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ABSTRACT 

 Cancer is the second highest cause of death in the United States. A greater 

understanding of the underlying causes of this disease is critical to improve patient 

outcomes. For years, researchers have known that cancer is primarily a genetic disease, 

caused by mutations that can activate oncogenes and inactivate tumor suppressors. 

Several studies have also shown that UV radiation, smoking and certain defects in DNA 

repair cause some of the mutations that lead to cancer, but the sources of mutations 

found in many tumor types are yet to be explained. Here, we build upon our initial finding 

that APOBEC3B is a source of mutation in breast cancer by defining its role in ovarian 

cancer. Parallel analyses looking globally at mutation in cancer have shown that 

APOBEC3B also contributes to mutation in several other tumor types. Additional studies 

have elucidated a major signaling mechanism that regulates APOBEC3B expression in 

cancer. While many efforts have been made to directly inhibit APOBEC3B enzymatic 

activity, the advances described here have the potential to inform alternative therapeutic 

strategies aimed at transcriptionally downregulating APOBEC3B to slow tumor evolution 

and improve the durability of conventional anti-cancer drugs. Ultimately, a more 

comprehensive understanding of the basic biology of APOBEC3B catalyzed 

mutagenesis in cancer will translate to larger impacts in the clinical arena. 
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SUMMARY (This section was drafted by M.B. Burns and B. Leonard) 

Cancer is the second largest heath burden in the United States. It is a disease 

that results from alterations in the cellular genome. While new deep sequencing data 

has detected patterns of mutation caused by known sources, such as UV radiation and 

tobacco carcinogens, several new patterns are now being uncovered. A major one of 

which is explained by the enzymatic activity of the DNA cytosine deaminase, 

APOBEC3B. As a deaminase, APOBEC3B converts cytosines to uracils in single-

stranded DNA. A failure to properly repair these uracil lesions can result in a diverse 

array of mutations. The initial discovery of this mutational phenomenon was described 

mechanistically using a variety of biochemical, genetic, and cellular assays in breast 

cancer cell lines. These data were validated using publically available sequencing data 

from the TCGA and expanded to over 20 different tumor types. Additional studies using 

large cohorts of breast cancer patients demonstrate that APOBEC3B also manifests 

clinically and associates with poor outcomes. These reports cumulatively demonstrate 

that APOBEC3B is a major source of genetic heterogeneity in breast, ovarian, head & 

neck, bladder, cervical, and lung (adeno- and squamous cell) carcinomas. Future 

studies should be aimed at determining the diagnostic and therapeutic value of 

APOBEC3B.  

 

SOURCES OF MUTATION IN CANCER (This section was drafted by B. Leonard) 

Genome instability was recently described as an enabling hallmark of cancer (1). 

This hallmark is unique in that it can lead to nearly all malignant phenotypes, including 

replicative immortality, avoidance of cell death, sustained proliferation and induction of 

angiogenesis. It is therefore important to understand the sources of genome instability 

and how each contributes to cancer initiation and progression. Mutation is a major 
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contributor to genome instability, and has the ability to both activate oncogenes and 

inactivate tumor suppressors. There are two general categories of mutational sources: 

exogenous and endogenous. Exogenous sources include ultraviolet (UV) light and 

carcinogens from tobacco smoke (2-5). The best-studied endogenous sources are DNA 

replication errors that persist due to defects in DNA repair processes, such as loss of 

recombination or mismatch repair (MMR) proteins (6-11). While these sources combine 

to explain some of the observed heterogeneity, the sources of most of the mutations in 

cancer have yet to be explained mechanistically. 

New deep sequencing technologies are allowing for the identification of patterns 

or “signatures” of mutation in cancer, which reflect the underlying sources of DNA 

damage (12). For instance, these studies have been able to detect the predicted 

mutation signatures for aging (characterized by spontaneous deamination of cytosines in 

CpG motifs) in nearly all cancers, UV light in skin cancer, tobacco usage in lung and 

head/neck cancer, loss of BRCA1/2 in breast and ovarian cancer, and microsatellite 

instability in colon cancer (13-19). In addition to confirming these and other known 

sources, these large datasets have been further deconvoluted to identify completely 

novel mechanisms of mutation in cancer (13-18,20-25). One of the most significant 

findings is that APOBEC3B, a member of the APOBEC family of single-stranded DNA 

polynucleotide cytosine deaminases, is a major contributor to cancer genome 

mutagenesis [Fig. 1.1; (13-18,21-29)]. 

 

THE APOBEC FAMILY (This section was drafted by B. Leonard) 

The human APOBEC family of cytosine deaminases is composed of 11 members 

(Fig 1.2A). Apolipoprotein B mRNA Editing enzyme, Catalytic Subunit 1 (APOBEC1) is 

encoded on chromosome 12 and was the first to be desribed. The innate immune 
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APOBEC3s (A, B, C, D, F, G, H) are encoded in a tandem head-to-tail array on 

chromosome 22. Activation Induced Cytosine Deaminase (AID or AICDA), which is 

responsible for diversifying the antibody repertoire, is encoded on chromosome 6. 

APOBEC2 and APOBEC4 are encoded on chromosomes 6 and 1, respectively, and are 

the only APOBECs not known to be capable of converting cytosine to uracil (C-to-U) in 

single-stranded DNA (ssDNA) via a deamination reaction (Fig. 1.2B).  

The APOBECs were initially named after the physiologic role of APOBEC1 in 

Apolipoprotein B mRNA-editing (30). This nomenclature can be misleading as 

APOBEC1 is the only family member responsible for this process. In fact, many of these 

proteins have independent physiological functions (31,32). For example, AID is essential 

for both somatic hypermutation and class-switch recombination through deamination of 

variable and switch region DNA segments within rearranged immunoglobulin heavy and 

light chain genes (33).  

The APOBEC3 proteins are also known to have 3 distinct physiologic functions in 

the human body, all of which are consistent with their role in innate immunity. First, many 

of the APOBEC3s have been described to defend against a diverse array of viral 

pathogens, including retroviruses, hepatitis viruses, papillomaviruses, and others (34,35). 

Of note, APOBEC3D, F, G, and H have been shown to restrict human immunodeficiency 

virus-1 (HIV-1) replication by deaminating cDNA intermediates that normally occur 

during the HIV-1 life cycle (36,37). Second, several APOBEC3s, including APOBEC3A, 

B, and F, have been shown to inhibit retrotransposition of L1 and Alu elements in human 

cells (38,39). Third, researchers have demonstrated that APOBEC3A and other family 

members have the potential to mediate the clearance of foreign DNA through a 

deamination dependent mechanism (40-42). 

Because the APOBEC3 family is a result of relatively recent gene duplication 

events, all members share large amounts of sequence homology (43). For example, 
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APOBEC3A and the carboxy-terminal domain of APOBEC3B share >90% nucleotide 

identity. This sequence homology has historically complicated expression analyses 

aimed at deciphering between the various APOBEC3 proteins. In fact, nearly all 

commercially available monoclonal antibodies against these proteins lack specificity and 

are able to detect multiple family members. Additionally, many of the current techniques 

used to study global changes in mRNA expression are complicated by cross-

hybridization issues. For example, the probes used to quantify mRNA levels in 

microarrays are too short to discretely distinguish between the different APOBEC3 

transcripts and often share homology between multiple family members (23). The longer 

reads generated by RNA sequencing (RNAseq) and utilization of paired-end sequencing 

improves upon this issue, but even these are potentially susceptible to inappropriate 

read mapping. Fortunately, researchers have been able to construct and validate panels 

of reverse transcription quantitative PCR (RT-qPCR) assays that can be used to 

specifically quantify each individual APOBEC transcript (44,45). Overall, any methods 

used to detect APOBEC3 expression must be designed and carefully validated to ensure 

specificity and efficiency. 

 

PREVIOUSLY IMPLICATED APOBECs (This section was drafted by B. Leonard) 

The expression of APOBEC1 in transgenic animals was one of the first 

experiments to ask whether APOBEC mediated cytosine deamination can lead to cancer 

causing mutations (46). Transgenic expression of rabbit APOBEC1 in mice resulted in 

universal liver dysplasia, many of which progressed to hepatocellular carcinoma. While 

rabbit APOBEC1 clearly has a dramatic carcinogenic effect when expressed 

constitutively in transgenic mice, this was not the case when expressed in rabbits and it 

has not yet proven relevant to human cancers [although a recent study has implicated 

APOBEC1 in esophageal adenocarcinomas (47)] . It should also be noted that this 
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original APOBEC1 study was performed prior to the discovery of AID/APOBEC 

catalyzed DNA cytosine deamination, and therefore the authors inferred that off-target 

RNA editing caused the observed malignancies (48,49). 

Several APOBEC3 family members have also been hypothesized to play a role 

in cancer since the initial discovery that they preferentially use DNA as a substrate (48). 

At that time, the difficulty in differentiating among the many family members made it 

unclear which, if any, family members might be driving mutation in cancer. More recently, 

it was reported that APOBEC3G contributes to metastasis in hepatocellular carcinoma, 

though the research neither proposed nor tested a mechanistic explanation for the 

observation (50). More recently, with the use of the aforementioned RT-qPCR assays, 

APOBEC3G is not currently a suspect in cancer onset or progression as there has not 

yet been a group to discover abnormal levels of APOBEC3G in human cancer tissue 

when specific assays are applied (23). There is a chance that the normal level of 

APOBEC3G expressed in a given tissue may be misregulated at the post-transcriptional 

level, but again, there has been no evidence presented to support this hypothesis.  

Because AID is known to deaminate genomic DNA as part of its normal 

physiological activity, it is easy to imagine that this protein may have detrimental off-

target effects. Indeed, body-wide expression of murine AID in mice leads to rapid death 

due to T-cell lymphomas and lung adenocarcinomas (51). In addition, AID is known to 

produce well-characterized carcinogenic chromosomal translocations as a side-effect of 

class switch recombination (52). For example, AID is required for the chromosomal 

translocation between c-myc and the immunoglobulin (Ig) locus, which is associated with 

Burkitt’s lymphoma (53). These experiments provide proof of principle and a starting 

place from which to pursue the potential role of the other family members in cancer.  
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APOBEC3B AND CANCER (This section was drafted by M.B. Burns and B. Leonard) 

Burns, Lackey, and colleagues were the first to clearly identify APOBEC3B as 

the APOBEC family member at work in human cancer (23). They quantified the full 

repertoire of APOBEC family mRNA species in human breast cancer tissues and cell 

lines. These data showed that APOBEC3B was preferentially and specifically 

upregulated in a majority of the samples tested (23). This allowed subsequent efforts to 

be focused on elucidating the molecular mechanism by which this enzyme might operate 

in breast cancer. APOBEC3B is the only family member that constitutively localizes to 

the cell nucleus (23,36,38,54-57). Additionally, it retains deamination activity, increases 

the steady-state level of uracil in the cell’s genome, and correlates with increased 

mutation, as determined by selection and enrichment techniques [TK-fluctuation assay 

and 3D-PCR/sequencing; (23)]. These findings indicated that in a large proportion of 

breast cancer cell lines, APOBEC3B is driving mutations that diversify the genetic 

landscape.  

The key translation of these mechanistic studies to primary patient tumor 

genomes was the recognition that APOBEC3B deaminates ssDNA at a preferred 

sequence context. Biochemical assays in vitro demonstrated that APOBEC3B prefers 

substrate cytosines in 5’TCA and 5’TCG contexts (23). Mutation data from three 

independent primary breast tumor genome datasets clearly indicated that mutations at 

these sites are significantly enriched (23).  Moreover, APOBEC3B expression levels 

correlated positively with both cytosine mutation and overall mutation loads, despite no 

knowledge of the time that each tumor may have persisted (23).  

The work by Burns and colleagues opened the door to larger scale genomic 

studies aimed at examining the contribution of APOBEC3B to the mutation load across 

many different tumor types (21,22). These analyses revealed that APOBEC3B is 
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significantly upregulated in many tumor types relative to its expression in normal tissue 

derived from the same organ (21,22). Furthermore, the cancer types expressing the 

highest levels of APOBEC3B also contained the most mutations (21,22). The most 

striking findings came when these groups examined the sequence context of the 

mutated cytosine bases (i.e., the trinucleotide motifs including the bases immediately 5’ 

and 3’ of each mutated cytosine). Here, several tumor types showed a mutation profile 

similar to that of recombinant APOBEC3B (21,22). Together the data produced 

independently by the Harris and Gordenin labs suggest that APOBEC3B contributes 

most significantly to mutation in six distinct types of cancer: bladder, cervix, lung 

(adenocarcinoma and squamous cell carcinoma), head and neck, and breast (21,22). 

Parallel and independent studies looking at general mutation patterns, though non-

specific in implicating a particular APOBEC family member, have arrived at similar 

conclusions (13-17,24).  

 

MUTAGENIC OUTCOMES OF GENOMIC URACIL (This section was drafted by B. 

Leonard) 

 A major challenge to determining which mutations directly result from 

APOBEC3B cytosine deamination events is understanding how genomic uracils are 

processed in cancer cells. It is established, based on prior research on AID, that U:G 

mispairs resulting from cytosine deamination can result in all six base substitution 

mutation types (33). While many U:G lesions are likely repaired in an error free manner 

by the canonical base excision repair pathway, lesions that escape this process have 

multiple distinct mutagenic potentials. Briefly, the general steps required for repair 

include excision of the uracil lesion, nicking of the DNA backbone, and subsequent 

reincorporation of the correct nucleotides (58). At several of the steps required for repair, 
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there are alternative outcomes that may lead to a variety of mutation types. Simple DNA 

replication across uracilated DNA results in C-to-T transitions, mutagenic MMR at U:G 

mispairs may result in transitions and/or transversions, translesion DNA synthesis 

across abasic sites can result in transition mutations, and finally, in highly deaminated 

regions, the repair process may generate nicks on both strands of the DNA double helix 

that are relatively close to one another potentially resulting in double-stranded breaks. 

