.8%) 19 (0.9%) 16 (0.7%) 17 (0.8%) 

 Model 1 1.0 (ref) 1.0 (0.5, 2.2) 0.8 (0.3, 2.1) 0.8 (0.3, 1.9) 
 Model 2 1.0 (ref) 1.1 (0.5, 2.2) 0.8 (0.3, 2.1) 0.8 (0.3, 2.0) 

 Model 3 1.0 (ref) 1.1 (0.5, 2.3) 0.8 (0.3, 2.2) 0.9 (0.4, 2.2) 

M
in

n
es

o
ta

 O
n

ly
 

(O
b

se
rv

ed
) 

ALA FA% mean (min, max) 0.1 (0.0, 0.1) 0.1 (0.1, 0.1) 0.2 (0.2, 0.2) 0.2 (0.2, 0.4) 

 Total N 900 779 658 725 

 Prolonged QTc (%) 6 (0.7%) 7 (0.9%) 2 (0.3%) 5 (0.7%) 

 Model 1 1.0 (ref) 1.3 (0.4, 3.9) 0.4 (0.1, 1.9) 0.8 (0.2, 2.7) 

 Model 2 1.0 (ref) 1.4 (0.4, 4.3) 0.4 (0.1, 2.1) 0.9 (0.3, 3.2) 

 Model 3 1.0 (ref) 1.4 (0.5, 4.5) 0.4 (0.1, 2.1) 0.9 (0.2, 3.3) 

Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy 
intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and 
amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables 
(hypertension, HDL, LDL, triglycerides) 
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Table 5-5. Association of plasma quartiles of DHA+EPA with prolonged QTc, ARIC, 1987-1989.  Odds 
ratios and 95% confidence intervals. 

   Q1 Q2 Q3 Q4 

Fu
ll 

C
o

h
o

rt
 (

im
p

) 

DHA + EPA FA% mean (min, max) 2.3 (0.3, 2.8) 3.1 (2.8, 3.4) 3.7 (3.4, 4.1) 4.9 (4.1, 14.0) 

 Total N 2,199 2,197 2,197 2,198 
 Prolonged QTc (%) 20 (0.9%) 15 (0.7%) 15 (0.7%) 21 (0.9%) 

 Model 1 1.0 (ref) 0.7 (0.3, 1.7) 0.7 (0.3, 1.7) 0.9 (0.4, 2.1) 
 Model 2 1.0 (ref) 0.7 (0.3, 1.8) 0.7 (0.3, 1.8) 1.0 (0.4, 2.3) 

 Model 3 1.0 (ref) 0.7 (0.3, 1.8) 0.7 (0.3, 1.8) 0.9 (0.4, 2.3) 

M
in

n
es

o
ta

 O
n

ly
 (

o
b

s)
 

DHA + EPA FA% mean (min, max) 2.4 (0.7, 2.8) 3.1 (2.8, 3.4) 3.7 (3.4, 4.1) 5.1 (4.1, 12.2) 

 Total N 869 943 704 545 

 Prolonged QTc (%) 8 (0.9%) 6 (0.6%) 2 (0.3%) 4 (0.7%) 

 Model 1 1.0 (ref) 0.6 (0.2, 1.8) 0.3 (0.1, 1.2) 0.7 (0.2, 2.3) 

 Model 2 1.0 (ref) 0.6 (0.2, 1.9) 0.2 (0.1, 1.2) 0.7 (0.2, 2.4) 

 Model 3 1.0 (ref) 0.6 (0.2, 1.9) 0.3 (0.1, 1.3) 0.7 (0.2, 2.5) 

obs: observed; imp: imputed 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy 
intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and 
amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables 
(hypertension, HDL, LDL, triglycerides) 
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Table 5-6. Association of plasma quartiles of ALA+DHA+EPA with prolonged QTc, ARIC, 1987-1989.  
Odds ratios and 95% confidence intervals. 

