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Abstract

Spatial Big Data (SBD), e.g., earth observation imagery, GPS trajectories, tempo-

rally detailed road networks, etc., refers to geo-referenced data whose volume, velocity,

and variety exceed the capability of current spatial computing platforms. SBD has

the potential to transform our society. Vehicle GPS trajectories together with engine

measurement data provide a new way to recommend environmentally friendly routes.

Satellite and airborne earth observation imagery plays a crucial role in hurricane track-

ing, crop yield prediction, and global water management. The potential value of earth

observation data is so significant that the White House recently declared that full utiliza-

tion of this data is one of the nation’s highest priorities. However, SBD poses significant

challenges to current big data analytics. In addition to its huge dataset size (NASA col-

lects petabytes of earth images every year), SBD exhibits four unique properties related

to the nature of spatial data that must be accounted for in any data analysis. First,

SBD exhibits spatial autocorrelation effects. In other words, we cannot assume that

nearby samples are statistically independent. Current analytics techniques that ignore

spatial autocorrelation often perform poorly such as low prediction accuracy and salt-

and-pepper noise (i.e., pixels predicted as different from neighbors by mistake). Second,

spatial interactions are not isotropic and vary across directions. Third, spatial depen-

dency exists in multiple spatial scales. Finally, spatial big data exhibits heterogeneity,

i.e., identical feature values may correspond to distinct class labels in different regions.

Thus, learned predictive models may perform poorly in many local regions.

My thesis investigates novel SBD analytics techniques to address some of these chal-

lenges. To date, I have been mostly focusing on the challenges of spatial autocorrelation

and anisotropy via developing novel spatial classification models such as spatial decision

trees for raster SBD (e.g., earth observation imagery). To scale up the proposed mod-

els, I developed efficient learning algorithms via computational pruning. The proposed

techniques have been applied to real world remote sensing imagery for wetland mapping.

I also had developed spatial ensemble learning framework to address the challenge of

spatial heterogeneity, particularly the class ambiguity issues in geographical classifica-

tion, i.e., samples with the same feature values belong to different classes in different
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spatial zones. Evaluations on three real world remote sensing datasets confirmed that

proposed spatial ensemble learning outperforms current approaches such as bagging,

boosting, and mixture of experts when class ambiguity exists.
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Chapter 1

Introduction

1.1 Spatial Big Data Analytics

Spatial big data (SBD) is geo-referenced data whose volume, velocity, and variety ex-

ceed the capability of current common spatial computing platforms. Examples of SBD

include GPS trajectories (1013 records per year), earth observation imagery (1015 bytes

per year by NASA only), and check-in location history (106 per day). Spatial big data

analytic is the process of discovering interesting, previously unknown, but potentially

useful patterns from SBD. Figure 1.1 shows the entire knowledge discovery process. The

core component is spatial big data analytic algorithms, which take input spatial big

data and produce desired output pattern families, including spatial or spatiotemporal

outliers, associations and tele-connections, predictive models, partitions and summa-

rization, hotspots, as well as change patterns. For example, spatial prediction can be

used to classify earth observation images into different land cover types. Spatial colo-

cation patterns can identify crime event types that frequently occur together. These

algorithms have statistical foundations and integrate scalable computational techniques

and platforms. The type of input data and the choice of output patterns often determine

which kind of algorithms are appropriate to use.
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Input Spatial 
Big Data 

Preprocessing, Exploratory 
Space-Time Analysis 

Spatial Big Data 
Analytic Algorithm 

Output 
Patterns 

Post-processing 

Interpretation by Domain Experts 

Spatial Statistics Computational platforms 
and techniques 

Figure 1.1: The process of spatial big data analytics.

1.2 Societal Applications

Spatial big data analytics are crucial to organizations which make decisions based on

large spatial and spatiotemporal datasets, including NASA, the National Geospatial-

Intelligence Agency, the National Cancer Institute, the US Department of Transporta-

tion, and the National Institute of Justice. These organizations are spread across many

application domains. In ecology and environmental management, researchers need tools

to classify remote sensing images to map forest coverage. In public safety, crime analysts

are interested in discovering hotspot patterns from crime event maps so as to effectively

allocate police resources. In transportation, researchers analyze historical taxi GPS tra-

jectories to recommend fast routes from places to places. Epidemiologists use spatial big

data techniques to detect disease outbreak. There are also other application domains

such as earth science, climatology, precision agriculture, and Internet of Things.

The interdisciplinary nature of spatial big data analytics means that techniques must

be developed with awareness of the underlying physics or theories in their application

domains [41]. For example, climate science studies find that observable predictors for

climate phenomena discovered by data driven techniques can be misleading if they do

not take into account climate models, locations, and seasons [42]. In this case, statis-

tical significance testing is critically important in order to further validate or discard

relationship patterns mined from data.

1.3 Challenges

Spatial big data analytics pose unique statistical and computational challenges. In

addition to its huge volume, SBD has the following unique characteristics that challenge
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current big data analytic techniques.

1.3.1 Spatial Autocorrelation

According to Tobler’s first law of geography, “Everything is related to everything else,

but near things are more related than distant things.” For example, people with sim-

ilar characteristics, occupation and background tend to cluster together in the same

neighborhood. In spatial statistics, such spatial dependence is called the spatial au-

tocorrelation effect. Ignoring autocorrelation and assuming an identical and indepen-

dent distribution (i.i.d.) when analyzing data with spatial characteristics may produce

hypotheses or models that are inaccurate or inconsistent with the data set [2] (e.g.,

salt-and-pepper noise in remote sensing image classification). Similarly, due to the fact

that spatial big data is embedded in continuous space, many classical data mining tech-

niques assuming discrete data (e.g., transactions in association rule mining) may not be

effective (e.g., breaking neighboring locations into different transactions).

1.3.2 Spatial Anisotropy

Another challenge is that the degree of spatial dependency also varies across different

directions (also called spatial anisotropy) due to irregular geographical terrains, topolog-

ical relationships, etc. For example, biogeographical patterns on river networks are often

constrained by the network topological structure and flow directions. Many current spa-

tial statistics assume isotropy and use spatial neighborhoods with regular shapes (e.g.,

square window) to model spatial dependency. This may result in inaccurate models and

predictions.

1.3.3 Multi-scale Effect

Modifiable area unit problem (MAUP) or multi-scale effect is another challenge since

results of spatial analysis depends on the choice of an appropriate spatial scale (e.g.,

local, regional, global). For example, spatial autocorrelation values at local level may be

significantly different from values at global level, especially when spatial outliers exist.

As another instance of example, patterns of spatial interactions between two types of

events may be significant in one region of the study area, but insignificant in other areas.
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1.3.4 Spatial Heterogeneity

The last challenge is the spatial heterogeneity, i.e., spatial data samples do not follow

an identical distribution across the entire space. One type of spatial heterogeneity is

that samples with the same explanatory features may belong to different class labels

in different zones. For example, upland forest looks very similar to wetland forest in

spectral values on remote sensing images, but they are from different land cover classes

due to different geographical terrains. Another types of spatial heterogeneity is different

trends between explanatory variables and response variable in different locations. For

instance, in economic studies, it may be possible that old houses are with high price in

rural areas, but with low price in urban areas. Though house age is not an effective

coefficient for house price when the entire study area is considered, it is an effective

coefficient in each local areas (rural or urban).

One way to deal with implicit spatial relationships is to materialize the relation-

ships into traditional data input columns and then apply classical big data analytic

techniques. However, the materialization can result in loss of information [2]. Another

issue is the existence of a semantic gap between traditional big data algorithms and

spatial and spatiotemporal data. For example, Ring-shaped hotspot pattern is very

important in environmental criminology but is hard to characterize in the matrix space

as in traditional data mining. Finally, many traditional data mining methods are not

spatial or spatiotemporal statistical aware and thus prone to produce spurious spatial

patterns. A more preferable way to capture implicit spatial and temporal relationships

is to develop statistics and techniques to incorporate spatial and temporal information

into the data analytic process.

1.4 Contributions

In this thesis, we overview current spatial data analytic techniques, and introduce two

novel spatial big data classification approaches, i.e., spatial decision tree, and spatial

ensemble learning, which address some of the above challenges.
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• Chapter 2 surveys current techniques in spatial and spatiotemporal data min-

ing. Spatial and spatiotemporal (SST) data mining studies the process of discov-

ering interesting, previously unknown, but potentially useful patterns from large

SST databases. It has broad application domains including ecology, environmen-

tal management, public safety, etc. The complexity of input data and intrinsic

spatial and spatiotemporal relationships limits the usefulness of conventional data

mining methods. We review recent computational techniques in SST data mining.

Compared with other surveys, this chapter emphasizes the statistical foundation

and proposes a taxonomy of major pattern families to categorize recent research.

• Chapter 3 discusses a novel spatial classification technique called spatial deci-

sion tree to address the challenge of spatial autocorrelation and anisotropy. Given

learning samples from a raster dataset, spatial decision tree learning aims to find

a decision tree classifier that minimizes classification errors as well as salt-and-

pepper noise. The problem has important societal applications such as land cover

classification for natural resource management. However, the problem is challeng-

ing due to the fact that learning samples show spatial autocorrelation in class

labels, instead of being independently identically distributed. Related work relies

on local tests (i.e., testing feature information of a location) and cannot adequately

model the spatial autocorrelation effect, resulting in salt-and-pepper noise. In con-

trast, we recently proposed a focal-test-based spatial decision tree (FTSDT), in

which the tree traversal direction of a sample is based on both local and focal

(neighborhood) information. Preliminary results showed that FTSDT reduces

classification errors and salt-and-pepper noise. We also extend our recent work by

introducing a new focal test approach with anisotropic spatial neighborhoods that

avoids over-smoothing in wedge-shaped areas. We also conduct computational

refinement on the FTSDT training algorithm by reusing focal values across can-

didate thresholds. Theoretical analysis shows that the refined training algorithm

is correct and more scalable. Experiment results on real world datasets show that

new FTSDT with adaptive neighborhoods improves classification accuracy, and

that our computational refinement significantly reduces training time.
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• Chapter 4 discusses a novel ensemble learning framework called spatial ensemble

to address the challenge of spatial heterogeneity. Given geographical data with

class ambiguity, i.e., samples with similar features belonging to different classes

in different zones, the spatial ensemble learning (SEL) problem aims to find a

decomposition of the geographical area into disjoint zones minimizing class am-

biguity and to learn a local classifier in each zone. Class ambiguity is a common

issue in many geographical classification applications. For example, in remote

sensing image classification, pixels with the same spectral signatures may corre-

spond to different land cover classes in different locations due to heterogeneous

geographical terrains. A global classifier may mistakenly classify those ambigu-

ous pixels into one land cover class. However, SEL problem is challenging due to

class ambiguity issue, unknown and arbitrary shapes of zonal footprints, and high

computational cost due to the potential exponential number of candidate zonal

partitions. Related work in ensemble learning either assumes an identical and

independent distribution of input data (e.g., bagging, boosting) or decomposes

multi-modular input data in the feature vector space (e.g., mixture of experts),

and thus cannot effectively decompose the input data in geographical space to

reduce class ambiguity. In contrast, we propose a spatial ensemble learning frame-

work that explicitly partition input data in geographical space: first, the input

data is preprocessed into homogeneous “patches” via constrained hierarchical spa-

tial clustering; second, patches are grouped into several footprints via greedy seed

growing and spatial adjustments. Experimental evaluation on three real world re-

mote sensing datasets show that the proposed approach outperforms related work

in classification accuracy.



Chapter 2

Spatial and Spatiotemporal Data

Mining Overview

This chapter overviews the state of the art spatial and spatial temporal data mining

techniques. Current overview tutorials and surveys in spatial and spatiotemporal data

mining can be categorized into two groups: early papers in the 1990s without a focus

on spatial and spatiotemopral statistical foundations, and recent papers with a focus

on statistical foundation. Two early survey papers [43, 44] review spatial data mining

from a database approach. Recent papers include brief tutorials on current spatial [45]

and spatiotemporal data mining [46] techniques. There are also other relevant book

chapters [47, 48, 2], as well as survey papers on specific spatial or spatiotemporal data

mining tasks such as spatiotemporal clustering [49], spatial outlier detection [50], and

spatial and spatiotemporal change footprint detection [51].

This chapter makes the following contributions: (1) we provide a categorization of

input spatial and spatiotemporal data types; (2) we provide a summary of spatial and

spatiotemporal statistical foundations categorized by different data types; (3) we create

a taxonomy of six major output pattern families, including spatial and spatiotemporal

outliers, associations and tele-connections, predictive models, partitioning (clustering)

and summarization, hotspots and changes. Within each pattern family, common compu-

tational approaches are categorized by the input data types; (4) we analyze the research

trends and future research needs.

7
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Organization of the chapter: This chapter starts with a summary of input spa-

tial and spatiotemporal data (Section 2.1) and an overview of statistical foundation

(Section 2.2). It then describes in detail six main output pattern families including spa-

tial and spatiotemporal outliers, associations and tele-connections, predictive models,

partitioning (clustering) and summarization, hotspots, and changes (Section 2.3). An

examination of research trend and future research needs is in Section 2.4. Section 2.5

summarizes the chapter.

2.1 Input: Spatial and Spatiotemporal Data

2.1.1 Types of Spatial and Spatiotemporal Data

The data inputs of spatial and spatiotemporal data mining tasks are more complex than

the inputs of classical data mining tasks because they include discrete representations

of continuous space and time. Table 2.1 gives a taxonomy of different spatial and

spatiotemporal data types (or models). Spatial data can be categorized into three

models, i.e., the object model, the field model, and the spatial network model [40, 52].

Spatiotemporal data, based on how temporal information is additionally modeled, can

be categorized into three types, i.e., temporal snapshot model, temporal change model,

and event or process model [53, 54, 55]. In the temporal snapshot model, spatial layers

of the same theme are time-stamped. For instance, if the spatial layers are points or

multi-points, their temporal snapshots are trajectories of points or spatial time series

(i.e., variables observed at different times on fixed locations). Similarly, snapshots

can represent trajectories of lines and polygons, raster time series, and spatiotemporal

networks such as time expanded graphs (TEGs) and time aggregate graphs (TEGs) [56,

57]. The temporal change model represents spatiotemporal data with a spatial layer at

a given start time together with incremental changes occurring afterward. For instance,

it can represent motion (e.g., Brownian motion, random walk [5]) as well as speed

and acceleration on spatial points, as well as rotation and deformation on lines and

polygons. Event and process models represent temporal information in terms of events

or processes. One way to distinguish events from processes is that events are entities
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whose properties are possessed timelessly and therefore are not subject to change over

time, whereas processes are entities that are subject to change over time (e.g., a process

may be said to be accelerating or slowing down) [58].

Table 2.1: Taxonomy of Spatial and Spatiotemporal Data Models.
Spatial Data Temporal Snap-

shots (Time Se-

ries)

Temporal Change

(Delta/Derivative)

Events/Processes

Object model Trajectories, Spatial

time series

Motion, speed, accelera-

tion, split or merge

Spatial or spatiotem-

poral point process

Field model Raster time series Change across raster snap-

shots

Cellular automation

Spatial net-

work

Spatiotemporal net-

work

Addition or removal of

nodes, edges

2.1.2 Data Attributes and Relationships

There are three distinct types of data attributes for spatiotemporal data, including

non-spatiotemporal attributes, spatial attributes, and temporal attributes. Non spa-

tiotemporal attributes are used to characterize non-contextual features of objects, such

as name, population, and unemployment rate for a city. They are the same as the

attributes used in the data inputs of classical data mining [59]. Spatial attributes are

used to define the spatial location (e.g., longitude and latitude), spatial extent (e.g.,

area, perimeter) [60, 61], shape, as well as elevation defined in a spatial reference frame.

Temporal attributes include the timestamp of a spatial object, a raster layer, or a spa-

tial network snapshot, as well as the duration of a process. Relationships on non-spatial

attributes are often explicit, including arithmetic, ordering, and subclass, etc. Relation-

ships on spatial attributes, in contrast, are often implicit, including those in topological

space (e.g., meet, within, overlap), set space (e.g., union, intersection), metric space

(e.g., distance) and directions. Relationships on spatiotemporal attributes are more

sophisticated, as summarized in Table 2.2.
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Table 2.2: Relationships on Spatiotemporal Data.
Spatial Data Temporal Snapshots

(Time Series)

Change

(Delta/Derivative)

Event/Process

Object model Spatiotemporal predi-

cates [62], Trajectory

distance [63, 64], Spatial

time series correlation

[65], tele-connection [66]

Motion, speed, accelera-

tion, attraction or repul-

sion, split/merge

Spatiotemporal co-

variance [5], Spatiotem-

poral coupling for point

events or extended spa-

tial objects [67, 68, 69,

70, 71, 72]

Field model Cubic map algebra [73],

Temporal correlation,

tele-connection

Local, focal, zonal

change across snap-

shots [51]

Cellular automation [74]

One way to deal with implicit spatiotemporal relationships is to materialize the re-

lationships into traditional data input columns and then apply classical data mining

techniques [75, 76, 77, 78, 79]. However, the materialization can result in loss of in-

formation [2]. The spatial and temporal vagueness which naturally exists in data and

relationships usually creates further modeling and processing difficulty in spatial and

spatiotemporal data mining. A more preferable way to capture implicit spatial and spa-

tiotemporal relationships is to develop statistics and techniques to incorporate spatial

and temporal information into the data mining process. These statistics and techniques

are the main focus the survey.

2.2 Statistical Foundations

2.2.1 Spatial Statistics for Different Types of Spatial Data

Spatial statistics [3, 4, 5, 6] is a branch of statistics concerned with the analysis and

modeling of spatial data. The main difference between spatial statistics and classical

statistics is that spatial data often fails to meet the assumption of an identical and

independent distribution (i.i.d.). As summarized in Table 2.3, spatial statistics can

be categorized according to their underlying spatial data type: Geostatistics for point
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referenced data, lattice statistics for areal data, and spatial point process for spatial

point patterns.

Geostatistics: Geostatistics [6] deal with the analysis of the properties of point

reference data, including spatial continuity (i.e., dependence across locations), weak

stationarity (i.e., first and second moments do not vary with respect to locations) and

isotropy (i.e., uniformity in all directions). For example, under the assumption of weak

stationarity (or more specifically intrinsic stationarity), variance of the difference of non-

spatial attribute values at two point locations is a function of point location difference

regardless of specific point locations. This function is called a variogram [29]. If the

variogram only depends on distance between two locations (not varying with respect

to directions), it is further called isotropic. Under the assumptions of these properties,

Geostatistics also provides a set of statistical tools such as Kriging [29], which can be

used to interpolate non-spatial attribute values at unsampled locations. Finally, real

world spatial data may not always satisfy the stationarity assumption. For example,

different jurisdictions tend to produce different laws (e.g., speed limit differences between

Minnesota and Wisconsin). This effect is called spatial heterogeneity or non-stationarity.

Special models (e.g., geographically weighted regression, or GWR [37]) can be further

used to model the varying co-efficients at different locations.

