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Abstract

This dissertation includes three chapters.

The first two chapters are co-authored with Naoki Takayama. The first chapter

presents a model of business cycles driven by shocks to agents’ beliefs about economic

fundamentals. Agents are hit both by common and idiosyncratic shocks. Common

shocks act as confidence shocks, which cause economy-wide optimism or pessimism and

consequently, aggregate fluctuations in real variables. Idiosyncratic shocks generate

dispersed information, which prevents agents from perfectly inferring the state of the

economy. Crucially, asymmetric information induces the infinite regress problem, that

is, agents need to forecast the forecasts of others. We develop a method that can

solve the infinite regress problem without approximation. Even though agents face a

complicated learning problem, the equilibrium policy can be represented by a small

number of state variables. Theoretically, we prove that the persistence of aggregate

output is increasing in the degree of information frictions and strategic complementarity,

and there is a hump-shaped relationship between the variance of output and the variance

of the confidence shock. Quantitatively, our model with confidence shocks can match a

number of the key business cycle moments.

The second chapter develops a general method of solving rational expectations mod-

els with higher order beliefs. Higher order beliefs are crucial in an environment with

dispersed information and strategic complementarity, and the equilibrium policy de-

pends on infinite higher order beliefs. It is generally believed that solving this type

of equilibrium policy requires an infinite number of state variables (Townsend, 1983).

This paper proves that the equilibrium policy rule can always be represented by a finite

number of state variables if the signals observed by agents follow an ARMA process, in

which case we obtain a general solution formula. We also prove that when the signals

contain endogenous variables, a finite-state-variable representation of the equilibrium

may not exist. For this case, we develop a tractable algorithm that can approximate

the solution arbitrarily well. The key innovation in our method is to use the factoriza-

tion identity and Wiener filter to solve signal extraction problems conditional on infinite
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observables. This method can be used in a wide range of applications. We demonstrate

its strong practicability by solving several classical models featuring higher order beliefs.

The third chapter is co-authored with José-Vı́ctor Ŕıos-Rull. We build a variation

of the neoclassical growth model in which both wealth shocks (in the sense of wealth

destruction) and financial shocks to households generate recessions. The model features

three mild departures from the standard model: (1) adjustment costs make it difficult to

expand the tradable goods sector by reallocating factors of production from nontradables

to tradables; (2) there is a mild form of labor market frictions (Nash bargaining wage

setting with Mortensen-Pissarides labor markets); (3) goods markets for nontradables

require active search from households wherein increases in consumption expenditures

increase measured productivity. These departures provide a novel quantitative theory to

explain recessions like those in southern Europe without relying on technology shocks.
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Chapter 1

Higher Order Beliefs, Confidence,

and Business Cycles

1.1 Introduction

Motivated by the Great Recession, there has been an increased interest in business

cycles driven by confidence shocks ([5, 4, 6]). A confidence shock can be understood

as a shock to agents’ beliefs about the economic activities that others are capable of.

When this shock is correlated across agents, it induces economy-wide optimism or pes-

simism, and therefore, aggregate fluctuations in the main macro variables. Intuitively,

confidence is promising as a source of business cycle fluctuations since it is well known

that people’s perceptions of business conditions vary dramatically. However, there have

been substantial difficulties to incorporate confidence shocks into a rational expecta-

tions framework because of the infinite regress problem ([7]). Namely, with asymmetric

information and interconnection between agents’ economic activities, agents’ payoffs de-

pend on their beliefs about others’ actions, and rationality requires agents to forecast

the forecast of others. While it is necessary to allow for some persistence in shocks

for empirical relevance, rational agents have to keep all the information learned from

the past to forecast all higher order beliefs, which leads to an infinite-dimensional state

space. The goal of this paper is to overcome this technical difficulty, and to explore

whether the confidence shock could be an important factor in accounting for business

cycles.

1
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Our first contribution is to solve the infinite regress problem by applying our method

developed in [8]. It is widely believed that if a rational expectations model involves

higher order beliefs and persistent hidden states, the Kalman filter has to be applied

to solve the signal extraction problem and to keep track of an infinite number of state

variables in order to forecast all higher order beliefs. To short-circuit this problem, the

existing literature typically assumes that the information become public after a certain

number of periods, or imposes a heterogeneous prior formulation. Instead of modifying

the original problem, we confront and solve the infinite regress problem directly. We

prove that for any linear rational expectations model with an ARMA signal process, the

equilibrium policy rule always allows a finite-state-variable representation.1 We also

provide a procedure to find these state variables and their laws of motion. By using a

small set of state variables, agents can perform their best inference in equilibrium, and

economists can calibrate or estimate the model as standard DSGE models with perfect

information.

The idea is to find the true solution in the space spanned by the entire history of

signals in the first place. In this infinite-dimensional state space, we use the Wiener

filter to handle the signal extraction problem, as opposed to the standard Kalman filter.

It turns out that if the signal process follows an ARMA process, the equilibrium policy

will inherit this property and also be of the ARMA type. This implies that information

can be summarized in a relatively compact way, and it allows us to find a finite-state-

variable representation of the equilibrium policy rule. In addition, after we find this

representation, the equilibrium is characterized by a simple linear system, and we no

longer need to solve any inference problems when simulating the economy.

Our second contribution is to formalize the idea of confidence shocks in a rational

expectations model and to apply our method to evaluate its quantitative importance.

We first construct an illustrating model with decentralized trading and information

frictions, which is based on the structure specified in [4]. The economy consists of a

continuum of islands, and the islands differ in their productivity. At every period, each

island is randomly matched with another island and trades with it. Households value

both domestic and foreign goods, resulting in the local output increasing in their trading

1 The linearity may be obtained by log-linearization, and the ARMA process assumption is com-
patible with the shock structure specified in most macroeconomic models.
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partner’s output. Information frictions prevent households from observing their trading

partner’s productivity, and households only receive a noisy signal of this productivity.

With a positive (negative) noise, islands tend to overestimate (underestimate) their

trading partners’ productivity and output, and also to increase their own output due

to strategic complementarity. If the noise shock is correlated across islands, then it will

cause economy-wide output fluctuations. We label this shock a confidence shock.

When choosing the production level, agents need to infer their trading partner’s

productivity level, which is equivalent to inferring the confidence shock. However, this

is not the end of the inference problem. Note that different islands receive different

signals over time, and they will form different inferences about this confidence shock.

As a result, agents also need to infer their trading partners’ inference of the confidence

shock, and all other higher order beliefs. If the confidence shock is persistent, the entire

history of signals should be recorded since these signals contain information about the

current state of the economy. Even though this is a fairly complicated learning problem,

we manage to obtain a sharp analytic solution.

This model economy has two important properties. First, under the assumption

that the confidence shock follows an AR(1) process, the aggregate output also follows

an AR(1) process. Interestingly, the persistence of the aggregate output is increasing

in the degree of strategic complementarity, the value of which is a function of the deep

parameters related to preferences and technology. With a stronger interdependence,

households respond more aggressively to signals, which magnifies the effects of the

confidence shock. The persistence of the aggregate output is also increasing in the

degree of information frictions, as it is more difficult to separate the confidence shock

from a true productivity shock. Secondly, the unconditional variance of the aggregate

output is not monotonically increasing in the variance of the confidence shock. On the

one hand, if the variance of the confidence shock is small, the variance of aggregate

output is also small since confidence shocks are the only exogenous disturbances. On

the other hand, if the variance of the confidence shock is large, agents understand that

signals become less useful for information extraction, and they optimally respond less

to them. These two competing forces result in a hump-shaped relationship between the

variance of output and the variance of the confidence shock. This nonlinearity is absent

in standard DSGE models without information friction.
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Another important property is that the forecast error is persistent. Supposing the

forecast error is absent or there is no information friction, the equilibrium allocation is

uniquely pinned down by economic fundamentals, leaving no room for the confidence

shock. If we aim to generate persistent aggregate fluctuations, it is important to make

sure that the forecast error is long-lasting. In our model, the forecast error is indeed

persistent, and agents can never perfectly infer the underlying shocks. This is the result

of our information structure, in which there are more shocks than signals, and agents

do not have enough information to recover the true state of the economy. By contrast,

in [9] and [10], the number of shocks equals the number of signals, and the forecast

error disappears quickly. To ensure the persistent effects of the confidence shock, the

information process has to be complicated enough to confuse agents for a relatively long

time.

With these insights, we develop a quantitative business cycle model to examine

the empirical relevance of the confidence shock. Our quantitative model has three key

features: a rich information process, goods market frictions, and endogenous capital

accumulation. (1) The rich information process provides the flexibility to pin down the

degree of information frictions, which is the key factor in determining the performance of

the model. The rational expectations framework allows us to link the signal extraction

problem faced by agents in the model with the micro-level data. We set the variance

and persistence of noise shocks to match the GDP forecast error in the Survey of Pro-

fessional Forecasters. (2) Introducing goods market frictions a la [11] helps generate

endogenous movements of the Solow residual. Goods market frictions create a wedge

between potential and realized output. As consumers increase their demand, the uti-

lization rate of potential output also increases, translating into a higher Solow residual.

Without the endogenous Solow residual, employment becomes the only driving force of

output in the short run, and it leads to the counter-factual prediction that the volatility

of employment is much greater than that of output. (3) Capital accumulation brings

additional endogenous persistence into the model economy. It also increases the com-

plexity of the signal extraction problem substantially, which prevents us from obtaining

an analytic solution. However, we can still represent the equilibrium policy rule by a

small number of state variables.
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In terms of quantitative performance, we find that the confidence shock alone ac-

counts for much business cycle volatility and co-movement. For example, the standard

deviation of output is close to 80% of its data counterpart. The persistence of main ag-

gregate variables is endogenously determined, which represents about 50% of their data

counterpart under our calibrations of information frictions. The persistence of aggregate

variables hinges on the persistence of forecast errors, which are only modestly persistent

in the data. This moment, the persistence of forecast errors, imposes an upper bound

on the degree of information frictions, and it prevents generating large persistence of

aggregate variables in our model with confidence shocks. Compared with a standard

RBC model driven by TFP shocks, two differences stand out. First, our model driven

by confidence shocks generates strong counter-cyclical labor wedges, a moment empha-

sized by [12]. Secondly, with confidence shocks, the standard deviation of employment

is more than twice of that in the RBC mode, and it is much closer to the data.

Related literature From a methodological point of view, our paper is related to the

literature that attempts to solve models with higher order beliefs. The most widely

used method is truncating the relevant state by assuming all shocks become public

information after a finite time or only a finite number of higher order beliefs matter

for the equilibrium. With a finite number of state variables, the standard Kalman

filter can be applied. This line of literature includes [7], [13], [5], [14], and [15] among

others. Using these methods to solve our quantitative model with endogenous capital,

the number of state variables needed is fairly large to achieve reasonable accuracy, and it

is even more difficult to conduct calibration or estimation. The method we developed in

[8] provides the true solution to the model, and it only requires a small number of state

variables, which makes calibration or estimation possible. [9] and [10] also solve models

with higher order beliefs without truncation, but in their environment, the number of

signals is the same as the number of shocks, and the forecast error is not persistent.

Our method allows us to use a general signal process when there are more shocks than

signals, and the confidence shock has persistent effects.2

2 In [16], the number of shocks is the same as the number of signals, but they assume that the
underlying shock process is not invertible, which leads to persistent forecast error. We think it is more
natural to introduce persistent forecast error by allowing more shocks than signals, a feature that is
prevalent in signal extrication problems.
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[17] assume agents have heterogeneous prior. This assumption avoids the difficult in-

finite regress problem, but as acknowledged by the authors, it also abstracts from agents’

information extraction process. Under the common prior assumption, our method does

not increase the computational difficulty, but allows us to link the model with micro-

data and to pin down the degree of information frictions. The cross-sectional evidence

on belief dispersion and forecast errors imposes an upper bound on the persistence and

volatility of output that can be generated by confidence shocks.

Our quantitative application also complements the literature on aggregate fluctua-

tions driven by shocks to agents’ beliefs. In [5], [3], and [18], there is a shock to aggregate

TFP, but agents only observe aggregate TFP contaminated by common noise. Even

though this common noise can generate aggregate fluctuations, its effects are bounded

above by the variance of the TFP shock. As the variance of the TFP shock approaches

zero, agents will not respond to the noise shock. [4] introduce additional trading and

communication frictions, and as a result, common noise can generate aggregate fluctu-

ations with aggregate fundamentals being fixed. Our model environment is similar to

[4], but we allow persistent common noise. Also, we highlight the role of higher order

beliefs in shaping aggregate output. [6] propose another type of environment in which

sentiments can generate aggregate fluctuations without resorting to trading or informa-

tion frictions, and the variance of sentiment shocks is endogenously determined. Unlike

our model, agents do not need to solve the infinite regress problem. In [19], confidence

shocks affect agents’ perceived uncertainty, while in our framework, confidence shocks

change agents’ mean beliefs. Our paper is related to the literature on news shocks and

uncertainty shocks, such as [20], [21], [22], [23], and [24] among others.

The rest of the paper is organized as follows. Section 2.2 sets up a simple economy

and describes how the infinite regress problem arises in this environment. We obtain an

analytic solution, and discuss various properties of this economy. Section 1.3 considers

the case when agents observe the signal which contains endogenous information. We

compare the equilibrium outcome with and without endogenous information. Section 1.4

explores the quantitative performance of a full-blown model with confidence shocks.

Section 2.8 concludes.
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1.2 An Analytic Model with Higher Order Beliefs

In this section, we present a simple island model to introduce confidence shocks which

trigger aggregate fluctuations. This model builds on [4], and we allow the signals to

be persistent over time. This is a natural extension to make this model empirically

relevant, but it induces the infinite regress problem which is difficult to solve. We apply

the method developed in [8] to solve the model and obtain a sharp analytic solution.

1.2.1 Model Setup

The economy consists of a continuum of islands indexed by i ∈ [0, 1]. The total factor

productivity on island i is ai, which is drawn from a normal distribution N (0, σ2
a) but

fixed over time. Each island is populated by a continuum of identical households. In

each household, there is a producer and a shopper. The producer decides how much to

produce. The shopper then receives the output from the producer and makes transaction

and consumption plans.

Every period, island i is randomly matched with another island. Households value

both local and foreign goods, and they trade with the island they are matched with.

There is no centralized market in the economy and all the trading is decentralized.

Let m(i, t) denote the index of island i’s trading partner in period t. With a slight

abuse of notation, sometimes we will use j to denote m(i, t) as the index of island i’s

contemporary trading partner to simplify notation. It should be clear that island i is

matched and trades with a different island j at each period.

We assume that the production plan has to be made at the beginning of a period

without perfect knowledge of their trading partner’s productivity level. The producers

receive noisy signals about am(i,t) (which will be specified below), and choose their

output level conditional on these signals. After production, the two islands matched

trade with each other.

The average productivity in the economy is fixed over time, but island i’s specific

trading partner changes every period. Even though households in each island understand

that there is no aggregate change of fundamentals, they still face uncertainty due to

the decentralized trading arrangement and the communication frictions. The need to

infer their trading partner’s output and the lack of perfect information leaves room for
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confidence shocks and also for higher order beliefs.

Timing and Information Each period has two stages: production and trade. At the

beginning of the production stage, island i is randomly matched with another island.

Once the match is drawn, producers on island i receive two signals. The first signal x1
it

is on their trading partner’s productivity, but is corrupted by a common noise ξt

x1
it = am(i,t) + ξt, (1.1)

where am(i,t) ∼ N (0, σ2
a). Crucially, we assume that common noise ξt follows a persistent

process

ξt = ρξt + ηt, (1.2)

where ρ ∈ (0, 1) and ηt ∼ N (0, σ2
η). A positive (negative) realization of ξt makes all

agents in the economy overestimate (underestimate) their trading partner’s productivity.

Therefore, we label this common noise shock as a confidence shock.

The second signal x2
it provides private information on the confidence shock

x2
it = ξt + uit, (1.3)

where uit ∼ N (0, σ2
u) is idiosyncratic noise. The variance of uit determines the degree of

information friction in the economy. If σ2
u = 0, then the producers observe ξt perfectly,

and can figure out their trading partner’s productivity using the first signal without

error. The learning problem is trivial in this scenario. If σ2
u > 0 but ρ = 0, the

producers face a static learning problem, because the information is independent of

previous periods. If σ2
u > 0 and ρ > 0, the producers face a persistent learning problem,

which is the focus of this paper.

The producers’ information set on island i at time t includes all the signals received

up to time t

Ωit =

{
ai, x

1
it, x

1
it−1, x

1
it−2, . . . , x2

it, x
2
it−1, x

2
it−2, . . .

}
. (1.4)

To fix notation, we use Eit[·] to denote the expectation conditional on i’s information up

to period t, i.e., Eit[·] = E[·|Ωit]. Since trading histories and idiosyncratic noises differ

across islands, producers on different islands share heterogeneous information sets. It
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follows that Eit[·] 6= Ejt[·]. After observing the signals, the producers decide the output

level Yit, which completes the first stage of a period.

The second stage is the trade stage. Shoppers on island i receive output from their

producers and trade with shoppers from island m(i, t) in a competitive goods market. In

this stage, shoppers can observe the other island’s output and productivity. To prevent

information from being fully revealed, we assume that shoppers die after consumption

and are replaced by new shoppers in the following period. Effectively, shoppers cannot

communicate with producers after the transaction stage.

Remark The assumption that shoppers die after they trade and consume is only a

means to implement the idea that the communication between producers and shoppers

is not perfect. Supposing we allow imperfect communication between producers and

shoppers, producers will receive another noisy signal on am(i,t) or ξt, but this is equivalent

to setting the variance of uit to a smaller value. Therefore, what is really important is

how much producers can learn, but not exactly how they learn.

Shoppers’ Problem In the trade stage, goods markets are competitive and the prices

for local goods and foreign goods are Pi and Pj respectively.3 Shoppers receive the

output Yi produced in the first stage on their islands. The shoppers on island i solves

the following static problem

max
Cii,Cij

(
Cii
ω

)ω ( Cij
1− ω

)1−ω

subject to

PiCii + PjCij = PiYi,

where Cii is local consumption goods and Cij is foreign consumption goods. We adopt

a Cobb-Douglas preference structure and use ω to denote the degree of home bias. The

first order condition for the shoppers’ problem is

Cii
Cij

=
ω

1− ω
Pj
Pi
,

3 Because shoppers solve a static problem in the second stage, we use j to denote m(i, t) to simplify
the notation.
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The goods market clearing condition in equilibrium is

Cii + Cji = Yi,

Cij + Cjj = Yj .

Combining the equilibrium condition and the first order condition for both islands, we

have

C∗ii = ωYi,

C∗ij = (1− ω)Yj .

In equilibrium, local and foreign consumption are equal to a fixed fraction of local and

foreign output, thanks to the Cobb-Douglas preference. The terms of trade is

Pi
Pj

=
Yj
Yi
, (1.5)

which as expected, is increasing in foreign output. In addition, for producers on island

i, the utility value of 1 additional unit of local output is given by

Ui =

(
Cij
Cii

ω

1− ω

)1−ω
=

(
Pi
Pj

)1−ω
. (1.6)

Note that Ui only depends on the terms of trade, and is independent of individual

producer’s output.

Producers’ Problem Producers choose how much to produce. They understand that

in the second period, the marginal value of their output is given by equation (1.6), which

depends on their trading partners’ output. If there is no information friction (σu = 0),

the productivities on both islands become common knowledge, and the output level on

both islands will only be a function of the fundamentals. When there are information

frictions, the output level on island i is determined by the expected output level on

island m(i, t).

Because there is no capital, the producers’ problem on island i is choosing output

Yit and labor Nit to maximize their expected utility in the current period. Since pro-

duction is a static choice, the only intertemporal link in producers’ problem is through

information.

max
Yit,Nit

Eit

[(
Pit

Pm(i,t)t

)1−ω
Yit −N1+γ

it

]
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subject to

Yit = exp(ai) N
θ
it.

Here, γ is the inverse of Frisch elasticity, and θ determines the labor share. Producers’

optimal choice is equating the marginal utility of local output for the shoppers with

the marginal disutility of producing the output. When expected Ym(i,t)t increases, the

terms of trade improves and the marginal utility of local output also increases, which

encourages producers on island i to produce more output. In this sense, there is strategic

complementarity between local and foreign output. The first order condition is 4

Yit =

(
θ

1 + γ

) 1
1+γ
θ
−ω

exp

(
1

1− θ
1+γω

ai

)
Eit[Y 1−ω

m(i,t)t]
1

1+γ
θ
−ω . (1.7)

Standard parametrization ensures that γ > 0, θ ∈ (0, 1), and ω ∈ (0, 1). This implies

that 1
1+γ
θ
−ω

, and that the local output is increasing in the expected output Ym(i,t)t.

Log-Linearized Economy In this paper, we will work with log-linearzied model.

Throughout, we use small letters to denote the log deviation from a variable’s steady

state value. The log-linearized version of the producers’ decision rule (1.7) is

yit = α0ai + α1Eit[ym(i,t)t], (1.8)

where

α0 =
1

1− θ
1+γω

,

α1 =
1− ω

1+γ
θ − ω

.

As discussed before, α1 is positive, and yit is increasing in Eit[ym(i,t)t]. To guarantee a

stable solution, we also restrict our parameter values such that α1 < 1. From now on,

we will focus on equation (1.8). Note that the deep parameters related to preferences

and technologies are all summarized by α0 and α1.

4 In the first order condition, we have already used the equilibrium condition that the individual
output choice coincides with the aggregate output level due to the representative agent assumption.
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Perfect Information Benchmark Supposing the variance of the idiosyncratic noise

uit vanishes, then agents on island i can use the two signals to figure out am(i,t) and ξt

perfectly. In this case, there is no information friction. The optimal policy rule (1.8)

becomes

yit = α0ai + α1ym(i,t)t. (1.9)

As expected, the output on island i is completely determined by the economic funda-

mentals

yit =
α0

1− α2
1

ai +
α0α1

1− α2
1

am(i,t). (1.10)

By the law of large number, the aggregate output yt stays at its steady state

yt =

∫
yit = 0. (1.11)

The confidence shock ξt has no effect at all.

1.2.2 Infinite Regress Problem

When there are information frictions, agents have to infer their trading partners’ pro-

ductivity and output. Higher order beliefs become crucial in determining the production

level. By equation (1.8), to infer the output on island m(i, t), island i has to infer the

productivity on island m(i, t), which relies on i’s prediction of the confidence shock ξt.

But the same logic also applies to island m(i, t). Therefore, island i needs to infer is-

land m(i, t)’s prediction of ξt. But so does island m(i, t). It turns out that island i has

to predict m(i, t)’s prediction of i’s prediction of ξt, and all other higher order beliefs

eventually.

Proposition 1.2.1. When α1 ∈ (0, 1), the optimal output rule is given by 5

yit =
α0

1− α2
1

ai +
α0α1

1− α2
1

am(i,t) +
α0

1 + α1

∞∑
k=1

αk1(ξt − Ekit[ξt]) (1.12)

5 Note that in equation (1.12), agents cannot observe am(i,t) directly. If we sum up α0α1

1−α2
1
am(i,t) and

α0
1+α1

∑∞
k=1 α

k
1ξt, it will give

α0α1x
1
it

1−α2
1

, which is a function of agents’ first signal.
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where

E1
it[ξt] = Eit[ξt]

E2
it[ξt] = EitEm(i,t)t[ξt]

Ekit[ξt] = EitEm(i,t)tEk−2
it [ξt], for k = 3, 4, 5 . . .

Proof. See Appendix A.1.1 for the proof.

Because islands differ in their information sets, the law of iterated expectation does

not apply. Confidence shocks have real effects on the economy. More specifically, the

effects of confidence shock on island i are captured by the last term of equation (1.12)

α0

1 + α1

∞∑
k=1

αk1(ξt − Ekit[ξt]), (1.13)

and the aggregate output is

yt =
α0

1 + α1

∞∑
k=1

αk1

(
ξt −

∫
Ekit[ξt]

)
. (1.14)

Note that the higher order beliefs Ekit[ξt] for k = {1, 2, . . .} are different from ξt itself

in general, which is the reason why the confidence shock can trigger aggregate fluctua-

tion. If ξt is underestimated, then islands tend to overestimate their trading partners’

productivities. By strategic complementarity, all the islands increase their own output

because they expect a higher output from their trading partners, and a boom occurs.

The difficulty lies in computing the equilibrium policy rule of yit. By Proposition

1.2.1, yit depends on all the higher order beliefs Ekit[ξt], but computing all the higher

order beliefs is a fairly complicated task. The number of state variables needed to infer

higher order beliefs is increasing in the order of the belief.

Proposition 1.2.2. Given the signal process (1.1) to (1.3), the forecast of Ekm(i,t)t[ξt]

requires k + 1 state variables.

The state variables in this proposition are the priors of these higher order beliefs. To

spell out all the higher order beliefs, island i needs to keep track of an infinite number of

state variables, which is the infinite regress problem. In the next section, we define the

equilibrium and use the method developed in [8] to solve the infinite regress problem.
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It turns out that the geometric sum of all higher order beliefs follows a simple ARMA

process, and a finite number of state variables is sufficient for agents to choose the

optimal output yit.

1.2.3 Equilibrium

The information set of producers on island i is Ωit = (ai, {x1
it−τ}∞τ=0, {x2

it−τ}∞τ=0). There-

fore, island i’s policy rule belongs to the space spanned by square-summable linear com-

binations of current and past realizations of x1
it, x

2
it, and also by the time independent

local productivity ai

yit = haai + h1(L)x1
it + h2(L)x2

it,

where ha ∈ R, h1(L) and h2(L) are lag polynomials

h1(L) =
∞∑
τ=0

h1τL
τ ,

h2(L) =

∞∑
τ=0

h2τL
τ .

The infinite sequences {h1τ}∞τ=0 and {h2τ}∞τ=0 belong to the square-summable space `2,

which guarantees that yit is a covariance-stationary process. The equilibrium is defined

as follows

Definition 1.2.1. Given the signal process (1.1) to (1.3), the equilibrium of model (1.8)

is a policy rule h = {ha, h1, h2} ∈ R× `2 × `2, such that

yit = α0ai + α1 Eit[ym(i,t)t],

where

yit = haai + h1(L)x1
it + h2(L)x2

it.

The equilibrium policy rule is given by the following theorem.
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Theorem 1. Assume that α1 ∈ (0, 1). Given the signal process (1.1) to (1.3), the

equilibrium policy rule is given by

ha =
α0

1− α2
1ϕ1

, (1.15)

h1(L) =
haα1(ϕ1 − ϑL)

1− ϑL
, (1.16)

h2(L) = −haα1ϕ2

1− ϑL
, (1.17)

where

ϕ1 =
ρτ1 + ϑτ2

ρ(τ1 + τ2)
, ϕ2 =

τ1(ρ− ϑ)

ρ(τ1 + τ2)
, (1.18)

ϑ =
1

2

(1

ρ
+ ρ+

(1− α1)(τ1 + τ2)

ρτ1τ2

)
−

√(
1

ρ
+ ρ+

(1− α1)(τ1 + τ2)

ρτ1τ2

)2

− 4

 , (1.19)

and

τ1 =
σ2
a

σ2
η

, τ2 =
σ2
u

σ2
η

.

The aggregate output follows

yt = ϑyt−1 +
haα1ϑ

ρ
ηt. (1.20)

Proof. See Appendix A.1.2 for proof.

Even though agents face a fairly complicated learning problem, the equilibrium

policy rule is simple. h1(L) is an ARMA(1,1) process and h2(L) is an AR(1) process.

The aggregate output follows an AR(1) process. To understand the equilibrium policy

rule, we discuss the following: the persistence of yt, the unconditional variance of yt,

and the forecast error of yt.

1.2.4 Characterization

Endogenous Persistence of yt Crucially, the persistence of yt is given by ϑ in

equation (2.54), which also determines the persistence of the effects of the confidence

shock. We have derived the following properties for ϑ.
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Proposition 1.2.3. Assume that α1 ∈ (0, 1), ρ ∈ (0, 1), τ1 > 0 and τ2 > 0. Then ϑ

satisfies

1. 0 < λ < ϑ < ρ, where

λ =
1

2

τ1 + τ2

ρτ1τ2
+

1

ρ
+ ρ−

√(
τ1 + τ2

ρτ1τ2
+

1

ρ
+ ρ

)2

− 4

 . (1.21)

2. ϑ is increasing in α1 and

lim
α1→1

ϑ = ρ

lim
α1→0

ϑ = λ

3. ϑ is increasing in τ1, τ2 and ρ.

Proposition 1.2.3 states that ϑ is bounded from above by the persistence of the

confidence shock ρ. Intuitively, agents gradually learn ξt from the signals and once they

can infer ξt relatively accurately, we return to the perfect information benchmark and

the confidence shock will have little effect on output. Consequently, the persistence of

output is always smaller than the confidence shock. At the same time, ϑ is also bounded

from below by λ. Here, λ controls the persistence of the forecast of ξt, Eit[ξt]. If we use

the Kalman filter, it follows that

Eit[ξt] = λEit−1[ξt−1] + k1x
1
it + k2x

1
it (1.22)

where k1 and k2 are the corresponding Kalman gains. To put it differently, λ determines

the speed at which information is revealed, and it serves as the lower bound for the

persistence of yt.

Given the information related parameters ρ, σ2
ε , σ

2
u, and σ2

η, ϑ is increasing in α1.

As α1 increases, there is stronger strategic complementarity. Agents respond more

aggressively to possible good (bad) trading opportunities. As a result, the effects of

confidence shocks last longer. In the extreme case, as α1 approaches 1, the persistence

of yt approaches the persistence of ξt itself. Even though the information obtained by

agents does not vary with α1, the persistence of output chosen by individual agent varies

with α1 because of strategic complementarity.
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It is not surprising that the persistence is increasing in τ1 and τ2, because the

values of these two determine the degree of information frictions. Given the variance of

innovation to the confidence shock σ2
η, as σ2

a or σ2
u increases, it becomes more difficult

to infer the confidence shock ξt, and the effects of the confidence shock last longer.

Similarly, given the magnitude of idiosyncratic noise, the persistence of output decreases

in σ2
η.

Unconditional Variance of yt The following proposition characterizes several prop-

erties of the variance of aggregate output:

Proposition 1.2.4. Assume that α1 ∈ (0, 1), ρ ∈ (0, 1), τ1 > 0 and τ2 > 0. The

unconditional variance of output yt is given by

Var(yt) =
1

1− ϑ2

(
haα1ϑ

ρ

)2

σ2
η, (1.23)

and it has the following properties:

1. There is a hump-shaped relationship between Var(yt) and the variance of confidence

innovation σ2
η. Furthermore,

lim
σ2
η→0

Var(yt) = 0

lim
σ2
η→∞

Var(yt) = 0

2. Var(yt) is increasing in α1, σ2
a, σ2

u and ρ.

Note that in equation (1.23), ha and ϑ are also functions of ση. As discussed in

the introduction, there are two competing forces that determine the variance of output.

The volatility of output tends to increase with σ2
η because there are stronger exogenous

disturbances. At the same time, with a larger σ2
η, agents attenuate their response to sig-

nals because they understand that signals are less useful for information extraction. We

can also define the maximum amount of volatility that can be generated by confidence

shocks given certain information frictions

max Var(yt) = max
σ2
η

1

1− ϑ2

(
haα1ϑ

ρ

)2

σ2
η. (1.24)
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The left graph in Figure 1.1 shows an example of how the variance of output changes

with the variance of ηt, which displays a hump-shaped relationship. The right graph

in Figure 1.1 shows that the maximum of the variance of output is increasing in the

variance of idiosyncratic noise, but it is also bounded from above. The upper bound is

determined by the underlying productivity dispersion across islands. This graph clearly

illustrates that there exists a limit for the effects of confidence shocks on the aggregate

economy.

Figure 1.1: Illustration of Proposition 1.2.4

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5
x 10

−3

ση

V
a
r(
y
t
)

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5
x 10

−3

σu

m
a
x
V
a
r(
y
t
)

Proposition 1.2.4 has two implications for our quantitative exercise in the next sec-

tion. First, given the degree of information frictions, there is an upper bound for the

variance of aggregate output by varying the variance of the confidence shock. If the

degree of information frictions is relatively low, we may not be able to generate enough

volatility of output. Second, there are two different values of variance of the confidence

shock which can generate the same volatility of output. These two choices of ση will

imply different degrees of information frictions and consequently, different magnitudes

of forecast errors. Both of these implications indicate that it is crucial to discipline the

degree of information frictions in order to evaluate the quantitative importance of the

confidence shock.
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Persistent Forecasting Error An important feature of the learning problem in this

model is that the forecast error is persistent. In [9] and [10] where the number of signals

equals the number of shocks, the forecast error only exists in one period and agents can

learn the true state fairly quickly. The reason is that there are enough signals for agents

to figure out the true state of the economy. In our economy, there are more shocks

than signals. Agents can never infer the state of the economy perfectly and the forecast

error is long lasting. This is crucial in generating the persistent effects of the confidence

shock, because once the forecast error disappears, the economy returns to the perfect

information case and the confidence shock no longer plays a role.

We look in particular at differences between the aggregate output and the average

predicted aggregate output, since this statistic is important in the calibration of the

quantitative model. The inference of the aggregate output by producers on island i is

given by

Eit[yt] =
haα1ϑλ

ρ2(1− ϑλ)

1− ρL
(1− λL)(1− ϑL)

(
1

τ1
x1
it +

1

τ2
x2
it

)
. (1.25)

The mean forecast error is then

yt −
∫

Eit[yt] = haα1ϑ
1− λ(τ1+τ2)

ρτ1τ2(1−ϑλ) − λL
ρ(1− λL)(1− ϑL)

ηt, (1.26)

which follows an ARMA(2,1) process. Clearly, the forecast error is persistent over time.

Forecast Dispersion Another interesting and relevant statistic to look at is the fore-

cast dispersion. Based on equation (1.25), the forecast dispersion can be derived as

Var(Eit[yt]) (1.27)

=

∫ (
Eit[yt]−

∫
Eit[yt]

)2

=

(
haα1ϑλ

ρ2(1− ϑλ)

)2

Var

(
1− ρL

(1− λL)(1− ϑL)τ1
am(i,t)

)
(1.28)

+

(
haα1ϑλ

ρ2(1− ϑλ)

)2

Var

(
1− ρL

(1− λL)(1− ϑL)τ2
uit

)
≡Va + Vu (1.29)

As expected, the forecast dispersion can be decomposed into two components: the part

related to the dispersion of productivity am(i,t) and that related to the dispersion of
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idiosyncratic noise uit. It should be clear that Va and Vu depend on both the variances

of the idiosyncratic shocks and the persistence of the confidence shock.

Figure 1.2 presents how Var(Eit[yt]), Va, and Vu vary with the variance of idiosyn-

cratic noise and the persistence of the confidence shock. First, the forecast dispersion

is monotonically increasing in σ2
u. However, the part due to the variance of idiosyn-

cratic noise Vu displays a hump-shaped relationship with σ2
u. The reason is that as σ2

u

increases, agents also optimally respond less to the second signal. Second, the forecast

dispersion is also monotonically increasing in ρ. The change of ρ have similar effects on

Va and Vu, and therefore both components are monotonically increasing in ρ.

Figure 1.2: Forecast Dispersion
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1.2.5 Example

In this section, we provide an example to show how the simple economy responds to a

confidence shock. We choose parameters exogenously and they are summarized in Table

1.1. The impulse response to confidence shocks is shown in Figure 1.3. At the

beginning, agents underestimate the confidence shock on average and consequently, they

overestimate their trading partners’ productivity and output. Due to strategic comple-

mentarity, their best response is to increase their own output, resulting in an increase

in aggregate output. The confusion will not be resolved immediately. Agents gradually

learn the true state of the economy, and during this process, the output remains above
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Table 1.1: Parameters for the Simple Economy

Primitive Description Value

ω Home bias 0.70

1
γ Frisch elasticity 0.55

θ Labor share 0.68

ρ Persistence of confidence shock 0.95

ση Std of confidence shock 1.00

σa Std of productivity distribution 4.00

σu Std of noise shock 4.00

Implied Description Value

α0 Response to own productivity 1.20

α1 Strategic complementarity 0.09

ϑ Endogenous persistence of output 0.70

its steady state. Meanwhile, the aggregate output forecast error is persistent, and it

resembles the pattern of the actual output.

Higher Order Beliefs By Proposition 1.2.1, the aggregate output can also be written

in the form of higher order beliefs

yt =
α0

1 + α1

∞∑
k=1

αk1

(
ξt −

∫
Ekit[ξt]

)
. (1.30)

The effects of the confidence shock depend on the difference between the confidence

shock and the higher order beliefs about the confidence shock. Figure 1.4 plots the the

impulse response of the higher order beliefs. Initially, all the higher order beliefs are

smaller than the true ξt, which implies that ξt −
∫
Ekit[ξt] > 0 and the output yt will

be high in the short run. Gradually, all the higher order beliefs converge to ξt, and

the output yt returns to its steady state value. As the order of the beliefs increases,

the difference between ξt and Ekit[ξt] also becomes greater. However, the effects of these

higher order beliefs decay at rate α1, meaning that as k approaches infinity, the effects

of Ekit[ξt] become zero. This intuition is discussed extensively in [25].
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Figure 1.3: Impulse Response to a Confidence Shock in the Simple Economy
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Heterogeneous Prior In [4] and [17], a heterogeneous-prior formulation is applied

to avoid the infinite regress problem. The heterogeneous prior assumption works as

follows. Assume that agents on island i observe both ξt and am(i,t)t perfectly. However,

they believe agents on island m(i, t) observe ai with bias ξt. If agent i’s policy rule is

yit = f1ai + f2am(i,t) + f3ξt,

then agent i believes that her trading partner’s output is

ym(i,t)t = f1am(i,t) + f2(ai + ξt) + f3ξt.