   Q1 Q2 Q3 Q4 

Fu
ll 

C
o

h
o

rt
 (

im
p

) 

ALA + DHA FA% mean (min, max) 2.4 (0.4, 2.9) 3.2 (2.9, 3.5) 3.9 (3.5, 4.2) 5.0 (4.2, 14.1) 

 + EPA Total N 2,199 2,198 2,197 2,197 
 Prolonged QTc (%) 20 (0.9%) 15 (0.7%) 16 (0.7%) 21 (0.9%) 

 Model 1 1.0 (ref) 0.7 (0.3, 1.6) 0.7 (0.3, 1.7) 0.9 (0.4, 2.0) 
 Model 2 1.0 (ref) 0.7 (0.3, 1.7) 0.8 (0.3, 1.9) 0.9 (0.4, 2.3) 

 Model 3 1.0 (ref) 0.7 (0.3, 1.7) 0.8 (0.3, 1.9) 0.9 (0.4, 2.3) 

M
in

n
es

o
ta

 O
n

ly
 (

o
b

s)
 

ALA + DHA FA% mean (min, max) 2.5 (0.9, 2.9) 3.2 (2.9, 3.5) 3.8 (3.5, 4.2) 5.2 (4.3, 12.3) 

 + EPA Total N 869 939 710 544 

 Prolonged QTc (%) 8 (0.9%) 5 (0.5%) 3 (0.4%) 4 (0.7%) 

 Model 1 1.0 (ref) 0.5 (0.2, 1.6) 0.3 (0.1, 1.4) 0.7 (0.2, 2.2) 

 Model 2 1.0 (ref) 0.5 (0.2, 1.7) 0.3 (0.1, 1.4) 0.7 (0.2, 2.4) 

 Model 3 1.0 (ref) 0.5 (0.2, 1.7) 0.4 (0.1, 1.5) 0.7 (0.2, 2.6) 

obs: observed; imp: imputed 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy 
intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and 
amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables 
(hypertension, HDL, LDL, triglycerides) 
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Table 5-7. Association of plasma quartiles of ALA with HbA1c, ARIC, 1987-1993.  Percentage point deltas 
and 95% confidence intervals. 

   Q1 Q2 Q3 Q4 

Fu
ll 

C
o

h
o

rt
 (

im
p

) 

ALA FA% mean (min, max) 0.1 (0.0, 0.1) 0.1 (0.1, 0.1) 0.2 (0.1, 0.2) 0.2 (0.2, 0.3) 

 Total N 331 266 230 192 
 HbA1c Mean (Std) 7.6 (2.0) 7.6 (2.1) 7.7 (2.1) 7.7 (2.2) 

 Model 1 1.0 (ref) 0.0 (-0.5, 0.4) 0.0 (-0.5, 0.5) -0.1 (-0.6, 0.5) 
 Model 2 1.0 (ref) 0.0 (-0.4, 0.4) 0.0 (-0.5, 0.4) -0.1 (-0.6, 0.5) 

 Model 3 1.0 (ref) 0.0 (-0.5, 0.4) 0.0 (-0.4, 0.5) 0.0 (-0.6, 0.5) 

M
in

n
es

o
ta

 O
n

ly
 (

o
b

s)
 

ALA FA% mean (min, max) 0.1 (0.0, 0.1) 0.1 (0.1, 0.1) 0.2 (0.2, 0.2) 0.2 (0.2, 0.3) 

 Total N 116 87 49 47 

 HbA1c Mean (Std) 7.4 (2.0) 7.5 (2.2) 7.6 (2.2) 7.3 (2.2) 

 Model 1 1.0 (ref) 0.1 (-0.5, 0.6) 0.0 (-0.7, 0.7) -0.3 (-1.1, 0.4) 

 Model 2 1.0 (ref) 0.1 (-0.5, 0.7) 0.1 (-0.6, 0.8) -0.3 (-1.0, 0.5) 

 Model 3 1.0 (ref) 0.0 (-0.6, 0.6) 0.1 (-0.6, 0.9) -0.2 (-1.0, 0.5) 

obs: observed; imp: imputed 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy 
intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and 
amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables 
(hypertension, HDL, LDL, triglycerides) 
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Table 5-8. Association of plasma quartiles of DHA+EPA with HbA1c, ARIC, 1987-1993.  Percentage point 
deltas and 95% confidence intervals. 