The above mechanisms are supported not only by the aforementioned work on 

AID, but also by more recent publications aimed at elucidating the proteins involved in 

the repair of APOBEC mediated damage in yeast. One study has shown that a 

deficiency in uracil DNA glycosylase (UNG) or the translesion DNA polymerase REV1 

results in a mutation spectrum greatly skewed toward C-to-T transition mutations (at the 

expense of transversions), particularly in the presence of an active DNA cytosine 

deaminase (28). Another study used a panel of translesion polymerase mutants to show 

that REV1 and REV3 contribute most significantly to the formation of transversion 

mutations in yeast (59). This research provides support for the proposed models, but 

more studies are needed to identify the mechanisms at play in human tumors (with many 

more DNA polymerases than yeast) and to determine how other processes, such as 

mismatch repair, recombination, and cell cycle checkpoints, might also influence 

mutagenic outcomes. 

 In breast cancer, Burns, Lackey, and colleagues found that APOBEC3B 

upregulation correlated with increased levels of transition mutations, suggesting that a 

proportion of the genomic uracils created by APOBCE3B either persist through DNA 

synthesis or are generated at a high enough rate that they are detectable in non-

replicated DNA. As indicated above, if a uracil is not excised by a DNA glycosylase prior 

to DNA replication it will template as a thymine and base pair with adenosine. After a 
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subsequent round of DNA replication, the result is a C-to-T transition mutation. A similar 

result will occur if the genomic uracil is removed by uracil excision repair and an adenine 

is inserted opposite the resulting abasic site during local DNA synthesis or replication. 

While these are perhaps the simplest mutational outcomes of cytosine deamination, 

many other pathways should be investigated to determine if DNA repair can be 

harnessed as a potential therapeutic option of cancer treatment. 

 

AN APOBEC3B DELETION ALELLE (This section was drafted by B. Leonard) 

 Several studies have examined the APOBEC3B locus in human populations as 

part of both general surveys and more specific cancer studies (60-65). These analyses 

have identified an APOBEC3B deletion polymorphism circulating in the human 

population with an allelic frequency ranging from approximately 1% to 93%, dependent 

upon the biogeographical ancestry of the population examined [Fig. 1.3; (60)]. One 

group used a small Japanese cohort (<50 patients) to assess breast cancer incidence 

and the APOBEC3B deletion polymorphism and found a statistically insignificant trend 

toward an inverse correlation between APOBEC3B and breast cancer (61). Two other 

groups used much larger cohorts to assess the relationship between the deletion allele 

and breast cancer incidence (62,63). These larger studies determined that there was a 

significant increase in the APOBEC3B deletion allele among women with breast cancer. 

Unlike the Japanese study that collected data on the deletion allele frequency from 

normal healthy patients recruited into their study, these groups relied on data from the 

1000 genomes project to determine the frequency of the deletion allele within their 

cohorts. Another group found a similar association between the APOBEC3B deletion 

and ovarian cancer risk in a cohort of Chinese women (64). These findings argue that 

APOBEC3B is somehow a protective factor, reducing the incidence of breast cancer in 
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the populations studied. These observations are intriguing and may reflect compromised 

innate immune defenses, with increased levels of viral infection and endogenous 

retrotransposition expected in the absence of this enzyme. 

 An argument has been presented that an APOBEC mutation pattern persists 

even in cancer samples that harbor the APOBEC3B deletion allele (65). This would 

imply that the signature is likely the result of another APOBEC since APOBEC3B is 

absent in the cells homozygous for the APOBEC3B deletion. Unfortunately, this study 

failed to segregate the APOBEC3B-deletion allele heterozygotes from the homozygotes 

and thus confounded interpretations by including as the majority of their “APOBEC3B-

deletion” samples, tumors with upregulated, active APOBEC3B. This, coupled with the 

finding that APOBEC3A when expressed endogenously is confined to myeloid lineage 

cell types, and the protein itself is located in the cytoplasm and non-genotoxic, indicating 

that APOBEC3B remains the leading culprit for cancer mutagenesis (42,44,45,66,67). 

Further work is needed to determine unambiguously whether other APOBEC family 

members might contribute to cancer mutagenesis and, if so, then deduce their 

contributions relative to those of APOBEC3B. 

 

CLINICAL IMPACT OF APOBEC3B EXPRESSION IN CANCER (This section was 

drafted by M.B. Burns and B. Leonard) 

The APOBEC3B deletion allele may be protective with respect to breast cancer 

incidence, however it was recently shown that once the cancer has formed, certain 

subsets of patients with tumors expressing high levels of APOBEC3B have significantly 

worse outcomes relative to those that lack expression of the enzyme (26,27). One study 

showed that this was the case in estrogen receptor (ER)-positive breast cancer patients 

from the Netherlands, while another used TCGA data to show this correlation in both 
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Luminal A and Luminal B tumor subsets. One of the Dutch cohorts represented patients 

that had only been treated by surgical resection indicating that APOBEC3B expression 

levels alone can provide a prognostic indication. This recent study is important because 

it clearly distinguishes incidence from progression. Additional studies on breast and 

other APOBEC3B-linked tumor types are needed to confirm and extend these initial 

findings. 

 

APOBEC3B UPREGULATION BY HPV (This section was drafted by R.S. Harris and B. 

Leonard) 

 A key question is how APOBEC3B becomes upregulated in cancer. Original 

studies eliminated many possibilities including gene amplification, chromosome 

translocation, promoter mutations, and other cis events such as differential methylation 

(23). Although there are likely to be many answers to this question, one possible clue 

comes from the strong link between APOBEC3B expression and mutagenesis in cervical 

and head/neck cancers and the fact that many of these cancers are HPV driven 

(13,15,16,21,22,68). Henderson and colleagues recently demonstrated a clear 

segregation of exogenous, smoking related mutations and APOBEC3B-driven mutations 

in head/neck cancers (16). Their findings further indicated that APOBEC3B upregulation 

correlated with HPV-positive status. Subsequent functional studies have confirmed these 

observations and determined that either E6 or E7, two oncoproteins encoded by HPV, 

are likely responsible for APOBEC3B upregulation (69-72). Thus, for these cancer types, 

there may be an HPV-mediated mechanism of APOBEC3B upregulation. The 

mechanism(s) for APOBEC3B upregulation is less obvious for non-viral cancer types.  
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THERAPEUTIC OPPORTUNITIES (This section was drafted by M.B. Burns and B. 

Leonard) 

 There is a growing consensus in the field that APOBEC3B is a major and 

previously unappreciated source of mutation in several different cancer types. This 

enzyme is likely contributing significantly to genetic, and thus phenotypic, heterogeneity 

within the tumors in which it is expressed. The full clinical significance of this conclusion 

has yet to be realized fully, but it may be relevant to diagnosis, prognosis, and ultimately 

therapy. 

Knowledge of APOBEC3B mutagenesis provides a framework for future 

therapeutic strategies. The most direct method to limit APOBEC3B’s impact would be to 

inhibit the enzyme’s deaminase activity using small molecules and thereby to create a 

hypomutator state in the tumor (Fig. 1.4). The goal of this strategy would be to post-

operatively (once tumor burden decreases) slow the rate of evolution of the remaining 

tumor cells, decrease the likelihood of resistance mutations arising, and ultimately 

render the remaining tumor cells more sensitive to conventional therapeutics. 

Alternatively, the as yet unknown pathways that drive APOBEC3B expression could be 

targeted to decrease expression levels, highlighting the importance of further research 

on this topic. Conversely, as has been done for BRCA1/2-mutant cancers, DNA repair 

pathways could be modulated in an attempt to make APOBEC3B dependent damage 

toxic, creating a hypermutator phenotype, and a synthetic lethal state for tumor cells 

(Fig. 1.4). In either the hypomutation or hypermutation scenarios, the goal is to translate 

this basic research discovery into successful clinical results that improve and extend the 

lives of patients. 
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OVERVIEW OF THESIS CHAPTERS (This section was drafted by B. Leonard) 

Chapter 2: APOBEC3B upregulation and genomic mutation patterns in serous 

ovarian carcinoma 

 Following our publication elucidating APOBEC3B as a major source of mutation 

in breast cancer (23) , I was interested to determine whether cytosine deamination also 

contributed to mutation in other cancer types. Since prior reports indicated that breast 

and ovarian cancer share similar mutation spectra (73) and we had recently forged a 

collaboration with a group of clinical ovarian cancer researchers at the Mayo Clinic, I led 

a project to determine if APOBEC3B contributed to mutation in ovarian cancer (74). In 

Chapter 2, we show that APOBEC3B is the only cytosine deaminase significantly 

upregulated in ovarian cancer cell lines and primary tumor samples. Functional studies 

revealed that APOBEC3B is responsible for nearly all of the cytosine deaminase activity 

in cellular extracts. Furthermore, bioinformatic analysis of whole genome deep 

sequencing data from 16 low stage ovarian carcinoma samples identified a correlation 

between mutation loads and APOBEC3B expression. A particularly interesting finding 

from this work is that APOBEC3B expression correlates with transversion mutations at 

C/G base pairs rather than transitions as seen in breast cancer, suggesting a role for 

translesion DNA synthesis in the repair of uracil lesions created by APOBEC3B. During 

the review process for this article, our lab and others reported APOBEC3B expression 

and genomic mutation signatures across multiple cancer types (13,21,22). These 

analyses revealed that 6 human cancers are most significantly affected by APOBEC3B 

catalyzed mutagenesis. These cancer types include bladder, breast, cervical, head/neck, 

lung adenocarcinoma, and lung squamous cell carcinoma. While ovarian cancer was not 

one of the identified cancer types, our work emphasizes the need for comprehensive 
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studies of specific cancer types and highlights the heterogeneity of ovarian cancer 

subtypes. 

 

Chapter 3: APOBEC3B upregulation by the PKC/NFκB pathway in multiple human 

cancers 

 Our lab is commonly asked how APOBEC3B becomes upregulated in cancer. 

While I collaborated with a visiting graduate student to elucidate a role for HPV infection 

in APOBEC3B upregulation (69), I was eager to determine how APOBEC3B becomes 

upregulated in cancers with no known viral origins. Previous literature suggested that 

multiple APOBEC3s can become upregulated upon PMA treatment of oral epithelial 

tissue, but these early studies were unable to distinguish between the high nucleotide 

level homologies observed between family members (75). In addition, the fact that 

primary tissue is comprised of multiple cell types was not considered and therefore it 

was unclear where each APOBEC3 was being upregulated. In Chapter 3, we show that 

APOBEC3B is specifically upregulated by PMA in multiple cell lines. Furthermore, we 

found that upregulation by PMA is accomplished through activation of PKCα and 

subsequent stimulation of non-canonical NFκB signaling. To extend our findings to 

APOBEC3B upregulation in cancer, a panel of APOBEC3B expressing cancer cell lines 

were treated with a preclinical PKC inhibitor. Indeed, PKC inhibition reduced 

APOBEC3B levels by over 50% in nearly half of the cell lines tested. While these studies 

elucidate a major pathway responsible for APOBEC3B upregulation in cancer, they also 

indicate that other mechanisms exist. 

 

Chapter 4: APOBEC3G expression correlates with T cell infiltration and improved 

clinical outcomes in high-grade serous ovarian carcinoma 
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A major confounding factor when analyzing primary tumor samples is intra- and inter- 

tumor heterogeneity. While tumor cell specific genetic differences account for intra-tumor 

heterogeneity, considerable inter-tumor heterogeneity is contributed by immune 

infiltrates such as T and B cells. Our lab hypothesized that immune cell infiltration 

accounts for the expression of several APOBEC family members in primary tumor 

samples, leading to the inappropriate conclusions that some of these primarily innate 

immune APOBECs contribute to cancer genome mutation. Here, in Chapter 4, we 

determined that APOBEC3G correlates with several markers of T cell infiltration in a 

cohort of high-grade serous ovarian cancer patients where T cell infiltration is known to 

contribute to better patient outcomes (76-79). Using clinical data, we discovered that 

APOBEC3G is a better prognostic marker than other T cell markers. We were also able 

to address whether APOBEC3B contributes to patient outcomes in this cohort of ovarian 

cancer patients. Interestingly, we discovered that APOBEC3B does not correlate 

strongly with either overall or progression free survival. To apply our findings more 

broadly, we analyzed TCGA data across 22 cancer types and found a strong correlation 

between several HIV restrictive APOBEC family members and the T cell marker, CD3D. 

As expected, AID also significantly correlates with a B cell specific marker in many tumor 

types. Overall, our work here clarifies misconceptions about the detection of APOBEC 

expression in primary tumor samples, elucidates a new biomarker for T cell immune 

infiltrates, and identifies additional differences between the role of APOBEC3B in breast 

and ovarian cancer. 

 

Chapter 5: Conclusions and Discussion 

In chapter 5, I summarize the main conclusions from each chapter and discuss 

how these studies improve our understanding of APOBEC3B catalyzed mutation in 

ovarian and other cancer types.  
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Figure 1.1 Model for APOBEC3B driven tumor evolution. 