Lattice statistics: Lattice statistics studies statistics for spatial data in the field (or

areal) model. Here a lattice refers to a countable collection of regular or irregular cells

in a spatial framework. The range of spatial dependency among cells is reflected by

a neighborhood relationship, which can be represented by a contiguity matrix called

a W-matrix. A spatial neighborhood relationship can be defined based on spatial ad-

jacency (e.g., rook or queen neighborhoods) or Euclidean distance, or in more general

models, cliques and hypergraphs [9]. Based on a W-matrix, spatial autocorrelation

statistics can be defined to measure the correlation of a non-spatial attribute across

neighboring locations. Common spatial autocorrelation statistics include Moran’s I,

Getis-Ord Gi∗, Geary’s C, Gamma index Γ [7], etc., as well as their local versions

called local indicators of spatial association (LISA) [10]. Several spatial statistical mod-

els, including the spatial autoregressive model (SAR), conditional autoregressive model

(CAR), Markov random fields (MRF), as well as other Bayesian hierarchical models [3],

can be used to model lattice data. Another important issue is the modifiable areal unit
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problem (MAUP) (also called the multi-scale effect) [11], an effect in spatial analysis

that results for the same analysis method will change on different aggregation scales.

For example, analysis using data aggregated by states will differ from analysis using

data at individual family level.

Table 2.3: Taxonomy of Spatial and Spatiotemporal Statistics.
Spatial
Model

Spatial Statistics Spatiotemporal Statistics

Object model Geostatistics:
• Stationarity, isotropy, variograms,
Kriging
Spatial Point Processes:
• Poisson point process, Spatial scan
statistics, Ripley’s K function

Statistics for spatial time series:
• Spatiotemporal stationarity, vari-
ograms, covariance, Kriging;
• Temporal autocorrelation, tele-
coupling.
Spatiotemporal Point Processes:
• Spatiotemporal Poission point
process; Spatiotemporal scan statis-
tics; Spatiotemporal K-function.

Field model Lattice Statistics (areal data
model):
• W-matrix, spatial autocorrelation,
local indicators of spatial associa-
tion (LISA);
• MRF, SAR, CAR, Bayesian
hierarchical model

Statistics for raster time series:
• EOF analysis, CCA analysis;
• Spatiotemporal autoregressive
model (STAR), Bayesian hierarchi-
cal model, Dynamic Spatiotemporal
model (Kalman filter), data assimi-
lation

Spatial net-
work

Spatial network autocorrelation,
Network K function, Network
Kriging

Spatial point processes: A spatial point process is a model for the spatial distribution

of the points in a point pattern. It differs from point reference data in that the random

variables are locations. Examples include positions of trees in a forest and locations

of bird habitats in a wetland. One basic type of point process is a homogeneous spa-

tial Poisson point process (also called complete spatial randomness, or CSR) [5], where

point locations are mutually independent with the same intensity over space. However,

real world spatial point processes often show either spatial aggregation (clustering) or

spatial inhibition instead of complete spatial independence as in CSR. Spatial statistics

such as Ripley’s K function [12, 13], i.e., the average number of points within a certain

distance of a given point normalized by the average intensity, can be used to test spatial

aggregation of a point pattern against CSR. Moreover, real world spatial point processes
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such as crime events often contain hotspot areas instead of following homogeneous in-

tensity across space. A spatial scan statistic [14] can be used to detect these hotspot

patterns. It tests if the intensity of points inside a scanning window is significantly

higher (or lower) than outside. Though both the K-function and spatial scan statistics

have the same null hypothesis of CSR, their alternative hypotheses are quite different:

the K-function tests if points exhibit spatial aggregation or inhibition instead of inde-

pendence, while spatial scan statistics assume that points are independent and test if

a local hotspot with much higher intensity than outside exists. Finally, there are other

spatial point processes such as the Cox process, in which the intensity function itself is

a random function over space, as well as a cluster process, which extends a basic point

process with a small cluster centered on each original point [5]. For extended spatial

objects such as lines and polygons, spatial point processes can be generalized to line

processes and flat processes in stochastic geometry [15].

Spatial network statistics: Most spatial statistics research focuses on the Euclidean

space. Spatial statistics on the network space are much less studied. Spatial network

space, e.g., river networks and street networks, is important in applications of environ-

mental science and public safety analysis. However, it poses unique challenges including

directionality and anisotropy of spatial dependency, connectivity, as well as high com-

putational cost. Statistical properties of random fields on a network are summarized

in [16]. Recently, several spatial statistics, such as spatial autocorrelation, K-function,

and Kriging, have been generalized to spatial networks [17, 18, 19]. Little research has

been done on spatiotemporal statistics on the network space.

2.2.2 Spatiotemporal Statistics

Spatiotemporal statistics [80, 5] combine spatial statistics with temporal statistics (time

series analysis [81], dynamic models [80]). Table 2.3 summarizes common statistics for

different spatiotemporal data types, including spatial time series, spatiotemporal point

process, and time series of lattice (areal) data.

Spatial time series: Spatial statistics for point reference data have been generalized

for spatiotemporal data [82]. Examples include spatiotemporal stationarity, spatiotem-

poral covariance, spatiotemporal variograms, and spatiotemporal Kriging [80, 5]. There

is also temporal autocorrelation and tele-coupling (high correlation across spatial time
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series at a long distance). Methods to model spatiotemporal process include physics

inspired models (e.g., stochastically differential equations) [5] and hierarchical dynamic

spatiotemporal models (e.g., Kalman filtering) for data assimilation [5].

Spatiotemporal point process: A spatiotemporal point process generalizes the spatial

point process by incorporating the factor of time. As with spatial point processes, there

are spatiotemporal Poisson process, Cox process, and cluster process. There are also

corresponding statistical tests including a spatiotemporal K function and spatiotemporal

scan statistics [5].

Time series of lattice (areal) data: Similar to lattice statistics, there are spatial and

temporal autocorrelation, SpatioTemporal Autoregressive Regression (STAR) model [83],

and Bayesian hierarchical models [3]. Other spatiotemporal statistics include empiri-

cal orthogonal function (EOF) analysis (principle component analysis in geophysics),

canonical-correlation analysis (CCA), and dynamic spatiotemporal models (Kalman fil-

ter) for data assimilation [80].

2.3 Output Pattern Families

2.3.1 Spatial and Spatiotemporal Outlier Detection

This section reviews techniques for spatial and spatiotemporal outlier detection. The

section begins with a definition of spatial or spatiotemporal outliers by comparison with

global outliers. Spatial and spatiotemporal outlier detection techniques are summarized

according to their input data types.

Problem definition: To understand the meaning of spatial and spatiotemporal out-

liers, it is useful first to consider global outliers. Global outliers [84, 85] have been

informally defined as observations in a data set which appear to be inconsistent with

the remainder of that set of data, or which deviate so much from other observations as to

arouse suspicions that they were generated by a different mechanism. In contrast, a spa-

tial outlier [86] is a spatially referenced object whose non-spatial attribute values differ

significantly from those of other spatially referenced objects in its spatial neighborhood.

Informally, a spatial outlier is a local instability or discontinuity. For example, a new

house in an old neighborhood of a growing metropolitan area is a spatial outlier based

on the non-spatial attribute house age. Similarly, a spatiotemporal outlier generalizes
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spatial outliers with a spatiotemporal neighborhood instead of a spatial neighborhood.

Statistical foundation: The spatial statistics for spatial outlier detection are also

applicable to spatiotemporal outliers as long as spatiotemporal neighborhoods are well-

defined. The literature provides two kinds of bi-partite multidimensional tests: graphical

tests, including variogram clouds [87] and Moran scatterplots [10, 6], and quantitative

tests, including scatterplot [88] and neighborhood spatial statistics [86].

Spatial outlier detection

The visualization approach plots spatial locations on a graph to identify spatial outliers.

The common methods are variogram clouds and Moran scatterplot as introduced earlier.

The neighborhood approach defines a spatial neighborhood, and a spatial statistic

is computed as the difference between the non-spatial attribute of the current location

and that of the neighborhood aggregate [86]. Spatial neighborhoods can be identified

by distance on spatial attributes (e.g., K nearest neighbors), or by graph connectivity

(e.g., locations on road networks). This work has been extended in a number of ways to

allow for multiple non-spatial attributes [89], average and median attribute value [90],

weighted spatial outliers [91], categorical spatial outlier [92], local spatial outliers [93],

and fast detection algorithms [94].

Spatiotemporal Outlier Detection

The intuition behind spatiotemporal outlier detection is that they reflect “discontinuity”

on non-spatiotemporal attributes within a spatiotemporal neighborhood. Approaches

can be summarized according to the input data types.

Outliers in spatial time series: For spatial time series (on point reference data,

raster data, as well as graph data), basic spatial outlier detection methods, such as

visualization based approaches and neighborhood based approaches, can be generalized

with a definition of spatiotemporal neighborhoods.

Flow Anomalies: Given a set of observations across multiple spatial locations on a

spatial network flow, flow anomaly discovery aims to identify dominant time intervals

where the fraction of time instants of significantly mis-matched sensor readings exceeds

the given percentage-threshold. Flow anomaly discovery can be considered as detecting
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discontinuities or inconsistencies of a non-spatiotemporal attribute within a neighbor-

hood defined by the flow between nodes, and such discontinuities are persistent over

a period of time. A time-scalable technique called SWEET (Smart Window Enumer-

ation and Evaluation of persistent-Thresholds) was proposed [95] that utilizes several

algebraic properties in the flow anomaly problem to discover these patterns efficiently.

2.3.2 Spatial and Spatiotemporal Associations, Tele-connections

This section reviews techniques for identifying spatial and spatiotemporal association

as well as tele-connections. The section starts with the basic spatial association (or co-

location) pattern, and moves on to spatiotemporal association (i.e., spatiotemporal co-

occurrence, cascade, and sequential patterns) as well as spatiotemporal tele-connection.

Pattern definition: Spatial association, also known as spatial co-location patterns [96],

represent subsets of spatial event types whose instances are often located in close

geographic proximity. Real-world examples include symbiotic species, e.g., the Nile

Crocodile and Egyptian Plover in ecology. Similarly, spatiotemporal association pat-

terns represent spatiotemporal object types whose instances often occur in close geo-

graphic and temporal proximity. Spatiotemporal coupling patterns can be categorized

according to whether there exists temporal ordering of object types: spatiotemporal

(mixed drove) co-occurrences [97] are used for unordered patterns, spatiotemporal cas-

cades [69] for partially ordered patterns, and spatiotemporal sequential patterns [71]

for totally ordered patterns. Spatiotemporal tele-connection [65] represents patterns of

significantly positive or negative temporal correlation between a pair of spatial time

series.

Challenges: Mining patterns of spatial and spatiotemporal association is challenging

due to the following reasons: first, there is no explicit transaction in continuous space

and time; second, there is potential for over-counting; third, the number of candidate

patterns is exponential, and a trade-off between statistical rigor of output patterns and

computational efficiency has to be made.

Statistical foundation: The underlying statistic for spatiotemporal coupling patterns

is the cross K function, which generalizes the basic Ripley’s K function (introduced in

Section 2.2) for multiple event types.

Common approaches: The following subsections categorize common computational
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approaches for discovering spatial and spatiotemporal couplings by different input data

types.

Spatial colocation: Mining colocation patterns can be done via statistical approaches

including cross-K function with Monte Carlo simulation [6], mean nearest-neighbor dis-

tance, and spatial regression model [98], but these methods are often computation-

ally very expensive due to the exponential number of candidate patterns. In contrast,

data mining approaches aim to identify colocation patterns like association rule min-

ing. Within this category, there are transaction based approaches and distance based

approaches. A transaction based approach defines transactions over space (e.g., around

instances of a reference feature) and then uses an Apriori-like algorithm [99]. A distance

based approach defines a distance-based pattern called k-neighboring class sets [100] or

using an event centric model [96] based on a definition of participation index, which

is an upper bound of cross-K function statistic and has an anti-monotone property.

Recently, approaches have been proposed to identify colocations for extended spatial

objects [101] or rare events [102], regional colocation patterns [103, 104] (i.e., pattern

is significant only in a sub-region), statistically significant colocation [105], as well as

design fast algorithms [106].

Spatiotemporal events associations represent subsets of two or more event-types

whose instances are often located in close spatial and temporal proximity. Spatiotem-

proal event associations can be categorized into spatiotemporal co-occurrences, spa-

tiotemporal cascades, and spatiotemporal sequential patterns for temporally unordered

events, partially ordered events, and totally ordered events respectively. To discover spa-

tiotemporal co-occurrences, a monotonic composite interest measure and novel mining

algorithms are presented in [97]. A filter-and-refine approach has also been proposed to

identify spatiotemporal co-occurrences on extended spatial objects [68]. A spatiotem-

poral sequential pattern represents a “chain reaction” from different event types. A

measure of sequence index, which can be interpreted by K-function statistic, was pro-

posed in [71], together with computationally efficient algorithms. For spatiotemporal

cascade patterns, a statistically meaningful metric was proposed to quantify interest-

ingness and pruning strategies were proposed to improve computational efficiency [69].

Spatiotemporal association from moving objects trajectories: Mining spatiotemporal

association from trajectory data is more challenging than from spatiotemporal event
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data due to the existence of temporal duration, different moving directions, and impre-

cise locations. There are a variety of ways to define spatiotemporal association patterns

from moving object trajectories. One way is to generalize the definition from spatiotem-

poral event data. For example, a pattern called spatiotemporal colocation episodes is

defined to identify frequent sequences of colocation patterns that share a common event

(object) type [107]. As another example, a spatiotemporal sequential pattern is defined

based on decomposition of trajectories into line segments and identification of frequent

region sequences around the segments [108]. Another way is to define spatiotemporal

association as group of objects that frequently move together, either focusing on the

footprints of subpaths (region sequences) that are commonly traversed [109] or subsets

of objects that frequently move together (also called travel companion) [110].

Spatial time series oscillation and tele-connection: Given a collection of spatial time

series at different locations, tele-connection discovery aims to identify pairs of spatial

time series whose correlation is above a given threshold. Tele-connection patterns are

important in understanding oscillations in climate science. Computational challenges

arise from the large number of candidate pairs and the length of time series. An efficient

index structure, called a cone-tree, as well as a filter and refine approach [65] have been

proposed which utilize spatial autocorrelation of nearby spatial time series to filter out

redundant pair-wise correlation computation. Another challenge is the existence of spu-

rious ‘high correlation’ patterns that happen by chance. Recently, statistical significant

tests have been proposed to identify statistically significant tele-connection patterns

called dipoles from climate data [66]. The approach uses a “wild bootstrap” to capture

the spatio-temporal dependencies, and takes account of the spatial autocorrelation, the

seasonality and the trend in the time series over a period of time.

2.3.3 Spatial and Spatiotemporal Prediction

Problem definition: Given training samples with features and a target variable as well

as a spatial neighborhood relationship among samples, the problem of spatial prediction

aims to learn a model that can predict the target variable based on features. What

distinguishes spatial prediction from traditional prediction problem in data mining is

that data items are embedded in space, and often violate the common assumption

of an identical and independent distribution (i.i.d.). Spatial prediction problems can
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be further categorized into spatial classification for nominal (i.e., categorical) target

variables and spatial regression for numeric target variables.

Challenges: The unique challenges of spatial and spatiotemporal prediction come

from the special characteristics of spatial and spatiotemporal data, which include spa-

tial and temporal autocorrelation, spatial heterogeneity and temporal non-stationarity,

as well as the multi-scale effect. These unique characteristics violate the common as-

sumption in many traditional prediction techniques that samples follow an identical

and independent distribution (i.i.d.). Simply applying traditional prediction techniques

without incorporating these unique characteristics may produce hypotheses or models

that are inaccurate or inconsistent with the data set.

Statistical foundations: Spatial and spatiotemporal prediction techniques are de-

veloped based on spatial and spatiotemporal statistics, including spatial and temporal

autocorrelation, spatial heterogeneity, temporal non-stationarity, and multiple areal unit

problems (MAUP) (see Section 2.2).

Computational approaches: The following subsections summarize common spatial

and spatiotemporal prediction approaches for different data types. We further catego-

rize these approaches according to the challenges that they address, including spatial

and spatiotemporal autocorrelation, spatial heterogeneity, spatial multi-scale effect, and

temporal non-stationarity, and introduce each category separately below.

Spatial Autocorrelation or Dependency

According to Tobler’s first law of geography [20], “everything is related to everything

else, but near things are more related than distant things.” The spatial autocorrelation

effect tells us that spatial samples are not statistically independent, and nearby samples

tend to resemble each other. There are different ways to incorporate the effect of spatial

autocorrelation or dependency into predictive models, including spatial feature creation,

explicit model structure modification, and spatial regularization in objective functions.

Spatial feature creation: The main idea is to create new features that incorporate

spatial contextual (neighborhood) information. Spatial features can be generated di-

rectly from spatial aggregation [21], indirectly from multi-relationship (or spatial as-

sociation) rules between spatial entities [22, 23, 24], or from spatial transformation of

raw features [25]. After spatial features are generated, they can be fed into a general
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prediction model. One advantage of this approach is that it could utilize many existing

predictive models without significant modification. However, spatial feature creation in

preprocessing phase is often application specific and time consuming.

Spatial interpolation: Given observations of a variable at a set of locations (point ref-

erence data), spatial interpolation aims to measure the variable value at an unsampled

location [26]. These techniques are broadly classified into three categories: geostatis-

tical, non-geosatistical and some combined approaches. Among the non-geostatistical

approaches, the nearest neighbors, inverse distance weighting, etc. are the mostly used

techniques in literature. Kriging is the most widely used geo-statistical interpolation

technique, which represents a family of generalized least-squares regression based in-

terpolation techniques [27]. Kriging can be broadly classified into two categories: uni-

variate (only variable to be predicted) and multivariate (there are some covariates, also

called explanatory variables). Unlike the non-geostatistical or traditional interpolation

techniques, this estimator considers both the distance, as well as the degree of varia-

tion between the sampled and unsampled locations for the random variable estimation.

Among the univariate kriging methods, the simple kriging, ordinary kriging and in mul-

tivariate scenario, the ordinary co-kriging, universal kriging and kriging with external

drift are the most popular and widely used technique in the study of spatial interpola-

tion [26, 28]. However, the kriging suffers from some acute shortcomings of assuming

the isotopic nature of the random variables.

Markov Random Field (MRF): MRF [29] is a widely used model in image classifi-

cation problems. It assumes that the class label of one pixel only depends on the class

labels of its predefined neighbors (also called Markov property). In spatial classification

problem, MRF is often integrated with other non-spatial classifiers to incorporate the

spatial autocorrelation effect. For example, MRF has been integrated with maximum

likelihood classifiers (MLC) to create Markov Random Field (MRF)-based Bayesian

classifiers [30], in order to avoid salt-and-pepper noise in prediction [31]. Another ex-

ample is the model of Support Vector Random Fields [32].

Spatial Autoregressive Model (SAR): In the spatial autoregression model, the spatial

dependencies of the error term, or, the dependent variable, are directly modeled in the

regression equation [33]. If the dependent values yi are related to each other, then the
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regression equation can be modified as y = ρWy + Xβ + ε, where W is the neighbor-

hood relationship contiguity matrix and ρ is a parameter that reflects the strength of

the spatial dependencies between the elements of the dependent variable. For spatial

classification problems, logistic transformation can be applied to SAR model for binary

classes.

