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Abstract

Quadratically Constrained Quadratic Programming (QCQP) constitutes a class of compu-

tationally hard optimization problems that have a broad spectrum of applications in wireless

communications, networking, signal processing, power systems, and other areas. The QCQP

problem is known to be NP–hard in its general form; only in certain special cases can it be

solved to global optimality in polynomial-time. Such cases are said to be convex in a hidden

way, and the task of identifying them remains an active area of research. Meanwhile, relatively

few methods are known to be effective for general QCQP problems. The prevailing approach

of Semidefinite Relaxation (SDR) is computationally expensive, and often fails to work for gen-

eral non-convex QCQP problems. Other methods based on Successive Convex Approximation

(SCA) require initialization from a feasible point, which is NP-hard to compute in general.

This dissertation focuses on both of the above mentioned aspects of non-convex QCQP. In the

first part of this work, we consider the special case of QCQP with Toeplitz-Hermitian quadratic

forms and establish that it possesses hidden convexity, which makes it possible to obtain globally

optimal solutions in polynomial-time. The second part of this dissertation introduces a frame-

work for efficiently computing feasible solutions of general quadratic feasibility problems. While

an approximation framework known as Feasible Point Pursuit-Successive Convex Approximation

(FPP-SCA) was recently proposed for this task, with considerable empirical success, it remains

unsuitable for application on large-scale problems. This work is primarily focused on speeding

and scaling up these approximation schemes to enable dealing with large-scale problems. For this

purpose, we reformulate the feasibility criteria employed by FPP-SCA for minimizing constraint

violations in the form of non-smooth, non-convex penalty functions. We demonstrate that by

employing judicious approximation of the penalty functions, we obtain problem formulations

which are well suited for the application of first-order methods (FOMs). The appeal of using

FOMs lies in the fact that they are capable of efficiently exploiting various forms of problem

structure while being computationally lightweight. This endows our approximation algorithms

the ability to scale well with problem dimension. Specific applications in wireless communica-

tions and power grid system optimization considered to illustrate the efficacy of our FOM based

approximation schemes. Our experimental results reveal the surprising effectiveness of FOMs

for this class of hard optimization problems.
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Chapter 1

Introduction

1.1 Background and motivation

Quadratically Constrained Quadratic Programming (QCQP) constitutes an important class of

computationally hard optimization problems with a broad spectrum of applications ranging

from wireless communications and networking, (e.g., {±1} multiuser detection [1], multicast

beamforming [2–4], and the MAXCUT problem [5]), to radar (e.g., robust adaptive radar de-

tection [6], and optimum coded waveform design [7]), signal processing (e.g., parametric model-

based power spectrum sensing [8], phase retrieval [9], unimodular quadratic programming [10]),

power systems (e.g., optimal power flow [11] and power system state estimation [12]), and fi-

nancial engineering [13]. In its general form, the QCQP problem can be expressed as

min.
x∈RN

xTA0x (1.1a)

s.t. xTAmx ≤ bm, ∀ m ∈ [MI ] (1.1b)

xTCmx− dm = 0, ∀ m ∈ [ME ] (1.1c)

where [MI ] := {1, · · · ,MI} and [ME ] := {1, · · · ,ME} represent the inequality and equality

constraint sets respectively. The matrices {Am}MI
m=1 and {Cm}ME

m=1 are assumed to be symmetric

(without loss of generality), while {bm}MI
m=1 and {dm}ME

m=1 are real numbers. We assume that

the cost function (1.1a) is convex; i.e., A0 � 0 (positive semidefinite). In the special case where

Am � 0, ∀m ∈ [MI ] and ME = 0 (i.e., the equality constraints are absent), (1.1) is a convex

optimization problem which can be solved to global optimality in polynomial-time using interior-

point methods (IPMs) [14]. However, the general case of (1.1) is a non-convex optimization

problem due to the presence of the quadratic equality constraints (1.1c) and the inequality

constraints (1.1b) possibly involving indefinite/negative semidefinite matrices, and is known to
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be NP–hard [15]. In fact, for an arbitrary instance of (1.1), even establishing (in)feasibility

is NP–hard. Only in certain cases, involving a small number of non-convex constraints (e.g.,

see [16–25]) or special problem structure, or both (e.g., see [26–32]), can (1.1) be solved to

global optimality in polynomial-time. We say that such instances possess the property of hidden

convexity. Identifying such special instances which can be optimally solved in polynomial-time

continues to be an active area of research.

For the general case of (1.1), the use of approximation algorithms is well motivated for

the purpose of obtaining high quality, albeit sub-optimal solutions in polynomial-time. The

prevailing approach is Semidefinite Relaxation (SDR) [33, 34]: upon defining X = xxT and

utilizing the cyclic property of the trace operator, (1.1) can be equivalently recast in the form

of the following rank constrained Semidefinite Programming (SDP) problem.

min.
X∈RN×N

Trace(A0X) (1.2a)

s.t. Trace(AmX) ≤ bm, ∀ m ∈ [MI ] (1.2b)

Trace(CmX) = dm, ∀ m ∈ [ME ] (1.2c)

X � 0, (1.2d)

Rank(X) = 1 (1.2e)

Upon dropping the non-convex rank constraint, we obtain the following rank-relaxed SDP prob-

lem

min.
X∈RN×N

Trace(A0X) (1.3a)

s.t. Trace(AmX) ≤ bm, ∀ m ∈ [MI ] (1.3b)

Trace(CmX) = dm, ∀ m ∈ [ME ] (1.3c)

X � 0 (1.3d)

whose solution yields a lower bound on the optimal value of the cost function of (1.1). Note that

(1.3) is the Lagrangian bi-dual of (1.1) [33], and can be solved efficiently using modern IPMs,

at a worst case computational complexity of O(N6.5) [35]. If the optimal solution of (1.3) is

rank-1, then its principal component is the globally optimal solution for (1.1). However, solving

(1.3) does not solve the original NP–hard problem (1.1) in general, i.e., the rank of the optimal

solution of (1.3) is generally higher than 1. Hence, SDR is usually followed by a post-processing

randomization step, in order to convert the optimal solution of (1.3) into an approximate feasible

solution for (1.1). When ME = 0 and all the matrices {Am}MI
m=1 are negative semidefinite, then

any randomly generated point can be scaled up to satisfy the constraints of the QCQP (1.1);
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finding a feasible solution using randomization is easy in this case, and the challenge is to find

one that is close to optimum, see [2, 34]. In the general setting where ME > 0, {Am}MI
m=1

are all indefinite, or when one deals with two-sided positive semidefinite constraints, SDR with

randomization often fails to find a point that satisfies the constraints in (1.1). Hence, the overall

effectiveness of SDR in obtaining approximate solutions for the general case of (1.1) appears to

be limited – not to mention the potentially very high complexity incurred in solving the relaxed

problem (1.3) in SDP form.

An alternative approach is to employ successive convex approximation (SCA), which is a

general framework for approximating non-convex problems. Its application to non-convex QCQP

is sometimes called the convex-concave procedure [15]: for the inequality constraints (1.1b), each

quadratic term is separated into convex and concave parts, and the latter is replaced by a convex

(usually linear) approximation around a feasible point. Meanwhile, each equality constraint in

(1.1c) is simply converted into a pair of inequalities and the same approximation procedure

is used. The resulting convex problem is solved to obtain the next iterate, which also serves

as the approximation point for the subsequent iteration. Thus, one approximates the non-

convex problem by solving a series of convex problems. Under certain technical assumptions,

convergence of the procedure to a stationary point of (1.1) can be established [36–39]. The main

drawback of this approach is that it requires initialization with a feasible point, which is also

NP–hard to compute for general non-convex QCQP.

Hence, one can conclude that determining a feasible point of a non-convex QCQP problem is

the critical step for any approximation algorithm to succeed. Recently, an algorithmic approach

known as Feasible Point Pursuit (FPP)-SCA [40,41] was proposed specifically for this task. FPP-

SCA uses SCA together with auxiliary slack variables to approximate the feasibility problem

by a sequence of convex subproblems. The algorithm works with any choice of initialization, as

the slack variables guarantee that each SCA subproblem is feasible at every step. Empirically,

FPP-SCA demonstrates very good performance in attaining feasibility for general non-convex

QCQP problems (QCQPs). Nevertheless, the algorithm is not without its drawbacks. For one,

it is required to iteratively solve a sequence of convex optimization problems via IPMs, which

can be computationally very demanding. In addition, eigen-decomposition of all the quadratic

constraint matrices is required, followed by storing the positive and negative definite components

in memory.

In addition to the above, a consensus-ADMM (C-ADMM) algorithm for general non-convex

QCQPs has been proposed in [42], which can also be used for directly computing a feasible point.

In this approach, (1.1) is decomposed into multiple QCQP subproblems, each with a single

constraint, which ensures that each subproblem can be solved to global optimality. Thereafter,
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consensus is used to enforce agreement amongst the solutions of the subproblems. The per-

iteration complexity of C-ADMM is much lower than that of FPP-SCA, but the drawback is

that C-ADMM can be very memory intensive, since it uses local copies of the global optimization

variable (one for each constraint).

Due to their inherently large computational and memory footprint, FPP-SCA and C-ADMM

are unsuitable for application on quadratic feasibility problems in large dimensions and/or with

a large number of constraints. Hence, in spite of their empirical successes, these algorithms have

limited application for use in large-scale scenarios, which are becoming more and more common.

The major contribution of this thesis is on addressing these shortcomings by proposing high

performance, scalable approximation algorithms for feasibility pursuit. A key ingredient in our

algorithmic approach is the use of problem formulations whose structure is well suited for the

application of first-order methods (FOMs). The appeal of using FOMs lies in the fact that they

have minimal memory and computational requirements relative to other optimization schemes,

which makes them well-suited for application on large-scale problems. Hence, in this thesis, we

adopt a FOM based optimization approach for general quadratic feasibility problems, instead of

resorting to FPP-SCA or C-ADMM. Our interest in pursuing this approach is partially motivated

from recent work which established that FOMs work remarkably well (under certain conditions)

for many important non-convex problems arising in low-rank matrix regression and structured

matrix factorization [43–48], as well as generalized phase retrieval [49–51]. In addition, we also

identify a special case of (1.1) which can be solved to global optimality via SDR.

1.2 Thesis Outline and Contributions

Chapter 2 considers non-convex QCQP with Toeplitz-Hermitian quadratics, and shows that it

possesses hidden convexity: it can always be solved to global optimality in polynomial-time

via SDR followed by a spectral factorization step. Under the additional assumption that the

matrices are circulant, it is shown that the QCQP can be equivalently reformulated as a linear

program, which can be solved very efficiently. These results have been reported in [52].

In subsequent chapters, we focus on FOM based approaches for efficiently computing fea-

sible solutions for the general case of (1.1). Chapter 3 considers a special class of non-convex

quadratic feasibility problems defined by the intersection of a convex, compact set and a system

of quadratic inequalities with negative semidefinite matrices. In order to compute a feasible

solution (when one exists), we pose the problem in the form of minimizing the point-wise max-

imum of a finite number of concave quadratic functions over a convex set. An SCA algorithm

with provable convergence to the set of stationary points is then proposed for the problem.

Departing from the standard approach of using IPMs to solve each SCA subproblem, we exploit
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the structure inherent in each subproblem and apply specialized FOMs for efficiently computing

solutions. Multicast beamforming is considered as an application example to showcase the ef-

fectiveness of the proposed algorithms, which achieve a very favorable performance-complexity

trade-off relative to the existing state of the art. These results appear in [53,54].

Chapter 4 considers the most general case of the quadratic feasibility problem where the goal

is to find a feasible solution for a general system of quadratic inequalities and equalities defined

by (1.1b)-(1.1c). For the purpose of developing low-complexity feasibility pursuit algorithms, we

propose to do away with SCA altogether and use a modified reformulation of the optimization

criterion employed by FPP-SCA, which is well-suited for direct application of FOMs. Our

approach features low computational and memory requirements, which makes it well-suited for

application to large-scale problems. While a priori it may appear that these benefits come

at the expense of technical sophistication, rendering our approach too simple to even merit

consideration for a non-convex and NP–hard problem, we provide compelling empirical evidence

to the contrary. Experiments on synthetic as well as real world instances of non-convex QCQPs

reveal the surprising effectiveness of FOMs compared to more established and sophisticated

alternatives. These results have been published in [55,56].

A summary of contributions and directions for future research is provided in Chapter 5.

1.3 Notational Conventions

Throughout this thesis, we adopt the following notation. Superscript H is used to denote the

Hermitian transpose of a vector/matrix, while T denotes plain transposition. Capital boldface is

reserved for matrices, while vectors are denoted by small boldface. Scalars are represented in the

normal face, while calligraphic font is used to denote sets. We use the shorthand [N ] to represent

the set of numbers {1, · · · , N}. The set of natural numbers is indicated by N. We denote the

N−dimensional real Euclidean space by RN , while RN+ and RN++ represent the corresponding

non-negative and positive orthants respectively. Meanwhile, the complex Euclidean space is

denoted by CN . The convex hull of a finite number of points {xi}Ni=1 is denoted as conv(xi|∀ i ∈
[N ]). The domain of a function f : RN → R is defined as domf = {x ∈ RN |f(x) < +∞}.
If a function f(.) is differentiable, its gradient and hessian are denoted by ∇f(.) and ∇2f(.)

respectively. For convex, non-differentiable f , the subdifferential set at a point x is represented

by ∂f(x). For general f (differentiable or non-differentiable), the directional derivative at a

point x in the direction d is given by f ′(x; d). For a set X ⊂ RN , we use X̄ to denote its closure

and ∂X to represent its boundary. Finally, the empty set is denoted by ∅.



Chapter 2

Hidden Convexity in QCQP with

Toeplitz-Hermitian Quadratics

2.1 Introduction

In this section, we consider the special case of the homogeneous QCQP problem

min.
x∈CN

xHA0x (2.1a)

s.t. xHAmx ≤ bm, ∀ m ∈ [M ] (2.1b)

where all the matrices {Am}Mm=0 possess Toeplitz-Hermitian structure. No additional structure

is assumed, except A0 � 0 (so that we always have a valid minimization problem). Upon

employing SDR for (2.1), we obtain the following rank-relaxed SDP problem

min.
X∈CN×N

Trace(A0X) (2.2a)

s.t. Trace(AmX) ≤ bm, ∀ m ∈ [M ] (2.2b)

X � 0 (2.2c)

We now show that for this special case of QCQP

1. (In)feasibility of an arbitrary instance can always be established in polynomial-time using

SDR; and

2. If the instance is feasible, then SDR can be used to obtain a globally optimal solution in

polynomial-time as well.

6
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Our proof uses the Toeplitz structure of the matrices to show the tightness of SDR, although

simply solving SDR for this special case of the QCQP problem does not return a rank-1 solution

in general. Instead, we use a relaxed SDP formulation for (2.1) based on representation of finite

autocorrelation sequences (FAS) via Linear Matrix Inequalities (LMIs) to show the existence

of a rank-1 solution, which is also shown to be equivalent to SDR. A rank-reduction technique

based on spectral factorization is used to convert the higher rank solution of SDR into a feasible

rank-1 solution with the same cost. The proof of tightness does not depend on the number of

constraints M . The implication is that non-convex QCQP with Toeplitz-Hermitian quadratics

is not NP–Hard, but in fact exactly solvable in polynomial time.

To the best of our knowledge, our work is the first to show that any non-convex QCQP

with Toeplitz-Hermitian quadratics can be solved optimally. Special cases have been previously

considered in [57,58], but none of them settled the general non-convex Toeplitz-Hermitian QCQP

problem. Toeplitz quadratic minimization subject to Toeplitz equality constraints was considered

in [57, p. 30] (each equality corresponds to a pair of inequalities with the same Toeplitz-

Hermitian matrix). Another special case was investigated in [58], which considered positive-

semidefinite Toeplitz-Hermitian quadratics and a special QCQP structure arising in multi-group

multicast beamforming. In [58], the proof of existence of an optimal rank-1 solution uses the

Caratheodory parametrization of a covariance matrix [59, p. 181], which is only valid for positive-

semidefinite Toeplitz matrices. Our work can be considered as an extension of this result,

since we prove the existence of an optimal rank-1 solution for indefinite Toeplitz matrices.

In [58], the optimal solution is obtained from the solution of the SDP relaxation based on the

LMI representation of FAS. We show that this problem is equivalent to SDR, which is cheaper

computationally, and demonstrate how an optimal rank-1 solution can be obtained, which also

solves the original non-convex QCQP problem.

Additionally, when all matrices are circulant (a special class of Toeplitz matrices), we further

show that the QCQP problem (2.1) can be equivalently reformulated as a Linear Programming

(LP) problem, which can again be solved to global optimality in polynomial-time, at a far lower

computational complexity compared to the SDR approach.

2.2 QCQPs with Toeplitz Quadratic Forms

Consider a special case of (2.1) where the Hermitian matrices {Am}Mm=0 are also Toeplitz. Each

Am can then be expressed as

Am =

p∑
k=−p

am,kΘk (2.3)
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where p = N − 1, Θk ∈ RN×N is an elementary Toeplitz matrix with ones on the kth diagonal

and zeros elsewhere (k = 0 ↔ main diagonal, k > 0 ↔ super-diagonals, and k < 0 ↔ sub-

diagonals), while am,k represents the entries along the kth diagonal; i.e., we have Am(i, j) =

am,k, ∀ j − i = k ∈ K, where K := {−p, · · · , 0, · · · , p}. Note that due to the Hermitian

property, am,k = a∗m,−k,∀ k ∈ K. Using (2.3), we can express each quadratic term in (2.1) as

xHAmx = Re(aTmr), where am = [am,0, 2am,1 · · · , 2am,p]T ∈ CN , r = [r(0), · · · , r(p)]T ∈ CN ,

r(k) = Trace(ΘkX), and X = xxH . Overall, we can now express (2.1) as

min.
X,r

Re(aT0 r) (2.4a)

s.t. Re(aTmr) ≤ bm, ∀ m ∈ [M ] (2.4b)

r(k) = Trace(ΘkX),∀ k ∈ K+ (2.4c)

X � 0, (2.4d)

Rank(X) = 1 (2.4e)

where K ⊇ K+ := {0, · · · , p}. Note that (2.4c) and (2.4d) ⇒ r∗(k) = r(−k). Upon dropping

the rank constraint, we obtain the following convex SDP relaxation.

min.
X,r

Re(aT0 r) (2.5a)

s.t. Re(aTmr) ≤ bm, ∀ m ∈ [M ] (2.5b)

r(k) = Trace(ΘkX),∀ k ∈ K+ (2.5c)

X � 0 (2.5d)

Proposition 1. For Toeplitz {Am}Mm=0, problems (2.2) and (2.5) are equivalent.

Proof. For any X, r satisfying (2.5c) and (2.5d)

Re(aTmr) = am,0r(0) + 2

p∑
k=1

Re(am,kr(k)) (2.6a)

=

p∑
k=−p

am,kr(k) (2.6b)

=

p∑
k=−p

am,kTrace(ΘkX) (2.6c)

= Trace((

p∑
k=−p

am,kΘk)X) (2.6d)

= Trace(AmX) (2.6e)

therefore we may replace every instance of Re(aTmr) in (2.5) (including the cost function↔ m =

0) with Trace(AmX). Then it becomes evident that r is completely determined by X via (2.5c).
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Thus we may drop (2.5c) and simply compute r from the optimal X. What remains is precisely

(2.2).

We next show that feasibility of any instance of (2.1) can always be checked in polynomial

time by checking the feasibility of (2.5). Furthermore, if feasibility of (2.1) is established, then

the optimal solution of (2.5) can always be transformed into a globally optimal solution of (2.1).