Upregulation of APOBEC3B in nascent cancer cells or during cancer development 

increases mutation rates and drives tumor evolution.  

This figure was drafted by B. Leonard and published in (80).   
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Figure 1.2 Introduction to the APOBEC family. 

(A) Depiction of the spatial organization of the APOBEC family members, with the 

APOBEC3 genes arrayed in tandem on chromosome 22, APOBEC1 and AID located on 

chromosome 12, and APOBEC2 and APOBEC4 encoded on chromosomes 6 and 1, 

respectively.   

(B) APOBEC3 family enzymes catalyze the hydrolytic reaction of cytosine to uracil in 

single-stranded DNA. 

This figure was drafted by B. Leonard and published in (80).   
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Figure 1.3 An APOBEC3B deletion allele. 

A germline deletion between homologous regions of APOBEC3A and APOBEC3B has 

resulted in a chimeric gene in which exon 4 of APOBEC3A is fused to exon 8 of 

APOBEC3B. 

This figure was drafted by B. Leonard and published in (80).   
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Figure 1.4 Therapeutic implications of APOBEC3B mutagenesis. 

Both decreasing or increasing the mutation rate of APOBEC3B-expressing cells is 

predicted to result in decreased tumor fitness and tumor cell death. Decreasing the 

mutation rate through APOBEC3B inhibition may result in genome stabilization and a 

lower probability of drug resistance mutations (i.e., increased durability of conventional 

chemotherapeutics). Alternatively, increasing the level of APOBEC3B mutagenesis 

(directly by increasing APOBEC3B levels or indirectly by creating a synthetic lethal state) 

may result in toxic levels of genomic lesions and tumor death. Adapted from similar 

concepts proposed for APOBEC3 mutagenesis of HIV-1 (81). 

This figure was drafted by B. Leonard and published in (80). 
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SUMMARY 

Ovarian cancer is a clinically and molecularly heterogeneous disease. The 

driving forces behind this variability are unknown. Here we report wide variation in 

expression of the DNA cytosine deaminase APOBEC3B, with elevated expression in a 

majority of ovarian cancer cell lines (3 standard deviations above the mean of normal 

ovarian surface epithelial cells) and primary ovarian cancers. APOBEC3B is active in the 

nucleus of several ovarian cancer cell lines and elicits a biochemical preference for 

deamination of cytosines in 5’TC dinucleotides. Importantly, examination of whole-

genome sequence from 16 ovarian cancers reveals that APOBEC3B expression 

correlates with total mutation load as well as elevated levels of transversion mutations. 

In particular, high APOBEC3B expression correlates with C-to-A and C-to-G 

transversion mutations within 5’TC dinucleotide motifs in early-stage high-grade serous 

ovarian cancer genomes, suggesting that APOBEC3B-catalyzed genomic uracil lesions 

are further processed by downstream DNA ‘repair’ enzymes including error-prone 

translesion polymerases. These data identify a potential role for APOBEC3B in serous 

ovarian cancer genomic instability. 

 

INTRODUCTION 

 Ovarian cancer remains the deadliest gynecological malignancy in the United 

States, with an estimated 22,300 new cases and 15,500 deaths in 2012 (82). Although 

multiple histological subtypes of ovarian cancer are recognized, including clear cell and 

endometrioid, the most common and deadly form is serous ovarian cancer. This disease 

usually escapes detection until it has spread throughout the peritoneal cavity. Previous 

analyses of high-grade, mostly late-stage serous ovarian cancers have demonstrated 

mutational inactivation of TP53 in 95% of cases (83). Mutations in several other genes, 
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including BRCA1, BRCA2, and CDK12, also collectively occur in roughly a quarter of 

high-grade serous ovarian cancers; and genomic instability, as manifested by large 

amplifications and deletions, is common (83,84). In contrast, clear cell and endometrioid 

ovarian cancers are characterized by mutations in PIK3CA and ARID1A, with 

endometrioid ovarian cancers also having frequent CTNNB1 mutations or PTEN loss. 

 Despite this genetic heterogeneity, ovarian cancers are typically treated with the 

same chemotherapy after surgical debulking. Most ovarian cancers respond initially to 

DNA cross-linking chemotherapeutic agents, such as carboplatin (85,86). However, drug 

resistance commonly develops, with disease recurrence occurring at an average of 18 

months after initiating therapy and average survival limited to 3-5 years after diagnosis 

(86). Mechanisms for resistance remain poorly understood but have been attributed, at 

least in the case of some BRCA1/2 mutant tumors, to the acquisition of further mutations 

(87). The mechanisms responsible for the mutational evolution of these cancers are not 

completely understood. 

 We recently discovered a major role for enzyme-catalyzed DNA C-to-U 

deamination in breast cancer (23). The DNA deaminase APOBEC3B was found 

upregulated and active in the majority of breast cancer cell lines, and its upregulation in 

tumors correlated with increased C-to-T transition and overall base substitution mutation 

loads (23). APOBEC3B is one of seven APOBEC3 deaminases, which have broad and 

overlapping functions in providing innate immunity to a large number of DNA-based 

parasites, including retroviruses (with susceptible cDNA intermediates), some DNA 

viruses, and even naked foreign DNA [(34) and references therein]. These APOBEC3 

enzymes are related to the antibody diversification enzyme activation-induced DNA 

cytidine deaminase (AID) and the APOB mRNA editing protein APOBEC1 (31). All nine 

of these enzymes exhibit DNA deaminase activity in multiple assays. Furthermore, 

transgenic expression of AID and APOBEC1 can induce tumor formation in mice 
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(46,51,88). In humans, AID is associated with B cell tumorigenesis, imatinib resistance, 

and BCL2 gain-of-function (52,89,90). However, because human AID and APOBEC1 are 

expressed predominantly in B lymphocytes and gastrointestinal tissues, respectively, it is 

unlikely that they contribute to tumorigenesis elsewhere. Based on the fact that breast 

and ovarian cancers have similar mutation spectra (73) and often show high degrees of 

genomic instability (83,91), here we test the possibility that APOBEC3B is an active 

source of genomic DNA damage and mutagenesis in ovarian cancer. 

 

RESULTS 

APOBEC3B expression and localization in ovarian cancer cell lines 

As an initial test for APOBEC3B in ovarian cancer, we used reverse transcription 

quantitative PCR (RT-qPCR) to survey the mRNA levels of APOBEC3B and all of the 

related deaminase family members in a panel of ovarian cancer cell lines (Fig. 2.1A, Fig. 

2.S1, Table 2.S1, and Table 2.S2). The expression level of each deaminase family 

member was normalized to that of the constitutive house keeping gene TATA binding 

protein (TBP). This analysis revealed that APOBEC3B expression varied widely across 

these cell lines (Fig. 2.1A). In contrast, immortalized ovarian epithelial lines (OSE) used 

as controls showed a much narrower range of APOBEC3B expression (Fig. 2.1A). 10 of 

18 [56%, 95% confidence interval (CI) 30.8-78.5%] ovarian cancer cell lines had 

APOBEC3B mRNA levels more than 3 standard deviations (SD) above the mean of the 

5 OSE lines. Cultured fallopian tube epithelial cells (92), another normal control, had 

APOBEC3B levels similar to those found in the OSE lines (Fig. 2.1A).  

Examination of additional deaminase members revealed that mRNA of the most 

closely related family member, APOBEC3A, was undetectable in 16/18 (88.9%, 95% CI 

65.3-98.6%) ovarian cancer cell lines, consistent with its developmental confinement to 
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myeloid lineage cell types [Fig. 2.S1; (40,44)]. Although some of the other family 

members were expressed to varying degrees in several of the ovarian cancer cell lines, 

none were over-expressed in the majority of lines based on the same statistical criteria 

(3 SD over the mean level in the 5 OSE lines; Fig. 2.S1).  

We next investigated whether APOBEC3B protein localizes to the nuclear 

compartment in ovarian cancer cell lines, as it does in several other cancer and 

immortalized cell lines (23,36,38,54-57). Because specific antibodies for APOBEC3B are 

not yet available, we determined the localization of transfected APOBEC3B-eGFP in live 

ovarian cancer cells and APOBEC3B-HA in fixed and permeablized cell lines by 

fluorescence microscopy. Both APOBEC3B-eGFP and APOBEC3B-HA were 

predominantly nuclear in the OVCAR5, IGROV-1, and A2780 ovarian cancer cell lines 

(Fig. 2.1B). Taken together these RT-qPCR and localization data suggested that 

APOBEC3B is positioned to pose a threat to ovarian genomic integrity.  

 

Endogenous APOBEC3B activity in ovarian cancer cell lines 

The gold standard for quantifying an endogenous protein is measuring its 

functional activity. We therefore assayed endogenous DNA C-to-U deaminase activity of 

the 3 highest and lowest APOBEC3B expressing cell lines using a fluorescence-based 

assay (Fig. 2.2A and 2.S2). Clear endogenous DNA deaminase activity was detected 

from the APOBEC3B-high but not the -low expressing lines suggesting a direct link. To 

ask which cellular compartment contained the source of this activity, we generated 

cytoplasmic and nuclear protein extracts from the APOBEC3B-high lines and assayed 

the activity of each fraction. High levels of single-stranded DNA C-to-U activity were 

detected in the nuclear but not the cytoplasmic protein fractions consistent with 

localization data (Fig. 2.2B and 2.2C). To test whether this nuclear deaminase activity 
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was specifically due to endogenous APOBEC3B, we also performed the experiments 

using protein extracts prepared from pools of cells transduced with control or 

APOBEC3B shRNAs. Two independent knockdown constructs were used, with one 

causing stronger depletion of endogenous APOBEC3B mRNA levels [Fig. 2.2B, blue vs. 

green bars; (23)]. The level of APOBEC3B knockdown correlated directly with loss of 

nuclear ssDNA C-to-U deaminase activity, with the stronger shRNA causing a larger 

diminution of activity (Fig. 2.2C). OVCAR5, IGROV-1, and A2780 all yielded similar 

results. 

In parallel, we also assessed the dinucleotide deamination preference of 

endogenous APOBEC3B in nuclear and cytoplasmic protein extracts from the same cell 

lines. In all instances, a single-stranded DNA substrate with a 5’TC deamination target 

was strongly preferred over other dinucleotide-containing substrates (Fig. 2.2C and 

2.S3). Taken together, these coupled genetic knockdown and enzyme activity 

experiments demonstrate that most, if not all, of the measurable DNA deaminase activity 

in the nuclear compartment of the tested ovarian cancer cell lines is due to the 

endogenous APOBEC3B enzyme. 

 

Deamination kinetics of recombinant APOBEC3B 

Deoxynucleotide identities immediately 5’ and 3’ of target DNA cytosines can 

strongly influence the efficiency of DNA deamination by APOBEC3 family members 

(23,93-95). Therefore, to compare the cell-based studies (above) with mutational data 

from clinical samples (below), we determined the local sequence specificity and enzyme 

kinetics of recombinant APOBEC3B in vitro. Using the catalytic domain of APOBEC3B 

(residues 195-382) purified from HEK293 cells, we conducted a series of time course 

experiments with substrates spanning all 16 permutations of deoxynucleotides 
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immediately 5’ and 3’ of the target cytosine (i.e., 5’NCN). Quantification of deamination 

products accumulating over time enabled catalytic efficiencies to be determined. These 

analyses revealed that the nucleotide directly 5’ of the target cytosine was a stronger 

determinant of APOBEC3B deamination than the 3’ nucleotide. More specifically, we 

found that 5’TC dinucleotides support the highest reaction rates and 5’AC and 5’GC 

support the lowest (representative gels in Fig. 2.3A and quantification in Fig. 2.3B). 

Overall, these in vitro preferences of recombinant APOBEC3B catalytic domain 

confirmed and extended our prior studies (21,23), and they correlated strongly with and 

further validated results obtained with the full length endogenous enzyme in nuclear 

extracts of breast (23) and ovarian cancer cell lines (this study, above). Importantly, 

these substrate preferences, which represent the intrinsic deamination activity of 

APOBEC3B, provided a hierarchy of ‘signatures’ for comparison with the mutation 

patterns in ovarian cancer genomic mutation data sets described below.  

 

APOBEC3B expression in ovarian tumors 

 To extend our studies to clinical ovarian cancer specimens, we initially assayed DNA 

deaminase family member mRNA expression in 8 normal or benign ovarian tissues 

(Table 2.S3) and a series of 23 ovarian cancers, including 16 early stage high-grade 

serous ovarian cancers that were also subjected to whole genome sequencing (clinical 

characteristics in Tables 2.S4 and 2.S5). High quality RNA was prepared from flash 

frozen tissues, and each of the deaminase family members were quantified by RT-qPCR 

as described above. As expected based on our cell line expression analysis, 

APOBEC3B mRNA varied widely in ovarian cancers, but was significantly upregulated in 

comparison to normal ovary tissue as a control (tumor n = 23 vs. normal tissue n=8; 

p=0.011 by the Wilcoxon rank sum test; Fig. 2.S4). APOBEC1 was also upregulated in 
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one tumor (p=0.006), but this was considered a rare exception because it was not 

supported by cell line or additional tumor data. No significant differential expression was 

apparent for APOBEC3A (p=0.541), APOBEC3G (p=0.068), APOBEC3H (p=0.214), AID 

(p=0.214), or APOBEC4 (0.107). Interestingly, lower levels were found in the tumor than 

in normal ovaries for APOBEC3C (p=0.002), APOBEC3D (p=0.002), APOBEC3F 

(p=0.040), and APOBEC2 (p=0.003) suggesting either that these family members are 

down-regulated in ovarian cancers or they are poorly expressed in cells that eventually 

develop into tumors (Fig. 2.S4).  