Conditional autoregressive model (CAR): In the conditional autoregressive model [29],

the spatial autocorrelation effect is explicitly modeled by the conditional probability of

the observation of a location given observations of neighbors. CAR is essentially a

Markov random field. It is often used as a spatial term in Bayesian hierarchical models.

Spatial accuracy objective function: In traditional classification problems, the ob-

jective function (or loss function) often measures the zero-one loss on each sample, no

matter how far the predicted class is from the location of the actuals. For example, in

bird nest location prediction problem on a rasterized spatial field, a cell’s predicted class

(e.g., bird nest) is either correct or incorrect. However, if a cell mistakenly predicted

as the bird nest class is very close to an actual bird nest cell, the prediction accuracy

should not be considered as zero. Thus, spatial accuracy [34, 35] has been proposed to

measure not only how accurate each cell is predicted itself but also how far it is from an

actual class locations. A case study has shown that learning models based on proposed

objective function produce better accuracy in bird nest location prediction problem.

Spatial objective function has also been proposed in active learning [36], in which the

cost of additional label not only consider accuracy but also travel cost between locations

to be labeled.

Spatial Heterogeneity

Spatial heterogeneity describes the fact that samples often do not follow an identical

distribution in the entire space due to varying geographic features. Thus, a global

model for the entire space fails to capture the varying relationships between features

and the target variable in different sub-region. The problem is essentially the multi-

task learning problem, but a key challenge is how to identify different tasks (or regional

or local models). Several approaches have been proposed to learn local or regional

models. Some approaches first partition the space into homogeneous regions and learn

a local model in each region. Others learn local models at each location but add spatial
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constraint that nearby models have similar parameters.

Geographically Weighted Regression (GWR): One limitation of the spatial autore-

gressive model (SAR) is that, it does not account for the underlying spatial heterogeneity

that is natural in the geographic space. Thus, in a SAR model, coefficients β of covari-

ates and the error term ε are assumed to be uniform throughout the entire geographic

space. One proposed method to account for spatial variation in model parameters and

errors is Geographically Weighted Regression [37]. The regression equation of GWR

is y = Xβ(s) + ε(s), where β(s) and ε(s) represent the spatially parameters and the

errors, respectively. GWR has the same structure as standard linear regression, with

the exception that the parameters are spatially varying. It also assumes that samples

at nearby locations have higher influence on the parameter estimation of a current lo-

cation. Recently, a multi-model regression approach is proposed to learn a regression

model at each location but regularize the parameters to maintain spatial smoothness of

parameters at neighboring locations [38].

Multi-scale Effect

One main challenge in spatial prediction is the Multiple Area Unit Problem (MAUP),

which means that analysis results will vary with different choices of spatial scales. For

example, a predictive model that is effective at the county level may perform poorly at

states level. Recently, a computation technique has been proposed to learn a predict

models from different candidate spatial scales or granularity [22].

Spatiotemporal Autocorrelation

Approaches that address the spatiotemporal autocorrelation are often extensions of

previously introduced models that address spatial autocorrelation effect by further con-

sidering the time dimension. For example, SpatioTemporal Autoregressive Regression

(STAR) model [6] extends SAR by further modeling temporal or spatiotemporal depen-

dency across variables at different locations. Spatiotemporal Kriging [80] generalizes

spatial kriging with a spatiotemporal covariance matrix and variograms. It can be used

to make predictions from incomplete and noisy spatiotemporal data. Spatiotemporal re-

lational probability trees and forests [111] extend decision tree classifiers with tree node

tests on spatial properties on objects and random field as well as temporal changes. To
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model spatiotemporal events such as disease counts in different states at a sequence of

times, Bayesian hierarchical models are often used, which incorporate the spatial and

temporal autocorrelation effects in explicit terms.

Temporal Non-stationarity

Hierarchical dynamic spatiotemporal models (DSTMs) [80], as the name suggests, aim

to model spatiotemporal processes dynamically with a Bayesian hierarchical framework.

There are three levels of models in the hierarchy: a data model on the top, a process

model in the middle, and a parameter model at the bottom. A data model represents the

conditional dependency of (actual or potential) observations on the underlying hidden

process with latent variables. A process model captures the spatiotemporal dependency

within the process model. A parameter model characterizes the prior distributions of

model parameters. DSTMs have been widely used in climate science and environment

science, e.g., for simulating population growth or atmospheric and oceanic processes.

For model inference, Kalman filter can be used under the assumption of linear and

Gaussian models.

Prediction for Moving Objects

Mining moving object data such as GPS trajectories and check-in histories has be-

come increasingly important. Due to space limit, we briefly discuss some representative

techniques for three main problems: trajectory classification, location prediction and

location recommendation.

Trajectory classification: This problem aims to predict the class of trajectories. Un-

like spatial classification problems for spatial point locations, trajectory classification

can utilize the order of locations visited by moving objects. An approach has been pro-

posed that uses frequent sequential patterns within trajectories for classification [112].

Location prediction: Given historical locations of a moving object (e.g., GPS tra-

jectories, check-in histories), the location prediction problem aims to forecast the next

place that the object will visit. Various approaches have been proposed [113, 114, 115].

The main idea is to identify the frequent location sequences visited by moving objects,

and then next location can be predicted by matching the current sequence with histor-

ical sequences. Social, temporal, and semantic information can also be incorporated to
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improve prediction accuracy. Some other approaches use Hidden Markov Model to cap-

ture the transition between different locations. Supervised approaches have also been

used.

Location recommendation: Location recommendation [116, 117, 118, 119, 120] aims

to suggest potentially interesting locations to visitors. Sometimes, it is considered as a

special location prediction problem which also utilizes location histories of other moving

objects. Several factors are often considered for ranking candidate locations, such as

local popularity and user interests. Different factors can be simultaneously incorporated

via generative models such as Latent Dirichlet allocation (LDA) and probabilistic matrix

factorization techniques.

2.3.4 Spatial and Spatiotemporal Partitioning (Clustering) and Sum-

marization

Problem definition: Spatial partitioning aims to divide spatial items (e.g., vector objects,

lattice cells) into groups such that items within the same group have high proximity.

Spatial partitioning is often called spatial clustering. We use the name ‘spatial parti-

tioning’ due to the unique nature of spatial data, i.e., grouping spatial items also means

partitioning the underlying space. Similarly, spatiotemporal partitioning, or spatiotem-

poral clustering, aims to group similar spatioteompral data items, and thus partition

the underlying space and time. After spatial or spatiotemporal partitioning, one often

needs to find a compact representation of items in each partition, e.g., aggregated statis-

tics or representative objects. This process is further called spatial or spatiotemporal

summarization.

Challenges: The challenges of spatial and spatiotemporal partitioning come from

three aspects. First, patterns of spatial partitions in real world datasets can be of

various shapes and sizes, and are often mixed with noise and outliers. Second, relation-

ships between spatial and spatiotemporal data items (e.g., polygons, trajectories) are

more complicated than traditional non-spatial data. Third, there is a trade-off between

quality of partitions and computational efficiency, especially for large datasets.

Computational approaches: Common spatial and spatiotemporal partitioning ap-

proaches are summarized in below according to the input data types.
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Spatial partitioning (clustering)

Spatial and spatiotemporal partitioning approaches can be categorized by input data

types, including spatial points, spatial time series, trajectories, spatial polygons, raster

images, raster time series, spatial networks, and spatiotemporal points, etc.

Spatial point partitioning (clustering): The goal is to partition two dimensional

points into clusters in Euclidean space. Approaches can be categorized into global

methods, hierarchical methods, and density-based methods according to the underlying

assumptions on the characteristics of clusters [121]. Global methods assume clusters to

have ‘compact’ or globular shapes, and thus minimize the total distance from points

to their cluster centers. These methods include K-means, K-Medoids, EM algorithm,

CLIQUE, BIRCH, and CLARANS [59]. Hierarchical methods [59] form clusters hierar-

chically in a top-down or bottom up manner, and are robust to outliers since outliers

are often easily separated out. Chameleon [122] is a graph-based hierarchical cluster-

ing method that first creates a sparse k nearest neighbor graph, then partitions the

graph into small clusters, and hierarchically merges small clusters whose properties stay

mostly unchanged after merging. Density-based methods such as DB-Scan [123] assume

clusters to contain dense points and can have arbitrary shapes. When the density of

points varies across space, the similarity measure of shared nearest neighbors [124] can

be used. Voronoi diagram [125] is another space partitioning technique that is widely

used in applications of location based service. Given a set of spatial points in Euclidean

space, a Voronoi diagram partitions the space into cells according to the nearest spatial

points.

Spatial polygon clustering: Spatial polygon clustering is more challenging than point

clustering due to the complexity of distance measures between polygons. Distance mea-

sures on polygons can be defined based on dissimilarities on spatial attribute (e.g., Haus-

dorff distance, ratio of overlap, extent, direction, topology, etc.) as well as non-spatial

attributes [126, 127]. Based on these distance measures, traditional point clustering

algorithms such as K-means, CLARANS, and shared nearest neighbor algorithm can be

applied.

Spatial areal data partitioning: Spatial areal data partitioning has been extensively

studied for image segmentation tasks. The goal is to partition areal data (e.g., images)

into regions that are homogeneous in non-spatial attributes (e.g., color or grey tone,
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texture, etc.) while maintaining spatial continuity (without small holes). Similar to

spatial point clustering, there is no uniform solution. Common approaches can be cat-

egorized into non-spatial attribute guided spatial clustering, single, centroid, or hybrid

linkage region growing schemes, and split-and-merge scheme. More details can be found

in a survey on image segmentation [128].

Spatial network partitioning: Spatial network partitioning (clustering) is important

in many applications such as transportation and VLSI design. Network Voronoi diagram

is a simple method to partition spatial network based on common closest interesting

nodes (e.g., service centers). Recently, a connectivity constraint network Voronoi dia-

gram (CCNVD) has been proposed to add capacity constraint to each partition while

maintaining spatial continuity [129]. METIS [130] provides a set of scalable graph

partitioning algorithms, which have shown high partition quality and computational

efficiency.

Spatiotemporal partitioning (clustering)

Spatiotemporal event partitioning (clustering): Most methods for 2-D spatial point clus-

tering [121] can be easily generalized to 3-D spatiotemporal event data [131]. For exam-

ple, ST-DBSCAN [132] is a spatiotemporal extension of the density-based spatial clus-

tering method DBSCAN. ST-GRID [133] is another example that extends grid-based

spatial clustering methods into 3-D grids.

Spatial time-series partitioning (clustering): Spatial time series clustering aims to

divide the space into regions such that the similarity between time series within the same

region is maximized. Global partitioning methods such as K Means, K Medoids, and

EM as well as the hierarchical methods can be applied. Common (dis)similarity mea-

sures include Euclidean distance, Pearson’s correlation, dynamic time warping (DTW)

distance, etc. More details can be found in a recent survey [134]. However, due to the

high dimensionality of spatial time series, density-based approaches and graph-based ap-

proaches are often not used. When computing similarities between spatial time series,

a filter-and-refine approach [65] can be used to avoid redundant computation.

Trajectory partitioning: Trajectory partitioning approaches can be categorized by

their objectives, namely trajectory grouping, flock pattern detection, and trajectory

segmentation. Trajectory grouping aims to partition trajectories into groups according
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to their similarity. There are mainly two types of approaches, i.e., distance-based and

frequency-based. The density based approaches [135, 136, 137] first break trajectories

into small segments and apply distance-based clustering algorithms similar to K-means

or DBSCAN to connect dense areas of segments. The frequency based approach [138]

uses association rule mining [78] algorithms to identify subsections of trajectories which

have high frequencies (also called high ‘support’).

Spatial and spatiotemporal summarization

Data summarization aims to find compact representation of a data set [139]. It is

important for data compression as well as for making pattern analysis more convenient.

Summarization can be done on classical data, spatial data, as well as spatiotemporal

data.

Classical data summarization: Classical data can be summarized with aggregation

statistics such as count, mean, median, etc. Many modern database systems provide

query support for this operation, e.g., ‘Group by’ operator in SQL.

Spatial data summarization: Spatial data summarization is more difficult than clas-

sical data summarization due to its non-numeric nature. For Euclidean space, the task

can be done by first conducting spatial partitioning and then identifying representa-

tive spatial objects. For example, spatial data can be summarized with the centroids

or medoids computed from K Means or K Medoids algorithms. For network space,

especially for spatial network activities, summarization can be done by identifying sev-

eral primary routes that cover those activities as much as possible. A K-Main-Routes

(KMR) algorithm [140] has been proposed to efficiently compute such routes to summa-

rize spatial network activities. To reduce the computational cost, the KMR algorithm

uses network Voronoi diagrams, divide and conquer, and pruning techniques.

Spatiotemporal data summarization: For spatial time series data, summarization can

be done by removing spatial and temporal redundancy due to the effect of autocorrela-

tion. A family of such algorithms has been used to summarize traffic data streams [141].

Similarly, the centroids from K Means can also be used to summarize spatial time series.

For trajectory data, especially spatial network trajectories, summarization is more chal-

lenging due to the huge cost of similarity computation. A recent approach summarizes

network trajectories into k primary corridors [142, 143]. The work proposes efficient
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algorithms to reduce the huge cost for network trajectory distance computation.

2.3.5 Spatial and Spatiotemporal Hotspot Detection

Problem definition: Given a set of spatial objects (e.g. points) in a study area, the

problem of spatial hotspot detection aims to find regions where the number of objects

is unexpectedly or anomalously high. Spatial hotspot detection is different from spatial

partitioning or clustering, since spatial hotspots are a special kind of clusters whose

intensity is “significantly” higher than the outside. Spatiotemporal hotspots can be seen

as a generalization of spatial hotspots with a specified time window.

Challenges: Spatial and spatiotemporal hotspot detection is a challenging task since

the location, size and shape of a hotspot is unknown beforehand. In addition, the num-

ber of hotspots in a study area is often not known either. Moreover, ‘false’ hotspots

that aggregate events only by chance should often be avoided, since these false hotspots

impede proper response by authorities (e.g., wasting police resources). Thus, it is of-

ten important to test the statistical significance of candidate spatial or spatiotemporal

hotspots.

Statistical foundation: Spatial (or spatiotemporal) scan statistics [14, 144] (also

discussed in Section 3.1) are used to detect statistically significant hotspots from spatial

(or spatiotemporal) datasets. It uses a window (or cylinder) to scan the space (or

space-time) for candidate hotspots and performs hypothesis testing. The null hypothesis

states that the spatial (or spatiotemporal) points are completely spatially random (a

homogeneous Poisson point process). The alternative hypothesis states that the points

inside of the window (or cylinder) has higher intensity of points than outside. A test

statistic called log likelihood ratio is computed for each candidate hotspot and the

candidate with the highest likelihood ratio can be further evaluated by its significance

value (i.e., p-value).

Computational approaches: The following subsections summarize common spatial

and spatiotemporal hotspot detection approaches by different input data types.

Spatial Hotspot from Spatial Point Pattern

Spatial partitioning approaches: Spatial point partitioning or clustering methods (Sec-

tion 4.4.1) can be used to identify candidate hotspot patterns. After this, statistical
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tools may be used to evaluate the statistical significance of candidate patterns. Many

of these methods have been implemented in CrimeStat, a software package for crime

hotspot analysis [145].

Spatial scan statistics based approaches: These approaches use a window with vary-

ing sizes to scan the 2-D plane and identifies the candidate window with the highest

likelihood ratio. Statistical significance (p-value) is computed for this candidate based

on Monte Carlo simulation. Scanning windows with different shapes, including circular,

elliptical, as well as ring-shaped, have been proposed together with efficient computa-

tional pruning strategies [144, 146, 147, 148]. SaTScan [144] is a popular spatial scan

statistics tool in epidemiology to analyze circular or elliptical hotspots.

Kernel Density Estimation: Kernel density estimation (KDE) [149] identifies spatial

hotspots via a density map of point events. It first creates a grid over the study area and

uses a kernel function with a user-defined radius (bandwidth) on each point to estimate

the density of points on centers of grid cells. A subset of grid cells with high density

are returned as spatial hotspots.

Spatial Hotspot from Areal Model

Local Indicators of Spatial Association: Local indicators of spatial association (LISA) [150,

151] is a set of local spatial autocorrelation statistics, including local Moran’s I, Geary’s

C or Ord Gi and Gi* functions. It differs from global spatial autocorrelation in that

the statistics are computed within the neighborhood of a location. For example, a high

local Moran’s I indicates that values of the current location as well as its neighbors’

are both extremely high (or low) compared to values at other locations, and thus the

neighborhood is a spatial hotspot (or “cold spot”).

Spatiotemporal Hotspot Detection

Hot routes from spatial network trajectories: Hot routes detection from spatial network

trajectories aims to detect network paths with high density [135] or frequency of tra-

jectories [138]. Other approaches include organizing police patrol routes [152], main

streets [153], and clumping [154], etc.

Spatiotemporal Scan Statistics based approaches: Two types of spatiotemporal hotspots

can be detected by spatiotemporal scan statistics: “persistent” spatiotemporal hotspots
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and “emerging” spatiotemporal hotspots. A “persistent” spatiotemporal hotspot is a

region where the rate of increase in observations is a high and almost constant value over

time. Thus, approaches to detect a persistent spatiotemporal hotspot involves counting

observations in each time interval [144]. An “emerging” spatiotemporal hotspot is a

region where the rate of observations monotonically increases over time [155, 147]. This

kind of spatiotemporal hotspot occurs when an outbreak emerges causing a sudden in-

crease in the number observations. Tools for the detection of emerging spatiotemporal

hotspots use spatial scan statistics to identify changes in expectation over time [156].

2.3.6 Spatiotemporal Change

What are Spatiotemporal Changes and Change Footprints

Although the single term “change” is used to name the spatiotemporal change footprint

patterns in different applications, the underlying phenomena may differ significantly.

This section briefly summarizes the main ways a change may be defined and detected

in spatiotemporal data [51].

Change in Statistical Parameter : In this case, the data is assumed to follow a certain

distribution and the change is defined as a shift in this statistical distribution. For

example, in statistical quality control, a change in the mean or variance of the sensor

readings is used to detect a fault.

Change in Actual Value: Here, change is modeled as the difference between a data

value and its spatial or temporal neighborhood. For example, in a one-dimensional

continuous function, the magnitude of change can be characterized by the derivative

function, while on a two-dimensional surface, it can be characterized by the gradient

magnitude.

Change in Models Fitted to Data: This type of change is identified when a number

of models are fitted to the data and one or more of the models exhibits a change (e.g.,

a discontinuity between consecutive linear functions) [157].

Common Approaches

This section follows the taxonomy of spatiotemporal change footprint patterns as pro-

posed in [51]. In this taxonomy, spatiotemporal change footprints are classified along
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two dimensions: temporal and spatial. Temporal footprints are classified into four cat-

egories: single snapshot, set of snapshots, point in a long series, and interval in a long

series. Single snapshot refers to a purely spatial change that does not have a temporal

context. A set of snapshots indicates a change between two or more snapshots of the

same spatial field, e.g., satellite images of the same region.