   Q1 Q2 Q3 Q4 

Fu
ll 

C
o

h
o

rt
 (

im
p

) 

 DHA FA% mean (min, max) 2.3 (0.6, 2.8) 3.1 (2.8, 3.4) 3.7 (3.4, 4.1) 4.9 (4.1, 10.0) 

 + EPA Total N 237 247 259 276 
 HbA1c Mean (Std) 7.8 (2.3) 7.8 (2.1) 7.5 (1.9) 7.5 (1.9) 

 Model 1 1.0 (ref) 0.0 (-0.5, 0.5) -0.3 (-0.8, 0.3) -0.3 (-0.9, 0.3) 
 Model 2 1.0 (ref) 0.0 (-0.6, 0.5) -0.3 (-0.9, 0.2) -0.4 (-1.0, 0.2) 

 Model 3 1.0 (ref) -0.1 (-0.6, 0.4) -0.3 (-0.8, 0.2) -0.4 (-1.0, 0.2) 

M
in

n
es

o
ta

 O
n

ly
 (

o
b

s)
 

 DHA FA% mean (min, max) 2.4 (1.7, 2.8) 3.1 (2.8, 3.4) 3.7 (3.4, 4.1) 5.1 (4.1, 10.0) 

 + EPA Total N 80 94 72 52 

 HbA1c Mean (Std) 7.6 (2.5) 7.9 (2.2) 7.1 (1.6) 7.0 (1.9) 

 Model 1 1.0 (ref) 0.3 (-0.4, 0.9) -0.5 (-1.2, 0.2) -0.5 (-1.2, 0.2) 

 Model 2 1.0 (ref) 0.1 (-0.6, 0.7) -0.6 (-1.3, 0.1) -0.6 (-1.4, 0.1) 

 Model 3 1.0 (ref) -0.1 (-0.7, 0.6) -0.6 (-1.3, 0.1) -0.6 (-1.3, 0.2) 

obs: observed; imp: imputed 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy 
intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and 
amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables 
(hypertension, HDL, LDL, triglycerides) 
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Table 5-9. Association of plasma quartiles of ALA+DHA+EPA with HbA1c, ARIC, 1987-1993.  Percentage 
point deltas and 95% confidence intervals. 

   Q1 Q2 Q3 Q4 

Fu
ll 

C
o

h
o

rt
 (

im
p

) 

 ALA FA% mean (min, max) 2.4 (0.7, 2.9) 3.2 (2.9, 3.5) 3.9 (3.5, 4.2) 5.0 (4.3, 10.2) 

 + DHA Total N 242 246 259 273 

 + EPA HbA1c Mean (Std) 7.8 (2.3) 7.8 (2.1) 7.5 (1.9) 7.5 (1.9) 

 Model 1 1.0 (ref) -0.1 (-0.6, 0.5) -0.3 (-0.9, 0.2) -0.4 (-0.9, 0.2) 
 Model 2 1.0 (ref) -0.1 (-0.6, 0.4) -0.4 (-0.9, 0.2) -0.5 (-1.1, 0.1) 

 Model 3 1.0 (ref) -0.1 (-0.6, 0.4) -0.4 (-0.9, 0.2) -0.4 (-1.0, 0.2) 

M
in

n
es

o
ta

 O
n

ly
 (

o
b

s)
 

 ALA FA% mean (min, max) 2.5 (1.8, 2.9) 3.2 (2.9, 3.5) 3.9 (3.5, 4.2) 5.3 (4.3, 10.2) 

 + DHA Total N 84 91 73 51 

 + EPA HbA1c Mean (Std) 7.7 (2.5) 7.8 (2.1) 7.0 (1.6) 7.1 (1.9) 

 Model 1 1.0 (ref) 0.1 (-0.5, 0.8) -0.7 (-1.3, 0.0) -0.6 (-1.3, 0.2) 

 Model 2 1.0 (ref) -0.1 (-0.8, 0.6) -0.8 (-1.5, -0.1) -0.7 (-1.4, 0.1) 

 Model 3 1.0 (ref) -0.2 (-0.8, 0.5) -0.7 (-1.4, 0.0) -0.6 (-1.3, 0.2) 

obs: observed; imp: imputed 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy 
intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and 
amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables 
(hypertension, HDL, LDL, triglycerides) 
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Table 5-10. Association of plasma quartiles of ALA with incident T2D, ARIC, 1987-1998.  Hazard Ratios 
and 95% confidence intervals. 