 Using the same RT-qPCR assay and the data from our initial cohort, we next 

examined APOBEC3B expression in an expanded panel of 77 ovarian tumors (clinical 

characteristics in Tables 2.S4 and 2.S5), and determined whether higher APOBEC3B 

correlates with stage and/or grade (Fig. 2.4A-D). APOBEC3B mRNA levels in most 

normal ovarian tissues were only a small fraction of those of the housekeeping gene 

TBP with an average of 0.07 +/- a SD of 0.04 APOBEC3B/TBP (n=20, excluding OV412 

as an outlier; Dixon’s Q test confidence limit 99%). Using a strict cutoff of 3 SD above 

the normal ovary tissue mean, we found that 44/66 ovarian carcinomas without matched 

normal samples show upregulated APOBEC3B mRNA levels (66.7%; 95% CI, 55.3-

78.1%; Fig. 2.4A). In addition, APOBEC3B was upregulated in 9 of 11 instances where 

both matched normal and tumor tissue was available (p= 0.010 by Signed rank test; Fig. 

2.4B). When comparing all 77 tumors, there was no statistical difference in APOBEC3B 

mRNA levels in late vs. early-stage samples (p=0.222 by Wilcoxon rank sum test; Fig. 

2.4C), suggesting that APOBEC3B upregulation may occur early in ovarian cancer 

development. In contrast, there was a significant difference between grade 3 and all 

lower grade samples (p=0.044 by Wilcoxon rank sum test; Fig. 2.4D), suggesting that 

APOBEC3B may contribute to tumor dedifferentiation. 
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As for many cell-of-origin versus tumor comparisons, cells of the ovarian 

epithelial layer may only represent a fraction of the total bulk ovarian tissue. This factor 

is further affected by microenvironment changes that occur during tumor development. 

These and other factors complicate direct comparisons between normal tissues and 

tumor samples. Therefore, to fortify the above comparisons, we performed an additional 

analysis using the mean APOBEC3B expression values from immortalized OSE lines 

(Fig. 2.1A) and expression values from the tumors described here (Fig. 2.4A). Similar to 

the analysis described above, APOBEC3B expression levels were at least three SD 

above the mean of the immortalized OSE cells in 12 of 77 ovarian tumors. Therefore, 

regardless of the normal samples used for comparison, a subset of ovarian tumors show 

upregulated APOBEC3B expression levels. 

 Next, The Cancer Genome Atlas (TCGA) Network microarray and RNA 

sequencing (RNAseq) data were used to test the robustness of our RT-qPCR approach 

and to extend expression results to larger, independent data sets (Fig. 2.4E-F). TCGA 

microarray data were available for 581 ovarian cancers and 8 unrelated normal ovarian 

tissues, and an analysis of these data indicated APOBEC3A and APOBEC3B 

upregulation in malignant tissues (p < 0.0003 by Mann-Whitney U test; Fig. 2.4E and 

Table 2.S6). However, the microarray result for APOBEC3A is likely a false-positive 

because 5/11 APOBEC3A probes have >22/25 nucleotides of identity with APOBEC3B, 

and 8/11 APOBEC3B probes have >22/25 nucleotides of identity with APOBEC3A (23). 

Moreover, modest APOBEC3G down-regulation is also a false positive because the 

probe set in question has no complementarity to APOBEC3G and the second 

APOBEC3G probe set showed no significant difference. RNAseq data largely overcome 

these technical limitations because the longer paired-end reads enhance the chance of 

spanning a region of heterology and enabling the correct gene-specific assignment of 
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sequence reads [e.g., (21,23)]. Analysis of the RNAseq data available on 188 TCGA 

samples demonstrated that expression of APOBEC3A is lower than APOBEC3B in high-

grade, late-stage serous ovarian cancer specimens, confirming that the APOBEC3A 

measurement on the microarray is likely a false positive (Fig. 2.S5). Moreover, 

quantification of APOBEC3B expression by RNAseq across the entire 190 TCGA 

ovarian cancer samples examined by this technique also yielded data that largely 

mirrored our RT-qPCR results (Fig. 2.4F). A subset of the samples analyzed by RT-

qPCR was also part of TCGA studies (n=42; denoted by asterisks in Fig. 2.4A and 

indicated in Table 2.S5). Analysis of the 32 TCGA samples analyzed by both RT-qPCR 

and RNAseq revealed a strong correlation between results obtained with both 

techniques (p < 0.0001, r = 0.88 by Spearman’s correlation; Fig. 2.4G). This 

concordance lends confidence to the overall data sets and fortifies the conclusion that 

APOBEC3B expression varies widely but appears to be elevated in many of the ovarian 

cancers studied relative to normal ovarian tissues or immortalized OSE samples used as 

controls in this study.  

 

Mutation patterns in early-stage ovarian tumors 

To gain further insight into the biological consequences of varied APOBEC3B 

expression in ovarian cancer, we performed whole genome sequencing in 16 early-stage, 

mostly high-grade serous ovarian cancers (Table 2.S4) and examined the relationship 

between APOBEC3B expression and the mutations found in these cancers. Importantly, 

all patients were treatment naïve and had no evidence of other cancers prior to 

diagnosis. The total load of somatic mutations varied widely among the 16 early-stage 

serous ovarian cancers, with a range from 1055 to 8249 mutations per specimen (Table 

2.S4). A significant positive correlation (p = 0.013, r = 0.60 by Spearman’s correlation) 
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was observed between mutation load and APOBEC3B levels (Fig. 2.5A). Approximately 

60% of base substitutions occurred at C/G base pairs, which is notable given the A/T 

richness of the human genome.  

Surprisingly, we found that the majority of mutations occurring at C/G base pairs 

in ovarian cancer are C-to-A or C-to-G transversions (Fig. 2.5B). Moreover, these 

transversions correlated with APOBEC3B expression levels (Fig. 2.5C). This finding was 

unexpected because the anticipated simplest outcome of a C-to-U genomic DNA lesion 

is a C-to-T transition through DNA replication or misrepair, as observed for breast cancer 

(see Discussion). Nevertheless, this transversion pattern is most likely due to 

APOBEC3B enzymatic activity, as these events most frequently occurred within 

APOBEC3B-preferred 5’TC motifs (Fig. 2.5D). The rarity of transversion mutation events 

at 5’TCG sites may be due to a natural scarcity of CpG dinucleotides in the human 

genome (in comparison to other dinucleotides) and/or to the lower activity of APOBEC3B 

on 5-methyl-cytosine substrates in comparison to non-methylated cytosines [by analogy 

to the closely related enzyme APOBEC3A (42,96)]. Similar results were evident in the 

subset of genomic mutations confirmed by RNA sequencing (Fig. 2.5E-H). These 

mutation data are consistent with a model in which APOBEC3B catalyzed C-to-U 

genomic DNA deamination events are converted by uracil DNA glycosylase into abasic 

sites, which template the misinsertion of T or C through error-prone DNA synthesis and 

ultimately yield C-to-A or C-to-G transversions (after at least one round of DNA 

replication or repair; model in Fig. 2.6 discussed further below). 

 

DISCUSSION 

In this study, we have shown that APOBEC3B expression levels vary widely in 

ovarian cancer cell lines and clinical samples and are, in a substantial proportion of 



	  

	   33 

samples, higher than those in OSE lines, FTE cultures, or normal ovarian tissues. 

Knockdown experiments established that APOBEC3B is the only detectable source of 

DNA cytosine deaminase activity in nuclear extracts from multiple ovarian cancer cell 

lines. Microscopy images showed that epitope tagged APOBEC3B is predominantly 

nuclear, in full agreement with subcellular fractionation and activity studies of 

endogenous APOBEC3B. Biochemical experiments revealed the intrinsic cytosine 

deamination preferences for the catalytic domain of APOBEC3B and, interestingly, the 

preferred motif, 5’TC, corresponds to the most abundant sites of C-to-A or C-to-G 

transversion mutations observed in whole-genome sequencing of early-stage serous 

ovarian cancer genomic DNA. Importantly, APOBEC3B expression levels correlated with 

mutational load in these tumors, suggesting a potential role for this enzyme in generating 

mutagenic lesions in ovarian cancer. 

A unique finding here is the significant correlation between APOBEC3B 

expression levels, in vitro APOBEC3B deamination preferences, and the cytosine 

transversion signatures in early-stage ovarian cancers. In breast cancer, we recently 

reported a correlation between endogenous APOBEC3B expression and transition 

mutations at C/G base pairs, which can be easily explained by replication past uracil 

lesions [Fig. 2.6B, (23)]. Concordant results were observed when APOBEC3B was over-

expressed exogenously in HEK293 cells (23,29). In contrast, the C-to-A and C-to-G 

transversions that predominate here are more complicated outcomes of an initiating 

genomic C-to-U lesion. The presence of these mutational events in ovarian cancer 

strongly suggests a model in which genomic uracils are converted by uracil DNA 

glycosylase (UNG) into abasic sites, which in turn become substrates for error-prone 

translesion DNA synthesis (TLS; Fig. 2.6D). Several TLS DNA polymerases are strong 

candidates for such a role in generating transversion mutations downstream of cytosine 
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deamination, including REV1, which elicits a strong preference for pyrimidine insertion 

opposite an abasic lesion (97). Indeed, such a model is supported by recent studies in 

yeast, which showed that both UNG and REV1 proteins are required for heterologous 

expression of human AID/APOBEC3 proteins to cause transversion mutations (28). 

Somatic hypermutation of immunoglobulin gene variable regions initiated by AID-

dependent C-to-U deamination events also provides precedent that enzyme-catalyzed 

uracil lesions can result in all six types of base substitutions (33,52). In particular, in 

mouse models, the AID-induced C-to-A and C-to-G events are largely dependent upon 

the uracil excision enzyme UNG2 and most likely involve TLS polymerases (33,52).  

The transversions observed here in early-stage ovarian cancers in an 

APOBEC3B preferred dinucleotide context raises many additional questions for future 

studies, including identifying the causal TLS polymerase (since humans have many 

more than yeast), explaining the differential processing of APOBEC3B dependent 

lesions in different tumor types (e.g., breast vs. ovary), and addressing whether other 

mutagenic outcomes may also be APOBEC3B-dependent. For instance, incomplete 

repair of even a single uracil lesion can lead to a nicked DNA strand and, together with 

DNA replication (or even local synthesis), result in double-strand breaks that, in turn, are 

known to precipitate larger scale chromosomal aberrations such as insertions, deletions, 

duplications, and translocations (Fig. 2.6E). Thus, the elevated APOBEC3B expression 

documented here might also contribute to some of the larger-scale genomic alterations 

that are characteristic of many advanced serous ovarian tumors (83). Another critical 

point to address in future studies is assessing the effect of APOBEC3B expression on 

clinical outcomes, such as overall and progression-free survival, response to therapy, 

and rate of recurrence. To do this, large cohorts of clinical specimens with well-

documented patient histories will need to be examined. 
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Recently, three separate analyses of large data collections examined the 

relationship between mutation pattern, mutation load, and APOBEC expression across 

multiple tumor types, including ovarian cancer (13,21,22). While these analyses showed 

evidence for APOBEC-driven mutagenesis in multiple tumor types, none focused on 

ovarian cancer. This may be due to the fact that ovarian cancer has more modest 

APOBEC3B expression levels and mutation loads in comparison to some of these other 

cancers. The present study is the first to focus on ovarian cancer and differs from these 

recent reports in many ways: i) we used specific RT-qPCR assays to profile APOBEC3B 

in ovarian cancer cell lines and tissues; ii) we performed experiments to show that 

APOBEC3B is active in the nuclear compartment of ovarian cancer cell lines; iii) we 

studied the relationship between APOBEC3B expression and mutation burden among 

individual ovarian cancers rather than across tumor types; and iv) we examined mutation 

burden using newly available early stage ovarian cancer whole genome sequences. The 

results shown here suggest that these prior studies may have been limited by both the 

specificity of the techniques used to measure gene expression and the limitations of 

exomic as opposed to whole genome sequencing. Our work also emphasizes the 

importance of in-depth studies of specific tumor types that may be overlooked by global 

analyses. 

 

MATERIALS AND METHODS 

Cell lines 

A2780, IGROV-1, OVCAR3, OVCAR5, OVCAR8, OV17, OV167, OV177, OV202, 

PEO1, PEO4, and SKOV3IP were obtained from the Mayo Clinic ovarian cell line 

repository. SKOV3, ES2, and TOV-21G were provided by Dr. Martina Bazarro 

(University of Minnesota, Twin Cities). RNA from IMCC3, 1816-686, 1816-575, IOSE-
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VAN, MA148, CAOV3, OVCA429, HEY, and OVCA433 was provided by Dr. Amy 

Skubitz (University of Minnesota, Twin Cities) and RNA from OSEts-hTERT was 

obtained from the Mayo Clinic. Normal fallopian tube epithelial lines were derived by 

culture of epithelial cells recovered from fimbria (resected at the University of 

Washington for non-neoplastic indications in accordance with IRB-approved protocol 

08#27077). The growth conditions for each of the cell lines are as follows. PEO1 and 

PEO4 cells were grown in DMEM containing 10% FBS, a 1:250 dilution of nonessential 

amino acids and 10 µg/mL insulin. OVCAR3 and A2780 were grown in RPMI containing 

10% FBS and 10 µg/mL insulin. SKOV3IP and IGROV-1 were grown in McCoy’s 5A 

containing 10% FBS. OVCAR5 and OVCAR8 were grown in RPMI containing 10% FBS. 