Spatial footprints can be classified as raster footprints or vector footprints. Vector

footprints are further classified into four categories: point(s), line(s), polygon(s), and

network footprint patterns. Raster footprints are classified based on the scale of the

pattern, namely, local, focal, or zonal patterns. This classification describes the scale

of the change operation of a given phenomenon in the spatial raster field [158]. Local

patterns are patterns in which change at a given location depends only on attributes

at this location. Focal patterns are patterns in which change in a location depends on

attributes in that location and its assumed neighborhood. Zonal patterns define change

using an aggregation of location values in a region.

Spatiotemporal Change Patterns with Raster-based Spatial Footprint: This includes

patterns of spatial changes between snapshots. In remote sensing, detecting changes be-

tween satellite images can help identify land cover change due to human activity, natu-

ral disasters, or climate change [159, 160, 161]. Given two geographically aligned raster

images, this problem aims to find a collection of pixels that have significant changes

between the two images [162]. This pattern is classified as a local change between snap-

shots since the change at a given pixel is assumed to be independent of changes at other

pixels. Alternative definitions have assumed that a change at a pixel also depends on

its neighborhoods [163]. For example, the pixel values in each block may be assumed

to follow a Gaussian distribution [164]. We refer to this type of change footprint pat-

tern as a focal spatial change between snapshots. Researchers in remote sensing and

image processing have also tried to apply image change detection to objects instead of

pixels [165, 166, 167], yielding zonal spatial change patterns between snapshots.

A well-known technique for detecting a local change footprint is simple differencing.

The technique starts by calculating the differences between the corresponding pixels

intensities in the two images. A change at a pixel is flagged if the difference at the pixel

exceeds a certain threshold. Alternative approaches have also been proposed to discover

focal change footprints between images. For example, the block-based density ratio test
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detects change based on a group of pixels, known as a block [168, 169]. Object-based

approaches in remote sensing [170, 167, 171] employ image segmentation techniques to

partition temporal snapshots of images into homogeneous objects [172] and then classify

object pairs in the two temporal snapshots of images into no change or change classes.

Spatiotemporal Change Patterns with Vector-based Spatial Footprint: This includes

the Spatiotemporal Volume Change Footprint pattern. This pattern represents a change

process occurring in a spatial region (a polygon) during a time interval. For example,

an outbreak event of a disease can be defined as an increase in disease reports in a certain

region during a certain time window up to the current time. Change patterns known to

have an spatiotemporal volume footprint include the spatiotemporal scan statistics [173,

174], a generalization of the spatial scan statistic, and emerging spatiotemporal clusters

defined by [156].

2.4 Research Trend and Future Research Needs

Most current research in spatial and spatiotemporal data mining uses Euclidean

space, which often assumes isotropic property and symmetric neighborhoods. However,

in many real world applications, the underlying space is network space, such as river

networks and road networks [175, 176, 140]. One of the main challenges in spatial

and spatiotemporal network data mining is to account for the network structure in the

dataset. For example, in anomaly detection, spatial techniques do not consider the

spatial network structure of the dataset, that is, they may not be able to model graph

properties such as one-ways, connectivity, left-turns, etc. The network structure often

violates the isotropic property and symmetry of neighborhoods, and instead, requires

asymmetric neighborhood and directionality of neighborhood relationship (e.g., network

flow direction).

Recently, some cutting edge research has been conducted in the spatial network

statistics and data mining [18]. For example, several spatial network statistical methods

have been developed, e.g., network K function and network spatial autocorrelation.

Several spatial analysis methods have also been generalized to the network space, such as

network point cluster analysis and clumping method, network point density estimation,
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network spatial interpolation (Kriging), as well as network Huff model. Due to the

nature of spatial network space as distinct from Euclidean space, these statistics and

analysis often rely on advanced spatial network computational techniques [18].

We believe more spatial and spatiotemporal data mining research is still needed in

the network space. First, though several spatial statistics and data mining techniques

have been generalized to the network space, few spatiotemporal network statistics and

data mining have been developed, and the vast majority of research is still in the Eu-

clidean space. Future research is needed to develop more spatial network statistics,

such as spatial network scan statistics, spatial network random field model, as well as

spatiotemporal autoregressive models for networks. Furthermore, phenomena observed

on spatiotemporal networks need to be interpreted in an appropriate frame of reference

to prevent a mismatch between the nature of the observed phenomena and the mining

algorithm. For instance, moving objects on a spatiotemporal network need to be stud-

ied from a traveler’s perspective, i.e., the Lagrangian frame of reference [177, 178, 179]

instead of a snapshot view. This is because a traveler moving along a chosen path in

a spatiotemporal network would experience a road-segment (and its properties such as

fuel efficiency, travel-time etc.) for the time at which he/she arrives at that segment,

which may be distinct from the original departure-time at the start of the journey.

These unique requirements (non-isotropy and Lagrangian reference frame) call for novel

spatiotemporal statistical foundations [175] as well as new computational approaches

for spatiotemporal network data mining.

Another future research need is to develope spatiotemporal graph big data plat-

forms, motivated by the upcoming rich spatiotemporal network data collected from

vehicles. Modern vehicles have rich instrumentation to measure hundreds of attributes

at high frequency and are generating big data (Exabyte [180]). This vehicle measure-

ment big data (VMBD) consist of a collection of trips on a transportation graph such

as a road map annotated with several measurements of engine sub-systems. Collecting

and analyzing VMBD during real-world driving conditions can aid in understanding

the underlying factors which govern real world fuel inefficiencies or high greenhouse gas

(GHG) emissions [181]. Current relevant big data platforms for spatial and spatiotem-

poral data mining include ESRI GIS Tools for Hadoop [182, 183], Hadoop GIS [184],
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etc. These provide distributed systems for geometric-data (e.g., lines, points and poly-

gons) including geometric indexing and partitioning methods such as R-tree, R+-tree, or

Quad tree. Recently, SpatialHadoop has been developed [185]. SpatialHadoop embeds

geometric notions in language, visualization, storage, MapReduce, and operations lay-

ers. However, spatio-temporal graphs (STGs) violate the core assumptions of current

spatial big data platforms that the geometric concepts are adequate for conveniently

representing STG analytics operations and for partition data for load-balancing. STGs

also violate core assumptions underlying graph analytics software (e.g., Giraph [186],

GraphLab [187] and Pregel [188]) that traditional location-unaware graphs are ade-

quate for conveniently representing STG analytics operations and for partition data for

load-balancing. Therefore, novel spatiotemporal graph big data platforms are needed.

Several challenges should be addressed, e.g., spatiotemporal graph big data requires

novel distributed file systems (DFS) to partition the graph, and a novel programming

model is still needed to support abstract data types and fundamental STG operations,

etc.

2.5 Summary

This paper provides an over view of current research in the field of spatial and spa-

tiotemporal (SST) data mining from a computational perspective. SST data mining

has broad application domains including ecology and environmental management, pub-

lic safety, transportation, earth science, epidemiology, and climatology. However, the

complexity of SST data and intrinsic SST relationships limit the usefulness of conven-

tional data mining techniques. We provide a taxonomy of different SST data types and

underlying statistics. We also review common SST data mining techniques organized

by major output pattern families: SST outlier, coupling and tele-coupling, prediction,

partitioning and summarization, hotspots, and change patterns. Finally, we discuss the

recent research trends and future research needs.



Chapter 3

Focal-Test-Based Spatial Decision

Tree

3.1 Introduction

Given a spatial raster framework, as well as training and test sets, the spatial decision

tree learning (SDTL) problem aims to find a decision tree model that minimizes classifi-

cation errors as well as salt-and-pepper noise. Figure 3.1 is a motivation example from a

real world wetland mapping application. Input features are bands of three aerial photos

(Figure 3.1(a-c)). Classification results by two existing decision tree classifiers [189],

[190] are shown in Figure 3.1(e) and 3.1(f) respectively. Both predicted maps exhibit

poor appearance accuracy with high levels of salt-and-pepper noise, when compared

with ground truth classes (Figure 3.1(d)).

Societal Applications: The SDTL problem has many applications. In the field of

remote sensing, a large amount of images of the earth surface are collected (e.g., NASA

collects about 5TB data per day). SDTL can be used to classify remote sensing images

into different land cover types [191]. For example, in wetland mapping [192] [193],

explanatory features, including spectral bands (e.g., red, green, blue, near-infrared)

from remote sensors, are used to map land surface into wetland areas and dryland

areas. Land cover classification is important for climate change research[194], natural

resource management [195] [196], and disaster management [197], etc. In medical image

processing, SDTL can help in lesion classification and brain tissue segmentation [198]

35
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[199] on MRI images. It can also be used for galaxy classification [200] in astronomy

and semi-conductor inspection [201] in materials science.

(a) aerial photo in 2003 (b) aerial photo in 2005 (c) aerial photo in 2008

(d) ground truth classes

(red for dry land, green for

wetland)

(e) prediction of a C4.5 de-

cision tree

(f) prediction of a spatial-

information-gain-based de-

cision tree

Figure 3.1: Real world problem example

Challenges: A key challenge in the SDTL problem is that learning samples show

spatial autocorrelation in class labels. For example, the ground truth class labels in

Figure 3.1(d) show strong spatial autocorrelation due to the phenomenon of “patches”

(i.e., regions of the same class tend to be contiguous). Testing only local feature infor-

mation in decision nodes results in salt-and-pepper noise, i.e., locations or pixels whose
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Local-Test-Based Decision Tree 

Traditional 
Non-spatial Tree 

Decision Tree 

Spatial Entropy or  
Information Gain 

Proposed Approach 
Focal-Test-Based Spatial Decision Tree 

Figure 3.2: Related work classification

class labels are different from those of their neighbors, as illustrated in Figure 3.1(e).

However, incorporating focal (i.e., neighborhood) information increases both the num-

ber and the complexity of candidate tree node tests. Instead of simple linear scanning

and thresholding on one dimensional feature values, tree node tests must incorporate

the spatial relationships of various neighborhood sizes. Thus, SDTL problem is also

computationally challenging.

Related work and limitations: Figure 4.2 presents a classification of related work.

Traditional decision tree algorithms include ID3 [202], C4.5 [189] and CART [203]).

These classifiers follow the classic assumption that learning samples are independently

and identically distributed. This assumption does not hold for spatial data and leads

to salt-and-pepper noise in predictions. A second category are the spatial entropy or

information gain based decision tree classifiers [204] [205] [206] [190]. These newer

methods use spatial autocorrelation level as well as information gain to select candidate

tree node tests. While they do a better job if there exists some feature that favors spatial

autocorrelation but does not provide the largest information gain in one tree node test,

they still relies on local testing of information by tree nodes. Thus if all the candidate

tests have poor spatial autocorrelation, this type of decision tree will still select one

of them, resulting in salt-and-pepper noise. This means neither approach adequately

accounts for spatial autocorrelation in the prediction phase.

To address this limitation, we recently defined a focal-test-based spatial decision

tree (FTSDT) model [207], whereby the tree traversal direction of a learning sample

is based on not only local but also focal (neighborhood) properties of features. We

proposed FTSDT learning algorithms and evaluated the classification performance of the

proposed approach on real world remote sensing datasets. We also extended the basic
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FTSDT algorithm in a journal paper [208] with the following additional contributions:

1. We add a new design decision in the FTSDT model to allow focal function com-

putation with adaptive neighborhoods (i.e., FTSDT-adaptive). Compared with

previous FTSDT with fixed neighborhoods (i.e., FTSDT-fixed), the new design

decision can adjust the neighborhood shape to avoid over-smoothing in wedge-

shaped areas.

2. We characterize the computational structure of the FTSDT learning algorithm

and confirm that the computational bottleneck is a vast number of focal function

computations. We design a refined algorithm (FTSDT-Refined) that reuses focal

values across candidate thresholds and prove its correctness.

3. We also provide cost models of our previous baseline algorithm and our refined

algorithm, and show that the refined algorithm improves computational scalability.

4. We compare the classification performance of FTSDT-adaptive with FTSDT-fixed

as well as LTDT on real world datasets. Results show that FTSDT-adaptive

improves classification accuracy of FTSDT-fixed and LTDT.

5. We also conduct experimental evaluations of computational performance on real

world datasets with various parameter settings. Experiment results show that our

refined algorithm significantly reduces computational time cost.

Scope: This work focuses on incorporating focal tests inside a decision tree for raster

data classification. Other classification algorithms such as Markov Random Field [209],

Spatial Autoregression (SAR) model [210], logistic regression, neural network, etc., are

beyond the scope. In addition, for simplicity, this work only considers learning samples

with continuous features. The case of discrete features is not addressed.

Outline: The chapter is organized as follows: Section 3.1 introduces basic concepts

and formalizes the SDTL problem; Section 3.2 presents our FTSDT learning algorithm,

especially a new design decision to allow focal function with adaptive neighborhoods.

Section 3.3 describes computational optimization, and the refined algorithm design with

theoretical analysis. Computational and classification performance of the proposed algo-

rithms are evaluated in Section 3.4. Section 3.6 discusses some other relevant techniques

in the literature. Section 3.7 concludes the paper with future work.
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3.2 Basic Concepts and Problem Formulation

This section introduces basic concepts and formally defines the spatial decision tree

learning problem.

3.2.1 Basic Concepts

Spatial raster framework : A spatial raster framework F is a tessellation of a 2-D plane

into a regular grid. On a spatial raster framework, there may exist a set of explanatory

feature maps, as well as a class label map. For example, Figure 3.3 shows a spatial raster

framework with explanatory features f1, f2, ..., fm, and a class label map c. Each grid

cell on the raster framework is a spatial data sample (e.g., location i in Figure 3.3). For

simplicity, we use the words “sample,” “pixel,” “location,” and “spatial data sample”

interchangeably in the remainder of the paper.

Neighborhood relationship: a spatial neighborhood relationship describes the range

of dependency between spatial locations. It is commonly represented as a W-matrix,

whose element Wi,j has a non-zero value when locations i and j are neighbors, and a zero

value otherwise. For example, in Figure 3.3, the pixel in dark grey has eight neighbors

indicated in light grey in a 3-by-3 neighborhood.
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Figure 3.3: Example of a spatial raster framework and a neighborhood relationship

Salt-and-pepper noise: Salt-and-pepper noise is defined as a kind of fat-tail impulse

noise whose values are often extreme (e.g., minimum or maximum) [211]. In a predicted

class label map, salt-and-pepper noise can be considered as a single pixel (or a small
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group of contiguous pixels) that is distinct from its (or their) spatial neighborhood. For

example, in Figure 3.4(i), the central pixel is salt-and-pepper noise.
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Figure 3.4: Comparison of a local test v.s. a focal test, a local-test-based decision tree

v.s. a focal-test-based spatial decision tree. (“T” is “true”, “F” is “false”)

Local test and indicators: A local test fm ≤ δ checks the value of feature fm at a

sample’s location against a threshold δ. The local test results can be represented as

indicator variable I(fm ≤ δ) or simply I, whose value is 1 when fm ≤ δ is true and −1
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Table 3.1: List of symbols and descriptions
Symbols Descriptions

δ a local test threshold

⊕ logic operator “xor”, i.e., 0 ⊕
1 = 1, 1 ⊕ 0 = 1, 0 ⊕ 0 = 0,
1⊕ 1 = 0

Wi,j neighborhood relationship be-
tween location i and location
j

fm, fmi value of feature m, the feature
value at location i

I(fm ≤ δ), Ii indicator variable of local test
fm ≤ δ, the indicator variable
at location i

Γ, Γi focal Gamma autocorrelation
statistic, the focal Gamma at
location i

otherwise. A decision tree whose tree nodes conducts local tests is called a local-test-

based decision tree (LTDT). For example, given the feature f1 shown in Figure 3.4(a),

the local test results of f1 ≤ 1 and corresponding indicator variables are shown in

Figure 3.4(e) and 3.4(c) respectively. The corresponding LTDT and its class predictions

with salt-and-pepper noise are shown in Figure 3.4(g) and 3.4(i).

Focal function and spatial autocorrelation statistic: A focal function is an aggregate

of non-spatial attribute values in the neighborhood of a location. One important kind of

focal function is focal autocorrelation statistic, which measures the dependency between

attribute values of a location and the values of its neighbors. For example, the focal

Gamma index [212] on local test indicators is defined as

Γi =

∑
j Wi,jIiIj∑

j Wi,j
,

where i and j are locations, Wi,j is a W-matrix element, and Ii, Ij are indicator vari-

ables of a local test. A negative focal Gamma value (i.e., Γ < 0) indicates that the

current location is potentially salt-and-pepper noise. Figure 3.4(b) shows an example

of focal Gamma values computed on indicator variables in Figure 3.4(c) with a 3-by-3

neighborhood. The central location has a negative Gamma because its local test result
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is different from its neighbors’.

Focal test : A focal test is a test or a combination of tests on attribute values in a

neighborhood of a location. For example, f ≤ δ ⊕ Γ < 0, where ⊕ is an “xor” logical

operator, is a focal test that combines a local test f ≤ δ and the test Γ < 0. This

combined focal test is less prone to salt-and-pepper noise, compared with the local test

f ≤ δ only. The reason is that salt-and-pepper noise pixels often have a negative focal

gamma index (i.e., Γ < 0 is true), and their local test results (f ≤ δ) are flipped by

logical operator ⊕ (i.e., “false” xor true becomes “true,” and “true” xor true becomes

“false”). For instance, the local test result of the central pixel in Figure 3.4(e) is true, but

false for its neighborhood; while the focal test result of the same pixel in Figure 3.4(f)

is false, and the same as for its neighborhood.

Focal-test-based spatial decision tree (FTSDT): An FTSDT is a tree whose nodes

conduct focal tests. An example of FTSDT is in Figure 3.4(h) and its class predictions

are in Figure 3.4(j). In our approach, both local tests and focal tests are defined on a

single feature. When multiple features exist, the local test or focal test on each feature

is considered as a candidate tree node test and the best candidate test is selected for a

tree node, similar to the situation of a traditional decision tree.

3.2.2 Problem Definition

Based on the concepts above, the spatial decision tree learning problem is formally de-

fined as follows:

Given:

• A spatial raster framework F

• A spatial neighborhood definition, and its maximum size Smax

• Training and test samples drawn from F

Find:

• A decision tree model based on training samples.

Objective:

• Minimize classification errors as well as salt-and-pepper noise

Constraints:

• Training samples form contiguous patches of locations in F
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• Spatial autocorrelation exists in class labels

Training Set 

Test Set 

(a) a raster framework

1 1 1 1 3 3 3 3 
1 1 1 1 3 3 1 3 
1 3 1 1 3 3 3 3 
1 1 1 1 3 3 3 3 
1 1 1 1 3 3 3 3 
1 1 1 1 3 3 1 3 
1 3 1 1 3 3 3 3 
1 1 1 1 3 3 3 3 

(b) a feature (c) ground truth class

labels

f1	
  ≤	
  1	
  
true (T) false (F) 

	
  	
  red	
  	
  green	
  

prediction on right leaf prediction on left leaf 

tree node test result: 
f1 ≤ 1, T: true , F: false 
T T T T 
T T T T 
T F T T 
T T T T 

F F F F 
F F T F 
F F F F 
F F F F 

1	
   1	
   1	
   1	
   3	
   3	
   3	
   3	
  
1	
   1	
   1	
   1	
   3	
   3	
   1	
   3	
  
1	
   3	
   1	
   1	
   3	
   3	
   3	
   3	
  
1	
   1	
   1	
   1	
   3	
   3	
   3	
   3	
  

feature f1 

(d) an LTDT and its predictions

	
  	
  f1	
  ≤	
  1	
  	
  	
  	
  	
  	
  	
  Γ	
  <	
  0	
  
true (T) false (F) 

	
  	
  red	
  	
  green	
  

prediction on right leaf prediction on left leaf 

f1 ≤ 1, T: true , F: false 
T T T T 
T T T T 
T F T T 
T T T T 

F F F F 
F F T F 
F F F F 
F F F F 

Γ < 0, T: true , F: false 
F F F F 
F F F F 
F T F F 
F F F F 

F F F F 
F F T F 
F F F F 
F F F F 

(f1 ≤ 1)      (Γ < 0), T: true , F: false 
T T T T 
T T T T 
T T T T 
T T T T 

F F F F 
F F F F 
F F F F 
F F F F 

�

�

(e) an FTSDT and its predictions

Figure 3.5: An illustrative problem example (best viewed in color).