Since (2.5) is equivalent to (2.2), a solution to (2.1) can also be obtained from a solution of

(2.2), as we will soon show. Although solving (2.2) is more computationally efficient compared

to (2.5) (since it has fewer variables and constraints), it is more convenient to establish the proof

of the following claims by considering (2.5).

Proposition 2. For Toeplitz {Am}Mm=0, (in)feasibility of (2.5) is equivalent to (in)feasibility of

(2.1). Furthermore, if (2.1) is feasible, then it can be solved to global optimality in polynomial-

time.

Proof. Taken together, constraints (2.4c), (2.4d), (2.4e) constitute the LMI parametrization of

the autocorrelation sequence r(k) of an MA process of order p, and it has been shown in [60,

Appendix A] that (2.4e) is redundant, in the sense that the set of feasible (X, r) defined by

(2.4c), (2.4d), and (2.4e) is the same as that defined by (2.4c) and (2.4d) only. If a solution X̂, r̂

of (2.5) has Rank(X̂) > 1, then there exists a rank-1 matrix X̄ which defines the same sequence

r̂, and such a rank-1 matrix can be obtained by determining a spectral factor x̄ of r̂ using a

spectral factorization algorithm (e.g., see [61]) and setting X̄ = x̄x̄H . Spectral factorization is

non-unique, but we only need one (e.g., the minimum phase) factor.

The implication is that for the special case of (2.1) considered here, with Toeplitz-Hermitian

quadratic forms, the problem is not NP–hard (as is general QCQP with non-convex Hermitian

quadratic forms), but is in fact exactly solvable in polynomial-time using convex programming,

followed by a simple post-processing step.

A globally optimal solution of (2.1) can also be obtained by solving (2.2) first, followed by

defining the autocorrelation sequence r(k) = Trace(ΘkXopt) ∀ k ∈ K, where Xopt denotes the

optimal solution of (2.2). Since solving (2.2) is equivalent to solving (2.5), determining a spectral

factor of {r(k)}pk=−p will yield the optimal solution to (2.1). This is the preferred approach since

solving (2.2) is more computationally efficient compared to (2.5). Thus, for QCQPs with non-

convex Toeplitz-Hermitian quadratic forms, the solution of SDR (which is not rank-1 in general),

can always be converted into an optimal rank-1 solution via spectral factorization; SDR is tight.
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2.3 QCQPs with Circulant Quadratic Forms

We now consider a more special case of (2.1) where the matrices {Am}Mm=0 are circulant. Al-

though circulant matrices are a subset of the set of Toeplitz matrices, and hence the results

of the previous section apply, we show that by exploiting the circulant structure, the QCQP

problem (2.1) can be equivalently reformulated as a LP problem which can again be solved to

global optimality, at a lower complexity cost as compared to solving the SDP (2.2). Circulant

matrices are diagonalized by the discrete Fourier Transform (DFT) matrix, i.e., we can write

Am = FΛmFH , where F ∈ CN×N is the unitary DFT matrix

F =
1√
N



1 1 1 · · · 1

1 wN w2
N · · · wN−1

N

1 w2
N w4

N · · · w
2(N−1)
N

...
...

...
. . .

...

1 wN−1
N w

2(N−1)
N · · · w

(N−1)(N−1)
N


(2.7)

where wN = e−j
2π
N is the N th root of unity, and Λm is a diagonal matrix of the eigenvalues of

Am obtained by taking the DFT of the first row of Am. Hence, each quadratic term in (2.1b)

can be expressed as

xHAmx = xHFΛmFHx (2.8a)

= yHΛmy (2.8b)

=

N∑
i=1

λm(i)|y(i)|2 (2.8c)

with obvious notation. Define z(i) = |y(i)|2,∀ i ∈ [N ], z = [z(1), · · · , z(N)]T , and λm =

[λm(1), · · · , λm(N)]T . Then, we have

xHAmx = λTmz, ∀ m ∈ [M ] (2.9)

Similarly for the objective, we have xHA0x = λT0 z. Putting everything together, we obtain the

following formulation

min.
z∈Rn

λT0 z (2.10a)

s.t. λTmz ≤ bm, ∀ m ∈ [M ] (2.10b)

z ≥ 0 (2.10c)

which is a LP problem in z. Thus, by exploiting the fact that all circulant matrices are diagonal-

ized by the same eigen-basis, we can equivalently reformulate the non-convex QCQP problem
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(2.1) as the LP problem (2.10), which can be solved to global optimality very efficiently. If zopt

is the optimal solution of (2.10), then we define yopt as yopt(i) =
√
zopt(i),∀ i ∈ [n]. Since F is

unitary, an optimal solution xopt for (2.1) can be obtained as xopt = Fyopt. Again, the optimal

solution is not unique since, from the definition of z, all phase information about y is irrelevant.

2.4 Numerical Results

In order to illustrate our claims, we carried out the following simulation experiments in MATLAB

on a 64-bit desktop with 8 GB RAM and a 3.40 GHz Intel CORE i7 processor. YALMIP was

chosen as the modeling language and the MOSEK solver was used to solve the optimization

problems.

In our first experiment, we consider a problem with N = 10 complex dimensions, M ∈
{20, 40, 60, 80, 100}, and all the matrices are Toeplitz-Hermitian. The following procedure was

used to create each instance of the QCQP problem (2.1). Generating the Toeplitz-Hermitian

constraint matrices {Am}Mm=1 only requires specification of the first row of each matrix. Every

such row is drawn randomly and independently from a complex, circularly symmetric Gaussian

distribution with zero mean and covariance matrix equal to identity. The Hermitian part of

each matrix was finally taken to obtain Am. An initial point p was randomly generated, while

the each of the values {bm}Mm=1 were sampled randomly from a Gaussian distribution bm ∼
N (pHAmp, 1). If pHAmp > bm, then both sides of the inequality are multiplied by −1 to

obtain ≤ inequalities. In order to generate A0, a Gaussian random vector was randomly drawn

from the previous distribution, and its one-sided deterministic autocorrelation sequence was

calculated, which was then used to specify the first row of A0. This technique ensures that A0

is Toeplitz-Hermitian, and also positive semi-definite. In order to solve (2.1), the SDR problem

(2.2) was solved first, followed by a spectral factorization step to obtain a globally optimal

solution of (2.1). The results, depicted in Table 2.1, were obtained after averaging over 1000

Monte-Carlo trials.

The table reports the average difference between the cost of the rank-1 solution obtained

from SDR followed by spectral factorization and the lower bound obtained from the (higher-

rank) solution of SDR alone; plus the average execution time of the algorithm. It was observed

that, in all instances, a feasible solution was obtained, at a very modest computational effort,

which is extremely close to the SDR lower bound.

In our second experiment, we consider the case of the QCQP problem (1) where all the

matrices are Circulant-Hermitian. The number of complex dimensions was set to be N = 20

and the constraints M ∈ {25, 50, 75, 100, 125}. In order to generate each of the constraint

matrices {Am}Mm=1, a random vector of eigen-values was independently sampled from a uniform
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distribution in the interval [−10, 10]. Upon forming a diagonal matrix of the eigen-values,

followed by pre- and post-multiplication by the unitary DFT matrix (as defined in (2.7)), we

obtain Am. The right hand sides {bm}Mm=1 were generated and the sign of each inequality was

fixed in the same manner as described in our previous experiment. A0 was also synthesized in

a similar fashion as each {Am}Mm=1, except that the vector of eigen-values was drawn randomly

from a uniform distribution on the interval [0, 20], in order to ensure positive semi-definiteness.

Each problem instance was solved by both the LP approach and SDR followed by spectral

factorization. The results are summarized in Tables 2.2 and 2.3.

M 20 40 60 80 100
Avg. Loss (dB ×10−5) 6.37 6.92 6.06 5.97 9.53
Execution Time (secs) 0.114 0.154 0.192 0.231 0.268

Table 2.1: Results using SDR + Spectral Factorization for Toeplitz quadratic QCQPs.

M 25 50 75 100 125
Avg. Loss (dB ×10−5) 71.3 6.32 8.28 2.32 3.63
Execution Time (secs) 0.228 0.274 0.327 0.386 0.451

Table 2.2: Results using SDR + Spectral Factorization for Circulant quadratic QCQPs.

M 25 50 75 100 125
Avg. Loss (dB ×10−6) 0.28 1.22 1.42 1.24 1.22
Execution Time (secs) 0.059 0.098 0.138 0.171 0.214

Table 2.3: Results using Linear Programming for Circulant quadratic QCQPs.

Each table reports the average loss incurred in the cost function when the cost of the solutions

obtained via the respective methods are compared to the SDR lower bound, along with the

average execution times. From the tables, it is seen that the obtained solutions from both

methods are indeed the globally optimal solutions of the non-convex QCQP problem (2.1), as

evidenced by the very low average loss. As expected, the LP approach is considerably faster

as compared to the SDR method. In addition, it was empirically observed that the solution of

the former method was more accurate as compared to that of the latter method, in the sense

that the average loss was typically an order of magnitude smaller. Overall, this illustrates the

benefit of using the LP approach over the SDR method for solving non-convex QCQPs with

Circulant-Hermitian quadratic forms.
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2.5 Conclusion

We considered QCQPs with Toeplitz-Hermitian quadratics and proved that they are exactly

solvable in polynomial-time via SDP relaxation followed by spectral factorization. For circulant-

Hermitian quadratics, it was shown that the QCQP problem can be reformulated as a LP

problem, which can be solved very efficiently. Numerical experiments illustrated the main claims.



Chapter 3

Fast Feasibility Pursuit for a class

of non-convex QCQP

3.1 Introduction

In this section, we consider the case of the following quadratic feasibility problem

find
x∈X

x (3.1a)

s.t. xTAmx ≤ −1,∀ m ∈ [M ] (3.1b)

where Am � 0, ∀ m ∈ [M ], and X ⊂ RN is a convex, compact set. Note that (3.1) is a non-

convex problem for which it is NP–hard to establish (in)feasibility in general. For the purpose

of obtaining feasible solutions (when one exists), we recast (3.1) as

min.
x∈X

max
m∈[M ]

xTAmx (3.2)

Define f(x) := max
m∈[M ]

um(x), where um(x) := xTAmx, ∀ m ∈ [M ], and let x∗ denote an optimal

solution of (3.2). If f(x∗) ≤ −1, then feasibility of (3.1) is established and x∗ corresponds to

a feasible solution of (3.1). Otherwise, if f(x∗) > −1, (3.1) is infeasible. However, (3.2) is a

non-convex problem, which cannot be solved to global optimality in general. Even then, we

note that the set F := {x ∈ X |f(x) ≤ −1} is equivalent to the feasible set of (3.1), i.e., any

sub-optimal solution of (3.2) which lies in F is also feasible for (3.1). This observation motivates

the following approach: although it is hard to solve (3.2) optimally, it suffices to determine any

x ∈ F to establish feasibility of (3.1). Thus, one can design approximation algorithms for (3.2),

with the goal of obtaining sub-optimal solutions which lie in the set F . We will adopt this

14
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approach, utilizing the framework of SCA to design an approximation algorithm for feasibility

pursuit. However, the non-convex nature of (3.2) implies that our approach is not guaranteed to

yield solutions which lie in F , even when (3.1) is known to be feasible (i.e., F is non-empty). At

best, we hope to design an approximation algorithm which consistently yields feasible solutions

for a large number of feasible instances of (3.1).

Our approach for developing fast SCA algorithms can be summarized as follows: at each

iteration we construct a non-smooth, convex surrogate function of the non-convex cost function

of (3.2) by locally linearizing each quadratic component about the current iterate. On replacing

the cost function with its convex surrogate, at each iteration, we obtain a non-smooth, convex

optimization subproblem. The solution of each subproblem is then used as the point about

which we construct a convex surrogate function in the next iteration. We establish the global

convergence of the iterates generated by the resulting SCA algorithm to the set of d-stationary

solutions of (3.2).

The overall complexity of this algorithm depends on the cost incurred in solving each non-

smooth, convex subproblem. The prevailing approach for solving each subproblem is to first

convert it into an equivalent smooth representation and then use general purpose convex opti-

mization solvers, which utilize interior-point methods, for obtaining solutions. However, such a

smooth reformulation has undesirable consequences from a computational standpoint, since it

introduces additional constraints. In addition, when the number of variables is large, then using

interior-point methods to solve each subproblem can become very computationally expensive.

In order to reduce the complexity of solving each subproblem, we explore the idea of using

FOMs for efficiently solving each subproblem in its non-smooth representation. It is shown that

the cost function of each subproblem possesses special structure in the form of being expressible

as the maximization of a bilinear function over a convex set. This is the key step, since this

form of structure can be exploited by the Nesterov smoothing technique [62] and Nemirovski’s

saddle point reformulation approach [63] to allow the development of specialized FOMs for

efficiently solving each SCA subproblem. These methods possess the desirable property of

low per-iteration complexity and an improved iteration complexity over standard methods for

non-smooth, convex-optimization (e.g., projected subgradient methods). In addition to these

two methods, we also propose using an inexact version of the classical Alternating Direction

Method of Multipliers (ADMM) algorithm [64–66] for solving each SCA subproblem, which

drops expensive, exact variable updates in favor of computationally cheaper, albeit inexact

updates. In order to test the performance of the proposed FOM-based SCA techniques, we

apply them to the problem of designing a max-min fair multicast beamformer [2].
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3.2 Preliminaries

We will use the following standard definitions from convex analysis [67].

• Let f : Rn → R denote a single-valued, convex, lower semi-continuous function such that

domf 6= ∅. Then, the Fenchel conjugate of f is defined as

f∗(y) = sup
x∈Rn

xTy − f(x) (3.3)

Note that f∗(y) is also convex since it corresponds to the point-wise supremum of linear

functions in y.

• Consider a multi-valued function F : Rn → Rn. F is said to be monotone if

(F (x)− F (y))T (x− y) ≥ 0,∀ x,y ∈ domF (3.4)

For the special case of n = 1, (3.4) implies that F is a monotonically increasing function.

Thus (3.4) can be interpreted as an extension of the concept of monotonicity to the general

case of n ≥ 1. As an example, the gradient of a convex, differentiable function is monotone.

• A multi-valued function F is said to be strongly monotone with parameter σ ∈ R > 0 if

(F (x)− F (y))T (x− y) ≥ σ‖x− y‖22,∀ x,y ∈ domF (3.5)

As an example, the gradient of a strongly convex, differentiable function is strongly mono-

tone.

• Let y ∈ Rn and X ⊆ Rn be a set. Then the distance of the point y from the set X is

defined as

d(y,X ) = inf
x∈X
‖y − x‖2 (3.6)

3.3 Successive Convex Approximation

SCA is an iterative procedure, where in each iteration, a convex surrogate function which serves

as a tight, global upper bound of f(x), is minimized. Starting from a feasible point x(0) ∈ X ,

at every iteration n ∈ N, we construct a convex majorization function of f(x) about the current

iterate x = x(n) in the following manner. Since um(x) is concave ∀ m ∈ [M ], on locally

linearizing um(x) about the point x = x(n), we obtain the following upper bound.

um(x) ≤ um(x(n)) +∇um(x(n))T (x− x(n))

= (2Amx(n))Tx− (x(n))TAmx(n)

= (c(n)
m )Tx + d(n)

m ,∀ m ∈ [M ]

(3.7)
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where c
(n)
m := 2Amx(n) ∈ RN , and d

(n)
m := −(x(n))TAmx(n) ∈ R, ∀ m ∈ [M ]. Following this

step, we define the function v(x,x(n)) := max
m∈[M ]

c
(n)T
m x + d

(n)
m , which possesses the following

properties.

(A1) v(x,x(n)) is a convex function in x (being piecewise linear).

(A2) v(x,x(n)) is continuous in (x,x(n)), but non-differentiable in x.

(A3) v(x(n),x(n)) = f(x(n)), ∀ x(n) ∈ X

(A4) v(x,x(n)) ≥ f(x), ∀ x,x(n) ∈ X

Properties (A3) and (A4) together imply that the piecewise linear function v(x,x(n)) is an

upper bound of the original function f(x) which is tight at x = x(n). In every iteration n, we

replace f(x) by its piecewise linear approximation about x(n) to obtain the non-smooth, convex

subproblem

min.
x∈X

max
m∈[M ]

c(n)T
m x + d(n)

m (3.8)

The overall algorithm is given by

Algorithm 1 : SCA

Initialization: Starting point x(0) ∈ X , set n := 0.

Repeat

• Compute x(n+1) ∈ arg min
x∈X

v(x,x(n))

• Set n := n+ 1.

Until termination criterion is met

Note that a feasible starting point can always be determined since, by our assumption, X is a

convex set. Furthermore, we have the following chain of inequalities

f(x(n+1)) ≤ v(x(n+1),x(n)) ≤ v(x(n),x(n)) = f(x(n)), ∀ n ∈ N (3.9)

The first inequality stems from (A4), whereas the second inequality follows since x(n+1) is an

optimal solution of v(x,x(n)), and the last equality is due to (A3). As a result, it can easily be

seen that the algorithm produces a sequence of iterates with monotonically non-increasing cost.

In addition, we have the following result, which establishes that the algorithm is also provably

convergent.
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Proposition 3. The iterates generated by SCA globally converge to the set of d-stationary

solutions of (3.2); i.e., we have

lim
n→∞

d(x(n),X ∗) = 0

where X ∗ is the set of d-stationary solutions of (3.2).

Proof. The proof is deferred to Appendix A.1.

The main computational cost incurred is in solving a subproblem of the form (3.8) at each

iteration. Since (3.8) does not have a closed form solution, we must resort to iterative methods for

solving each subproblem. The standard procedure involves transforming (3.8) into its epigraph

representation, which yields the following smooth optimization problem

min.
t∈R, x∈X

t (3.10a)

s.t. c(n)T
m x + d(n)

m ≤ t, ∀ m ∈ [M ] (3.10b)

Problem (3.10) can be solved using interior point methods at a worst case computational com-

plexity of O(N3
√
M + |X |) [68], where |X | is the smallest number of constraints required to

define X . Coupled with the fact that each such problem has to be solved multiple times, it is

clear that the overall cost incurred is expensive and can become a serious computational burden

for large M or (especially) N . In hindsight, the high computational cost stems from equivalently

reformulating (3.8) as a smooth optimization problem (3.10). This motivates the development

of low-complexity alternatives for efficiently solving each non-smooth subproblem (3.8), which

are described in the following section.

3.4 First-Order based Algorithms for SCA

As a first step, we impose the following condition regarding the convex set X : we assume that

X is simple; i.e., the Euclidean projection operator onto X can be computed very efficiently.

Given this, one may consider using projected sub-gradient methods [69, 70] for solving (3.8),

which are well suited for minimizing non-differentiable convex functions subject to simple convex

constraints. These methods possess the desirable property of having low per-iteration complexity

in contrast to interior-point methods. The main drawback of using such methods is their slow

convergence rate, which ultimately limits the attainable accuracy. Indeed, if the constraint set

is compact, then for appropriately chosen step-sizes, the number of iterations required to obtain

an ε-optimal solution 1 is upper bounded by O( 1
ε2 ). Furthermore, from results in Information-

Based Complexity Theory [71], it is known that the number of iterations required to construct

1 Here, we define ε-optimality in terms of the cost function.
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an ε-optimal solution by a FOM, with knowledge of the value and subgradients of the cost

function only, is no less than O( 1
ε2 ).