In equilibrium,

yit = α0ai + α1Eit[ym(i,t)t],
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Figure 1.4: Impulse Response of Higher Order Beliefs to the Confidence Shock
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which leads to

yit =
1

1− α2
ai +

α

1− α2
am(i,t) +

α2
1

(1− α2
1)(1− α)

ξt (1.31)

yt =
α2

(1− α2)(1− α)
ξt (1.32)

By assuming heterogeneous prior beliefs, yt is perfectly correlated with ξt, since the

belief process is exogenously given. In Figure 1.5, we show how the persistence and

variance of output vary with the variance of the confidence shock and the variance of

idiosyncratic noise. With common prior, as we increase the variance of the confidence

shock, τ1 and τ2 both decrease, and by Proposition 1.2.3, the persistence of output

also decreases. By Proposition 1.2.4, there is a hump-shaped relationship between the

variance of output and the variance of the confidence shock. In terms of information

frictions, both of the persistence and variance of output are monotonically increasing

in the variance of idiosyncratic noise σ2
u. With heterogeneous prior, the persistence of

output is independent of the variance of the confidence shock, and the variance of output

is monotonically increasing with the variance of the confidence shock. In addition, both

of these two statistics are independent of the degree of information frictions.
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Figure 1.5: Common Prior v.s. Heterogeneous Prior
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1.3 Endogenous Information

In the previous section, the signal process was exogenously determined and independent

of agents’ actions. An important theme in the literature on dispersed information

and higher order beliefs is the role of an endogenous signal in coordinating beliefs and

revealing information.6 In this section, we allow agents to observe signals that contain

a variable which is endogenously determined in equilibrium.

More specifically, we allow agents to observe two signals. The first signal is the same

as before, which is their trading partner’s productivity plus the confidence shock. The

second signal is the aggregate output with an idiosyncratic noise. The aggregate output

is endogenously determined by agents’ output choice, but at the same time it serves as

6 See [9], [26], and [16] for example.
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a signal for agents to infer the state of the economy. Agents understand that ηt is the

underlying shock that drives the confidence shock and the aggregate output. Hence,

observing the noisy signal of aggregate output will help them predict ηt and in turn the

confidence shock. Formally, the equilibrium with endogenous information is defined as

follows.

Definition 1.3.1. The equilibrium is an endogenous stochastic process Ωit, a policy

rule for individual agents φ = {φa, φ1, φ2, φ3} ∈ R× `2 × `2 × `2 and the law of motion

for aggregate output Φ ∈ `2, such that

1. Information process generating Ωit is given

x1
it = am(i,t) + ξt, (1.33)

x2
it = yt + uit, (1.34)

where

ξt =
1

1− ρL
ηt, (1.35)

yt = Φ(L)ηt. (1.36)

2. Individual rationality

yit = α0ai + α1Eit[ym(i,t)], (1.37)

where

yit = φaai + φ1(L)am(i,t) + φ2(L)uit + φ3(L)ηt. (1.38)

3. Aggregate consistency

Φ(L) = φ3(L). (1.39)

The policy rule in this definition is in terms of the underlying shocks. As proved

in [8], there is a one-to-one mapping between the policy defined in terms of signals

and shocks. With endogenous information, it is more convenient to express the policy

rule in terms of shocks, because it clearly separates the idiosyncratic components from

the aggregate components. The equilibrium with endogenous information involves two

fixed points. The first fixed point is individual rationality. Given the signal process, all
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islands choose the same policy rule φ that solves their optimization problem. Agents

need to infer higher order beliefs, and the infinite regress problem still exists. The

second fixed point is absent in the equilibrium with exogenous information. It requires

that the perceived law of motion for aggregate output be the same as the law of motion

for actual aggregate output. This can be viewed as the cross-equation restriction in the

sense that agents perceptions are in line with the reality generated by their own actions.

Since there are more shocks than signals, agents cannot infer the shocks perfectly.

The information role of output depends on the volatility of output. If the aggregate out-

put is very volatile, then the second signal will be very informative about the confidence

shock. However, once agents can learn quickly the state of the economy from aggregate

output, the effects of the confidence shock will be very limited, which implies that the

aggregate output can not respond to the confidence shock aggressively. Conversely, if

there is little movement of aggregate output, then agents will pay little attention to

the second signal and attribute a big portion of the confidence shock to their trading

partner’s productivity. Under this scenario, the confidence shock will generate large

movements of aggregate output, which is a contradiction. The argument above pro-

vides the intuition for the existence of the equilibrium: there exists a point such that

the volatility of aggregate output is neither too large nor too small.

Theorem 2. If α1 ∈ (0, 1), then there exists a unique equilibrium of the model in

Definition 2.5.1.

Proof. See Appendix A.2.15 for the proof.

As shown in [8], even though there exists a unique equilibrium, aggregate output

follows an infinite-order process. As a result, no analytic solution is possible any more.

We use the method discussed in [8], and approximate the aggregate output by an ARMA

(3,2) process. This approximation is close enough to the true solution.

Figure 1.6 compares the impulse response of the aggregate output to the confidence

shock under endogenous information with the one under exogenous information. It can

be seen that the output under endogenous information is more responsive to the con-

fidence shock. To understand the results, we need to highlight the information role of

the aggregate output. Since α1 is small in our example, the force of strategic comple-

mentarity is weak, and hence the aggregate output is not very volatile. As a result, the
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Figure 1.6: Endogenous Information versus Exogenous Information
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endogenous signal x2
it = yt + uit conveys less information about the confidence shock

compared with the exogenous signal x2
it = ξt + uit. Note that in Figure 1.6 the pre-

diction of the confidence shock is indeed less accurate with endogenous information.

Therefore, when α1 is small, the effects of the confidence shock are greater under en-

dogenous information than under exogenous information. Conversely, if we set α1 to a

large number, the aggregate output will be more volatile than ξt itself. It follows that

the endogenous signal x2
it = yt + uit will contain more information than the exogenous

signal x2
it = ξt + uit. Consequently, the effects of the confidence shock will be greater

with exogenous information.

This example illustrates that whether agents observe exogenous signals or endoge-

nous signals does not really matter. What matters is how much information agents can

learn about the underlying state of the economy. At the end of the day, individual agents

treat all signals as exogenously given, and we can change the size of the noise shocks

to control the amount of information agents can extract. Based on this observation, in

our quantitative model, we assume all information follows an exogenous process, but it

should be noted that this assumption is not crucial to the purpose of evaluating the role

of confidence shocks.
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1.4 Quantitative Model

In this section, we present the full-blown business cycle model driven by confidence

shocks. To evaluate its quantitative performance and confront the model with data,

several issues need to be addressed. First, the confidence shock itself and the idiosyn-

cratic noises cannot be observed, but we need to pin down the degree of information

frictions. Second, because the confidence shock does not affect aggregate technology, the

Solow residual remains constant. As a result, all the short-run fluctuations are driven

by changes in labor, which is at odds with data. Third, aggregate investment is impor-

tant in shaping business cycles, and agents constantly make inter-temporal decisions.

Based on these considerations, we extend the simple model presented in Section 2.2

along three dimensions: (1)we adopt a more flexible matching process and information

structure, which allows us to link the model with the survey data in order to discipline

information frictions; (2)we introduce competitive search in the goods market à la [11]),

which generates endogenous movements of the Solow residual; (3) we allow households

to accumulate capital.

1.4.1 Model

Matching and Information In the simple model, we assume that the matching

follows an i.i.d. process, that is, the quality of island i’s trading partner in period

t is completely independent of its trading partner in period t − 1. This assumption

is convenient for deriving analytic results, but it is far from being realistic. If we

interpret an island as an establishment, a firm, or a region, the output or revenue

of these entities is typically correlated over time. Meanwhile, the exact form of the

matching process is also related to the degree of information frictions. Therefore, we

allow the matching process to be persistent. Namely, if island i is matched with a good

trading partner today, it is more likely that island i is also matched with a good trading

partner tomorrow. Recall that we denote the index of island i’s trading partner in

period t as m(i, t), and we now assume that the productivity of m(i, t) follows an AR(1)

process

am(i,t) = ρaam(i,t−1) + εit, (1.40)
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where εit ∼ N (0, σ2
ε ) and σ2

ε = (1 − ρ2
a)σ

2
a. Note that the choice of σ2

ε guarantees that

the unconditional variance of am(i,t) is consistent with σ2
a. If we set ρa = 0, it collapses

to the original i.i.d. matching process. The following proposition proves the existence

of the persistent matching process.

Proposition 1.4.1. Let m(i, t) be island i’s trading partner at time t and am(i,t) be its

productivity. There exists a stochastic process such that, for all i ∈ [0, 1),

am(i,t) = ρaam(i,t−1) + εit,

εit ∼ N (0, σ2
ε )

where ρa ∈ (0, 1).

Proof. See Appendix A.1.4 for the proof.

The signal process is almost the same as the simple model. At the beginning of each

period, we still assume that producers receive two signals. The first signal concerns

their trading partner’s productivity, but it is contaminated by the common confidence

shock

x1
it = am(i,t) + ξt. (1.41)

The process of am(i,t) is specified in equation (1.40). The confidence shock ξt follows

the same AR(1) process as the simple model

ξt = ρξt + ηt, (1.42)

where ρ ∈ (0, 1) and ηt ∼ N (0, σ2
η).

The second signal is the confidence shock plus an idiosyncratic noise.

x2
it = ξt + uit, (1.43)

The information set, up to time t, is

Ωit =

{
ai, x

1
it, x

1
it−1, x

1
it−2, . . . , x2

it, x
2
it−1, x

2
it−2, . . .

}
.
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Competitive Search and Shoppers’ Problem In the simple model, the goods

market between the two trading partners is frictionless. Shoppers from the two islands

meet in a centralized market, and the prices Pi and Pj clear the goods market. Since

the distribution of productivity is fixed, there is no change of aggregate TFP.

To introduce endogenous TFP movement, we assume there exist goods market fric-

tions as in [11]. The basic idea is simple. Shoppers have to search for goods before they

can consume them, and goods have to be found before they can be sold. A standard

matching friction prevents standard market clearing. The probability that goods can

be sold is determined by the amount of search effort exerted by shoppers. As a result,

the search effort creates a wedge between potential output and actual output, which

corresponds to the measured Solow residuals. Crucially, the amount of search effort

exerted by shoppers depend on the level of production in the first period, which induces

the Solow residuals move with business cycles.

Now we describe the implementation of goods market frictions. In the second stage,

shoppers serve both as buyers and sellers. As sellers, each shopper is endowed with a unit

measure of location and they can choose in which market to sell the goods inherited

from their producers. As buyers, shoppers have to consume the goods produced by

others but not by themselves, similarly to [27]. Goods market frictions require buyers

to exert search effort to find the locations of others.

Different markets are indexed by their price and market tightness (P,Q), where

market tightness is defined as the ratio of the measure of location to the measure of

search effort. Exerting one unit of search effort in market (P,Q), a buyer expects to find

a location with probability Ψd(Q) at price P . At the same time, a seller in in market

(P,Q) expects to sell her goods with probability Ψf (Q) at price P . In equilibrium, not

all markets are active. In fact, it is understood that there is an equilibrium-determined

expected revenue per unit of good, ζ = P Ψf (Q), that active markets have to satisfy.

Because there are two different types of goods, local goods Yi and foreign goods Yj ,

there are two equilibrium-determined expected revenues ζi and ζj . Buyers on island i

choose the local market (Pii, Qii) and foreign markets (Pij , Qij), while buyers on island

j choose (Pjj , Qjj) and (Pji, Qji). In equilibrium, sellers have to be indifferent between
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allocating their locations to domestic customers and foreign customers, resulting in

PiiΨ
f (Qii) = PjiΨ

f (Qji) = ζi, (1.44)

PjjΨ
f (Qjj) = PijΨ

f (Qij) = ζj . (1.45)

It is important to note that not all goods can be sold and the produced goods Yi

and Yj are only potential output. The realized output depends on the probability Ψf

that goods are purchased, which is determined by the amount of search effort. This

probability Ψf can be understood as the utilization rate, and we will show that it

increases with the production level of Yi and Yj . When the production level changes,

the amount of search effort and the utilization rate also change, generating endogenous

movements of the measured Solow residual.

The shoppers’ problem on island i can be written as

max
Cii,Cij ,Iii,Iij ,
Qii,Qij ,Dii,Dij

(
Cii
ω

)ω ( Cij
1− ω

)1−ω
− χdDi (1.46)

subject to

Pii(Cii + Iii) + Pij(Cij + Iij) = ζiYi, (1.47)

Cii + Iii = DiiΨ
d(Qii)Yi, (1.48)

Cij + Iij = DijΨ
d(Qij)Yj , (1.49)

PiiΨ
f (Qii) = ζi, (1.50)

PijΨ
f (Qij) = ζj , (1.51)

Ii =

(
Iii
ω

)ω ( Iij
1− ω

)1−ω
, (1.52)

Di = Dii +Dij . (1.53)

This calls for several comments. (1) Producers now determines both the level of pro-

duction Yi and the level of capital investment Ii in the first stage. As a result, they

not only transfers the output Yi to shoppers, but also require shoppers to purchase the

investment good such that the composite of Iii and Iij satisfies producers’ investment

demand Ii. (2) The search effort Di is the new element in the shoppers’ problem, and

the variation in Di leads to changes in the utilization rate. (3) Related to the search
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effort, as discussed in [28], shoppers with different income levels choose markets with

different prices and search intensities.

The equilibrium conditions include

Qii =
Tii
Dii

, Qij =
Tji
Dij

, Qji =
Tij
Dji

, Qjj =
Tjj
Djj

, (1.54)

Tii + Tij = 1, Tji + Tjj = 1, (1.55)

ζi = PiiΨ
f (Qii) = PjiΨ

f (Qji), (1.56)

ζj = PjjΨ
f (Qjj) = PijΨ

f (Qij). (1.57)

Implicitly, shoppers also choose the allocation of their locations Tii and Tij to local

and foreign markets, but they are indifferent since they will obtain the same expected

revenue ζi.

We assume that the matching function in the goods market is of Cobb-Douglas form

Ψd(Q) = νQ1−µ, (1.58)

Ψf (Q) = νQ−µ, (1.59)

where µ is the matching elasticity and ν is a constant that determines the average

matching probability. The equilibrium allocations satisfy

C∗ii = ων

(
µν

χd

) µ
1−µ

Y
1−µ+µω

1−µ
i Y

µ(1−ω)
1−µ

j − ω
(
Yi
Yj

)1−ω
Ii, (1.60)

C∗ij = (1− ω)ν

(
µν

χd

) µ
1−µ

Y
µω

1−µ
i Y

1−µω
1−µ

j − (1− ω)

(
Yi
Yj

)−ω
Ii, (1.61)

D∗i =

(
µν

χd
Y ω
i Y

1−ω
j

) 1
1−µ

. (1.62)

As the production level increases, shoppers purchase more consumption goods. At the

same time, they also exert more search efforts. Because the total measure of locations

is fixed, more search effort translates into a higher utilization rate and the matching

elasticity µ determines the percentage increase of the utilization rate.

Similar to the simple model, we can derive the the utility value of 1 additional unit

of local output

Ui = νg

(
µνg
χ

) µ
1−µ

Y
µ−η
1−µ
i Y

η
1−µ
j . (1.63)
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Note that Ui only depends on the aggregate output Yi and Yj , and individual producer

takes it as given. It can also be shown that the utility value for shoppers by decreasing

1 unit of local investment demand is simply 1.

Producers’ Problem Compared to the simple model, the complication of the pro-

ducers’ problem is the addition of investment choice. Instead of a static decision prob-

lem, the producers’ problem becomes choosing a state contingent plan for Yit, Kit+1

and Nit to maximize their expected present value.

max
Yit,Nit,Kit+1,Iit

Ei0
∞∑
t=0

βt
[UitYit − Iit − χnN1+γ

it ]1−σ

1− σ
(1.64)

subject to

Yit = exp(ai) K
1−θ
it N θ

it, (1.65)

Kit+1 = (1− δ)Kit + Iit − Ξ(Iit,Kit). (1.66)

We assume that the investment is subject to a standard capital adjustment cost Ξ(Iit,Kit)

with the following functional form

Ξ(Iit,Kit) =
ϕ

2

(
Iit
Kit
− δ
)2

Kit. (1.67)

To derive the first order conditions, we first substitute the production function into the

objective function and define

V(Yit, ai,Kit) = χn

(
Yit

exp(ai) K
1−θ
it

) 1+γ
θ

. (1.68)

The first order condition with respect to Yit is

Eit
[
[UitYit − Iit − χnN1+γ

it ]−σ (Uit − Vyit)
]

= 0 (1.69)

The first order condition with respect to Kit+1 is

Eit
[
[UitYit − Iit − χnN1+γ

it ]−σ
]

1− Ξi(Kit, Iit)
= βEit

[
[Uit+1Yit+1 − Iit+1 − χnN1+γ

it+1]−σ(
Uit+1(1− θ) exp(ai)K

−θ
it+1N

θ
it+1 +

1− δ − Ξk(Kit+1, Iit+1)

1− Ξi(Kit+1, Iit+1)

)]
(1.70)
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These two first order conditions are quite similar to those in standard stochastic growth

models, except marginal returns to production depend on producers’ expectation of

their trading partners’ output level. As in a two-country business cycle model, the

output and investment decisions both increase with their trading partners’ output level.

Log-Linearized Economy Equation (1.69) and (1.70) summarize the producers’ de-

cisions. The log-linearized version of these two equations is:

Γ1ai + Γ2yit + Γ3kit + Γ4Eit[ym(i,t)t] = 0,

(1.71)

Υ1kit + Υ2kit+1 + Υ3Eit[ym(i,t)t] + Υ4Eit[yit+1] + Υ5Eit[kit+2] + Υ6Eit[ym(i,t+1)t+1] = 0,

(1.72)

where {Γ1, . . . ,Γ4} and {Υ1, . . . ,Υ6} are functions of the deep parameters. Similarly to

the simple model, the equilibrium is defined as:

Definition 1.4.1. Given the signal process (1.40) to (1.43), the equilibrium is policy

rules hy = {hya, hy1, h
y
2} ∈ R× `2 × `2 and hk = {hka, hk1, hk2} ∈ R× `2 × `2

yit = hyaai + hy1(L)x1
it + hy2(L)x2

it, (1.73)

kit+1 = hkaai + hk1(L)x1
it + hk2(L)x2

it, (1.74)

such that equations (1.71) and (1.72) are satisfied.

To solve for the equilibrium, we apply the method developed in [8]. The details of

the computation can be found in our online appendix.

1.4.2 Calibration and Estimation

The model period is a quarter. We separate the parameters into two groups: those in

the first group (shown in Table 1.2) are determined exogenously, and those in the second

group (shown in Table 1.3) are jointly determined by solving a large system: the equa-

tions require that the steady-state model statistics equal the targets, and the parameters

are the unknowns. In addition, we also estimate the variance of the idiosyncratic noises

and innovation to confidence shock to match the forecast error data.
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Many parameters of preferences and technology are standard, and we choose them

to reflect commonly used values. We set the discount rate β to 0.99, which implies that

the rate of return is 4%. We set the risk aversion σ to 1. We choose the Frisch elasticity

to be 1
γ = 0.55, which lies between the micro and macro estimates. We choose the labor

share θ = 0.68, in line with [29]. The home bias parameter matters for the degree of

strategic complementarity. We set ω = 0.7 as our benchmark value.

Turning to the matching process. If we interpret each island as a firm, the persis-

tence of the matching process directly translates into the persistence of the measured

firms’ profit or productivity even though their technology is unchanged. The empirical

estimate of the persistence of the firms’ productivity varies in the literature, ranging

from 0.5 ([30]) to 0.8 ([31]) for the United States, and it varies even more when exam-

ining other countries ([32]). We set ρa = 0.7 and σ2
ε = 0.01, which lie in the middle of

various estimates. Note that σ2
a is determined residually by σ2

a = σ2
ε

1−ρ2
a
.

The matching elasticity is particularly important in shaping the endogenous Solow

residual. The realized aggregate output is:

y =

∫
Ψf (qii) +

∫
yi = z + y

Here, we use y to denote the aggregate output, or realized sales, y to denote the potential

output, or produced goods, and z to denote the measured Solow residual. Using equation

(1.62), the measured Solow residual is proportional to the potential output

z =

∫
Ψf (qii) ∝

µ

1− µ

∫
di ∝

µ

1− µ
y = µy

Therefore, the matching elasticity µ determines the portion of the output fluctuations

which can be attributed to the Solow residual. We set µ = 0.4, which imply that 40%

of output fluctuations are due to Solow residual.

In terms of the endogenously determined parameters, we associate the parameters

with the targets for which they are most directly responsible, even though these pa-

rameters are eventually determined simultaneously. We choose χn to target the average

working time to be 0.4 which only serves as a normalization. We target the capital-

output ratio to be 2, which pins downs the capital depreciation rate δ. Two parameters

are related to goods market frictions: the units of search costs ξd and the matching

efficiency ν. We choose the values for them so that the average occupation rate is 81%



36

Table 1.2: Exogenously Determined Parameters

Parameter Description Value

β Discount rate 0.99

σ Risk aversion 1.00

ω Home bias 0.70

1
γ Frisch elasticity 0.55

θ Labor share 0.64

µ Matching elasticity 0.40

ρ Persistence of confidence shock 0.95

ρa Persistence of matching quality 0.70

σa Std of island specific productivity 0.14

and the average market tightness is 1. We set the capital adjustment cost ψ to match

the relative volatility of investment to output.

An important part of the calibration is to discipline the confidence shock process

(the persistence ρ and the standard deviation of confidence innovation ση), and the size

of idiosyncratic noises, σu. We choose these parameters to match the mean forecast

error of real output and also the average standard deviation of cross-sectional forecasts

(forecast dispersion) in the Survey of Professional Forecasters (SPF). The mean forecast

error and the forecast dispersion are jointly determined by these three parameters. We

set ρ to match the forecast dispersion and estimate ση and σu using Bayesian method,

to match the mean forecast error of real output growth rate (from 1969 Q1 to 2014 Q2).

Table 1.4 shows the choice of prior distributions, the estimated posterior mode obtained

by maximizing the log of the posterior distribution with respect to the parameters, the

posterior mean, and also the 10 and 90 percentile of the posterior distribution of the

parameters obtained through the Metropolis-Hastings sampling algorithm.

In a standard log-linearized DSGE model, the standard deviation of a shock is

independent of policy rules. By contrast, in our model with information frictions, the

relative volatility of various shocks, i.e., σ
2
ε
σ2
η

and σ2
u
σ2
η
, does have direct effects on the policy
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Table 1.3: Endogenously Determined Parameters

Parameter Value Target Value Model

χn 1.02 Average labor 0.40 0.40

χd 0.68 Average market tightness 1.00 1.00

ν 0.81 Average utilization rate 0.81 0.81

δ 0.02 Capital-to-output ratio 2.00 2.00

ψ 24.00 Ratio of Std of investment to output 4.00 3.92

ρ 0.91 Average Std of cross-sectional forecasts 0.00 3.92

Table 1.4: Estimated Parameters in the Baseline Model

Prior Posterior

Distribution Mean Std Mode Mean 90% HPD

ση Inv Gamma 0.30 3.00 0.25 0.28 [0.20, 0.39]

σu Inv Gamma 0.30 3.00 0.34 0.37 [0.31, 0.42]

rules, and ση have non-linear effects on aggregate variables. When we choose ση, it is

not only a normalization. As shown in subsection 1.2.4, the volatility of output is not

monotonically increasing in ση.

It should be noted that the survey participants have formal, advanced training in

economic theory. These survey forecasts are generally better than forecasts generated

by econometric models. Agents in the model are interpreted as normal households and

firms, who have less information compared with the professional forecasters in the SPF

in general.
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1.4.3 Results

Baseline model with confidence shocks Figure 1.7 shows the impulse response

of the main aggregate variables to the confidence shock.7 At the beginning, agents

underestimate the confidence shock and attribute a part of the confidence shock to

a good realization of the matching process. As a result, producers believe that their

trading partners’ output is higher than average, and it will be so for a while due to

the fact that the matching process is persistent. Because of strategic complementarity,

believing that there is higher output on other islands leads to a higher output and

investment level on their own islands, and thereby to a high aggregate output and

investment. This belief is partially true, since the output on other islands is indeed

higher than average. However, it is not because the productivity is higher, but because

all the islands are optimistic. After a confidence shock, agents on average overestimate

their trading partners’ output and underestimate the aggregate output in the short run.

Table 1.5 compares the business cycle statistics from the data and our model driven

by confidence shocks (Baseline model with ξ shock). The confidence shock model can

produce reasonable aggregate volatility. From the demand side, the standard deviation

of investment is approximately 4 times larger than that of output, similarly to the data.

The volatility of consumption is smaller than the volatility of output, but it is less

volatile compared with the data. From the supply side, the change in the output can

be decomposed into the change in labor and the change in the measured Solow residual.

The standard deviation of labor is close to 60% of its data counterpart, which we think

is acceptable given that we choose a relatively low Frisch elasticity. Recall that there is

no change in aggregate TFP, the changes in the measured Solow residual are entirely

endogenous, driven by shoppers’ searching activities. We have chosen the matching

elasticity µ = 0.4, which implies that when total output increases by 1%, the measured

Solow residual increases by 0.4%.

The model cannot generate the same persistence of aggregate variables as in the data.

The basic mechanism of the model is that the behavior output mirrors the behavior

of forecast errors. In the data, the forecast errors are only modest persistent, which

implies that the persistent of output in the model cannot be too high. Even though

7 In Figure 1.7, we choose the size of the confidence innovation such that the initial response of
output is 1.
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capital introduces additional persistence, this effect is not strong enough to allow the

model to achieve the same persistence as in the data. To match the autocorrelation in

the data, it seems necessary to include other more persistent real shocks.

Comparison with RBC Model without goods market search Now we compare

our baseline model driven by confidence shocks with the RBC model driven only by

TFP shocks. The RBC model we use is the same as our quantitative model presented

in Section 1.4.1 except for three differences: (1)there is no competitive search in the

goods market and hence no endogenous Solow residual; (2)there are exogenous shocks

to aggregate TFP; and (3) there is no information friction.

We assume that the aggregate TFP shock follows an AR(1) process

zt = ρzzt−1 + ςt, (1.75)

where ςit ∼ N (0, σ2
ς ). After subtracting a linear trend, we estimate process (1.77) and

obtain ρz = 0.96 and σς = 0.0078. With the aggregate TFP shock, the productivity of

an individual island’s follows

zit = ai + zt. (1.76)

That is, the productivity in each island equals the sum of the island specific productivity

and the aggregate TFP. Note that producers now can observe their trading partners’

productivity perfectly.

We set the same exogenously determined parameters as before and calibrate the

endogenously determined parameters to the same targets. As can be seen in Table 1.5,

the two models have similar performances in matching the volatility of consumption and

investment. The model with confidence shocks is more successful in accounting for the

volatility of labor, a variable that the RBC model has difficulty matching. The RBC

model with TFP shocks outperforms the model with confidence shocks in accounting

for the Solow reisdual, but this is mainly due to the exogenously assumed TFP shock

process.

As emphasized by [12], standard RBC models fail to capture the pattern of labor

wedges. In our model with confidence shocks, the labor wedge is highly counter-cyclical.

The reason is that agents increase or decrease their labor supply not because there is

a real change in labor productivity, but because they believe the demand from other
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islands is high thanks to information frictions. The confidence shock creates a wedge

between labor productivity and the marginal rate of substitution.

Baseline model with both confidence shock and TFP shock The baseline

model driven only by confidence shocks does not generate enough persistence compared

with data, and now we add exogenous aggregate TFP shock into the baseline model.

The aggregate TFP shock process also follows

zt = ρzzt−1 + ςt, ςit ∼ N (0, σ2
ς ), (1.77)

but because of the existence of goods market search frictions, the measured Solow

residual will not be the same as the exogenous aggregate TFP shock. We jointly estimate

the TFP shock process and the confidence shock process using Bayesian method, to

match the real output growth rate and the mean forecast error. The estimation results

are shown in Table 1.6. Because goods market frictions generate endogenous movement

of Solow residual, the estimated standard deviation of TFP innovation is smaller than

that in the standard RBC model.

Table 1.5 compares the business cycle statistics of baseline model with and without

TFP shocks. First, the model with both shocks improve the match of aggregate volatil-

ity. Second, the model with both shocks brings the persistence closer to the data, which

can be viewed as a weighted average of the baseline model with only confidence shock

and the RBC model with only TFP shock. Figure 1.8 displays the fraction of volatility

that can be attributed to confidence shocks in a variance decomposition analysis. It

can be seen that after adding TFP shocks, the confidence shock still plays an important

role in accounting for aggregate fluctuations, especially in the short to medium term.

Comparison with the Heterogeneous-Prior Formulation To compare with the

heterogeneous-prior formulation, we use the baseline model in [17].8 In this formu-

lation, the persistence and variance of output are independent of information frictions.

With the same confidence shock process, the persistence of various aggregate variables

is sympathetically higher than the one in our common-prior formulation. Unlike our

common-prior model in which there is an upper bound for the variance of output, one

8 The details of the model specification can be found on our online appendix.
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can obtain any variance of output with heterogeneous-prior formulation. To capture

the effects of information frictions, [17] choose a relatively low persistence of the con-

fidence shock. Our paper implements this notion by solving the common-prior model

and examining whether the forecast errors in the model match the micro data.

1.5 Conclusion

In this paper, we study a business cycle model in which aggregate fluctuations are driven

by confidence shocks. Because of asymmetric information, higher order beliefs are cru-

cial in shaping equilibrium outcomes, and the infinite regress problem arises. We use

our method developed in [8] to solve the infinite regress problem without approxima-

tion. It turns out that the persistence aggregate output is increasing in the degree of

information frictions and strategic complementarity. Also, there is an upper bound for

the volatility of output that can be obtained by confidence shocks. In our quantita-

tive model, we calibrate the parameters that determine information frictions to match

micro-level data. We find that our model with confidence shocks can match a number of

salient features of business cycles. However, the confidence shock itself does not generate

enough persistence of aggregate variables. These results imply that confidence shocks or

other non-fundamental shocks could play an important role in accounting for business

cycles, but more persistent real shocks are also necessary. We believe the method and

the insights discussed in this paper can also be applied to a broad class of models with

higher order beliefs.
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Figure 1.7: Impulse Response to the Confidence Shock
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Table 1.5: Business Cycle Statistics

Data
Baseline RBC Hetero-prior

ξ shock ξ, TFP shcok TFP shock ξ shock

Std. deviation

Y 1.54 1.19 1.63 1.16 1.54

C 1.26 0.62 1.04 0.62 0.96

I 6.87 4.72 5.89 4.49 4.24

N 1.86 1.06 1.04 0.41 2.20

Z 1.24 0.47 1.03 0.88 —

LW1 4.87 2.39 2.19 — 2.71

LW2 3.96 1.79 1.59 — 1.76

Corr with Y

Y 1.00 1.00 1.00 1.00 1.00

C 0.88 0.99 0.91 0.99 0.99

I 0.91 0.99 0.89 0.99 0.99

N 0.86 1.00 0.90 1.00 1.00

Z 0.77 1.00 0.95 1.00 —

LW1 -0.84 -0.99 -0.93 — -1.00

LW2 -0.75 -0.99 -0.64 — -1.00

Autocorrelation

Y 0.87 0.42 0.64 0.74 0.70

C 0.88 0.45 0.70 0.75 0.71

I 0.83 0.42 0.56 0.73 0.69

N 0.92 0.42 0.56 0.74 0.69

Z 0.81 0.42 0.67 0.73 —

LW1 0.92 0.41 0.58 — 0.70

LW2 0.91 0.41 0.53 — 0.69

Note: All variables are HP-filtered logarithms of the original series. The standard deviations are mul-
tiplied by 100. LW1 is the labor wage defined by the standard separable utility function U(C,N) =

logC − N1+γ

1+γ
, and LW1 = log( Y

N
) − log(CNγ). LW2 is the labor wage defined by the GHH utility

function in this paper, and LW2 = log( Y
N

)− log(Nγ).
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Table 1.6: Estimated Parameters in the Baseline Model with Confidence and TFP shock

Prior Posterior

Distribution Mean Std Mode Mean 90% HPD

ση Inv Gamma 0.30 3.00 0.15 0.14 [0.12, 0.17]

σu Inv Gamma 0.30 3.00 0.38 0.38 [0.32, 0.43]

ρz Beta 0.50 0.20 0.25 0.93 [0.89, 0.96]

σς Inv Gamma 0.10 2.00 0.34 0.37 [0.31, 0.38]

Figure 1.8: Variance Decomposition: Fraction Due to Confidence Shocks
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Chapter 2

Rational Expectations Models

with Higher Order Beliefs

2.1 Introduction

In many economic models with information frictions, an agent’s payoff depends on his

own actions, the actions of others, and some unknown economic fundamentals. Rational

behaviors not only depend on an agent’s beliefs on economic fundamentals, but also

depend on higher order beliefs, that is, agents’ beliefs of others’ beliefs, agents’ beliefs

of others’ beliefs of others’ beliefs, and so on. If the economic fundamentals are persistent

over time and hence the past information is worth keeping track of, forecasting all the

higher order beliefs would require an infinite number of priors of them, which would

amount to an infinite number of state variables. This type of problem is known as the

infinite regress problem, and has been explored by a large number of works.1

The difficulty of solving models with higher order beliefs lies in the fact that inferring

others’ action requires the functional form of the policy rule in the first place, but the

policy rule is the solution to the inference problem. As argued in [7], if an agent

assumes that other agents keep track of n state variables, he in turn needs to keep track

of n+1 state variables (the prior of the economic fundamental and the n priors of others’

state variables). Therefore, the equilibrium policy rule does not permit a finite-state

1 A partial list of these works includes [33], [7], [34], [35], [9], [1], [5], [3], [13], [16], and so on.
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representation. In terms of higher order beliefs, to predict k−th order belief requires

at least k state variables, and to predict all the higher order beliefs requires infinite

state variables. In light of these considerations, it is generally believed that an infinite

number of state variables are needed to solve this type of model.

In this paper, we pursue the following question. With higher order beliefs, is it really

impossible to find a small set of state variables that are sufficient statistics for agents

to make the optimal inference? If possible, how do we find these state variables and

what are the laws of motion for these variables? If it does require an infinite number of

state variables, how do we approximate the true solution with a finite number of state

variables?

Our first main result is that given a linear rational expectations model, when ob-

served signals follow an ARMA process, the equilibrium policy rule always allows a

finite-state representation. To make sure signals follow an ARMA process, we start

from the case in which the information process is given exogenously. Like in standard

problems with symmetric information, solving for the equilibrium requires finding the

fixed point in the functional space. Unlike in standard models, when higher order be-

liefs are involved, it is difficult to figure out the sufficient state variables in the first

place. Given this difficulty, we start from the state space that is spanned by the entire

history of signals. This implies that solving for the equilibrium requires solving for a

lag polynomial with an infinite number of coefficients. Our work is based on [36] and

[9]. The idea is to transform the problem which solves for a lag polynomial into a sim-

pler problem which solves for an analytical function, labelled as the frequency-domain

method. When signals follow an ARMA process, we prove that the equilibrium policy

rule, the lag polynomial, is also of the ARMA form. Therefore, we can find a finite-state

representation for the equilibrium policy rule.

We extend the work of [9] and others in two important ways. First, we do not

restrict the number of signals to being equal to the number of shocks. A necessary

step in the inference problem with infinite sample is to find the Wold (fundamental)

representation for the signal process. Previous works rely on the Blaschke matrices to

find the fundamental representation, which require that the number of signals equals
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the number of shocks.2 We adopt a different approach for finding the Wold represen-

tation. We show that one can first convert the signal process into its state-space, and

then use the innovation representation and factorization identity to solve for the Wold

representation conveniently. This procedure works for any information structure that

follows an ARMA process: it is not restricted by the number of signals or the number

of shocks. The restriction that there has to be the same number of signals as shocks is

quite limited. In general signal extraction problems, there are more shocks than signals,

as criticized in [25]. This restriction is indeed violated in many applications, such as

[1], [3] and [4]. When this restriction is actually satisfied, agents often learn ‘too much’,

in the sense that the prediction error is not long-lasting, because there are insufficient

numbers of noisy shocks to really confuse them, unless assuming a confounding shock

process in the first place.3 In both [9] and [10], agents can learn the true state of the

economy after one period. When there are more shocks than signals, agents never fully

learn the true state of the economy and the prediction error is typically persistent. As

a result, the model economy features more relevant and richer dynamics.

Secondly, we allow agents to solve a general signal extraction problem. The majority

of existing literature that applies the frequency-domain technique only studies a pure

forecasting problem. That is, only future values of signals are pay-off relevant. To fore-

cast future signals, one can simply use the Hansen-Sargent formula. In the examples

presented in this paper, agents need to solve a generic signal extraction problem con-

ditional on infinite observables. The Hansen-Sargent formula does not apply in these

environments. Instead, we apply the Wiener-Hopf prediction formula, which is well

suited for these types of problems and includes Hansen-Sargent formula as a special

case. Applying the Wiener-Hopf prediction formula in the univariate case has been

discussed extensively in [40]. In this paper, we extend the application to multivariate

case.

We illustrate our method in various applications. We first consider a two-player

model in which asymmetric information and strategic complementarity make higher

order beliefs relevant.4 We discuss the case in which agents only receive private

2 See [16], [37] and [10] for example. [38] and [39] solved a special signal process with more shocks
than signals.

3 In [16], they assume a non-invertible shock process.
4 The two-player game should not be taken literally. The two players can be an individual agent
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signals regarding the economic fundamental (similar to [1]), and the case in which

agents also receive a public signal regarding the economic fundamental (similar to [3]).

In both cases, we obtain a sharp analytic solution which can be characterized by finite

state variables. The intuition for the finite-state representation is that agents do not

directly care about each of the higher order beliefs, but they only care about a specific

linear combination of all the higher order beliefs. The latter indeed follows an ARMA

process. We also consider a model where agents are randomly matched, an extension

of [4] with persistent shocks. In this case, an agent randomly interacts with a different

agent every period, and needs to form higher order beliefs on each of them. Even though

it complicates the inference problem, our method is general enough to solve these models

as well.