   Q1 Q2 Q3 Q4 

Fu
ll 

C
o

h
o

rt
 (

im
p

) 

ALA FA% mean (min, max) 0.1 (0.0, 0.1) 0.1 (0.1, 0.1) 0.2 (0.1, 0.2) 0.2 (0.2, 0.4) 

 Total N 2,199 2,120 2,189 2,130 
 Incident T2D (%) 243 (11.0%) 208 (9.8%) 165 (7.5%) 140 (6.6%) 

 Model 1 1.0 (ref) 0.9 (0.7, 1.2) 0.7 (0.5, 1.0) 0.6 (0.5, 0.9) 
 Model 2 1.0 (ref) 1.0 (0.7, 1.2) 0.8 (0.6, 1.0) 0.7 (0.5, 1.0) 

 Model 3 1.0 (ref) 1.0 (0.8, 1.3) 0.8 (0.6, 1.1) 0.8 (0.6, 1.1) 

M
in

n
es

o
ta

 O
n

ly
 (

o
b

s)
 

ALA FA% mean (min, max) 0.1 (0.0, 0.1) 0.1 (0.1, 0.1) 0.2 (0.2, 0.2) 0.2 (0.2, 0.4) 

 Total N 902 787 709 733 

 Incident T2D (%) 89 (9.9%) 74 (9.4%) 36 (5.0%) 41 (5.6%) 

 Model 1 1.0 (ref) 1.0 (0.7, 1.3) 0.6 (0.4, 0.8) 0.6 (0.4, 0.9) 

 Model 2 1.0 (ref) 1.2 (0.9, 1.6) 0.7 (0.4, 1.0) 0.7 (0.5, 1.1) 

 Model 3 1.0 (ref) 1.2 (0.9, 1.7) 0.7 (0.4, 1.0) 0.9 (0.6, 1.3) 

obs: observed; imp: imputed 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy 
intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and 
amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables 
(hypertension, HDL, LDL, triglycerides) 
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Table 5-11. Association of plasma quartiles of DHA+EPA with incident T2D, ARIC, 1987-1998.  Hazard 
Ratios and 95% confidence intervals. 

   Q1 Q2 Q3 Q4 

Fu
ll 

C
o

h
o

rt
 (

im
p

) 

 DHA FA% mean (min, max) 2.3 (0.3, 2.8) 3.1 (2.8, 3.4) 3.7 (3.4, 4.1) 4.9 (4.1, 14.0) 

 + EPA Total N 2,161 2,159 2,159 2,158 
 Incident T2D (%) 189 (8.7%) 187 (8.7%) 188 (8.7%) 191 (8.9%) 

 Model 1 1.0 (ref) 1.0 (0.8, 1.3) 1.0 (0.8, 1.4) 1.1 (0.8, 1.5) 
 Model 2 1.0 (ref) 1.0 (0.8, 1.4) 1.1 (0.8, 1.4) 1.2 (0.8, 1.6) 

 Model 3 1.0 (ref) 1.0 (0.8, 1.3) 1.0 (0.8, 1.4) 1.1 (0.8, 1.6) 

M
in

n
es

o
ta

 O
n

ly
 (

o
b

s)
 

 DHA FA% mean (min, max) 2.4 (0.7, 2.8) 3.1 (2.8, 3.4) 3.7 (3.4, 4.1) 5.0 (4.1, 12.2) 

 + EPA Total N 890 950 718 573 

 Incident T2D (%) 67 (7.5%) 74 (7.8%) 55 (7.7%) 44 (7.6%) 

 Model 1 1.0 (ref) 1.1 (0.8, 1.5) 1.1 (0.8, 1.6) 1.1 (0.7, 1.6) 

 Model 2 1.0 (ref) 1.0 (0.7, 1.4) 1.0 (0.7, 1.5) 1.2 (0.8, 1.8) 

 Model 3 1.0 (ref) 1.0 (0.7, 1.4) 0.9 (0.7, 1.4) 1.1 (0.7, 1.7) 

obs: observed; imp: imputed 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy 
intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and 
amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables 
(hypertension, HDL, LDL, triglycerides) 
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Table 5-12. Association of plasma quartiles of ALA+DHA+EPA with incident T2D, ARIC, 1987-1998.  
Hazard Ratios and 95% confidence intervals. 