SKOV3, ES2, and TOV-21G were grown in DMEM containing 10% FBS. OV202, OV177, 

OV17 and OV167 were grown in EMEM containing 20% FBS, as described (98). All 

fallopian tube epithelial lines were grown in MEBM (Cambrex) containing 1% fetal bovine 

serum, as described (92). All cell lines were grown at 37°C in the presence of 5% carbon 

dioxide. 

 

APOBEC expression profiling of cell lines 

Since specific antibodies for APOBEC3B are not yet available, RT-qPCR was 

used for mRNA quantification as described (23,40,44). RNA was isolated from 1 - 5 x 

106 cells for each cell line using the RNeasy Mini Kit (Qiagen, cat # 74106).  cDNA was 

prepared using random hexamers (IDT), dNTPs (Roche, cat # 11277049001), and 

Transcriptor Reverse Transcriptase (Roche, cat # 03531287001). qPCR was performed 

using 2x Probes Master Mix (Roche, cat # 04887301001). All primer and probe 

combinations are listed in Table 2.S2. 
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Microscopy 

For the OVCAR5 cell line, 1 x 106 cells were plated in two wells of a 6-well plate. 

24 hours after plating the cells were either transfected with an expression construct 

encoding APOBEC3B-GFP or APOBEC3B-HA using TransIT LTI (Mirus, cat # MIR 

2306). For A2780 and IGROV-1, 2.5 x 106 cells were nucleofected with 2 µg of each 

expression construct using the Ingenio Nucleofector Solution (Mirus, cat # MIR 50114) 

and a Nucleofector II set to the X-001 program. Cells were then immediately plated into 

6 well plates. 6 x 104 cells were transferred to a 4 well chamber slide for imaging 24 

hours after transfection. Imaging was performed using a DeltaVision microscope at 60X 

magnification. 

 

APOBEC3B knockdown experiments 

Knockdowns were done using pLKO.1-based lentiviral vectors and techniques 

reported previously (23). Transduced cells were selected with 1 µg/ml puromycin for 1 

week before being harvested for fractionation. APOBEC3B knockdown was confirmed 

by RT-qPCR, as above. 

 

Cell line fractionation  

Fractionation was performed as described (23). 1 x 107 cells were incubated in a 

500 µL of hypotonic solution containing 10 mM Hepes, 10 mM KCl, 1.5 mM MgCl2, 1 mM 

DTT, protease inhibitors for 30 min at 4°C. The plasma membrane was ruptured by 

passing the cell suspension through a 28-gauge needle 4 times and nuclei were pelleted 

by centrifugation for 1 min at 600 x g. The supernatant was saved as the cytoplasmic 

fraction. The pelleted nuclei were lysed in 500 µL GST lysis buffer containing 25 mM 

HEPES, 10% glycerol, 150 mM NaCl, 0.5% Triton X-100, and 1 mM EDTA, and 
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sonicated to create the nuclear fraction. Fractionation efficiency was determined by 

immunoblot. 10 µL of a 1:10 dilution of each fraction was loaded into a 12% 

polyacrylamide gel and anti-tubulin (Covance, cat # MMS-407R) and anti-histone H3 

(Abcam, cat # ab1791) antibodies were used to detect the cytoplasmic and nuclear 

fractions, respectively. 

 

Fluorescence-based DNA deaminase assays 

Fluorescence-based DNA deaminase assays were performed as described (23). 

This assay uses fluorescently tagged oligonucleotides with the following sequence, 5’- 

AAATNCNAATAGATAATGTGA -3’, where N represent a T, C, G, or A. Each 

oligonucleotide is tagged with a fluorescein fluorophore at the 5' end and a TAMRA 

quencher at the 3’ end. 10 pmol of oligonucleotide were incubated with 0-20 µL of 

protein extract, 0.02 units of uracil DNA glycosylase (UDG; New England Biolabs), 15 µL 

of 50 mM Tris–Cl (pH 7.4) and 10 mM EDTA in Nunc 384-well black plates for 2 hours at 

37°C. The reactions were then treated with 100 mM NaOH at 37°C for 30 min to break 

the DNA back bone at abasic sites. 3 µL of 4 N HCl and 37 µL of 2 M Tris–Cl (pH 7.9) 

was then added to neutralize reactions. Finally, flourescence was quantified using a 

spectrophotometer with excitation at 490 nm and emission at 520 nm. 

 

APOBEC3B catalytic domain biochemistry 

The catalytic domain of APOBEC3B (residues 195-382) was purified from 

HEK293 cells using a C-terminal myc-His6 epitope tag and standard Ni-NTA purification 

procedures (23). Deamination reactions were performed at 37°C using 400-600 nM 

substrate, 10 nM purified APOBEC3B, and 0.025 U/rxn UDG for the given incubation 

times. Reactions were treated with 100 mM NaOH at 95°C for 10 min to achieve 
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complete backbone breakage. The reactions were then run on 15 or 20% TBE-urea gels 

to separate substrate from product. Gels were scanned using a FujiFilm Image Reader 

FLA-500 and densitometry was performed using ImageGauge (FujiFilm).  

 

Analysis of APOBEC expression in clinical samples (Tables 2.S3, 2.S4, and 2.S5) 

Review of H & E stained slides by a gynecological pathologist prior to both 

banking and analysis was performed on all samples. This ensured that the normal 

samples were tumor free and that the tumor samples contained >70% carcinoma cells. 

Snap frozen cancers were cryopreserved in OCT medium at -80°C. Cryostat sections 

were cut into TRIzol (Invitrogen, cat # 15596-026). TRIzol-based RNA extractions were 

performed in the following manner. After tubes containing cryosectioned tissue and 

TRIzol were brought to 20°C and mixed with 0.2 mL of chloroform/mL TRIzol used, 

samples were sedimented at 12,000 x g for 15 min at 4°C. RNA was recovered from the 

aqueous phase by adding 0.5 mLof isopropanol/mL TRIzol, incubating samples at 20°C 

for 10 min, and sedimenting the precipitate at 12000 x g for 10 min at 4°C. After the 

pellet was washed with 75% ethanol, recovered by sedimentation and air dried, RNA 

was resuspended in 30 µL RNase-free water. cDNA synthesis and RT-qPCR were 

performed using the same methods as described above (Mayo Clinic IRB#12-000095).  

 

Microarray data analyses 

After downloading the raw intensity microarray expression data for 581 ovarian 

tumors and 8 unmatched normal ovarian tissues from TCGA, the CEL files were 

analyzed using the MAS5 algorithm (510K FDA approved; standard settings) and the 

library for the HT-HG-U133A microarray chip provided by the Expression Console 

Software (Affymetrix). Statistical significance was assessed using two independent 
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methods based on Mann-Whitney derived p-values and fold-change in gene expression. 

First, the Mann-Whitney U test was used to derive p-values for non-parametric variables. 

Since the HT-HG-U133A chip has 7 probe sets targeting the APOBEC3 genes (A, B, C, 

F/G, F, G, G) and 22 probe sets that target the 10 control genes used in this study [TBP 

(3), GAPDH (3), TRAP1 (2), FPGS (1), DECR1 (1), UBC (2), TXN (2), B2M (2), FARP1 

(2), and EEF1A1 (4)], a Bonferroni correction was also applied with significance level set 

to α = 0.00172. Exact probability was used for all Mann-Whitney U tests because none 

of the non-parametric variables had any sets of ties (a subject from one group having the 

same expression value as a subject from the other group). Second, fold change (FC) 

was used to compare expression values in tumor versus normal samples. FC was 

defined as the mean expression value of the tumor tissue samples over the mean 

expression value of the normal tissue samples and deemed significant if greater than 2-

fold. Therefore, in order for a gene variable to be deemed statistically significant, it had 

to have p < 0.00172 and FC ≥ 2.0 or ≤ 0.5. Table 2.S6 shows the statistical results of all 

APOBEC3 genes and all control genes. 

 

Genomic sequencing and re-sequencing 

Whole genome and RNA sequencing was applied to previously banked low-

stage, high-grade ovarian carcinomas (Mayo Clinic IRB#08-008535). After review of H & 

E stained slides by a gynecological pathologist, tumor and germline DNA was extracted 

using Gentra Puregene Tissue Kit (Qiagen, cat # 158622) and sequenced on the 

Illumina GAIIX with 40X average coverage. Reads were aligned with BWA (99) and 

realigned around insertions/deletions using the GATK (100). Somatic variants were 

called using SomaticSniper 1.0 (101), requiring that variants have a somatic score of at 

least 40 and that variants have at least 2 unique reads containing the mutant allele. To 
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filter out false positives from low germline coverage, we required that variants not 

overlap position of SNPs in dbSNP (102) or the 1000 Genomes Project (103) with minor 

allele frequency of at least 1% (as long as these variants are not annotated as mutations 

in dbSNP). RNA sequencing data were aligned to hg19 using TopHat (104). We tested 

our somatic mutation calling by looking for evidence in the RNA. On average, 71% (± 

13%) of the somatic mutations were supported with at least one read containing the 

sequence variant. In addition, we performed resequencing of TP53 by Sanger 

sequencing (105) and targeted capture sequencing in a subset of tumors and normal 

samples (84) to confirm TP53 mutation status and validate a somatic BRCA2 mutation in 

one tumor that had been identified in whole genome sequences. All patients had 

provided prior written consent for the banking and subsequent research on their 

specimens, including genomic studies (Mayo Clinic IRB#08-005749). 

 

Statistical analyses 

Statistically significant differences between normal and tumor tissue, high- and 

low-grade, and early and late stage were determined using the Wilcoxon Rank Sum test. 

The Wilcoxon Signed Rank test was used to analyze matched normal and tumor tissues. 

Association between APOBEC3B expression levels and mutation counts were examined 

graphically, with significance determined using Spearman’s correlation coefficients and 

p-values. Best-fit lines for mutation correlations were estimated using linear regression 

(Graphpad Prism 5.0). 
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Figure 2.1 APOBEC3B expression and localization in ovarian cancer cell lines. 

(A) APOBEC3B mRNA levels in the indicated ovarian cancer cell lines (red circles, n=18 

with sister pairs PEO1/4 and SKOV3/IP counted only once), fallopian tube epithelial 

(FTE) cells (blue squares, n=2), and immortalized ovarian surface epithelium (OSE) cell 

lines (green triangles, n=5). Each data point is the mean APOBEC3B level of 3 

independent RT-qPCR reactions presented relative to mRNA levels of the constitutive 

housekeeping gene TBP (error bars = 1 SD).  

(B) GFP and HA-tagged APOBEC3B (green) co-localize with Hoescht-stained nuclear 

DNA (blue) in the indicated ovarian cancer cell lines. All images taken at 60X 

magnification.  
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Figure 2.2 Endogenous APOBEC3B activity in ovarian cancer cell lines. 

(A) A schematic of the fluorescence-based DNA cytosine deamination assay. The 

single-stranded DNA substrate has a target cytosine, 5’ fluorescent group (F), and 3’ 

fluorescence-quenching group (Q). Deamination and uracil excision create an abasic 

site, hydroxide breaks the DNA backbone, and the fluorescent group escapes quenching.  

(B) APOBEC3B RT-qPCR data from the indicated ovarian cancer cell lines expressing 

control shRNA (Con) or one of two shRNAs specific to APOBEC3B (1 or 2) (n=3; mean 

and SD shown for each condition). Fractionation is confirmed by immunoblots of the 

cytoplasmic (C) and nuclear (N) protein fractions from each condition (TUB=anti-tubulin; 

H3=anti-histone H3). 

(C) DNA C-to-U deaminase activity elicited by cytoplasmic (upper panels) and nuclear 

(lower panels) protein extracts from the indicated cell lines. These experiments used a 

single-stranded DNA substrate with a single 5’-TC deamination target. Symbol colors 

match the knockdown bar colors in panel B. 
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Figure 2.3 Intrinsic DNA deamination preferences of recombinant APOBEC3B.  

(A) Representative gel images of APOBEC3B catalytic domain DNA deamination 

products accumulating over the indicated reaction times for the 5’-TCA (most preferred) 

and 5’-GCA (least preferred) trinucleotide contexts. Complete deamination by 

APOBEC3A is shown as a positive control (Con). 

(B) APOBEC3B catalytic domain deamination kinetics using 5’-TCN, CCN, GCN, and 

ACN single-stranded DNA substrates (n=16 reaction conditions done each in triplicate; 

mean values are shown with SD smaller than symbols in all but one instance). Reactions 

with 5’-RCN substrates had indistinguishably low activity (R = A or G). 
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Figure 2.4 APOBEC3B expression in ovarian tumors. 

(A) APOBEC3B levels in the indicated normal (green triangles; n=21) and unmatched 

cancerous (red circles; n=66) ovarian tissues. Cancer history is indicated by open (no 

history) or filled green symbols (some history; see Tables 2.S2 and 2.S4 for additional 

patient information). Tumor stage is indicated by open (early-stage) or closed (late-
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stage) red symbols. Data points in each category are arranged from lowest to highest 

APOBEC3B expression level. Each point reports the mean APOBEC3B level of 3 

independent RT-qPCR reactions presented relative to mRNA levels of the constitutive 

housekeeping gene TBP (error bars = 1 SD). Asterisks indicate samples that are also in 

TCGA data sets with the alternative identifiers listed in Table 2.S5. 