The above first result is for the cases where agents solve their inference problem

given an exogenous ARMA signal process. We label them as problems with exogenous

information. We also explore cases when agents observe signals that contain information

which is endogenously determined in the equilibrium. We label them as problems with

endogenous information. The equilibrium with endogenous information imposes an

additional cross-equation restriction, in the sense that the perceived law of motion has

to be consistent with the realized law of motion. The endogenous variable that appears

in the signal has an information role as well, similar to the concept of information

equilibrium defined in [16].

Our second main result is that we prove that in our model with endogenous in-

formation, the equilibrium cannot be represented by finite state variables.5 The

endogenous variable that plays an information role follows an infinite order process.

This result is somewhat surprising given that the exogenous driving force of the econ-

omy is very simple. It should be noted that it is not because of the infinite regress

problem that agents have to keep track of infinite state variables. For each individual,

they still take the signal process as exogenously given, even though the signals contain

an equilibrium object. From our first main result, once the endogenous variable follows

an ARMA process, the individual policy rule will also follow an ARMA process and

permit a finite state variable representation. If the endogenous variable does not follow

and the whole economy.
5 [33] proved a similar impossibility theory.
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an ARMA process, the signal received by agents cannot follow an ARMA process. Note

that in [9] and other papers where the number of signals is the same as the number

of shocks, the equilibrium permits a finite-state representation even with endogenous

information. When we allow for this more general information process, this result does

not hold any more.

This finding is interesting from a theoretical point of view, but it also implies that

finding the exact solution is no longer possible. To solve the problem with endogenous

information, we approximate the law of motion of the endogenous variable that shows

up in signals by an ARMA process. We can prove that as the order of the ARMA

process increases, it can approximate the true solution arbitrarily well, and we also find

that a relatively low order ARMA process can give accurate approximation. Note that

this ARMA approximation method is different from [35] and others in an important

way. Even though we approximate the law of motion of the endogenous variable, each

individual still faces the infinite regress problem. The prediction problem still cannot be

solved by the Kalman filter. Using our method, each individual’s policy rule is solved

exactly.

To demonstrate that our method can be applied in an empirically relevant environ-

ment, we solve a full-blown business cycle model in a companion paper ([41]). In this

paper, the confidence shock is the sole driving force of business cycles, and agents face a

complicated learning problem, i.e., they need to forecast the forecasts of others. Differ-

ent from the applications solved in this paper, agents also make dynamic decisions (the

investment decision), and the infinite regress problem becomes much more involved.

We show that there is a hump-shaped relationship between the variance of output and

the variance of the confidence shock, and under our favored calibration of information

frictions, the model with confidence shocks can account for a number of salient features

of business cycles.

Related literature Our paper is closely related to the literature that attempts to

solve the infinite regress problem. Broadly speaking, there are two approaches to solving

the infinite regress problem. The first approach is to short-circuit the infinite regress

problem by modifying the original problems. For example, by assuming that information

becomes public after certain periods, the relevant state space is finite and one can use
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the Kalman filter. A partial list of literature that employs this method includes [7],

[13], [5], [14]. This assumption is unsatisfying from a modeling perspective, and it is

proved by [38], [9] and [42] that the approximate solution can be very different from the

true solution. Another type of approximation is developed by [15] and [25]. The idea

is that only a finite order of higher order beliefs matter for the equilibrium, based on

the observation that the effects of higher order beliefs diminish as the order increases.

This method provides important insights into the nature of the higher order beliefs, but

as shown in our examples, this method can be difficult to implement when the degree

of strategic complementarity is strong, or when the model is complicated to express

the policy rule in terms of higher order beliefs. [35] approximated the equilibrium via

the ARMA process. The forecasting problem is transformed into fitting vector ARMA

models, which is particularly useful when agents do not need to solve a pure forecasting

problem.

The second approach is to solve the infinite regress problem exactly without approx-

imation. [9] first uses the frequency-domain method to solve the [7] original problem

and found that agents actually share the same belief and there is no infinite regress

problem. [38], [16], and [37] apply the frequency-domain method to study various asset

pricing models proposed by [43] and [34]. [10] applies this method to study the effects

of noises on business cycles. These papers assume that the number of shocks equals the

number of signals, a restriction that prevents this method from being applied in more

general settings. Furthermore, in previous literature, agents solve a pure forecasting

problem most of the time. This paper eliminates these restrictions and a much broader

class of models can be solved by our method.

Our applications in this paper complement the literature on macroeconomics with

higher order beliefs. We obtain analytical solutions for models closely related to [1], [3],

and [4]. We believe our method is also useful in solving models similar to [5], [13], [44]

and others. In our companion paper ([41]), we study a business cycle model driven by

confidence shocks. We characterize how information frictions affect the persistence and

variance of output, and show that the confidence shock could be an important factor in

explaining business cycles.

The rest of the paper is organized as follows. Section 2.2 sets up a two-player model

to introduce higher order beliefs and the infinite regress problem. Section 2.3 presents
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the main theorems. We show how to jointly use the Kalman filter and the Wiener-Hopf

prediction formula to form the optimal expectation with infinite observables. We also

show how to obtain a finite-state representation for a rational expectations model with

higher order beliefs. Section 2.4 solves the two-player game with and without public sig-

nals. Section 2.5 explores the case in which the signals contain an endogenous variable.

We prove that the equilibrium policy rule does not have a finite-state representation in

this environment. Section 2.6 considers the case where an agent has to form higher order

beliefs of many different agents. Section 2.7 discusses an application of the method in

a quantitative business cycle model. Section 2.8 concludes.

2.2 A Two-Player Model with Infinite Regress Problem

In this section, we present a simple two-player model with the infinite regress problem.

This model naturally assigns an important role to infinite higher order beliefs, and

numerous variations of it have been used in the literature.

2.2.1 Model setup

Consider a game between two agents i and j. Time is discrete and lasts forever. In

period t, agents’ payoff depends on a common persistent economic fundamental ξt.

The payoff also depends on the action of the other agent and we consider the case with

strategic complementarity. However, information frictions prevent agents from perfectly

observing ξt or the action of the other agent.

We assume that the best response of agent i, denoted by yit, has to satisfy

yit = E[ξt|Ωit] + αE[yjt|Ωit],
6 (2.1)

where α ∈ (0, 1) determines the strength of strategic complementarity and Ωit denotes

the information set of agent i at time t. Agent j follows the same strategy. Note that

agents make a purely static decision every period, and the link across different periods

is only through the information set. There are various micro-foundations that lead to

this specification, such as [1] and [3]. For now we only focus on this abstract form and

6 Here, yit ∈ R and yjt ∈ R. The operator E denotes the linear projection on the information set.
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discuss its general properties. The information structure of the model is specified as

follows.

Signal process We assume that ξt follows a covariance stationary ARMA (p, q) pro-

cess

ξt =
Πq
k=1(1 + θkL)

Πp
k=1(1− ρkL)

ηt, (2.2)

where ηt ∼ N(0, ση). As opposed to observing ξt directly, agents receive two signals

that are related to ξt. These two signals are simply the sum of ξt and some idiosyncratic

noises.

x1
it = ξt + εit, (2.3)

x2
it = ξt + uit, (2.4)

where εit ∼ N(0, σ2
ε ) and uit ∼ N(0, σ2

u). Note that the idiosyncratic noises are indexed

by i. More compactly, the signal process can be expressed as

xit ≡

[
x1
it

x2
it

]
=

1 0
Πqk=1(1+θkL)

Πpk=1(1−ρkL)

0 1
Πqk=1(1+θkL)

Πpk=1(1−ρkL)



εit

uit

ηt

 ≡M(L)sit, (2.5)

The information set of agent i at time t contains all the signals he has received up to

time t

Ωit =

{
x1
it, x

2
it, x

1
it−1, x

2
it−1, x

1
it−2, x

2
it−2, . . .

}
. (2.6)

Agent j receives signals of ξt, but are corrupted by his idiosyncratic noises εjt and ujt.

As a result, these two agents do not share the same information set.

To simplify notation, we will use Eit[ · ] to denote E[ · | Ωit] from now on.

Remark Several remarks about the model should be made here before we move on.

1. A wide range of models can be interpreted as the two-player model. If we assume

that there are a continuum of agents in the economy, and each individual agent i

interacts with the economy average yt =
∫
yjt, the model becomes

yit = Eit[ξt] + αEit[yt]. (2.7)
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As we show in Section 2.4, the solution to this model remains the same as the

original model (2.1). What matters is whether to infer the action of a fixed agent

(Section 2.4), or to infer the action of a random agent that changes over time

(Section 2.6).

2. To introduce the infinite regress problem, it will be sufficient if agents only receive

one of the two signals. The assumption that agents receive multiple signals is to

demonstrate that our method can manage multivariate systems.

3. The information structure we have specified in equation (2.5) is a very special one.

We can relax this assumption to allow any finite number of signals that follows

any finite ARMA process. The structure we adopt here should not be taken in a

narrow way. For example, we allow some of the signals to be shared by all agents

(Section 2.4.2), and allow some of the signals to contain endogenous information

(Section 2.5).

2.2.2 Higher order beliefs

The best response of agent i is given by equation (2.1), and the same rule applies to

agent j,

yjt = Ejt[ξt] + αEjt[yit]. (2.8)

We can repeatedly substitute equation (2.8) into equation (2.1), and vice versa, which

leads to

yit = Eit[ξt] + αEit[yjt]

= Eit[ξt] + αEit [Ejt[ξt] + αEjt[yit]]

= Eit[ξt] + αEitEjt[ξt] + α2EitEjt[yit]

= Eit[ξt] + αEitEjt[ξt] + α2EitEjtEit[ξt] + α3EitEjtEit[yjt]
...

=

∞∑
k=0

αk Ek+1
it [ξt], (2.9)
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where Ekit[ξt] stands for k-th order belief. These higher order beliefs are defined recur-

sively as follows

E1
it[ξt] = Eit[ξt]

E2
it[ξt] = EitEjt[ξt]

Ekit[ξt] = EitEjtEk−2
it [ξt], for k = 3, 5, 7, . . .

Ekit[ξt] = EitEjtEk−2
it [ξt], for k = 4, 6, 8, . . .

Crucially, agents have heterogeneous information sets, and the law of iterated expec-

tations does not apply. Hence, the optimal action yit depends on all the higher order

beliefs. Mathematically, the means of all these higher order beliefs can be calculated

by the standard Kalman filter, but there are an infinite number of such objects to be

calculated. One may think that if a certain pattern of these higher order beliefs is found,

these beliefs may be summarized in a compact way. However, this approach does not

work in general, due to a growing complexity with the order of beliefs.

Similarly, if we consider model (2.7), successive substitution leads to

yit =
∞∑
k=0

αk EitE
k
t [ξt]. (2.10)

Here, as opposed to inferring agent j’s beliefs, the higher order beliefs Ekt [ξt] are about

the economy average expectations of ξt, defined recursively by

E0
t [ξt] = ξt

E1
t [ξt] =

∫
Ejt[ξt]

Ekt [ξt] =

∫
EjtE

k−1
t [ξt].

In both cases, it is apparent that agents’ optimal response is related to infinite higher

order beliefs. Forecasting all of these higher order beliefs requires an infinite number

of priors of these beliefs, and these priors are functions of the entire history of agents’

signals. As a result, it is generally believed that the policy rule has to include the entire

history of signals as state variables.
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2.2.3 Equilibrium

Recall that the information set of agent i is Ωit = xti. The linear policy rule of agent i

belongs to the space spanned by square-summable linear combinations of current and

past realizations of xit. We use Hxt to denote this space. We assume that the policy

rule takes the following form

yit =
∞∑
k=0

h1kx
1
it−k +

∞∑
k=0

h2kx
2
it−k, (2.11)

and it is obvious that yit ∈ Hxt . In standard models without higher order beliefs, the

policy rule still depends on the entire history of signals, but a finite number of state

variables can be easily found to effectively summarize the past information. In contrast,

due to the infinite higher order beliefs, there is no way to figure out whether there exists

a finite number of state variables in the first place (even though later on we prove that

this is indeed the case), and we have to assume it is necessary to keep track of the entire

history of signals.

More compactly, we use lag polynomials to denote the infinite sum

yit = h1(L)x1
it + h2(L)x2

it, (2.12)

with h1(L) =
∑∞

k=0 h1kL
k and h2(L) =

∑∞
k=0 h2kL

k.

To make sure that yit is co-variance stationary, the infinite sequences {h1τ}∞τ=0 and

{h2τ}∞τ=0 have to be in the square-summable space `2.7 From now on, if an infinite

sequence φ = {φk}∞k=0 ∈ `2, then we denote φ(L) =
∑∞

k=0 φkL
k as its corresponding lag

polynomial. The definition of the equilibrium is straightforward.

Definition 2.2.1 (Signal form). Given the signal process (2.5), the equilibrium of model

(2.1) is a policy rule h = {h1, h2} ∈ `2 × `2, such that

yit = Eit[ξt] + α Eit[yjt],
7 [45], [9] assume that the policy rule φ belong to β-summable space, i.e.,

∑∞
k=0 β

kφ2
k < ∞. This

is a less strict requirement than original `2 assumption, which arises naturally in linear-quadratic type
models. However, it is less obvious whether this relaxation is valid or not in our model setting, and we
will work with the original `2 space in this paper.



56

where

yit = h1(L)x1
it + h2(L)x2

it,

yjt = h1(L)x1
jt + h2(L)x2

jt.

Since the signals {xit} are ultimately generated by the underlying shocks {sit}, yit
also lies in the space spanned by the square-summable linear combinations of current

and past shocks, denoted by Hst . It should be clear that Hxt ⊂ Hst . We say that the

equilibrium is of signal form if the equilibrium policy is written in terms of signals, and

the equilibrium is of innovation form if it is written in terms of the underlying shocks.

The equilibrium in innovation form is defined as follows

Definition 2.2.2 (Innovation form). Given the signal process (2.5), the equilibrium of

model (2.1) is a policy rule φ = {φ1, φ2, φ3} ∈ `2 × `2 × `2, such that

yit = Eit[ξt] + αEit[yjt],

where

yit = φ1(L)εit + φ2(L)uit + φ3(L)ηt,

yjt = φ1(L)εjt + φ2(L)ujt + φ3(L)ηt.

In the literature, when solving the infinite regress problem in the frequency domain,

the innovation form is exclusively used. The advantage of working with innovation form

is that all the objects are expressed in terms of the underlying shocks and it is convenient

to discuss its statistical properties. However, from an economic perspective, it is more

natural to think of the policy rule in terms of signals, because agents do not observe

those shocks directly.8 In Theorem 6, we show that there is a one-to-one mapping

between the equilibrium in signal form and in innovation form.

In terms of the existence and uniqueness of the equilibrium, we have the following

result.

Proposition 2.2.1. Assume that the signals follow a co-variance stationary process. If

α ∈ (0, 1), then there exists a unique equilibrium of model (2.1).

8 [9] claims that the limited-information equilibrium does not exist in the space spanned by signals
but only exists in the space spanned by the innovations. We find this conclusion questionable.
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Proof. See Appendix A.2.1 for proof.

The core of the proof is to show that the equilibrium is a fixed point of a contraction

mapping. On one hand, to prove this proposition, we only require that the signals

follow a co-variance stationary process, but not necessarily a finite ARMA process. On

the other hand, this proposition does not imply whether the policy rule in equilibrium

permits a finite-state representation or not. In principle, it could be that agents do need

to keep track of the entire history of observables. Next theorem, however, shows that

the equilibrium indeed has a finite-state representation when the signals follow a finite

ARMA process.

2.2.4 Finite-state representation

Theorem 3. Assume that (1) the exogenous variable ξt follows

ξt =
Πq
k=1(1 + θkL)

Πp
k=1(1− ρkL)

ηt.

(2) The signals follow the following co-variance stationary process (2.5)

xit =

[
x1
it

x2
it

]
=


1 0

Πqk=1(1+θkL)

Πpk=1(1−ρkL)

0 1
Πqk=1(1+θkL)

Πpk=1(1−ρkL)



εit

uit

ηt

 .
(3) The structural parameter α ∈ (0, 1).

Then there exists a unique solution yit = h1(L)x1
it + h2(L)x2

it satisfies model (2.1)

yit = Eit[ξt] + αEit[yjt].

The equilibrium policy rule h1(L) and h2(L) have the following properties

1. Both h1(L) and h2(L) have a finite ARMA representation

yit =
[
h1(L) h2(L)

] [x1
it

x2
it

]
=
[
τ1

Πnk=1(1+ζ1
kL)

Πmk=1(1−ϑkL) τ2
Πnk=1(1+ζ2

kL)

Πmk=1(1−ϑkL)

] [x1
it

x2
it

]
(2.13)

where the order of the ARMA process m and n, the coefficients τ1, τ2, {ϑk}mk=1,

{ζ1
k}nk=1, and {ζ2

k}nk=1 are all functions of the structural parameter α and the pa-

rameters that determine the signal process.
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2. Let r = max {m,n}. Given a particular signal realization {xit}−1
t=−∞, there exists

r state variables zit = [z1
it, z

2
it, . . . , z

r
it]
′, such that the policy rule in (2.13) has the

following finite-state representation

yit = Γx xit + Γz zit, (2.14)

with the law of motion of zit

zit+1 = Υxxit + Υzzit (2.15)

The initial state zi0 is given by

zi0 = (Ir −ΥzL)−1 Υxxi−1 (2.16)

The constant matrices Γx,Γz,Υx, and Υz are all functions of τ1, τ2, {ϑk}mk=1, and

{ζ1
k}nk=1 in equation (2.13).

Proof. The proof of this theorem is a subset of the proof of Theorem 4, and the exact

form of equation (2.13) can be derived by Theorem 5 in the next section.

The first part of this theorem establishes that the equilibrium policy rule follows a

finite ARMA process in terms of the signals. The second part of this theorem states

that the policy rule has a finite-state representation, which is a natural result of the

first part. Therefore, there indeed exists a small set of state variables that are sufficient

for agents’ inference problem. This theorem also implies that the infinite sum of higher

order beliefs in equation (2.9) follows a finite ARMA process, even though Ekit[ξt] follows

an infinite ARMA process as k approaches to infinity.

To solve for the equilibrium policy rules h1(L) and h2(L), the difficulty lies in how

to solve the inference problem

Eit[yjt] = Eit[h1(L)x1
jt + h2(L)x2

jt],

in which the variable to be predicted is with infinite states. The Kalman filter requires

the predicted variable to have finite states, and therefore it is inapplicable for this type

of the problem. In contrast, the Wiener filter can solve the inference problem that is

conditional on infinite observables, and it allows the predicted variable to have infinite

states (the details of these two filters are discussed in the next section). A key step to
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employ the Wiener is to find the Wold representation of the signal process, which is not

provided by the Wiener filter itself but can be obtained by the Kalman filter. Therefore,

a joint use of the Kalman filter and the Wiener filter solves this inference problem. The

lack of an efficient way to find the Wold representation is exactly what prevents others

from solving models with higher order beliefs, and we show that the Kalman filter can

achieve this goal with ease. After solving Eit[yjt], it turns out that h1(L) and h2(L) are

of finite ARMA type, and it allows a finite-state representation.

The model we considered in this section is a very special one in the following sense:

(1) there is only one choice variable yit; (2) there is no endogenous state variables, such

as capital; (3) there is no need to forecast variables in the future; (4) the signal process

is very special. These limitations make model (2.1) only theoretically interesting, and

far from empirically relevant. In the following section, we eliminate these restrictions,

and extend Theorem 3 to a much more general statement.

2.3 Methodology: General Linear Rational Expectations

Models

In this section, we develop the method that solves the general rational expectations

models with higher order beliefs. We first lay out the structure of the model and the

signal process, and state the main theorem that the equilibrium policies admit finite-

state representation. We then show how to prove this theorem in steps. The key

part is to use the Wold representation and the Wiener filter to solve the general signal

extraction problem.

2.3.1 General rational expectations models

Now we move to the general form of the linear system. The input of the model includes

two parts: the first part is the signal process; the second part is the linear system which

corresponds to the equilibrium conditions that various kinds of variables need to satisfy.

There are three kinds of variables involved here: choice variables, choice variables chosen

by others, and exogenous variables.
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Signal process Assume that the signals observed by agents follow a finite ARMA

process,

xt =


x1
t
...

xnt

 =


a11(L)
b11(L) . . . a1m(L)

b1m(L)
...

. . .
...

an1(L)
bn1(L) . . . anm(L)

bnm(L)



s1t

...

smt

 = M(L)st, (2.17)

where the signal xt is a stochastic n × 1 vector and the shock st is a stochastic m × 1

vector. We allow m to be different from n. We normalize the co-variance matrix of st

to be an identity matrix. In each element of M(L), aij(L) and bij(L) are finite order

polynomials in the lag operator L. Particularly,

aij(L) =

qij∑
k=0

αijkL
k,

bij(L) =

pij∑
k=0

βijkL
k,

and we normalize βij0 = 1. The information set is Ωt = xt = {xt, xt−1, xt−2, . . .}.

Choice variable We assume there are d choice variables, which are functions of the

signals:

yt =


y1t

...

ydt

 = h(L)xt =


h11(L) . . . h1n(L)

... . . .
...

hd1(L) . . . hdn(L)



x1t

...

xnt

 = h(L)M(L)st. (2.18)

h(L) is the equilibrium policy rule we want to solve. We assume that each element in

h(L) has an infinite MA representation. We do not impose that h(L) admits a finite

ARMA representation in the first place (even though we prove this is indeed the case

later). Because these choice variables only depend on signals up to t, hij(L) cannot

contain any negative powers in L. To write it more compactly for future derivation,

define

φ(L) ≡
[
h11(L) . . . h1n(L) . . . hd1(L) . . . hdn(L)

]
. (2.19)

φ(L) effectively collapse all the lag polynomials to be solved into a vector, the dimension

of which is denoted as w ≡ dn. Reversely, the elements of yt can be expressed in terms
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of φ(L) as

yit = φ(L)Aixt (2.20)

= φ(L)AiM(L)st (2.21)

where Ai is the constant matrix that selects [hi1 . . . hin] from φ(L). Later we will use

h(L) and φ(L) interchangeably.

Endogenous variables related to other agents’ actions Crucially, the optimal

policy may depend on other agents’ actions or depend on some aggregate endogenous

variables. These variables cannot be observed, but matter for agents’ payoff. Assume

there are df such endogenous variables, denoted by ft = [fit, . . . , fdf t]
′ denote these

endogenous variables. They are related to the policy rule φ(L) and the underlying

shocks st in the following way

fit = φ(L)f i(L)st = φ(L)


f i11(L) . . . f i1m(L)

... . . .
...

f iw1(L) . . . f iwm(L)



s1t

...

smt

 (2.22)

Here, each f i(L) is a w × m matrix in the lag operator L. We assume that all the

elements in f i(L) are finite rational functions in L and do not contain negative powers

of L in expansion (others’ action cannot be a function of future shocks either).

Note that actions of others may also depend on shocks other than {s1t, . . . , smt}.
However, these shocks are uncorrelated with the shocks {s1t, . . . , smt} that drive {xt},
and the best forecasts of those shocks conditional on {xt} are zero. As a result, what is

relevant for agents are the parts that are correlated with {s1t, . . . , smt}.

Exogenous variables Generally, the optimal policy depends on the evolution of

some exogenous variables. We assume there are dg such variables, denoted by gt =

[git, . . . , gdgt]
′

gt = g(L)st =


g11(L) . . . g1m(L)

... . . .
...

gdg1(L) . . . gdgm(L)



s1t

...

smt

 (2.23)

Note that these exogenous variables are independent of the equilibrium policy rule φ(L)

Similarly, we assume that all the elements of g(L) are rational functions in L.
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General model Assume the policy rule needs to satisfy the following linear system

in equilibrium

p∑
j=0

Cy,jLjyt +

p∑
j=0

E
[
Cf,jLjft + Cg,jLjgt

∣∣∣∣xt]

+

q∑
j=1

E
[
Cy,−jL−jyt + Cf,−jL−jft + Cg,−jL−jgt

∣∣∣∣xt] = 0 (2.24)

For j ∈ {−q, . . . , p}, Cy,j is a constant d×d matrix, Cf,j is a constant d×df matrix, and

Cg,j is a constant d × dg matrix. These matrices are structural parameters that result

from optimality conditions and resource constraints. This system of equations incorpo-

rates the possibilities that the choice variables yt depend on the past, the current and

the future values of the endogenous variables of others and the exogenous variables, and

also yt’s own and future values. This specification includes the majority of applications

that one may encounter.

Special cases The structure we have specified includes two special cases which are

common in the literature.

1. Perfect information.

p∑
j=0

Cy,jLjyt +

p∑
j=0

E
[
Cf,jLjft + Cg,jLjgt

∣∣∣∣st]

+

q∑
j=1

E
[
Cy,−jL−jyt + Cf,−jL−jft + Cg,−jL−jgt

∣∣∣∣st] = 0

In standard real business cycle models and New Keynesian models without in-

formation frictions, the underlying shocks {st} are observed directly by agents.

That is, the space spanned by shocks is the same as the space spanned by signals,

Hst = Hx
t . Also, because all the shocks are observed directly, the actions of other

agents are also known perfectly. As a result, the expectations in model (2.24) can

be calculated in a trivial way.
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2. Imperfect information, but no roles of higher order beliefs 9

p∑
j=0

Cy,jLjyt +

p∑
j=0

E
[
Cg,jLjgt

∣∣∣∣xt]+

q∑
j=1

E
[
Cy,−jL−jyt + Cg,−jL−jgt

∣∣∣∣xt] = 0

This is the case in which information frictions exist, i.e., Hxt ⊂ Hs
t , but there is

no need to infer others’ choices. Agents only need to infer the exogenous variables

gt, and standard Kalman filter will be sufficient in solving the problem.

The solution to model (2.24) defined as follows

Definition 2.3.1. Given the signal process (2.17), a solution to model (2.24) (or an

equilibrium) is a matrix of lag polynomials h(L) or equivalently φ(L), such that

1. For all (i, j), hij(L) has an infinite MA representation

hij(L) =
∞∑
k=0

hijkL
k,

with
∑∞

k=0 hijk <∞.

2. For all possible realizations of {xt},

yt = h(L)xt

satisfies equation (2.24).

Given the model, we are interested in the following questions:

1. Under what conditions does a unique solution to this problem exist?

2. Suppose there indeed exists a h(L) that solves the problem, what its formula?

3. Does the solution admit a finite-state representation which allows agents to sum-

marize the past information using a small set of statistics?

Theorem 5, which involves more technical details, answers the first two questions. The

following theorem answers the third question.

9 This case is also discussed in [46].
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Theorem 4 (Finite-state representation). Suppose the signal process follows (2.17)

and the model (2.24) has a solution yt = h(L)xt. Then yt = h(L)xt has a finite ARMA

representation

yt = h(L)xt =


c11(L)
d11(L) . . . c1n(L)

d1n(L)
...

. . .
...

cd1(L)
dd1(L) . . . cdn(L)

ddn(L)



x1t

...

xnt

 , (2.25)

where cij(L) and dij(L) are finite degree polynomials in the lag operator L.

Given a particular signal realization {xt}−1
t=−∞, there exists a finite set of state vari-

ables zt, such that

yt = Γx xt + Γz zt, (2.26)

with the law of motion of zt

zt+1 = Υxxt + Υzzt. (2.27)

The initial state z0 is given by

z0 = (I −ΥzL)−1 Υxx−1 (2.28)

Proof. See Appendix A.2.10 for proof.

This theorem implies that higher order beliefs do not create infinite state variables. It

is always possible to use a small set of variables to summarize the necessary information

in the past, given that the signal process is of ARMA type. We present the proof of

this theorem and the proof of Theorem 5 in steps in the following subsections.

2.3.2 Preview of the main steps

The proof of these theorems is quite lengthy and it involves a number of building blocks.

The initial input includes the signal process (2.17) and the model (2.24). Here, we first

sketch the main steps that lead to Theorem 5 and Theorem 4.

Step 1: Given the signal process (2.17), find its state-space representation.

Step 2: With the state-space of the signal process, use the innovation representation

and factorization identity matrix to find the Wold representation of the signal process.
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Step 3: With the Wold representation of the signal process, use Wiener filter to solve

the inference problem in model (2.24).

Step 4: Applying the Riesz-Fisher Theorem, transform the infinite-dimension problem

of solving the sequences of coefficients in the lag polynomials into the finite-dimension

problem of solving a system of analytic functions.

Step 5: Use Cramer’s rule to solve the system of analytic functions, which leads to

the solution h(L) with ARMA representation.

Step 6: Given the solution with ARMA representation, find its finite-state represen-

tation.

2.3.3 Mathematical background: z transformation

By the Riesz-Fisher Theorem, there is a one-to-one mapping between the space of

square-summable sequences and the space of complex-valued functions. Given a two-

sided lag polynomials

ψ(L) =
∞∑

k=−∞
ψkL

k,

with
∑∞

k=−∞ |ψk|2 < ∞, we will use the complex-valued function ψ(z) to denote its

corresponding z transformation

ψ(z) =
∞∑
k=0

ψkz
k,

where ψ(z) is defined on the unit circle.

If ψ(L) is a one-sided polynomial with
∑∞

k=0 |ψk|2 < ∞, then its z transformation

is an analytic function on the open unit disk.

Particularly, assume there are two univariate co-variance stationary processes

xt = M(L)st,

yt = ψ(L)st.

The auto-covariance generating function for xt is

ρxx(z) = M(z)M ′(z−1),
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and the cross-covariance generating function between yt and xt is

ρyx(z) = ψ(z)M ′(z−1).

Most of the time, working with a complex function is much more convenient than

working with a square-summable sequence.

2.3.4 State-space representation, Factorization Identity, and Wold rep-

resentation

We need the Wold representation of the signal process for the following reason. All the

prediction is conditional on the observed signals, but ultimately, the linear projection

is on the space spanned by shocks. The original underlying shocks st contain more

information than the signals, and the prediction conditional on st is different from

the prediction conditional on xt. The Wold representation provides a new sequence of

shocks wt. Different from the underlying shocks st, the space spanned by the signals xt

is equivalent to the space spanned by wt, and we can conduct the linear projection on

wt. Given a finite ARMA signal process, in this subsection we present how to find its

state-space representation and Wold representation using the factorization identity.

Lemma 2.3.1. Assume that xt follows a finite ARMA process and is co-variance sta-

tionary,

xt =


x1
t
...

xnt

 =


a11(L)
b11(L) . . . a1m(L)

b1m(L)
...

. . .
...

an1(L)
bn1(L) . . . anm(L)

bnm(L)



s1t

...

smt

 = M(L)st, (2.29)

where xt is a n × 1 vector and st is a m × 1 vector. The co-variance matrix of st is

normalized to be an identity matrix. In each element of M(L), aij(L) and bij(L) are

finite degree polynomials in the lag operator L. Particularly,

aij(L) =

qij∑
k=0

αijkL
k

bij(L) =

pij∑
k=0

βijkL
k
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and we normalize βij0 = 1. The signal process admits at least one state-space represen-

tation.

The state equation is

Zt = FZt−1 +Qst,

and the observation equation is

xt = HZt,

where F,Q and H are functions of

{
pij , qij , {αijk}

qij
k=1, {βijk}

pij
k=1

}
.

In addition, the eigenvalues of F all lie inside the unit circle.

Proof. See Appendix A.2.3 for proof.

This lemma states that any finite ARMA process has a state-space representation.

Note that there are many different state-state representations for the same ARMA

process. Generally, we can write the state equation as

Zt = FZt−1 +Qst,

and the observation equation as

xt = HZt +Rvt,

where the covariance matrix of vt is also an identity matrices. Lemma 2.3.1 only provides

one of the state-space representation with the feature that there is no shock in the

observation equation.

Finding the state-space representation is a necessary step to find the Wold repre-

sentation of the signal process. Suppose that we have B(L) and {wt} such that

xt = M(L)st = B(L)wt, (2.30)

B(L) is invertible,10 and wt is serially uncorrelated shocks with co-variance matrix V ,

then we say xt = B(L)wt is a Wold representation of xt. Since B(L) is invertible, xt

10 This is equivalent to that the determinant of B(z) does not contain any roots (zeros) within the
unit circle.
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contains the same information as wt, i.e., Hxt = Hwt . Further, equation (2.30) implies

that

ρxx(z) = M(z)M ′(z−1) = B(z)V B′(z−1). (2.31)

B(z) and V is called a canonical factorization of ρxx(z). Therefore, find the Wold

representation is equivalent to find the canonical factorization. The following theo-

rem provides the canonical factorization for the state-space representation of the signal

process xt, which uses the factorization identity.

Theorem (Canonical Factorization). Let F denote an (r×r) matrix whose eigenvalues

are all inside the unit circle; let Q′Q or R′R be positive definite matrix of dimension

(r × r) or (n× n); let H denote an arbitrary (n× r) matrix. Let P satisfy

P = F [P − PH ′(HPH ′ +R′R)−1HP ]F ′ +Q′Q

and K be defined as

K = PH ′(HPH ′ +R′R)−1

Then

1. The eigenvalues of (F − FKH) are all inside the unit circle.

2. The canonical factorization is

ρxx(z) = H[Ir − Fz]−1Q′Q[Ir − Fz−1]−1H ′ +R′R

= [In +H(Ir − Fz)−1FKz][HPH ′ +R′R][In +K ′F ′(Ir − F ′z−1)−1H ′z−1]

= B(z)V B′(z−1).

3. B(z) is

B(z) = In +H[Ir − Fz]−1FKz,

the inverse of B(z) is

B(z)−1 = In −H[Ir − (F − FKH)z]−1FKz,

and the co-variance matrix V is

V = HPH ′ +R′R
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Proof. The proof is in Hamilton (1994).

To prove this theorem, one essentially uses the Kalman filter. The requirement that

all the eigenvalues of F lie inside the unit circle guarantees (Ir − Fz) is invertible. The

eigenvalues of (F −FKH) are very important in understanding the prediction problem,

which essentially determines the persistence of the forecasts.

2.3.5 Wiener-Hopf prediction formula

Now we turn to the inference problems incorporated in equation (2.24). The following

theorem states the Wiener-Hopf prediction formula. Note that this prediction formula

does not hinge on whether the signal follows a finite ARMA process or not.

Theorem (Wiener-Hopf). Suppose the multivariate co-variance stationary signal pro-

cess follows

xt = M(L)st,

and yt is a univariate co-variance stationary process

yt = ψ(L)st.

Assume all the elements of M(L) and ψ(L) have an infinite MA representation. The

canonical factorization of ρxx(z) is given by

ρxx(z) = M(z)M ′(z−1) = B(z)V B′(z−1).

Then the optimal linear prediction of yt conditional on {xt} is

E[yt|xt] =

[
ρyx(L)B′(L−1)−1

]
+

V −1B(L)−1. (2.32)

Proof. See Appendix A.2.4 for proof.

If we further assume that the signal follows a finite ARMA process, we can obtain

a sharper and more specific prediction formula.

Lemma 2.3.2. Assume the signal process follows equation (2.17). Then

M ′(z−1)B′(z−1)−1 =
1

Πu
k=1(z − λk)

G(z) (2.33)
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where B(z) is given by the Canonical Factorization Theorem , G(z) is a polynomial

matrix in z, and {λk}uk=1 are non-zero eigenvalues of F −FKH which all lie inside the

unit circle.

Proof. See Appendix A.2.5 for proof

Proposition 2.3.1. Given the signal process in equation (2.17), suppose there is a

univariate random variable yt follows

yt = ψ(L)st,

where the elements of φ(L) has an infinite MA representation.

Assume {λk}uk=1 in Lemma 2.3.2 are distinct, the prediction formula for current and

past yt is

E
[
Ljyt | xt

]
= ψ(L)LjM ′(L−1)ρxx(L)−1xt −

u∑
k=1

ψ(λk)λ
kG(λk)V

−1B(L)−1

(L− λk)Πτ 6=k(λk − λτ )
xt (2.34)

where j = {0, 1, 2 . . .}.
The prediction formula for j-step ahead prediction is

E
[
L−jyt | xt

]
(2.35)

= ψ(L)L−jM ′(L−1)ρxx(L)−1xt −
u∑
k=1

ψ(λk)G(λk)L
−jV −1B(L)−1

(L− λk)Πτ 6=k(λk − λτ )
xt

−
j−1∑
`=0

`!L`−j

[
ψ(L)G(L)

Πu
k=1(L− λk)

−
u∑
k=1

ψ(λk)G(λk)

(L− λk)Πτ 6=k(λk − λτ )

](`)

0

V −1B(L)−1xt

where [·](`)0 denote the `-th order derivative evaluated at 0.

Proof. See Appendix A.2.6 for proof.

The key in applying the Wiener-Hopf prediction formula is to find the Wold repre-

sentation for xt or the canonical factorization for M(z). When the number of signals

equals the number of shocks, M(L) is a square matrix. Suppose M(L) is invertible,

then M(L) itself is a Wold representation and the Wiener-Hopf prediction formula can

be applied directly. This corresponds to the case when there is no information friction

or the signals fully reveal the state of the economy. If M(L) is a square but not an
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invertible matrix, then there exists at least one inside root of the determinant of M(L).

In this case, the Wold representation can be found by multiplying the Blaschke matrices

Bj(z) to flip the inside roots outside the unit circle

B(z) = M(z)Πj(WjBj(z)).

The details of the Blaschke matrix can be found in Rozanov (1967). [9], [16], [37] and

[10] all use this method to find the Wold representation.

If the number of shocks is larger than the number signals, M(L) is a non-square ma-

trix and is not invertible. To find the canonical factorization of M(L) is more involved,

but we just show this can be achieved by using the Canonical Factorization Theorem.