Since the iteration outer bound of projected subgradient methods matches this lower bound,

they are optimal in a minimax sense, which would seem to indicate that one cannot devise a FOM

with a faster convergence rate for solving problems of the form (3.8). However, it is important

to stress that projected subgradient does not utilize any specific structure the problem may

possess. This implies that it may indeed be possible to devise FOMs which explicitly exploit

problem structure to achieve ε-optimality in fewer iterations. Note that this observation is not

a contradiction of the results of [71], since such FOMs are not oblivious to problem-specific

structure.

We now demonstrate that the cost function of (3.8) possesses specific structure which can

be judiciously exploited. First, we define the matrix C(n) := [c
(n)
1 , · · · , c(n)

M ]T ∈ RM×N and the

vector d = [d
(n)
1 , · · · , d(n)

M ]T ∈ RM . Then, v(x,x(n)) can be equivalently expressed as

v(x,x(n)) = max
m∈[M ]

c(n)T
m x + d(n)

m (3.11a)

= max
y≥0,1Ty=1,

y∈RM

(C(n)x + d(n))Ty (3.11b)

To see that this holds, note that (3.11b) corresponds to maximizing a linear function over the

M−dimensional probability simplex. Hence, the maximum is attained at one of the vertices of

the simplex, which are given by the canonical basis vectors of RM . From the definition of C(n)

and d(n), it is then evident that the equivalence holds. Defining φ(n)(x,y) := (C(n)x + d(n))Ty

and ∆M as the M−dimensional probability simplex, (3.8) can be equivalently reformulated as

min
x∈X

max
y∈∆M

φ(n)(x,y) (3.12)

This special problem structure is the cornerstone of our algorithmic approach for solving (3.12),

as it is well suited for the application of several specialized FOMs. We now discuss methods

available in the existing optimization literature which are capable of solving problems of the

form (3.12) efficiently.

3.4.1 Smoothing via Conjugation

We first point out that one can consider using the log-sum-exp function as a smooth surrogate for

the cost function of (3.8), since log-sum-exp can be interpreted as a differentiable approximation

of the point-wise maximum function [14, p. 72]. We now show that it is possible to rigorously

derive a more general result.
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In his seminal work [62], Nesterov considered the following problem

min.
x∈Rn

q(x) (3.13a)

s.t. x ∈ C (3.13b)

where C ⊆ Rn is a simple, compact, convex set and q : Rn → R is a non-differentiable, Lipschitz

continuous convex function which admits the following representation

q(x) = sup
y∈dom p

((Cx + d)Ty − p(y))

= p∗(Cx + d)

(3.14)

where C ∈ Rm×n,d ∈ Rm, p : Rm → R is a closed, convex function with bounded domain

and p∗(x) denotes the Fenchel conjugate of p(y). Hence, q(x) belongs to the class of non-

differentiable convex functions which can be expressed as Fenchel conjugates of other convex

functions. Nesterov’s technique for solving (3.13) is based on smoothing-constructing a smooth

approximation of q(x) which possesses a Lipschitz continuous gradient, followed by minimizing

the approximation by an accelerated FOM [72]. We now succinctly summarize the details of

this technique as presented in [73].

Let r(y) be a continuous, strongly convex function defined over the closure of the domain of

p such that inf
y∈dom p

r(y) = 0. Then, consider the function

qµ(x) = sup
y∈dom p

((Cx + d)Ty − p(y)− µr(y))

= (p+ µr)∗(Cx + d)

(3.15)

where (p + µr)∗(x) is the Fenchel conjugate of the strongly convex function (p + µr)(y) and

µ ∈ R++. Nesterov established that the function qµ(x) possesses the following properties.

(B1) qµ(x) is well defined and differentiable at all x, and ∇qµ(x) is Lipschitz continuous with

Lipschitz constant Lµ ∝ 1
µ .

(B2) qµ(x) ≤ q(x) ≤ qµ(x) + µD, where D := sup
y∈dom p

r(y).

Hence, qµ(x) can be interpreted as a smooth approximation of q(x), where µ is a parameter

which controls the level of smoothing. Replacing q(x) by qµ(x) in (3.13), we obtain the smooth

optimization problem

min.
x∈Rn

qµ(x) (3.16a)

s.t. x ∈ C (3.16b)
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which can be solved to a numerical accuracy of εµ in O(
√

Lµ
εµ

) iterations using an accelerated

FOM [62,72]. It can also be shown that we have

q(x)− q∗(x) ≤ qµ(x)− q∗µ(x) + µD (3.17)

where q∗(x) and q∗µ(x) denote the optimal values of (3.13) and (3.16) respectively. If we define

εµ = qµ(x) − q∗µ(x), then from (3.17) it is evident that an ε-optimal solution of (3.13) can be

obtained by solving (3.16) to a numerical accuracy of εµ = ε−µD; i.e., the smooth approximation

(3.16) is solved to a higher degree of accuracy than the original non-smooth problem (3.13).

The role of the smoothing parameter µ is now discussed. Clearly, a smaller µ results in less

smoothing which corresponds to a more accurate approximation of q(x), but results in more

iterations required to solve (3.16) via an accelerated FOM since Lµ is large. On the other hand,

a larger µ produces a more smooth approximation (since Lµ is small), but results in having to

solve (3.16) to a higher degree of accuracy in order to obtain an ε-optimal solution of (3.13).

Overall, for a given ε, if we choose µ = ε
2D , it can be shown that using an accelerated FOM

to solve (3.16), one can obtain an ε-optimal solution of (3.13) in no more than O( 1
ε ) iterations,

which represents an order of magnitude improvement over the O( 1
ε2 ) iterations required by

subgradient methods.

From (3.11), it is clear that Nesterov’s smoothing technique can be applied to solve (3.12).

Define the function r(y) :=
∑M
m=1 y(m) log y(m) + logM , which is continuous and strongly

convex everywhere over ∆M . Then, the smooth approximation of v(x,x(n)) is given by

vµ(x,x(n)) = sup
y∈∆M

(C(n)x + d(n))Ty − µr(y)

= µ log

(
M∑
m=1

exp

(
c

(n)T
m x + d

(n)
m

µ

))
− µ logM

(3.18)

where µ ∈ R+ is the smoothing parameter. Note that if we set µ = 1 and neglect the last

term, we re-obtain the log-sum-exp function. Replacing v(x,x(n)) by vµ(x,x(n)) in (3.12), our

optimization problem becomes

min.
x∈X

log

(
M∑
m=1

exp

(
c

(n)T
m x̃ + d

(n)
m

µ

))
(3.19)

which is a smooth optimization problem, and can be solved using an accelerated FOM. Utilizing

Nesterov’s smoothing technique to solve each SCA subproblem, the overall SCA algorithm is

given by
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Algorithm 2 : Nesterov SCA

Initialization: Starting point x(0) ∈ X , set n := 0.

Repeat

• Compute x(n+1) ∈ arg min
x∈X

vµ(x,x(n)) using an accelerated FOM.

• Set n := n+ 1.

Until termination criterion is met.

The per-iteration cost of an accelerated FOM is dominated by the cost of forming the gradient

(since all projections can be computed in closed form), which incurs a modest cost of O(MN)

flops in our case. In order to obtain further savings in computation, at each SCA iteration n,

one can warm-start the accelerated FOM with the current iterate x(n).

3.4.2 Convex-Concave Saddle Point Reformulation

The following technique is attributed to Nemirovski [63]. Let X ⊂ Rn,Y ⊂ Rm be convex,

compact sets and let φ : Rn ×Rm → R be a continuous function which is convex in x ∈ Rn and

concave in y ∈ Rm. Define the function g(x) = max
y∈Y

φ(x,y) and consider the following problem

min.
x∈X

g(x) = min.
x∈X

max
y∈Y

φ(x,y) (3.20)

From Sion’s minimax equality theorem [74], we have that

min.
x∈X

max
y∈Y

φ(x,y) = max.
y∈Y

min
x∈X

φ(x,y) (3.21)

which implies that the optimal solution z∗ = (x∗,y∗) ∈ X × Y := Z of (3.20) corresponds to a

saddle point of φ(x,y), i.e., we have

φ(x∗,y) ≤ φ(x∗,y∗) ≤ φ(x,y∗) ∀ (x,y) ∈ X × Y (3.22)

Given a candidate solution z̄ = (x̄, ȳ) ∈ Z, its degree of suboptimality can be evaluated via the

following primal-dual gap

εsad(x̄, ȳ) = max.
y∈Y

φ(x̄,y)−min.
x∈X

φ(x, ȳ) (3.23)

Using (3.23), we can obtain the following inequality

g(x)−min.
x∈X

g(x) = max.
y∈Y

φ(x,y)−min
x∈X

max.
y∈Y

φ(x,y)

≤ max.
y∈Y

φ(x,y)−min.
x∈X

φ(x,y)

= εsad(x,y)

(3.24)
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Hence, the x component of a point (x,y) ∈ Z for which εsad(x,y) ≤ ε also corresponds to an ε-

optimal solution of (3.20). The overall problem of determining a saddle point z∗ = (x∗,y∗) ∈ Z
of φ(x,y) can be cast as solving the associated variational inequality

Ψ(z∗)T (z− z∗) ≥ 0, ∀ z ∈ Z (3.25)

where we define the saddle-point operator Ψ as

Ψ(z) := Ψ(x,y) =

[
∇xφ(x,y)

−∇yφ(x,y)

]
(3.26)

In addition, it can be shown that Ψ is monotone and Lipschitz continuous on Z (see [63]). The

field of variational inequalities is a well studied subject which finds application in diverse areas

(see [75] and references therein) and can be analyzed using tools from fixed-point theory. Hence,

one can attempt to solve (3.25) by a fixed-point iteration, such as the generalized projected

gradient method [76]. However, the convergence of this method is not guaranteed (see [76] for

counter-examples), unless Ψ is strongly monotone. This restriction can be overcome by using a

modified version of the method, known as the extragradient algorithm [77], which only requires

the assumption of monotonicity and Lipschitz continuity of Ψ to guarantee convergence to the

solution of (3.25).

The idea of classical projected gradient descent was extended to non-Euclidean geometries

by the Mirror Descent algorithm [78], [79], which uses a distance generating function to exploit

the specific geometry of the constraint set. In [63], Nemirovski proposed a variant of the Mirror

Descent algorithm, known as the Mirror-Prox algorithm, for solving variational inequalities of

the form (3.25), which can be interpreted as a generalization of the extragradient algorithm

to non-Euclidean geometries. We now summarize the details of the Mirror-Prox algorithm as

presented in [80, Section 5.2.3].

Let the sets X and Y be endowed with norms ‖.‖X and ‖.‖Y respectively. Assume that

φ(x,y) is (β11, β12, β21, β22)-smooth in the following sense.

‖∇xφ(x,y)−∇xφ(x′,y)‖X ,∗ ≤ β11‖x− x′‖X , (3.27a)

‖∇yφ(x,y)−∇yφ(x,y′)‖Y,∗ ≤ β22‖y − y′‖Y , (3.27b)

‖∇xφ(x,y)−∇xφ(x,y′)‖X ,∗ ≤ β12‖y − y′‖Y , (3.27c)

‖∇yφ(x,y)−∇yφ(x′,y)‖Y,∗ ≤ β21‖x− x′‖X , (3.27d)

∀ z = (x,y) ∈ Z, z′ = (x′,y′) ∈ Z

where ‖.‖X ,∗ and ‖.‖Y,∗ denote the dual norms of ‖.‖X and ‖.‖Y respectively. Define ΦX (x) to

be a mirror map for X , which possesses the following properties [80, Section 4.1]
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(C1) ΦX : DX → R, where DX ⊂ Rn is a non-empty, convex open set which contains X in its

closure (i.e., X ⊂ DX ) and X ∩ DX 6= ∅.

(C2) lim
x→∂DX

‖∇ΦX (x)‖ → ∞

(C3) ΦX (x) is strongly convex and continuously differentiable on DX .

(C4) The Bregman Divergence associated with ΦX is defined as

DΦX (x,x′) := ΦX (x)− ΦX (x′)−∇ΦX (x′)T (x− x′),∀ x,x′ ∈ DX (3.28)

Similarly, define ΦY(y) to be a mirror map for Y. We now consider the mirror map Φ(z) =

Φ(x,y) = ΦX (x)+ΦY(y) for Z = X×Y, defined onD = DX×DY . Define β := max(β11, β12, β21, β22)

and α := 1
2β . The Mirror-Prox algorithm is then given by the following steps

Algorithm 3 : Mirror Prox

Initialization: Define zj = [xTj ,y
T
j ]T ,wj = [uTj ,v

T
j ]T ,

Ψ(zj) = [∇xφ(xj ,yj)
T ,−∇yφ(xj ,yj)

T ]T , and Ψ(wj) = [∇xφ(uj ,vj)
T ,−∇yφ(uj ,vj)

T ]T for

j ≥ 0. Let z0 = arg minz∈Z∩D Φ(z). Set j := 0,w0 = z0.

Repeat

1. ∇Φ(w′j+1) = ∇Φ(zj)− αΨ(zj)

2. w′j+1 = ∇Φ−1(∇Φ(zj)− αΨ(zj))

3. wj+1 = arg minz∈Z∩DDΦ(z,w′j+1)

4. ∇Φ(z′j+1) = ∇Φ(zj)− αΨ(wj+1)

5. z′j+1 = ∇Φ−1(∇Φ(zj)− αΨ(wj+1))

6. zj+1 = arg minz∈Z∩DDΦ(z, z′j+1)

7. Set j := j + 1.

Until termination criterion is met.

Note that the functional ∇Φ−1 exists and is well defined since the gradient of a strongly convex

function is strongly monotone. In addition, the existence and uniqueness of the minimizers of

steps 3) and 6) follow from properties (C2) and (C3) of mirror maps, respectively. The overall

algorithm consists of two iterations of Mirror Descent. The first three steps of the algorithm (i.e.,

going from zj to wj+1) correspond to a single step of Mirror Descent, whereas in the subsequent

three steps, a similar procedure is followed, albeit with a slight difference; the algorithm again
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starts from zj (instead of wj+1), but uses an operator evaluation at wj+1 to obtain zj+1. If the

mirror maps of X and Y are chosen to be 1
2‖x‖

2
2 and 1

2‖y‖
2
2 respectively, then it can be shown

that Mirror-Prox reduces to the extragradient algorithm of [77]. In [63], Nemirovski established

convergence of the ergodic average of the iterates (xj ,yj) generated by the algorithm. To be

more specific, he proved the following sub-optimality bound in terms of the primal-dual gap.

εsad

(
1

T

T−1∑
j=0

xj ,
1

T

T−1∑
j=0

yj

)
≤ O

(
1

T

)
(3.29)

Combining this result with (3.24) implies an iteration outer bound of O( 1
ε ) for guaranteeing

convergence to an ε-optimal solution of (3.20).

Note that problem (3.12) fits the framework proposed by Nemirovski, since it corresponds to

a smooth, bilinear saddle-point reformulation of the non-smooth problem (3.8). Define Φ(x) =
1
2‖x‖

2
2 and Φ(y) =

∑M
m=1 y(m) log y(m) to be the mirror maps for the sets X and Y := {y ∈

∆M}, respectively. Then, the mirror map Φ(z) defined ∀ z = (x,y) ∈ Z := X × Y is given by

Φ(z) = Φ(x,y) = Φ(x) + Φ(y)

=
1

2
‖x‖22 +

M∑
m=1

y(m) log y(m)
(3.30)

from which it follows that

∇Φ(z̃) =


x̃

log y(1) + 1
...

log y(M) + 1

 ,∇−1Φ(z) =


x

exp(y(1)− 1)
...

exp(y(M)− 1)

 (3.31)

Furthermore, the Bregman Divergence associated with Φ(z) can be expressed as

DΦ(z, z′) = Φ(z)− Φ(z′)−∇Φ(z′)T (z− z′)

=
1

2
‖x− x′‖22 +

M∑
m=1

y(m) log
y(m)

y′(m)
−

M∑
m=1

(y(m)− y′(m))
(3.32)

where z = (x,y), z′ = (x′,y′) ∈ D. Thus, the non-Euclidean projection problem

min.
z∈Z∩D

DΦ(z, z′)

= min.
x∈X ,
y∈∆M

1

2
‖x− x′‖22 +

M∑
m=1

y(m) log
y(m)

y′(m)
−

M∑
m=1

(y(m)− y′(m))
(3.33)
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can be decomposed into the pair of problems

min.
x∈X

‖x− x′‖22 (3.34a)

min.
y∈∆M

M∑
m=1

y(m) log
y(m)

y′(m)
−

M∑
m=1

(y(m)− y′(m)) (3.34b)

The first problem is an Euclidean projection onto X , which can be solved in closed form, while

the second problem involves a non-Euclidean projection onto the M−dimensional probability

simplex, where “distances” are measured using the unnormalized Kullback-Leibler (KL) diver-

gence. This problem admits a simple closed form solution [80, p. 302] given by

y =

 y′, y′ ∈ ∆M

y′

‖y′‖1 , otherwise
(3.35)

Furthermore, note that

Ψ(z) =

[
∇xφ

(n)(x,y)

−∇yφ
(n)(x,y)

]
=

[
(C(n))Ty

−(C(n)x + d(n))

]
(3.36)

where the superscript n denotes the iteration index of the outer SCA loop. Finally, from

(3.27), it can be verified that for a fixed n, we have β11 = 0, β22 = 0, β12 = β21 = L, where

L = maxm∈M ‖c(n)
m ‖2 is the Lipschitz constant of the functions c

(n)T
m x + d

(n)
m ,∀ m ∈ [M ]. Thus,

we obtain the step size α = 1
2L .

It now only remains to solve (3.12) according to the steps of the Mirror-Prox algorithm (Algo-

rithm 3) with the mirror maps and saddle-point operator (along with the associated quantities)

as defined above. The cost of each iteration of the Mirror-Prox algorithm is dominated by the

formation of the saddle-point operator Ψ(z̃), which requires only O(MN) flops; all projections

are again closed form operations. The overall SCA algorithm is now given by

Algorithm 4 : Mirror-Prox SCA

Initialization: Starting point x(0) ∈ X , set n := 0.

Repeat

• Compute x(n+1) ∈ arg min
x∈X

max
y∈∆M

φ(n)(x,y) using the Mirror-Prox algorithm.

• Set n := n+ 1.

Until termination criterion is met.
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3.4.3 Alternating Direction Method of Multipliers

We now propose an alternative low complexity method for solving each subproblem of SCA.

Define the indicator function of the constraint set X as

IX (x) :=

0, x ∈ X

∞, otherwise
(3.37)

Then, consider the following equivalent reformulation of (3.8)

min.
x∈RN

v(x,x(n)) + IX (x) (3.38a)

=min.
x∈RN

ω(C(n)x,x(n)) + IX (x) (3.38b)

where we have defined ω(z,x(n)) := max
m∈[M ]

{z(m) +d(n)(m)} and z ∈ RM . Thus, the constrained

minimization problem (3.8) is equivalent to minimizing the sum of two non-smoooth, convex

functions. In order to ease the burden of notation, we suppress the explicit dependence of ω(., .)

on x(n) and equivalently express (3.38b) as

min.
x∈RN

ω(C(n)x) + IX (x) (3.39)

Defining z := C(n)x, we obtain the problem

min.
x∈RN ,z∈RM

ω(z) + IX (x) (3.40a)

s.t. C(n)x− z = 0 (3.40b)

which is in a form suitable for the Alternating Direction Method of Multipliers (ADMM) [64–

66]; a method which combines the benefits of dual decomposition and augmented Lagrangian

techniques into a simple but powerful algorithm. The advantage of ADMM is that it enables

cost functions (which may be non-smooth) and constraints to be handled separately via variable

splitting. This can yield very efficient updates that are amenable to distributed implementation,

while requiring mild conditions for achieving convergence. The augmented Lagrangian of (3.40)

is given by

Lρ(x, z,λ) = ω(z) + IX (x) + λT (C(n)x− z) +
ρ

2
‖C(n)x− z‖22 (3.41)
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where λ ∈ RM is the dual variable and ρ is the penalty parameter of the augmented Lagrangian.