(B) Dot plot showing APOBEC3B expression in matched normal and tumor specimens 

(n=11 unrelated to specimens in panel A). Lines connect matched specimens. P-values 

were calculated using the Signed rank test. 

(C, D) Dot plots showing the relationship between APOBEC3B levels (as in panel A) and 

tumor stage (early vs. late) or tumor grade (low vs. high). P-values were calculated using 

the Wilcoxon rank sum test. 

(E) Relative microarray APOBEC3 expression levels based on data from the indicated 

probe sets. A false positive APOBEC3A signal is expected due to high nucleotide 

identity with APOBEC3B and cross-hybridizing probe sets [see supplement to (23)].  

(F) APOBEC3B quantification by RNA sequencing of 190 TCGA ovarian tumors. 

APOBEC3B mRNA levels are presented relative to those of the housekeeping gene TBP, 

and plotted from lowest to highest. No normal tissues were available for comparison. 

(G) A 2-dimensional plot comparing RT-qPCR and RNA sequencing data for tumor 

samples common to each analysis (n=32). P-values calculated using Spearman’s 

correlation. 
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Figure 2.5 Ovarian cancer genomic mutation patterns. 

(A) Correlation between APOBEC3B expression and total mutation loads in whole 

genome sequences of 16 early-stage serous ovarian carcinomas (Table 2.S4) assessed 

using the Spearman’s correlation. 

(B) Grouped analysis of whole genome mutation types in all 16 cancers. 

(C) Correlation between APOBEC3B expression levels and mutation type at C/G base 

pairs in whole genome sequences assessed using Spearman’s correlation. 

(D) Trinucleotide context of the mutated C for transversions (top) and transitions 

(bottom) in whole genome sequences (16,986 transversions and 13,232 transitions). 

(E-H) As above for A-D, except these analyses were done using RNAseq-confirmed 
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mutations from the same 16 early-stage serous ovarian carcinomas (1,468 transversions 

and 1,198 transitions).  
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Figure 2.6 DNA deamination model for mutation in cancer. 

APOBEC3B catalyzed C-to-U deamination events in single-stranded DNA can be 

repaired error-free (A) or processed in an error-prone manner by DNA synthesis (B, D), 

mutagenic repair (C) or recombination (E). This model is adapted from our prior report 

(23) and based on the DNA deamination mechanism for antibody gene diversification 

(33,52). 
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Table 2.S1 Cell line information 
Cell line Derivation Site Subtype Stage Grade APOBEC3B/TBP Reference 

OSEtsT-hTERT OSE Benign ovary n.a. n.a n.a 0.42 (106) 
IMCC3 OSE Benign ovary n.a. n.a n.a 0.48 - 

1816-686 OSE Benign ovary n.a. n.a n.a 0.51 (107) 
1816-575 OSE Benign ovary n.a. n.a n.a 0.52 (107) 

IOSE-VAN OSE Benign ovary n.a. n.a n.a 0.59 - 
8966DEG FTE Benign fallopian tube n.a. n.a n.a 0.28 (108) 
8617SMI FTE Benign fallopian tube n.a. n.a n.a 0.66 (109) 
PEO1* Cancer Ascites Serous - 3 0.01 (108) 

OVCAR-3 Cancer Ascites Serous - 3 0.05 (109) 
MA148 Cancer - Serous III - 0.06 (110) 
PEO4* Cancer Ascites Serous - 3 0.09 (108) 
Caov-3 Cancer - - - - 0.12 - 

SKOV-3ip** Cancer - - - - 0.19 - 
SKOV-3** Cancer Ascites - - - 0.22 - 
OVCA429 Cancer Ascites - Late High 0.22 (111) 

HEY Cancer Peritoneal deposit Serous - 2 0.37 (112) 
OVCA433 Cancer Ascites Serous Late High 0.49 (111) 

OV202 Cancer Primary tumor Serous III 4 0.70 (98) 
OV177 Cancer Primary tumor Serous III 4 0.89 (98) 

ES2 Cancer - Clear cell - 3 1.06 - 
OV17 Cancer Primary tumor Endometriod III 3 1.12 (98) 

OVCAR8 Cancer - - - - 1.32 - 
TOV-21G Cancer Primary tumor Clear cell III 3 1.58 (113) 
IGROV-1 Cancer Primary tumor Endometriod III 4 2.08 (114) 
OV167 Cancer Primary tumor Serous III 3 2.40 (98) 

OVCAR-5 Cancer Ascites - - - 3.63 - 
A2780 Cancer - - - - 4.64 (115) 

* and ** specify related cell lines 
n.a., not applicable 
-, unknown 
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Table 2.S2 Quantitative PCR primer and probe sequences. 
Gene 

symbol 
mRNA NCBI 
accession 5’ Primer sequence 3’ Primer sequence Probe 

name 
Probe 

sequencea 
APOBEC3A NM_145699 gagaagggacaagcacatgg tggatccatcaagtgtctgg UPL26 ctgggctg 
APOBEC3B NM_004900 gaccctttggtccttcgac gcacagccccaggagaag UPL1 cctggagc 
APOBEC3C NM_014508 agcgcttcagaaaagagtgg aagtttcgttccgatcgttg UPL155 ttgccttc 
APOBEC3D NM_152426 acccaaacgtcagtcgaatc cacatttctgcgtggttctc UPL51 ggcaggag 
APOBEC3F NM_145298 ccgtttggacgcaaagat ccaggtgatctggaaacactt UPL27 gctgcctg 
APOBEC3G NM_021822 ccgaggacccgaaggttac tccaacagtgctgaaattcg UPL79 ccaggagg 
APOBEC3H NM_181773 agctgtggccagaagcac cggaatgtttcggctgtt UPL21 tggctctg 

AID NM_020661 gactttggttatcttcgcaataaga aggtcccagtccgagatgta UPL69 ggaggaag 
APOBEC1 NM_001644 gggaccttgttaacagtggagt ccaggtgggtagttgacaaaa UPL67 tgctggag 
APOBEC2 NM_006789 aagtagggcaactgggcttt ggctgtacatgtcattgctgtc UPL74 ctgctgcc 
APOBEC4 NM_203454 ttctaacacctggaatgtgatcc tttactgtcttctagctgcaaacc UPL80 cctggaga 

TBP NM_003194 cccatgactcccatgacc tttacaaccaagattcactgtgg UPL51 ggcaggag 
a Probe sequence according to Roche UPL, which may be as shown or the reverse complement 
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Table 2.S3 Non-malignant tissues tested 
OV number Tissue assayeda Surgical outcome Age Lifetime cancerb APOBEC3B/TBP 

OV61 Normal ovary No malignancy 54 yes 0.06 
OV128 Normal ovary No malignancy 38 yes 0.20 
OV129 Normal ovary No malignancy 38 yes 0.09 
OV350 Normal ovary No malignancy 60 no 0.09 
OV365 Normal ovary No malignancy 30 no 0.07 
OV398 Normal ovaryd No residual uterine cancer 30 yes 0.03 

OV410B Normal ovaryd Stage I ovarian cancer 39 yes 0.08 
OV412 Normal ovary No malignancy 50 yes 0.59 
OV413 Simple ovarian cyst No malignancy 89 yes 0.11 

OV431B Normal ovaryd Stage II ovarian cancer 62 yes 0.06 
OV434 Normal ovaryd No malignancy 46 no 0.08 

OV462B Normal ovaryd Stage I ovarian cancer 59 yes 0.04 
OV473A Normal ovaryd Stage I ovarian cancer 80 yes 0.05 
OV480B Normal ovaryd Borderline ovarian cancer 43 yes 0.10 
OV486 Normal ovary No malignancy 43 no 0.02 
OV859c Normal ovary No malignancy 62 yes 0.05 
OV949c Normal ovary No malignancy 46 no 0.05 
OV968 Normal ovaryd Uterine cancer 46 yes 0.08 

OV1047D Normal ovaryd Stage I ovarian cancer 28 yes 0.09 
OV1114C Normal ovaryd Stage I ovarian cancer 81 yes 0.09 
OV1118C Normal ovaryd Stage I ovarian cancer 47 yes 0.02 
OV1172C Normal ovaryd Stage I ovarian cancer 50 yes 0.03 
OV1392E Normal ovaryd Borderline ovarian cancer 50 yes 0.03 
OV1459B Normal ovary No malignancy 53 no 0.07 
OV1465B Normal ovary No malignancy 53 no 0.04 
OV1478A Normal ovary No malignancy 47 no 0.05 
OV1497 Normal ovary Benign steroid cell tumor 67 no 0.04 
OV1504 Normal ovary No malignancy 67 no 0.06 

OV2139B Normal ovaryd Stage III ovarian cancer 66 yes 0.04 
OV2159 Normal ovaryd Borderline ovarian cancer 32 yes 0.07 
OV2257 Normal ovaryd Mixed malignant mullerian 79 yes 0.10 

OV2290B Normal ovaryd Stage IV peritoneal cancer 65 yes 0.06 
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a Tissues studied as normal ovaries were shown to be free of cancer by gross pathological examination and microscopic 
examination of H & E sections at the time of surgical resection 
b “Lifetime cancer” indicates whether the participant had cancer either before sample collection, at the same time as the 
analyzed tissue was collected, or after the sample was collected 
c BRCA2 mutation carriers 
d Benign tissue tested from women with cancer at the time of sample collection 
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Table 2.S4 Early stage serous ovarian tumors used in sequence analyses 
OV 

number Stage Gradea Age TP53 
status 

Total 
mutations 

Transversions 
at C/G basepairs 

Transitions 
at C/G basepairs APOBEC3B/TBP 

OV544 IC 3 52 C238F 4533 1548 1007 0.41 
OV632 IA 3 52 H214R 2800 1001 716 0.39 

OV1097 IIC 3 50 Frameshift 2149 676 606 0.05 
OV1107 IIB 3 81 R248Q 2055 573 713 0.21 
OV1173 IIC 1 82 Wildtype 1055 221 426 0.04 
OV1225b IIC 3 84 M246V 8249 3218 1877 1.09 
OV1303 IIC 2 79 R273C 1842 463 704 0.03 
OV1317 IB 3 82 R175H 2464 746 802 0.24 
OV1531 IC 3 71 C242F 2193 551 673 0.01 
OV1577 IC 3 50 Wildtype 4697 1709 1100 0.33 
OV1675 IIC 3 77 R248W 2130 598 653 0.16 
OV1807 IA 3 66 Frameshift 1742 549 394 0.19 
OV1848 IIB 3 78 Frameshift 1803 510 590 0.20 
OV1897 IC 3 60 R196Xc 2537 823 644 1.51 
OV1925 IIB 3 50 Frameshift 2839 1069 610 0.44 
OV1930 IIC 3 54 Frameshift 7272 2731 1717 0.45 

a Grade according to the FIGO/WHO grading system 
b BRCA2 mutation  
c X = premature stop codon 
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Table 2.S5 Additional ovarian tumor specimens analyzed 
OV number Stagea Gradea Age Histology TCGA IDb APOBEC3B/TBP 

OV173 IA 3 74 Endometrioid None 0.28 
OV182A IIIC 3 74 Serous TCGA-25-1871 1.18 
OV201 IIIC 3 81 Serous TCGA-25-1877 0.13 

OV337A IIIC 3 60 Serous TCGA-25-1878 0.85 
OV410Ac IA 3 39 Endometrioid None 0.22 
OV431Ac IIB 3 62 Serous None 0.02 
OV462Ac IA 1 59 Mucinous None 0.29 
OV473Bc IC 3 80 Clear cell None 0.73 
OV480Ac IA 0 43 Mucinous None 0.23 
OV999 IV 3 42 Serous TCGA-25-1314 0.07 

OV1001C IA 1 41 Mucinous None 0.24 
OV1008A IV 3 65 Serous TCGA-25-1313d 0.19 
OV1038F IIIC 3 62 Serous None 0.00 
OV1047Cc IA 2 28 Endometrioid None 0.18 
OV1048 IIIC 3 55 Serous TCGA-25-1316d 0.37 
OV1052 IIIC 3 50 Serous TCGA-25-1315d 0.00 
OV1090 IIIC 3 66 Serous TCGA-25-1317d 0.36 
OV1103 IIIC 3 54 Serous TCGA-25-1318d 0.62 

OV1114Bc IA 1 81 Endometrioid None 0.06 
OV1123 IIIC 3 73 Serous TCGA-25-1319d 0.37 

OV1155B IIIC 3 65 Serous TCGA-25-1321d 1.14 
OV1156 IIIC 3 65 Serous TCGA-25-1320d 0.60 

OV1172Bc IC 1 50 Endometrioid None 0.72 
OV1176 IV 3 62 Serous TCGA-25-1322d 0.59 
OV1180 IIIC 3 38 Serous TCGA-25-1328d 0.10 

OV1199A IIIC 3 72 Serous TCGA-25-1323 0.03 
OV1219B IV 3 69 Serous TCGA-25-1312 0.08 
OV1234 IIIC 3 74 Serous TCGA-25-1324d 0.35 
OV1280 IIIC 3 61 Serous TCGA-25-1326d 0.66 
OV1292 IV 3 77 Serous TCGA-25-1325 0.54 
OV1310 IIIB 3 83 Serous None 0.32 
OV1311 IC 3 82 Clear cell None 0.69 
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OV1340 IIIC 3 76 Serous TCGA-25-1329d 0.33 
OV1346C IIIC 3 71 Serous TCGA-25-1635d 0.54 
OV1358 IIIC 3 75 Serous TCGA-25-1634d 0.07 
OV1363 IIIC 3 64 Serous TCGA-25-1633d 0.23 
OV1369 IV 3 68 Serous TCGA-25-1632d 0.73 