As criticized by [25], in most signal extraction problems, the number of shocks is

larger than the number of signals. Existing literature restricts the number of signals to

being the same as the number of shocks so that the Blaschke matrix is applicable in

finding the Wold representation. However, this restriction often leaves some informative

variables to be observed without noise. As a result, the true state of the economy is

revealed too quickly. For example, [9], [35] and [42] all show that in [7], agents share

the same belief about the common demand shock and there is no forecast the forecasts

of others problem. Also, the forecast error only exists for one period, and agents figure

out the demand shock fairly quickly. The one period delay is due to the fact that output

is predetermined. Similarly, in [10], agents observe the last period’s aggregate output

perfectly, and effects of aggregate noise only last for one period because agents can infer

the underlying shock accurately by observing aggregate output. [16] and [37] both have

square observation matrix, and to prevent the price from fully revealing the information,

they have to abandon the standard AR(1) process but assume that the underlying shock

follows a confounding process.

More importantly, a lot of interesting models naturally require that there are more

shocks than signals, such as [34], [1], [5], [3], [4] and so on. In this paper, we show

that by using the factorization identity, the Wold representation is readily available for

any finite ARMA process. Joint with the Wiener filter, we can easily solve the signal

extraction problem.
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2.3.6 System of analytic functions

After we apply the Wiener filter, solving for h(L) or φ(L) in model (2.24) still requires

solving sequences of infinite coefficients in the lag polynomials, which is an infinite

dimension problem. By the Riesz-Fisher Theorem, instead of solving the sequences of

infinite coefficients, we can solve for a finite number of analytic functions instead, as

shown in the following proposition.

Proposition 2.3.2. Given the signal process (2.17), there exists a solution φ(L) to

model (2.24) if and only if there exists a vector analytic function φ(z) that solves

T (z)φ(z) = D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
(2.36)

where T (z) is a w × w matrix given by

T (z) ≡


∑p

j=−q z
j
[∑r

i=1C
y,j
1,i Ai +

∑v
i=1C

f,j
1,i fi(z)M

′(z−1)ρxx(z)−1
]′

...∑p
j=−q z

j
[∑r

i=1C
y,j
r,i Ai +

∑v
i=1C

f,j
r,i fi(z)M

′(z−1)ρxx(z)−1
]′
 (2.37)

and D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
is a w × 1 vector given by

D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
= (2.38)
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{
−
∑p
j=−q C

g,j
1 g(z)zjM ′(z−1)ρxx(z)−1

+
∑u
k=1

∑p
j=−q λ

j
k

[∑df
i=1 C

f,j
1,i φ(λk)fi(λk)+

∑dg
i=1 C

g,j
1 g(λk)

]
G(λk)V −1B(z)−1

(z−λk)Πτ 6=k(λk−λτ )

+
∑q
j=1

∑j−1
`=0 `! z

`−j
([∑d

i=1 φ(z)Cy,−j1,i AiM(z)G(z)

Πuk=1(z−λk) −
∑u
k=1

∑d
i=1 φ(λk)Cy,−j1,i AiM(λk)G(λk)

(z−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[∑df
i=1 φ(z)Cf,−j1,i fi(z)G(z)

Πuk=1(z−λk) −
∑u
k=1

∑df
i=1 φ(λk)Cf,−j1,i fi(λk)G(λk)

(z−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[
Cg,−j1,i g(z)G(z)

Πuk=1(z−λk) −
∑u
k=1

Cg,−j1,i g(λk)G(λk)

(z−λk)Πτ 6=k(λk−λτ )

](`)

0

)
V −1B(z)−1

}′
...
...{

−
∑p
j=−q C

g,j
d g(z)zjM ′(z−1)ρxx(z)−1

+
∑u
k=1

∑p
j=−q λ

j
k

[∑df
i=1 C

f,j
d,i φ(λk)fi(λk)+

∑dg
i=1 C

g,j
d g(λk)

]
G(λk)V −1B(z)−1

(z−λk)Πτ 6=k(λk−λτ )

+
∑q
j=1

∑j−1
`=0 `! z

`−j
([∑d

i=1 φ(z)Cy,−j1,i AiM(z)G(z)

Πuk=1(z−λk) −
∑u
k=1

∑d
i=1 φ(λk)Cy,−jr,i AiM(λk)G(λk)

(z−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[∑df
i=1 φ(z)Cf,−jd,i fi(z)G(z)

Πuk=1(z−λk) −
∑u
k=1

∑df
i=1 φ(λk)Cf,−jd,i fi(λk)G(λk)

(z−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[
Cg,−jd,i g(z)G(z)

Πuk=1(z−λk) −
∑u
k=1

Cg,−jd,i g(λk)G(λk)

(z−λk)Πτ 6=k(λk−λτ )

](`)

0

)
V −1B(z)−1

}′


Proof. See Appendix A.2.7 for proof.

To solve for φ(z), one can use the Cramer’s rule. However, one also needs to de-

termine the following constants, {φ(λk)}uk=1, {φ(j)(0)}qj=0, which are generated when

applying the Wiener-Hopf prediction formula,. As discussed in [36], these constants can

be set to remove the poles of φ(z) that are inside the unit circle. This makes sure that

φ(z) is analytic. The following lemma shows that the number of free constants that can

be used in eliminating the inside poles is not the same as the total number of {φ(λk)}uk=1

and {φ(j)(0)}qj=0, because of some of them may be linearly dependent on each other.

Lemma 2.3.3. There exists a w×N1 matrix D1(z), a w×1 vector D2(z), and a N1×1

constant vector ψ, such that

D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
(2.39)

= D̂1(z)
[
φ(λ1) . . . φ(λu) φ0(0) . . . φq(0)

]′
+D2(z)

= D1(z)ψ +D2(z) (2.40)
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where N1 is the column rank of D̂1(z) and ψ is a linear combination of the constant

vector

[φ(λ1) . . . φ(λu) φ0(0) . . . φq(0)]′.

Proof. See Appendix A.2.8 for proof.

Here, N1 is the actual number of free constants that can used to remove the inside

poles of φ(z). Theorem 5 shows that possible inside poles of φ(z) are from the inside

roots of the determinant of T (z). It follows that whether there exists a solution to

model (2.24) or not hinges on whether there are enough free constants to eliminate all

the inside roots of det[T (z)]. Furthermore, there exists a unique solution if there are

exactly N1 conditions to determine the N1 free constants.

Theorem 5 (General solution formula). Assume the signal process follows (2.17) and

the model is given by equation (2.24). Let N2 denote the number of roots of det[T (z)]

that are inside the unit circle and let {ϑ1, . . . , ϑN2} denote these inside roots. Assume

these roots are distinct. Define

U1ψ + U2

≡


det

[
D1(ϑ1)ψ +D2(ϑ1) T1(ϑ1) . . . T`1−1(ϑ1) T`1+1(ϑ1) . . . Tw(ϑ1)

]
...

... . . .
...

... . . .
...

det

[
D1(ϑN2

)ψ +D2(ϑN2
) T1(ϑNN2

) . . . T`N2
−1(ϑN2) T`N2

+1(ϑN2) . . . Tw(ϑN2)

]


where T`i(ϑi) is a linear combination of

{
T1(ϑi), . . . , T`i−1(ϑi), T`i+1(ϑi), . . . , Tw(ϑi)

}
.

1. If N1 < N2, there is no solution.

2. If N1 = N2 = rank (U1), there exists a unique solution φ(z). For i ∈ {1, . . . , w}

φi(z) =

det

[
T1(z) . . . Ti−1(z) D1(z)ψ +D2(z) Ti+1(z) . . . . . . Tw(z)

]
det

[
T (z)

] (2.41)

and

ψ = −U−1
1 U2 (2.42)
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3. If N1 > N2 or N1 = N2 > rank (U1), there exists an infinite number of solutions.

Proof. See Appendix A.2.9 for proof.

With this theorem, we can prove our finite-state-representation theorem (Theorem

4), which is the last step of our method.

2.3.7 Innovation form and signal form

The solution we discussed in Section 2.3.6 is in terms of signals

yt = h(L)xt. (2.43)

This is the most natural way to represent the policy rule because agents’ actions depends

on what they observe. However, sometimes it is more convenient to work with the policy

function in terms of the underlying shocks.

yt = d(L)st. (2.44)

We label the solution in terms of signals as signal form and the solution in terms of

underlying shocks as innovation form. Similar to the procedure to solve for h(L), which

effectively solves a system of equations in terms of signals, one can also write down the

system of equations in terms of the underlying shocks {st}. A detailed description of

the problem in innovation form can be found in Appendix A.2.11.

From a practical point of view, the signal form is typically easier to solve, because the

dimension of the problem in signal form is smaller than the dimension of the problem in

innovation form. However, the innovation form often provides a sharper characterization

of the equilibrium, for the reason that the statistical properties are easier to derive in

terms of the underlying shocks. Therefore, it is useful to obtain the solution in both

forms. One may be concerned about whether the solution in innovation form is the same

as the solution in signal form, and the following theorem shows that one can indeed work

with either of them.

Theorem 6. Assume the signal process follows (2.17) and the model is given by equation

(2.24). There exists a solution in signal form,

yt = h(L)xt, (2.45)
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if and only if there exists a solution in innovation form

yt = d(L)st, (2.46)

where h(L) and d(L) satisfy

d(L) = h(L)M(L)

h(L) = d(L)M ′(L−1)ρxx(L)−1 −
u∑
k=1

d(λk)λ
kG(λk)V

−1B(L)−1

(L− λk)Πτ 6=k(λk − λτ )

Proof. See Appendix A.2.12 for proof.

If M(L) is not invertible, the space spanned by signals is a subset of the space

spanned by shocks. It should be clear that whether we use the innovation form or the

signal form, {yt} always lies in the space spanned by current and past signals because

agents can only condition their choice on their observables, that is, , {yt} ⊂ Hxt ⊂ Hs
t .

2.4 Application I: Two-Player Model

In this section, we use the method developed in Section 2.3 to solve two particular two-

player games. There are only private signals in the first case, but we allow agents to

share a common public signal in the second case.

2.4.1 Private Signal: [1]

The model we use is akin to model (2.7) introduced in Section 2.3.

yit = Eit[ξt] + αEit[yt]. (2.47)

There is a continuum of agents, and each individual agent i’s optimal choice satisfies

equation (2.47). The aggregate action yt is given by

yt =

∫
yit (2.48)

We assume the economic fundamental ξt follows an AR(1) process

ξt = ρξt−1 + ηt, (2.49)
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where ηt ∼ N(0, 1) and we have normalized to the variance of ηt to be 1.

We assume that an agent i receives two private signals about ξt

x1
it = ξt + εit, (2.50)

x2
it = ξt + uit, (2.51)

where εit ∼ N(0, σ2
ε ) and uit ∼ N(0, σ2

u).

The equilibrium is defined as follows

Definition 2.4.1. Given the signal process (2.49) to (2.51), the equilibrium of model

(2.47) is a policy rule h = {h1, h2} ∈ `2 × `2, such that

yit = Eit[ξt] + α Eit[yt],

where

yit = h1(L)x1
it + h2(L)x2

it,

yt =

∫
yit.

The structure of this model is similar to [1]. In [1], yit is the price chosen by

an individual firm, yt is the aggregate price level, and ξt can be interpreted as some

aggregate demand shock. The focus of [1] is that higher order beliefs generate inertia of

the aggregate price level in response to the demand shock ξt (hump-shaped response),

which is shown numerically. The following proposition gives the analytic solution to

model (2.47), and the underlying reason for the inertia becomes transparent.

Proposition 2.4.1. Assume that α ∈ (0, 1). Given the signal process (2.49) to (2.51),

the equilibrium policy rule in model (2.47) is given by

h1(L) =
ϑ

ρσ2
ε (1− ρϑ)

1

1− ϑL
, (2.52)

h2(L) =
ϑ

ρσ2
u(1− ρϑ)

1

1− ϑL
, (2.53)

where

ϑ =
1

2

(1

ρ
+ ρ+

(1− α)(σ2
ε + σ2

u)

ρσ2
εσ

2
u

)
−

√(
1

ρ
+ ρ+

(1− α)(σ2
ε + σ2

u)

ρσ2
εσ

2
u

)2

− 4

 (2.54)
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The finite-state representation is given by

yit =
ϑ

ρσ2
ε (1− ρϑ)

x1
it +

ϑ

ρσ2
u(1− ρϑ)

x2
it + zit, (2.55)

where

zit+1 = ϑzit +
ϑ

ρσ2
ε (1− ρϑ)

x1
it +

ϑ

ρσ2
u(1− ρϑ)

x2
it. (2.56)

The aggregate yt is given by

yt =
ϑ

ρ(1− ρϑ)

σ2
ε + σ2

u

σ2
εσ

2
u

1

(1− ϑL)(1− ρL)
ηt (2.57)

Proof. See Appendix A.2.13 for proof.

The individual policy rule follows an AR(1) process, and the aggregate yt follows an

AR(2) process. The two signals only differ by the variance of their idiosyncratic noises.

As expected, h1(L) and h2(L) are symmetric, but the weight on each signal is adjusted

according to their informativeness.

Crucially, the persistences of h1(L), h2(L), and the persistence of aggregate yt are

governed by ϑ. Given ρ, as ϑ increases, the peak of the impulse response of yt to ηt

shifts to the right, which makes it possible to have a hump-shaped response. If ϑ is small

enough, then there may not be any hump-shaped response. The following proposition

provides a sharp characterization of ϑ.

Proposition 2.4.2. Assume that α1 ∈ (0, 1), ρ ∈ (0, 1), σε > 0, and σu > 0. Then ϑ

satisfies

1. 0 < λ < ϑ < ρ, where λ is given by

λ =
1

2

(1

ρ
+ ρ+

σ2
ε + σ2

u

ρσ2
εσ

2
u

)
−

√(
1

ρ
+ ρ+

σ2
ε + σ2

u

ρσ2
εσ

2
u

)2

− 4

 (2.58)

2. ϑ is increasing in α and

lim
α1→1

ϑ = ρ

lim
α1→0

ϑ = λ

3. ϑ is increasing in σε, σu, and ρ.
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Here, ϑ is bounded from above by the persistence of ξt, and it is also bounded from

below by λ, where 1 − λ is the Kalman gain when using the Kalman filter to predict

ξt. Note that ϑ is increasing in α, and with a large α, it is more likely for yt to have a

hump-shaped response . This is because with information frictions, higher order beliefs

respond slowly to the shock. When the degree of strategic complementarity increases,

higher order beliefs become more important in shaping the behavior of yt, as shown in

equation (2.10).

Example We use a numerical example to further illustrate the properties of the model

economy. We set the degree of strategic complementarity α = 0.5 and the persistence of

ξ to be 0.95. As the variances of idiosyncratic shocks increase, the degree of information

frictions also increases. As shown in Figure 2.1, the hump-shaped response of yt

Figure 2.1: Impulse Response to η Shock in the Private-Signal Model
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to ηt is more pronounced when there are larger information frictions. This is because

ϑ is increasing in σε and σu. When there is little information friction, ϑ is small and

there is no hump-shaped response any more.

The higher order beliefs have the following feature: as the order increases, the higher

order belief becomes less responsive, and the peak of its response shifts to the right. To

predict ξt, agent i discounts his signals by the Kalman gain 1− λ, which leads to that

Eit[ξt] is less volatility than ξt. When agent i infers others’ forecasts of ξt, he realizes
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others also discount their signals by 1 − λ. Agent i’ best forecast of others signal is

Eit[ξt], and his forecast of E[ξt] in turn discounts the original ξt twice. This logic applies

to all the higher order beliefs. Consider k-th order belief. As k increases, the forecasts

of k-th order beliefs puts less weight on current signals, and more weight on the priors of

beliefs with order lower than k, which makes the inertia increase in the order of beliefs.

2.4.2 Public Signal: [2], [3]

Now we introduce the following variation to the model discussed in the last section.

The economic fundamental ξt still follows an AR(1) process

ξt = ρξt−1 + ηt, (2.59)

but we assume the first signal about the economic fundamental ξt is the same across all

the agents

x1
it = ξt + εt, (2.60)

x2
it = ξt + uit, (2.61)

where εt ∼ N(0, σ2
ε ) and uit ∼ N(0, σ2

u). Note that now the noise in the first signal is

not indexed by i. Effectively, the first signal now becomes a public signal. The model

is the same as before

yit = Eit[ξt] + αEit[yt]. (2.62)

The structure of this model is similar to [2] and [3].11 In [3], yit is the output chosen

by an individual firm i, yt is the aggregate out, ξt is the aggregate TFP shock. The

focus of their paper is to understand the effects of the common noise εt, which can

be interpreted as animal spirits or sentiments. The question is whether this common

noise can introduce aggregate output fluctuations. [3] use a guess-and-verify method

and obtain a numerical solution. Here, we obtain an analytic solution.

11 The original model in [3] is yit = ξt + uit + αEit[yt], where uit is firm specific technology shock.
Here, we modify their original model to better contrast with our private-signal model, but the main
dynamics remain the same.
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Proposition 2.4.3. Assume that α ∈ (0, 1). Given the signal process (2.59) to (2.61),

the equilibrium policy rule in model (2.62) is given by

yit = h1(L)x1
it + h2(L)x2

it,

where

h1(L) =
1

1− α
ϑ

ρσ2
ε (1− ρϑ)

1

1− ϑL
, (2.63)

h2(L) =
ϑ

ρσ2
u(1− ρϑ)

1

1− ϑL
, (2.64)

and

ϑ =
1

2

(1

ρ
+ ρ+

(1− α)σ2
ε + σ2

u

ρσ2
εσ

2
u

)
−

√(
1

ρ
+ ρ+

(1− α)σ2
ε + σ2

u

ρσ2
εσ

2
u

)2

− 4

 (2.65)

The finite-state representation is given by

yit =
1

1− α
ϑ

ρσ2
ε (1− ρϑ)

x1
it +

ϑ

ρσ2
u(1− ρϑ)

x2
it + zit (2.66)

where

zit+1 = ϑzit +
1

1− α
ϑ

ρσ2
ε (1− ρϑ)

x1
it +

ϑ

ρσ2
u(1− ρϑ)

x2
it (2.67)

The aggregate yt is given by

yt =
ϑ

ρ(1− ρϑ)

(1− α)σ2
ε + σ2

u

(1− α)σ2
εσ

2
u

1

(1− ϑL)(1− ρL)
ηt +

1

1− α
ϑ

ρσ2
ε (1− ρϑ)

1

1− ϑL
εt

(2.68)

Proof. See Appendix A.2.14 for proof.

We can see that the public-model is clearly different from the private-signal model.

Because the common noise εt in the first signal now affects all agents in the economy,

each individual agent will respond more strongly to the first signal, due to the strate-

gic complementarity. As the strength of the strategic complementarity increases (α

increases), the instantaneous response to the first signal, 1
1−α

ϑ
ρσ2
ε (1−ρϑ)

, also becomes

larger. In addition, σε and σu are not symmetric in shaping the information frictions,

reflected in how they affect the persistence ϑ in equation (2.65).
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In terms of the aggregate yt, it is now a function of both η shock and ε shock.

However, the response to an η shock follows an AR(2) process, the same as the private-

signal model, but the response to an ε shock follows an AR(2) process. Figure 2.2 plots

the responses to these two shocks.12

2.5 Application II: Endogenous Information

So far we have only discussed the cases where the signal process is exogenously deter-

mined and independent of agents’ actions. This section we consider the case where an

observed signal contains endogenous information.

An important theme of the literature on dispersed information is the role of the

endogenous signal in coordinating beliefs and revealing information. [9] and [42] show

that by observing prices in other industries, agents share the same beliefs. [38] and [16]

show that whether the price in the asset market reveals the state of the economy depends

on whether the underlying shock follows a confounding process or not. However, most

of the studies restrict their attention to the special case in which the number of signals

equals the number of shocks and agents observe the endogenous variable without noise.

In this section, we will analyse the role of endogenous information when there are more

shocks than signals, and the endogenous variable cannot be observed perfectly.

2.5.1 Infinite state variables

The model we use is similar to the private-signal model in Section 2.4.1, but we assume

a different information structure. Agents still receive two signals. The first signal is the

same as before, but the second one is the aggregate yt with an idiosyncratic noise

x2
it = yt + uit =

∫
yjt + uit (2.69)

The aggregate yt is endogenously determined by all the individual choices, while at the

same time, it is served as a signal for agents to infer the state of the economy. In this

case, we find it is more convenient to define the equilibrium with innovation form.

12 We set the degree of strategic complementarity α to be 0.5 and the persistence of ξ to be 0.95.
We also set the variance of the noise to be σε = σu = 4. The implied persistence ϑ = 0.77.
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Definition 2.5.1. The equilibrium is an endogenous stochastic process Ωit, a policy

rule for an individual agent φ = {φ1, φ2, φ3} ∈ `2 × `2 × `2, and the law of motion for

aggregate yt, Φ ∈ `2, such that

1. Agent i’s information set Ωit =

{
x1
it, x

2
it, x

1
it−1, x

2
it−1, x

1
it−2, x

2
it−2, . . .

}
is

determined by

x1
it = ξt + εit, (2.70)

x2
it = yt + uit, (2.71)

where

ξt =
Πn
k=1(1 + κkL)

Πm
k=1(1− ζkL)

ηt, (2.72)

yt = Φ(L)ηt. (2.73)

2. Individual rationality

yit = Eit[ξt] + α Eit[yt], (2.74)

where

yit = φ1(L)εit + φ2(L)uit + φ3(L)ηt. (2.75)

3. Aggregate consistency: yt =
∫
yit

Φ(L) = φ3(L) (2.76)

To show the generality of our claim, we allow ξt to follow any finite ARMA process.

The equilibrium with endogenous information involves two fixed points. The first fixed

point is individual rationality. Given the policy rule of others and the signal process,

agent i optimally chooses the same policy rule as others. The second fixed point is absent

in the equilibrium with exogenous information. It requires that agents perceived law of

motion of the aggregate yt is the same as the actual law of motion of the aggregate yt.

This can be viewed as the cross-equation restriction in the sense that agents perception

is in line with the reality generated by their own action.

Similar to Proposition 2.2.1, the following proposition guarantees that there exists

a unique equilibrium with endogenous information.
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Proposition 2.5.1. If α ∈ (0, 1), then there exists a unique equilibrium of the model

in Definition 2.5.1.

Proof. See Appendix A.2.15 for proof.

This proposition only proves the existence and uniqueness of the equilibrium, but it

is silent on whether the agents need to keep track of infinite number of state variables or

not. With exogenous information, we have shown that the equilibrium always permits

a finite-state representation provided that the signals follow a finite ARMA process. In

contrast, the following theorem shows that with endogenous information, even though

there exists a unique equilibrium, the aggregate yt does not follow a finite ARMA

process. As a result, the equilibrium cannot have a finite-state representation.

Theorem 7. If α ∈ (0, 1), the equilibrium of the model in Definition 2.5.1 does not

have a finite-state representation.

Proof. See Appendix A.2.16 for proof.13

The proof of this theorem shows that if assuming the perceived aggregate yt follows

a finite ARMA process, the implied actual aggregate yt cannot be the same as the

perceived aggregate yt. With exogenous information, Proposition 2.4.1 shows that if

ξt follows an AR(1) process, the implied aggregate yt follows an AR(2) process. With

endogenous information, if we assume ξt follows an AR(1) process and the perceived

yt follows an AR(2) process, the implied actual yt follows an ARMA (4, 2) process. If

we assume perceived yt follows ARMA (4, 2), the actual yt will follow an ARMA (6, 4)

process. Iterating this process, the aggregate yt follows an infinite ARMA process in

the limit.

This is a somewhat surprising result. [9] and [42] show that in the [7] model, there

is actually no infinite regress problem and the equilibrium permits a finite-state rep-

resentation. Similarly, in [16] and [10], the equilibrium policy rule has a finite-state

representation as well. [42] suspects that to resuscitate the infinite regress problem,

there should be more shocks than signals. Theorem 7 proves that in our model with

13 We thank Eduardo Faingold for pointing out a mistake in the original proof and suggestions on
the current proof.
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endogenous information, agents need to keep track of infinite state variables in equilib-

rium. [33] proved a similar impossibility theorem for a particular univariate case, and

we prove this theorem in a multivariate system with an arbitrary ARMA process.

The reason for the infinite state variables, however, is not the infinite regress prob-

lem. When the signals follow an exogenous ARMA process, the infinite regress problem

does exist but the equilibrium rule always has a finite-state representation. With en-

dogenous information, each individual still treats the signal process as exogenous. If the

perceived law of motion for yt is a finite ARMA process, we return to the case covered by

Theorem 4: each individual needs to solve the infinite regress problem, but the number

of state variables is finite. With endogenous information, what complicates the issue is

that the signal process itself cannot be represented as a finite ARMA process, but this

is independent of the infinite regress problem faced by each individual.

Compared with the literature, the equilibrium policy rule in [9], [16] and [10] all

follows an ARMA process, even though the signals contain endogenous information.

The key difference is that they assume the number of signals equals the number shocks,

i.e., the signals xt = M(L)st with M(L) being a square matrix. In this case, one can

use the Blaschke matrix to obtain the Wold representation without knowing the exact

signal process. The cost of this assumption is that the signal process is not complicated

enough to create interesting dynamics. In [10] or [9], the endogenous variable that has

an information role is observed without noise, and the forecast error is transitory. In

our model, because there are more shocks than signals, agents can never infer the shocks

perfectly, and the forecast error is persistent.

2.5.2 Computation

The infinite-state result is theoretically interesting, but it excludes the possibility of

obtaining the exact solution. Here we provide a tractable algorithm that can approxi-

mate the true solution arbitrarily well. The idea is to use a low order ARMA process

to approximate aggregate yt, which enables the Winer-Hopf prediction formula.

1. Assume that the perceived aggregate yt follows an ARMA (p, q) process

ypt = Φ(L)ηt = σy
Πq
k=1(1 + θkL)

Πp
k=1(1− ρkL)

.
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2. Given the law of motion of the aggregate yt, the signal process follows a finite

ARMA process. Use the method in Section 2.3 to solve for the individual policy

rule φ = {φ1(L), φ2(L), φ3(L)}. The actual aggregate yt follows

yat = φ3(L)ηt.

3. To update Φ(L), expand φ3(L) to obtain the infinite moving average representa-

tion. Choose the new σy, {ρk}pk=1 and {θk}qk=1 to equate {Φ0,Φ1, . . . ,Φp+q} with

{φ30, φ31, . . . , φ3p+q}

4. Iterate 1 to 3 until the difference between {Φ0, . . . ,Φp+q} and {φ30, . . . , φ3p+q} is

smaller than the tolerance level.

5. Compute ‖Φ− φ‖ (one can simply use the norm of `2). If ‖Φ− φ‖ is larger than

the tolerance level, increase (p, q) and repeat 1 to 4.

Based on the proof of Proposition A.2.15, this algorithm is a contraction mapping that

converges to the true solution as the order of the ARMA approximation increases. [35]

also uses an ARMA process to approximate the signal process, but our method differs

from his in an important way. In [35], only the forecasts of future signals are pay-off

relevant. Once the law of motion of the signal is specified, agents do not need to solve

the signal extraction problem and there is no need to forecast the forecasts of others.

In our model, although the signal process is given, agents still face the infinite regress

problem. Step 2 in the algorithm makes sure that each individual always performs their

optimal prediction.

Compared with [25], our method has the following advantage. The first advantage is

that our method requires fewer state variables. Nirmark’s method needs to keep track

of a large number of higher order beliefs to accurately approximate the policy rule. In

principle, Nirmark’s method is to use MA(∞) process to approximate the policy rule

while our method uses an ARMA process for approximation, which is more efficient.

In our numerical example, it requires to keep track of the higher order beliefs up to

order 30 to achieve the same accuracy as our ARMA (4,2) approximation. The second

advantage is that our method is easier to implement and is applicable in more general

environments. Nirmark’s method relies on the correct conjecture of the law of motion
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of the higher order beliefs. When the signal process is more complicated than an AR(1)

process, it is not obvious what the correct conjecture should be. In addition, Nirmark’s

method also relies on that the equilibrium policy rule is a relatively simple function of

higher order beliefs, but this may not be true in many empirical applications where the

system is complicated (see the quantitative model in [41] for example). Instead, our

method instead does not hinge on these assumptions.

Example To check whether our approximation method is accurate enough, we need to

compare the perceived aggregate yt with the implied aggregate yt. We set α = 0.5. We

assume ξt follows an AR(1) process with persistence ρ = 0.95. We also set σa = σu = 4.

As shown in Figure 2.3, if we use an AR(2) process to approximate the aggregate yt,

the difference between perceived and implied aggregate yt is quite noticeable. If we use

an ARMA (4,2) process to approximate yt, the perceived and implied yt are almost

identical to each other. Given the existence of the equilibrium, this method can easily

extend to other more complicated environments when there does not exist a finite-state

representation.

2.6 Application III: Random-Matching Model, [4]

In this section we discuss another type of model, in which an agent meets a different

player every period. [4] consider an interesting model environment with this feature,

but they assume there is no persistent shock in their baseline model. This assumption

does not affect their qualitative prediction, and it helps to avoid the infinite regress

problem. However, this assumption prevents the model from exploring more relevant

learning problems, and it makes the model unsuitable for empirical work. We extend

[4] to allow persistent shocks and the infinite regress problem in the model.

Assume that there is a continuum of agents in the economy. An individual agent i

is endowed with a productivity ai, which is drawn from a normal distribution N(0, σ2
a).

Note that both individual’s productivity and the distribution is fixed over time, and

there is no aggregate uncertainty with respect to the economic fundamentals. At the

beginning of each period, an agent i is randomly matched with another agent m(i, t)

and trades goods with m(i, t), where m(i, t) is the index of agent i’s trading partner in
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period t. Note that the production has to take place before trading, and agents have to

infer others’ output based on their signals. Due to strategic complementarity, agent i’s

optimal output choice yit needs to satisfy

yit = ai + α Eit[ym(i,t)t], (2.77)

where α ∈ (0, 1) controls the degree of strategic complementarity, and ym(i,t)t is the

output choice of i’s trading partner m(i, t) at period t. Equation (2.77) says that agent

i’ output is increasing in his own productivity and the output of his trading partner,

while the detailed micro-foundation that leads to this equation is not important for us

to understand the infinite regress problem.

Agent i receives two signals

x1
it = am(i,t) + εit, (2.78)

x2
it = x1

m(i,t)t + ξt + uit, (2.79)

where εit ∼ N(0, σ2
ε ) and uit ∼ N(0, σ2

u), both of which are idiosyncratic noise. The

productivity of i’s trading partner is am(i,t), and from i’s perspective, it is also an i.i.d

shock that follows N(0, σ2
a). x1

m(i,t)t is the first signal received by agent i’s trading

partner m(i, t). ξt is common for all agents, which follows an AR(1) process

ξt = ρξt−1 + ηt, (2.80)

where ηt ∼ N(0, 1). In [4], ξt is an i.i.d shock, but we assume ρ ∈ (0, 1) here to introduce

the infinite regress problem. The information set of agent i is14

Ωit =

{
ai, x

1
it, x

2
it, x

1
it−1, x

2
it−1, x

1
it−2, x

2
it−2, . . .

}
. (2.81)

Note that ai needs to be included in the information set because agent i’s action directly

depends on ai, and it also helps to predict i’s trading partner’s signal. The equilibrium

is defined as

14 There is an implicit assumption that agents do not observe their trading partner’s output or
productivity level after production. This assumption is only to implement the notion of imperfect
communication between producers and transactors, but is not important for our purpose.
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Definition 2.6.1. Given the signal process (2.78) to (2.80), the equilibrium of model

(2.77) is a policy rule h = {ha, h1, h2} ∈ R× `2 × `2, such that

yit = ai + α Eit[ym(i,t)t],

where

yit = haai + h1(L)x1
it + h2(L)x2

it.

As emphasized by [4], agent i’s estimate of his trading partners’ productivity am(i,t)

is pinned downed by the i’s first signal alone, and not affected by the second signal.

However, agent i’s estimate of x1
m(i,t)t is affected by the common noise ξt. With a

positive realization of ξt, agent i attributes part of ξt to x1
m(i,t)t, and believes that agent

m(i, t) will overestimate i’s productivity ai and produce more output. Therefore, agent

i’s also optimally produces more output due to strategic complementarity. In aggregate,

ξt leads to fluctuations in total output by affecting all agents’ higher order beliefs.

Different from the applications discussed in Section 2.4, agent i has to form higher

order beliefs about a random player m(i, t) every period. This change may prevent the

use of the guess-and-verify method, but our method developed in Section 2.3 can still

be applied to solve the model.

Proposition 2.6.1. Assume that α ∈ (0, 1). Given the signal process (2.78) to (2.80),

the equilibrium policy rule in model (2.77) is given by

ha = 1 + αϕ− αϑϕ(1− ρ)

ρ(1− ϑ)

σ2
ε

σ2
ε + σ2

u

(2.82)

h1(L) = ϕ (2.83)

h2(L) =
αϑϕ

ρ

σ2
ε

σ2
ε + σ2

u

1− ρL
1− ϑL

(2.84)

where

ϑ =
1

2

1

ρ
+ ρ+

1− α
ρ(σ2

ε + σ2
u)
−

√(
1

ρ
+ ρ+

1− α
ρ(σ2

ε + σ2
u)

)2

− 4

 , (2.85)

ϕ =
α

1− α2 + σ2
ε
σ2
a

(
1− α2 ϑ

ρ
σ2
ε

σ2
ε+σ2

u

) . (2.86)
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The finite-state representation is given by

yit = haai + ϕx1
it +

αϑϕ

ρ

σ2
ε

σ2
ε + σ2

u

x2
it + zit (2.87)

where

zit+1 = ϑzit +
(1− ρ)αϑϕ

ρ

σ2
ε

σ2
ε + σ2

u

x2
it (2.88)

The aggregate yt is given by

yt =
αϑϕ

ρ

σ2
ε

σ2
ε + σ2

u

1

1− ϑL
ηt (2.89)

Proof. See Appendix A.2.17 for proof.

Note that h1(L) is a constant, which implies that the policy rule does not depend on

{x1
iτ}

t−1
τ=−∞. The reason is that the first signal is only useful in predicting the productiv-

ity of current trading partner, but it is independent of the persistent shock ξt. It turns

out that h2(L) follows an ARMA(1,1) process, and the aggregate output yt follows an

AR(1) process.

Comparing with heterogeneous prior In the literature, a convenient device to

avoid the infinite regress problem is to assume that agents have heterogeneous prior.

The heterogeneous prior assumption works as follows. Assume that agent i observes

both ξt and am(i,t)t perfectly. However, agent i believes his trading partner m(i, t)

observes ai with bias ξt. If agent i’s policy rule is

yit = f1ai + f2am(i,t) + f3ξt,

then agent i believes that the output of his trading partner is

ym(i,t)t = f1am(i,t) + f2(ai + ξt) + f3ξt.

In equilibrium,

yit = α0ai + α1Eit[ym(i,t)t],

which leads to

yit =
1

1− α2
ai +

α

1− α2
am(i,t) +

α2
1

(1− α2
1)(1− α)

ξt (2.90)

yt =
α2

(1− α2)(1− α)
ξt (2.91)
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Quantitatively, by assuming heterogeneous prior, yt is perfectly correlated with ξt, while

in our model with common prior, the persistence of aggregate output is endogenously

determined by the structural parameter α and the information related parameters, and

it is always different from the the persistence of ξt. A numerical example is shown in

Figure 2.4.

Note that the both the persistence and instantaneous response of yt under het-

erogeneous prior is very different from the solution under rational expectation. The

solution under heterogeneous prior assumption is independent of the degree of informa-

tion frictions, that is, the distribution of idiosyncratic productivity and the size of the

idiosyncratic noise do not affect the behaviour of output. By assuming heterogeneous

prior, one effectively assumes away the information frictions, which is the reason that

higher order beliefs arise in the first place. The method we provide to solve the infinite

regress problem retains the notion of rationality, and we can pin down the degree of

information frictions by comparing the model results with data.

2.7 Application IV: a Quantitative Business Cycle Model

Application I to Application III can be thought of as various extensions of the basic

model presented in Section 2.2. These applications are theoretically interesting, but have

not fully taken advantage of our method. In the general model structure we outline in

equation (2.24), we allow the model to include the past, the present, and the future

values of the choice variables, the choices of others, and the exogenous variables.

In a companion paper ([41]), we apply our method and solve a full-blown quantitative

model in which the confidence shock alone is sufficient to account for the main aggregates

in business cycles. The idea is related to [4], but our model differs from theirs in

several crucial ways. We maintain the strong notion of rationality and solve the infinite

regress problem directly. Agents need to choose both labor and investment, and need

to infer the output and capital of both their current and future trading partners. There

are multiple persistent shocks in the signal process to match various micro and macro

moments. Therefore, higher order beliefs affect agents’ decisions in a fairly complex

way. With our preferred calibration of information frictions, we find that the model

with confidence shocks generate much of the volatility and co-movement of aggregate
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variables, but it has difficulty in matching the persistence of the aggregate variables.

2.8 Conclusion

In this paper, we have shown how to solve general rational expectations models with

higher order beliefs. When the signal follows an ARMA process, we prove that the

policy rule always admits a finite-state representation. It turns out the infinite regress

problem does not require infinite state variables, because the total effects of the higher

order beliefs can be summarized by a small set of variables. We provide a procedure

that gives an explicit solution formula. The key of our method is to apply the Kalman

filter to obtain the Wold representation of the signal process, and then use the Wiener

filter to solve the inference problems. We also prove that when the signal process

contains endogenous information, the equilibrium policy rule may not have a finite-state

representation, which is in some sense the ‘true’ infinite regress problem. This is due to

the fact that cross-equation restriction imposes an additional equilibrium condition that

the perceive law of motion of an endogenous variable has to be the same as the law of

motion that is generated by agents’ actions. We provide a tractable algorithm that can

approximate the true solution accurately with a small number of state variables. Various

applications are easily solved by our method. We expect that the method we develop

in this paper can be applied in a much broader class of models, especially in the areas

of macroeconomics and financial economics with dispersed information. Preliminary

findings in [41] show that this is a promising direction to pursue.
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Figure 2.2: Impulse Response of yt in the Public-Signal Model
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Figure 2.3: Comparing Approximation Accuracy for α = 0.8
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Figure 2.4: Impulse Response of yt to η Shock in Random-Player Model
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Chapter 3

Paradox of Thrift Recessions

3.1 Introduction

We develop a model in which recessions are triggered by households’ desire to save more.