Problem description: The output decision tree model can be a local-test-based deci-

sion tree or a focal-test-based spatial decision tree, depending on the selected approach.

Parameters to be learned from the training set are the tree structure, as well as which

feature f , test thresholds δ, and proper neighborhood size s (in the case of FTSDT) to

use in each tree node.

Example: Consider the example of problem inputs and outputs in Figure 3.5. The

raster spatial framework F , shown in Figure 3.5(a), consists of training pixels on the
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upper half and test pixels on the lower half. Neighborhood relationship is defined as a 3-

by-3 square window. The minimum tree node size is 4. Figure 3.5(b) shows a candidate

feature f1. Figure 3.5(c) shows the ground truth class labels. The output local-test-

based traditional decision tree learned from the training set and its predictions with

salt-and-pepper noise are shown in Figure 3.5(d). In contrast, the output focal-test-

based spatial decision tree and its predictions without salt-and-pepper noise are shown

in Figure 3.5(e).

3.3 FTSDT Learning Algorithms

This section describes the baseline FTSDT learning algorithm (i.e., without computa-

tional optimization) of the focal-test-based spatial decision tree. The learning algorithm

has two phases: a training phase, FTSDT-Train; and a prediction phase, FTSDT-

Predict. FTSDT-Train here extends the previous one we proposed in [207] by allowing

focal function tests with adaptive neighborhoods to avoid over-smoothing in wedge-

shaped areas.

3.3.1 Training Phase

FTSDT-Train (Algorithm 1) learns an FTSDT classifier from training samples. It in-

cludes two sub-routines (Node-Split and Focal Function). Similar to traditional C4.5

[189], it is a divide and conquer method with a greedy strategy (i.e., maximize informa-

tion gain).

Steps 1 to 3 check the stopping criteria. If the training samples are less than the

minimum tree node size, or all the class labels are identical, a leaf labeled with the

majority class will be returned.

Steps 4 to 13 enumerate through every candidate feature f , every neighborhood

size s, and every candidate threshold δ to select the best setting for a model tree node.

Candidate thresholds δ are generated from distinct values of feature f in the training

samples (steps 8 to 9). Step 10 calls a Node-Split subroutine to split training samples.

Step 11 evaluates the corresponding information gain on the column of class labels.

Steps 12-13 update the current best candidate test.

Steps 14 to 18 create an internal node with the best test, split the training samples
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Algorithm 1 FTSDT-Train(T , Smax, N0, neighType)

Input:
• T : rows are samples, columns are features (last column as class)
• Smax: maximum neighborhood size
• N0: minimum decision tree node size
• neighType: neighborhood type, 0 for fixed neighborhood, 1 for adaptive neigh-
borhood

Output:
• root of an FTSDT model

1: let N be number of samples, F be number of features, c be column index of classes;
IG0 = −∞

2: if N < N0 or T same class then
3: return a leaf node;
4: for each f ∈ {1...F} do
5: sort rows of T //in ascending order of f th column
6: for each s ∈ {0...Smax} do
7: for each i ∈ {N0...(N −N0)} do
8: if T [i][f ] < T [i+ 1][f ] then
9: δ = T [i][f ]

10: {T1, T2} = Node-Split(T , f , δ, s, neighType);
11: IG = InformationGain(T [ ][c], T1[ ][c], T2[ ][c])
12: if IG > IG0 then
13: IG0 = IG; s0 = s; f0 = f ; δ0 = δ = T [i][f ];
14: I = CreateInternalNode(f0, δ0, s0);
15: {T1, T2} = Node-Split(T , f0, δ0, s0, neighType);
16: I.left = FTSDT-Train(T1, Smax, N0, neighType)
17: I.right = FTSDT-Train(T2, Smax, N0, neighType)
18: return I

into two subsets accordingly, recursively call FTSDT-Train on each subset, and return

the internal node.

Node-Split: The Node-Split subroutine (Algorithm 2) splits the training samples

into two subsets based on their focal test results, and proceeds as follows:

Step 1 initializes the two subsets as empty sets. Samples with node test results

TRUE will be assigned to one subset and samples with test results FALSE will be

assigned to the other.

Steps 2 to 11 compute the focal tree node test result of each training sample and



46

Algorithm 2 Node-Split(T , f , δ, S, neighType)

Input:
• T : rows as samples, columns as features (last column as class)
• f : a feature index
• δ: threshold of feature test
• S: neighborhood size
• neighType: neighborhood type, 0 for fixed neighborhood, 1 for adaptive neigh-
borhood

Output:
• {T1, T2}: sample subsets with test results true and false respectively

1: T1 = T2 = ∅
2: for each i ∈ {1...N} do
3: indicators I[i] = I(T [i][f ] ≤ δ)
4: for each i ∈ {1...N} do
5: focalFun[i] = FocalFunction(I[], i, s, neighType)
6: focalTest[i] = FocalTest(I[i], focalFun[i])
7: if focalTest[i] == true then
8: T1 = T1 ∪ {T [i]}
9: else

10: T2 = T2 ∪ {T [i]}
11: return {T1, T2}

add the sample to its appropriate subset accordingly. The algorithm begins by com-

puting local test indicators (I) of all samples. It then computes the focal function

value (focalFun[i]) via a FocalFunction subroutine, and computes the focal test result

(focalTest[i]) on each sample location. For example, we may specify the focal function

as Γ, and the focal test as “f ≤ δ ⊕ Γ < 0”.

FocalFunction: The FocalFunction subroutine (Algorithm 3) computes the focal

function values of local test indicators in the neighborhood of a location. It has an

important parameter neighType, whose value is 0 for a fixed neighborhood, and is 1 for

an adaptive neighborhood. The intuition behind an adaptive neighborhood is to utilize

spatial topological relationships to select proper neighbors of the central pixel in a fixed

window.

Step 1 identifies all locations within the window of size 2s+1 by 2s+1 centered on

the current location. These locations are potential neighbors of i.
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Algorithm 3 FocalFunction(I, i, s, neighType)

Input:
• I: vector of indicator variable values
• i: current location
• s: neighborhood window size
• neighType: neighborhood type, 0 for fixed neighborhood, 1 for adaptive neigh-
borhood

Output:
• FocalFun[i]: focal function value at current location i

1: identify the 2s+1 by 2s+1 window centered on location i
2: if adaptNeigh == 0 then
3: Wi,j = 1 for all j in the window, Wi,j = 0 otherwise.
4: else
5: get connected components of same I values in the window
6: identify the topologically outermost component cc0 that contains or surrounds

location i
7: Wi,j = 1 for all j in cc0, Wi,j = 0 otherwise.
8: compute focal function value foc at location i based on Wi,j

9: return foc

Steps 2 and 3 determine that all the locations in the window are neighbors of i if a

fixed neighborhood is used, similar to our previous work in [207].

Steps 4 to 7 determine which locations in the window are neighbors if an adaptive

neighborhood is used. The window is first segmented into different connected compo-

nents, each of which has the same the indicator value. Then the component that is the

outermost, and that surrounds or contains the current location i, is considered as the

actual set of neighbors.

Steps 8 and 9 compute a focal function value based on the neighbors identified, and

return the value.

Illustration: The entire execution trace of FTSDT-Train with fixed neighborhoods

can be found in [207]. Due to space limitations, here we only illustrate the extension of

focal tests with adaptive neighborhoods by comparing them with fixed neighborhoods.

Consider the example in Figure 3.6, which describes one iteration of candidate test

selection (steps 9 to 10 in Algorithm 1). Assume that the current neighborhood window

size is s = 2 (i.e., 5 by 5).

Figure 3.6(a)-(c) shows current candidate feature f , ground truth classes, and local
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test indicators on the current test threshold δ = 1 respectively. The feature f map

(Figure 3.6(a)) contains a wedge-shaped patch (fifteen pixels with feature value 1 on

the lower left corner) and three salt-and-pepper noise pixels. The pixels on the wedge-

shaped patch are not salt-and-pepper noise, and thus shoud not be smoothed (i.e.,

should avoid over-smoothing).

Figure 3.6(d)-(f) shows the focal test results with fixed neighborhoods. For instance,

Figure 3.6(d) highlights the fixed neighborhood (in light grey) of a central pixel (in dark

grey), which contains too many irrelevant pixels (with indicator value -1) outside the

wedge-shaped patch (the one we previously describe in the last paragraph). The focal

function Γ of the central pixel is -0.3 (i.e., Γ < 0) as shown in dark grey in Figure 3.6(e),

mistakenly indicating that it is salt-and-pepper noise. Thus, its final focal test result

mistakenly flips its local test result from “true” to “false”. Similarly, several other pixels

in the wedge-shaped patch are also over-smoothed. The final over-smoothed focal test

results of the patch is shown in dark grey in Figure 3.6(f).
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(i) focal test results

Figure 3.6: Comparison of focal tests with fixed and adaptive neighborhoods, s = 2

(i.e., 5 by 5 window).

In contrast, the bottom row of Figure 3.6 shows focal test results with adaptive

neighborhoods. Figure 3.6(g) highlights an adaptive neighborhood (in light grey) of the

central pixel (in dark grey), which is a connected component (with indicator value 1)
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Algorithm 4 FTSDT-Predict(R, T )

Input:
• R: root of an FTSDT model
• T : rows as samples, columns as features

Output:
• C: C[i] as class label of ith sample

1: if R.type == Leaf then
2: assign C with R.class
3: return C
4: f0 = R.f , δ0 = R.δ, s0 = R.s
5: {T1, T2} = Node-Split (T , f0, δ0, s0)
6: C1 = FTSDT-Predict (R.Left, T1);
7: C2 = FTSDT-Predict (R.Right, T2);
8: return C = combine(C1, C2)

that contains the central dark pixel. The focal function Γ of the central pixel is now

1 (Figure 3.6(b)) based on the adaptive neighborhood. Thus, the final focal test is

still “true” (Γ < 0 is false, “true” xor false is still “true”). The three salt-and-pepper

noise pixels are still smoothed. Comparing Figure 3.6(f) and 3.6(i), it is clear that focal

tests with adaptive neighborhoods can better separate the two classes (i.e., give higher

information gain) due to less over-smoothing of the wedge-shaped area.

3.3.2 Prediction Phase

The FTSDT-Predict algorithm (Algorithm 4) uses an FTSDT to predict the class labels

of test samples based on their feature values and a spatial neighborhood structure. It is

a recursive algorithm. If the tree node is a leaf, then the class label of the leaf is assigned

to all current samples. Otherwise, samples are split into two subsets according to the

focal test results in the root node, and each subset is classified by its corresponding

sub-tree.

3.4 Computational Optimization: A Refined Algorithm

This section addresses the computational challenges of the focal-test-based spatial deci-

sion tree learning process. It first identifies the computational bottleneck of the baseline

training algorithm; then proposes a refined algorithm, proves its correctness; and finally
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provides a cost model for the computational complexity. For simplicity, examples in

this section are with a fixed neighborhood. However, the proposed refined algorithm

and its analysis are also applicable to the case of adaptive neighborhoods.

3.4.1 Computational Bottleneck Analysis

Recall that the baseline algorithm (Algorithm 1) calls a Node-Split sub-routine for ev-

ery distinct value (i.e., candidate threshold) on every feature and neighborhood size.

Each call involves focal function computations for all samples, and is therefore a likely

computational bottleneck. To verify this hypothesis, we conducted computational bot-

tleneck analysis with parameter settings Smax = 5 and N0 = 50. The results, shown in

Figure 3.7, confirm that the focal function computation accounts for the vast majority

of total time cost. Furthermore, this cost increases much faster than other costs as

training sample sizes increase.
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Figure 3.7: Computational bottleneck analysis in training algorithms

3.4.2 A Refined Algorithm

To reduce the computational bottleneck shown above, we designed a refined approach

called cross-threshold-reuse. This approach is based on the observation that when the
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candidate threshold value increases, only a small number of samples have their local

and focal test results updated. In other words, once computation is completed for one

candidate threshold, the test results of most samples will remain the same and can be

reused for consecutive thresholds. An illustrative example is given in Figure 3.8(a)-(c),

where the values of feature f are shown in Figure 3.8(a), and the local indicators and

focal gamma values for test thresholds δ = 1 and δ = 2 are shown in Figure 3.8(b)

and 3.8(c), respectively. As can be seen, only location 2 and its neighbors update local

indicators and focal values (shown in grey color in Figure 3.8(b)).

1 9 9 9 
2 9 9 9 
3 8 7 6 
4 5 5 5 

(a) feature f

map

1 -1 -1 -1 
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Figure 3.8: Illustrative example of redundant focal Γ computation.

The cross-threshold-reuse approach updates one sample at a time together with its

neighbors. The details of this approach are given in the algorithm FTSDT-Train-Refined

(Algorithm 5). The key difference from previous FTSDT-Train is that the refined

algorithm calls the Node-Split subroutine (Algorithm 2) only once. For subsequent

sample indices (potential candidate thresholds), it calls Node-Split-Update sub-routine
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(Algorithm 6) instead. More specifically, in step 7, it finds the first effective candidate

threshold (guaranteed minimum node size N0). In step 8, it enumerates all possible

sample indices. If it is the first enumeration, Node-Split is called to completely compute

and memorize local and focal results for all samples (steps 9 to 10). Otherwise, Node-

Split-Update is called to avoid redundant computation (step 12). Steps 13 to 16 check

if the current split index i is an effective split threshold, and if so, information gain is

evaluated to maintain the current best candidate test.
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Algorithm 5 FTSDT-Train-Refined(T , Smax, N0)

Input:

• T : rows as samples, columns as features (last column as class)

• Smax: maximum neighborhood size

• N0: minimum decision tree node size

Output:

• root of an FTSDT model

1: denote N as number of samples , F as number of features, c as column index of

classes ; IG0 = −∞
2: if N < N0 or T same class then

3: return a leaf node;

4: for each f ∈ {1...F} do

5: sort rows of T //in ascending order of f th column

6: for each s ∈ {0...Smax} do

7: i0 = first i with T [i][f ] > T [N0][f ]

8: for each i ∈ {(i0 − 1)...(N −N0)} do

9: if first time then

10: // memorize indicator, focalFunc, T1, T2

{T1, T2} = Node-Split(T , f , δ = T [i][f ], s)

11: else

12: // update indicator, focalFunc, T1, T2

Node-Split-Update(indicator, focalFunc, i, s, {T1, T2})
13: if T [i][f ] < T [i+ 1][f ] then

14: IG = InformationGain(T [ ][c], T1[ ][c], T2[ ][c])

15: if IG > IG0 then

16: IG0 = IG; s0 = s; f0 = f ; δ0 = δ = T [i][f ]

17: I = CreateInternalNode(f0, δ0, s0);

18: {T1, T2} = Node-Split(T , f0, δ0, s0);

19: I.left = FTSDT-Train-Refined(T1, Smax, N0)

20: I.right = FTSDT-Train-Refined(T2, Smax, N0)

21: return I
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Details of the Node-Split-Update sub-routine are given in Algorithm 6. The input

of this sub-routine includes the current local and focal test results, the index of the cur-

rently enumerated sample i, neighborhood size s, and the current split result {T1, T2}.
Node-Split-Update begins by updating the local and focal tests of sample i, and adjust-

ing {T1, T2} accordingly. Then it updates the test results of every neighbor j of sample

i, and adjusts {T1, T2}. These updates all carry a constant time cost since these are

done in only one small neighborhood window.

Algorithm 6 Node-Split-Update(indicator, focalFunc, i, s, {T1, T2})
Input:

• indicator: array of local result as I(f ≤ δ)
• focalFunc: array of focal function values, e.g., ΓS

I

• i: index of sample shifted below threshold

• s: neighborhood size

• {T1, T2}: two subsets of samples

1: indicator[i] = 1; update focalFunc[i], and then {T1, T2}
2: for each j ∈ N s(i) // N s(i) is i’s neighborhood of size s do

3: update indicator[j], focalFunc[j], and then {T1, T2}

Execution trace: Figure 3.8 illustrates the execution trace of steps 8 to 12 of the

new update algorithm. The context is as follows: feature f is shown in Figure 3.8(a);

s = 1 (3 by 3 fixed neighborhood); N0 = 1; the local indicator is I(f ≤ δ); and the focal

function is Γ as before. Figure 3.8 (b)-(i) are local indicators and focal function values

under different candidate test thresholds (1 to 5). The refined algorithm only updates

the local indicators and focal values, shown in grey colors of Figure 3.8(c-e) and 3.8(g-i).

3.4.3 Theoretical analysis

We now prove the correctness of proposed computationally refined algorithm. We also

provide a cost model of computational complexity. The proof of correctness is non-

trivial, because when the candidate threshold changes, multiple sample locations as

well as their neighbors may need to update their focal values (e.g., Figure 3.8(f)), and

these updates are at the same time. However, our approach still simply changing one
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sample location as well as its neighbors each time (e.g., Figure 3.8(g-i)), and it has the

same results.

Theorem 1. The FTSDT-Train-Refined algorithm is correct, i.e., it returns the same

output as FTSDT-Train.

Proof. We need only look at steps 7 to 16. The initial value of i in the for-loop here (i.e.,

one step ahead of the first sample whose feature value is greater than that of N0) is the

same as that value in FTSDT-Train, due to the if-condition in step 8 of FTSDT-Train.

Now we focus on the local and focal computation part in steps 9 to 12. We will prove

it in two cases as below.

Case 1: a new threshold shifts only one sample i, i.e., T [i][f ] < T [i + 1][f ]. In this

case, the local result I(f ≤ δ) changes only on sample i, i.e., I[i] = 1, while the feature

value f is unchanged. Since the focal function of a sample only depends on f and I in its

neighborhood, its value changes only on sample i and its neighbor js. Thus, Node-Split-

Update in this case is correct. One example of this case appears in Figure 3.8(b)(c).

Case 2: a new threshold shifts multiple samples, i.e., T [i][f ] = T [i + 1][f ] = ... =

T [i+ k][f ] < T [i+ k + 1][f ]. In this case, our refined algorithm still only updates sample

i and its neighbors, as though T [i][f ] < T [i + 1][f ] (in other words, as though T [i][f ]

were an effective candidate threshold). This updating process continues until new i

becomes i + k, i.e., the next effective candidate threshold. If the feature value T [i][f ]

were strictly increasing, the final local and focal values should be correct, as proved in

case 1. Meanwhile, it is also obvious that whether feature values are strictly increasing

or not before i = i + k does not influence the final local and focal values. Thus, the

final updated result for i = i + k is also correct. An example for this case is given in

Figure 3.8(c)(d).