The ADMM updates for a given subproblem (3.40) are then given by

x
(n)
j+1 := arg min

x
Lρ(x, z

(n)
j ,λ

(n)
j )

= arg min
x̃

IX (x) +
ρ

2
‖C(n)x− z

(n)
j + λ̃

(n)

j ‖22 (3.42a)

z
(n)
j+1 := arg min

z
Lρ(x

(n)
j+1, z,λ

(n)
j )

= arg min
z

ω(z) +
ρ

2
‖z−C(n)x

(n)
j+1 − λ̃

(n)

j ‖22

= proxω
ρ

(C(n)x
(n)
j+1 + λ̃

(n)

j ) (3.42b)

λ̃
(n)

j+1 := λ̃
(n)

j + C(n)x
(n)
j+1 − z

(n)
j+1 (3.42c)

where the subscript j ∈ N is the ADMM iteration counter, the superscript n is the iteration

counter of SCA, λ̃ := 1
ρλ represents the scaled dual variable and in (3.42b), we have defined the

proximal operator [81] of a convex, proper, closed function f : Rn → R as

prox f
ρ
(x) = arg min

y
f(y) +

ρ

2
‖y − x‖22 (3.43)

The update of z can be computed efficiently since the proximal operator of ω(.) can be evaluated

via a bisection search (refer to Appendix A.2). Although the proximal operator of IX (.) can be

evaluated in closed form (being the Euclidean projection operator for the simple set X , which can

be computed in closed form), the update of x has to be solved numerically due to the presence

of the matrix C(n) (unless C(n) is the identity matrix or is orthogonal, neither of which hold in

our case), which is undesirable from a computational complexity standpoint. Thus, we propose

to use an inexact version of ADMM, known as Linearized ADMM (L-ADMM) [81,82], which is

specifically designed to solve problems of the form (3.39) using the proximal operators of ω(.)

and IX (.) to update the primal variables. The variable updates for the L-ADMM algorithm are

given by

x
(n)
j+1 := proxηIX (x

(n)
j − ηρC(n)T (C(n)x

(n)
j − z

(n)
j + λ̃

(n)

j ))

:= projX (x
(n)
j − ηρC(n)T (C(n)x

(n)
j − z

(n)
j + λ̃

(n)

j )) (3.44a)

z
(n)
j+1 := proxω

ρ
(C(n)x

(n)
j+1 + λ̃

(n)

j ) (3.44b)

λ̃
(n)

j+1 := λ̃
(n)

j + C(n)x
(n)
j+1 − z

(n)
j+1 (3.44c)

where the parameters η and ρ are chosen to satisfy 0 < ηρ ≤ 1
‖C(n)‖22

[81, p. 158]. Note that the

L-ADMM algorithm differs from standard ADMM in the update of x only, which now involves

evaluating the projection onto the set X and can be computed in closed form. In L-ADMM,

the standard update for x is modified by replacing the term ρ
2‖C

(n)x− zj‖22 in the augmented
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Lagrangian Lρ(x, zj ,λj) (3.41) by ρ(C(n)TC(n)xj−C(n)T zj)
Tx+ η

2‖x−xj‖22, i.e., linearization

of ρ
2‖C

(n)x− zj‖22 about xj plus a quadratic regularization term. The result can be rearranged

in the form of a proximal operator as in (3.44a).

In [83], the following convergence result of L-ADMM can be found. The authors reformulated

the optimality condition of (3.40) into a variational inequality of the form

find w∗ ∈ Ω (3.45a)

s.t. θ(u)− θ(u∗) + (w −w∗)TF (w∗) ≥ 0,∀w ∈ Ω (3.45b)

where we have defined u := [xT , zT ]T ,w := [xT , zT ,λT ]T ,

θ(u) := ω(z) + IX (x), Ω := RN ×RM ×RM and F (w) = [−(C(n)Tλ)T ,λT , (C(n)x− z)T ]T . Let

w̄j := 1
T+1

∑T
t=0 wj where wj := [xTj+1, z

T
j+1,λ

T
j+1]T (here we drop the superscript n for ease

of notation). Then, the number of iterations required so that

θ(u)− θ(ūj) + (w − w̄j)
TF (w̄j) ≥ −ε, ∀w ∈ Ω (3.46)

is O( 1
ε ) (in an ergodic sense) in the worst case. Meanwhile, analysis of the per iteration cost

of L-ADMM reveals that all the required matrix-vector multiplications incur a cost of O(MN)

flops. The update of x̃ is in closed form, while for the update of z̃, computing the proximal

operator of ω(.) via bisection search requires O(M log2(Dεb )) operations, where D is the initial

bisection interval and εb is the desired length of the final interval. Hence, it follows that L-

ADMM can be used to solve each SCA subproblem efficiently. The overall SCA algorithm is

given by

Algorithm 5 : L-ADMM SCA

Initialization: Starting point x(0) ∈ X , set n := 0.

Repeat

• Compute x(n+1) ∈ arg min
x∈RN

ω(C(n)x,x(n)) + IX (x) according to the L-ADMM updates

(3.44).

• Set n := n+ 1.

Until termination criterion is met.

If we define p(n) := x(n) (where the superscript n is the SCA iteration counter), then the nth

L-ADMM subproblem can be warm-started by initializing x
(n)
1 = p(n), z

(n)
1 = z

(n−1)
1 , λ̃

(n)

1 =

λ̃
(n−1)

1 (here the subscript 1 denotes the L-ADMM iteration counter). For the very first iteration

of SCA, we use z
(0)
1 = C(0)p(0),λ

(0)
1 = 0.
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3.5 Application: Single Group Multicast Beamforming

3.5.1 Problem Formulation

In recent years, physical layer multicasting via transmit beamforming has emerged as a powerful

technique for efficient audio and video streaming in multiuser, multiple-antenna wireless commu-

nications systems. Multicast beamforming exploits channel state information at the transmitter

to assign different weights to the elements of a multiple antenna array in order to steer power

in the directions of subscribers while limiting interference caused to other users and systems [2].

It is currently a part of the Evolved Multimedia Broadcast Multicast Service (eMBMS) in the

Long-Term Evolution (LTE) standard. In the single-group multicasting scenario, all users are

interested in the same data stream from the transmitter (Tx), with the result that the maximum

common data rate is determined by the minimum received signal-to-noise ratio (SNR). Hence,

the problem of maximizing the common data rate can be formulated as maximizing the minimum

received SNR subject to transmit power constraints (max-min fair multicast beamforming).

More formally, consider a downlink transmission scenario where a single base station (BS)

equipped with N antennas wishes to transmit common information to a group of M single-

antenna users over the same frequency band. Assuming perfect channel state information (CSI)

is available at the BS, the goal of multicast beamforming is to exploit this knowledge and the

spatial diversity offered by the multiple transmit antennas to steer transmitted power towards

the group of desired users while limiting leakage to nearby co-channel users and systems [2]. Let

w ∈ CN denote the desired beamforming vector and hm ∈ CN denote the downlink channel

between the BS and the mth user, which is modeled as complex, random vector that is flat in

frequency and quasi-static in time. Using a unit-norm beamformer, the BS transmits a zero-

mean , unit-variance, common information bearing signal x to all M users. The corresponding

received signal at the mth user is given by

ym = hHmwx+ zm, ∀ m ∈ [M ] (3.47)

where zm is zero-mean, wide-sense stationary additive noise at the mth receiver with variance

σ2
m, and is assumed to be independent of x and hm. The received signal-to-noise ratio (SNR) at

the mth user is then given by
|hHmw|2
σ2
m

= wHRmw, where Rm :=
hmhHm
σ2
m
� 0,∀ m ∈ [M ]. Since all

users are required to decode the same information bearing signal, the maximum common data

rate attainable is determined by the minimum SNR. The objective is to maximize the minimum

received SNR subject to unit-norm transmit sum power constraints, which leads to the following
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max-min fair formulation

max.
w∈CN

min
m∈[M ]

wHRmw (3.48a)

s.t. ‖w‖2 ≤ 1 (3.48b)

which is a non-convex QCQP problem. When M ≥ N , (3.48) is NP–hard [2] in the worst

case. Another variant of (3.48) seeks to minimize the transmitted power subject to user-specific

quality of service (QoS) guarantees which are formulated in terms of minimum received SNR per

user. From an optimization point of view, the two formulations are essentially equivalent [2].

Several algorithms have been proposed for obtaining approximate solutions to (3.48), ranging

from SDR followed by randomization [2], to alternating maximization [84], and SCA [85, 86]

(applied to the QoS version), which exhibit the best overall performance. Several low complexity

algorithms also exist [87–89], although they are unable to match the performance of SCA. In [90],

it was proposed to approximate (3.48) by a proportionally fair formulation and a first-order

based Multiplicative Update (MU) algorithm was introduced, which was demonstrated to attain

performance comparable to that of SCA at much lower complexity. This algorithm is the current

state-of-the-art for solving (3.48) in the traditional multicasting scenario (i.e., when M ≥ N).

Recently, massive MIMO [91,92], which refers to the concept of equipping cellular base sta-

tions with a very large number of transmit antennas, has emerged as a very promising paradigm

for possible implementation in a future 5G wireless broadband standard [93,94]. When consid-

ering the multicasting problem in the context of such a scenario (i.e., when M < N), it is more

practical to replace the transmit sum power constraint (3.48b) by per antenna power constraints

(PAPCs), since every antenna in a large scale array will be equipped with its own power am-

plifier, whose linearity is the performance limiting factor. Hence the single-group multicasting

problem in the massive MIMO setting can be expressed as [95]

max.
w∈CN

min
m∈[M ]

wHRmw (3.49a)

s.t. |w(i)|2 ≤ Pi, ∀ i ∈ [N ] (3.49b)

where Pi denotes the power constraint for the ith transmit antenna, ∀ i ∈ [N ]. Although (3.49)

is a non-convex optimization problem, we are currently not aware of any result which establishes

it as being NP–hard. Note that (2.5) is a QCQP problem of the form (2.1), since computing

the projection onto the set of constraints (3.49b) decouples into computing the projection of

each element of w onto its corresponding element-wise constraint, which admits a closed form

solution. When N is large (i.e., of the order of hundreds), then solving (3.49) via SDR is very

computationally demanding.

We now show that both (3.48) and (3.49) can be expressed in the form of (3.2). Towards
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this end, we express both max-min fair formulations as

max.
w∈W

min
m∈[M ]

wHRmw (3.50)

where W ⊂ CN represents the desired power constraints. Note that in this case, the focus is

not in determining feasibility, but rather, deriving benefit in maximizing the minimum SNR

utility function. We now reformulate (3.50) in terms of real variables. Define w̃ := [wT
r ,w

T
i ]T ∈

R2N , wr = Re{w},wi = Im{w} and the matrices R̃m ∈ R2N×2N as

R̃m =

[
Re{Rm} − Im{Rm}
Im{Rm} Re{Rm}

]
, ∀ m ∈ [M ] (3.51)

Note that Rm � 0 if and only if R̃m � 0, ∀ m ∈ [M ]. Hence, (3.50) can be equivalently

expressed in terms of real variables as

max.
w̃∈W̃

min
m∈[M ]

w̃T R̃mw̃ (3.52)

where W̃ is the representation of the feasible set W in terms of real variables. Furthermore,

defining R̄m := −R̃m, ∀m ∈ [M ], (3.52) can be equivalently expressed as

min.
w̃∈W̃

max
m∈[M ]

w̃T R̄mw̃ (3.53)

which is now in the form as (3.2). Hence, the SCA algorithms described in the previous section

can be applied on (3.53) for the purpose of obtaining high quality solutions efficiently.

3.5.2 Numerical Results

In order to benchmark the performance of our proposed low-complexity SCA algorithms, we im-

plemented a standard SCA algorithm where each subproblem was cast as a SoCP problem and

solved with the MOSEK solver [96] in MATLAB using the modeling language YALMIP [97] as a

parser. We implemented the Nesterov SCA algorithm in MATLAB using the optimization tool-

box TFOCS [98] to solve each SCA subproblem via the accelerated FOM described in [72]. The

Mirror-Prox SCA and L-ADMM SCA algorithms were implemented in MATLAB by straightfor-

ward coding. The Nesterov SCA and L-ADMM SCA make use of the warm-starting strategies

described previously. For Nesterov SCA, we set the smoothing parameter µ = 1e−4, while in

L-ADMM, we set εb = 1e−6, and, in each SCA iteration, we let η = 1
ρ‖C(n)‖22

. The value of ρ

used depended on the scenario under consideration (i.e., traditional multicast or massive MIMO

multicast). In both scenarios, the downlink channels {hm}Mm=1 were modeled as random vectors

drawn from a complex, circularly symmetric, normal distribution with zero mean and identity

covariance matrix and the noise variance was set to be 1 for all users. The SCA algorithms were
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all initialized from the same starting point and run for a maximum of 20 iterations. For the

FOM-based SCA algorithms, each subproblem was solved using 1000 iterations. All experiments

were carried out on a Windows desktop with 4 Intel i7 cores and 8GB of RAM.
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Figure 3.1: Comparison of average max-min SNR attained for N = 10 antennas, M = 200 users
(traditional multicasting).

In a preliminary simulation, we considered a traditional multicasting scenario with N =

10 transmit antennas and M = 200 users. In this case, we set ρ = 0.1 in the L-ADMM

method. For initializing our SCA algorithms, we considered the problem of maximizing the

average SNR, which can serve as a reasonable starting point for further refinement [88]. In [99],

Lopez demonstrated that the average SNR maximization problem in a multicasting scenario

reduces to computing the principal eigenvector of the normalized channel correlation matrix

H =
∑M
m=1

hmhHm
σ2
m

, and can be determined via the power method. Using the Lopez initialization

as a starting point for our SCA algorithms, the results obtained after averaging over 200 channel

realizations are depicted in Figure 3.1, which plots the average minimum SNR in dB as a

function of the SCA iteration index. It is observed that the FOM-based SCA algorithms attain

the same performance as the standard SCA algorithm which uses the MOSEK solver to solve

each subproblem. The timing results are summarized in Table 3.1. Taken together, we observe

that the Nemirovski SCA algorithm, which uses the Mirror-Prox algorithm to solve each SCA

subproblem, exhibits the best overall performance in terms of speed and max-min SNR objective
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Figure 3.2: Comparison of average max-min SNR attained for N = 200 antennas, M = 50 users
(massive MIMO multicasting).

function. The Nesterov SCA and L-ADMM algorithms exhibit slightly improved performance

in terms of the objective value attained, but are more expensive compared to Nemirovski SCA;

however, they are still less expensive compared to the standard SCA algorithm.

We also carried out a similar experiment for massive MIMO multicasting, with N = 200

antennas and 50 users. In this scenario, we replaced the sum power constraint by the PAPCs.

We set Pi = 0.33,∀ i ∈ {1, · · · , N}. A starting point that satisfies the PAPCs was randomly

generated and was used to initialize the SCA algorithms. The value of ρ in the L-ADMM method

was set to 0.01. All results were averaged over 200 channel realizations. The performance with

respect to the value of the objective function attained is shown in Figure 3.2, while the timing

results are depicted in Table 3.2. It can be seen that Nemirovski SCA and L-ADMM SCA

match the performance of standard SCA in terms of average minimum SNR attained, but at

much lower complexity (Nemirovski SCA in particular). Nesterov SCA did not perform as well

in this regime with respect to the objective value attained, and was also the most expensive

amongst the FOM-based SCA algorithms.

From these initial experiments, it is evident that using fast FOMs to solve the SCA subproblems

allows us to effect a very favorable performance-complexity tradeoff, i.e., we attain the same

performance as that of an interior-point method based SCA algorithm, but at much lower
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Method Stand. SCA Nest. SCA Nem. SCA L-ADMM SCA
Avg. Time 10.24s 6.77s 1.94s 4.91s

Table 3.1: Timing results for traditional multicasting

Method Stand. SCA Nest. SCA Nem. SCA L-ADMM SCA
Avg. Time 10.24s 6.77s 1.94s 4.91s

Table 3.2: Timing results for traditional multicasting

complexity.

We also carried out a more comprehensive experiment for both multicasting scenarios. First,

we considered a traditional multicasting scenario where we fixed the number of transmit antennas

N = 25 and increased the number of users M from 50 to 500. The algorithm parameters were

set to be the same as previously indicated. We also added the MU algorithm in [90], which uses

proportional fairness as a surrogate for max-min fairness, for comparison. Lopez initialization

was again used for all algorithms. The MU algorithm was run for 1000 iterations. All results

were obtained by averaging across 200 channel realizations for each value of M . The average

minimum SNR attained (in dB) as a function of the number of users M and the timing results

are depicted in Figure 3.3. From the figures, it is observed that Nesterov SCA and L-ADMM

SCA methods always attain the same average minimum SNR as standard SCA, with Nemirovski

SCA being only slightly worse. In terms of execution time, it is observed that as the number of

users is increased, the time taken by standard SCA increases considerably (by almost an order

of magnitude), while the execution times of the FOM-based SCA methods remains relatively

constant.

Next, a massive MIMO multicasting scenario was considered with M = 50 users, and the

number of transmit antennas N was increased from 50 to 500. The power budget of each antenna

was set to be Pi = 0.25,∀ i = {1, · · · , N}. We used the same choice of algorithm parameters for

massive MIMO multicast as described previously. As an additional performance benchmark, we

appropriately modified the MU algorithm to handle PAPCs (see Appendix A.3 for details). A

randomly generated, feasible, starting point was used to initialize all the algorithms. The MU

algorithm was run for 200 iterations in this case. All generated results were averaged across

200 channel realizations. The average minimum SNR attained is shown in Figure 5, while the

average execution times are depicted in Figure 6. The figures demonstrate the state-of-the-art

performance and computational gains offered by our proposed algorithms. The Nemirovski SCA

and L-ADMM SCA algorithms attain the same performance as that of standard SCA but at

significantly lower complexity. While the Nesterov SCA algorithm initially exhibits the best

performance (when N ≤ 150), it falls off as N is increased further. In terms of complexity, it is
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Figure 3.3: Traditional multicasting with N = 25 Tx antennas: (A) Average minimum SNR vs
M (B) Average Execution Time vs M .

also slower than the other FOM-based SCA algorithms. Overall, as the number of antennas is

increased, the timing curves for the proposed SCA algorithms increase very gracefully compared

to that of the standard SCA (showcasing the drawback of using interior-point methods for

solving large problems) and the MU algorithms. The Nemirovski SCA algorithm effects the

best performance-complexity tradeoff in this regime. 2

3.6 Conclusions

We considered a special class of non-convex quadratic feasibility problems defined by the inter-

section of a convex, compact set and a system of quadratic inequalities with negative semidefinite

matrices. We expressed our feasibility criterion as minimizing the point-wise maximum of ho-

mogeneous, concave quadratics over a simple convex set. The development of SCA algorithms

was pursued for obtaining high quality approximate solutions of this problem at low complexity.