Although mapped to a standard modern economy, our model features three ingredients

that represent a mild departure from standard neoclassical growth theory:

1. Adjustment costs make it difficult to reallocate resources from the production of

nontradable goods to the production of tradables, thereby preventing a rapid realloca-

tion of production from consumption to investment or exportation.

2. The labor market is not competitive; instead, it is subject to search frictions à la

Mortensen-Pissarides with Nash bargaining over the wage.

3. Goods markets for nontradables require active search from households. We

extend [11] to an environment in which reductions in consumption generate reductions

in productivity. This happens because households reduce consumption by reducing the

number of consumption varieties as well as the quantity spent on each variety, and

the reduction in the number of consumption varieties reduces the economy’s capacity

utilization rate.

We show that, contrary to standard growth models, households’ desire to increase

savings is a catalyst for a recession, not an expansion. Moreover, the onset of the reces-

sion reduces firms’ value enough to reduce total household wealth despite households’

increased savings. In this sense, our economy presents a paradox of thrift. Wealth re-

covers its initial value only after a few months. Although the novel mechanism that

95



96

we model here—that households choose both the number of consumption varieties and

the quantity of each variety that they consume—is not necessary for an increase in

household savings or a negative wealth shock to spark a recession, its effects reduce by

2.3 times the size of the shocks needed for a given size of output contraction, which

we deem to be large. Although our model economy does not include price rigidities,

we document the extent to which such rigidities make recessions easier to obtain (via

smaller shocks).

Our baseline economy uses shocks to patience to trigger households’ increased desire

to save for expository reasons.1 We also study a recession that is generated by a

sudden reduction in the wealth of households that triggers a reduction of consumption

and hence a recession. Such a reduction in wealth could be linked to the experience

of southern Europe (due perhaps to larger public debts than previously believed or to

reductions in the generosity of their northern neighbors). We also provide a version of

our model in which the recession is again generated via an increase in household’s desire

to save, only this time, instead of shocks to patience, shocks to financial intermediation—

specifically, shocks to the costs to provide insurance to the unemployed—are responsible

for sparking the recession. Our implementation of financial shocks has the advantage

of being implementable within the representative agent framework.

Figure 3.1 displays the main aggregate variables in southern European countries.

The current recession starting from 2008 features a big drop in measured total factor

productivity (TFP), a fairly large decline in employment and consumption, and a rise

in net exports. The predictions of our model are consistent with what is currently

happening in southern Europe.

In order for a recession to be generated via households’ increased desire to save, the

environment has to be such that saving for the future through both investment and

exports is difficult. In our economy, adjustment costs prevent a rapid reallocation of

production from consumption to investment or exporting goods. [53] argue that without

labor adjustment costs, too much shifting of resources into the tradable sector occurs,

whereas [54] find that frictions in exports are necessary to match the gradual increase

1 [47], [48], [49], [50], [51], and [52] all use shocks to the discount factor as the mechanism to trigger
increases in savings. In these papers, insufficient demand triggers a recession because the economy is
stacked at the zero lower bound on the nominal interest rate and there are rigid prices or wages.
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Figure 3.1: Aggregate Economic Variables in Southern European Countries

1992:q1 1996:q1 2000:q1 2004:q1 2008:q1 2012:q1
−0.15

−0.1

−0.05

0

0.05

0.1

1992:q1 1996:q1 2000:q1 2004:q1 2008:q1 2012:q1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

TFP Employment

1992:q1 1996:q1 2000:q1 2004:q1 2008:q1 2012:q1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

1992:q1 1996:q1 2000:q1 2004:q1 2008:q1 2012:q1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Consumption Net export/output ratio
Greece Ireland Italy -•-•-•- Portugal � � Spain



98

in exports that follows a devaluation.2

Whatever reason that induces a household to save more—because its preferences

have shifted toward the future, because it is poorer than before, or because a financial

shock increases its desired wealth to earnings ratio—it would also make the household

to want to work harder. The typical strategy to avoid this response is to prevent the

labor market from clearing via some form of wage stickiness, so that labor demand will

determine employment ([57], [55], and [58]). We follow a different approach, breaking

down the static first-order condition of the household by posing standard labor market

search frictions à la Mortensen–Pissarides. Clearly, wage rigidity makes recessions more

likely, as we document later on, but even the mild deviation from competitive labor

markets implied by the search friction is sufficient to generate recessions.

Our theoretical contribution is an extension to the work of [11], who model goods

markets as having frictions where more intense search on the part of households trans-

lates into productivity gains as the economy operates at a higher capacity without more

intense use of productive inputs. In their paper, search effort essentially behaves as a

substitute for labor, and hence a desire to work harder or to save more would imply

more search and increased productivity—hardly the trademark of recessions. In our

paper, we provide a different channel through which search frictions affect productiv-

ity, ensuring that search and consumption are complements. Preferences are such that

households have a taste for variety à la Dixit-Stiglitz, but each variety must be found,

which requires search. In our model, when consumers want to increase their consump-

tion, they do so by increasing the number of consumption varieties and consuming more

of each variety. Hence, search effort is not a substitute for the resources spent when

consuming but rather a complement to them. In this manner, an increased desire to

save reduces productivity.

The predictions of our model for the number of varieties are consistent with the

empirical findings of [59] and especially [60]: consumers increase consumption by in-

creasing both the number varieties and the quantity of each variety. In fact, [60] shows

that for the vast majorities of goods, both varieties and quantities are increasing in

consumption expenditure, and that the Engel curve for varieties is upward sloping. The

2 Extreme versions of this assumption can be found in [55], who assume that labor is not perfectly
substitutable among different sectors, and the work of [56], [57], and [58], where tradable goods are
given exogenously.
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baseline model with a representative consumer displays no income dispersion, and the

predictions of the model for are only for time series. However, in the extended ver-

sion of the model that accommodates financial frictions, employed households members

consume more varieties than unemployed members. The time-series and cross-section

predictions of the model are a clear positive correlation between the number of varieties

and households’ income.

In the version of the model with financial frictions, employed and unemployed house-

hold members consume different amounts of varieties but also search at different intensi-

ties. The search friction implies that high-consumption agents (the employed) consume

more varieties than low-consumption agents (the unemployed), which in general requires

more search. Moreover, it also implies that the market splits locations into those that

cater to the employed, which requires little search because of low market tightness, and

those that cater to the unemployed, which necessitates more search. In this context,

the unemployed substitute their own search for resources, finding cheaper prices. This

behavior is documented in the United States for retirees and the unemployed by [61, 62]

and for the unemployed by [63]. This extended model implements two features of the

process of acquiring and enjoying consumption goods: finding out about goods and

looking for cheaper prices for these goods. In the model, both activities involve more

searching but have different effects. We think that our model captures the essence of

the data showing that the poor search more per unit of consumption or per variety.

One crucial prediction in our model is that consumers reduce their search effort

during recessions. The idea is that, because consumers search less, the probability

that firms will sell their products decreases. This feature occurs at the same time

that the employed search more than the unemployed. Consequently, we want to make

a distinction between search effort and shopping time because we do not view these

efforts as identical. In our model, we interpret search effort as the disutility associated

with engaging in consumption, such as waiting for a restaurant table, searching for

and booking movie tickets online, and driving to an out-of-town car dealership. We

interpret shopping time, on the other hand, as the time spent looking for a lower price

for a particular good or service, such as clipping newspaper coupons, searching for

supermarket sales, and buying goods at shopping outlets far from home. During a

recession, consumers cut their spending by eating at restaurants less often, watching



100

fewer movies, and so on. At the same time, the associated search effort also decreases,

which slows business for many firms. Shopping time, however, may actually increase as

consumers spend more time looking for good deals, collecting coupons, and shopping at

warehouse club stores in order to obtain lower prices for the same goods. Empirically,

[64] document that the shopping time increased by around 7% during the last recession.

Conversely, [61] show that unemployed workers and retirees spend more time shopping,

but they spend eating at restaurants significantly less than employed workers do.

Related literature. A large and growing literature studies recessions generated

by a disturbance to the discount factor. Recent key references include [47], [48], [49],

[50], [51], and [52]. Although our paper shares the same view with this literature that

a recession is the result of insufficient demand, it does not hinge on the economy being

stacked at the zero lower bound on the nominal interest rate nor on the existence of rigid

prices or wages. Instead, we provide a novel channel for increased savings generating a

recession.

To provide a rationale for our theory that financial shocks to households are a cat-

alyst for generating recessions, we turn to evidence provided by [65] and [66]. Using

county-level data, they show that household demand is crucial in explaining aggregate

economic performance and that it is also closely linked with households’ financial con-

ditions. In this context, [67] consider a shock to households’ borrowing capacity in an

Aiyagari-type model and show that this shock causes a decline in output. The shock

does so, however, by reducing the work effort of the best-performing agents—hardly

what characterizes the current Great Recession. Furthermore, if combined with nomi-

nal rigidities, the financial shock can potentially push the economy into a liquidity trap.

[51] also study the effect of an exogenous reduction of the debt limit and highlight a

Fisher deflation mechanism. [55] focus on the home equity borrowing issue and show

that a drop in the leverage ratio reduces the liquidity of households and, correspondingly,

their demand.

In terms of goods market frictions, [63] assume that unemployed workers spend more

time shopping and that total shopping time increases in recessions mechanically as the

unemployment rate rises. Similarly, in [68], households endogenously put more effort

into shopping time during recessions because of the negative wealth effect. However,

in both papers firms’ capacity or the probability of selling their products is constant
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over the business cycle, a major departure from our paper. As mentioned, this paper is

closely related to [11], who show how search frictions in the goods markets can make an

economy with demand shocks look like an economy with productivity shocks and that

estimating the model gives strong empirical support to this view of the cycle.

This paper is also related to the literature on sudden stops and business cycles

in a small open economy. Most of the literature focuses on shocks that affect the

production side directly, such as shocks to TFP, investment technology, interest rate

premium, terms of trade, or firms’ collateral constraints. We do not consider any of

those shocks; instead, we consider shocks to the households’ desire to spend, which

endogenously change measured TFP. In [69], imported intermediate goods enter the

production function and a reduction of imports leads to an endogenous decline in TFP.

Our approach is quite different because we want to capture the idea that it is the internal

demand of households that changes the production possibility frontier.

Section 3.2 explains how our new mechanism works in a simple two-period version

of the model. The model that can be used for quantitative analysis is described in Sec-

tion 3.3. Calibration details are found in Section 3.4, and the analysis of the baseline

economy is in Section 3.5. Section 3.6 describes the quantitative importance of the new

mechanism involving search frictions that we develop in this paper, and we deem this

mechanism to be large. Section 3.7 explains that in versions of the growth model with

flexible prices, both adjustment costs and labor market frictions are necessary ingre-

dients for generating recessions via household increases in savings arising from shocks

in patience. Section 3.8 describes what happens when the baseline economy becomes

suddenly poorer (wealth destruction shocks). Section 3.9 analyzes how our findings vary

as we change some particular targets. We look at various sizes of adjustment costs in

the tradable sector, at alternative job finding and losing rates, and at different wage

determination protocols (staggered wage contracts and constant labor share). We also

explore the performance of the model economies with respect to some other margins

(elasticity of substitution between tradables and nontradables, size of vacancy costs,

labor matching elasticity, goods market elasticity, and the elasticity of substitution be-

tween varieties of nontradable consumption). Throughout our analysis, all versions of

the economy have been recalibrated so that it is the targets that are constant and not
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the parameter values that implement them. Section 3.10 extends the model to accom-

modate financial shocks as the trigger to households’ increased desire to save without

the need to abandon the representative agent abstraction. Section 3.11 concludes. A

technical appendix describes technical details and provides additional tables of interest.

3.2 A Simple Version of the Model

In our model, households choose both the number of consumption varieties and the

quantity of each variety that they consume. To see how this mechanism works, consider

a simple two-period version of our model. Households care about two sets of goods in the

first period, which we call tradables and nontradables, and about the amount of tradable

goods saved for the second period. Nontradables come in different varieties that have

to be searched for and found before any purchase of that variety is made. Households

choose how many varieties to consume because, even though they have a taste for

variety, they incur a disutility when they search. Nontradable consumption varieties

provide utility via a Dixit-Stiglitz aggregator,

(∫ I
0 c

1
ρ

Ni di

)ρ
. Under equal consumption

of each variety, this aggregate collapses to cN Iρ.3 We can write the utility function of

the household as u(cT , I
ρcN , d) + βv(b′), where d is search effort and the second-period

terms have the standard interpretation of a discount rate and an indirect utility function

of savings b′. Households have an endowment of one unit of the tradable good and they

can borrow or save at a zero interest rate; they also own the nontradable-producing

firms.

There is a continuum of measure one of consumption varieties. Households choose

how many of those varieties to consume I < 1 by means of exerting sufficient search

effort, d, to overcome a matching friction. We denote by Ψd(Qg) the probability that a

unit of search effort finds a variety, where Qg is market tightness in the goods market.

3 We deal explicitly with the determination of the price of each variety below (Section 3.3), where
we explicitly account for the possibility of choosing different amounts for each variety.
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We write the household problem as

max
cT ,I,cN ,d,b′

u [cT , I
ρ cN , d] + β v(b′) (3.1)

cT + I cN p+ b′ = πN + 1, (3.2)

I = d Ψd(Qg), (3.3)

where πN are the profits from the firms in the nontradable sector. The solution to

this problem yields demand functions that, using aggregate notation (capital letters

denote aggregate quantities), are CT (p,Qg, πN ;β), CN (p,Qg, πN ;β), I(p,Qg, πN ;β),

B′(p,Qg, πN ;β), and D(p,Qg, πN ;β), where we are explicitly posing the dependence

on the price of nontradables, on market tightness, and on profits, as well as on the

households’ discount rate which we can treat as a source of shocks.

There is a continuum of measure one of firms producing the nontradables, and each

one of those firms has a measure one of locations. The probability that a location finds

a household is Ψf (Qg) = Ψf ( 1
D ) = Mg(D, 1), and the probability that a search unit, or

shopper, finds a variety is Ψd(Qg) = Ψd( 1
D ) = Mg(D,1)

D . In equilibrium Ψf (Qg) = I.

Firms and consumers are matched in the nontradable goods markets according to

matching function Mg(D,T ), where D is the aggregate search effort of households and

T is the measure of firms.

The equilibrium conditions are simple given that production is predetermined:

Qg =
1

D(p,Qg, π;β)
, (3.4)

1 = CT (p,Qg, π;β) +B′(p,Qg, π;β), (3.5)

FN = CN (p,Qg, π;β), or πN = p FN Ψf

(
1

D

)
. (3.6)

The first condition states that market tightness is the result of household search; the

second, that tradable output is either consumed or saved; and the third, that the amount

of nontradable consumption of every variety is what is available at each location. Walras’

law allows us to choose between the last two equations.

To see what is special in this economy, note that in standard models, Qg = 1 and the

relative price of the two consumptions adjusts to clear the market. Since the interest rate

is fixed, preferences determine savings. If both types of consumption are complements,
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when households want to save more, say, because of bigger β, a decrease in the price of

the nontradables maintains market clearing, which in standard models occurs without

any change in its quantity. This is not the case in our economy. Output of nontradables

can decrease despite using all factors of production. With the preferences that we pose,4

households reduce nontradable consumption by reducing the number of varieties as well

as the amount consumed of each variety. In this simple economy, the amount consumed

of each variety is predetermined so it cannot drop, but the number of varieties does

drop, and hence so does total output because the economy is now operating at a lower

capacity. In this example, profits decrease. If this mechanism were persistent, future

profits would also decrease, which is why the paradox of thrift may show up.

This simplified version of our economy illustrates how an increase in savings gener-

ates a reduction in output via a reduction in measured TFP without either technology

or the measured inputs changing. It is the search efforts of households that decrease. We

next build these ideas into a growth model suitable for dynamic quantitative analysis.

3.3 The Baseline Economy

Our baseline economy poses a small open economy with the interest rate set by the rest

of the world.5 There is a representative household, or a family with a measure one

of individual members, all of whom can work. The household fully insures all of its

members.

Goods There are two types of goods: tradables, which can be imported and exported

and used for consumption and investment, and nontradables, which can be used only

for local consumption. Nontradables are subject to additional frictions that we now

describe in detail.

There is a measure one of varieties of nontradables i ∈ [0, 1], and each one is produced

by a monopoly that posts prices and has to deliver the amount of goods demanded

at that price. Each one of these firms or varieties has a measure one continuum of

4 We have the type of preferences described in [70] (hereafter GHH preferences) between consumption
and search effort, although many other types yield the same properties.

5 To ensure that this section is self-contained, some repetition with respect to the previous section
may occur.
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locations, each with its own capital and labor and a standard constant returns to scale

(CRS) technology, FN (k, n).

Each period, consumers have to search and find varieties, and they value both the

number of varieties and the quantity consumed of each variety. To obtain varieties, con-

sumers need to search for them, incurring a shopping disutility while doing so. Shoppers

that find a variety are randomly allocated to one and only one of its locations. We denote

the aggregate measure of shoppers or shopping effort as D. The total number of matches

between shoppers and firms is determined by a CRS matching function Mg(D, 1). If we

denote market tightness in the goods market by Qg = 1
D , the probability that a shopper

finds a location becomes

Ψd(Qg) =
Mg(D, 1)

D
, (3.7)

and the probability that a location in each firm finds a shopper is equal to the measure

of locations of each variety that is filled and is given by

Ψf (Qg) =
Mg(D, 1)

1
. (3.8)

Firms in the tradable goods sector operate in a standard competitive market, and we

use tradables as the numeraire. Let the aggregate production function of tradables be

given by F T (k, n).

Labor Market Work is indivisible, and all workers are either employed or unem-

ployed. The labor market has a search friction à la Mortensen and Pissarides: firms

have to post job vacancies, and unemployed workers are matched to those vacancies via

a neoclassical matching function. There is a single labor market where all firms post

vacancies, denoted as VN by nontradable producers and VT by tradable producers. The

number of new matches is given by a CRS matching function M e(U, V ), where U is the

unemployment rate and V = VN +VT is the total number of vacancies. The probability

of finding a job for an unemployed worker is

Φw(Qe) =
M e(U, V )

U
. (3.9)

The probability of a job vacancy being filled is

Φf (Qe) =
M e(U, V )

V
, (3.10)
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where Qe = V
U is labor market tightness. An employed worker faces a constant proba-

bility λ of job loss. Wage determination will be discussed in Section 3.3.

Preferences The representative household cares about a consumption aggregate cA,

shopping effort d, and the fraction of its members that work n. The aggregate con-

sumption basket is valued via an Armington aggregator of tradables and nontradables,

whereas nontradables themselves aggregate via a Dixit-Stiglitz formulation with a vari-

able upper bound, yielding

cA =

ω [∫ I

0
c

1
ρ

N,i di

] ρ(η−1)
η

+ (1− ω)c
η−1
η

T


η
η−1

, (3.11)

where cN,i is the amount of nontradable good of variety i, IN ∈ [0, 1] is the measure of

varieties of nontradable goods that the household has acquired, ρ > 1 determines the

substitutability among nontradable goods, and η controls the substitutability between

nontradables and tradables. The period utility function is given by u(cA, d, n). Even

though the search and matching features imply that workers are rationed, the disutility

of working matters for wage determination. Households discount the future at rate β

and are expected utility maximizers.

Asset Markets Households own the firms inside their own country that yield divi-

dends πN + πT and receive labor income. Households have access to (noncontingent)

borrowing and lending from abroad at an internationally determined interest rate r. We

denote the foreign asset position by b.

The state vector for a household, in addition to the aggregate state S to be specified

later, is the pair (b, n), its assets and the fraction of its members with a job. Households

take as given the prices of each variety pi, the wage w, the probability of finding a

variety Ψd, the probability of finding a job Φw, and the firms’ dividends, all of which

are equilibrium functions of the state.

Household’s Problem We can write the recursive problem of the household as

V (S, b, n) = max
cT ,IN ,cN,i,d

u(cA, d, n) + β E
{
V (S′, b′, n′) | θ

}
, (3.12)
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subject to the definition of the consumption aggregate (3.11) and∫ I

0
pi(S) cN,i di+ cT + b′ = (1 + r)b+ w(S)n+ πN (S) + πT (S), (3.13)

I = d Ψd[Qg(S)], (3.14)

n′ = (1− λ)n+ Φw[Qe(S)](1− n), (3.15)

S′ = G(S). (3.16)

The household’s budget constraint is (3.13). The requirement that varieties have to be

found, which requires search effort d and depends on the goods market tightness, is given

by (3.14). The evolution of the household’s employment is (3.15), and condition (3.16)

is the rational expectations requirement.

We define standard aggregates of nontradable consumption bundles and prices:

cN =

[
1

I

∫ I

0
c

1
ρ

N,i di

]ρ
, (3.17)

p =

[
1

I

∫ I

0
p

1
1−ρ
i di

]1−ρ

. (3.18)

Note that p is not a function of I. We can derive the demand schedule for the goods

from a particular variety (or firm) i, given cN and p,

cN,i =

(
pi
p

) ρ
1−ρ

cN . (3.19)

We can rewrite the consumption aggregate (3.11) and the budget constraint (3.14) as6

cA =
[
ω
(
cN IρN

)−η
+ (1− ω) c−ηT

]− 1
η
, (3.20)

p(S)cN I + cT + b′ = (1 + r)b+ w(S)n+ πN (S) + πT (S). (3.21)

The first-order conditions are

ucN = p(S)IucT , (3.22)

uI = p(S)cNucT −
ud

Ψd[Qg(S)]
, (3.23)

ucT = (1 + r)E
{
βu′cT | θ

}
. (3.24)

6 See Appendix A.3.1 for a more detailed derivation.
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Equation (3.22) shows the optimality condition between nontradable and tradable goods.

Equation (3.23) determines the trade-off between the number of varieties and the quan-

tity consumed of each variety: since ρ > 1, increasing I is more efficient than increasing

cN , but searching for different firms is costly. An implication of this equation is that

in general, increases in consumption imply an increase of both the amount consumed

of each variety and the number of varieties. Equation (3.24) is the standard Euler

equation.

Firms in the Nontradable Goods Sector Firms post prices in each location. If

a shopper shows up, it chooses how much of the good to buy according to the demand

schedule derived earlier. We rewrite this demand schedule as a function that depends

explicitly on both the aggregate state and goods prices:

C(pi, S) =

(
pi
p(S)

) ρ
1−ρ

CN (S). (3.25)

To produce the goods, firms have a CRS production function that uses capital k and

labor n. Recall that there is also a search friction in the labor market, so firms need to

post vacancies at cost κ per unit in order to increase their labor the following period.

Both investment and vacancies use tradable goods. The individual firm’s state is (k, n),

and its problem is

ΩN (S, k, n) = max
pi,i,v

Ψf [Qg(S)]piC(pi, S)− w(S)n− i− vκ+ E
{

ΩN (S′, k′, n′)

1 + r
| θ
}
,

(3.26)

subject to

C(pci , S) ≤ FN (k, n), (3.27)

k′ = (1− δ)k + i− φN (k, i), (3.28)

n′ = (1− λ)n+ Φf [Qe(S)]v, (3.29)

S′ = G(S), (3.30)

where φN (k, i) is a capital adjustment cost, which slows down the adaptation of firms

to new conditions. Note that both capital and employment are predetermined, and

therefore firms have to set the price such that demand does not exceed output. The
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first-order conditions are

(1 + r)

1− φNi
= E

{
Ψf [Qg(S′)]p′i(F

N
k )′

1

ρ
+

1− δ − (φNk )′

1− (φNi )′
| θ
}
, (3.31)

κ

Φf [Qe(S)]
=

1

1 + r
E
{

Ψf [Qg(S′)](pci )
′(FNn )′

1

ρ
− w(S′)− (1− λ)κ

Φf [Qe(S′)]
| θ
}
.(3.32)

Equations (3.31) and (3.32) equate the marginal benefits and marginal costs of increasing

investment and vacancies. All firms choose the same price in equilibrium, i.e., pi = p(S)

for all i ∈ [0, 1].

Firms in the Tradable Goods Sector Unlike firms in the nontradable goods sec-

tor, firms in the tradable goods sector operate in a frictionless, perfectly competitive

environment. To accommodate the possibility of decreasing returns to scale, we pose

that in addition to capital and labor, firms also need to use another factor, land, avail-

able in fixed supply, as an input of production. Without loss of generality, we assume

that there is a firm that operates each unit of land. There are also adjustment costs

to expand capital and employment, given by functions φT,k(k, i) and φT,n(n′, n), which

makes it difficult for this sector to expand quickly. The problem of the firms in the

tradable goods sector is

ΩT (S, k, n) = max
i,v

F T (k, n)− w(S)n− i− vκ− φT,n(n′, n) + E
{

ΩT (S′, k′, n′)

1 + r
| θ
}
,

(3.33)

subject to k′ = (1− δ)k + i− φT,k(k, i),
(3.34)

n′ = (1− λ)n+ Φf [Qe(S)]v, (3.35)

S′ = G(S). (3.36)

The first-order conditions are

1 + r

1− φT,ki
= E

{(
F Tk
)′

+
1− δ − (φT,kk )′

1− (φT,ki )′
| θ

}
, (3.37)

κ

Φf [Qe(S)]
+ φT,nn′ =

E
{

(F Tn )′ − w(S′)− (φT,nn )′ + (1− λ) κ
Φf [Qe(S′)]

| θ
}

1 + r
. (3.38)
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Equations (3.37) and (3.38) are similar to the optimality condition for nontradable

firms. When necessary, we use the subindex T to refer to tradables.

Wage Determination The wage rate is determined via Nash bargaining. Unlike in

[71] and [72], where agents internalize the effect of additional saving on their bargaining

position, here we assume that individual workers and firms take the wage as given and

act as though a worker-firm pair like themselves bargain over the wage rate.7 The

value of an additional employed worker for the household with wage w is

Ṽn(w, S) = wucT (S)− ς + β
(
1− λ− Φw[Qe(S)]

)
E{Vn(S′) | θ}, (3.39)

where Vn(S) = Ṽn(w(S), S) and ucT (S) is the marginal utility for the representative

household. The value of an additional worker for a firm in the nontradable goods sector

with wage w is

Ω̃N
n (w, S) = Ψf [Qg(S)]p(S)FNn (S)

1

ρ
− w +

(1− λ)

1 + r
E{ΩN

n (S′) | θ} (3.40)

and for a firm in the tradable goods sector is

Ω̃T
n (w, S) = F Tn (S)− w − φT,nn (S) +

(1− λ)

1 + r
E{ΩT

n (S′) | θ}, (3.41)

where ΩN
n (S) = Ω̃N

n (w(S), S) and ΩT
n (S) = Ω̃T

n (w(S), S). Firms may not value workers

equally, that is, Ω̃T
n may not be the same as Ω̃N

n . We assume that the wage that is set in

the market is the outcome from a bargaining process between a representative worker

and a weighted value of the valuation of the worker by firms, with weights given by the

employment share of each sector. With these elements, the Nash bargaining problem

becomes

w(S) = max
w

[
Ṽn(w, S)

]ϕ [
χ(S)Ω̃N

n (w, S) + (1− χ(S))Ω̃T
n (w, S)

]1−ϕ
, (3.42)

where ϕ is the bargaining power of households and χ(S) = nN
nN+nT

is the employment

share of the nontradable goods sector. Taking the derivative with respect to w yields

7 If instead, for example, we allow an individual household to bargain directly with firms for their
workers, the household will have an incentive to accumulate additional assets to improve its outside
option and increase the wage rate when bargaining. As shown in both [71] and [72], however, the effect
of additional savings on the wage rate is small when the household’s wealth is not close to zero, as is
the case with representative households. This issue is also discussed in [73].
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the first-order condition

ϕucT (S)
[
χ(S)Ω̃N

n (w, S) + (1− χ(S))Ω̃T
n (w, S)

]
= (1− ϕ)Ṽn(w, S). (3.43)

In steady state, the wage rate is given by

w = ϕ

[
χ

(
Ψf (Qg)pFNn

1

ρ

)
+ (1− χ)F Tn +Qeκ

]
+ (1− ϕ)

ς

ucT
. (3.44)

We can think of the wage rate as a weighted average of the marginal product of labor

and the savings on vacancy postings on the one hand, and of the worker’s forfeited

leisure on the other.8

We will also explore staggered wage environments in which wages are set through

Nash bargaining, but the workers and firms can only renegotiate contracts with a cer-

tain probability. In Section 3.9, we investigate how wage rigidity affects the model’s

performance.

Aggregate State The aggregate state of the economy consists of the shocks, θ, the

production capacity of the economy (capital and labor in each sector), and the net

foreign asset position, S = {θ,KN , NN ,KT , NT , B}.

Equilibrium Equilibrium is a set of decision rules and values for the household:

{cN , cT , d, I, b′, V } as functions of its state (S, b, n), nontradable and tradable firms’ de-

cision rules and values: {iN , vN , k′N , pi,ΩN}, and {iT , vT , k′T ,ΩT } as functions of their

states (S, kN , nN ) and (S, kT , nT ), and aggregate variables for nontradable goods CN

and tradable goods CT , total employment N , total vacancies V , total shopping ef-

fort D, labor market tightness Qe, goods market tightness Qg, total bond holdings B,

aggregate capital {KN ,KT }, employment {NN , NT }, investment {IN , IT }, vacancies

{VN , VT }, and profits {πN , πT } in both sectors, the aggregate price index p, and the

wage rate w as functions of aggregate state S = (θ,KN , NN ,KT , NT , B), such that

1. Policy and value functions solve the corresponding problems.

2. Individual decisions are consistent with aggregate variables.

8 A minor departure from the standard labor search model is that the wage rate has a dynamic
component under uncertainty. The reason is that firms discount future profits using the world interest
rate r instead of the households’ stochastic discount factor.



112

3. The wage rate w is determined via the Nash bargaining process (3.42).

4. Tradables and nontradables markets clear.

Note that in equilibrium, I = Ψf (Qg) (i.e., consumers’ demand directly translates into

firms’ capacity). Also note that this economy may have multiple steady states with

varying foreign asset positions.9 In fact, any unexpected temporary change in any

parameter will result in the economy being in a long-run position that is different from

the one in which it started.

3.4 Calibration

We start by discussing some details of national accounting, describing how the variables

in the model correspond to those measured in the national income and product accounts

(NIPA) (Section 3.4.1). We then discuss the functional forms used and the parameters

involved (Section 3.4.2), and finally we set the targets that the model economy has to

satisfy (Section 3.4.3).

3.4.1 NIPA and Variable Definitions Issues

Real output is given by

Y = p∗Ψf (Qg)FN (KN , NN ) + F T (KT , NT ), (3.45)

where p∗ is the steady-state price of nontradables. This amounts to measuring output

using base year prices instead of current prices. Let YN = p∗Ψf (Qg)FN (KN , NN )

denote nontradable output and YT = F T (KT , NT ) tradable output. Total consumption

is C = p∗ICN +CT . Total employment is N = NN +NT . Total capital is K = KN +KT .

Total investment is I = I + IT . Let υ denote the labor share in steady state. Total

factor productivity or the measured Solow residual, Z, is defined as

Z =
Y

K1−υNυ
. (3.46)

9 A stationary recursive equilibrium for the stochastic version requires 1 + r < β−1 because of
precautionary savings. Given the small quantitative nature of these issues, we ignore them in the
discussion that follows.
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3.4.2 Functional Forms and Parameters

Preferences We adopt GHH preferences between consumption and shopping effort,

which suffices to yield that consumption per variety and the number of varieties move

together, making measured TFP procyclical. Other specifications do not have this prop-

erty (see Appendix A.3.2 for a more detailed discussion). The working disutility enters

as an additively separable term (any consideration of Frisch elasticities is irrelevant

because the work disutility matters only for wage determination). The period utility

function is then given by

u(cA, d, n) =
1

1− σ
(cA − ξd)1−σ − ςn. (3.47)

The units for search effort do not matter. We write ξ only because we have a steady-state

target for d.

The preference parameters are the discount factor β, the risk aversion parameter

of sorts, σ, the parameter that determines average shopping effort ξ, and the working

disutility ς. As discussed before, cA, the aggregator of consumption, is

cA =

[
ω
(
cN IρN

) η−1
η + (1− ω)c

η−1
η

T

] η
η−1

, (3.48)

where η is the elasticity of substitution between nontradable and tradable goods, ρ is

the elasticity of substitution among nontradables, and ω is the nontradable home bias

or home bias parameter.

Technology The production function of nontradables is

FN (k, n) = zN kθ
N
n1−θN , (3.49)

where zN is a parameter determining units. The production function of tradables is

F T (k, n) = zT k
θTk nθ

T
n L1−θTk −θ

T
n = zTk

θTk nθ
T
n . (3.50)

Land is limited, L = 1, hence there are decreasing returns to scale (DRS) in capital and

labor.
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Adjustment Costs The capital adjustment cost in the nontradable goods sector is

given by

φN (k, i) =
εN

2

(
i

k
− δ
)2

k, (3.51)

where δ is the capital depreciation rate and εN determines the size of the adjustment

cost. Similarly, the capital adjustment cost in the tradable goods sector is

φT,k(k, i) =
εT,k

2

(
i

k
− δ
)2

k. (3.52)

In addition to the capital adjustment cost, producing for tradable goods also involves

adjustment costs in employment,

φT,n(n′, n) =
εT,n

2

(
n′

n
− 1

)2

n. (3.53)

Nash Bargaining Workers’ bargaining power is ϕ.

Matching The matching technologies in the labor and nontradable goods markets

are

M e(U, V ) = νeUµV 1−µ, (3.54)

Mg(D,T ) = νgDαT 1−α, (3.55)

where µ and α determine the elasticity of the matching probability with respect to

market tightness.

Wealth This economy has a continuum of steady states differing in the net foreign

asset position. Here, we look at the steady state with a zero net foreign asset position.

3.4.3 Targets and Values

We choose a period to be six weeks so that the unemployment duration can be short.

A first group of 5 parameters can be determined exogenously (i.e., they imply targets

that are independent of the equilibrium allocation). Table 3.1 summarizes the targets

and the implied parameter values. We set risk aversion to 2 and the rate of return to

4% annually. We choose the elasticity of substitution between tradable and nontradable
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goods, η, to be 0.83, the benchmark value used in [74], which is also similar to the value

estimated by [75]. We set the elasticity of the labor matching rate with respect to labor

market tightness, µ, to 0.5, which lies in the middle of existing empirical estimates.10

The price markup ρ reflects the substitutability among the nontradable goods as well as

the price markup that the monopolistic firms will set. The literature provides no solid

evidence on how large this parameter should be. [79], using micro reasoning, claim that

the implied markup is not significantly greater than 1 (1.03), whereas [80] estimate the

price markup using macro data and obtain a value ranging from 1.01 to 1.85. Here, we

have set ρ = 1.05.

Table 3.1: Exogenously Determined Parameters of the Baseline Economy

Parameter Value

Risk aversion, σ 2.0

Annual rate of return, β 1
β8 − 1 = 4%

Labor matching elasticity, µ 0.50

Elasticity of substitution between tradables and nontradables, η 0.83

Price markup ρ 1.05

The second group of parameters is not the direct implication of any single target,

but can be determined by steady-state conditions, which requires the specification of

sufficient steady-state moments. There are 14 such parameters: 3 preference parameters,

{ω, ξ, ς}, 6 production parameters {zN , zT , θN , θkT , θnT , δ}, 2 search friction parameters

{νe, νg}, and 3 labor market parameters {ϕ, λ, κ}. Table 3.2 lists the steady-state

targets and associated parameters for the baseline economy.11 Although many of the

parameters in Table 3.2 have economic meaning, others are just the determinants of

units. Accordingly, the table displays the unit parameters separately.

The targets of the job flows are standard: an employment rate of 93% to accom-

modate movements in labor force participation and a monthly job finding rate of 45%.

We target a capacity utilization or occupancy rate of 81%, which is the average of the

10 [76] considers the elasticity to be 0.4, [77] 0.72, and [78] 0.24.
11 The term “associated” refers to the attempt to link targets and moments according to some

intuitive link between them. Mathematically, they are all interdependent.
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official data series ([81]), and a labor share of 60% in both the nontradable sector and

tradable goods sector. We target the tradable goods to output ratio (share of trad-

ables) to be 30%. Following the literature, the tradable goods sector typically includes

agriculture, mining, and manufacturing industries. We choose a contribution of land

to output of tradables to be a size equal to that of capital, which determines the size

of the decreasing returns of the sector. We target a vacancy posting cost to output

ratio of 0.0374. The literature has few direct estimates of this vacancy cost. [82] report

the flow vacancy costs to be 4.3% of the quarterly wage and the training costs to be

55% of the quarterly wage. We consider the vacancy costs as the sum of all of these

recruitment-related costs.12 [83] and [84] have a smaller vacancy cost because they

take only the flow vacancy cost into account. [77] sets the workers’ bargaining power

equal to 0.72 solely to satisfy the Hosios condition, whereas [83] use a much smaller

number: 0.05. We target the value of the unemployment (or leisure) ς
ucT

to wage ratio

of 0.35, and it turns out that the bargaining power ϕ = 0.42, which is in the middle of

those two polar cases. We also target an annual capital-output ratio of 2.75.

We normalize output, the relative price of nontradables, and market tightness in

both labor and goods markets to 1. The parameters more closely related to these unit

targets are the definition of units in the production function zT and zN as well as the

value of leisure ς, and the parameter that transforms search units into utils, ξ.