To analyze the cost model of the two proposed training algorithms, we denote the

following variables:

• N : number of samples

• Nd: number of distinct feature values

• Smax: maximum neighborhood size
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Table 3.2: Simplified cost model with different numbers of distinct feature values (Nd)
Algorithm Nd = O(1) Nd = O(N)

FTSDT-Train O(N2 logN) O(N3)

FTSDT-Train-Refined O(N2 logN) O(N2 logN)

• N0: minimum tree node size

• F : number of features

Lemma 1. The baseline algorithm FTSDT-Train has a time complexity of O(FN2(logN+

NdS
3
max)/N0).

Proof. Given N samples and minimum node size N0, tree node number is at most

N/N0, i.e., O(N/N0). For each tree node, the algorithm sorts samples for all features

and enumerates through all O(Nd) thresholds for all the F features under all the Smax+1

different neighborhood sizes. In each enumeration, a Node-Split sub-routine is called,

which has time complexity O(NS2
max), where O(S2

max) is the number of neighbors under

a square neighborhood. Thus, for each node, the time cost is O(F · (N logN + Smax ·
Nd · NS2

max)) = O(FN(logN + NdS
3
max). Finally, the total time cost is O(N/N0 ·

FN(logN +NdS
3
max)) = O(FN2(logN +NdS

3
max)/N0).

Lemma 2. The SDT-Train-Refined algorithm has a time complexity of O(FN2(logN+

S3
max)/N0).

Proof. The number of tree nodes is O(N/N0). For each node and each of the O(F )

features, the refined algorithm sorts and enumerates through all O(N) samples under

all O(Smax + 1) neighborhood sizes. Node-Split is called only once (with time cost

O(NS2
max)) in these enumerations and Node-Split-Update is called for the rest (each

with time cost O(S2
max)). Thus, for each node, the time cost is O(F · N · logN +

FSmax · (NS2
max + N · S2

max)) = O(FN(logN + S3
max), and the total time cost is

O(FN2(logN + S3
max)/N0).

Theorem 2. FTSDT-Train-Refined is faster than FTSDT-Train when Nd � 1 (i.e.,

Nd is much greater than 1).
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Proof. From the lemmas above, the cost models of the two algorithms only differs in

one factor, which is O(logN +NdS
3
max) for FTSDT-Train and O(logN +S3

max) for the

refined algorithm. Since Nd � 1, the cost of the refined algorithm is always smaller.

The same can be proved by simplifying the two cost models, if we assume Nd ∝ N , and

F , Smax, N0 are constants. Then the cost of FTSDT-Train is O(N3), while the cost of

FTSDT-Train-Refined is O(N2 logN), as shown in Table 3.2. Note that the condition

Nd � 1 is often satisfied for continuous features.

3.5 Experimental Evaluation

The goal was to investigate the following questions:

• How do LTDT, FTSDT-fixed, and FTSDT-adaptive compare with each other in

classification accuracy?

• How do LTDT, FTSDT-fixed, and FTSDT-adaptive compare with each other in

salt-and-pepper noise level?

• Does the FTSDT-Train-Refined algorithm reduce the computational cost of base-

line FTSDT-Train algorithm?

3.5.1 Experiment Setup

Experiment design: The experiment design is shown in Figure 4.8. To evaluate classi-

fication performance, we compared the LTDT learner (i.e., C4.5), the FTSDT learner

with fixed neighborhoods (i.e., FTSDT-fixed), as well as the FTSDT learner with adap-

tive neighborhoods (i.e., FTSDT-adaptive) on test accuracy and autocorrelation level.

To evaluate computational performance, we used FTSDT with fixed neighborhoods for

simplicity, and compared the baseline approach (i.e., FTSDT-Train) with the compu-

tationally refined approach (i.e., FTSDT-Train-Refined). Computational time reported

was the average of 10 runs. All the algorithms were implemented in C language. Exper-

iments were conducted on a Dell workstation with Quad-core Intel Xeon CPU E5630 @

2.53GHz, and 12 GB RAM.
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Table 3.3: Classification performance of LTDT, FTSDT-fixed, FTSDT-adaptive
Scene Models Confusion Matrix Precision Recall F-score Γ index

1

LTDT
99141 10688

0.81 0.75 0.78 0.87
15346 45805

FTSDT-fixed
99755 10074

0.83 0.80 0.81 0.96
12470 48681

FTSDT-adapt
99390 10439

0.83 0.83 0.83 0.93
10618 50533

2

LTDT
104615 10820

0.70 0.66 0.68 0.87
13254 25612

FTSDT-fixed
107297 8138

0.77 0.69 0.73 0.96
11984 26882

FTSDT-adapt
105999 9436

0.76 0.75 0.75 0.92
9744 29122

Table 3.4: K̂ statistics of confusion matrices

Scene
LTDT FTSDT-fixed FTSDT-adaptive

K̂ K̂ variance K̂ K̂ variance K̂ K̂ variance

1 0.66 3.6 ∗ 10−6 0.71 3.2 ∗ 10−6 0.73 3.0 ∗ 10−6

2 0.58 5.9 ∗ 10−6 0.64 5.3 ∗ 10−6 0.67 4.8 ∗ 10−6

Figure 3.9: Experiment Design

Dataset description: We used high resolution (3m by 3m) remote sensing imagery

collected from the city of Chanhassen, MN, by the National Agricultural Imagery Pro-

gram and Markhurd Inc. There were 12 continuous explanatory features including

multi-temporal (for the years 2003, 2005, and 2008) spectral information (R, G, B,

NIR) and Normalized Difference Vegetation Index (NDVI). Class labels (wet land and
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Table 3.5: Significance test on difference of confusion matrices

Scene
LTDT v.s. FTSDT-fixed FTSDT-fixed v.s. FTSDT-adaptive
Z score Result Z score Result

1 18.2 significant 8.6 significant

2 19.4 significant 8.5 significant

Table 3.6: Description of datasets
Scene Size Training samples

1 476 by 396 11837(dryland class); 5679 (wetland class)

2 482 by 341 7326 (dryland class); 2735 (wetland class)

dry land) were created by a field crew and photo interpreters between 2004 and 2005.

To evaluate classification performance, we selected two scenes from the city. On

each scene, we used systematic clustered sampling to select a number of wetland and

dryland contiguous clusters of pixels as the training set and the remaining pixels as test

sets. More details are given in Table 3.6. To evaluate computational performance, we

used scene 1 and created training sets with different sizes and number of distinct feature

values to test sensitivity of computational cost on various settings. The variables tested

were previsouly defined in Section 4.3.

Choice of focal test functions: For the focal-test-based spatial decision tree, we used

the specific focal test (f ≤ δ)⊕ (Γ < 0) described in Section 2.1.

3.5.2 Classification Performance

How do LTDT, FTSDT-fixed, and FTSDT-adaptive compare in classification

accuracy?

Parameter settings were Smax = 5, N0 = 200 for the first dataset, and N0 = 50 for the

second dataset. We compared the classification performance of the proposed FTSDT-

adaptive and FTSDT-fixed with LTDT in terms of confusion matrices, precision & recall,

and F-measure (i.e., harmonic mean of precision and recall) on the test set. The results

are listed in Table 3.3. In the confusion matrix, the columns are test samples classified

as dryland and wetland respectively, and the two rows are test samples whose true class

labels are dryland and wetland respectively. Precision and recall were computed on
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the wetland class. As can be seen, on the first dataset, FTSDT-fixed improves the F-

measure of LTDT from 0.78 to 0.81 (e.g., false negatives decrease by around 20% from

15346 to 12470), and FTSDT-adaptive further improves the F-measure of FTSDT-fixed

from 0.81 to 0.83 (e.g., false negatives decrease by around 15% from 12470 to 10618).

Similar improvements are also seen in the results on the second dataset.

We also conducted significance tests on the difference of the confusion matrices

between LTDT and FTSDT-fixed, and between FTSDT-fixed and FTSDT-adaptive.

The statistic used was K̂ (estimate of Kappa coefficient) [213] [214] [215], defined as

K̂ =
n
∑k

i=1 nii −
∑k

i=1 ni+n+i

n2 −∑k
i=1 ni+n+i

,

where n is the sum of all elements, and nii, ni+ and n+i are the diagonal, row sum

and column sum respectively. K̂ reflects the degree to which a confusion matrix is

different from a random guess. First we computed K̂ and its variance for each evaluation

candidate as shown in Table 3.4. Then we conducted a Z-test on pairs of K̂ statistics

of LTDT and FTSDT-fixed, as well as FTSDT-fixed and FTSDT-adaptive. The results

show that improvements of FTSDT-adaptive over LTDT and FTSDT-fixed in confusion

matrices are significant (Table 3.5).

How do LTDT, FTSDT-fixed, and FTSDT-adaptive compare with each other

in salt-and-pepper noise level?

We compared prediction maps by LTDT, FTSDT-fixed, and FTSDT-adaptive on the

amount of salt-and-pepper noise, as measured by a spatial autocorrelation statistic,

i.e., gamma index Γ with queen neighborhoods. This index ranges from 0 to 1, and a

larger index value indicates less salt-and-pepper noise. Parameter settings were Smax =

5, N0 = 200 for the first dataset, and N0 = 50 for the second dataset. The last

column of Table 3.3 shows the spatial autocorrelation levels of the LTDT, FTSDT-fixed,

and FTSDT-adaptive predictions on the two datasets. As can be seen, both FTSDT-

fixed and FTSDT-adaptive improve the spatial autocorrelation (i.e., reducing salt-and-

pepper noise) over LTDT significantly. The spatial autocorrelation of FTSDT-adaptive

predictions is somewhat lower than for FTSDT-fixed since it uses flexible neighborhoods

to avoid FTSDT-fixed’s over-smoothing. Nonetheless, the overall classification accuracy

of FTSDT-adaptive is better.
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Case Study

We ran a case study to illustrate the difference of predictions among the LTDT algo-

rithm, the FTSDT-fixed and FTSDT-adaptive learning algorithms. The dataset was

again the Scene 1 images from the city of Chanhassen. Several of the input multi-

temporal optical features are mapped in Figure 3.10(a) and 3.10(b). Target classes

were wetland and dryland. The maximum neighborhood size was set to 5 (11-by-11

window) and minimum tree node size was 200.

(a) features RGB 2008 (b) features RGB,NIR
2005

(c) LTDT prediction

(d) FTSDT-fixed pre-
diction

(e) FTSDT-adaptive
prediction

True wetland 

True dryland 

False wetland 

False dryland 

Figure 3.10: Case study dataset and prediction results of LTDT and FTSDT.

The predictions of LTDT, FTSDT-fixed, and FTSDT-adaptive are shown in Fig-

ure 3.10(c)-(e) respectively. The green and red colors represent correctly classified wet-

land and correctly classified dryland. The black and blue colors represent errors of false
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wetland and false dryland. As can be seen, the prediction by LTDT has lots of salt-

and-pepper noise (in black and blue colors) due to the high local variation of features

within wetland or dry land patches. The predictions of FTSDT-fixed (Figure 3.10(d))

and FTSDT-adaptive (Figure 3.10(e)) show a dramatic reduction in salt-and-pepper

noise. FTSDT-fixed appears to over-smooth some areas (e.g., blue color in the white

circles of Figure 3.10(d)), likely due to fixed square neighborhoods. In contrast, FTSDT-

adaptive’s predictions show less over-smoothing effect in the white circles. The reason

is that its focal function is computed based on flexible neighborhoods adapted to the

spatial topological relationship among locations. FTSDT-adaptive has somewhat lower

spatial autocorrelation in predictions than FTSDT-fixed due to less aggressive smooth-

ing, but its overall accuracy is better.

3.5.3 Computational Performance

This section compares the computational performance of the new FTSDT-Train-Refined

algorithm with the baseline FTSDT-Train algorithm on different parameter settings.

For simplicity, we fixed the neighborhood type as fixed neighborhoods.

Different numbers of training samples N

We fixed the variables as follows: N0 = 50, Smax = 5, Nd = 256, and increased the

number of training samples.

Figure 3.11 (a) shows the result. As can be seen, when the training sample size

is very small (e.g. 1000), the time cost of both algorithms is close. However, as the

training sample size increases, the time cost of the baseline algorithm increases at a

much higher rate than the refined algorithm. This result accords with cost models in

Lemmas 1 and 2, which showed that the baseline algorithm FTSDT-Train has a larger

constant factor on the O(logN +NdS
3) term.

Different minimum tree node sizes N0

We fixed the variables N = 7000, Smax = 5, Nd = 256, and increased the minimum tree

node size.

Figure 3.11 (b) shows the result. As can be seen, as the minimum tree node size
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Figure 3.11: Computational performance comparison between basic and refined algo-
rithms

increases, the time cost of both algorithms decreases. The reason is that fewer tree

nodes are constructed and thus less computation is needed. But our refined algorithm

has persistently lower cost than our baseline algorithm. This result aligns with previous

cost models in Lemmas 1 and 2, where the baseline algorithm has a larger numerator.

Different maximum neighborhood sizes Smax

We fixed the variables N = 7000, N0 = 50, Nd = 256, and increased the maximum

neighborhood size.

Figure 3.11 (c) shows the result. As can be seen, when the maximum neighborhood

size is very small (i.e., 1), the time cost of both algorithms is close, due to the low time
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cost when Smax is very small. However, as the maximum neighborhood size increases,

the time cost of the baseline algorithm grows dramatically faster than the refined al-

gorithm. This result matches the cost models in Lemmas 1 and 2, where the baseline

algorithm has a larger constant factor Nd on the O(NdS
3) term.

Different number of distinct feature values Nd

We fixed the variables N = 6700, N0 = 50, and Smax = 5 and increased the number of

distinct feature values Nd from 2 to 256 (default value without adding simulation), and

0.2N , 0.4N , 0.6N , 0.8N to approximately N . In order to control Nd in datasets, we

independently added random noise in uniform distribution U(0, 0.01) to each feature

value and then specified the precision of the decimal part or even the integer part

(greater precision increases Nd values). The reported Nd values are the averages across

all features.

Figure 3.11(d) shows the result. As can be seen, when Nd = 2 (the first tick mark),

the time cost of the two algorithms is very close (baseline algorithm costs 3.3s and

refined algorithm costs 7.2s). The reason is that the focal computation cost of even the

baseline approach is very small when Nd is close to 1 (baseline cost is slightly lower

due to other constant factors). However, as Nd increases, the time cost of the baseline

algorithm grows almost linearly to Nd while that of the refined algorithm remains the

same.

This result can be explained by the cost models in Lemmas 1 and 2, where the

baseline algorithm has a factor O(logN + NdS
3) while the refined algorithm has a

corresponding term O(logN + S3). As the cost models imply, when Nd is close to 1

(e.g., 2), the two algorithms’ time costs are very close. But as Nd increases, the cost of

the baseline algorithm is a linear function of Nd given other variables are constant.

Different image sizes N

We fixed the variables N0 = 50, Smax = 5, Nd = 256, and increased the size of training

image (in terms of the amount of pixels) from 3960, 7920, ..., to 39600.

Figure 3.12 shows the result. As can be seen, when the training image size is very

small (e.g. 3960 pixels), the time cost of both algorithms is close. However, as the

training image size increases, the time cost of the baseline algorithm increases at a
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Figure 3.12: Computational performance comparison on different image sizes

much higher rate than the refined algorithm. This shows that the refined algorithm is

much more scalable to large image sizes.

3.6 Discussion

A number of other relevant techniques exist for reducing salt-and-pepper noise. Ex-

amples include pre-processing (median filtering [211], weighted median filtering [216],

adaptive median filtering [217], decision based filtering [218] [219]), post-processing (per

parcel classification [220], spectral and spatial classification [221]), and adding contex-

tual variables to the input features [222]. An increasingly popular technique is image

segmentation, especially Geographic-Object-Based Image Analysis (GEOBIA) [223]. In

this technique, the image is first segmented into different objects. Then each object

is a minimum classification unit. All these techniques can help reduce salt-and-pepper

noise. However, they require labor-intensive manual tuning by domain experts beyond

model learning and prediction. Our FTSDT approach automates the tuning process in

model learning and prediction, potentially saving users hours of labor.

3.7 Summary

This work explores the spatial decision tree learning problem for raster image classifi-

cation. The problem is challenging due to the spatial autocorrelation effect and compu-

tational cost. Related work is limited to using local tests in tree nodes. In contrast, we
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propose a focal-test-based spatial decision tree (FTSDT) model and its learning algo-

rithm. We further conduct computational optimization and design a refined algorithm

that selectively updates focal values. Both theoretical analysis and experimental eval-

uation show that our refined algorithm is more scalable than our baseline algorithm.

We also design a new focal test approach with adaptive neighborhoods to avoid over-

smoothing in wedge-shaped areas. Experiment results on real world datasets show that

new FTSDT with adaptive neighborhoods improves classification accuracy of both the

default FTSDT with fixed neighborhoods and traditional LTDT.



Chapter 4

Spatial Ensemble Learning

4.1 Introduction

Class ambiguity, i.e., sample feature values being ineffective in discriminate classes, is a

fundamental challenge in supervised learning [224, 225, 226, 227]. Given geographical

data with class ambiguity, i.e., samples with the same feature values belong to different

classes in different zones, spatial ensemble learning (SEL) aims to find a decomposition

of the geographical area into zones so as to minimize class ambiguity and to learn a local

model in each zone. Figure 4.1 shows a real world example of land cover mapping, in

which the goal is to classify remote sensing image pixels (Figure 4.1(a)) into wetland and

dry land classes. The ground truth of the region is shown in Figure 4.1(b). The white

circles in Figure 4.1(a) and (b) highlight two groups of pixels with class ambiguity,

i.e., their spectral (feature) values are very close (Figure 4.1(a)), but they belong to

two different classes (”wetland” and ”dry land”). This is also shown in Figure 4.1(c).

The prediction of a decision tree classifier learned from the entire image is shown in

Figure 4.1(d); it contains errors within ambiguous areas. The goal of SEL is to reduce

class ambiguity by decomposition of geographical space into zones.

Societal applications: Class ambiguity is a common issue in geographical classifi-

cation applications [228]. Due to heterogeneous geographical and topographic factors,

the same spectral signatures on remote sensing images may correspond to different land

cover classes in different sub-regions [229, 230, 231, 227]. The issue is particularly im-

portant in countries where access to multiple type of data (that may reduce spectral

68
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(a) Spectral features in remote sens-
ing image

(b) Ground truth classes (red for
dry land, green for wetland)
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Figure 4.1: Real world example of geographical classification with class ambiguity: class
ambiguity exists in two white circles of (a) (best viewed in color)

confusion) such as elevation data, spectral imagery collected in different type of season

or high resolution imagery might not be available. Class ambiguity exists in other do-

mains as well. In economic study, it is possible that old house age indicates high price

in rural areas but low price in urban areas [232]. Similar examples also exist in studies

of culture. For instance, touching somebody during conversation is welcomed in France

and Italy, but considered offensive in Britain unless in a sport field; the “V-Sign” gesture

can mean “two” in America, “victory” in German, but “up yours” in Britain [233]. In

these types of applications, there is no universal or global classifier that can effectively

discriminate between different classes. Spatial ensemble methods are needed to learn

geographically local models to avoid class ambiguity.