Our approach involves iteratively solving a sequence of convex approximations of the non-convex

problem. Each subproblem is formulated as a non-smooth convex optimization problem, and

solved using specialized FOMs which leverage the structure inherent in each subproblem to effi-

ciently compute solutions at low overall complexity. This endows the algorithms with the ability

to scale well to problems in high dimensions with a large number of constraints. The proposed

algorithms were applied to the problem of single-group multicast beamforming. Simulations

2 In this case, the MU algorithm does not scale very well to large dimensions. Hence, we defer from using it
for last-mile refinement using Nemirovski SCA.
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Figure 3.4: massive MIMO multicasting with M = 50 users: (A) Average minimum SNR vs M
(B) Average Execution Time vs M .

demonstrated that the algorithms offer substantial computational savings while attaining the

same performance as standard SCA algorithms using interior-point methods to solve each SCA

subproblem. These results are borne out of theoretical worst-case complexity considerations,

which prove complexity reduction. Careful implementation of these algorithms in an appropriate

lower-level programming language has the potential for deployment in real-time applications.



Chapter 4

Fast Feasibility Pursuit for

general non-convex QCQP

4.1 Introduction

In this chapter, we consider the most general case of the quadratic feasibility problem, which

can be expressed as

find
x∈X

x (4.1a)

s.t. xTAmx− bm ≤ 0, ∀ m ∈ [MI ] (4.1b)

xTCmx− dm = 0, ∀ m ∈ [ME ] (4.1c)

where X ⊆ RN is a simple, closed, convex set, while MI and ME represent the number of

inequality and equality constraints respectively. The matrices {Am}MI
m=1 and {Cm}ME

m=1 are

assumed to be symmetric (without loss of generality), while {bm}MI
m=1 and {dm}ME

m=1 are real

numbers. The general case of (4.1) is a non-convex optimization problem and is known to be

NP–hard. We focus on the case where a feasible solution for (4.1) exists, and on developing

polynomial-time algorithms for obtaining one. In order to establish the (in)feasibility of a given

instance of (4.1), one may consider the following optimization problem.

min.
x∈X , sI∈RMI ,

sE∈RME

MI∑
m=1

sI(m) +

ME∑
m=1

sE(m) (4.2a)

s.t. xTAmx− bm ≤ sI(m), sI(m) ≥ 0, ∀ m ∈ [MI ] (4.2b)

− sE(m) ≤ xTCmx− dm ≤ sE(m), ∀ m ∈ [ME ] (4.2c)

38
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where we have defined sI := [sI(1), · · · , sI(MI)]
T and sE := [sE(1), · · · , sE(ME)]T as vectors of

slack variables corresponding to the inequality and equality constraints respectively, with one

slack variable being added to each constraint in order to ensure the feasibility of the overall

problem. Note that the value of each slack variable corresponds to the degree of violation of

the constraint with which it is associated. We impose an `1-penalty on the slack variables in

order to promote sparsity of the constraint violations. If an optimal solution (x∗, s∗I , s
∗
E) of (4.2)

can be obtained for which s∗I = 0, s∗E = 0, then x∗ is feasible for (4.1). Otherwise, (4.2) is

infeasible and from the sparsity pattern of s∗I and s∗E , we can determine the constraints which

cause infeasibility. Nonetheless, computing an optimal solution of (4.2) remains a challenging

proposition since it is non-convex and NP–hard in general. In [40], the SCA technique was

used to approximate (4.2) via a sequence of convex subproblems. Starting from a random

initialization point x(0) ∈ RN , at each SCA iteration k ∈ N, a convex subproblem is obtained

by constructing a convex restriction of the non-convex constraint set about the current iterate

x(k). This is accomplished by expressing each non-convex quadratic term as a difference of

convex functions via eigen-decomposition of its associated matrix, followed by linearization of

the non-convex term about x(k). The resulting convex set can be expressed as

P(k)
r :=


xTA

(+)
m x + 2x(k)TA

(−)
m x− x(k)TA

(−)
m x(k) − bm ≤ sI(m),∀ m ∈ [MI ]

xTC
(+)
m x + 2x(k)TC

(−)
m x− x(k)TC

(−)
m x(k) − dm ≤ sE(m),∀ m ∈ [ME ]

xTC
(−)
m x + 2x(k)TC

(+)
m x− x(k)TC

(+)
m x(k) − dm ≥ −sE(m),∀ m ∈ [ME ]

(4.3)

where Am := A
(+)
m + A

(−)
m , A

(+)
m � 0 and A

(−)
m ≺ 0,∀ m ∈ [MI ] and similarly, Cm :=

C
(+)
m + C

(−)
m , C

(+)
m � 0 and C

(−)
m ≺ 0,∀ m ∈ [ME ]. Thus, at SCA iteration k, we obtain a

convex optimization subproblem of the form

x(k+1) ∈ arg min
x∈X∩P(k)

r ,

sI∈R
MI
+ , sE∈RME

MI∑
m=1

sI(m) +

ME∑
m=1

sE(m) (4.4)

with the solution of the resulting problem being used for linearization in the next iteration.

The overall algorithm has been termed as Feasible Point Pursuit (FPP)-SCA. Utilizing the

theoretical results developed in [100] 1 , we can provide the following characterization of the

sequence of generated iterates.

1. The iterate sequence has non-increasing cost.

2. Assuming there exists a convergent subsequence, then provided that Slater’s Condition

[100, Section 2.1.2] is satisfied at the limit of this subsequence, the limit point satisfies the

KKT conditions of (4.2).

1 To be precise, we verify that the constraint approximation functions defined in (4.3) satisfy the conditions
laid out in [100, Assumption 1], followed by invoking [100, Theorem 1].
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We point out that these theoretical results do not imply that FPP-SCA is guaranteed to converge

to a feasible point of (4.1); only convergence to a KKT point of the feasibility problem (4.2) can

be established. Nonetheless, FPP-SCA was empirically demonstrated to be highly successful in

converging to a zero-slack solution (i.e., attain feasibility) in a finite number of iterations for

various instances of (4.1). However, this comes at the expense of overall problem complexity.

Each SCA subproblem (4.4) can be recast in Second-order Cone Programming (SoCP) form

and solved via general purpose conic programming solvers (which use IPMs) at a worst case

complexity of O(N+MI +ME)3.5 [68], which is dependent on both N (the number of variables)

and M := MI + ME (the total number of constraints). It is evident that iteratively solving a

sequence of SCA subproblems via such means can prove to be very computationally expensive

for large N and/or M . Furthermore, it is required to compute the eigen-decomposition of the

matrices {Am}MI
m=1 and {Cm}ME

m=1 in order to separate each matrix into its positive and negative

definite components, which are then stored in memory. Thus, the overhead in terms of memory

can also prove to be quite substantial for large-scale problems.

With the aim of improving scalability and alleviating the aforementioned issues with FPP-

SCA, we consider the possibility of using FOMs for feasible point pursuit. As a first step in this

direction, we consider the following reformulation of the feasibility problem (4.2)

min.
x∈X

{
F (x) :=

MI∑
m=1

(xTAmx− bm)+ +

ME∑
m=1

|xTCmx− dm|

}
(4.5)

where (x)+ := max{x, 0} and |x| denotes the absolute value of x. Note formulations and (4.5) are

equivalent at the globally optimal solutions of these two problems. The reformulation results in

a problem where all the non-convex constraints of have been incorporated into the cost function

which is composed of the sum of M non-convex, non-smooth functions; each of which measures

the degree of violation of its corresponding constraint via a loss function (quadratic hinge-loss

for the inequality constraints and absolute value for the equality constraints). In the literature,

such a formulation is also known as an exact penalty formulation [101]. We note that (4.5)

remains non-convex and is NP–hard in general. At this point, we can choose to proceed in one

of the following two ways.

1. We can apply SCA on the exact penalty formulation (4.5) to obtain a convex optimization

subproblem at each iteration, and then utilize FOMs to solve each subproblem at a reduced

computational complexity relative to interior-point methods.

2. Alternatively, we can go one step further by eliminating the SCA procedure from consid-

eration altogether and focus on tackling (4.5) directly via FOMs.

In subsequent sections, we describe in detail how to implement these approaches, followed by

judicious experiments to demonstrate the viability of using FOMs as a competitive alternative
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to pre-existing approaches [34, 40, 42] for determining feasible solutions of general non-convex

QCQPs. In several of our experiments, we advocate using empirically chosen steps-sizes for

our FOMs, which currently do not feature guaranteed convergence to the set of stationary

solutions of our proposed optimization formulation. Such a choice is motivated by the following

considerations: i) in several setups, the cost function we employ does not satisfy standard

assumptions made in the analysis of FOMs, thereby precluding us from invoking pre-existing

convergence results; ii) in other cases where these assumptions are satisfied, the requisite step-

sizes are dependent on unknown constants which typically have to be estimated via crude means

and ultimately result in very conservative step-sizes that exhibit poor practical performance;

and most importantly, iii) a stationary point of our criterion is not guaranteed to be a feasible

solution. In order to ensure convergence to a feasible solution (when one exists) using our

framework, one has to establish convergence to the globally optimal solution of the non-convex

cost function we utilize, which is NP–hard in general [102]. This implies that the standard metric

of ensuring convergence to a stationary point using FOMs is not sufficient to guarantee recovery

of a feasible solution in this case. While this may lead one to question the merit of adopting

such a FOM based approach, we point out that this should not a priori be construed as being a

glaring drawback. Indeed, these hardness results ultimately stem from the fact that establishing

(in)feasibility of an arbitrary instance of QCQP is NP–hard in general, which implies that all

possible polynomial-time approximation schemes are doomed to fail on certain instances of the

feasibility problem under consideration.

These technical issues notwithstanding, one may also doubt the potency of our direct FOM

based approach on the grounds that it is too simplistic for a problem which is non-convex

and NP-hard in its general form. Hence, a priori, it may seem a foregone conclusion that the

proposed approach is destined to perform poorly compared to sophisticated polynomial-time

schemes [34,40,42] developed for this problem.

Given these ostensible drawbacks of our approach, the outcome of our experiments comes

as a great surprise, as it reveals something entirely unanticipated: on synthetically generated

feasible instances of large-scale non-convex QCQP, we provide compelling empirical evidence

to demonstrate that the direct FOM based approach works remarkably well and outperforms

pre-existing alternatives across all baselines. Additionally, we tested our FOMs on the problem

of power system state estimation (PSSE) [12, 103], which is a real world problem arising in

power systems engineering that entails solving a system of non-random quadratic equations,

and is NP–hard in its general form [104]. Our numerical tests on standard power networks

demonstrate that the FOMs can achieve very favorable performance (in terms of estimation

error) at far lower complexity relative to competing alternatives.
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4.2 Overview of First Order Methods

In this section, we provide a brief overview of the various FOMs which we propose to use for

both direct (non-convex) and SCA (convex) approaches.

4.2.1 Direct Approach

Consider the following optimization problem of minimizing averages of finite sums

min.
x∈X

{
F (x) :=

1

M

M∑
m=1

fm(x)

}
(4.6)

where X ⊂ RN is a convex, compact set and each fm : RN → R is a twice differentiable,

non-convex function with L−Lipschitz continuous gradients 2 ; i.e, ∃L ∈ R++ for which

‖∇fm(x)−∇fm(y)‖2 ≤ L‖x− y‖2,∀x,y ∈ X (4.7)

When F is bounded below over X , we can attempt to determine an approximate solution for

(4.6) using the classical gradient descent (GD) algorithm which has the following update rule.

y(k) = x(k−1) − αk
M

M∑
m=1

∇fm(x(k−1)) (4.8a)

x(k) = ΠX (y(k)),∀ k ∈ N (4.8b)

where ΠX (.) denotes the Euclidean projection operator onto X and αk ∈ R++ is the step-size

in the kth iteration.

Note that each step requires the computation of M gradients, and hence can be fairly ex-

pensive for large M . As a low complexity alternative, we can consider using stochastic gradient

descent (SGD). The algorithm is iterative in nature, where at each iteration k we randomly draw

an index mk from a uniform distribution defined on the set [M ] and then apply the following

update rule

y(k) = x(k−1) − αk∇fmk(x(k−1)) (4.9a)

x(k) = ΠX (y(k)),∀ k ∈ N (4.9b)

Note that the expectation E(y(k)|x(k−1)) equals (4.8a) (where the expectation is taken with

respect to the random variable mk). Hence, the SGD updates (4.9) are equivalent to standard

GD updates in expectation. The advantage of SGD is that the updates are O(M) cheaper

compared to GD since at each iteration, we only need to compute the gradient of a single

component function.

2 This in turn implies F (x) is L−Lipschitz smooth since smoothness is preserved under convex combinations.
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A third alternative, which has emerged recently, is Stochastic Variance Reduced Gradient

(SVRG) [105,106]. The SVRG algorithm can be viewed as a hybrid between SGD and GD, and

proceeds in multiple stages. In each stage s, SVRG defines a “centering” variable ys from the

output of the previous stage and computes its full gradient ∇F (ys). Next, a fixed number (say

K) of modified inner SGD iterations are executed, where in each iteration k ∈ {1, · · · ,K}, an

index mk is drawn uniformly at random from M and the following update rule is used

x(0)
s = ys (4.10a)

v(k)
s = x(k−1)

s − α(k)
s (∇fmk(x(k−1)

s )−∇fmk(ys) +∇F (ys)) (4.10b)

x(k)
s = ΠX (v(k)

s ),∀ k ∈ [K] (4.10c)

where the superscript k denotes the inner SGD iteration counter for stage s. Again, the ex-

pectation E(v
(k)
s |x(k−1)

s ) equals (4.8a). Hence, in expectation, the SVRG updates are also the

same as the GD updates. However, compared to SGD, SVRG uses a different unbiased gradient

estimator which corrects the currently sampled gradient ∇fmk(x
(k−1)
s ) by subtracting a bias

term. The overall algorithm is given by

Algorithm 6 : SVRG

Initialization: Select number of stages S, update frequency K and step-size sequence. Ran-

domly generate a starting point z0 ∈ X .

Iterate: for s = 1, 2, · · · , S

• Set ys = zs−1

• Compute gs := ∇F (ys)

• Set x
(0)
s = ys

• Iterate: for k = 1, · · · ,K
Randomly pick mk ∈ [M ] and update

v
(k)
s = x

(k−1)
s − α(s)

k (∇fmk(x
(k−1)
s )−∇fmk(ys) + gs),

x
(k)
s = ΠX (v

(k)
s )

• End

• Set zs = x
(K)
s

End

Return: zS

The convergence behavior of these algorithms for non-convex problems is dictated by the
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choice of step-size sequences. Regarding the convergence of GD for non-convex problems of the

form (4.6), we first consider the case X = RN . We define a point x̄ ∈ RN to be ε−approximate

stationary if ‖∇F (x̄)‖22 ≤ ε. Assuming F (x) is L-Lipschitz smooth on X , then, GD with a 1/L

step-size requires at most O(Lε ) iterations to attain ε−approximate stationarity [107, p. 29]. In

the more general case of X ⊂ RN , convergence rate guarantees can be established in terms of

the generalized projected gradient, which is defined as

PX (x, α) :=
1

α
[x− x+] (4.11)

where x+ := arg min
u∈X

∇F (x)Tu + 1
2α‖u − x‖22 for a given point x ∈ RN and step-size α.

In [108, Lemma 3], it is shown that as ‖PX (x, α)‖2 diminishes, x+ approaches a stationary point

of (4.6). For a constant 1/L step-size, it has been established [109, Corollary 1] that the number

of iterations required for ‖PX (x, α)‖22 ≤ ε is O(Lε ) in the worst case. Since F (x) is defined to

be the average of M component functions, this translates into an iteration complexity bound of

O(ML
ε ) for attaining ε-stationarity. While it is NP–hard in general to establish convergence to

a local minimizer of a non-convex cost function [102], in the special case where F (x) possesses

the strict saddle property 3 and X = RN , it has been shown [110] that GD with a constant

step-size < 1/L converges almost surely to a local minimizer.

Next, we consider the convergence behavior of SGD. In [111], it is shown that the αk = 1
kL

step-size rule can be used to prove almost-sure (asymptotic) convergence of the SGD iterates to

a stationary point. When X = RN , an explicit iteration complexity upper bound for establishing

convergence of SGD to an ε−approximate stationary point (E[‖∇F (x)‖22] ≤ ε)4 can also be

derived, if, in addition to L−Lipschitz smoothness, the following assumption is made

max
m∈[M ]

{‖∇fm(x)‖2} ≤ σ, ∀x ∈ RN (4.12)

i.e., all component functions possess uniformly bounded gradients, which is also equivalent to

each fm(x) being σ-Lipschitz continuous. Then, for a specifically chosen constant step-size, SGD

requires O(Lσ
2

ε2 ) iterations to obtain an ε−approximate stationary point [112], [113, Theorem 1].

This choice of step-size requires knowing the total number of iterations beforehand, which may

not be practical in all cases. Note that while this bound is independent of M , it depends on the

variance of the stochastic gradients. Additionally, if F (x) possesses the strict saddle property,

then under certain conditions, convergence of SGD to a local minimizer can be established in

(large) polynomial-time [114]. For the case X ⊂ RN , an SGD algorithm with a randomized

stopping criterion is described in [109] which achieves ε−stationarity (i.e., E[‖∇P (x, α)‖22] ≤ ε)
in at most O(Lσ

2

ε2 ) iterations with a constant 1/2L step-size.

3 i.e., the Hessian at every local minimizer is positive definite and at all other stationary points possesses at
least one strictly negative eigenvalue.

4 For stochastic iterative algorithms which make use of unbiased gradient estimators, the expectation is taken
with respect to the stochasticity of the algorithm.
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Finally, we focus on the convergence of SVRG for non-convex problems. In the uncon-

strained setting (i.e., X = RN ), assuming F (x) is L−Lipschitz smooth, the references [113,115]

have established that by properly tuning the algorithm parameters, the SVRG iterates require

O(M
2/3L
ε ) iterations to converge to an ε-approximate stationary point of (4.6) (in expectation).

The reference [116] considers the constrained case, and shows that SVRG requires O(ML
ε ) itera-

tions to attain ε-approximate stationarity (with respect to E(‖PX (x, α)‖22)). With minibatching,

this rate can be improved to O(M + (M2/3)L
ε ). However, the proof requires F (x) to be globally

L-smooth rather than being locally smooth over X . We note that in spite of using randomly

sampled gradients, the complexity bounds for SVRG are independent of the variance of the

stochastic gradients due to the explicit variance reduction technique employed by SVRG.

4.2.2 SCA Approach

Consider the following optimization problem

min.
x∈X

H(x) (4.13)

where X ⊂ RN is a compact, convex set and H : RN → R is a non-smooth, Lipschitz continuous

convex function. A standard method for solving such problems is subgradient descent (SD),

which has the following update rule.

x(k) = ΠX (x(k−1) − αkg(k−1)),∀ k ∈ N (4.14)

where g(k−1) ∈ ∂H(x(k−1)) is a subgradient drawn from the subdifferential set of the function

H at the point x(k−1).

In the special case H(x) = 1
M

∑M
m=1 hm(x), where each hm(x) is a non-smooth, Lipschitz

continuous function, then we can alternatively use the technique of stochastic subgradient descent

(SSD), which proceeds according to the following update rule

x(k) = ΠX (x(k−1) − αkg(k−1)
mk

),∀ k ∈ N (4.15)

where the index mk is drawn uniformly at random from the set M and g
(k−1)
mk is a subgradient

drawn from the subdifferential set of the function fmk at the point x(k−1). Then, we have

E(g
(k−1)
mk |x(k−1)) ∈ ∂F (x(k−1)), which implies that the SSD iterations are equivalent to SD in

expectation.

The convergence rates of these algorithms for convex problems are well established. For SD,

selecting a step-size sequence αk = O( 1√
k

) guarantees a convergence rate of O( 1√
k

) in terms

of the cost function, which is minimax optimal for this class of problems [71]. Using a similar

step-size as SD together with iterate averaging, SSGD is also able to attain the same O( 1√
k

) con-

vergence rate in expectation. However, the advantage of SSD lies in the fact that its individual
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iterations are O(M) faster since at every iteration we only need to compute a single subgradient.