OV1370B IIIC 3 73 Serous TCGA-25-1631d 0.12 
OV1381 IIIC 3 73 Serous TCGA-25-1630d 0.39 

OV1392Ac IA 0 50 Serous/mucinous None 0.10 
OV1426 IIIC 3 73 Serous TCGA-25-1627d 0.28 

OV1467B IIIC 3 57 Serous TCGA-25-2391d 0.68 
OV1470B IV 3 80 Serous TCGA-25-2390 0.34 
OV1518C IV 3 75 Serous TCGA-25-2392d 0.01 
OV1522C IIIC 3 81 Serous TCGA-25-2393d 0.05 
OV1628A IV 3 59 Serous TCGA-25-2397 0.11 
OV1640B IIIC 3 71 Serous TCGA-25-2398d 1.45 
OV1644A IIIC 3 80 Serous TCGA-25-2399d 0.19 
OV1663A IIIC 3 64 Serous TCGA-25-2401d 0.64 
OV1698A IIIC 3 38 Serous TCGA-25-2404d 0.83 
OV1721 IC 3 48 Serous None 0.16 

OV1783A IV 2 37 Serous TCGA-25-2408 0.42 
OV1785A IV 3 71 Serous TCGA-25-2409d 0.35 
OV1821A IIIC 3 65 Serous TCGA-25-1626d 0.52 
OV1843A IIIC 3 66 Serous TCGA-25-1625d 0.73 
OV1860A IIIC 3 60 Serous TCGA-25-2042d 0.11 
OV1862 IV 3 71 Serous TCGA-25-1623d 0.33 
OV2033 IC 2 69 Endometrioid None 0.13 
OV2095 IA 2 63 Mucinous None 0.15 

OV2139Ac IIIC 3 66 Serous None 0.45 
OV2290Ac IV 3 65 Serous None 0.08 

a Stage and grade were assigned at the time of original surgical resection. When frozen sections were cut 
for RNA extraction, an adjacent section was stained with H & E and examined to confirm the presence of 
>70% tumor cells 
b Samples that were also analyzed through the TCGA project are indicated with their identification 
numbers 
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c Patients who provided both tumor tissues (listed here) and matched normal tissue (corresponding OV 
number in Table S3). Data are reported in Figure 4B. 
d Samples analyzed by both RT-qPCR and RNAseq 
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Table 2.S6 Microarray analysis of APOBEC3 and select control gene probe sets in ovarian TCGA data 

Probe seta Specificity 
Cancer 

(mean ± SD) 
n=581 

Normal 
(mean ± SD) 

n=8 
P valueb Fold 

changec 
Statistical 

Significanced 

210873_x_at APOBEC3A 108 ± 93.5 27.4 ± 28.8 0.00029 4.0 Yes 
206632_s_at APOBEC3B 511 ± 484 98.7 ± 40.3 0.000014 5.2 Yes 
209584_x_at APOBEC3C 250 ± 182 334 ± 134 0.030 0.75 No 
214995_s_at APOBEC3F/G 188 ± 97.5 267 ± 86.5 0.0078 0.71 No 
214994_at APOBEC3F 40.5 ± 29.1 48.8 ± 29.0 0.29 0.83 No 
204205_at APOBEC3G 983 ± 725 1220 ± 438 0.088 0.81 No 
215579_at APOBEC3G 23.8 ± 22.7 51.1 ± 31.6 0.0015 0.47 Yese 
203135_at TBP 211 ± 87.6 250 ± 34.3 0.026 0.84 No 
216226_at TBP 57.8 ± 49.1 49.5 ± 31.1 0.81 1.2 No 
209430_at TBP 643 ± 284 612 ± 107 0.89 1.1 No 

212581_x_at GAPDH 22200 ± 7190 18500 ± 2900 0.11 1.2 No 
213453_x_at GAPDH 19300 ± 5800 14200 ± 1280 0.00046 1.4 No 
217398_x_at GAPDH 21600 ± 6540 17800 ± 2930 0.051 1.2 No 
201391_at TRAP1 1000 ± 475 1010 ± 199 0.49 0.99 No 
205210_at TRAP1 143 ± 57.9 117 ± 46.9 0.17 1.2 No 
202945_at FPGS 130 ± 75.8 123 ± 105 0.46 1.1 No 
202447_at DECR1 1650 ± 746 1860 ± 435 0.15 0.89 No 

211296_x_at UBC 20600 ± 6004 23700 ± 3280 0.017 0.87 No 
208980_s_at UBC 11500 ± 2922 12300 ± 1820 0.22 0.93 No 
208864_s_at TXN 4220 ± 1660 5300 ± 1200 0.022 0.80 No 
216609_at TXN 492 ± 251 399 ± 82.9 0.50 1.2 No 

216231_s_at B2M 18200 ± 6850 17000 ± 4220 0.59 1.1 No 
201891_s_at B2M 22300 ± 7000 20200 ± 3830 0.46 1.1 No 
201911_s_at FARP1 668 ± 418 633 ± 145 0.68 1.1 No 
201910_at FARP1 434 ± 241 468 ± 144 0.33 0.93 No 

204892_x_at EEF1A1 25900 ± 9030 30900 ± 6130 0.015 0.84 No 
213477_x_at EEF1A1 27000 ± 8800 28300 ± 5110 0.22 0.95 No 
213583_x_at EEF1A1 24600 ± 7950 26500 ± 4800 0.135 0.93 No 
213614_x_at EEF1A1 28600 ± 8810 29900 ± 4900 0.22 0.95 No 

a Sequences of individual probes in each probeset are publically available at affymetrix.com 
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b P values calculated using Mann Whitney t test 
c Fold change is calculated as cancer divided by normal 
d The significance level is set at: α = 0.0017, and a gene variable is deemed statistically significant if p < 
0.0017 and fold change ≥ 2.0 or ≤ 0.50 
e Probe set shows significantly reduced expression in cancer tissue 
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Figure 2.S1 Polynucleotide cytosine deaminase expression in ovarian cell lines.  

mRNA levels of APOBEC3A (A3A), APOBEC3B (A3B), APOBEC3C (A3C), APOBEC3D 

(A3D), APOBEC3F (A3F), APOBEC3G (A3G), APOBEC3H (A3H), Activation induced 

Immortalized OSE lines

Ovarian cancer lines

Leonard, Fig S1
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deaminase (AID), APOBEC1 (A1), APOBEC2 (A2), APOBEC4 (A4) in the indicated 

ovarian cancer cell lines (red circles, n=18 with sister pairs PEO1/4 and SKOV3/IP 

counted only once), fallopian tube epithelial (FTE) cells (blue squares, n=2), and 

immortalized ovarian surface epithelium (OSE) cell lines (green triangles, n=5). Each 

data point is the mean mRNA expression level of 3 independent RT-qPCR reactions 

presented relative to mRNA levels of the constitutive housekeeping gene TBP (error 

bars = 1 SD).  
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Figure 2.S2 Endogenous DNA deaminase activity in APOBEC3B high and low cell lines.  

DNA C-to-U deaminase activity in whole cell extracts from the indicated cell lines was 

measured as described, using a single-stranded DNA substrate with a 5’TC target site. 
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Figure 2.S3 Endogenous APOBEC3B activity on alternate dinucleotide substrates.  

DNA C-to-U deaminase activity elicited by cytoplasmic (upper panels for each context) 

and nuclear (lower panels for each context) protein extracts from the indicated cell lines. 

These experiments used single-stranded DNA substrates with either 5’TC, 5’CC, 5’GC, 

or 5’AC dinucleotide target sites. Data in the upper panel with the 5’TC substrate are 

reproduced from Fig. 2.2C for comparison. 
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Figure 2.S4 Polynucleotide cytosine deaminase expression in ovarian primary samples. 

Polynucleotide cytosine deaminase mRNA levels in representative normal (green 

triangles; n=8) and cancerous (red circles; n=23) ovarian tissues. Cancer history is 
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indicated by open (no history) or filled green symbols (some history; see Table 2.S3, 

2.S4, and 2.S5 for additional patient information). Tumor stage is indicated by open 

(early-stage) or closed  (late-stage) red symbols. Data points in each graph are arranged 

by lowest to highest APOBEC3B expression level (APOBEC3B data reproduced from 

Fig. 2.4A for comparison here). Each point reports the mean mRNA expression level of 

3 independent RT-qPCR reactions presented relative to mRNA levels of the constitutive 

housekeeping gene TBP (error bars = 1 SD). 
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Figure 2.S5 Polynucleotide cytosine deaminase expression in ovarian TCGA samples 

by RNAseq. 

Polynucleotide cytosine deaminase levels in all 188 TCGA ovarian primary cancer 

samples as measured by RNAseq analysis. Data points in each graph are arranged from 

Leonard, Fig S5
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lowest to highest APOBEC3B expression level (APOBEC3B data reproduced from Fig. 

2.4F for comparison here).  
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APOBEC3B upregulation by the PKC-NFκB pathway in multiple human cancers 

 

Authors: Brandon Leonard,1,2 Jennifer L. McCann,1,2 Gabriel J. Starrett,1,2 Leah 

Kosyakovsky,1,2,3 Elizabeth M. Luengas,1,2 Amy M. Molan,1,2 Michael B. Burns,1,2,4 

Rebecca M. McDougle,1,2,5 Peter J. Parker,6 William L. Brown,1,2 and Reuben S. 

Harris,1,2 

 

Affiliations: 1Biochemistry, Molecular Biology and Biophysics Department, University of 

Minnesota, Minneapolis, MN 55455, USA. 2Masonic Cancer Center, University of 

Minnesota, Minneapolis, MN 55455, USA. 3Faculty of Medicine, University of British 

Columbia, Vancouver, BC V6T 1Z3. 4Department of Genetics, Cell Biology, and 

Development, University of Minnesota, Minneapolis, MN 55455, USA. 5Medical School, 

University of Minnesota, Minneapolis, MN 55455, USA. 6Protein Phosphorylation 

Laboratory, Cancer Research UK London Research Institute, London WC2A 3LY, UK 

  



	  

	   69 

SUMMARY 

Overexpression of the antiviral DNA cytosine deaminase APOBEC3B has been 

linked to somatic mutagenesis in many cancers. HPV infection accounts for APOBEC3B 

upregulation in cervical and head/neck cancers. However, the responsible mechanisms 

are unclear for non-viral malignancies. Here, we demonstrate APOBEC3B upregulation 

through the PKC-NFκB pathway. PKC activation by the diacylglycerol mimic PMA 

causes specific and dose-responsive increases in APOBEC3B mRNA, protein, and 

activity levels, which are strongly suppressed by PKC or NFκB inhibition. Induction 

correlates with RELB (but not RELA) recruitment to endogenous APOBEC3B implicating 

non-canonical NFκB signaling. Relevance to tumors is supported by PKC inhibitor-

mediated APOBEC3B downregulation in multiple cancer cell lines. These data establish 

the first mechanistic link between a common signal transduction pathway and 

APOBEC3B upregulation, suggesting that existing PKC-NFκB inhibitors could be 

repurposed to suppress cancer mutagenesis, dampen tumor evolution, and decrease 

the probability of adverse outcomes such as drug resistance and metastases. 

 

INTRODUCTION 

Somatic mutations are essential for nearly every hallmark of cancer (1,116). 

Mutations occur when DNA damage escapes repair. Cancer genome deep sequencing 

studies are confirming previously known sources of mutation as well as helping to 

discover new ones (13-15). Established sources of mutation include ultraviolet light in 

skin cancer, tobacco carcinogens in lung cancer, and water-mediated deamination of 

methyl-cytosine as a function of age in nearly all cancers. One newly discovered source 

is the plant derived dietary supplement aristolochic acid, which causes A-to-T 

transversion mutations in liver and bladder cancers (20). A second and larger source of 

mutation is the APOBEC family of DNA cytosine deaminases, which cause signature C-
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to-T transition and C-to-G transversion mutations in breast, head/neck, bladder, cervical, 

lung, and ovarian cancers (13-16,21-23,47,74,117). An additional feature of APOBEC 

mutagenesis is that the majority of these mutational events are dispersed throughout the 

genome, but an interesting minority are found in dense strand-coordinated clusters 

termed kataegis (14,118). 

Expression profiling and functional studies independently discovered APOBEC 

as a major source of mutation in cancer (23,74). In particular, we demonstrated 

APOBEC3B upregulation in breast and ovarian cancer cell lines and primary tumors 

(23,74). APOBEC3B is predominantly nuclear, and knockdown experiments 

demonstrated that it accounts for all measurable DNA cytosine deaminase activity in 

cancer cell line extracts and, likewise, is also responsible for elevated levels of genomic 

uracil and higher mutation rates. In addition, APOBEC3B levels correlated with higher C-

to-T and overall base substitution mutation loads. Importantly, the biochemical 

preference of recombinant APOBEC3B deduced in vitro closely resembles the actual 

cytosine mutation bias in breast cancer as well as in several of the other tumor types 

listed above (i.e., strong bias toward 5’-TC dinucleotides).  

Human cells have the potential to express up to seven distinct antiviral 

APOBEC3 enzymes [(31,32) and references therein]. Each enzyme has a biochemical 

preference for deaminating cytosines in single-stranded DNA, but activity is strongly 

influenced by flanking bases at the -2, -1, and +1 positions relative to the target cytosine 

[shown originally by (48) and elaborated by (119,120) and references therein]. 