Challenges: Spatial ensemble learning poses three main challenges. First, the foot-

prints of effective spatial partition that minimizes class ambiguity are often unknown
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beforehand with arbitrary shapes in continuous geographical space. Second, local foot-

prints sometimes need to satisfy certain geographical constraints (e.g., spatial contiguity,

spatial topographic relationships) in order to be interpretable for geographical analysis.

Finally, the number of possible ways a space can be partitioned is exponential, making

the selection of a best choice computationally challenging.

Related work : Ensemble learning [234, 235, 236, 237] is the process by which a set of

diverse weak models are combined to boost prediction accuracy. Conventional ensemble

methods, including bagging [238], boosting [239], and random forest [240], assume an

identical and independent distribution of samples. Thus they cannot address heteroge-

neous geographical data with class ambiguity. Decomposition based ensemble methods

(also called divide-and-conquer), including mixture of experts [241, 242, 243, 244] and

multimodal ensemble [245, 246], go beyond the identical and independent distribution

assumption in that these methods can partition multi-modular input data and learn

models in local partitions. Partitioning is usually conducted in feature vector space

via a gating network, which can be learned simultaneously by an EM algorithm, or

modeled by radius basis functions [247] or multiple local ellipsoids [248]. However, par-

titioning input data in feature vector space cannot effectively separate samples with

class ambiguity because such samples are very “close” in non-spatial feature attributes

(Figure 4.5(a)). Moreover, adding spatial coordinates into feature vectors creates ge-

ographical partitions whose footprints are hard to interpret and can be too rigid to

separate ambiguous samples with arbitrary footprint shapes (Figure 4.5(b)). It is worth

noting that mixture-of-experts approach has been widely used in image classification via

partitioning images into sub-blocks and combining local experts learned from individual

sub-blocks. However, the problem it solves is scene classification where an entire image

(not individual pixels) is classified into one class (e.g., indoor, outdoor) [249, 250, 251].

Our chapter deals with pixel-wise classification, and particularly class ambiguity among

pixels.

To address the limitations of related work, we propose a spatial-based ensemble

learning framework that explicitly partition input data in geographical space: first,

the input data is preprocessed into homogeneous “patches” via constrained hierarchical

spatial clustering; second, patches are grouped into several footprints via greedy seed

growing and spatial adjustment.
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Ensemble learning for spatially heterogeneous data 

Global ensemble (Random 
forest, boosting, bagging) 

Feature vector space decomposition 
(Mixture of experts, multimodal 

ensemble) 

Geographical space decomposition 
(Spatial ensemble minimizing class 

ambiguity: Out Work) 

Decomposition based ensemble 
(Divide and Conquer) 

Figure 4.2: Related work summary

We make the following contributions in this work: (1) we formulate the spatial

ensemble learning problem to address class ambiguity issue in geographical data due

to spatial heterogeneity; (2) we develop spatial ensemble algorithms based on greedy

heuristics; (3) we evaluate the proposed algorithms on three real world remote sensing

datasets and show that they outperform related work in classification performance.

Scope: Our focus is spatial ensemble learning to address class ambiguity that origi-

nates from unknown heterogeneous geographical factors (e.g., terrain). Post-processing

approaches in image classification to address class ambiguity [227] are beyond the scope

of this work. Though spatial ensemble learning can be developed for general geograph-

ical data, we only consider raster imagery in this chapter for simplicity. We focus on

pixel-wise classification. Per-field (parcel, object) classification [227] is not addressed.

Outline: This chapter is organized as follows: Section 4.2 defines basic concepts and

formalizes the spatial ensemble learning problem; Section 4.3 introduces our approach.

Experimental evaluations are in Section 4.4. Section 4.5 discusses some other relevant

techniques in the literature. Section 4.6 makes a summary with discussion on potential

future work.

4.2 Problem Statement

4.2.1 Basic Concepts

Geographical raster data: A geographical raster framework F is a tessellation of the 2-D

plane into a regular grid. It contains a set of explanatory feature maps and a class label

map. Each grid cell on the raster framework is a spatial data sample with non-spatial
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attribute features, spatial coordinates, and a class label. For simplicity, we use the

words “sample” and “pixel” interchangeably.
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(c) Problem outputs for spatial ensemble

Figure 4.3: Illustrative example of problem inputs and outputs

Class ambiguity : Class ambiguity refers to the phenomenon that sample feature

values are ineffective in discriminate classes [224, 225, 226, 227]. Class ambiguity in

geographical data, i.e., same feature values correspond to different classes in different

zones, is often due to spatial heterogeneity influenced by unknown geographical con-

founding factors. An illustrative example is in Figure 4.3(a), where the same feature

values (f = 1 or f = 2) correspond to red or green classes in different subregions.

To quantify the extent of class ambiguity given a training set, we propose the use of

feature space ambiguity ratio (FSAR). FSAR is defined as FSAR = 1
N

∑N
i=1 FSARi =

1
N

∑N
i=1

1
k

∑
xj∈Nk(xi)

I(cj 6= ci), where xi and ci are the feature vector and class of train-

ing sample i, N is the total number of training samples, Nk(xi) is the neighborhood of

sample i determined by k-nearest-neighbor in feature vector distance. For instance, the

FSAR for sample distribution in Figure 4.3(b) is (0.5×4+0.5×4+0×2+0×4)/14 = 0.3

given k = 2.

Theorem 3. Expectation of proposed class ambiguity measure FSAR is an upper bound

of Bayesian error.
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Proof. We prove the theorem in the case of binary class, as illustrated by Figure 4.4,

where P (C1) and P (C2) are the probability of class C1 and class C2 in the population,

fC1(x) and fC2(x) are the probability density function of feature values for samples in

class C1 and C2 respectively. From definition of FSAR, we can get:

E(FSAR) =

∫
x
P (C1)fC1(x)dx

P (C2)fC2(x)dx

P (C1)fC1(x)dx+ P (C2)fC2(x)dx

+ P (C2)fC2(x)dx
P (C1)fC1(x)dx

P (C1)fC1(x)dx+ P (C2)fC2(x)dx

=

∫
x

2P (C1)fC1(x)P (C2)fC2(x)

P (C1)fC1(x) + P (C2)fC2(x)
dx

The Bayesian error is:

BayesianError =

∫
x
min(p(C1)P (x|C1), P (C2)P (x|C2))

=

∫
x
min(p(C1)fC1(x)dx, P (C2)fC2(x)dx)

=

∫
x
min(p(C1)fC1(x), P (C2)fC2(x))dx

Given the fact that Harmonic mean of p(C1)fC1(x) and P (C2)fC2(x)) should be no

less than their minimum, we have BayesianError ≤ E(FSAR)

Corollary 3.1. If E(FSAR)→ 0, BayesianError → 0.
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Figure 4.4: Interpretation of class ambiguity for binary class

Spatial ensemble: Spatial ensemble is a decomposition of geographical space into

zones to minimize class ambiguity and learn a model in each zone. Figure 4.3(c) shows
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a spatial ensemble with two zones, in which class ambiguity is reduced from 0.3 (globally)

to 0 (in each zone).

Patchiness of zones: Sometimes, zonal footprints in a spatial ensemble need to

somehow spatially contiguous, in order to be interpretable for geographical analysis. To

measure the degree of contiguity, we use patchiness, i.e., amount of isolated components

a zone contains in the map [252]. For example, each zone in Figure 4.3(c) only has

one isolated component (or absolutely contiguous), so the patchiness is only 1. The

word “patchiness” (poor contiguity) should not be confused with “patch” (homogeneous

area).

4.2.2 Problem Definition

The spatial ensemble learning problem is formally defined as follows:

Given:

• a geographical (raster) framework F

• m explanatory (non-spatial) feature maps in F

• training and test samples with class labels in F

• size of spatial ensemble: k

Find: k zones for spatial ensemble

Objective: minimize class ambiguity within zones

Constraints:

• each footprint has patchiness smaller than a threshold

• spatial autocorrelation exists (pixel size � class parcel size)

• test samples exist in the same framework • class ambiguity exists across samples but

not within a sample

Discussion: The input feature maps cover all samples (including both training and

test samples) in the framework. Feature values of test samples on the map can help

identify spatial structure of homogenous areas. The footprint patchiness constraint is for

interpretability. The last two constraints specify the assumptions that spatial ensemble

relies on. First, nearby location should resemble each other (often true when pixels are

much smaller than homogeneous parcel size). Second, test samples should be in the

same spatial framework as training samples so that the model learned in a zone can be

applied to test samples falling into it.
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Illustrative example: Figure 4.3 illustrates the problem inputs and outputs. Inputs

include input feature and training labels 4.3(a). The training samples (colored in red

and green in “training labels” of Figure 4.3(a)) contain class ambiguity FSAR = 0.3,

as shown in the global distribution of Figure 4.3(b) (e.g., samples with f = 1 have two

different classes). Thus, the global decision tree produced prediction errors. In contrast,

our spatial ensemble decomposes the spatial framework (Figure 4.3(c)) reducing class

ambiguity to 0, as shown by local sample distributions in Figure 4.3(c). Predictions of

local models show fewer errors.
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(b) Adding spatial coordinate features

Figure 4.5: Illustrative examples of related work approaches (best viewed in color)

Comparison with related work: Given the same problem input as Figure 4.3(a), a
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Mixture of Experts approach partitions the input data in feature vector space via a

gating function. Results are illustrated in Figure 4.5(a), where feature f is partitioned

into four zones, and zones with feature f = 1 and f = 2 have class ambiguity. The final

predictions (Figure 4.5(a) right side) show errors in the upper right corner. Another

related approach is to simply add spatial coordinates into feature vectors and then runs a

global model or an ensemble model. However, this method is sensitive to training sample

locations and may be insufficient to address the arbitrary shapes of local footprints, as

illustrated in Figure 4.5(b).

4.3 Proposed Approach

Spatial ensemble learning, i.e., finding a decomposition of space to minimize class am-

biguity, has three main challenges: large number of sample units; exponential possible

ways of partitioning; and the computational cost of calculating class ambiguity in can-

didate evaluation. To address the first challenge, we propose to preprocess inputs to

cluster all samples into homogeneous patches, and use patches as minimum units. To ad-

dress the last two challenges, we propose a heuristic-based approach that first separates

ambiguous pairs of patches into different footprints, and then grows these footprints

according to spatial proximity.

4.3.1 Preprocessing: Patch Generation

We begin by preprocessing input spatial data samples to generate homogeneous spatial

clusters called patches, in order to reduce the number of combinations in the parti-

tioning step. A patch is constrained to contain either no training samples or training

samples from only one class. Real world geographic data often has a patch structure

due to spatial autocorrelation, i.e., nearby locations often resemble each other [20]. For

geographical raster data (e.g., remote sensing images), image segmentation [128] can

be used with an additional constraint that each segment can have at most one type of

training class label.

We provide a simple hierarchical algorithm (Algorithm 7). The algorithm inputs

include all data samples (labeled and unlabeled), a neighborhood graph on samples (e.g.,

generated by a distance threshold or k-nearest-neighbors), and the number of patches
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Algorithm 7 Preprocessing: Patch Generation

Input:
• si, i = 1..N : labeled and unlabeled spatial data samples
• G: neighborhood graph on samples
• n: the number of patches, n < N

Output:
• P = {Pj , j = 1..k} homogeneous patches

1: Initialize with each sample as a patch Pj , j = 1..N
2: while number of patches ≤ n do
3: Among neighboring patches without different training labels, find the pair with

smallest feature distance
4: Merge the neighboring patches into one patch

that controls spatial scale (a smaller number leading to larger patches). The algorithm

starts with each sample as a patch, and then merge the most ”similar” (by feature

distance) neighboring patches until the number of patches is reduced to the input value.

An illustrative example is shown in Figure 4.6, where the samples have been merged

into seven patches from A to G. The parameter of patch number can be determined

according to the size of the study area (a large area requires more patches), usual size

of parcels (large parcels require fewer patches), and the number of training samples

(fewer training samples need fewer patches so that patches with training samples in it

contain sufficient training samples). A median filter can be applied to sample feature

maps before the algorithm to avoid outputting anomalously small patches due to noise.
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Figure 4.6: Illustrative example of patch generation
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4.3.2 Zonal Footprint Generation

The second phase of spatial ensemble approach is spatial footprint generation. Given

homogeneous patches from the preprocessing step, spatial footprint generation aims to

divide these patches into two groups to minimize class ambiguity within each group

while satisfying the spatial patchiness constraint for contiguity. The exponential num-

ber of possible partitions makes it computationally infeasible to enumerate through

all partitions. Thus, we propose a heuristic based approach that first separates most

ambiguous pairs of patches into two footprints (Seed Assignment phase), uses them

as seeds to grow footprints spatially (Seed Growing phase), and finally adjust spatial

outlier patches (in different footprints compared to most adjacent patches) to reduce

patchiness of footprints (Spatial Adjustment phase).

More details in Algorithm 8. The algorithm inputs include a set of patches (a

patch can be positively labeled, negatively labeled, and unlabeled, according to the

class of training sample within it), a spatial adjacency graph of the patches, and a

threshold of maximum patchiness of two output footprints (to control spatial contiguity

of footprints). The output is a partition of patches into two disjoint subsets as footprints.

Phase I: Seed Assignment. The Seed Assignment phase (lines 3 to 19 in Algorithm 8)

computes class ambiguity scores (ai,j)of pairs of positively labeled and negatively la-

beled patches. It then assigns ambiguous (ai,j > 0) pairs into different footprints by a

decreasing order of ambiguity scores (i.e., most ambiguous pair first). The assignment

is conducted in various scenarios. At the beginning when two footprints are empty, two

patches in the most ambiguous pair are randomly assigned to two footprints (lines 6

to 7). Later, the algorithm checks if any patch in an ambiguous pair is already within

a footprint. If so, it assigns the other patch in the pair to a different footprint if it’s

not there already (lines 8 to 16). If neither patch in an ambiguous pair is within any

footprint, the algorithm will assign the two patches to different footprints according to

spatial proximity (lines 18 to 19). More specifically, in line 18, d(pi, Sk) is the adjacency

graph distance from patch pi to the closest patch in footprint Sk (k ∈ {1, 2}). Thus,

the value of k in line 18 corresponds to the footprint to which assigning pi minimizes

the longest distance from the current two patches to their footprints.

Phase II: Seed Growing. After Phase I assigns ambiguous patches into different

footprints. Phase II (lines 21 to 26) assigns any remaining patches. It uses previously
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assigned patches as footprint seeds, and grows the footprints on a patch adjacency graph.

More specifically, at each step, the algorithm evaluates one remaining patch (from set

R) that is adjacent to any footprint. The evaluation criterion is the improvement of

training sample class balance if the patch is merged into its adjacent footprint. Class

balance can be measured by Shannon entropy on ratios of training samples in different

classes (−r1 log r1 − r2 log r2, where r1, r2 are the ratios of training samples from class

1 and 2). The intent is to encourage class balance of training samples within footprints

during footprint expansion.

Phase III: Spatial Adjustment. The first two phases separate ambiguous patches into

two footprints, and expand the footprints on a patch adjacency graph. The generated

footprints S1, S2 may still lack spatial contiguity or have a patchiness score above the

given minimum threshold. In other words, some patches may be assigned to different

footprints from most of their adjacent patches (such patches can also be called “spatial

outlier patches”). Thus, Phase III (lines 28 to 34) conducts a spatial adjustment on

footprints produced from the previous phases to ”smooth out” outlier patches. More

specifically, line 28 checks if the current patch footprint map satisfies the patchiness

(spatial contiguity) constraint (e.g., whether the number of connected components with

the same footprint ids on a patch adjacent graph is smaller than a threshold). If the spa-

tial constraint is not satisfied, the algorithm will compute local spatial autocorrelation

statistics (e.g., local Moran’s I, local Geary’s C, local Gamma index) [212] of each patch

to identify spatial outliers. We use the local Gamma index (Gammai =
∑

j Si,jWi,j∑
j Wi,j

)

where Si,j is similarity of footprint ids (e.g., its value is 1 if patch i and patch j be-

long to the same footprint) and Wi,j is an element of the patch adjacency matrix (e.g.,

Wi,j = 1 if patch i and patch j are adjacent and Wi,j = 0 otherwise). Once spatial

outlier patches in the footprint map are identified, the algorithm identifies the outlier

patch whose reassignment to a new footprint (from Sk to S3−k in line 32) creates the

least class ambiguity increase. Such adjustment continues until the spatial contiguity

constraint on footprint patchiness is satisfied.

Example: A running example of Algorithm 8 on the same toy dataset of Figure 4.6 is

shown in Figure 4.7, where circles with dash line, solid line, and bold solid line represent

patches with no footprint, with footprint 1, and with footprint 2 respectively. Assume

the input patchiness threshold is at most two same-footprint-id connected components.
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Figure 4.7: Illustrative example of patch grouping: patches in solid line belong to
footprint 1, patches in bold solid line belong to footprint 2 (best viewed in color)

Line 1 of Algorithm 8 initializes two empty footprints, when all patches are not assigned

(with dash line in Figure 4.7(a)). Lines 3 to 4 in the Seed Assignment phase compute

ambiguity score and identify two ambiguous pairs of patches ((C,D) and (F,B) as

shown in the table of Figure 4.7(a)). After this, line 7 randomly assigns the ambiguous

pair (C,D) into two footprints as shown in Figure 4.7(b). For the second ambiguous

pair (F,B), neither patch belongs to any footprint, so line 18 computes which footprint

assignment has minimum patch to footprint distances. It turns out that assigning

patch B to the same footprint as C), and patch F to the same footprint as D has

the minimum distance (shown in Figure 4.7(c)). Thus, in Phase I, patches C,B are

assigned to footprint 1, patches D,F are assigned to footprint 2, while patches A,E,G

are remaining. In Phase II (lines 21 to 26), the algorithm grows the two footprints

on an adjacency graph to assign each remaining patch. Lines 23 to 24 compute the

change-of-class balance when assigning any one patch among A,E,G to any adjacency

footprint. For example, if A is assigned to footprint 2 (bold solid line), the training
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sample classes of footprint 2 will be changed from (two red, two green) to (four red,

two green) according to Figure 4.6(a), so the entropy on class ratios will be changed

from −2
4 log 2

4 − 2
4 log 2

4 = 1 to −4
6 log 4

6 − 2
6 log 2

6 = 0.92. Similarly, the class balance

impacts of assigning A,E,G to any adjacent footprint are the same. So the algorithm

can randomly assign A to footprint 2 (Figure 4.7(d)). After this, assigning E to footprint

2 will be best for class balance (Figure 4.7(e)). Finally, patch G is assign to its only

adjacent footprint (footprint 2) (Figure 4.7(f)). Now, the footprint map contains two

connected components, i.e., (B,C) and (A,D,E, F,G), as shown in Figure 4.7(g), so

no spatial adjustment is needed.

4.4 Experimental Evaluation

The goal of the experiments was to investigate the following questions:

• How does the spatial ensemble approach compare with feature space ensemble

(e.g., mixture of experts), bagging, and boosting in classification accuracy?