This concludes our overview on FOMs. In the following section, we describe how to apply

these methods to (4.5).

4.3 Proposed Algorithms

4.3.1 Direct Approach

We refrain from using SD/SSD on (4.5), since the sub-differential set of a non-smooth, non-

convex function is not guaranteed to be non-empty at all points in its domain. This leaves us with

GD, SGD and SVRG at our disposal. However, these methods are applicable to differentiable

cost functions, whereas each component function of (4.5) is non-differentiable. Consequently,

we propose to make the following modifications to (4.5).

First, consider the hinge-loss functions corresponding to the quadratic inequality constraints.

Define fm(x) := (xTAmx− bm)+,∀ m ∈ [MI ]. We now describe a procedure for constructing a

smooth surrogate for each fm(x). Note that each fm(x) can be equivalently expressed as

fm(x) = max
0≤y≤1

{y(xTAmx− bm)},∀ m ∈ [MI ] (4.16)

In order to construct a smooth surrogate of fm(x), consider the following modified version of

(4.16)

f (µ)
m (x) = max

0≤y≤1
{y(xTAmx− bm)− µy

2

2
},∀ m ∈ [MI ] (4.17)

where µ ∈ R++ is a smoothing parameter. The maximization problem (4.17) can be solved in

closed form to obtain the following equivalent smooth representation

f (µ)
m (x) =


0, if xTAmx ≤ bm
(xTAmx−bm)2

2µ , if bm < xTAmx ≤ bm + µ

xTAmx− bm − µ
2 , if xTAmx > bm + µ

(4.18)

The derivation is relegated to Appendix A.4. Note that each f
(µ)
m (x) has continuous derivatives

given by

∇f (µ)
m (x) =


0, if xTAmx ≤ bm
2(xTAmx−bm)

µ Amx, if bm < xTAmx ≤ bm + µ

2Amx, if xTAmx > bm + µ

(4.19)
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Hence, f
(µ)
m (x) is a smooth surrogate of fm(x),∀ m ∈ MI . Furthermore, it can be shown that

the following approximation bounds hold (see Appendix A.4).

f (µ)
m (x) ≤ fm(x) ≤ f (µ)

m (x) +
µ

2
,∀ x ∈ RN ,∀ m ∈ [MI ] (4.20)

The smoothing technique employed in (4.17) can be viewed as an extension of Nesterov smooth-

ing [62] to the non-convex case setting; note that the representation of f
(µ)
m (x) in (4.17) does

not correspond to the Fenchel conjugate of a strongly-convex function. As for the absolute value

penalty functions gm(x) := |xTCmx − dm|,∀ m ∈ [ME ] in (4.5) corresponding to the equality

constraints, we propose to replace them with quadratic penalty functions of the form

g(q)
m (x) := (xTCmx− dm)2,∀ m ∈ [ME ] (4.21)

Following these steps, we obtain a non-convex, differentiable penalty formulation given by

min.
x∈X

{
F (s)(x) :=

1

M

(
MI∑
m=1

f (µ)
m (x) +

ME∑
m=1

g(q)
m (x)

)}
(4.22)

which is now in a form suitable for application of GD, SGD and SVRG. The convergence behavior

of these algorithms is determined by the choice of the step-size sequence (and the additional

parameters in the case of SVRG). As mentioned before, several theoretical results have appeared

recently which establish non-asymptotic rates of convergence of these algorithms to a stationary

point of non-convex problems of the form (4.6) for appropriate choices of step-size sequences

and other parameters. However, applying these results to the problem under consideration is

hampered by the following technical issues.

First, we point out that the cost function of (4.22) is a quartic polynomial which is nei-

ther globally Lipschitz continuous, nor does it possess globally Lipschitz continuous derivatives.

Hence, in the unconstrained case (i.e., X = RN ), the existing non-asymptotic convergence results

for GD, SGD and SVRG cannot be applied. When these assumptions do not hold, even estab-

lishing meaningful asymptotic convergence guarantees is a challenging proposition in general. In

Appendix A.5, we show that when MI = 0 in (4.22) (i.e., solving a general system of quadratic

equations), it is indeed possible to establish such a meaningful, asymptotic convergence result

for GD with backtracking line search.

Next, we consider the case X ⊂ RN . If we make an additional assumption that X is compact,

then F (s)(x) and its gradients are (locally) Lipschitz continuous on X . It can be shown that the

Lipschitz constant of ∇F (s)(x) exhibits a O( 1
µ ) dependence on µ, which is due to the fact that

µ is a parameter which controls the level of smoothing applied to the non-differentiable function

F (x); i.e., a smaller value of µ allows a tighter degree of approximation, but results in F (s)(x)

being less smooth. Typically, we would prefer to choose a small value for µ in order to ensure
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tight approximation to F (x). Meanwhile, the constants appearing in the O( 1
µ ) expression (which

depend on the spectral characteristics of the matrices in the constraints) are typically unknown

and have to be estimated via some means. In general, such procedures generate overestimates of

the constants, which adversely affect convergence speed. Taken together, this ultimately results

in the step-size dictated by theory for convergence of GD and SGD being too conservative for

the iterates to make any reasonable progress over a prescribed number of iterations.

Finally, we point out that we are ultimately interested in determining a feasible point (i.e.,

a point x ∈ X for which the globally optimal cost F (s)(x) = 0 is attained) using our FOMs.

Hence, it is evident that convergence to a stationary point (which only satisfies the necessary

conditions for optimality) is not sufficient to guarantee feasibility. In this case, ensuring recovery

of a feasible solution (when one exists) requires establishing convergence to the globally optimal

cost 0, which, given the fact that (4.22) is NP–hard in its general form, is considerably more

difficult to establish relative to showing convergence to a stationary point. Hence, in several of

our experiments, we resorted to empirical step-size selection strategies for our FOMs. Although

we cannot make any theoretical convergence claims for such step-sizes, our experiments indicate

that these methods can still perform very favorably with these choices.

4.3.2 SCA Approach

The SCA approach is based on approximating (4.5) via a sequence of convex problems. Since

the non-convexity in (4.5) is restricted to the cost function, this entails approximating the cost

function via a sequence of convex majorization functions. We now describe the procedure for

constructing such a majorization function at each iteration.

First, consider the hinge-loss functions fm(x),∀m ∈ [MI ]. Again, we utilize eigen-decomposition

to decompose each matrix Am into its constituent positive and negative semidefinite components

and then express the associated quadratic term as a difference of quadratic convex functions.

After linearizing the concave term xTA
(−)
m x about the current iterate x = x(n), we obtain the

following function

um(x,x(n)) := (xTA(+)
m x + (2A(−)

m x(n))Tx− x(n)TA(−)
m x(n) − bm)+,∀m ∈ [MI ] (4.23)

It can be readily verified that ∀m ∈ [MI ], um(x,x(k)) is a convex, non-differentiable majorizer of

fm(x) which is tight at x = x(k). Next, we equivalently express each absolute penalty function

gm(x) as

gm(x) = |xTCmx− dm| = max{xTCmx− dm,−xTCmx + dm},∀m ∈ [ME ] (4.24)

In order to majorize each such gm(x), we resort to the eigen-decomposition technique to express

each of the quadratic terms inside the point-wise maximization operator as the difference of
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convex quadratics. By linearizing the appropriate non-convex term about x = x(n), we obtain

the pair of convex functions

v(+)
m (x,x(n)) := xTC(+)

m x + (2C(−)
m x(n))Tx− x(n)TC(−)

m x(n) − dm,∀m ∈ [ME ] (4.25a)

v(−)
m (x,x(n)) := −xTC(−)

m x− (2C(+)
m x(n))Tx + x(n)TC(+)

m x(n) + dm,∀m ∈ [ME ] (4.25b)

On defining

ωm(x,x(n)) := max{v(+)
m (x,x(n)), v(−)

m (x,x(n))},∀m ∈ [ME ] (4.26)

we obtain a convex majorization function for each gm(x),∀m ∈ [ME ]. Hence, at each SCA

iteration, we obtain a non-smooth, convex optimization problem of the following form

x(n+1) ∈ arg min
x∈X

MI∑
m=1

um(x,x(n)) +

ME∑
m=1

ωm(x,x(n)) (4.27)

We now point out that problem (4.27) is actually equivalent to (4.4), since (4.4) can be obtained

via the epigraph transformation of (4.27). Hence, the resulting SCA algorithm inherits the

same convergence properties as FPP-SCA 5 . From a computational standpoint, formulation

(4.27) possesses the advantage of being in a form suitable for the application of low-complexity

subgradient methods. While subgradient descent can be applied to solve each SCA subproblem

of the form (4.27) at a rate independent of the problem dimension N , there is still an implicit

dependence on the total number of constraints M . In order to remove the dependence on M , we

can solve (4.27) using the SSGD algorithm, which has the benefit of possessing a convergence

rate independent of N and M . However, the drawback of using SSGD is that it only converges

in expectation, thus implying that the SCA iterates obtained via this method are not even

guaranteed to exhibit monotonic decrease of the cost function in this case. Nevertheless, it offers

a substantially low-complexity alternative for decreasing the cost function of (4.27) initially, with

possible “last mile” refinement at a later stage via a more sophisticated algorithm.

For a given SCA subproblem (4.27), at each iteration of SSGD, we are only required to

sample an index m from the set [M ] uniformly at random and then compute a subgradient for

the associated function indexed by m in order to compute the update (4.15). If the indexed

function is of the form f(x) = (xTAx+bTx+c)+, (where A � 0) we can compute a subgradient

g ∈ ∂f(x) at the point x according to the following equation

g =

2Ax + b, if xTAx + bTx + c > 0

0, otherwise
(4.28)

whereas for f(x) = max{h1(x), h2(x)}, where hi(x) = xTAix+bTi x+ci,∀ i = {1, 2} are convex

quadratics, a subgradient g ∈ ∂f(x) at the point x can be obtained by simply selecting any

5 i.e., convergence to a KKT point of the smooth feasibility problem .
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one of the two functions h1(x), h2(x) which attains the maximum and then taking its gradient.

Additionally, in each SCA iteration, we warm start the SSGD algorithm from the current iterate

x(k) in order to obtain further savings in computation.

4.4 Experiments on Synthetic Data

In this section, we evaluate and compare the performance of our methods on synthetically

generated experiments as well as on real engineering problems. First, we provide a few details

regarding the implementation of the methods.

All our methods were implemented in MATLAB on a Linux desktop with 4 Intel i7 cores and

16 GB of RAM. We tested the performance of the direct methods (i.e., GD, SGD, and SVRG)

with the following parameter settings.

1. The smoothing parameter for inequality constraints was set to µ = 10−4.

2. For selecting the step-size, the following rules were used

(a) Diminishing: αk = c1
kγ

(b) Polynomial: αk = c2
(1+c3k/M)γ

(c) Norm regularized: αk = c4/‖x(k)‖22

where k ∈ N denotes the iteration index, c1, c2, c3, c4 ∈ R++ and γ ∈ (0, 1]. The poly-

nomial step-size rule can be viewed as a generalization of the popular inverse-t schedule

(corresponding to γ = 1) while the norm regularized step-size rule can be motivated via

arguments made in [44, Proposition 1] regarding worst-case convergence results of FOMs

applied to minimize quartic functions. The parameters were empirically tuned to yield the

best performance.

3. For SVRG, the length of each stage was set to S = 4M .

4. Since each method requires a different number of gradient evaluations per iteration, for

fair comparison, we allocated a fixed number of total gradient evaluations to each method

and evaluated the cost function after every M gradient evaluations. Of course, this implies

that the maximum number of iterations for each method is different, depending on the

number of gradients evaluated per iteration.

Regarding SSGD-SCA, we used a maximum of 50 SCA iterations while each inner convex sub-

problem was solved using 50 × 103 SSGD iterations with a step-size of O( 1√
k

) and iterate

averaging.
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Figure 4.1: Single instance of feasibility problem with N = 200 variables and M = 1000 non-
convex quadratic inequalities: (A) Evolution of penalty function for direct FOMs (B) Evolution
of penalty function for SSGD-SCA.

First, we present an illustrative experiment on a synthetically generated instance of a non-

convex QCQP problem with N = 200 variables and M = 1000 constraints. Here, we set ME = 0

(i.e., no equalities) and randomly generated the inequality constraint matrices {Am}Mm=1 from

a zero mean, i.i.d. Gaussian distribution with unit variance (followed by symmetrization). In

order to ensure that the problem is feasible, we randomly generated a unit norm vector p and

drew each of the right-hand sides {bm}Mm=1 from a Gaussian distribution bm ∼ N (pTAmp, 1). In

the event pTAmp > bm, we multiplied both sides of the inequality by −1 to get ≤ inequalities.

In short, we randomly generated a quadratic feasibility problem with indefinite matrices which

possesses a unit-norm feasible solution. We exploit this prior knowledge in our setup by setting

X = {x ∈ RN |‖x‖2 ≤ 1}. A randomly generated unit-norm vector was used to initialize GD,

SGD, SVRG and SSGD-SCA. We used a maximum budget of 1000M gradient evaluations for

each of the direct methods. For SGD, we use the diminishing step-size rule with c1 = 0.1

and γ = 0.5, while for SVRG and GD, we used the polynomial averaging step-size rule with

c3 = 1 and c2 = 0.1, γ = 1 for GD and c2 = 0.01, γ = 0.5 for SVRG. We declare success in

finding a feasible point if the value of the cost function in the exact penalty formulation (4.5)

is smaller than a tolerance value of 10−6. The results are depicted in Figure 4.1, where we plot

the evolution of the constraint violation (as measured by the quadratic hinge-loss function in

(4.5)) for the various methods.

In this case, all methods were successful in achieving feasibility; i.e., attaining the globally
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optimal cost 0. Since the evolution of the penalty function in Figure 4.1 is represented on a

logarithmic scale, it depicts the cost of the iterates before the value of 0 was attained. For

the direct FOMs, the potential benefits accrued in opting for an aggressive, empirically chosen

step-size strategy is clear. Meanwhile, it is obvious that, given the scale of the problem, we

should refrain from using IPMs to solve each SCA sub-problem. As an alternative, SSGD-SCA

performs admirably, and even exhibits monotonic decrease of the cost function in this case.

Regarding timing, SGD performed the best by attaining feasibility in 17 secs, while SVRG, GD

and SSGD-SCA required 27, 85 and 233 secs respectively. Note that although we adopt a FOM

based approach to SCA here, it still incurs substantially more complexity compared to the direct

FOM approach. Overall, these preliminary results indicate that the direct FOMs have a distinct

advantage over SSGD-SCA. We now seek to corroborate these findings via the following set of

exhaustive simulations.

In our setup, we fixed the number of variables N and randomly generated instances of

quadratic feasibility problems with varying number of inequality constraints M via the procedure

describe in the previously. For each value of M , we generated 1000 such instances. We also

added the C-ADMM algorithm proposed in [42] for comparison against our FOMs. We set the

maximum iteration counter of C-ADMM to 5000 iterations. Meanwhile, for the direct FOMs,

we again use a budget of 1000M gradient evaluations and a maximum of 50 SCA iterations

for SSGD-SSCA. We also remove GD from contention here since our experiments indicate that

it is always outperformed by SGD and SVRG at lower complexity. Furthermore, we allow a

maximum of 2 restarts for SGD and SVRG in the event that feasibility is not attained within

the prescribed number of iterations. In each instance, we initialize all the methods from a

randomly generated unit-norm vector. The step-size rules for the direct FOMs and SSGD-SCA

are also unchanged from the previous experiment. An alternative approach could be to tune

the step-size parameters to achieve the best performance for each M , at the cost of more effort.

As we demonstrate, our chosen parameters work well across a wide range of N and M , thereby

considerably alleviating the burden of tuning parameters while simultaneously providing further

empirical validation of our heuristic step-size sequences. We also used the same termination

criterion used in the previous experiment for declaring convergence to a feasible point for all

methods.

We plot the feasibility percentages averaged out over 1000 instances as a function of M/N

along with the timing results, averaged out over the subset of instances where feasibility was

successfully attained by the respective algorithms, in Figures 4.2,4.3 and 4.4. From these figures,

it can be observed that for all N considered, SGD and SVRG demonstrate the best performance

in terms of feasibility and timing (including restarts). For variable dimensions N = 100 and

larger, the running time of SSGD-SCA becomes too expensive to merit comparison. Similarly,



53

2 4 6 8 10
M/N

91

92

93

94

95

96

97

98

99

100

F
ea

si
bi

lit
y 

P
er

ce
nt

ag
e 

(%
)

SGD
SVRG
C-ADMM
SSGD-SCA

2 4 6 8 10
M/N

10 -3

10 -2

10 -1

10 0

10 1

10 2

R
un

ni
ng

 T
im

e 
(s

)

SGD
SVRG
C-ADMM
SSGD-SCA

(A) (B)

Figure 4.2: 1000 instances with N = 50: (A) Average feasibility percentage vs M/N (B) Average
timing (secs) vs M/N .

for N = 200, we remove C-ADMM as well, since the average running time of C-ADMM is

approximately 20 minutes in this case. In contrast, even for N = 200, the worst average running-

time of SGD and SVRG, with restarts taken into account, is slightly in excess of one minute. It

is evident that SVRG and SGD are significantly more scalable compared to the existing state-of-

art, while, remarkably, exhibiting near-optimal performance with regard to recovering feasible

solutions in all cases. Hence, SGD and SVRG emerge as the algorithms of choice in this case.

Finally, although the algorithms we have applied on the feasibility problem are quite different

from each other, we point out that they exhibit a slight phase transition in terms of feasibility

percentages as M/N varies. Note that this effect is least pronounced overall in the case of

SGD and SVRG. The presented results (showing enhanced feasibility with more constraints)

hinge upon the method adopted for generating instances of (4.1), in particular that a unit-norm

solution exists. While we do not have a complete explanation of this phenomenon at present,

a similar observation has been made and theoretically explained in the special case of solving

random systems of quadratic equations (see [48, 117] for details). We conjecture that a similar

line of reasoning can also be applied here; however, formally establishing this argument is beyond

the scope of this thesis.

4.5 Application: Power System State Estimation

Power system state estimation (PSSE) is a fundamental problem in power systems engineering

where the objective is to estimate the complex voltages across the constituent buses of an
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Figure 4.3: 1000 instances with N = 100: (A) Average feasibility percentage vs M/N (B)
Average timing (secs) vs M/N .

electrical power grid from a set of measurements pertaining to the observable quantities [12].

In this section, we investigate the efficacy of using FOMs on the PSSE problem, which entails

solving a system of indefinite quadratic equations, thus rendering it NP–hard in its general

form [104].

4.5.1 Problem Formulation

Given an electrical power transmission network, we model it as an undirected graph G = (N , E),

where N := {1, · · · , N} denotes the set of buses (nodes) and E represents the set of transmission

lines (edges), with each transmission line (m,n) ∈ E corresponding to an unordered pair of

distinct buses. At each bus n ∈ N , we define the following complex nodal quantities: voltage

Vn := |Vn|ejθn , current injection In := |In|ejφn , and power injection Sn := Pn + jQn (here

Pn and Qn denote the active and reactive power injections respectively). Associated with each

transmission line (m,n) ∈ E are the following line quantities: Imn is the complex current flowing

from bus m to n, while Smn := Pmn + jQmn is the apparent power flow from bus m to n (here

Pmn and Qmn denote the active and reactive power flow respectively), as seen at the sending

end. For notational simplicity, we represent the nodal quantities {Vn}n∈N , {In}n∈N , {Pn}n∈N
and {Qn}n∈N in the form of vectors v := [V ∗1 , · · · , V ∗N ]H ∈ CN , i := [I∗1 , · · · , I∗N ]H ∈ CN ,p :=

[p1, · · · , pN ]T ∈ RN , and q := [q1, · · · , qN ]T ∈ RN respectively.