   Q1 Q2 Q3 Q4 

Fu
ll 

C
o

h
o

rt
 (

im
p

) 

 ALA FA% mean (min, max) 2.4 (0.4, 2.9) 3.2 (2.9, 3.5) 3.9 (3.5, 4.2) 5.0 (4.2, 14.1) 

 + DHA Total N 2,161 2,160 2,159 2,158 

 + EPA Incident T2D (%) 186 (8.8%) 188 (8.7%) 188 (8.7%) 189 (8.7%) 

 Model 1 1.0 (ref) 1.0 (0.8, 1.3) 1.0 (0.8, 1.3) 1.1 (0.8, 1.4) 
 Model 2 1.0 (ref) 1.0 (0.8, 1.3) 1.1 (0.8, 1.4) 1.1 (0.8, 1.6) 

 Model 3 1.0 (ref) 1.0 (0.8, 1.3) 1.0 (0.8, 1.4) 1.1 (0.8, 1.6) 

M
in

n
es

o
ta

 O
n

ly
 (

o
b

s)
 

 ALA FA% mean (min, max) 2.5 (0.9, 2.9) 3.2 (2.9, 3.5) 3.8 (3.5, 4.2) 5.2 (4.3, 12.3) 

 + DHA Total N 892 945 725 569 

 + EPA Incident T2D (%) 67 (7.6%) 73 (7.7%) 56 (7.8%) 43 (7.3%) 

 Model 1 1.0 (ref) 1.1 (0.8, 1.5) 1.1 (0.8, 1.6) 1.1 (0.7, 1.6) 

 Model 2 1.0 (ref) 1.0 (0.7, 1.4) 1.0 (0.7, 1.5) 1.2 (0.8, 1.7) 

 Model 3 1.0 (ref) 0.9 (0.7, 1.3) 1.0 (0.7, 1.4) 1.1 (0.7, 1.7) 

obs: observed; imp: imputed 
Model 1 adjusted for age, sex, sociodemographic variables (race, center, education), and total energy 
intake. 
Model 2 further adjusted for lifestyle variables (BMI, physical activity, smoking status, drinking status and 
amount) 
Model 3 further adjusted for dietary variables (trans fats, saturated fat, dietary fiber) and clinical variables 
(hypertension, HDL, LDL, triglycerides) 
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6 CONCLUSION 

Currently, both the American Heart Association (AHA) and the American 

Diabetes Association (ADA) recommend at least two servings of oily fish a week to 

promote cardiovascular health [3, 4, 243]. However, results from observational studies 

have been mixed with respect to the associations of fish and omega-3 PUFAs with 

certain cardiovascular and glycemia outcomes.  Specifically, the mechanism through 

which fish intake affects risk of SCD has yet to be elucidated, and associations of omega-

3 PUFAs and fish with markers of glucose homeostasis have been mixed [73, 85-88, 174, 

244-247].  

The original research described in this dissertation examined the relationship 

among dietary intake of fish, fish-derived omega-3 PUFAs DHA and EPA, and the 

vegetable-derived omega-3 PUFA ALA with ECG predictors of SCD and measures of 

glycemia in a population-based cohort of middle aged adults. 

Data from the first manuscript suggest that dietary intake of fish and omega-3 

PUFAs may adversely affect glycemic control among those with diabetes.  Furthermore, 

results suggested the deleterious associations were differential across race and sex.   

Results from the second manuscript did not provide compelling evidence of a 

relationship between intake of fish or fish-derived omega-3 PUFAs (DHA+EPA) with J-

point height or QT interval duration.  We did find higher intakes of ALA were associated 

with shorter QT interval duration, but this finding should be interpreted with caution 

given the large number of models investigated in that study. 