The last group of parameters has no steady-state implications, and we set these pa-

rameters according to their dynamic implications (see Table 3.3). We choose the capital

adjustment cost in the nontradable goods sector εN such that the immediate response of

nontradable investment iN is four times as large as the response of nontradable output

YN at its lowest point. That is, we want a 1% increase (decrease) in nontradable output

in our exercises to be associated with a 4% decrease in investment in nontradables. We

want output in the tradable sector to expand by 5% when total real output Y drops

by 1% (which may even be too large a target), and we want adjustments in labor and

capital of tradables to be symmetric. A higher α implies a larger volatility of capacity

in the goods market, as well as a larger role played by consumers’ demand in shaping

TFP. We choose α such that when total output declines by 1%, the employment rate

12 In the robustness check, we will show that by targeting a smaller value of the vacancy costs, the
model results are improved. Therefore, the target we use here should be considered as a conservative
benchmark.
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Table 3.2: Steady-State Targets and Associated Parameters of the Baseline Economy

Target Value Parameter Value

Share of tradables,
F∗T
Y ∗ 0.3 ω 0.91

Unemployment rate, U∗ 7% λ 0.05

Monthly job finding rate 45% νe 0.67

Occupancy rate,
C∗N
F∗N

0.81 νg 0.81

Capital to output ratio, K
∗

Y ∗ 2.75 δ 0.007

Labor share in nontradables 0.6 θN 0.67

Labor share in tradables 0.6 θNT 0.64

Equal role of capital and land in tradables, 2θKT + θNT = 1 θKT 0.18

Vacancy posting to output ratio 0.037 κ 0.53

Value of leisure to wage ratio 0.35 ϕ 0.42

Units Parameters

Output, Y ∗ 1 zN 0.45
Relative price of nontradables, p∗ 1 zT 0.52

Market tightness in labor markets, U∗

V ∗ 1 ς 0.54
Market tightness in goods markets, D∗ 1 ξ 0.02

decreases by 0.5%.

3.5 A Recession Induced by a Shock to the Discount Fac-

tor

We are now ready to explore the properties of recessions induced by households’ attempt

to save more. We use relatively permanent shocks to the discount factor as a proxy for

financial shocks, but in Section 3.10 we extend the model so as to accommodate explicit

financial shocks that make consumption smoothing difficult.

A household that suffers a shock to its patience wants to work harder and save

more by reducing its consumption of both tradables and nontradables. Its willingness

to work more translates to a wage drop but not in more work unless firms pose more

job vacancies. Less tradable consumption translates directly into more net exports.

Given our assumptions on preferences, households implement a reduction of nontradable

consumption by reducing both the number of consumption varieties and the quantity of
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Table 3.3: Dynamically Calibrated Parameters of the Baseline Economy

Target Value Parameter Value

Response of nontradable investment ∆IN

∆Y N
= 4 εN 14.17

Response of tradable output ∆Y T

∆Y = −5 εT,n 7.70

Symmetry of tradable adjustment costs εT,k = εT,n εT,k 7.70

Response of labor to output ∆N
∆Y = .5 α 0.22

each variety. This in turn reduces productivity (fewer locations are occupied) and the

prices of nontradables and, consequently, the output and profits of nontradables for a

few periods. The tradable sector expands because of the reduction in wages, but only

in a limited way because of the decreasing returns to scale of this sector and to the

adjustment costs that slow its expansion.

Specifically, consider the following AR(1) stochastic process: log τt = ρτ log τt−1 +

εt, εt ∼ N(0, στ ), with persistence ρτ = 0.95. Now consider the following version of

the utility function:

E

{ ∞∑
t=0

τtβ
tu(ct, dt, nt)

}
. (3.56)

Our strategy is to look for an innovation εt capable of reducing real output by 1%.

Clearly, the lower the required value of εt, the more vulnerable the economy is to

recessions.

Performance of the Baseline Economy The first row of Table 3.4 displays the size

and the sign of the innovation of the shock required to produce a drop in output of 1%,

as well as the implied change of employment, of the measured Solow residual, and of

total consumption. The size of the temporary increase in the discount rate is a little less

than 1%. By itself, this statistic does not tell us much, but it is useful for comparisons.

Recall that the economy was calibrated to generate a drop in employment of 0.5%. We

see that there is a reduction in measured TFP of 0.69% and that consumption drops

by 3.8%. The reduction of nontradable consumption is responsible for the reduction in

measured TFP.

Figure 3.2 displays the impulse responses of the main macroeconomic variables to
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Table 3.4: Statistics for a 1% Drop in Output

Model economy Pref Shock Labor TFP Consumption

Baseline economy 0.88 -0.50 -0.69 -3.86

Baseline without goods market friction 2.00 -1.22 -0.16 -7.50

Baseline with very low adjustment costs 1.29 0.12 -1.80 -8.39

Frictionless markets -0.48 -1.77 0.00 4.18

Frictionless labor with goods market friction -0.53 -1.96 0.10 4.50

Baseline + high adjustment cost 0.66 -0.80 -0.47 -2.49

Baseline + lower job finding rate 0.90 -0.38 -0.72 -4.03

Baseline + lower job finding rate + new parameters 0.95 -0.50 -0.65 -4.00

Baseline + staggered wage 0.55 -0.78 -0.50 -2.67

Baseline + staggered wage + high adj. costs 0.45 -0.94 -0.40 -2.03

Baseline + constant labor share 0.85 -0.51 -0.67 -3.75

Baseline w/o goods market friction and high adj. costs 1.10 -1.36 -0.09 -3.40

Baseline w/o goods market friction and staggered wages 0.90 -1.37 -0.13 -3.69

Baseline w/o goods market friction and fixed labor share 1.88 -1.22 -0.16 -7.11

the shock in the baseline economy (blue dots). Here are eight interesting features

of the ensuing recession beyond those that we imposed (i.e., the 1% drop in output and

the 0.5% drop in employment):

1. The Solow residual drop of 0.69% lingers for a while and does not recover its

original value for at least five years.

2. Employment recovers quite fast, within a year.

3. Consumption drops about 4% and recovers slowly. The drop is much higher for

tradables than for nontradables: the price of the latter drops quite dramatically,

about 15%.

4. The large increase in the output of tradables is due to an increase in net exports,

which jumps to 3.5% of GDP as investment suffers quite a large reduction, almost

8%.

5. The drop in nontradable consumption is due to both the number of consumption

varieties and the quantity consumed of each variety, albeit more of the latter.

6. Wages measured in tradables goods drop quite dramatically, almost 10%.
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Figure 3.2: IRF: Baseline Economy and Economy w/o Goods Markets Frictions

Real output Solow residual Employment

Consumption Output of nontradables Output of tradables

Number of varieties Price for nontradables Wage

Investment Wealth Net export-output ratio

-•-•-•- Baseline economy Baseline without goods market friction
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7. A paradox of thrift arises. Despite households’ attempt to increase savings, the

value of wealth is reduced for a few periods, as measured by the sum of the foreign

bonds and the present discounted sum of profits, Wt = (1 + r)bt+
∑∞

k=t
πN,k+πT,k
(1+r)k−t

.

It takes roughly a year for wealth to recover its initial level. Eventually, wealth

increases by 1.6%.

8. A massive increase in net exports of about 3.5% occurs. In the long run, the

economy has a current account deficit because of its long-run positive net foreign

asset position.

To summarize, in the baseline economy, an increase in savings generates a long-

lasting recession with loss of both employment and productivity, reductions in con-

sumption and investment, and an increase in net exports. As stated before, all of these

features are consistent with the experience in southern Europe (see Figure 3.1).

3.6 The Role of Frictions in the Goods Market

To consider the quantitative importance of the mechanism that is novel in this paper,

we pose an economy like the baseline except that there are no search frictions in the

goods market, and therefore consumers use all consumption varieties and the economy

works at full capacity. 13

The second row in Table 3.4 shows that to get a 1% recession, the size of the shock

required in an economy without the goods market friction is 2.00%, 2.3 times larger

than in the baseline and a very large number. Moreover, such a recession is made up

of a 1.22% reduction in employment and a 0.16% reduction in TFP (which comes from

the decreasing returns to scale of the tradable goods sector).

The solid red lines in Figure 3.2 show the dynamic paths of this economy. In the

absence of the shopping friction, the requirements for the recession are dramatic: a

reduction of consumption of 7.5% rather than 4%, a reduction of investment of 22%

rather than 8%, and also enormous reductions in the wage rate (over 20%) and in the

price of nontradables (over 40%). We conclude that the contribution of consumers to the

13 Appendix A.3.3 includes a more detailed description of this model economy and the economies
without labor market frictions.
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determination of productivity is a major ingredient for the understanding of business

cycles.

3.7 The Role of Adjustment Costs and Frictions in the

Labor Market

Adjustment costs and labor market frictions are crucial to generate savings induced

recessions.

Adjustment Costs Nontrivial adjustment costs is a required ingredient of the reces-

sion. To see this, it suffices to look at the third row of Table 3.4 which displays an econ-

omy like the baseline except that adjustment costs are almost zero, εT,k = εT,n = 0.01

(recall that the value in the baseline is 7.7). Now a shock that is 50% larger than that

in the baseline generates a 1% drop in output but a small increase in employment. The

recession comes about only because of the lower productivity implied by consumption

in nontradables and lower shopping. The implied drop in consumption is much larger,

more than two times larger than in the baseline.

Frictions in the Labor Market The labor market friction prevents the household

from choosing how much to work. In our economy, a shock to patience induces house-

holds to be willing to reduce consumption and increase labor today relative to tomorrow.

If households are able to choose how much to work, the economy will yield an increase

in labor, thereby generating an expansion, not a recession. This occurs because the

households are willing to accept a lower wage to delay gratification.14 Therefore,

in our economy with competitive markets, it is a reduction of patience that generates

a recession with lower work and higher wages. Figure 3.3 and the fourth and fifth

rows of Table 3.4 show the performance of two versions of the baseline economy with

no labor market frictions, one with and one without goods markets frictions, and we

compare them with the performance of the baseline economy. Except for output and

employment, all the other aggregate variables move in a direction opposite from the

14 The traditional way to avoid this problem is to assume wage or price stickiness as in most New
Keynesian models. Recent practice includes [55], [67], [57], and [85].
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baseline: the tradable sector shrinks, the nontradable sector expands, consumption in-

creases and net exports decrease. The shock needed to induce a 1% decrease in output

is larger when the goods market friction exists. This is because the larger demand for

nontradable goods also increases the Solow residual, which is countercyclical in this

context.

3.8 Shocks to Wealth

We now engineer a recession by a sudden reduction in the net foreign asset position.

We set the size of the reduction to reduce output in the long run by 1% starting from a

steady state with a zero net foreign asset position. This exercise explores the implication

that when households become impoverished, they lower their consumption, which brings

about a permanent drop in output and the Solow residual. We think that such a wealth

shock is a good description of the mechanism that triggered the recession in southern

Europe—the size of the public debt was larger and the banking system was in worse

shape than previously thought, and the generosity of the northern neighbors became

greatly reduced.

We model this shock as an unexpected onetime shock εw to the households’ budget

constraint:

p(S)cN I + cT + b′ = (1 + r)(b− εw) + w(S)n+ πN (S) + πT (S). (3.57)

In the first row of Table 3.5, we list the size of the shock as a percentage of initial total

wealth. This is a sizable shock, since the total value of wealth in this economy is about

five times the yearly output. As shown in the second row the size of the shock in a

version of the economy without the shopping friction is twice as large as in the baseline.

Table 3.5: Statistics for Wealth Shock to Induce 1% Output Drop

Model Economy Wealth Shock Employment TFP Consumption

Baseline 9.51 -0.21 -0.37 -3.07

Baseline, no shopping 18.74 -0.39 -0.05 -4.57
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Figure 3.3: IRF: Baseline Economy and the Economies without Labor Market Frictions

Real output Solow residual Employment

Consumption Output of nontradables Output of tradables

Number of varieties Price for nontradables Wage

Investment Wealth Net export-output ratio

-•-•-•- Baseline Frictionless Frictionless with goods market frictions
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Figure 3.4 covers the first 10 years after the shock. The changes are now permanent.

The impoverishment requires the economy to reallocate resources into the tradable goods

sector, resulting in a permanent expansion of tradable goods production and net exports.

There is also a permanent decline in wages, which will encourage a permanent increase

in employment, but only after a decline in the short run arising from the adjustment

costs.

Shocks to the discount factor β and to wealth both induce a recession in the short

run. However, the paths of recovery are quite different. After a discount factor shock,

consumption rebounds fairly quickly, and it inherits the statistical properties of the

shock. Other aggregate variables follow a similar pattern. With a shock to wealth,

output, the Solow residual, and consumption transit to a quite different and lower

steady state.

Southern European economies have stagnated for a relatively long time. From this

point of view, a shock to wealth looks more like a plausible trigger than a shock that

just increases the desire to save (e.g., a shock to the discount factor) because some

aggregate variables such as output and consumption do not recover. However, under the

baseline calibration, neither the β shock nor the wealth shock produces a slow recovery

in employment. If we add staggered wage contracts to the baseline model, employment

takes about two years to return to its original level, as shown in Table 3.6. Further, if

we combine both staggered wage contracts and high adjustment costs in the tradable

sector, employment takes more than three years to fully recover when the recession is

triggered by a wealth shock. Figure 3.5 compares the impulse responses in economies

with β shocks and wealth shocks, both of which adopt staggered wage contracts and

high adjustment costs in the tradable sector.

3.9 Various Other Alternatives to the Baseline Economy

We now explore variations of the baseline economy that sharpen the characterization

of how adjustment costs, wage setting mechanisms, the shopping friction, and labor

market turnover affect recessions. Appendix A.3.3 includes a detailed study of the

various other alternatives to the baseline economy and also the robustness analysis

when using different calibration targets.



126

Figure 3.4: IRF: Shocks to Wealth

Real output Solow residual Employment

Consumption Output of nontradables Output of tradables

Number of varieties Price for nontradables Wage

Investment Wealth Net export-output ratio

-•-•-•- Baseline economy Baseline without goods markets frictions
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Figure 3.5: IRF: Shocks to β and Wealth with Staggered Wage and High Adj Costs

Real output Solow residual Employment

Consumption Output of nontradables Output of tradables

Number of varieties Price for nontradables Wage

Investment Wealth Net export-output ratio

-•-•-•- Shock to β Shock to wealth
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Table 3.6: Statistics for β Shock and Wealth Shock to Induce 1% Output Drop

Model Economy Labor TFP Consumption Recovery

β shock -0.50 -0.72 -4.50 4

β shock + staggered wage -0.85 -0.47 -2.72 7

β shock + staggered wage + high cost -1.02 -0.36 -2.03 9

Wealth shock -0.21 -0.37 -3.44 2

Wealth shock + staggered wage -0.46 -0.43 -3.44 9

Wealth shock + staggered wage + high cost -0.82 -0.46 -3.25 14

Note: Recovery time is the number of quarters it takes employment to recover its initial steady-state level.

High Adjustment costs in the Tradable Goods Sector We increase the ad-

justment costs for labor and capital in equal magnitude (εT,n = εT,k) to reduce the

expansion of the tradable sector to 2% instead of 5%. The sixth row of Table 3.4 shows

that the size of the shock needed to generate a 1% reduction in output is about 75% of

that in the baseline economy, but now the drop in employment is larger (0.80%) and

that of TFP smaller (0.47%) because of the lower employment creation in tradables.

The dynamic analysis (shown in Appendix A.3.3 in Figure A.1) shows a smaller (2.5%)

reduction in consumption and a larger (9%) reduction in investment relative to the

baseline economy, whereas the drop in the wage is smaller. As in the baseline economy,

a paradox of thrift also occurs, but this time the final increase in wealth is about half of

that in the baseline. Not only is there a larger drop in employment compared with the

baseline model, but it also takes longer for employment to recover. In an economy with

no adjustment costs, total employment will not decrease at all; instead, there would be

an export-based expansion. We take this result as evidence that the tradable sector has

to have sizable adjustment costs.

Low Labor Market Turnover Southern European economies are characterized by

having a much less dynamic labor market than that of the United States or northern

Europe. To explore the implications of smaller flows in and out of employment, we pose

two economies with a lower job finding rate. The seventh row of Table 3.4 displays the

size of the required shock for a 1% output reduction and its associated decomposition

into employment and measured productivity of an economy calibrated to have the same
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steady state as the baseline except for having a monthly job finding rate of 22% (one-half

of that of the baseline) and an unemployment rate of 10% (7% in the baseline). The

dynamic parameters have not changed. We see that the size of the shock is very similar

to that of the baseline and that the reduction in output is due more to a reduction in

productivity than in the baseline. The eighth row of Table 3.4 displays the results for a

low labor market turnover economy in which the adjustment costs have been increased

to have the same employment response as in the baseline (0.5%). The required shock

is a bit higher but not by too much. We conclude that our main findings are robust to

the amount of labor market turnover.

Staggered Wage Contracts à la Calvo In the baseline economy, despite the holdup

problem implied by Nash bargaining with labor search frictions, there is a large drop in

wages. An extensive literature (see [78], for example) documents that adding wage stick-

iness can help Mortensen-Pissarides type models to account for employment volatility.

In this section, we examine the role of wage stickiness in a Calvo-style wage contracting

environment, similar to [86]. We assume that, every period, a fraction θw of employed

workers have the chance to renegotiate their wages with firms.15 We set θw = 12.5%,

so that the average duration of a wage contract is one year. The ninth row of Table 3.4

displays the required shock size and the decomposition of the fall in output into labor

and productivity. As we expected, the required size of the shock is much smaller than

in the baseline. Moreover, most of the fall in output is due to a fall in employment.

The drop in consumption is also much smaller.

Figure 3.6 compares the impulse responses to the patience shock in the baseline

economy and the staggered wage economy. Comparing the two sets of impulse responses,

we see large differences among them. In the staggered wages economy, there is a larger

initial drop in employment that reverses after three years. There are also slower drops

in consumption and nontradables but a smaller increase in tradables. After the initial

drop in wealth that also displays the paradox of thrift, the eventual increase in wealth

is lower than in the baseline economy.

15 Again, Appendix A.3.3 gives the details of the specification of this economy.
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Figure 3.6: IRF: Baseline and Staggered Wage Economies

Real output Solow residual Employment

Consumption Output of nontradables Output of tradables

Number of varieties Price for nontradables Wage

Investment Wealth Net export-output ratio

-•-•-•- Baseline economy Baseline with staggered wages
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Both Staggered Wages and High Adjustment Costs With these two frictions

together, the required size of the shock is about 50% of that of the baseline (tenth row

of Table 3.4). In this case, the drop in labor is almost as large as that of output.

Constant Labor Share To get a sense of the role of different forms of wage setting,

the eleventh row of Table 3.4 displays an economy with constant labor share. Its per-

formance is quite similar to the baseline with Nash bargaining wage setting: the size of

the shock required to generate a 1% reduction in output is slightly smaller than in the

baseline (0.85 versus 0.88).

The Role of Shopping in Alternative Economies In the last three rows of

Table 3.4 we report nonshopping versions of economies with high adjustment costs,

staggered wages, and constant labor share. As before, the size of the shock is also much

larger than in the shopping counterpart.

3.10 Economies with Financial Frictions

Shocks to patience are not what we have in mind as a trigger for increased savings. We

now extend our model to allow a limited form of heterogeneity within the household

that is capable of accommodating shocks to the financial system that trigger changes in

savings. We assume financial costs to providing unemployment insurance, implying that

employed and unemployed workers may have different consumption levels. These costs

are lower when wealth is higher because the transfers of the employed to the unemployed

become smaller. Let ψ be a financial cost per unit of transfer to unemployed workers.

A relatively permanent increase of ψ makes it more expensive to insure unemployed

workers, which encourages the household to increase savings. Shocks to ψ have similar

effects than shocks to the discount factor.

In this economy employed and unemployed agents search in different goods markets

with different prices, different market tightness, and different amounts consumed. In

other words, goods markets can be segmented.16 In this economy the unemployed

16 Appendix A.3.4 describes a version of this economy with nonsegmented goods markets. We think
of these two versions of the model as extreme cases of a general version in which there are different
goods markets for the two types of agents, but some noise sends them to the wrong market.
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care relatively more than the employed for lower prices relative to search intensity,

which generates a rationale for firms to price discriminate. Firms will gear some of

their locations to cater to unemployed workers and the rest to employed workers. The

former will face higher market tightness and lower prices, but, as it turns out, not lower

quantities of each good. This result is consistent with the evidence provided by [64] and

[63]. The wage determination mechanism of the financial friction economy maintains a

constant labor share. The firm’s problem is

ΩN (S, k, n) = max
i,v,xe,pej
xu,puj

xepejΨ
f (Qg,e)Ce(pej , S) + xupujΨf (Qg,u)Cu(puj , S)

− w`− i− κv +
Ωj(k′, n′)

1 + r∗
(3.58)

subject to

FN (k, n) ≥ xeCe(pei , S) + xuCu(pui , S), (3.59)

xe + xu ≤ 1, (3.60)

k′ = (1− δ)k + i− φN (k, i), (3.61)

n′ = (1− λ)n+ Φf [Qe(S)]v, (3.62)

S′ = G(S). (3.63)

To have an equilibrium where firms enter both markets, the following conditions have

to be satisfied:

peΨf (Qg,e) = puΨf (Qg,u) = ζ, (3.64)

ceN = cuN = FN (KN , NN ). (3.65)

The market tightness in equilibrium equals

Qg,e =
Xe

nDe
, Qg,u =

Xu

(1− n)Du
. (3.66)

Satisfying (3.66) requires pe > pu and Ψf (Qg,e) < Ψf (Qg,u). The employed shop at

locations with smaller tightness, but they pay a higher price; the unemployed pay a
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lower price but search harder. The problem of the household is

V (S, b, n) = max
ceT ,I

e,pe

cuT ,I
u,pu

nu(ceA, d
e, 1) + (1− n)u(cuA, d

u, 0) + β E
{
V (S′, b′, n′) | θ

}
s.t.

(3.67)

n[pe(S)IeceN + ceT ]+

(1− n)[puIucuN + cuT ] = (1 + r)b+ w(S)n+ πN (S) + πT (S)− ψ(1− n)Tr − b′.
(3.68)

Tr = puIucuN + cuT − [(1 + r)b+ πN (S) + πT (S)], (3.69)

Is = Ψd(Qg,s) ds, for s ∈ {e, u} (3.70)

n′ = (1− λ)n+ Φw[Qe(S)](1− n), (3.71)

ζ = peΨf (Qg,e) = puΨf (Qg,u), (3.72)

ceN = cuN = FN (KN , NN ), (3.73)

S′ = G(S). (3.74)

The first-order conditions for the multiple market environment can be summarized

as

usI =
1

1− α
pscsNucsT , for s ∈ {e, u} (3.75)

uceT = ucuT (1 + ψ), (3.76)

uIs = pscsNucsT −
uds

Ψd(Qg,s)
, for s ∈ {e, u} (3.77)

uceT = (1 + r)E
{
βu′ceT

[1 + ψ′(1− n′)] | θ
}
. (3.78)

We calibrate ψ such that the steady-state financial cost ψ(1−n)Tr is 1% of output,

although what matters the size of the shocks. We assume that ψ follows an AR(1)

process with persistence of 0.95. The realization the shock results in a 1% output drop.

To see how a shock to ψ is related to a shock to β, we can log-linearize the Euler

equation (3.78) as

ûceT ,t = ûceT ,t+1 +
ψ∗(1− n∗)

1 + ψ∗(1− n∗)
ψ̂t+1 −

ψ∗n∗

1 + ψ∗(1− n∗)
n̂t+1, (3.79)

where ψ∗ and n∗ are their steady-state values. Define β̂ as the wedge between the in-

tertemporal marginal utilities of consumption today and tomorrow, β̂ = ψ∗(1−n∗)
1+ψ∗(1−n∗) ψ̂t+1−
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Table 3.7: Calibration of the Financial Frictions Economy

Target Value Parameter Value

Share of tradables,
F ∗T
Y ∗ 0.3 ω 0.93

Unemployment rate, U∗ 7% λ 0.05

Monthly job finding rate 45% νe 0.67

Occupancy rate,
C∗N
F ∗N

0.81 νg 0.81

Capital to output ratio, K∗

Y ∗ 2.75 δ 0.007

Labor share in tradables 0.6 θNT 0.64

Equal role of capital and land in tradables, 2θKT + θNT = 1 θKT 0.18

Vacancy posting to output ratio 0.037 θN 0.67

Financial cost to output ratio 0.01 ψ 0.28

Units Parameters

Output, Y ∗ 1 zN 0.45
Relative price of nontradables, p∗ 1 zT 0.52

Market tightness in labor markets, U∗

V ∗ 1 κ 0.53
Market tightness in goods markets, D∗ 1 ξ 0.02

ψ∗n∗

1+ψ∗(1−n∗) n̂t+1. Recall that in the baseline economy with the discount factor shock, the

log-linearized Euler equation is

ûcT ,t = ûcT ,t+1 + τt, (3.80)

with β̂ = τ . Note how the effect of shock to ψ is similar to a shock to β. We then

compare the implied β̂ with the shock to β in the baseline economy. We adopt a wage

determination protocol that permits a constant labor share.17

After a shock to ψ, agents reduce both the amount of consumption of each variety

and the number of varieties. The unemployed reduce their shopping effort less than the

employed, but their number of varieties decreases more because of a lower probability

of finding a location.

The economy (it has the same exogenous parameters as the baseline and its ts

calibration is described in Table 3.7) displays similar behavior to a version of the baseline

17 We do not use Nash bargaining because after a ψ shock, one additional employed worker becomes
much more valuable to the household, which greatly weakens the household’s bargaining power and
leads to an implausible decrease of wages.
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Table 3.8: Baseline and Financial Friction Economies with Constant Labor Share

Model Economy β̂ Labor TFP Consumption Cost/Output

Baseline + constant labor share 0.85 -0.51 -0.67 -3.75 —

Multiple nontradable goods markets 1.15 -0.53 -0.67 -3.72 1.36

economy where the wage determination mechanism implies constant labor share as can

be seen in Figure 3.7 (which also shows the behavior of the economy with financial

frictions and nonsegmented markets) and Table 3.8. The implied discount rate, β̂, in

the financial frictions economy is 1.15% larger than β which compares to an increase

of 0.85% in the corresponding baseline economy. The shock induces an increase in the

financial cost to output ratio of 34%.

As we can see in Figure 3.7 the main difference between the financial frictions econ-

omy and the corresponding version of the baseline is that the former recovers faster and

has a bit less reallocation of resources than the latter. As such, net exports go up to

2.5% of GDP, not 3%, and the increase in total wealth is about 1.3% and slowly disap-

pears as the financial frictions return to normal. In other respects the financial friction

economy behaves like the baseline. We also see that both financial friction economies

(with and without segmented markets) behave almost identically.

3.11 Conclusion

In this paper, we generated demand-induced recessions in an otherwise standard neo-

classical growth model. The two necessary ingredients are (1) adjustment costs that

make it difficult for the economy to expand the tradable sector by reallocating factors

of production from nontradables to tradables, and (2) some form of noncompetitive

labor markets (Mortensen-Pissarides labor search frictions and wage setting via Nash

bargaining being is enough). In addition, our model poses frictions in the goods markets,

where increases in consumers’ search efforts enable the economy to operate at a higher

capacity (an extension of [11]). Consequently, reductions in household consumption
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Figure 3.7: IRF: Baseline and Financial Friction Economies

Real output Solow residual Employment

Consumption Output of nontradables Output of tradables

Discount factor β̂ Financial cost-output ratio Ratio of Ce to Cu

Wealth Investment Net export-output ratio

-•-•-•- Baseline FF Nonsegmented Mkts FF Multiple Mkts



137

reduce measured TFP. This feature is quantitatively important: its presence amplifies

by two and a half times the effects of shocks. The recessions that we induce display the

paradox of thrift in the sense that increases in household savings reduce wealth at the

start of the recession, and it takes a few quarters before it recovers its initial level.

Finally, an extension of our model features financial frictions that, when subject to

shocks, generate fluctuations like those derived from shocks to patience, even in the

context of a representative agent model. We think that in many ways, the type of

recession we have posed resembles what is currently happening in southern Europe.
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[23] Stephanie Schmitt-Grohé and Martin Uribe. What’s news in business cycles. Econo-

metrica, 80(6):2733–2764, 2012.

[24] Paul Beaudry, Deokwoo Nam, and Jian Wang. Do Mood Swings Drive Business

Cycles and is it Rational? NBER Working Papers, No. 17651, December 2011.

[25] Kristoffer Nimark. Dynamic higher order expectations. Economics Working Papers

1118, Department of Economics and Business, Universitat Pompeu Fabra, October

2011.

[26] Christian Hellwig and Venky Venkateswaran. Hayek vs keynes: Dispersed informa-

tion and market prices in a price-setting model. Technical report, Working Paper,

2011.

[27] Alberto Trejos and Randall Wright. Search, bargaining, money, and prices. Journal

of Political Economy, 103(1):118–141, 1995.

[28] Zhen Huo and Jose-Victor Rios-Rull. Tightening Financial Frictions on Households,

Recessions, and Price Reallocations. Forthcoming, Review of Economic Dynamics,

2014.
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Appendix A

A.1 Proof of Theorems and Propositions in Chapter 1

A.1.1 Proof of Proposition 1.2.1

Proof. Let j denote m(i, t). With the optimal output rule (1.8), successive iteration leads to

yit = α0ai + α1Eit [yjt]

= α0ai + α1Eit [α0aj + α1Ejt [yit]]

= α0ai + α0α1Eit [aj ] + α2
1EitEjt[yit]

= α0ai + α0α1Eit [aj ] + α2
1EitEjt[α0ai + α1Eit [yjt]]

= α0ai + α0α
2
1EitEjt[ai] + α0α1Eit [aj ] + α3

1EitEjtEit[yjt]

= α0ai + α0α
2
1EitEjt[ai] + α0α1Eit [aj ] + α0α

3
1EitEjtEit[aj ] + α4

1EitEjtEitEjt[yit]
...

= α0

∞∑
k=0

α2k
1 E2k

it [ai] + α0

∞∑
k=0

α2k+1
1 E2k+1

it [aj ].

Given that α1 ∈ (0, 1) and the modulus of the expectation is bounded from above, the summation

in the last line is well defined. The expectation operator Ekit stands for higher order beliefs and

is given by

E0
it[ai] = ai

E1
it[aj ] = Eit[aj ]

Ekit[ai] = EitEjtEk−2
it [ai], for k = 2, 4, 6 . . .

Ekit[aj ] = EitEjtEk−2
it [aj ], for k = 3, 5, 7 . . .
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We can derive Ekit[ai] or Ekit[aj ] in the following way recursively

Eit[aj ] = x1
it − Eit[ξt]

E2
jt[ai] = Eit[x1

jt − Ejt[ξt]] = ai + Eit[ξt]− EitEjt[ξt]

E3
it[aj ] = Eit[aj + Ejt[ξt]− EjtEit[ξt]] = Eit[aj ] + EitEjt[ξt]− EitEjtEit[ξt]

E4
it[ai] = Eit[Ejt[ai] + EjtEit[ξt]− EjtEitEjt[ξt]] = EitEjt[ai] + EitEjtEit[ξt]− EitEjtEitEjt[ξt]

More compactly,

Ekit[ai] = ai −
k∑

n=1

(−1)nEnit[ξt], for k = 0, 2, 4, 6 . . .

Ekit[aj ] = x1
it +

k∑
n=1

(−1)nEnit[ξt], for k = 1, 3, 5, 7 . . .

The the output in island i is

yit = α0

∞∑
k=0

α2k
1 E2k

it [ai] + α0

∞∑
k=0

α2k+1
1 E2k+1

it [aj ]

=
α0

1− α2
1

ai +
α0α1

1− α2
1

x1
it −

α0

1 + α1

∞∑
k=1

αk1Ekit[ξt]

=
α0

1− α2
1

ai +
α0α1

1− α2
1

aj +
α0α1

1− α2
1

ξt −
α0

1 + α1

∞∑
k=1

αk1Ekit[ξt]

=
α0

1− α2
1

ai +
α0α1

1− α2
1

aj +
α0

1 + α1

∞∑
k=1

αk1(ξt − Ekit[ξt])

A.1.2 Proof of Theorem 1

Proof. The signal process in our simple economy can be written as

xit =

[
x1
it

x2
it

]
=

[
σa 0 1

1−ρL

0 σu
1

1−ρL

]
âm(i,t)

ûit

η̂t

 = M̂(L)ŝit,

where we have normalized the shock process to be with unit variance. By the Canonical Fac-

torization Theorem discussed in [8], the matrices for the fundamental representation are

B(z) =
1

1− ρz

[
1− τ1ρ+λτ2

τ1+τ2
z τ1ρ−λτ1

τ1+τ2
z

τ2ρ−λτ2
τ1+τ2

z 1− τ2ρ+λτ1
τ1+τ2

z

]
,
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V −1 =
1

ρ(τ1 + τ2)

[
τ1ρ+λτ2

τ1
λ− ρ

λ− ρ τ2ρ+λτ1
τ2

]
,

where τ1 =
σ2
a

σ2
η

and τ2 =
σ2
u

σ2
η

. τ1 and τ2 are the relative variance of idiosyncratic shocks to the

confidence shock.1 λ is given by

λ =
1

2

τ1 + τ2
ρτ1τ2

+
1

ρ
+ ρ−

√(
τ1 + τ2
ρτ1τ2

+
1

ρ
+ ρ

)2

− 4

 .
In equilibrium

yit = α0ai + α1Eit[ym(i,t)t].

We are looking for policy rule

yit = haai + h1(L)x1
it + h2(L)x2

it

such that the equilibrium condition is satisfied. To predict ym(i,t)t, it is equivalent to forecast

ym(i,t)t = haam(i,t) + h1(L)

(
am(m(i,t),t) +

1

1− ρL
ηt

)
+ h2(L)

(
um(i,t)t +

1

1− ρL
ηt

)
.

Note that Eit[am(m(i,t),τ)] = ai for τ = t and Eit[am(m(i,t),τ)] = 0 for τ 6= t. Also, Eit[um(i,t)τ ] = 0

for all τ . The Wiener-Hopf prediction formula gives

Eit[am(i,t)] =
1

1− λL

[
τ1ρ+τ2λ
ρ(τ1+τ2) − λL

τ1(λ−ρ)
ρ(τ1+τ2)

]′ [
x1
it

x2
it

]
,

Eit
[
h1(L) + h2(L)

1− ρL
ηt

]

=
1

1− λL

 λ
ρτ1(L−λ)

(
L[h1(L) + h2(L)]− λ[h1(λ) + h2(λ)] 1−ρL

1−ρλ

)
λ

ρτ2(L−λ)

(
L[h1(L) + h2(L)]− λ[h1(λ) + h2(λ)] 1−ρL

1−ρλ

)[x1
it

x2
it

]
.

1 Since we assume ση = 1, it follows that τ1 = σ2
a and τ2 = σ2

u.
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Using the equilibrium condition, the following system has to be true

haai + h1(L)x1
it + h2(L)x2

it

= α0ai

+ α1ha

 τ1ρ+τ2λ

ρ(τ1+τ2)
−λL

1−λL
τ1(λ−ρ)
ρ(τ1+τ2)

1
1−λL

′ [x1
it

x2
it

]
+ α1h1(0)ai

+ α1

[
λ
ρτ1

L
(1−λL)(L−λ)h1(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)
λ
ρτ2

L
(1−λL)(L−λ)h1(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)

]′ [
x1
it

x2
it

]

+ α1

[
λ
ρτ1

z
(1−λL)(L−λ)h2(L)− λ2

ρτ1
1

1−ρλ
1−ρz

(1−λL)(L−λ)h2(λ)
λ
ρτ2

L
(1−λL)(L−λ)h2(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)

]′ [
x1
it

x2
it

]

By the Reise-Fisher Theorem, the following system in the analytic function space has to be true

C(z)

[
h1(z)

h2(z)

]
= d[z, h1(λ) + h2(λ)]

where

C(z) =


1− α1

λ
ρτ1

z
(1−λz)(z−λ) −α1

λ
ρτ1

z
(1−λz)(z−λ)

−α1
λ
ρτ2

z
(1−λz)(z−λ) 1− α1

λ
ρτ2

z
(1−λz)(z−λ)



d(z) =

 haα1

τ1ρ+τ2λ

ρ(τ1+τ2)
−λz

1−λz − α1
λ2

ρτ1
1

1−ρλ
1−ρz

(1−λz)(z−λ) [h1(λ) + h2(λ)]

haα1
τ1(λ−ρ)
ρ(τ1+τ2)

1
1−λz − α1

λ2

ρτ2
1

1−ρλ
1−ρz

(1−λz)(z−λ) [h1(λ) + h2(λ)]


To solve for h1(z) and h2(z), we use Cramer’s rule, which requires the determinant of C(z).

detC(z) = 1− α1

[
λ(τ1 + τ2)

ρτ1τ2

z

(1− λz)(z − λ)

]
=

ρτ1τ2(1− λz)(z − λ)− α1λ(τ1 + τ2)z

ρτ1τ2(1− λz)(z − λ)

=
−λ
[
z2 −

(
1
λ + λ− α1(τ1+τ2)

ρτ1τ2

)
z + 1

]
(1− λz)(z − λ)

.

The determinant of C(z) has two roots which are reciprocal for each other. The inside root is

ϑ =

(
1
ρ + ρ+ (1−α1)(τ1+τ2)

ρτ1τ2

)
−
√(

1
ρ + ρ+ (1−α1)(τ1+τ2)

ρτ1τ2

)2

− 4

2
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Therefore

detC(z) =
λ
ϑ (z − ϑ)(1− ϑz)
(1− λz)(z − λ)

Using Cramer’s rule,

h1(z) =

det


d1(z) −α1

λ
ρτ1

z
(1−λz)(z−λ)

d2(z) 1− α1
λ
ρτ2

z
(1−λz)(z−λ)


detC(z)

To make sure h1(z) does not have poles in the unit circle, we need to choose h1(λ) + h2(λ) to

remove the pole at ϑ, which requires

det


d1(ϑ) −α1

λ
ρτ1

ϑ
(1−λϑ)(ϑ−λ)

d2(ϑ) 1− α1
λ
ρτ2

ϑ
(1−λϑ)(ϑ−λ)

 = 0

Note that evaluating z at ϑ, we have

d1(ϑ) + d2(ϑ) = 0.