Bus n ∈ N has access to a set Ln of (possibly noisy) SCADA measurements {zl}l∈Ln
corresponding to the voltage magnitude |Vn|, active and reactive power injections Pn and Qn,
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Figure 4.4: 1000 instances with N = 200: (A) Average feasibility percentage vs M/N (B)
Average timing (secs) vs M/N .

and possibly the active and reactive power flows Pnm and Qnm, ∀m ∈ {m|(n,m) ∈ E} (i.e., if

bus n corresponds to the sending end).

In an AC power flow model, current and voltage laws mandate that the state variables v are

quadratically related to the SCADA measurements {zl}l∈Ln ,∀n ∈ N . This holds trivially for

the square of the voltage magnitude measurements, since |Vn|2 = VnV
∗
n ,∀n ∈ N . In order to

see that such a relationship exists between v and the other power measurements, let Y ∈ CN×N

denote the bus-admittance matrix whose entries are given by

Ymn :=


−ymn, (m,n) ∈ E

ȳnn +
∑
k∈Nn ynk, m = n

0, otherwise

(4.29)

where ymn is the admittance of line (m,n) ∈ E , ȳnn is the admittance to ground at bus n ∈ N ,

and Nn := {k|(n, k) ∈ E} denotes the immediate neighborhood of bus n. We point out that Y

is symmetric but non-Hermitian, and is also sparse. Combining Kirchoff’s current law and the

multivariate form of Ohm’s law, the relationship between the nodal voltages and currents can

be expressed as

i = Yv (4.30)

For the power injections, under the AC power flow model, it holds that Pn + jQn = VnI
∗
n,∀n ∈

N . Utilizing (4.30), we obtain the following matrix-vector relationship

p + jq = diag(v)i∗ = diag(v)Y∗v∗ (4.31)
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Meanwhile, by appealing to Ohm’s and Kirchoff’s laws, the line current Imn can be expressed

as

Imn = ȳmnVm + ymn(Vm − Vn),∀ (m,n) ∈ E (4.32)

where ȳmn denotes the shunt admittance at bus m corresponding to line (m,n). The reverse

direction current Inm can be obtained similarly by symmetry. Note that Imn 6= −Inm as

ȳmn 6= 0. The sending-end active and reactive power flow from bus m to n can now be expressed

as
Pmn + jQmn = VmI

∗
mn

= (ȳ∗mn + y∗mn)|Vm|2 − y∗mnVmV ∗n ,∀ (m,n) ∈ E
(4.33)

where in the second step we have made use of (4.32). From (4.31) and (4.33), it can be observed

that the power measurements are quadratically related to v.

We now make explicit the relationship between the measurements {zl}l∈Ln and v. At each

bus n ∈ N , the available measurements can be expressed in the quadratic form

zl = vHHlv + nl,∀ l ∈ Ln (4.34)

where Hl ∈ CN×N (to be specified shortly) and nl ∼ N (0, σ2
l ) represents additive Gaussian

noise (assumed independent across all meters). Considering the measurement of the voltage

magnitude squared at bus n, we have |Vn|2 = VnV
∗
n = vHeneTnv (where en ∈ RN represents the

nth canonical basis vector of RN ). Hence, in this case, we have HVn = eneTn . In order to define

{Hl}l∈Ln\Vn for the active and reactive power injection and flow measurements, we first define

the admittance-related matrices

Yn := eneTnY,∀n ∈ N (4.35a)

Ymn := (ȳmn + ymn)emeTm − ymnemeTn ,∀ (m,n) ∈ E (4.35b)

By equating the real and imaginary parts of (4.31) and (4.33), we obtain the matrices

HPn :=
1

2
(Yn + YH

n ), HQn :=
j

2
(Yn −YH

n )

HPmn :=
1

2
(Ymn + YH

mn), HQmn :=
j

2
(Ymn −YH

mn)

(4.36)

We point out that for each bus n ∈ N , the measurement matrices {Hl}l∈Ln\Vn are rank-2,

indefinite Hermitian matrices, while HVn is rank-1, positive semidefinite.

Assuming the availability of the measurements {zl}l∈Ln corrupted by Gaussian noise across

all buses n ∈ N , adopting a maximum-likelihood estimation approach results in the following

weighted least squares (WLS) optimization problem

min.
v∈CN

{
F (v) :=

N∑
n=1

fn(v) :=

N∑
n=1

∑
l∈Ln

(vHHlv − zl)2

σ2
l

}
(4.37)
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We will work with the rectangular coordinate representation of the state variables v. For this

purpose, we define v̄ := [vTr ,v
T
i ]T ∈ R2N , where vr = Re(v) and vi = Im(v). We also define a

set of symmetric measurement matrices H̄l ∈ R2N×2N as

H̄l :=

[
Re{Hl} − Im{Hl}
Im{Hl} Re{Hl}

]
, ∀ l ∈ Ln,∀n ∈ N (4.38)

Note that we have

vHHlv = v̄T H̄lv̄, ∀ l ∈ Ln,∀n ∈ N (4.39)

Hence, in terms of rectangular coordinates, (4.37) can be equivalently represented as

min.
v̄∈R2N

{
F (v̄) :=

N∑
n=1

fn(v̄) :=

N∑
n=1

∑
l∈Ln

(v̄T H̄lv̄ − zl)2

σ2
l

}
(4.40)

4.5.2 Numerical Results

The standard workhorse algorithm for this problem is the Gauss-Newton (GN) method, which

is well suited for application on non-linear least squares problems. When initialized close to a

local minimum, convergence of GN can be established. However, determining such an initial-

ization is non-trivial in general, and the performance of GN is known to be sensitive to the

choice of initialization. Here, we implemented a modified version of the GN algorithm described

in [118, p. 61], which uses a backtracking line-search procedure for improved performance in

practice. Our experiments indicate that this modified GN algorithm exhibits superior perfor-

mance over standard GN, and should be used instead as the de-facto performance benchmark for

this problem. Regarding our FOMs, theoretical convergence of GD with backtracking line-search

can be established for this problem (see Appendix D), while as pointed out earlier, establish-

ing convergence for the stochastic gradient methods is still an open problem. We also point

out that a modified version of FPP-SCA for the WLS formulation has been recently proposed

in [119], which essentially uses the weighted `2-norm square of the slack variables corresponding

to the equalities in each SCA subproblem of the form . Thus, GD and FPP-SCA are the only

algorithms under consideration here with convergence guarantees for PSSE. We also point out

that due to data sparsity, computing gradients for the direct FOMs in this case requires sparse

matrix-vector multiplications, which can be accomplished very efficiently. In contrast, exploiting

data sparsity in general purpose conic programming solvers (utilized by FPP-SCA) is a more

challenging proposition.

In our experiments, we evaluate estimation performance according to the normalized mean

square error criterion, defined as NMSE := ‖x̂−x‖2
‖x‖2 , where x̂ is the estimated voltage profile and

x is the true voltage profile. We used MATPOWER [120] for generating the voltage profiles

and SCADA measurements. The voltage magnitude at each bus was generated from a uniform
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distribution over the interval [0.9, 1.1] while the voltage angle was uniformly distributed over

[−0.1π, 0.1π]. The phase of the reference bus was set to 0 in order to resolve the phase ambi-

guity in all experiments. We also added independent, zero-mean Gaussian noise with variances

of 10 and 13 dBm to the measurements corresponding to the voltage magnitudes and power

flow/injections respectively. Regarding the algorithms, we run (modified) GN for a maximum

of 100 iterations, since we observed that GN either always converges or ceases to improve the

cost function within this iteration limit. We added a small regularization term to the inexact

Hessian at each step in order to ensure that it is well-conditioned and set the line-search pa-

rameter α = 0.1. For implementing FPP-SCA, we used the modeling language YALMIP [97]

along with the general convex programming solver MOSEK [96]. As for the direct FOMs, we

fix a maximum gradient budget to ensure a fair comparison between GD and SGD. For GD, we

use a crude choice of line-search parameters (see [14, p. 466]) while we implemented SGD with

minibatch stochastic gradients of size
⌊
M
10

⌋
and the norm-regularized step-size rule. GN, GD

and SGD were always initialized from the flat-voltage profile (i.e., the all-ones vector). The test

buses used in our experiments were obtained from the NESTA archive [121].
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Figure 4.5: Performance comparison on PEGASE 89 bus system with full set of SCADA mea-
surements: (A) Evolution of cost function (B) Evolution of NMSE.

In Figure 4.5, we present a preliminary simulation result demonstrating the performance of

SGD and GD (with backtracking line-search) for a single realization of the voltage profile on

the PEGASE-89 bus system with the full set of noisy SCADA measurements (corresponding to

N = 178,M = |E| = 687). Here, we set c4 = 4 × 10−5 for the norm-regularized step size rule

of SGD. The evolution of the WLS cost function shows that SGD attains a solution with lower

cost compared to GD within the prescribed gradient budget, which was set to be 5 × 104M .
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Furthermore, this also translates into better estimation performance for SGD compared to GD.

In terms of timing, SGD was roughly 6 times faster compared to GD on our machine. Hence,

on this real world problem, SGD is also capable of exhibiting very favorable performance, even

when pitted against a provably convergent FOM.

Next, we devised an experiment where we evaluated the estimation performance of SGD,

GN, and FPP-SCA (all initialized from the flat-voltage profile) with varying number of noisy

measurements. GD is omitted here since it exhibits worse estimation performance compared

to SGD at higher complexity on this network. We only run 2 iterations of FPP-SCA due to

its high complexity. Additionally, we also refine the final solution returned by SGD using 2

iterations of FPP-SCA. Given a sampling fraction γ ∈ (0, 1], we sample a fraction γ of the

total measurements uniformly at random from each measurement type. This implies that for

the active power injections, for example, out of a total of N = 89 available measurements, we

subsampled bγNc measurements uniformly at random, and likewise for the other measurement

types. All our results were averaged over 200 Monte-Carlo trials, and are depicted in Figure 4.6.
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Figure 4.6: Performance Results for PEGASE 89 bus system: (A) Avg. NMSE vs γ (B) Avg.
Wall Time vs γ.

It is evident that on this network, GN, while being the fastest method, is also the one which

exhibits the worst estimation performance. In contrast, SGD performs significantly better,

albeit at (moderately) higher complexity. Owing to its high complexity, running FPP-SCA from

the flat-start for 2 iterations incurs approximately the same running-time as SGD while being

significantly worse-off in terms of NMSE. This highlights the ability of SGD to attain a very

favorable performance-complexity trade-off compared to other alternatives. We additionally

note that the solution determined by SGD can serve as a good initialization for FPP-SCA,
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which obviates the need to initialize FPP-SCA from the flat voltage profile and thereby incur

significantly higher complexity. Clearly, combining SGD with 2 iterations of FPP achieves the

lowest NMSE. However, this combined heuristic still exhibits the highest complexity (even with

2 SCA iterations), which further underscores the benefit of SGD initialization.

We also carried out similar experiments on a series of test bus systems. Figure 4.7 depicts

the results for the IEEE 30 bus network. In this case, we used a gradient budget of 5000M for

the FOMs and set c4 = 0.02 for SGD. As this is a fairly small network, we initialized FPP-SCA

from the flat start and ran it until it attains convergence in the cost function, or a maximum of

20 iterations are executed. It is evident that both FOMs outperform GN and FPP-SCA in terms

of estimation error this case, which is remarkable given the fact that they are considerably less

sophisticated compared to the aforementioned methods. Furthermore, while it may be tempting

to conjecture from the figures that GN attains the best performance-complexity trade-off in

this case, this is not so: in our experiments, GN never improves upon its estimates beyond 100

iterations, and thus one cannot obtain better estimation performance for GN by using more

iterations. Hence, it is SGD which is overall the best in this case from the perspective of

performance-complexity trade-off, which makes it all the more remarkable given that it is the

least sophisticated technique amongst all the methods under consideration.
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Figure 4.7: Performance Results for IEEE 30 bus system: (A) Avg. NMSE vs γ (B) Avg. Wall
Time vs γ.

In Figure 4.8, we show the results obtained on the IEEE 57 bus network, for which we used

a maximum gradient budget of 5000M and set c4 = 0.05. In this case as well, we initialized

FPP-SCA from the flat start until convergence or a maximum of 20 iterations are reached.

From the figures, it can be seen that both FOMs perform very admirably in terms of estimation
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error compared to both GN and FPP-SCA: GN demonstrates class-leading performance only

for γ ≥ 0.9 while running FPP-SCA always results in higher complexity relative to the other

methods. It is clear that when one has access to a partial set of measurements (i.e., γ ≤ 0.8),

the FOMs possess the upper hand in terms of performance.
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Figure 4.8: Performance Results for IEEE 57 bus system: (A) Avg. NMSE vs γ (B) Avg. Wall
Time vs γ.

4.6 Conclusions

We presented a simple heuristic framework for determining feasible points of general non-convex

QCQPs using memory efficient and computationally lightweight FOMs, which makes our ap-

proach very scalable. While a general theory of provable performance guarantees is elusive at

present, we provided a selection of empirical step-sizes for which the FOMs surprisingly ex-

hibit very favorable performance in terms of feasibility attained on synthetic experiments and

estimation error for PSSE using real power network data compared to more established and

sophisticated alternatives. Given the startling empirical performance of FOMs for this class

of hard optimization problems, we can reasonably claim that our direct FOM based approach

constitutes a significant advancement in the state-of-art for computing feasible solutions of large-

scale non-convex QCQP. In particular, the stochastic gradient methods emerge as the algorithms

of choice in our experiments.



Chapter 5

Summary and Future Directions

This dissertation introduced a framework for obtaining approximate solutions to non-convex

QCQPs in an efficient manner. Chapter 2 considered the special case of homogeneous non-convex

QCQP with Toeplitz-Hermitian quadratic forms and established that SDR followed by spectral

factorization can used to optimally solve the problem in polynomial-time. Since the problem

possesses hidden convexity, no approximation is required in this case. Furthermore, if the

matrices additionally possess circulant structure, then the QCQP problem can be equivalently

reformulated as a LP problem, and again optimally solved in polynomial-time at significantly

lower complexity compared to SDP.

The subsequent chapters considered the general case of the non-convex QCQP problem, and

proposed FOM based optimization approaches for efficiently computing feasible points. Chapter

3 considered the special case of non-convex quadratic feasibility problems where the feasible set

is defined by the intersection of a convex, compact set and a system fo quadratic inequalities with

negative semidefinite matrices. A feasibility criterion which minimizes the maximum violation

of the inequality constraints was adopted and an SCA algorithm was developed for the purpose

of achieving feasibility. The global convergence of the iterates generated by the SCA algorithm

to the set of d-stationary solutions of the feasibility problem was established. In order to reduce

the computational complexity associated with solving each SCA subproblem, the piece-wise

linear cost function of each subproblem was equivalently reformulated as maximizing a bilinear

function over a convex set. This special structure was exploited using specialized FOMs which

are capable of efficiently computing solutions for each subproblem. The problem of single-group

multicast beamforming was considered as an example, where the objective was to design a max-

min fair beamformer subject to transmit power constraints. Simulations in various multicasting

scenarios demonstrated that the proposed FOM based SCA algorithms attain a very favorable

performance-complexity trade-off relative to the existing state-of-art.

62
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Chapter 4 considered the most general case of the quadratic feasibility problem defined by

an arbitrary system of inequalities and equalities. A non-convex, non-smooth exact penalty

formulation was proposed for the purpose of computing a feasible solution. Appealing to Nes-

terov’s smoothing technique, a smooth formulation of the exact penalty formulation was derived,

which is well suited for the direct application of FOMs. The difficulty in adapting the existing

convergence results of FOMs for non-convex problems was outlined, and the use of empirically

chosen step-sizes was advocated. While this approach is extremely scalable owing to its sim-

plicity, apriori it would appear that this comes at the considerable expense of lacking technical

sophistication compared to prevailing approaches (namely, SDR, FPP-SCA and C-ADMM),

and hence, perhaps does not even merit consideration for a problem which is non-convex and

NP–hard in general. However, using judiciously designed experiments, compelling empirical

evidence was provided to the contrary. On synthetic experiments, the stochastic gradient based

algorithms demonstrated startling success in attaining feasible solutions at significantly lower

complexity compared to the pre-existing alternatives. Additionally, when applied on the problem

of power system state estimation, we demonstrated that SGD can attain very favorable estima-

tion performance using a smaller subset of available measurements compared to FPP-SCA and

GN. While the author himself was initially skeptical about the prowess of FOMs for feasibility

pursuit, given their remarkable empirical success, he believes that the work reported herein is a

significant advancement in the state-of-art for obtaining feasible solutions of general non-convex

QCQP. For the better part of almost two decades, one has principally been restricted to using

SDR for doing so. It is therefore our hope that this work will enable many more large-scale

applications as well as research in non-convex QCQP.

Based on this dissertation, our ongoing research is concerned with the following extensions

and applications:

• Boolean Quadratic Optimization Problems: While we considered QCQP subject to

continuous constraints in this dissertation, several problems arising in network science and

data analytics can be formulated as maximizing/minimizing a quadratic function subject

to boolean constraints. In such cases, computing a feasible solution is trivial; instead, the

challenge is in computing high-quality approximate solutions. However, such problems

are not only NP-hard in their general form, but also inapproximable via polynomial-time

algorithms. Nevertheless, motivated by the success of SCA for continuous problems, we

seek to develop a discrete version of SCA and test its effectiveness for boolean QCQP.

• Power Systems Grid Optimization: QCQPs find widespread application in power

systems engineering as the constraints imposed by the physical laws of the electrical net-

work and the limits of power generation are defined by a system of quadratic equalities
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and inequalities. The task of modernizing the electrical grid infrastructure to meet the en-

ergy demands of the 21st century has recently received significant research attention, which

necessitates solving the basic non-convex QCQP problem (1.1) in various settings with ap-

propriate modifications. Specific examples include, but are not limited to: i) performing

PSSE in a real-time, decentralized fashion, due to the sheer scale of the grid interconnec-

tions. For this purpose, judicious online/distributed algorithms are required for computing

effective solutions; ii) the ever increasing integration of renewable energy resources (RESs)

demands that system operators take into account the uncertainty introduced in system

operation owing to their intermittent nature. A reasonable approach to such problems

would be to consider stochastic programming based or worst-case minimax formulations

of (1.1); and finally, iii) the unit-commitment problem in economic dispatch (i.e., the task

of satisfying power demand while respecting network constraints and minimizing the cost

of generation) introduces boolean variables in (1.1) for solving a generator scheduling prob-

lem over a finite time horizon (on the order of hours or days). This requires developing

approximation algorithms for tackling the mixed-integer constraints. We point out that all

these problems are atleast as hard as the basic formulation (1.1), which makes computing

effective solutions in reasonable time a daunting task. Prior approaches have relied upon

using a simple linear system model for what is a nonlinear programming problem, thereby

resulting in significant performance degradation, or employing computationally expensive

SDR based approaches. Motivated by our successes in directly tackling the general case

of non-convex QCQP in this dissertation, we will apply suitable modifications to the tool-

box of algorithms proposed herein for the purpose of obtaining high-quality approximate

solutions for these very challenging, yet timely, engineering problems.
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Appendix A

Proofs and Technical Claims

A.1 Proof of Proposition 3

In this section, we discuss the convergence properties of Algorithm 1. Our first goal is to establish

that every limit point xl of the iterates {x(n)}n∈N generated by Algorithm 1 is a d-stationary

point of (3.2); i.e., f ′(xl,d) ≥ 0 for all d such that x + d ∈ X . In order to do so, we will

resort to [38, Theorem 1]. However, we first have to verify that the non-convex cost function

f(.) and its convex surrogate v(., .) satisfy the four conditions laid out in [38, Assumption 1].