• How sensitive is the proposed approach to various parameter settings?

• Will adding spatial coordinate features always be sufficient in reducing class am-

biguity? If not, in which case will it fail?

• How can the classification results be interpreted in real world case study?

4.4.1 Experiment Setup

Experiment design: The experiment design is shown in Figure 4.8. We compare our spa-

tial ensemble method with feature vector space ensemble (mixture of experts), bagging

and boosting. For mixture of expert method, we used a Matlab package for hierarchi-

cal mixture of experts with logistic regression local experts [253]. Other types of local

experts beyond logistic regression was not used due to difficulty in finding open source

codes. Bagging and boosting were from Weka toolbox [254]. Common parameters in-

clude the number and the type of base classifiers, as well as the size of training data. We

used a spatial constraint in the spatial ensemble that the footprint map have at most

5 isolated parcels to maintain spatial contiguity. There is one additional parameter for
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spatial ensemble method that we tested, i.e., the number of patches in pre-processing

step. We set the number of base classifiers to 2 for the spatial ensemble method, 4 for

mixture of expert, and 100 for bagging and boosting. We tested the sensitivity of other

parameters in evaluation.

Spa$al	
  Ensemble	
  

Bagging	
  

Boos$ng	
  

Feature	
  Vector	
  
Space	
  Ensemble	
  

Number of patches 
in preprocessing 

Ambiguity 
measure 

Input	
  
data	
  

Training set 
size 

Predic$on	
  on	
  
test	
  data	
  

Base classifier 
type 

Number of base 
classifiers 

Figure 4.8: Experiment Setup

Dataset description: We used three high resolution (3m by 3m) remote sensing

datasets from different study areas including Minnesota River Headwaters watershed,

Swan Lake watershed, and the city of Chanhassen, MN [228]. Explanatory features

include 4 spectral layers (R, G, B, Near Infrared or NIR) of aerial photos from National

Agricultural Imagery Program during leaf-off season. Class labels (wetland and dry

land) were from the updated National Wetland Inventory [255], which were conducted

through a collaborative effort coordinated by the Minnesota Department of Natural

Resources, MN. To evaluate the classification performance, we conducted random sam-

pling to select a number of wetland and dry land contiguous clusters of pixels as the

training set and the remaining pixels as test sets.

Evaluation metric: We evaluated the classification performance with confusion ma-

trices, the precision and recall, as well as F-score. Since the application problem was

wetland mapping, we considered the wetland class as the positive class.

4.4.2 Classification Performance Comparison

Comparison on Precision, Recall, F-score

The type of base classifier was decision trees (except for mixture of experts with logistic

regression). The training set included 2434 wetland samples and 1758 dry land samples.
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For the spatial ensemble approach, the number of patches in the preprocessing step was

set to 200 for Chanhassen dataset and 1000 for the other two datasets, and the ambiguity

measure was FSAR (ratio of same class samples in K-nearest-neighbors) with k = 10.

Analysis of results: The classification performance on three datasets are summarized

in Table 4.1, 4.2, 4.3 respectively. From the results, we can see that the mixture of

experts approach generally has the worst accuracy on three datasets, probably due to

limitation of its linear base model (logistic regression), and also due to its incapability of

separate ambiguous samples in the feature vector space. Decision tree also has relatively

low accuracy, due to the class ambiguity issue. Bagging and boosting are only slightly

better than decision tree, since they cannot address the class ambiguity either. Spatial

ensemble approach has the best overall performance, e.g., its F-score was around 0.91

(versus around 0.83 from boosting) on the first two datasets. One the third dataset,

the gap between spatial ensemble and other approaches is smaller. The reason may be

that some of the errors on the third dataset were not due to class ambiguity so spatial

ensemble cannot improve those errors.

Table 4.1: Comparison of classification performance on Chanhassen Data
Ensemble Method Confusion Matrix Precision Recall F score

Single model
38567 6136

0.82 0.81 0.82
6276 27483

Bagging
39298 5405

0.84 0.82 0.83
5939 27820

Boosting
38579 6124

0.82 0.83 0.83
5653 28106

Mixture of Experts
36336 8307

0.75 0.75 0.75
8306 25513

Spatial Ensemble
40732 3971

0.89 0.93 0.91
2421 31338

Effect of the Number of Training Sample

The parameter settings were the same as those in Section IV.B.1). We used the Chan-

hassen dataset, and varied the number of training samples as 1444, 2857, and 4192,

corresponding to 50, 100, and 150 circular clusters on class maps respectively.

Analysis of results: The classification performance on different training sample sizes
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Table 4.2: Comparison of classification performance on Swan Lake Data
Ensemble Method Confusion Matrix Precision Recall F score

Single model
50073 6520

0.85 0.85 0.85
6618 36860

Bagging
50959 5634

0.87 0.86 0.86
6207 37271

Boosting
50478 6115

0.86 0.86 0.86
5895 37583

Mixture of Experts
50882 5711

0.85 0.74 0.79
11135 32343

Spatial Ensemble
55221 1372

0.97 0.87 0.92
5445 38033

Table 4.3: Comparison of classification performance on Big Stone Data
Ensemble Method Confusion Matrix Precision Recall F score

Single model
23990 5726

0.86 0.86 0.86
6067 36216

Bagging
24524 5192

0.88 0.86 0.87
5869 36414

Boosting
24273 5443

0.87 0.86 0.86
6104 36179

Mixture of Experts
23568 6148

0.85 0.80 0.82
8290 33993

Spatial Ensemble
23657 6059

0.86 0.92 0.89
3555 38728

is summarized in Figure 4.9. From the results, we can observe a similar trend as in

Section IV.B.1), i.e., spatial ensemble consistently improved the accuracy over other

ensemble methods. Future experiments on several more training sample sizes may be

needed to observe a trend.
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Figure 4.9: Effect of the number of training samples

Effect of Base Classifier Type

The training set included 1903 wetland samples and 2296 dry land samples drawn

from the Chanhassen data. We compared approaches on three different types of base

classifiers, i.e., decision tree, SVM, and neural network. The mixture of experts approach

was excluded in this experiment due to difficulty in finding open source packages with

the three base classifier types. The other parameters configurations were the same as

Section IV.B.1). Results are shown in Figure 4.10. Spatial ensemble approach has the

best accuracy for all three base classifier types.

Sensitivity of Spatial Ensemble Approach to Number of Patches in Prepro-

cessing

We used the Chanhassen dataset and the same parameter settings as Section IV.B.1),

except that we varied the number of patches in the preprocessing steps from 200 to 600.

Results in Figure 4.11 showed that the performance of spatial ensemble approach was

generally stable, with slightly lower accuracy when the number of patches was 300, but

all of them were better than bagging, boosting and mixture of experts, whose F-scores

were no higher than 0.83.
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Figure 4.10: Effect of the base classifier type

Effect of Adding Spatial Coordinate Features

In this experiment, we investigated if adding spatial coordinates in feature vectors will

always be effective in reducing class ambiguity. We used the Chanhassen data. The

parameter settings were the same as Section IV.B.1) except that the training set size

was smaller (624 wetland samples and 820 dry land samples, within 50 small circular

clusters). Training sample locations were shown in Figure 4.12(a), where almost all

training samples on the left half belonged to the dry land class (red). Due to this reason,

decision tree and random forest models mistakenly “learned” that almost all samples

in the left half should be predicted as dry land class (red). Thus, we can see that

parts of wetland parcels in the left half of the image were misclassified (black errors in

Figure 4.12(b-c)). Mixture of experts approach also made similar mistakes (black errors

in Figure 4.12(d)), though the errors were slightly less serious. In contrast, spatial

ensemble did not have same misclassification due to its more flexible spatial partition.

The experiment showed that adding spatial coordinates in feature vectors in related

work may not always be sufficient, particularly when sample locations are too sparse to

capture the footprint shapes of class patches.
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Figure 4.11: Sensitivity to number of patches in preprocessing

4.4.3 Case Studies

Figure 4.13 4.14 4.15 shows three case study for three different landscape areas in

Minnesota including Chanhassen, Swan Lake, and Big Stone, and the results of the

spatial ensemble approach were interpreted by domain experts in remote sensing and

wetland mapping. The datasets and parameter configurations were the same as those

in Section IV B 1). The input spectral image features, ground truth wetland class map,

as well as output predictions from a single decision tree and spatial ensemble (SE) were

all shown in the figure, numbered by different study areas.

The three study areas in general show a good spectral separability for the SE pre-

diction results (Figure 4.13(e), 4.14(e), 4.15(e)) between true dry land representing

“red” that is uplands land cover and true wetland represented as “green” for wetlands

land cover. On the other hand, there was higher spectral confusion when the Deci-

sion tree prediction (Figure 4.13(c), 4.14(c), 4.15(c)) was used compared to the SE

prediction results. This spectral confusion can be explained primarily because of the

different types of wetland and upland features found in these areas. For example, for the

Chanhassen data (Figure 4.13(a)) two main different features were found as the main

cause of spectral confusion: tree canopy vs. forested wetlands; these two features have

different physical characteristics but similar spectral properties in the image data. This

makes difficult to discriminate because a forested type of wetlands will appear cover
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sults
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sults

Figure 4.12: Comparison with related work adding spatial coordinate features in decision
tree, random forests, and mixture of experts (black and blue are errors, best viewed in
color)

with vegetation in the aerial imagery but in the real world it is very different compared

to the regular tree canopy feature. Spatial ensemble footprints (Figure 4.13(d)) sepa-

rated ambiguous areas into different local decision tree models, so there was less spectral

confusion in each local model.

Similar situation happens for the case studies of Swan Lake and Big Stone areas

where two different features (water with adjacent vegetation) can be seen in the same

place but with different physical properties in the real world. Thus, a potential solution

to this type of spectral confusion would be the use of topography data for better sep-

aration with the type of SE model used in this chapter. Topography plays a key role

because the wetlands types found in this areas that tends to take place in topographic

depressions where spectral data cannot discriminate well by itself.

4.5 Discussion

Our spatial ensemble approach addresses class ambiguity issue that is due to unknown

heterogeneous geographical factors. We also assume that we have sufficient repre-

sentative training samples to identify ambiguous subareas. There are other relevant
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(a) Spectral image features (b) Ground truth

(c) Decision tree prediction (d) Spatial ensemble footprints

(e) Spatial ensemble prediction
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Figure 4.13: Real world case study in Chanhassen (best viewed in color)

work to address spatial heterogeneity, including geographically weighted model such

as GWR [232], Gaussian process [256], multi-task learning [257]. These methods do

not focus on class ambiguity issues. One recent work [258] addresses class ambiguity

in object classification, but not pixel-wise classification. There are also other ensemble

learning methods [259] [260] that do not consider reducing class ambiguity in input data

partitioning. These methods do not focus on class ambiguity issue either.
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4.6 Summary

This chapter investigates spatial ensemble learning problem for geographical data with

class ambiguity. The problem is important in many applications such as land cover

classification in remote sensing, but is challenging due to unknown flexible footprint

shapes, as well as potentially exponential number of possible partitions. To address these

challenges, we proposed a spatial ensemble approach that first decomposes the space

into homogeneous patches, and then groups patches using bottom-up greedy heuristic

to separate out ambiguous pairs. Experimental evaluations on three real world remote

sensing datasets show that our spatial ensemble approach outperforms other approaches

in classification accuracy.

In future work, we plan to conduct more theoretical analysis on computational prop-

erties of the problem, e.g., NP-hardness. We also plan to explore other computational

strategies, e.g., top-down spatial partitioning. We will also explore spatial ensemble

methods for more than two footprints.
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Algorithm 8 Patch Grouping

Input:
• P = {pi} ∪ {nj} ∪ {uk}: positively labeled patches pi, negatively labeled patches
nj , and unlabeled patches uk
• G: spatial adjacency graph on patches
• δ: threshold of max patchiness of footprints

Output:
• two sets S1, S2 such that S1 ∩ S2 = ∅, S1 ∪ S2 = P

1: Initialize two footprints: S1 ← ∅, S2 ← ∅
2: Part I: Seed Assignment
3: Compute ai,j ← ambiguity(pi ∪ nj) for any i, j
4: Identify ambiguous pairs (pi, nj) whose ai,j > 0
5: for each (pi, nj) ordered by decreasing ai,j do
6: if S1 = ∅ and S2 = ∅ then
7: S1 ← {pi}, S2 ← {nj}
8: else if pi ∈ (S1 ∪ S2) or nj ∈ (S1 ∪ S2) then
9: if pi ∈ S1 and nj 6∈ S2 then

10: S2 ← S2 ∪ {nj}
11: else if pi 6∈ S1 and nj ∈ S2 then
12: S1 ← S1 ∪ {pi}
13: else if nj ∈ S1 and pi 6∈ S2 then
14: S2 ← S2 ∪ {pi}
15: else if nj 6∈ S1 and pi ∈ S2 then
16: S1 ← S1 ∪ {nj}
17: else
18: k ← arg min

k∈{1,2}
max(d(pi, Sk), d(nj , S3−k))

19: Sk ← Sk ∪ {pi}, S3−k ← S3−k ∪ {nj}
20: Part II: Seed Growing
21: R← P \ (S1 ∪ S2)
22: while R 6= ∅ do
23: for p ∈ R and p adjacent to any Sk,k∈{1,2} do
24: ∆p ← ClassBalance(Sk ∪ p)− ClassBalance(Sk)
25: Find p and its adjacent Sk with max ∆p

26: Sk ← Sk ∪ p, R← R \ p
27: Part III: Spatial Adjustment
28: while Patchines(S1, S2, G) > δ do
29: for every p ∈ Sk,k∈{1,2} do
30: LSAp ← LocalSpatialAutocorrelation(p, S1, S2, G)
31: if LSAp < 0 then
32: ∆p ← ambiguity(S3−k ∪ {p})−ambiguity(S3−k)
33: find p with smallest ∆p among LSAp < 0
34: Sk ← Sk \ {p}, S3−k ← S3−k ∪ {p}
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(a) Spectral image (b) Ground truth

(c) Decision tree prediction (d) Spatial ensemble footprints

(e) Spatial ensemble prediction
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Figure 4.14: Real world case study in Swan Lake (best viewed in color)
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(a) Spectral image features (b) Ground truth

(c) Decision tree prediction (d) Spatial ensemble footprints

(e) Spatial ensemble prediction
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Figure 4.15: Real world case study in Big Stone (best viewed in color)



Chapter 5

Conclusion and Discussion

This thesis investigates novel spatial classification techniques to address unique chal-

lenges of spatial big data. Spatial big data, e.g., earth observation image, GPS trajec-

tories, geo-referenced event reports, has potential to transform society in many applica-

tions such as precision agriculture, disease outbreak detection, and food-water-energy

nexus, etc. However, spatial big data poses uniques challenges such as spatial auto-

correlation, anisotropy, and heterogeneity. The thesis first surveys current techniques

in spatial and spatiotemporal data mining. Compared with other surveys in literature,

it focuses on spatial statistical foundations and categorizes computational approaches

according to output pattern families. The thesis also introduces a novel spatial deci-

sion tree classification model to address the challenge of spatial autocorrelation and

anisotropy, as well as a spatial ensemble learning framework to address the challenge

of spatial heterogeneity. Evaluations on real world remote sensing datasets in wetland

mapping applications show that proposed techniques outperform related work, e.g., in

classification accuracy, and salt-and-pepper noise level.

Several directions should be explored in future work. First, novel classification

techniques need be investigated for spatial big data with various spatial scales and res-

olutions, e.g., remote sensing imagery with resolutions from sub-meters to hundreds of

meters. Utilizing all the data together can potentially improve predictive performance.

Second, it is also important to develop other techniques to address the challenge of

spatial heterogeneity, particularly for spatial variability in high resolution spatial big

data for applications such as precision agriculture. High resolution aerial photos from

94
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unmanned aerial vehicles provide unique opportunities for early diagnosis for crop dis-

ease and nutrient adoption at sub-plot levels in agriculture. Finally, current big data

analytics techniques are mostly empirical or data-driven, heavily focusing on identifying

patterns or learning predictive models from data, but they often do not incorporate the

laws of physics and common sense understanding. Thus, these techniques are prone

to generate spurious patterns that require elimination using domain knowledge. An-

other future direction is to investigate the fusion of data-driven analytics and physics

constraints to develop physics-aware spatial big data analytics that improve pattern

interpretability and reduce spurious patterns.
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spatial autocorrelation in predictive clustering trees. In Discovery Science, pages

307–322. Springer, 2011.

[206] Daniela Stojanova, Michelangelo Ceci, Annalisa Appice, Donato Malerba, and

Saso Dzeroski. Dealing with spatial autocorrelation when learning predictive clus-

tering trees. Ecological Informatics, Elsevier, 2012.

[207] Zhe Jiang, Shashi Shekhar, Xun Zhou, Joseph Knight, and Jennifer Corcoran.

Focal-test-based spatial decision tree learning: a summary of result. In Data

Mining (ICDM), 2013 IEEE 13th International Conference on. IEEE, 2013.



117

[208] Zhe Jiang, Shashi Shekhar, Xun Zhou, Joseph Knight, and Jennifer Corcoran.

Focal-test-based spatial decision tree learning. Knowledge and Data Engineering,

IEEE Transactions on, 2015.

[209] Anne HS Solberg, Torfinn Taxt, and Anil K Jain. A markov random field model

for classification of multisource satellite imagery. Geoscience and Remote Sensing,

IEEE Transactions on, 34(1):100–113, 1996.

[210] Mete Celik, Baris M Kazar, Shashi Shekhar, Daniel Boley, and David J Lilja. Spa-

tial dependency modeling using spatial auto-regression. In Workshop on Geospa-

tial Analysis and Modeling with Geoinformation Connecting Societies (GICON),

International Cartography Association (ICA), 2006.

[211] Charles Boncelet. Image noise models. In Alan C. Bovik, editor, Handbook of

Image and Video Processing, chapter 4.5. Academic Press, 2 edition, 2005.

[212] Luc Anselin. Local indicators of spatial association—lisa. Geographical analysis,

27(2):93–115, 1995.

[213] Russell G Congalton. A review of assessing the accuracy of classifications of

remotely sensed data. Remote sensing of Environment, 37(1):35–46, 1991.

[214] John D Bossler, John R Jensen, Robert B McMaster, and Chris Rizos. Manual

of geospatial science and technology. CRC Press, 2004.

[215] Russell G Congalton and Kass Green. Assessing the accuracy of remotely sensed

data: principles and practices. CRC press, 2008.

[216] DRK Brownrigg. The weighted median filter. Communications of the ACM,

27(8):807–818, 1984.

[217] Humor Hwang and Richard A Haddad. Adaptive median filters: new algorithms

and results. Image Processing, IEEE Transactions on, 4(4):499–502, 1995.

[218] Raymond H Chan, Chung-Wa Ho, and Mila Nikolova. Salt-and-pepper noise re-

moval by median-type noise detectors and detail-preserving regularization. Image

Processing, IEEE Transactions on, 14(10):1479–1485, 2005.



118

[219] S Esakkirajan, T Veerakumar, Adabala N Subramanyam, and CH PremChand.

Removal of high density salt and pepper noise through modified decision based

unsymmetric trimmed median filter. Signal Processing Letters, IEEE, 18(5):287–

290, 2011.
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