We can then solve for h1(λ) + h2(λ) as a function of ha.

h1(λ) + h2(λ) =
ha(ϑ− λ)

(
λ
ρ − λϑ

)
λ2

ρ
1

1−ρλ (1− ρϑ)( 1
τ1

+ 1
τ2

)
=
ha(ϑ− λ)(1− ρλ)τ1τ2

λ(τ1 + τ2)

Using this result, it follows that

det


d1(z) −α1

λ
ρτ1

z
(1−λz)(z−λ)

d2(z) 1− α1
λ
ρτ2

z
(1−λz)(z−λ)


=

1

(1− λz)(z − λ)
α1h

y
a(−λ)(z − ϑ)

(
z − ρτ1 + ϑτ2

(τ1 + τ2)ϑρ

)
.

Therefore,

h1(z) =
α1haϑ

(
ρτ1+ϑτ2

(τ1+τ2)ϑρ − z
)

1− ϑz
.

Similarly, we can solve for h2(z) as

h2(z) = −
α1ha

τ1(ρ−θ)
ρ(τ1+τ2)

1− ϑz
.
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Finally, ha can be obtained by solving the following linear equation

ha = α0 + α1h1(0) = α0 + α2
1ha

ρτ1 + ϑτ2
(τ1 + τ2)ρ

=
α0

1− α2
1
ρτ1+ϑτ2
(τ1+τ2)ρ

.

A.1.3 Proof of Theorem 2.5.1

Proof. Let φ = {φa, φ1, φ2, φ3} ∈ R× `2 × `2 × `2. The norm of φ can de defined as

‖φ‖ =

√√√√σ2
aφ

2
a + σ2

a

∞∑
i=0

φ2
1i + σ2

u

∞∑
i=0

φ2
2i + σ2

η

∞∑
i=0

φ2
3i.

Given an arbitrary φ, let

Φ(L) = φ3(L)

Then the signal process is well defined.

The corresponding individual policy rule is

yφit = φaai + φ1(L)am(i,t) + φ2(L)uit + φ3(L)ηt,

and the optimal linear forecast is given by

Eit[yφm(i,t)t] = φ̂aai + φ̂1(L)am(i,t) + φ̂2(L)uit + φ̂3(L)ηt.

If yφit = α0ai + α1Eit[yφm(i,t)t], then φ and Φ consist an equilibrium.

Define the operator T : R× `2 × `2 × `2 → R× `2 × `2 × `2 as

T (φ) = T ({φa, φ1, φ2, φ3}) = ({α0 + α1φ̂a, α1φ̂1, α1φ̂2, α1φ̂3}).

The equilibrium is a fixed point of the operator T . If we can show that T is a contraction

mapping, it is sufficient to prove the theorem.

Let φ ∈ R× `2 × `2 × `2 and ψ ∈ R× `2 × `2 × `2. The distance between φ and ψ is

‖φ− ψ‖ =

√√√√σ2
a(φa − ψa)2 + σ2

a

∞∑
i=0

(φ1i − ψ1i)2 + σ2
u

∞∑
i=0

(φ2i − ψ2i)2 + σ2
η

∞∑
i=0

(φ3i − ψ3i)2.

The distance between T (φ) and T (ψ) is

‖T (φ)− T (ψ)‖ =

|α1|

√√√√σ2
a(φ̂a − ψ̂a)2 + σ2

a

∞∑
i=0

(φ̂1i − ψ̂1i)2 + σ2
u

∞∑
i=0

(φ̂2i − ψ̂2i)2 + σ2
η

∞∑
i=0

(φ̂3i − ψ̂3i)2.
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Note that the variance of a variable is always larger than the variance of its predictor

Var[yφ−ψm(i,t)t]

=Var[(φa − ψa)am(i,t) + (φ1(L)− ψ1(L))am(m(i,t),t)]

+ Var[(φ2(L)− ψ2(L))um(i,t)t + (φ3(L)− ψ3(L))ηt]

=σ2
a(φa − ψa)2 + σ2

a

∞∑
i=0

(φ1i − ψ1i)
2 + σ2

u

∞∑
i=0

(φ2i − ψ2i)
2 + σ2

η

∞∑
i=0

(φ3i − ψ3i)
2

=‖φ− ψ‖2

≥Var[Eit[yφ−ψm(i,t)]]

=Var[(φ̂a − ψ̂a)ai + (φ̂1(L)− ψ̂1(L))am(i,t) + (φ̂2(L)− ψ̂2(L))uit + (φ̂3(L)− ψ̂3(L))ηt]

=σ2
a(φ̂a − ψ̂a)2 + σ2

a

∞∑
i=0

(φ̂1i − ψ̂1i)
2 + σ2

u

∞∑
i=0

(φ̂2i − ψ̂2i)
2 + σ2

η

∞∑
i=0

(φ̂3i − ψ̂3i)
2

=‖T (φ)− T (ψ)‖2 1

|α1|2
.

Therefore, ‖T (φ) − T (ψ)‖ ≤ α1‖φ − ψ‖ when α1 ∈ (0, 1). The operator T is a contraction

mapping. There exists a unique fixed point.

A.1.4 Proof of Proposition 1.4.1

Proof. Let m(i, t) be island i’s partner at time t and am(i,t) be its productivity. We want to

guarantee that there exists stochastic process such that, for all i ∈ [0, 1),

am(i,t) = ρam(i,t−1) + εt,

εt ∼ N (0, σ2)

where ρ ∈ (0, 1).

Without loss of generality, we can assume that at some t every island x ∈ [0, 1
2 ) meets an

island m(x, t) = x+ 1
2 and vice versa. Define a shift operator as

a⊕ b ≡ a− 1

2
+ b− 1

2

⌊
2(a− 1

2
+ b)

⌋
,

where bcc is the largest integer not exceeding c. Then, for all n ∈ Z+, for all x ∈ [0, 1
2 ), let

m(x, t+ n+ 1) = m(x, t+ n)⊕∆,

where ∆ ∈ R, and ∆ /∈ Q. As for x ∈ [ 1
2 , 1), vice versa. In a discrete analog with countably

infinite islands, the next partner island is obvious e.g. its neighbor to the left or right. Here,
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however, there is no naturally next number to x, and hence we need to guarantee that there

exists a step size ∆ such that, for all x ∈ [ 1
2 , 1),

ax⊕∆ − ρax ∼ N (0, σ2),

and similarly for x ∈ [0, 1
2 ). This is not an obvious task.

Now, there exists an Ornstein-Uhlenbeck process {Zx} obeying

dZx = −ρ̂Zx + σ̂dWx,

Cov[Zy, Zx] =
σ̂2

2ρ̂
exp(−ρ̂|y − x|),

where {Wx} is the Wiener process and its discrete analog (an AR(1) process) is written as

zn = κNzn−1 +
√

1− κ2
N ε̂n,

κN = exp(− ρ̂X
N

),

ε̂n ∼ N (0,
σ̂2

2ρ̂
),

where n = 1, ..., N and N is a large number2 . Then, let

X =
1

2

∆ =
X

N
,

ρ = κN ,

σ = σ̂

√
∆(ρ2 − 1)

2 log ρ
.

It follows that

zn = ρzn−1 +
√

1− ρ2ε̂n,

= ρxn−1 + εn,

and this can be interpreted as a discrete analog of ax. The corresponding Ornstein-Uhlenbeck

process is rewritten as

dZx =
log ρ

∆
Zx + σ

√
2 log ρ

∆(ρ2 − 1)
dWx,

and hence

Cov[Zx+∆, Zx] =
ρσ2

1− ρ2
.

2 Finch, Steven (2004) “Ornstein-Uhlenbeck Process, ” mimeo.
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Note this is identical to the first auto-correlation of the discrete analog and Wx is normally

distributed so is the sum of innovation of Zx between x + ∆ and x. Therefore, if we assume

ax = Zx− 1
2

for x ∈ [ 1
2 , 1) and similarly for x ∈ [0, 1

2 ) (with another identical stochastic process),

the step size we want is ∆, given no wrap-around happens at x = 1, and the wrap-around can

be ignored when ∆→ 0.
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A.2 Proof of Theorems and Propositions in Chapter 2

A.2.1 Proof of Proposition 2.2.1

Proof. We consider the equilibrium in the innovation form. Let φ = {φ1, φ2, φ3} ∈ `2 × `2 × `2.

The norm of φ can de defined as

‖φ‖ =

√√√√σ2
ε

∞∑
k=0

φ2
1k + σ2

u

∞∑
k=0

φ2
2k + σ2

η

∞∑
k=0

φ2
3k.

Given φ, let

yit = φ1(L)εit + φ2(L)uit + φ3(L)ηt,

and let

Eit[φ1(L)εjt + φ2(L)ujt + φ3(L)ηt] ≡ φ̂1(L)εit + φ̂2(L)uit + φ̂3(L)ηt

The inference of ξt is independent of φ and is given by

Eit[ξt] ≡ g1(L)εit + g2(L)uit + g3(L)ηt.

If yit = g1(L)εit+g2(L)uit+g3(L)ηt+α

(
φ̂1(L)εit+φ̂2(L)uit+φ̂3(L)ηt

)
, then φ is an equilibrium.

Define the operator T : `2 × `2 × `2 → `2 × `2 × `2 as

T (φ) = T ({φ1, φ2, φ3}) = {g1 + αφ̂1, g2 + αφ̂2, g3 + αφ̂3}

The equilibrium is a fixed point of the operator T . If we can show that T is a contraction

mapping, it is sufficient to prove the theorem.

Let φ ∈ `2 × `2 × `2 and ψ ∈ `2 × `2 × `2. The distance between φ and ψ is

‖φ− ψ‖ =

√√√√σ2
ε

∞∑
k=0

(φ1k − ψ1k)2 + σ2
u

∞∑
k=0

(φ2k − ψ2k)2 + σ2
η

∞∑
k=0

(φ3k − ψ3k)2.

The distance between T (φ) and T (ψ) is

‖T (φ)− T (ψ)‖ = |α|

√√√√σ2
ε

∞∑
i=0

(φ̂1i − ψ̂1i)2 + σ2
u

∞∑
i=0

(φ̂2i − ψ̂2i)2 + σ2
η

∞∑
i=0

(φ̂3i − ψ̂3i)2

Note that the variance of a variable is always larger than the variance of its predictor

Var

[
[φ1(L)− ψ1(L)]εjt + [φ2(L)− ψ2(L)]ujt + [φ3(L)− ψ3(L)]ηt

]
≥Var

[
Eit
[
[φ1(L)− ψ1(L)]εjt + [φ2(L)− ψ2(L)]ujt + [φ3(L)− ψ3(L)]ηt

]]



156

We have

Var

[
[φ1(L)− ψ1(L)]εjt + [φ2(L)− ψ2(L)]ujt + [φ3(L)− ψ3(L)]ηt

]
=σ2

ε

∞∑
k=0

(φ1k − ψ1k)2 + σ2
u

∞∑
k=0

(φ2k − ψ2k)2 + σ2
η

∞∑
k=0

(φ3k − ψ3k)2

=‖φ− ψ‖2,

and

Var

[
Eit
[
[φ1(L)− ψ1(L)]εjt + [φ2(L)− ψ2(L)]ujt + [φ3(L)− ψ3(L)]ηt

]]
=Var

[
[φ̂1(L)− ψ̂1(L)]εit + [φ̂2(L)− ψ̂2(L)]uit + [φ̂3(L)− ψ̂3(L)]ηt

]
=σ2

ε

∞∑
i=0

(φ̂1i − ψ̂1i)
2 + σ2

u

∞∑
i=0

(φ̂2i − ψ̂2i)
2 + σ2

η

∞∑
i=0

(φ̂3i − ψ̂3i)
2

=‖T (φ)− T (ψ)‖2
(

1

α

)2

.

Therefore, ‖T (φ) − T (ψ)‖ ≤ α‖φ − ψ‖. When α ∈ (0, 1), the operator T is a contraction

mapping, and there exists a unique fixed point.

A.2.2 Riesz-Fisher Theorem

Theorem (Riesz-Fisher). Let {cτ} be a square-summable sequence of complex numbers for which∑∞
τ=−∞ |cτ |2 < ∞. Then there exists a complex-valued function g(z), defined at least on the

unit circle in the complex plane such that

g(z) =

∞∑
τ=−∞

cτz
τ ,

where the infinite series converges in the mean square sense that

lim
n→∞

∮ ∣∣∣∣∣
n∑

τ=−n
cτz

τ − g(z)

∣∣∣∣∣
2
dz

z
= 0

where the integral is a contour integral on the unit circle. The function g(z) is square-integrable∣∣∣∣ 1

2πi

∮
|g(z)|2 dz

z

∣∣∣∣ <∞
The function g(z) is called the z transform of the sequence {cτ}.

Conversely, given a square-integrable g(z), there exists a square- summable sequence {cτ}
where

cτ =
1

2πi

∮
g(z)z−τ−1dz.
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Furthermore, suppose {cτ} be a one-side square-summable sequence for which
∑∞
τ=0 |cτ |2 <

∞. Then there exists an analytic function g(z) on the open unit disk such that

g(z) =

∞∑
τ=0

cτz
τ .

Conversely, given an analytic function on the unit disk, there exists a one-side square-summable

sequence {cτ} where

cτ =
1

2πi

∮
g(z)z−τ−1dz.

Proof. The proof of this theorem is referred to [40] and [9].

A.2.3 Proof of Lemma 2.3.1

Proof. There can be many different state-space representations and we only give one of them

here, which is sufficient to prove the claim. [87] shows how to represent a univariate ARMA

process in state space, and what we construct below is a natural extension to the multivariate

case.

Let rij = max{pij , qij + 1}, and let αijk = 0 if k > qij and βijk = 0 if k > qij . Let

r =
∑n
i=1

∑m
j=1 rij . F is a r × r matrix with the following form

F =



F11 0 0 . . . . . . . . . 0

0 F12 0 . . . . . . . . . 0
...

...
. . . . . . . . . . . .

...

0 . . . . . . F1m . . . . . . 0
...

...
...

...
. . .

...
...

0 0 0 . . . . . . Fnm−1 0

0 0 0 . . . . . . 0 Fnm


. (A.1)

The element Fij in F is a rij × rij matrix

Fij =



αij1 αij2 . . . αijrij−1 αijrij

1 0 . . . 0 0

0 1 . . . 0 0
...

... . . . 0 0

0 0 . . . 1 0


.
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Q is a r ×m matrix with the following form

Q =



Q11

Q12

...

Q1m

...

Qnm−1

Qnm


. (A.2)

The element Dij in D is a rij ×m matrix

Qij =


0 . . . αij0 . . . 0

0 . . . 0 . . . 0
... . . .

... . . .
...

0 . . . 0 . . . 0

 , (A.3)

where αij0 is at the jth column.

H is a n× r matrix with the following form

H =


H11 . . . H1m 0 . . . 0 . . . 0 . . . 0

0 . . . 0 H21 . . . H1m . . . 0 . . . 0
... . . .

...
... . . .

...
. . . 0 . . . 0

0 . . . 0 0 . . . 0 . . . Hn1 . . . Hnm

 (A.4)

The element Hij in H is a 1× rij matrix

Hij =
[
1 βij1 βij2 . . . βijrij

]
.

Let Zt follows

Zt = FZt−1 +Qst.

We have

xt = M(L)st = HZt

To show that the eigenvalues of F lie inside the unit circle, we can iterate the Zt to obtain

Zt =

∞∑
j=0

F jLjQst = (I − FL)−1Qst

If the eigenvalues of F lies outside the unit circle, it follows that Zt is not co-variance stationary,

which contradicts the assumption that xt is co-variance stationary.
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A.2.4 Proof of Theorem 2.3.5

Proof. A formal proof can be found in Whittle (1983). Here we provide a sketch of the proof.

Suppose the prediction is based on all the realization of the signals x∞ instead of xt. The

optimal linear prediction of yt is

E[yt|x∞] = ρyx(L)ρxx(L)−1xt.

This formula resembles the familiar formula in OLS regression. ρyx measures the correlation

between y and x, adjusted by ρxx. Given the fundamental representation

xt = B(L)wt,

the prediction is equivalent to the prediction conditional on w∞ and the prediction formula can

be written as

E[yt|x∞] =E[yt|w∞]

=ρyx(L)ρxx(L)−1xt,

=ρyx(L)B′(L−1)−1V −1B(L)−1B(L)wt,

=ρyx(L)B′(L−1)−1V −1wt.

Now imagine the prediction is conditional on only current and past signals xt, which is equivalent

to conditional on wt. Since wt is serially uncorrelated, the best forecast of wi for i > t is zero.

Note that ρyx(L)B′(L−1)−1 contains negative powers of L and the best forecast of wi for i > t

is zero, the optimal prediction for yt is simply

E[yt|xt] =E[yt|wt]

=[ρyx(L)B′(L−1)−1]+V
−1wt,

=[ρyx(L)B′(L−1)−1]+V
−1B(L)−1xt,

=[ρyx(L)B′(L−1)−1]+V
−1B(L)−1M(L)st.

Recall that B(L) is invertible, so B(L)−1 contains only positive powers of L.

A.2.5 Proof of Lemma 2.3.2

Proof. By the Canonical Factorization Theorem, it follows that the inverse of B(z) is given by

B(z)−1 =In −H[Ir − (F − FKH)z]−1FKz

=
In det[Ir − (F − FKH)z]−HAdj[Ir − (F − FKH)z]FKz

det[Ir − (F − FKH)z]

=
B̂(z)

Πu
k=1(1− λkz)

(A.5)



160

where B̂(z) is a matrix and the elements are all polynomials in z with finite degree, u is the

degree of det[Ir − (F − FKH)z], and {λk}uk=1 are non-zero eigenvalues of F − FKH. To see

why this is true, note that if λk is the eigenvalue of F − FKH, it satisfies

det[λkIr − (F − FKH)] = 0

which implies

det

[
Ir − (F − FKH)

1

λk

]
= 0

That is, 1
λi

is the root of the determinant of Ir − (F − FKH)z. Reversely, the roots of Ir −
(F − FKH)z must be the reciprocals of the non-zero eigenvalues of F − FKH. In addition,

Theorem 2.3.4 guarantees all of these eigenvalues of F − FKH lie inside the unit circle.

Meanwhile, we have

B(z) = In +H[Ir − Fz]−1FKz,

and

B(z)−1 =

[
In +H[Ir − Fz]−1FKz

]−1

=

[
In det[Ir − Fz]−HAdj[Ir − Fz]FKz

det[Ir − Fz]

]−1

= det[Ir − Fz]
[
In det[Ir − Fz]−HAdj[Ir − Fz]FKz

]−1

Note that equation (A.5) has to be satisfied at the same time. As a result, there exists a

matrix Ĉ(z) such that the elements of it are all finite polynomials in z, and

B(z)−1 = det[Ir − Fz]
Ĉ(z)

Πu
k=1(1− λkz)

. (A.6)

The roots of det[Ir − Fz], which are the inverse of the eigenvalues of F , are different from

{λk}uk=1, which are the inverse of the eigenvalues of F − FKH. By construction, the degree of

Πu
k=1(1− λkz) is larger than the degree of det[Ir − Fz]Ĉ(z).

By Lemma 2.3.1,

xt = M(L)st = HZt = H(Ir − FL)−1st (A.7)

Combining equation (A.6) and (A.7) leads to

B(z)−1M(z) = det[Ir − Fz]
Ĉ(z)

Πu
k=1(1− λkz)

H(Ir − Fz)−1

= det[Ir − Fz]
Ĉ(z)

Πu
k=1(1− λkz)

H
Adj[Ir − Fz]
det[Ir − Fz]

=
Ĉ(z)HAdj[Ir − Fz]

Πu
k=1(1− λkz)

.
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Here, the numerator of B(z)−1M(z) is a finite polynomial in z, and the degree of det[Ir − Fz]
is larger than the degree of Adj[Ir − Fz]. Therefore,

M ′(z−1)B′(z−1)−1 =

(
Ĉ(z−1)HAdj[Ir − Fz−1]

)
Πu
k=1(1− λkz−1)

′

=

(
zuĈ(z−1)HAdj[Ir − Fz−1]

)
Πu
k=1(z − λk)

′

=
G(z)

Πu
k=1(z − λk)

,

where G(z) is a polynomial in z because the degree of Ĉ(z)HAdj[Ir − Fz] is less than u.

A.2.6 Proof of Proposition 2.3.1

Proof. By the Wiener-Hopf Theorem, the prediction formula is

E
[
yt | xt

]
=

[
ψ(L)M ′(L−1)B′(L−1)−1

]
+

V −1B(L)−1xt

We need to obtain the formula for

[
ψ(L)M ′(L−1)B′(L−1)−1

]
+

=

m∑
i=1


1

Πuk=1(L−λk)ψi(L)Gi1(L)

...
1

Πuk=1(L−λk)ψi(L)Gin(L)


′

+

(A.8)

Suppose g(z) is a rational function of z that does not contains negative powers of z in

expansion, then[
g(z)

(z − λ1) · · · (z − λu)

]
+

=
g(z)

(z − λ1) · · · (z − λu)
−

u∑
k=1

g(λk)

(z − λk)Πτ 6=k(λk − λτ )

It follows that

[
ψ(L)M ′(L−1)B′(L−1)−1

]
+

=

m∑
i=1


1

Πuk=1(L−λk)ψi(L)Gi1(L)−
∑u
k=1

ψi(λk)Gi1(λk)
(L−λk)Πτ 6=k(λk−λτ )

...
1

Πuk=1(L−λk)ψi(L)Gin(L)−
∑u
k=1

ψi(λk)Gin(λk)
(L−λk)Πτ 6=k(λk−λτ )


′

= ψ(L)M ′(L−1)B′(L−1)−1 −
m∑
i=1


∑u
k=1

ψi(λk)Gi1(λk)
(L−λk)Πτ 6=k(λk−λτ )

...∑u
k=1

ψi(λk)Gin(λk)
(L−λk)Πτ 6=k(λk−λτ )


′
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Also note that if g(z) = [f(z)]+, then for j = {1, 2, . . .}

[z−jf(z)]
+

=

[
z−j [g(z) + f(z)− g(z)]

]
+

=[z−jg(z)]
+

+

[
z−j [f(z)− g(z)]

]
+

=z−j

(
g(z)−

j−1∑
p=0

p! zp[g(z)]
(p)
0

)

where [g(z)]
(p)
0 denotes p-th order derivative evaluated at 0. Applying this formula, we have the

desired formula.
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A.2.7 Proof of Proposition 2.3.2

Proof. By Proposition 2.3.1, the system (2.24) can be written as


φ(L)

(∑p
j=−q

∑r
i=1 C

y,j
1,i AiL

j
)
xt

.

.

.

φ(L)
(∑p

j=−q
∑r
i=1 C

y,j
r,i AiL

j
)
xt

 +


φ(L)

(∑p
j=−q

∑v
i=1 C

f,j
1,i fi(L)LjM′(L−1)ρxx(L)−1

)
xt

.

.

.

φ(L)
(∑p

j=−q
∑v
i=1 C

f,j
r,i fi(L)LjM′(L−1)ρxx(L)−1

)
xt



+


∑p
j=−q C

g,j
1 g(L)LjM′(L−1)ρxx(L)−1xt

.

.

.∑p
j=−q C

g,j
r g(L)LjM′(L−1)ρxx(L)−1xt



=



∑u
k=1

φ(λk)
(∑p

j=−q
∑v
i=1 λ

j
k
C
f,j
1,i

fi(λk)G(λk)V−1B(L)−1
)

(L−λk)Πτ 6=k(λk−λτ )
xt

.

.

.∑u
k=1

φ(λk)
(∑p

j=−q
∑v
i=1 λ

j
k
C
f,j
r,i

fi(λk)G(λk)V−1B(L)−1
)

(L−λk)Πτ 6=k(λk−λτ )
xt


+



∑u
k=1

∑p
j=−q λ

j
k
C
g,j
1 g(λk)G(λk)V−1B(L)−1

(L−λk)Πτ 6=k(λk−λτ )
xt

.

.

.∑u
k=1

∑p
j=−q λ

j
k
C
g,j
r g(λk)G(λk)V−1B(L)−1

(L−λk)Πτ 6=k(λk−λτ )
xt



+



∑q
j=1

∑j−1
`=0

`!L`−j

∑ri=1 φ(L)C
y,−j
1,i

AiM(L)G(L)

Πu
k=1

(L−λk)
−
∑u
k=1

∑r
i=1 φ(λk)C

y,−j
1,i

AiM(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

(`)

0

V−1B(L)−1xt

.

.

.

∑q
j=1

∑j−1
`=0

`!L`−j

∑ri=1 φ(L)C
y,−j
r,i

AiM(L)G(L)

Πu
k=1

(L−λk)
−
∑u
k=1

∑r
i=1 φ(λk)C

y,−j
r,i

AiM(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

(`)

0

V−1B(L)−1xt



+



∑q
j=1

∑j−1
`=0

`!L`−j

∑vi=1 φ(L)C
f,−j
1,i

fi(L)G(L)

Πu
k=1

(L−λk)
−
∑u
k=1

∑r
i=1 φ(λk)C

y,−j
1,i

fi(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

(`)

0

V−1B(L)−1xt

.

.

.

∑q
j=1

∑j−1
`=0

`!L`−j

∑vi=1 φ(L)C
f,−j
r,i

fi(L)G(L)

Πu
k=1

(L−λk)
−
∑u
k=1

∑r
i=1 φ(λk)C

f,−j
r,i

fi(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

(`)

0

V−1B(L)−1xt



+



∑q
j=1

∑j−1
`=0

`!L`−j

Cg,−j1,i
g(L)G(L)

Πu
k=1

(L−λk)
−
∑u
k=1

C
g,−j
1,i

g(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

(`)

0

V−1B(L)−1xt

.

.

.

∑q
j=1

∑j−1
`=0

`!L`−j

Cg,−jr,i
g(L)G(L)

Πu
k=1

(L−λk)
−
∑u
k=1

C
g,−j
r,i

g(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

(`)

0

V−1B(L)−1xt


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Rearranging the system of equations above to isolate φ(L) leads to the following more compact

way 
φ(L)

∑p
j=−q L

j
[∑r

i=1 C
y,j
1,i Ai +

∑v
i=1 C

f,j
1,i fi(L)M ′(L−1)ρxx(L)−1

]
xt

...

φ(L)
∑p
j=−q L

j
[∑r

i=1 C
y,j
r,i Ai +

∑v
i=1 C

f,j
r,i fi(L)M ′(L−1)ρxx(L)−1

]
xt



= −


∑p
j=−q C

g,j
1 g(L)LjM ′(L−1)ρxx(L)−1xt

...∑p
j=−q C

g,j
r g(L)LjM ′(L−1)ρxx(L)−1xt



+


∑u
k=1

∑p
j=−q λ

j
k

[∑v
i=1 C

f,j
1,i φ(λk)fi(λk)+

∑v2
i=1 C

g,j
1 g(λk)

]
G(λk)V−1B(L)−1

(L−λk)Πτ 6=k(λk−λτ )
xt

...∑u
k=1

∑p
j=−q λ

j
k

[∑v
i=1 C

f,j
r,i φ(λk)fi(λk)+

∑v2
i=1 C

g,j
r g(λk)

]
G(λk)V−1B(L)−1

(L−λk)Πτ 6=k(λk−λτ )
xt



+



∑q
j=1

∑j−1
`=0 `!L

`−j
([∑r

i=1 φ(L)C
y,−j
1,i AiM(L)G(L)

Πu
k=1

(L−λk)
−
∑u
k=1

∑r
i=1 φ(λk)C

y,−j
1,i AiM(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[∑v
i=1 φ(L)C

f,−j
1,i fi(L)G(L)

Πu
k=1

(L−λk)
−
∑u
k=1

∑r
i=1 φ(λk)C

y,−j
1,i fi(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[
C
g,−j
1,i g(L)G(L)

Πu
k=1

(L−λk)
−
∑u
k=1

C
g,−j
1,i g(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

)
V −1B(L)−1xt

...∑q
j=1

∑j−1
`=0 `!L

`−j
([∑r

i=1 φ(L)C
y,−j
r,i AiM(L)G(L)

Πu
k=1

(L−λk)
−
∑u
k=1

∑r
i=1 φ(λk)C

y,−j
r,i AiM(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[∑v
i=1 φ(L)C

f,−j
r,i fi(L)G(L)

Πu
k=1

(L−λk)
−
∑u
k=1

∑r
i=1 φ(λk)C

y,−j
r,i fi(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[
C
g,−j
r,i g(L)G(L)

Πu
k=1

(L−λk)
−
∑u
k=1

C
g,−j
r,i g(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

)
V −1B(L)−1xt


This has to be true for all the possible realizations of {xt}. By Riesz-Fischer Theorem, it is

equivalent to the following system of functional equations

T (z)φ(z) = D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]

where T (z) and D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
are defined in equation (2.37) and (2.38), re-

spectively.

By the Riesz-Fisher Theorem, there exists φ(L) that solves model (2.24) if and only if there

exists a vector analytic function φ(z) that solves equations (2.36).
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A.2.8 Proof of Lemma 2.3.3

Proof. Note D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
is linear in constants {{φ(λk)}uk=1, {φ(j)(0)}qj=0}.

As a result, we can arrange D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
to obtain

D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
= D̂1(z)

[
φ(λ1) . . . φ(λu) φ0(0) . . . φq(0)

]′
+D2(z)

Let Nc = wu+w(q+1) denote the length of the vector
[
φ(λ1) . . . φ(λu) φ0(0) . . . φq(0)

]′
.

Therefore, D̂1(z) is a w ×Nc matrix. Let N1 denote the column rank of D̂1(z). It follows that

there exists N1 vectors from D̂1(z) that consists a basis of D̂1(z). Denote these N1 vectors as

D1(z). Therefore, there exists a constant matrix Λ of dimension N1 ×Nc, such that

D̂1(z) = D1(z)Λ
[
φ(λ1) . . . φ(λu) φ0(0) . . . φq(0)

]′
Let ψ ≡ Λ

[
φ(λ1) . . . φ(λu) φ0(0) . . . φq(0)

]′
completes the proof.

A.2.9 Proof of Theorem 5

Proof. By Cramer’s rule, the i-th element of φ(z) that solves equation (2.36) is given by

φi(z) =

det

[
T1(z) . . . Ti−1(z) D1(z)ψ +D2(z) Ti+1(z) . . . . . . Tw(z)

]
det

[
T (z)

]
By Proposition 2.3.2, Proposition 2.3.1, and the assumption on model (2.24), the functions in

T (z), D1(z), and D2(z) are all rational functions with finite degree. As a result, whether φi(z)

is an analytic function or not is equivalent to whether φi(z) has poles within the unit circle or

not.

In principle, the poles of φi(z) are either the roots of det[T (z)], i.e., {ϑi, . . . , ϑN2}, or the

poles of

φ̂i(z) ≡
[
T1(z) . . . Ti−1(z) D1(z)ψ +D2(z) Ti+1(z) . . . . . . Tw(z)

]
. (A.9)

By construction, the only poles of φ̂i(z) are {λk}uk=1 and 0. However, {λk}uk=1 and 0 can-

not be poles of φi(z) because these poles are generated from forming expectations using the

Wiener-Hopf prediction formula, and by Proposition 2.3.1, these poles are already eliminated

by

{
{φ(λk)}uk=1, {φ(j)(0)

}
.
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Consider the inside roots of det[T (z)]. For any ϑi, it is always possible to find `i such that

T`i(ϑi) is a linear combination of

{
T1(ϑi), . . . , T`i−1(ϑi), T`i+1(ϑi), . . . , Tw(ϑi)

}
. That is

T`i(ϑi) =
∑
k 6=`i

ϕikTk(ϑi) (A.10)

Suppose

det
[
D1(ϑ1)ψ +D2(ϑ1) T1(ϑi) . . . T`i−1(ϑi) T`i+1(ϑi) . . . Tw(ϑi)

]
= 0 (A.11)

Then for any j ∈ {1, . . . , `i − 1, `i + 1, . . . , w}, we have

det

[
T1(ϑi) . . .

j−th column︷ ︸︸ ︷
D1(ϑi)ψ +D2(ϑi) . . .

`i−th column︷ ︸︸ ︷
T`i(ϑi) . . . Tw(ϑi)

]

=
∑
k 6=`i

det

[
T1(ϑi) . . .

j−th column︷ ︸︸ ︷
D1(ϑi)ψ +D2(ϑi) . . .

`i−th column︷ ︸︸ ︷
ϕikTk(ϑi) . . . Tw(ϑi)

]
= 0.

This implies that if equation (A.11) holds, for j ∈ {1, . . . , w}, ϑi is the root of the determinant

det

[
T1(ϑi) . . .

j

D1(ϑ1)ψ +D2(ϑ1) . . . Tw(ϑi)

]
Consequently, ϑi cannot be a pole of φ(z). Now consider the following problem,

U1ψ + U2 ≡
det

[
D1(ϑ1)ψ +D2(ϑ1) T1(ϑ1) . . . T`1−1(ϑ1) T`1+1(ϑ1) . . . Tw(ϑ1)

]
...

... . . .
...

... . . .
...

det

[
D1(ϑN2

)ψ +D2(ϑN2
) T1(ϑNN2

) . . . T`N2
−1(ϑN2

) T`N2
+1(ϑN2

) . . . Tw(ϑN2
)

]


If there exists ψ such that

U1ψ + U2 = 0 (A.12)

Then {ϑi}N2
i=1 are not poles of φ(z).

1. If N1 < N2, then there are more equations than unknowns. There does not exist ψ such

that equation (A.2.9) holds. As a result, there is no solution to (2.36).

2. If N1 = N2 = rank(U2), then there exists a unique ψ that solves (A.2.9). Therefore,

{ϑi}N2
i=1 are not poles of φ(z).

3. If N1 > N2 or N1 = N2 > rank(U2), there are infinite solutions to (A.2.9). As a result,

there are infinite number of analytic functions φ(z) that solves (2.36).
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A.2.10 Proof of Theorem 4

Proof. By Theorem 5, if there exists a solution to (2.24), for i ∈ {1, . . . , w}, φi(z) is a rational

function with finite degree. Therefore, yt = h(L)xt can be written as (2.25). By Lemma 2.3.1,

there exists a state space representation of yt = h(L)xt, which is given by

zt+1 = Fzt +Qxt (A.13)

yt = HQxt +HFzt (A.14)

where F,Q and H are given by (A.1), (A.3), and (A.4) respectively. Define

Γx = HQ (A.15)

Γz = HF (A.16)

Υx = Q (A.17)

Υz = F, (A.18)

and we obtain the finite-state representation. Note that the eigenvalues of Γz all lie inside the

unit circle. The law of motion of zt

zt+1 = Υxxt + Υzzt (A.19)

can be written as

zt+1 = (I −ΥzL)−1Υxxt (A.20)

Therefore, given {xt}−1
t=−∞,

z0 = (I −ΥzL)−1Υxx−1 (A.21)

A.2.11 More on solution in innovation form

We follow the same procedure as the signal form to define the solution in innovation form. Here,

we use similar notations as the signal form to make them comparable to each other, but it should

be clear that they may stand for different objects.

Choice variable The policy rule we want to solve is yt = [yit, . . . , yrt]
′, where

yt =


y1t

...

yrt

 =


d11(L) . . . h1m(L)

... . . .
...

hr1(L) . . . hrm(L)



s1t

...

smt

 = d(L)st. (A.22)

We assume that each element in d(L) has an infinite MA representation. More compactly, define

φ(L) ≡
[
d11(L) . . . d1m(L) . . . dr1(L) . . . drm(L)

]
. (A.23)
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Endogenous variables related to other agents’ actions Let ft = [fit, . . . , fvt]
′

denote the endogenous variables chosen by other agents. They are related to the policy rule

φ(L) and the driving shocks st in the following way

fit = φ(L)f i(L)st = φ(L)


f i11(L) . . . f i1m(L)

... . . .
...

f iw1(L) . . . f iwm(L)



s1t

...

smt

 (A.24)

Here, each fi(L) is a w ×m matrix in the lag operator L. We assume that all the elements in

fi(L) are finite rational functions in L and do not contain negative powers of L in expansion.

Exogenous variables This part is the same as the signal form exposition.

General model This part is the same as signal form.

Definition A.2.1. A solution to model (2.24) (or an equilibrium) in innovation form is a vector

of lag polynomials φ(L) such that

1. For each i ∈ {1, . . . , w}, φi(L) has an infinite MA representation

φi(L) =

∞∑
k=0

φikL
k,

with
∑∞
k=0 φik <∞.

2. For all possible realizations of {st},

yt = φ(L)
[
A1 . . . Ar

]′
xt = d(L)st

satisfies equation (2.24).

A.2.12 Proof of Theorem 6

Proof. Suppose there exists a solution in signal form

yt = h(L)xt

By the definition of the signal process (2.17), it follows that

yt = h(L)M(L)st.

Because yt = h(L)xt satisfies model (2.24), yt = h(L)M(L)st also satisfies model (2.24). Re-

versely, suppose there exists a solution in innovation form

yt = d(L)st.
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We can rearrange model (2.24) such that

yt = −

 p∑
j=0

Cy,jLj

−1

 p∑
j=0

E
[
Cf,jLjft + Cg,jLjgt

∣∣∣∣xt]+

q∑
j=1

E
[
Cy,−jL−jyt + Cf,−jL−jft + Cg,−jL−jgt

∣∣∣∣xt]


(A.25)

Note that
(∑p

j=0 C
y,jLj

)
has to be invertible. Otherwise, yt is not co-variance stationary, which

contradicts to the assumption that yt = d(L)st is a solution to the model. Therefore, {yt} ⊂ Hxt
and {d(L)st} ⊂ Hxt . By Proposition 2.3.1, it follows that

yt = d(L)st = E[d(L)st|xt] =

(
d(L)M ′(L−1)ρxx(L)−1 −

u∑
k=1

d(λk)λkG(λk)V −1B(L)−1

(L− λk)Πτ 6=k(λk − λτ )

)
xt

Defining

h(L) = d(L)M ′(L−1)ρxx(L)−1 −
u∑
k=1

d(λk)λkG(λk)V −1B(L)−1

(L− λk)Πτ 6=k(λk − λτ )

gives us the signal form solution.