By virtue of properties (A2-A4), simple inspection reveals that all but one of these conditions

are apparently satisfied; the condition in question being [38, Assumption A3], which requires

that the directional derivatives of f(.) and v(., .) are equal at the point of approximation. This

condition is hard to check in general, and a sufficient condition is proposed in [38, Proposition 1]

under which it is automatically satisfied. Unfortunately, this sufficient condition does not hold

in our case, which complicates matters. Nevertheless, by relying upon a different set of results

borrowed from variational analysis [67], it is indeed possible to verify that [38, Assumption A3]

is satisfied in our case, as we now show.

First, for ease of notation, we first introduce the definition lm(x,x(n)) := c
(n)T
m x+d

(n)
m ,∀m ∈

[M ]. Now, consider the directional derivative of v(x,x(n)) = max
m∈M

lm(x,x(n)), which, being a

convex function, admits the following representation

v′(x,x(n); d) = max
w∈∂v(x,x(n))

wTd (A.1)

where ∂v(x,x(n)) = conv(∇li(x,x(n))| i ∈ M(x)) and M(x) := {i | li(x,x(n)) = v(x,x(n))} ⊆
[M ]. We then have that

v′(x,x(n); d)

∣∣∣∣
x=x(n)

= max
w∈∂v(x(n),x(n))

wTd (A.2)
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where by construction of the surrogate function v(., .), we now have ∂v(x(n),x(n)) = conv(∇ui(x(n))| i ∈
M(x)) and M(x) := {i |ui(x(n)) = f(x(n))}. At this stage, it is fairly obvious that if we can

establish a similar relationship for the directional derivative of f(.) at x = x(n), the proof is

complete. However, for non-convex functions, the representation (A.1) is not valid in general,

which prevents us from establishing the desired result via the aforementioned arguments. In-

stead, under additional assumptions on f (which will be shown to be implicitly satisfied), and by

exploiting the fact that f is the point-wise maximum of a finite number of smooth functions, we

will utilize a different line of reasoning to derive an expression for f ′(x; d), which, interestingly,

will turn out to be the same as (A.2) at the point x = x(n).

Before we describe our approach in detail, we will require the following definitions. Adopting

the exposition of [67], the difference quotient function associated with f at a point x (where

f(x) is finite) and a direction d, is defined as

∆τf(x)(d) :=
f(x + τd)− f(x)

τ
(A.3)

Clearly, we have

f ′(x; d) := lim
τ↓0

∆τf(x)(d) (A.4)

The above definition can be generalized to define a semiderivative of f at x for d [67, Definition

7.20], which is given by

fs(x; d) := lim
τ↓0,
d′→d

∆τf(x)(d′) (A.5)

If the above limit exists, f is said to be semidifferentiable at x for d. If it holds for all d,

then f is said to be semidifferentiable at x. While f ′(x; d) is only concerned with the limiting

behavior of ∆τf(x)(d) along the ray {x + τd|τ ∈ R+}, the semiderivative, loosely speaking,

tests the behavior of ∆τf(x)(d) along all curves from x in the direction of d. Clearly, if fs(x; d)

exists and is finite, then f ′(x; d) = fs(x; d). However, the converse is not true in general.

When the existence of fs(x; d) is not guaranteed, it is useful to work with subderivatives of

f(x) [67, Definition 8.1], which always exist and are defined as

df(x)(d) = lim inf
τ↓0,
d′→d̃

∆τf(x)(d′) (A.6)

It is again evident that when fs(x; d) exists, we must have fs(x; d) = df(x)(d) (since lim and

lim inf coincide in this case). In addition, if fs(x; d) is also finite, we obtain the following series

of equalities

f ′(x; d) = fs(x; d) = df(x)(d) (A.7)

From (A.7), it can be inferred that it in order to obtain an expression for f ′(x; d), it suffices

to show that fs(x; d) exists, compute fs(x; d) (or possibly df(x)(d)) and verify that it is finite

valued. This is precisely what we now set out to establish via the following claims.
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Lemma 1. The non-convex function f(x) = max
m∈[M ]

um(x) is semidifferentiable for all x ∈ RN .

Proof. Follows directly from [67, Exercise 10.27(c)]

Hence, although f(x) is non-differentiable, the fact that it is the point-wise maximum of a finite

number of smooth functions {um(x)}m∈[M ] ensures that it is semidifferentiable. While this

result establishes the existence of semiderivatives of f(x), since we are interested in minimizing

f over a convex, compact set X , we require certain regularity assumptions on f 1 and X 2

being satisfied in order to proceed towards deriving an expression for the semiderivatives of f .

The following result establishes that these regularity conditions are automatically satisfied in

our case.

Lemma 2. The set X is Clarke regular while f is subdifferentially regular for all x ∈ X .

Proof. The first part follows directly from the fact that X is convex and then invoking [67,

Theorem 6.4], while the second part holds due to the point-wise max structure of f which

enables us to appeal to [67, Example 7.28].

Thanks to the above result, our overall convergence claims only depend upon the aforementioned

regularity conditions implicitly ; i.e., one does not have to check to see if they are verified; they

are automatically guaranteed to hold by Claim 2. With these results in hand, we are now ready

to state the main claim.

Lemma 3. The subderivative of f for all x ∈ X can be expressed as

df(x)(d) = max
i∈M(x)

∇ui(x)Td (A.8)

where M(x) := {i |ui(x) = f(x)}. Furthermore, df(x)(d) <∞, ∀x ∈ X and d s.t. x + d ∈ X .

Proof. The first part of the claim follows from the regularity of f(x), ∀x ∈ X , and then invoking

[67, Exercise 8.31]. In order to show the second part, by our assumption that X is compact, we

have that diam(X ) := sup
x,y∈X

‖x− y‖2 = D <∞ for some D ∈ R+. This enables us to write

∇ui(x)Td ≤ ‖∇ui(x)‖2‖d‖2 = ‖Āix‖2‖d‖2

≤ ‖Āi‖2‖x‖2‖d‖2

≤ ‖Āi‖2D2,∀ i ∈M(x)

=⇒ max
i∈M(x)

∇ui(x)Td ≤ D2 max
i∈M(x)

‖Āi‖2 <∞

(A.9)

1 Here, by regularity of f , we mean that f satisfies the notion of subdifferential regularity as defined in [67,
Definition 7.25].

2 By regularity of the set X , we mean that X satisfies Clarke regularity as defined in [67, Definition 6.4].
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Taken together, our claims guarantee that fs(x; d) always exists (Lemma 1), establish that

all requisite regularity conditions are automatically satisfied by f and X (Lemma 2), and also

provide a characterization of df(x)(d), which is finite-valued over X (Lemma 3). Thus, it follows

that the chain of equalities (A.7) hold in our case, which allows us to directly write

f(x; d) = max
i∈M(x)

∇ui(x)Td = max
w∈conv(∇ui(x)|

i∈M(x))

wTd (A.10)

Comparing the above expression with (A.2), it directly follows that we have

f ′(x; d)

∣∣∣∣
x=x(n)

= v′(x,x(n); d)

∣∣∣∣
x=x(n)

(A.11)

which is the condition that we set out to verify. Note that, by the feasibility of the iterates

{x(n)}n∈N of Algorithm 1, (A.10) always holds for every SCA iteration n.

Now that we have verified all four conditions listed in [38, Assumption 1], it only remains to

invoke [38, Theorem 1] to claim that every limit point xl of {x(n)}n∈N is a d-stationary point

of (3.2). Of course, this is a weaker claim compared to what we stated in Proposition 3, as

it only guarantees convergence along a subsequence of the iterates (provided that a convergent

subsequence exists in the first place). While the compactness of X guarantees the existence of

such a convergent subsequence, it also allows us to strengthen our result to achieve the desired

outcome via the following lemma.

Lemma 4. If X is a compact set, then, under [38, Assumption 1], the sequence of iterates

{x(n)}n∈N satisfy

lim
n→∞

d(x(n),X ∗) = 0,

where X ∗ is the set of d-stationary solutions of (3.2).

Proof. Follows directly from [38, Corollary 1].

This concludes the proof of Proposition 3.

A.2 Proximal Operator of ω(.)

The results of this appendix are derived in a manner similar to that in [81, Section 6.4]. Deter-

mining the proximal operator proxω
ρ

(x) of the function ω(y) = max
m∈[M ]

{ym + bm} requires one to

solve the following convex optimization problem

min
y

ω(y) +
ρ

2
‖y − x‖22 (A.12)
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which can be represented in its epigraph form as the following smooth optimization problem

min
y,t

t+
ρ

2
‖y − x‖22 (A.13a)

s.t. ym + bm ≤ t,∀ m ∈ [M ] (A.13b)

The KKT optimality conditions for (A.13) are given by

y∗m + bm ≤ t∗, (A.14a)

η∗m ≥ 0, (A.14b)

η∗m(y∗m + bm − t∗) = 0, (A.14c)

ρ(y∗m − xm) + η∗m = 0, (A.14d)

M∑
m=1

η∗m = 1 (A.14e)

where m ∈ [M ] and η = [η1, · · · , ηM ]T denotes the vector of dual variables. If y∗m + bm < t∗,

then from the third condition, we have η∗m = 0. Otherwise, if y∗m+bm = t∗, then from the fourth

condition we obtain η∗m = ρ(xm + bm − t∗). Since η∗m ≥ 0, we must have that

η∗m = ρmax{xm + bm − t∗, 0} (A.15)

Substituting for η∗m in the final KKT condition, we obtain the equation

ρ

M∑
m=1

max{xm + bm − t∗, 0} = 1 (A.16)

which can be solved for t∗ via bisection using the initial interval [min
m
{xm+bm}−(1/ρM),max

m
{xm+

bm}]. Once t∗ is determined, we can solve for y∗ = [y∗1 , · · · , y∗M ]T as

y∗m = xm −max{xm + bm − t∗, 0}

= min{t∗ − bm, xm},∀ m ∈ [M ]
(A.17)

The proximal operator of ω(.) is then given by

proxω
ρ

(x) = y∗ (A.18)

A.3 MU Algorithm for massive MIMO Multicasting

In this appendix, we derive a variant of the MU algorithm described in [90] for handling PAPCs

in Massive MIMO multicasting. As a surrogate for the max-min fair problem (3.52), consider

the following proportionally-fair formulation

max
w̃∈W̃

M∑
m=1

log (w̃T R̃mw̃ + δ) (A.19)
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where δ ∈ R++. After expressing the set W̃ in terms of PAPCs, we obtain the following non-

convex problem

max
w̃∈R2N

M∑
m=1

log (w̃T R̃mw̃ + δ) (A.20a)

s.t. w̃2(i) + w̃2(i+N) ≤ Pi,∀ i ∈ [N ] (A.20b)

The MU algorithm proposes to solve (A.20) in the following iterative manner. Starting from

an initial feasible point w̃(0), at each iteration n ≥ 0, we construct the following first order

surrogate of h(w̃) :=
∑M
m=1 log (w̃T R̃mw̃ + δ) about the current iterate w̃ = w̃(n)

h(w̃) ≈ h(w̃) +∇h(w̃(n))T (w̃ − w̃(n)) (A.21)

by determining the first-order Taylor series expansion of h(w̃) about w̃(n). The gradient of h(w̃)

is given by

∇h(w̃) :=

M∑
m=1

2R̃mw̃

w̃T R̃mw̃ + δ
(A.22)

which corresponds to taking an inversely weighted combination of the gradients of the functions

um(w̃) = w̃T R̄mw̃,∀m ∈ [M ], with more emphasis placed on the gradients of those functions

um(w̃) which are small. This intuitively suggests that ∇h(w̃) corresponds to a good search

direction for attaining max-min fairness. The update rule of our algorithm at each iteration n

is then given by

w̃(n+1) = arg max
w̃∈W̃

∇h(w̃(n))T (w̃ − w̃(n)) (A.23a)

= arg max
w̃2(i)+w̃2(i+N)≤Pi,

∀ i∈[N ]

∇h(w̃(n))T w̃ (A.23b)

Define g̃(n) := ∇h(w̃(n)). Then, the objective function of (A.23b) can be expressed as

g̃(n)T w̃ =

2N∑
i=1

g̃(n)(i)w̃(i) =

N∑
i=1

ḡ
(n)T
i w̄i (A.24)

where ḡ
(n)
i := [g̃(n)(i), g̃(n)(i + N)]T , w̄i := [w̃(i), w̃(i + N)]T ,∀ i ∈ [N ]. With the objective

function represented in this form, it is obvious that (A.23b) decomposes into N parallel problems

of the form

w̄
(n+1)
i = arg max

‖w̄i‖22≤Pi
ḡ

(n)T
i w̄i =

√
Pi

ḡi
‖ḡi‖2

,∀ i ∈ [N ] (A.25)

From the vectors {w̄(n+1)
i }Ni=1, the update vector w̃

(n+1)
i can be easily synthesized.
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A.4 Derivation of smoothed-hinge function

Consider the following maximization problem

f (µ)
m (x) = max

0≤y≤1
{y(xTAmx− bm)− µy

2

2
},∀ m ∈ [MI ] (A.26)

Note that for every x ∈ RN , the corresponding maximization problem is strongly concave in y,

and hence the maximum is always uniquely attained. Define the function g(y) := y(xTAmx −
bm)− µy

2

2 . In order to obtain a closed form solution to (A.26), we consider the following three

cases.

1. xTAmx−bm ≤ 0 : In this case, it can be readily seen that the choice of y which maximizes

g(y) over the interval [0, 1] is y = 0. Thus, we obtain

f (µ)
m (x) = 0, if xTAmx ≤ bm (A.27)

2. 0 < xTAmx− bm ≤ µ : The function g(y) attains its maximum at y = xTAmx−bm
µ , which

in this case, lies in the interval (0, 1]. Substituting this value in (A.26) yields

f (µ)
m (x) =

(xTAmx− bm)2

2µ
, if bm < xTAmx ≤ bm + µ (A.28)

3. xTAmx− bm > µ : In this case, the function g(y) attains its maximum at a point y > 1

which lies outside the interval [0, 1]. As the function is monotonically increasing, we choose

the value y = 1 which maximizes g(y) over [0, 1] to obtain

f (µ)
m (x) = xTAmx− bm −

µ

2
, if xTAmx > bm + µ (A.29)

Meanwhile, the approximation bounds (4.20) can be derived using the same arguments first used

in [62] for establishing approximation bounds for non-smooth, convex functions using Nesterov

smoothing. Here, we show that these results can also be extended to our non-convex setting.

In order to derive the desired bounds (4.20), we will equivalently show that the following

result holds.

fm(x)− µ

2
≤ f (µ)

m (x) ≤ fm(x),∀x ∈ RN ,∀ m ∈ [MI ] (A.30)

It is evident that the upper bound holds by inspection of the definitions of fm(x) (4.16) and

f
(µ)
m (x) (4.17). To show that the lower bound holds, we first note that max

0≤y≤1

y2

2 = 1
2 . Hence, it

follows that for any x ∈ RN , µ ∈ R++ and m ∈ [MI ], we have

y(xTAmx− bm)− µy
2

2
≥ y(xTAmx− bm)− µ

2
,∀ y ∈ [0, 1]

=⇒ max
0≤y≤1

{y(xTAmx− bm)− µy
2

2
} ≥ max

0≤y≤1
{y(xTAmx− bm)} − µ

2
,

=⇒ f (µ)
m (x) ≥ fm(x)− µ

2

(A.31)
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This concludes the proof.

A.5 Convergence of Gradient Descent without Lipschitz

smoothness

In this section, we establish that GD with backtracking line search globally converges to the

set of stationary points of the quadratic penalty formulation for solving general systems of

quadratic equations (i.e., (4.22) with MI = 0), without any Lipschitz smoothness assumptions.

We emphasize that this is not a new result, but rather a refinement of the following pre-existing

result.

Lemma 5. [122, Proposition 1.2.1] Let {x(k)} be a sequence of iterates generated by GD with

backtracking line search for step-size selection. Then, every limit point of {x(k)} is a stationary

point.

This result, while not requiring any Lipschitz smoothness assumptions, is still contingent on

a general condition for gradient based methods being satisfied, which requires that the descent

direction does not become asymptotically orthogonal to the gradient, unless the gradient vanishes

(see [122, p. 35]). We point out that GD naturally satisfies this condition, thus implying that

the convergence claim stated above holds. However, this result, on its own, is rather weak. It

states that if the sequence {x(k)} possesses a convergent subsequence, then the limit of the

subsequence is a stationary point. In order to further improve upon this claim, we proceed as

follows

1. First, we show that irrespective of initialization, the sequence of iterates {x(k)} generated

by GD with backtracking line search always possesses a convergent subsequence.

2. Using the above result in conjunction with Lemma 1, we will show that the entire sequence

{x(k)} converges to a stationary point.

The first condition can be established by exploiting the fact the cost function is a quartic

polynomial which is coercive3 . A useful attribute of coercive functions is that they satisfy the

following property.

Lemma 6. [123, Lemma 8.3] Let f be a continuous, coercive function. Then, every sub-level

set Xγ := {x ∈ RN | f(x) ≤ γ} of f is compact.

3 A function f : RN → R is said to be coercive if for every sequence {x(k)} for which ‖x(k)‖ → ∞, we have
limk→∞ f(x(k)) =∞ [122, Definition A.4].
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This implies that for any point x(0) ∈ RN used to initialize GD, the initial sub-level set Xf(x(0)) :=

{x ∈ R | f(x) ≤ f(x(0))} is always compact. Since backtracking line search is used to ensure

descent of GD at each iteration, it follows that the entire sequence of iterates {x(k)} generated

by GD lie in Xf(x(0)), and hence, are bounded. By appealing to the Weierstrass theorem [122,

Proprosition A.8], it then follows that {x(k)} possesses a convergent subsequence.

In order to complete the proof, we simply invoke [38, Corollary 1] once again. Hence, it

follows that the entire sequence {x(k)} globally converges to the set of stationary points, in an

asymptotic sense.



Appendix B

Acronyms

This appendix contains a table of acronyms and their meaning.

Table B.1: Acronyms

Acronym Meaning

ADMM Alternating Direction Method of Multipliers

C-ADMM Consensus-ADMM

DFT Discrete Fourier Transform

eMBMS Evolved Multimedia Broadcast Multicast Service

FAS Finite Autocorrelation Sequence

FOM First-order Method

FPP Feasible Point Pursuit

GD Gradient Descent

GN Gauss-Newton

IPM Interior-Point method

LP Linear Programming

LMI Linear Matrix Inequality

LTE Long-Term Evolution

MIMO Multiple-Input Multiple-Output

NMSE Normalized Mean Squared Error

PSSE Power System State Estimation

QCQP Quadratically Constrained Quadratic Programming

SCA Successive Convex Approximation

Continued on next page
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Table B.1 – continued from previous page

Acronym Meaning

SCADA Supervisory Control and Data Acquisition

SD Subgradient Descent

SDP Semidefinite Programming

SDR Semidefinite Relaxation

SGD Stochastic Gradient Descent

SoCP Second-order Cone Programming

SSGD Stochastic Subgradient Decent

SVRG Stochastic Variance Reduced Gradient
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