The results from the first two manuscripts were derived using exposure data 

collected via FFQ.  Because data collected using FFQs are subject to measurement error 

[201-203], whereas biomarker values offer an objective measure of nutrient absorption 

(bioavailability) that can be a proxy for usual intake [169], we reanalyzed our data for 

select outcomes using plasma phospholipid values of DHA, EPA, and ALA obtained at 

visit 1 from MN field center participants.  Associations among plasma omega-3 PUFAs 
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and prolonged QTc, HbA1c, and incident T2D in MN participants were null.  Imputing 

biomarker values for white participants at other field centers using MICE increased our 

precision, but did not change the magnitude of association for these outcomes. 

Taken together, the results presented in this dissertation suggest that neither 

fish nor the fish-derived omega-3 PUFAs DHA+EPA reduces SCD risk through changes in 

J-point height or QT interval duration; higher intake of ALA may be associated with more 

favorable (shorter) QT interval durations.  Data do suggest that intake of fish and of the 

omega-3 PUFAs DHA, EPA, and ALA may adversely affect glycemic control in those with 

diabetes, especially in black participants and female participants.   

To place these results into a context, a recent position statement by the AHA 

considered the evidence for the role of fish-derived omega-3 fatty acids supplements in 

primary/secondary prevention of CVD in various populations [74].  Supplementation 

was recommended for secondary prevention of CHD and SCD among those with 

prevalent CHD [74].  With respect to CVD mortality prevention in those with diabetes or 

pre-diabetes, the evidence indicated no benefit and the position was that treatment 

was not indicated [74]. While this suggests a tentative consensus that high doses of 

omega-3 PUFAs (as supplements) are beneficial for prevention of SCD, the benefits of 

supplementation in diabetes is attenuated by detrimental effects on glucose control. 

It should be noted that these recommendations are for supplements, and that 

dietary intake of foods rich in omega-3 PUFAs may confer benefits beyond their 

nutrients, like displacing foods higher in saturated and trans fatty acids [3].  Regardless, 

the AHA and ADA continue to recommend at least two servings of oily fish per week. 

The data and overall study design utilized in this dissertation have many 

strengths.  The ARIC study is a population-based prospective study with multiple visits 

over several years.  Participants were varied in their medical history and outcomes, and 

retention was high during follow-up.  Data were available for several clinical covariates, 

and these data were refreshed over time.  Dietary data were collected more than once, 
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and the FFQ was modified from its original version to add more questions about seafood 

intake.  Additionally, biomarker values for circulating concentrations of omega-3 fatty 

acids were available for a subpopulation. 

However, the analyses presented in this dissertation are not without limitations.  

Data were not available on food preparation technique, which can influence the 

nutritional composition of the foods consumed.  Additionally, the FFQ was worded such 

that baked fish sticks, deep fried fish sticks, and poached cod are all equivalent.  As such, 

there may be significant misclassification bias of dietary intake, even if FFQ questions 

were answered without error.  We attempted to address this limitation by utilizing 

plasma fatty acid measures in Manuscript 3, but bioavailability and absorption of 

nutrients into circulating concentrations of biomarkers is not a perfect proxy for dietary 

intake of whole foods, and it is influenced by many factors – not all of them measurable.   

A commentary published in 2015 by Subar et al. sought to address the criticism 

of nutritional epidemiology studies that rely on self-reported dietary data [248].  There 

were seven recommendations, and the first was to continue to collect self-reported 

dietary data as they are an invaluable resource.  The authors also implored researchers 

to acknowledge the limitations of self-reported dietary data when presenting and 

interpreting results derived from them, and offered techniques for addressing 

measurement error.  It is this last point that resonates the most.  Dietary data are 

difficult to measure in a free-living population.  Methods that do not place a high 

burden on participants are key in recruiting and maintain a diverse set of individuals 

willing to participate in long-term cohort studies.  FFQs augmented with 24-hour recalls, 

3-day food records, and other gold standard self-report instruments can help mitigate 

measurement error, especially when combined with sophisticated statistical methods 

like multiple imputation.  Equal weight should be given to studies utilizing biomarkers 

and other objective measures of dietary intake, so that we can triangulate exposure 

status and address the criticism levied against nutritional epidemiological studies. 
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Additional research incorporating the suggestions made by Subar et al. may help 

elucidate the relationship of dietary intake of fish with markers of glucose homeostasis, 

and determine if revisions should be made in dietary guidelines recommending regular 

consumption of oily fish by those with diabetes. 
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