A.2.13 Proof of Proposition 2.4.1

Proof. Consider the state-space representation of the signal process. The state equation is

ξt = ρξt−1 + ηt

The observation equation is

xit =

[
x1
it

x2
it

]
=

[
1

1

]
ξt +

[
εit

uit

]
.

By the Canonical Factorization Theorem, the Wold representation is

B(z)−1 =
1

1− λz

[
1− τ2ρ+λτ1

τ1+τ2
z τ1(λ−ρ)

τ1+τ2
z

τ2(λ−ρ)
τ1+τ2

z 1− τ1ρ+λτ2
τ1+τ2

z

]
,

V −1 =
1

ρ(τ1 + τ2)

[
τ1ρ+λτ2

τ1
λ− ρ

λ− ρ τ2ρ+λτ1
τ2

]
,

where τ1 = σ2
ε and τ2 = σ2

u, and

λ =
1

2

τ1 + τ2
ρτ1τ2

+
1

ρ
+ ρ−

√(
τ1 + τ2
ρτ1τ2

+
1

ρ
+ ρ

)2

− 4

 .
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Assuming yit = h1(L)x1
it + h2(L)x2

it, it follows that

yt = h1(L)ξt + h2(L)ξt.

By Proposition 2.3.1, we have

Eit[ξt] =

[
1

1−λL
λ

(1−ρλ)ρτ1
1

1−λL
λ

(1−ρλ)ρτ2

]′ [
x1
it

x2
it

]
,

and

Eit[yt] =

[
λ
ρτ1

L
(1−λL)(L−λ)h1(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)
λ
ρτ2

L
(1−λL)(L−λ)h1(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)

]′ [
x1
it

x2
it

]

+

[
λ
ρτ1

L
(1−λL)(L−λ)h2(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)
λ
ρτ2

L
(1−λL)(L−λ)h2(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)

]′ [
x1
it

x2
it

]
.

The model requires that

yit = Eit[ξt] + αEit[yt],

which leads to

h1(L)x1
it + h2(L)x2

it

=

[
1

1−λL
λ

(1−ρλ)ρτ1
1

1−λL
λ

(1−ρλ)ρτ2

]′ [
x1
it

x2
it

]

+ α

[
λ
ρτ1

L
(1−λL)(L−λ)h1(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)
λ
ρτ2

L
(1−λL)(L−λ)h1(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)

]′ [
x1
it

x2
it

]

+ α

[
λ
ρτ1

L
(1−λL)(L−λ)h2(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)
λ
ρτ2

L
(1−λL)(L−λ)h2(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)

]′ [
x1
it

x2
it

]

By the Riesz-Fisher Theorem, we can transform it into the following problem

C(z)

[
h1(z)

h2(z)

]
= d(z, h(λ))

where h(λ) = h1(λ) + h2(λ), and

C(z) =


1− α λ

ρτ1
z

(1−λz)(z−λ) −α λ
ρτ1

z
(1−λz)(z−λ)

−α λ
ρτ2

z
(1−λz)(z−λ) 1− α λ

ρτ2
z

(1−λz)(z−λ)

 ,

d(z, h(λ)) =

[
d1(z, h(λ))

d2(z, h(λ))

]
=

[
1

1−λz
λ

(1−ρλ)ρτ1
− α λ2

ρτ1
1

1−ρλ
1−ρz

(1−λz)(z−λ)h(λ)
1

1−λz
λ

(1−ρλ)ρτ2
− α λ2

ρτ2
1

1−ρλ
1−ρz

(1−λz)(z−λ)h(λ)

]
.
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Note that

detC(z) =
−λ
[
z2 −

(
1
λ + λ− α(τ1+τ2)

ρτ1τ2

)
z + 1

]
(1− λz)(z − λ)

=
λ
ϑ (z − ϑ)(1− ϑz)
(1− λz)(z − λ)

The inside root of the determinant of C(z) is

ϑ =

(
1
ρ + ρ+ (1−α)(τ1+τ2)

ρτ1τ2

)
−
√(

1
ρ + ρ+ (1−α)(τ1+τ2)

ρτ1τ2

)2

− 4

2

Using Cramer’s rule,

h1(z) =

det


d1(z) −α λ

ρτ1
z

(1−λz)(z−λ)

d2(z) 1− α λ
ρτ2

z
(1−λz)(z−λ)


detC(z)

.

The numerator is

det


d1(z) −α λ

ρτ1
z

(1−λz)(z−λ)

d2(z) 1− α λ
ρτ2

z
(1−λz)(z−λ)


=

1

(1− λz)(z − λ)

{
λ(z − λ)

(1− ρλ)ρτ1
− α λ

2

ρτ1

1

1− ρλ
(1− ρz)h(λ)

}
.

To make sure h1(z) does not have poles in the unit circle, we need to choose h(λ) to remove the

pole at ϑ, which requires

h(λ) =
ϑ− λ

αλ(1− ρϑ)
.

Therefore,

h1(z) =
ϑ

ρτ1(1− ρϑ)

1

1− ϑz
,

and similarly,

h2(z) =
ϑ

ρτ2(1− ρϑ)

1

1− ϑz

A.2.14 Proof of Proposition 2.4.3

Proof. The signal process and the Wold representation is the same as the proof A.2.13. The

difference is when assuming yit = h1(L)x1
it + h2(L)x2

it, the aggregate yt becomes

yt = (h1(L) + h2(L))ξt + h1(L)εt.
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By Proposition 2.3.1, we have

Eit[ξt] =

[
1

1−λL
λ

(1−ρλ)ρτ1
1

1−λL
λ

(1−ρλ)ρτ2

]′ [
x1
it

x2
it

]
,

and

Eit[yt] =

[
λ
ρτ1

L
(1−λL)(L−λ)h1(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)
λ
ρτ2

L
(1−λL)(L−λ)h1(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)

]′ [
x1
it

x2
it

]

+

[
λ
ρτ1

L
(1−λL)(L−λ)h2(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)
λ
ρτ2

L
(1−λL)(L−λ)h2(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)

]′ [
x1
it

x2
it

]

+

 τ1
τ1+τ2

h1(L) +
τ2
λ
ρ (L−ρ)(1−ρL)

(τ1+τ2)(1−λL)(L−λ)h1(L)− τ2
λ
ρ (λ−ρ)(1−ρL)

(τ1+τ2)(1−λL)(L−λ)h1(λ)

− τ1
τ1+τ2

h1(L) +
τ1
λ
ρ (L−ρ)(1−ρL)

(τ1+τ2)(1−λL)(L−λ)h1(L)− τ1
λ
ρ (λ−ρ)(1−ρL)

(τ1+τ2)(1−λL)(L−λ)h1(λ)

′ [x1
it

x2
it

]

The model requires that

yit = Eit[ξt] + αEit[yt],

which leads to the following system of analytic functions

C(z)

[
h1(z)

h2(z)

]
= d(z, h(λ))

where h(λ) = h2(λ), and

C(z) =


1− α λ

ρτ1
z

(1−λz)(z−λ) − α
(

τ1
τ1+τ2

+
τ2
λ
ρ (z−ρ)(1−ρz)

(τ1+τ2)(1−λz)(z−λ)

)
−α λ

ρτ1
z

(1−λz)(z−λ)

−α λ
ρτ2

z
(1−λz)(z−λ) − α

(
− τ1
τ1+τ2

+
τ1
λ
ρ (z−ρ)(1−ρz)

(τ1+τ2)(1−λz)(z−λ)

)
1− α λ

ρτ2
z

(1−λz)(z−λ)

 ,

d(z, h(λ)) =

[
d1(z, h(λ))

d2(z, h(λ))

]
=

[
1

1−λz
λ

(1−ρλ)ρτ1
− α λ2

ρτ1
1

1−ρλ
1−ρz

(1−λz)(z−λ)h(λ)
1

1−λz
λ

(1−ρλ)ρτ2
− α λ2

ρτ2
1

1−ρλ
1−ρz

(1−λz)(z−λ)h(λ)

]
.

Note that

detC(z) =
(1− α)λ(z − ϑ)(1− ϑz)

ϑ(1− λz)(z − λ)

The inside root of the determinant of C(z) is

ϑ =

(
1
ρ + ρ+ (1−α)τ1+τ2

ρτ1τ2

)
−
√(

1
ρ + ρ+ (1−α)τ1+τ2

ρτ1τ2

)2

− 4

2
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Using Cramer’s rule,

h1(z) =

det


d1(z) −α λ

ρτ1
z

(1−λz)(z−λ)

d2(z) 1− α λ
ρτ2

z
(1−λz)(z−λ)


detC(z)

.

The numerator is

det


d1(z) −α λ

ρτ1
z

(1−λz)(z−λ)

d2(z) 1− α λ
ρτ2

z
(1−λz)(z−λ)


=

1

(1− λz)(z − λ)

{
λ(z − λ)

(1− ρλ)ρτ1
− α λ

2

ρτ1

1

1− ρλ
(1− ρz)h(λ)

}
.

To make sure h1(z) does not have poles in the unit circle, we need to choose h(λ) to remove the

pole at ϑ, which requires

h(λ) =
ϑ− λ

αλ(1− ρϑ)
.

Therefore,

h1(z) =
ϑ

ρτ1(1− α)(1− ρϑ)

1

1− ϑz
,

and similarly,

h2(z) =
ϑ

ρτ1(1− ρϑ)

1

1− ϑz

A.2.15 Proof of Proposition 2.5.1

Proof. Let φ = {φ1, φ2, φ3} ∈ `2 × `2 × `2. The norm of φ can de defined as

‖φ‖ =

√√√√σ2
ε

∞∑
k=0

φ2
1k + σ2

u

∞∑
k=0

φ2
2k + σ2

η

∞∑
k=0

φ2
3k.

Given φ, the signal process is well defined

x1
it = ξt + εit,

x2
it = φ3(L)ηt + uit.

The individual action is then given by

yit = φ1(L)εit + φ2(L)uit + φ3(L)ηt,
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and the optimal linear forecast is given by

Eit[yt] = φ̂1(L)εit + φ̂2(L)uit + φ̂3(L)ηt.

If yit = Eit[ξt] + αEit[yt], then φ and Φ consist an equilibrium.

Define the operator T : `2 × `2 × `2 → `2 × `2 × `2 as

T (φ) = T ({φ1, φ2, φ3}) = {αφ̂1, αφ̂2, αφ̂3}

The equilibrium is a fixed point of the operator T . The proof of the contraction mapping is

the same as the proof of Proposition 2.2.1. The modification is that the expectation will be

conditional on the signal process that depends on φ.

A.2.16 Proof of Theorem 7

Proof. Here, we only layout the structure of the proof, and the details can be found in the online

appendix.

1. Assume the law of aggregate yt has a finite ARMA representation in condition 1 of defi-

nition 2.5.1.

Φ(L) = σy
Πq
k=1(1 + θkL)

Πp
k=1(1− ρkL)

, (A.26)

where σy is a constant.

2. Solve agents optimal policy φ = {φ1, φ2, φ3} in a partial equilibrium. The partial equilib-

rium consists of two conditions

• Each individual conduct inference conditional on the following signal process

x1
it = ξt + εit

x2
it = yt + uit

where

ξt =
Πn
k=1(1 + κkL)

Πm
k=1(1− ζkL)

ηt

yt = Φ(L)ηt

• The policy rule φ satisfies that

yit = Eit[ξt] + α Eit
[∫

yjt

]
= Eit[ξt] + α Eit [φ3(L)ηt] ,

where

yit = φ1(L)εit + φ2(L)uit + φ3(L)ηt.
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Note that in this partial equilibrium, agents reply on exogenous information, but their

optimal policy rule does depend on others’ action. Also note that we do not require∫
yjt = φ3(L)ηt = Φ(L)ηt. Solving this partial equilibrium is similar to the problem in

Section 2.3.

3. Show Φ(L) cannot be the same as φ3(L). That is, condition 3 of definition 2.5.1 cannot

be satisfied.

A.2.17 Proof of Proposition 2.6.1

Proof. Note that x1
m(i,t)t = ai + εm(i,t)t, the signal process can be rewritten as

x1
it = am(i,t) + εit

x̂2
it = x2

m(i,t)t − ai = ξt + εm(i,t)t + uit,

ξt = ρξt−1 + ηt.

The two signals are independent of each other, and we can find the Wold representation for each

of them separately. The canonical representation for x̂2
it is

B(z) =
1− λz
1− ρz

,

V −1 = v =
λ

ρ(σ2
ε + σ2

u)
,

where

λ =
1

2

1

ρ
+ ρ+

1

ρ(σ2
ε + σ2

u)
−

√(
1

ρ
+ ρ+

1

ρ(σ2
ε + σ2

u)

)2

− 4

 .
The prediction of ym(i,t)t is

Eit[ym(i,t)t] = Eit[haam(i,t) + h1(L)(am(m(i,t),t) + εm(i,t)t) + h2(L)(u(m(i,t)t) + εm(m(i,t),t) + ξt)],

where

Eit[am(i,t)] =
σ2
a

σ2
a + σ2

ε

x1
it

Eit[am(m(i,τ),τ)] = ai if τ = t, otherwise 0

Eit[εm(i,τ)τ ] =
σ2
ε v(1− ρL)

1− λL
x̂2
it if τ = t, otherwise 0

Eit[um(i,t)t] = 0

Eit[εm(m(i,τ),τ)] =
σ2
ε

σ2
a + σ2

ε

x1
it if τ = t, otherwise 0

Eit[h2(L)ξt] =

(
vLh2(L)

(L− λ)(1− λL)
− vλ(1− ρL)h2(λ))

(1− ρλ)(L− λ)(1− λL)

)
x̂2
it.
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The system is

haai + h1(L)x1
it + h2(L)x̂2

it

=ai + α

[
ha

σ2
a

σ2
a + σ2

ε

x1
it + h1(0)ai + h1(0)

σ2
ε v(1− ρL)

1− λL
x̂2
it

+

(
vLh2(L)

(L− λ)(1− λL)
− vλ(1− ρL)h2(λ))

(1− ρλ)(L− λ)(1− λL)

)
x̂2
it + h2(0)

σ2
ε

σ2
a + σ2

ε

x1
it

]
,

which leads to

ha = 1 + αh1(0)

h1(0) = αha
σ2
a

σ2
a + σ2

ε

+ α1h2(0)
σ2

1

σ2
a + σ2

1

h2(z) = αh1(0)
σ2
ε v(1− ρz)

1− λz
+ α

(
vzh2(z)

(z − λ)(1− λz)
− vλ(1− ρz)h2(λ)

(1− ρλ)(z − λ)(1− λz)

)
.

The third equation can be written as

−λ(z − ϑ)

(
z − 1

ϑ

)
h2(z) = α1h1σ

2
1v(1− ρz)(z − λ)− α

σ2
ηvλ(1− ρz)h2(λ)

(1− ρλ)

where

ϑ =
1

2

1

ρ
+ ρ+

1− α
ρ(σ2

ε + σ2
u)
−

√(
1

ρ
+ ρ+

1− α
ρ(σ2

ε + σ2
u)

)2

− 4

 . (A.27)

Use h2(λ) to removes the inside root ϑ, we have

h1(z) = h1(0) =
α

1− α2 +
σ2
ε

σ2
a

(
1− α2 ϑ

ρ
σ2
ε

σ2
ε+σ2

u

)
ha = 1 + αh1(0)

h2(z) =
αϑh1(0)σ2

ε

ρ(σ2
ε + σ2

u)

1− ρz
1− ϑz
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A.3 Additional Materials for Chapter 3

A.3.1 Simplification of the Household’s Problem

The original problem for households is

V (S, b, n) = max
cN,i,cT ,IN ,d

u(cA, d, n) + β E {V (S′, b′, n′) | θ} , (A.28)

subject to ∫ I

0

pi(S) cN,i di+ cT + b′, = (1 + r)b+ w(S)n+ πN (S) + πT (S), (A.29)

I = Ψd[Qg(S)] d, (A.30)

n′ = (1− λ)n+ Φw[Qe(S)](1− n), (A.31)

S′ = G(S). (A.32)

This problem involves choosing how much to consume of each variety, cN,i. Instead, we can

solve a two-stage problem. In the first stage, we choose the number of varieties, the expenditures

in nontradable consumption, and the expenditures in tradable consumption. In the second stage,

we solve how much cN.i to purchase of each variety i given the number of varieties I and the

total expenditure Z of nontradable consumption. We can rewrite the second stage as written as

max
ci

[∫ I

0

c
1
ρ

i

]ρ
, (A.33)

subject to ∫ I

0

picN,i ≤ Z. (A.34)

The first-order condition gives

cN,i = cN,j

(
pi
pj

) ρ
1−ρ

. (A.35)

Define the consumption bundle cN and the price index p as

cN =

[
1

I

∫ I

0

c
1
ρ

N,i

]ρ
, (A.36)

p =

[
1

I

∫ I

0

p
1

1−ρ
i

]1−ρ

. (A.37)

Substituting equation (A.35) into the budget constraint gives

cN.i =

(
pi
p

) ρ
1−ρ Z

pI
. (A.38)
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Combining equation (A.38) and the definition of cN leads to∫ I

0

picN,i = pIcN . (A.39)

It is then straightforward to derive the demand schedule for each variety:

cN,i =

(
pi
p

) ρ
1−ρ

c′N , (A.40)

and we only need to keep track of cN and I in the utility function:[∫ I

0

c
1
ρ

N,i

]ρ
= cN Iρ. (A.41)

Note that under the assumption that search in the goods market is undirected, the price index

p is independent of the number of varieties I. All the derivations above do not rely on the

assumption that all prices for nontradables are equal, even though this is indeed the case in

equilibrium. In the end, we can rewrite the household’s problem as

V (S, b, n) = max
cN ,cT ,IN ,d

u(cA, d, n) + β E {V (S′, b′, n′) | θ} , (A.42)

subject to

cA =
[
ω (cN IρN )

−η
+ (1− ω) c−ηT

]− 1
η

, (A.43)

p(S)cN I + cT + b′ = (1 + r)b+ w(S)n+ πN (S) + πT (S), (A.44)

I = Ψd[Qg(S)] d, (A.45)

n′ = (1− λ)n+ Φw[Qe(S)](1− n), (A.46)

S′ = G(S). (A.47)

A.3.2 Discussion of GHH Preferences

We choose GHH preferences between consumption and the shopping disutility to allow the

number of varieties of nontradable goods to be a normal good. Consider the following simplified

static problem without tradable goods:

max
c,I,d

1

1− σ
(cIρ − d)

1−σ
(A.48)

subject to cI = E, (A.49)

I = dΨd(Q), (A.50)
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where E is total income and the price is normalized to 1. After substituting the constraints into

the objective function and defining A = (Ψd(Q))−1, the original problem can be rewritten as

max
I

EIρ−1 −AI. (A.51)

The first-order condition gives

(ρ− 1)EIρ−2 = A. (A.52)

The solution of the problem is

I∗ = E
1

2−ρ (ρ− 1)
1

2−ρA
−1
2−ρ . (A.53)

Note that I∗ is increasing in E if 2− ρ > 0. Since typical estimates of ρ are between 1 and 1.5,

this condition is not restrictive. The number of varieties is a normal good.

A.3.3 Alternatives to the Baseline Economy

Baseline Economy Minus Goods Market Frictions The first alternative model

economy that we consider has frictions in the labor market but not in the goods market. House-

holds cannot choose their labor. The period utility function for the household is u(c, n) =
c1−σ

1−σ − ςn. Here, the consumers have neither a shopping choice nor a labor choice (no need to

shop, and they work as much as they can). The problem of the household is

V (S, b, n) = max
cN ,cT ,b

u(c, n) + E{βV (S′, b′, n′)|θ}, (A.54)

subject to p(S)cN + cT + b′ = (1 + r)b+ w(S)n+ πN (S) + πT (S), (A.55)

n′ = (1− λ)n+ Φw[Qe(S)](1− n), (A.56)

S′ = G(S), (A.57)

where

[
ω (cN )

η−1
η + (1− ω)c

η−1
η

T

] η
η−1

. Although the problem of the firms in the tradable goods

sector is the same as in the baseline economy, firms in the nontradable goods sector solve

ΩN (S, k, n) = max
pi,i,v

piC(pi, S)− w(S)n− i− vκ+ E
{

ΩN (S′, k′, n′)

1 + r
| θ
}
, (A.58)

subject to C(pci , S) ≤ FN (k, n), (A.59)

k′ = (1− δ)k + i− φN (k, i), (A.60)

n′ = (1− λ)n+ Φf [Qe(S)]v, (A.61)

S′ = G(S). (A.62)



180

Frictionless Economy The frictionless economy we considered is a two-sector small open

economy without frictions in either the labor market or the goods market. Households still value

varieties but do not need to search to find them. Therefore, I = 1 and aggregated nontradable

consumption is cN =

[∫ 1

0
c

1
ρ

N,idi

]ρ
, with the price index defined as p =

[∫ 1

0
p

1
1−ρ
i di

]1−ρ

. House-

holds choose how much labor to supply, firms are able to immediately adjust labor input and

the wage rate clears the market. We assume a standard additively separable utility function

u(c, n) = c1−σ

1−σ − ξn
n1+γ

1+γ . The problem of households is

V (S, b) = max
cN ,cT ,n,b′

u (c, n) + βE{V (S′, b′) | θ}, (A.63)

subject to p(S)cN + cT + b′ = (1 + r)b+ w(S)n+ πN (S) + πT (S), (A.64)

S′ = G(S), (A.65)

where

[
ω (cN )

η−1
η + (1− ω)c

η−1
η

T

] η
η−1

. Unlike in the baseline economy where n evolves exoge-

nously, here n is a choice variable for households.

Firms in the nontradable goods sector solve the following problem:

ΩN (S, k) = max
pi,i,n

piC(pi, S)− w(S)n− i+ E
{

ΩN (S′, k′)

1 + r
| θ
}
, (A.66)

subject to C(pci , S) ≤ FN (k, n), (A.67)

k′ = (1− δ)k + i− φN (k, i), (A.68)

S′ = G(S). (A.69)

Firms in the tradable goods sector solve the following problem:

ΩT (S, k, n−) = max
i,n

FT (k, n)− w(S)nT − iT − φT,n(n, n−) + E
{

ΩT (S′, k′, n)

1 + r

}
,(A.70)

subject to k′ = (1− δ)k + i− φT,k(k, i), (A.71)

S′ = G(S). (A.72)

Frictionless Economy Plus Goods Market Friction This model economy has a

competitive labor market and frictions in the goods market; that is, households need to search for

varieties, but they can choose how much to work. The period utility function for the household
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is u(c, d, n) = 1
1−σ (c− ξdd)

1−σ − ξn n
1+γ

1+γ . The problem of households is

V (S, b, n) = max
cN ,cT ,IN ,d

u(c, d, n) + E{βV (S′, b′, n′)|θ}, (A.73)

subject to p(S)cN I + cT + b′ = (1 + r)b+ w(S)n+ πN (S) + πT (S), (A.74)

IN = dΨd[Qg(S)], (A.75)

n′ = (1− λ)n+ Φw[Qe(S)](1− n), (A.76)

S′ = G(S). (A.77)

where

[
ω (cN Iρ)

η−1
η + (1− ω)c

η−1
η

T

] η
η−1

.

The problem of the firms in the nontradable goods sector is

ΩN (S, k) = max
pi,i,n

Ψf [Qg(s)]piC(pi, S)− w(S)n− i+ E
{

ΩN (S′, k′)

1 + r
| θ
}
, (A.78)

subject to C(pci , S) ≤ FN (k, n), (A.79)

k′ = (1− δ)k + i− φN (k, i), (A.80)

S′ = G(S). (A.81)

The problem of the firms in the tradable goods sector is the same as in the frictionless economy.

Economy with Staggered Wage Contracts Assume that, every period, a fraction

θw of employed workers have the chance to renegotiate their wages with firms and denote the

economy-wide average wage rate by w(S) and the newly negotiated wage rate by w̃(S). The

evolution of the average wage rate is as follows:

w(S) = (1− θw)w(S−) + θww̃(S), (A.82)

where w(S−) denotes the average wage rate last period. Note that equation (A.82) implies that

those who just became employed negotiate their wage with probability θw. Otherwise, they

receive last period’s average wage rate w(S−).

For households and firms, only the average wage rate w(S) matters, and therefore, their

problems are unchanged. The difference lies in the process of Nash bargaining. Under wage

stickiness, the marginal value of a worker for the household with an average wage differs from

the value of a worker with a newly set wage. Let Ṽ (w, S) be the value of a worker for the

household if they just bargain the wage rate at w:

Ṽ (w, S) = wucT (S)− ς +
(
1− λ)E

{
β(1− θw)Ṽ (w, S′) + βθwṼ (w̃(S′), S′) | θ

}
− Φw[Qe(S)]E{βVn(S′) | θ}. (A.83)
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Notice that the wage rate may be the same next period with probability θw or may become

the newly set wage w̃(S′). The value of a worker with a newly set wage rate w for firms in the

nontradable sector is

J̃N (w, S) = Ψf [Qg(S)]p(S)FNn (S)
1

ρ
−w+

(1− λ)

1 + r
E{(1− θw)J̃N (w, S′) + θwJ̃

N (w̃(S′), S′) | θ},

(A.84)

and for the firms in the tradable sector it is

J̃T (w, S) = FTn (S)−w−φT,nn (S) +
(1− λ)

1 + r
E{(1− θw)J̃T (w, S′) + θwJ̃

T (w̃(S′), S′) | θ}. (A.85)

As in the baseline economy, we maintain the assumption that the value of a worker for

firms is a weighted value of the evaluation of the worker by the firms with weights given by the

employment share of each sector. Recall that χ(S) = nN
nN+nT

is the employment share of the

nontradable sector. Then, the Nash bargaining problem is

w̃(S) = max
w

[
Ṽ (w, S)

]ϕ [
χ(S)J̃N (w, S) + (1− χ(S))J̃Tn (w, S)

]1−ϕ
. (A.86)

Taking the derivative with respect to w yields the first-order condition

ϕṼw(w, S)
[
χ(S)J̃N (w, S) + (1− χ(S))J̃T (w, S)

]
= (1− ϕ)

1 + r

r + λ+ θw − λθw
Ṽ (w, S), (A.87)

where Vw(w, S) is the discounted sum of marginal utility by increasing the wage rate by one

unit:

Ṽw(w, S) = ucT (S) + E{β(1− θw)(1− λ)Ṽw(w, S′) | θ}. (A.88)
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Calibration, Tables, and Figures of Alternative Model Economies

Table A.1: Exogenously Determined Parameters
in the Economy with Labor Frictions but without Goods Markets Frictions

Parameter Value

Risk aversion, σ 2.0

Annual rate of return, β 1
β8 − 1 = 4%

Labor matching elasticity, µ 0.50

Elasticity of substitution bw tradables and nontradables, η 0.83

Price markup, ρ 1.05

Table A.2: Steady-State Targets and Associated Parameters
in the Economy with Labor Frictions but without Goods Markets Frictions

Target Value Parameter Value

Share of tradables,
F∗T
Y ∗ 0.3 ω 0.91

Unemployment rate, U∗ 7% λ 0.05

Monthly job finding rate 45% νe 0.67

Capital to output ratio, K
∗

Y ∗ 2.75 δ 0.007

Labor share in nontradables 0.6 θN 0.67

Labor share in tradables 0.6 θNT 0.64

Equal role of capital and land in tradables, 2θKT + θNT = 1 θKT 0.18

Vacancy posting to output ratio 0.037 κ 0.53

Value of leisure to wage ratio 0.35 ϕ 0.42

Units Parameters

Output, Y ∗ 1 zN 0.36

Relative price of nontradables, p∗ 1 zT 0.52

Market tightness in labor markets, U∗

V ∗ 1 ς 0.53
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Table A.3: Exogenously Determined Parameters in the Frictionless Economy

Parameter Value

Risk aversion, σ 2.0

Annual rate of return, β 1
β8 − 1 = 4%

Elasticity of substitution bw tradables and nontradables, η 0.83

Working Frisch elasticity, γ 1.50

Price markup, ρ 1.05

Table A.4: Targets and Associated Parameters in Frictionless Economy

Target Value Parameter Value

Share of tradables,
F∗T
Y ∗ 0.3 ω 0.90

Fraction of time working, n∗ 0.3 ξn 26.66

Capital to output ratio, K
∗

Y ∗ 2.75 δ 0.009

Labor share in nontradables 0.6 θN 0.63

Labor share in tradables 0.6 θNT 0.60

Equal role of capital and land in tradables, 2θKT + θNT = 1 θKT 0.20

Units Parameters

Output, Y ∗ 1 zN 0.64

Relative price of nontradables, p∗ 1 zT 0.95
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Table A.5: Exogenously Determined Parameters
in the Economy with Goods Frictions but without Labor Frictions

Parameter Value

Risk aversion, σ 2.0

Annual rate of return, β 1
β8 − 1 = 4%

Elasticity of substitution bw tradables and nontradables, η 0.83

Working Frisch elasticity, γ 1.50

Price markup, ρ 1.05

Table A.6: Steady-State Targets and Associated Parameters
in the Economy with Goods Frictions but without Labor Frictions

Target Value Parameter Value

Share of tradables,
F∗T
Y ∗ 0.3 ω 0.91

Fraction of time working, n∗ 0.3 ξn 27.89

Occupancy rate,
C∗N
F∗N

.81 νg 0.81

Capital to output ratio, K
∗

Y ∗ 2.75 δ 0.009

Labor share in nontradables 0.6 θN 0.63

Labor share in tradables 0.6 θNT 0.60

Equal role of capital and land in tradables, 2θKT + θNT = 1 θKT 0.20

Units Parameters

Output, Y ∗ 1 zN 0.80

Relative price of nontradables, p∗ 1 zT 0.95

Market tightness in goods markets, D∗ 1 ξd 0.02
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Figure A.1: IRF: Baseline and High Adjustment Cost Economies

Real output Solow residual Employment

Consumption Output of nontradables Output of tradables

Number of varieties Price for nontradables Wage

Investment Wealth Net export/output ratio

-•-•-•- Baseline economy Baseline with high adj cost
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Other Alternative Calibration Targets

Table A.7 displays the main properties of the recession in various alternative economies. A higher

elasticity of substitution between nontradables and tradables allows households to greatly reduce

their consumption of tradables without reducing much of their nontradables, which makes reces-

sions harder to create. The required shock increases by 5% when the elasticity of substitution

increases about 40%. We conclude that the differences are small.

For the same reduction in employment as in the baseline economy, a higher labor market

matching elasticity µ, makes hiring a new worker cheaper. The total reallocation costs are also

cheaper. As a result, to get the same size recession, a 20% larger initial shock is needed.

The role of goods market matching elasticity α is straightforward. For the same decrease

in aggregate search effort, D, a higher matching elasticity α leads to a larger decline in the

probability of meeting customers. Therefore, the Solow residual and aggregate output decrease

further. The size of the shock needed to obtain a 1% recession is 20% smaller when α changes

from 0.22 to 0.30.

A lower elasticity of substitution between nontradable goods ( ρ
ρ−1 ) increases the elasticity

of the number of varieties I with respect to consumption per variety, cN . In other words, with

the same reduction in cN , an economy with higher ρ will have a larger drop in I. As can be seen

from Table A.7, the elasticity of I with respect to cN is largest when ρ = 1.08, corresponding to

a larger drop in the Solow residual and a smaller required shock to patience.

As we decrease vacancy costs, the required shock is smaller and the wage rate drop less. The

main reason for this change is that workers’ bargaining power increases as vacancy costs decrease

in order to calibrate to a constant labor share. The issue of how to model the bargaining process

between workers and firms is still in debate in the labor market search literature.3 Most studies

focus on the effect of productivity shocks on labor market volatility. Higher bargaining power

for workers implies large wage volatility and low employment volatility. However, this argument

cannot be carried over into the current environment. In this paper, the recession originates

from changes in the willingness to enjoy consumption and leisure today versus tomorrow. These

changes result in increased volatility of employment when workers’ weight is larger, which in

turn implies that the required size of the shock is much lower.

A.3.4 Financial Frictions with Nonsegmented Goods Markets

In the financial frictions economy with nonsegmented goods markets, financial frictions occur

between shopping and consuming, meaning that the prices faced and the number of consumption

varieties used by both employed and unemployed workers are the same. In other words, shoppers

3 See [77] and [83].
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Table A.7: Alternative Calibration Targets
Elasticity of substitution between nontradable and tradable

Parameter Pref Shock Employment TFP Tradable Consumption

η = 0.83 0.88 -0.50 -0.69 -12.33

η = 1.20 0.93 -0.49 -0.70 -17.17

η = 0.60 0.84 -0.50 -0.68 -9.17

Labor market matching elasticity

Parameter Pref Shock Employment TFP Elast of NN wrt NT

µ = 0.50 0.88 -0.50 -0.69 -68.95

µ = 0.70 1.05 -0.31 -0.80 -56.27

µ = 0.40 0.79 -0.58 -0.64 -76.97

Goods market matching elasticity

Parameter Pref Shock Employment TFP Number of varieties

α = 0.22 0.88 -0.50 -0.69 -0.89

α = 0.30 0.70 -0.38 -0.77 -1.03

α = 0.10 1.32 -0.78 -0.48 -0.55

Elasticity of substitution between nontradable goods

Parameter Pref Shock Employment TFP Elast of I wrt cN

ρ = 1.05 0.88 -0.50 -0.69 58.55

ρ = 1.08 0.83 -0.46 -0.72 62.49

ρ = 1.02 0.93 -0.54 -0.65 53.88

Vacancy costs

Vacancy cost Pref Shock Employment TFP Wage rate

3.74% 0.88 -0.50 -0.69 -8.79

2.00% 0.72 -0.66 -0.58 -7.40

1.00% 0.54 -0.84 -0.47 -5.66
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first buy a certain amount of goods at each firm and then distribute the goods to the two groups

of workers. The amount of goods bought at each location is simply nceN + (1 − n)cuN , where e

and u stand for employed and unemployed, respectively. In the absence of financial frictions,

the household would equate consumption between employed and unemployed workers. Financial

frictions induce the household to provide different amounts of consumption. The problem of the

household is now

V (S, b, n) = max
ceN ,c

e
T ,c

u
N ,c

u
T ,I,d

nu(ceA, d, 1) + (1− n)u(cuA, d, 0) + β E {V (S′, b′, n′) | θ} , (A.89)

subject to

n[p(S)IceN + ceT ]+

(1− n)[p(S)IcuN + cuT ] = (1 + r)b+ w(S)n+ πN (S) + πT (S)− ψ(1− n)Tr − b′, (A.90)

Tr = p(S)IcuN + cuT − [(1 + r)b+ πN (S) + πT (S)], (A.91)

I = Ψd[Qg(S)] d, (A.92)

n′ = (1− λ)n+ Φw[Qe(S)](1− n), (A.93)

S′ = G(S). (A.94)

The total consumption expenditures of each unemployed worker are p(S)IcuN + cuT , and the

financial assets available to each worker are bond holdings plus the profits from firms (1 + r)b+

πN (S) + πT (S). In the budget constraint, the transfer to an unemployed worker is Tr, the

difference between consumption and per agent financial assets, and the financial costs of this

transfer are ψ(1− n)Tr. When the household accumulates more savings, the financial costs to

achieve the same consumption for the unemployed are smaller. The first-order conditions are

uceN = p(S)IuceT , (A.95)

ucuN = p(S)IucuT , (A.96)

uceT = ucuT (1 + ψ), (A.97)

n

[
ueI − p(S)ceNuceT +

ued
Ψd[Qg(S)]

]
= −(1− n)

[
uuI − p(S)cuNucuT +

uud
Ψd[Qg(S)]

]
, (A.98)

uceT = (1 + r)E
{
βu′ceT [1 + ψ′(1− n′)] | θ

}
. (A.99)

Equations (A.95) and (A.96) describe the optimality condition between tradables and nontrad-

ables. Equation (A.97) implies that unless financial costs are zero (i.e, ψ = 0), the consumption

level of the employed will be higher than the unemployed. The inequality is increasing in ψ. In

the baseline economy, the optimal choice of I equalizes the benefits of one variety and the cost

of its associated shopping disutility. With two groups sharing the same number of varieties, the
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optimal I equalizes a weighted average of costs and benefits, with the weights given by the em-

ployment rate. Equation (A.99) is the Euler equation, which we write in terms of consumption

of the employed. The problems of the firms are the same as in the baseline economy, except

that aggregate demand is now CN (S) = n CeN (S) + (1− n)CuN (S).

We still assume that ψ follows an AR(1) process with persistence of 0.95 and the size of the

shock is chosen to get a 1% real output drop. In the first two rows of Table 3.8, we compare the

size of the shocks in terms of the explicit or implied proportional change in the discount factor.

We use a version of the baseline economy with constant factor shares as well as the economies

with financial shocks and constant factor shares. The value goes from 0.85% to 1.14%. The

financial cost to output ratio goes from 1% in steady state to 1.33% after the shock to ψ. In

terms of employment and the Solow residual, the financial friction economy is very similar to

the baseline economy with shocks to the patience.

The exogenously determined parameters are the same as for the baseline economy, and we

do not report them here.

Table A.8: Steady-State Targets and Associated Parameters
in the Financial Shocks Economy with Nonsegmented Goods Markets

Target Value Parameter Value

Share of tradables,
F∗T
Y ∗ 0.3 ω 0.91

Unemployment rate, U∗ 7% λ 0.05

Monthly job finding rate 45% νe 0.67

Occupancy rate,
C∗N
F∗N

0.81 νg 0.81

Capital to output ratio, K
∗

Y ∗ 2.75 δ 0.007

Labor share in tradables 0.6 θNT 0.64

Equal role of capital and land in tradables, 2θKT + θNT = 1 θKT 0.18

Vacancy posting to output ratio 0.037 θN 0.67

Financial cost to output ratio 0.01 ψ 0.28

Units Parameters

Output, Y ∗ 1 zN 0.45

Relative price of nontradables, p∗ 1 zT 0.52

Market tightness in labor markets, U∗

V ∗ 1 κ 0.53

Market tightness in goods markets, D∗ 1 ξ 0.02
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