APOBEC3B is the only family member clearly upregulated in the cancers listed above 

(16,21-23,74). HPV infection was recently shown to induce APOBEC3B expression in 

cell culture experiments, which helps explain APOBEC3B upregulation and mutation 

biases in virus-positive cervical and head/neck tumors (69,70). However, the mechanism 

responsible for APOBEC3B upregulation in other tumor types (i.e., non-HPV cancers) is 
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presently unknown, but not due to obvious processes such as chromosomal 

translocation, gene amplification, or promoter demethylation (23). 

Here, we show that the PKC-NFκB pathway specifically induces APOBEC3B 

expression, providing the first mechanistic link between a major signal transduction 

pathway and cancer mutagenesis. A variety of pharmacological approaches, gene 

knockdown, RNA sequencing, and chromatin immunoprecipitation experiments were 

used to demonstrate direct transcriptional upregulation of APOBEC3B by a signal 

transduction pathway involving the classical PKC isoform PKCα and activation of the 

non-canonical NFκB transcription factor RELB. We also demonstrate that PKC inhibition 

leads to APOBEC3B downregulation in a variety of cancer cell lines suggesting that 

existing compounds can be repurposed for a new therapeutic strategy centered upon 

controlling mutagenesis in cancer. 

 

RESULTS 

Specific upregulation of APOBEC3B by PMA 

The first reported cDNAs representing APOBEC3A and/or APOBEC3B were 

cloned from primary human keratinocytes treated with phorbol-myristic acid (PMA) (75). 

PMA is a diacylglycerol (DAG) analog known to trigger protein kinase C (PKC) signaling 

as well as activate a number of other cellular processes [(121-124) and references 

therein]. Due to high levels of homology between APOBEC3A and APOBEC3B (92%) 

including long stretches of perfect identity, it is not clear which gene may have been 

actually represented by these original cDNAs. Moreover, the primary tissues used in this 

original study consisted of multiple epithelial cell types and most likely also infiltrating 

immune cells making it unclear where the cDNAs may have originated. These 

distinctions are important given the fact that APOBEC3A (not APOBEC3B) is 

upregulated >100-fold by interferon-α treatment of myeloid cell types (40,67), and that 
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APOBEC3B (not APOBEC3A) is upregulated by HPV infection of keratinocytes (69,70).  

To resolve these issues and get a molecular handle on APOBEC3B 

transcriptional regulation, a panel of cell lines was treated with PMA or equal amounts of 

DMSO as a negative control, and previously validated reverse transcription quantitative 

PCR (RT-qPCR) assays were used to measure mRNA levels of all eleven human 

APOBEC family members (44). APOBEC3B mRNA was induced at least 2-fold by PMA 

treatment of all lines (except 293T), with the highest level of fold induction observed for 

the immortalized normal breast epithelial cell line MCF10A (Fig. 3.S1). Under standard 

cell culture conditions MCF10A expresses low levels of APOBEC3B and APOBEC3F, 

even lower levels of APOBEC3G and APOBEC3H, high levels of APOBEC3C, and 

undetectable levels of all other APOBEC family members. Remarkably, PMA treatment 

caused a specific 100-fold upregulation of APOBEC3B mRNA, with no detectable 

changes in the expression levels of any other APOBEC family members (Fig. 3.1A and 

3.S2). 

APOBEC3B was induced with as little as 1 ng/mL PMA, and its induction was 

dose responsive and near maximal at 25 ng/mL PMA (Fig. 3.1B, histogram). 

APOBEC3B mRNA levels correlated with a rise in steady-state protein levels as 

measured by immunoblotting with a new rabbit anti-APOBEC3B monoclonal antibody 

(Fig. 3.1B, immunoblot) and with enzymatic activity as measured by a gel-based single-

stranded DNA cytosine deamination assay (Fig. 3.1B, polyacrylamide gel, and 

Materials and Methods). Moreover, significant APOBEC3B mRNA induction was 

detected 30 minutes after PMA treatment and maximal levels were observed by 3 hours 

post-treatment (Fig. 3.1C, histogram). APOBEC3B protein and activity levels lagged 

shortly behind mRNA levels and persisted through the duration of the 6-hour time course 

(Fig. 3.1C, immunoblot and polyacrylamide gel). An extended time course revealed that 

APOBEC3B mRNA levels begin to decrease by 12 hours with a return to near basal 
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levels by 24 hours post-PMA treatment (Fig. 3.S3). Importantly, APOBEC3B 

upregulation is likely to be a direct result of signal transduction as the kinetics of mRNA 

upregulation were not affected by simultaneously treating cells with the protein 

translation inhibitor cyclohexamide (Fig. 3.1D, histogram). Cycloheximide treatment was 

effective as evidenced by disrupted APOBEC3B protein accumulation (Fig. 3.1D, 

immunoblot and poly acrylamide gel). Altogether, these data demonstrate that 

APOBEC3B is strongly and specifically upregulated by a PMA-induced signal 

transduction mechanism in multiple cell lines and most strongly in the immortalized 

normal breast epithelial cell line MCF10A. Notably, upregulation can be as high as 100-

fold and this maximal level of APOBEC3B mRNA is on par with that observed in many 

different cancer cell lines and tumor types including a large fraction of breast and ovarian 

cancers [i.e., mRNA levels 2- to 5-fold higher that those of the constitutively expressed 

housekeeping gene TATA binding protein (TBP) (21,23,69,74)].  

 

PKC is required for APOBEC3B induction by PMA 

PMA is a known agonist of PKC signaling, but it is also capable of affecting other 

cellular processes [(121-124) and references therein]. To determine whether 

APOBEC3B induction by PMA occurs through PKC signal transduction or an alternative 

mechanism, we leveraged a panel of existing PKC inhibitors that each vary with respect 

to class selectivity. MCF10A cells were pre-treated for 30 minutes with varying 

concentrations of the pan-PKC inhibitor Gö6983 (125) and then treated for 6 hours with 

an optimal amount of PMA (25 ng/mL). In comparison to strong APOBEC3B 

upregulation observed with PMA treatment alone, pretreatment with Gö6983 caused a 

dose responsive suppression of APOBEC3B induction (Fig. 3.2A). APOBEC3B was 

suppressed to background levels by 5 µM Gö6983, as well as by higher concentrations 

(Fig. 3.2A and data not shown). Moreover, no morphological defects or viability issues 
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were observed at these concentrations of Gö6983 (Fig. 3.S4). As additional controls, 

MCF10A cells were pretreated in parallel with the phosphoinositol 3 kinase (PI3K) 

inhibitor, LY294002, and the mitogen-activated protein kinase (MEK) inhibitor, UO126, 

prior to PMA induction (Fig. 3.2B-C). In both instances, no suppression of APOBEC3B 

upregulation was observed. Collectively, these data indicated that the PKC pathway 

regulates APOBEC3B expression in the MCF10A breast epithelial cell line, and the PI3K 

and MEK pathways are unlikely to be involved. 

Human cells can express up to 9 different PKC genes [(121-124) and references 

therein]. The resulting 9 distinct PKC proteins (conventionally called isoforms) are 

divisible into 3 classes based on activation mechanism: classical PKC (cPKC) isoforms 

require both DAG and increased levels of intracellular calcium, novel PKC (nPKC) 

isoforms require only DAG, and atypical PKC (aPKC) isoforms are activated by other 

signals. To test which class of PKC isoforms is responsible for APOBEC3B upregulation, 

we utilized two additional inhibitors known to have similar potency as Gö6983, but 

greater selectivity for certain PKC classes. First, we pretreated MCF10A cells with 

bisindolylmaleimide-1 (BIM-1), which is known to inhibit both the cPKC and nPKC 

classes (126), and then induced with optimal PMA concentrations. A nearly identical 

dose dependent suppression of APOBEC3B induction was observed (Fig. 3.2D). This 

result was expected as DAG mimics do not generally activate aPKCs. Second, we 

pretreated MCF10A cells with Gö6976, which is an inhibitor of the cPKC class of 

proteins (127). The dose responsiveness of APOBEC3B repression was again similar to 

Gö6983 (Fig. 3.2E). Taken together, these chemical inhibition data strongly implicated a 

cPKC isoform in APOBEC3B induction by PMA. 

One of the most potent and clinically advanced PKC inhibitors is AEB071, which 

selectively inhibits cPKC and nPKC isoforms (128-130). AEB071 has shown positive 

results in preclinical studies and phase I clinical trials for treatment of uveal melanoma 
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(131-134). To fortify the pharmacologic approaches elaborated above, we asked 

whether pretreatment of MCF10A cells with AEB071 would produce a similar reductive 

effect on PMA induced APOBEC3B expression as the above PKC inhibitors. Indeed, a 

clear dose dependent response was observed and, importantly, AEB071 caused a 

complete suppression of APOBEC3B expression at 500 nM, which is approximately 10-

fold more potent than Gö6983, BIM-1, or Gö6983, consistent with previously reported 

lower IC50 values for this molecule [Fig. 3.2F; (125-130)]. 

RNA sequencing (RNAseq) revealed that PKCα (PRKCA) is the only cPKC 

isoform expressed in MCF10A cells (Fig. 3.2G). PKCα mRNA levels were unchanged by 

PMA treatment, in comparison to DMSO as a negative control, consistent with a 

mechanism in which PMA signals through PKCα to ultimately stimulate APOBEC3B 

transcription (Fig. 3.2G). To further test the involvement of PKCα in this regulatory 

pathway and to provide an orthologous approach to the chemical probes used above, 

we knocked down PKCα expression using 3 independent shRNA-encoding lentiviral 

constructs. In each case, PKCα knockdown resulted in a corresponding reduction in the 

level of APOBEC3B mRNA induced by PMA (Fig 3.2H). Immunoblots confirmed PKCα 

knockdown and proportional reductions in APOBEC3B (Fig 3.2I). Altogether, the 

pharmacologic and genetic approaches used here provide a compelling case for PKCα 

as the predominant PKC isoform driving PMA-mediated upregulation of APOBEC3B. 

 

NFκB is required for APOBEC3B induction by PMA 

We next asked which downstream transcription factor is responsible for driving 

APOBEC3B upregulation in response to PMA. PKC is known to signal through several 

different transcription factors, including ERK, JNK, NFκB, and others [(121-124) and 

references therein]. We therefore started at the DNA level and examined the 

APOBEC3B promoter region for binding sites of known PKC-regulated transcription 
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factors. Interestingly, these in silico analyses revealed several NFκB binding sites within 

2.5 kb of the APOBEC3B transcriptional start site (5’-GGRRNNYYCC). NFκB is known 

to have multiple roles in immunity and inflammation [(135,136) and references therein], 

and a direct NFκB-mediated relay to APOBEC3B expression could be physiologically 

beneficial, given APOBEC3B’s known roles in innate immunity [(31,32) and references 

therein].  

To test for a mechanistic link between NFκB and APOBEC3B transcription, we 

used two compounds known to block NFκB signaling through independent mechanisms. 

First, we treated MCF10A cells with varying amounts of BAY 11-7082, which is an NFκB 

inhibitor that acts by inhibiting upstream ubiquitin assembly (137), and then added 

optimal PMA concentrations for APOBEC3B induction. This small molecule caused 

strong dose-responsive drops in APOBEC3B induction by PMA treatment, analogous to 

studies above with PKC inhibitors (Fig. 3.3A). Second, we pretreated MCF10A cells with 

a titration of the proteasome inhibitor, MG132, prior to PMA stimulation. It is well known 

that both the canonical and non-canonical NFκB signaling pathways require 

proteasome-mediated degradation of IκB and processing of p100, respectively, for 

efficient signal transduction [(135,136) and references therein]. Indeed, APOBEC3B 

expression decreased in a dose dependent manner in response to MG132 treatment 

(Fig. 3.3B), further suggesting a role for NFκB signaling since the pathway of interest 

requires protein degradation by the proteasome for productive signal transduction. As 

above, neither BAY 11-7082 nor MG132 caused cell cycle or morphological changes 

through the durations of these experiments (Fig. 3.S4). 

RNAseq data sets revealed that MCF10A expresses both the canonical NFκB 

components, RELA and NFKB1, and the non-canonical NFκB components, RELB and 

NFKB2, and levels of these mRNAs are unaffected by PMA treatment (Fig. 3.3C). 

Canonical signaling is known to require IKKβ, whereas non-canonical NFκB signaling is 
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strictly dependent on IKKα-catalyzed phosphorylation of p100 [(135,136) and references 

therein]. To distinguish between these pathways, we used TPCA-1, which is known to 

have a 22-fold selectivity for IKKβ (canonical) over IKKα (non-canonical) (138). MCF10A 

cells were pretreated with a titration of TPCA-1 concentrations spanning the IC50 values 

of both proteins, and then PMA was used to induce APOBEC3B upregulation. 

APOBEC3B expression was inhibited closer to the reported IC50 of IKKα, consistent 

with involvement of the non-canonical NFκB pathway (Fig 3.3D). As an additional control, 

we also analyzed TNFα, which is regulated by the canonical pathway (139,140). As 

expected, TNFα expression was inhibited by much lower concentrations of TCPA-1 

confirming the differential selectively of this compound and further implicating the non-

canonical NFkB pathway in APOBEC3B upregulation (Fig 3.3D). 

 

RELB and p100/p52 are recruited to the APOBEC3B promoter region in response 

to PMA 

 We next performed a series of chromatin immunoprecipitation (ChIP) 

experiments to further test whether the non-canonical NFκB pathway is responsible for 

upregulating APOBEC3B. Primer sets were designed for each of the predicted NFκB 

binding sites near the APOBEC3B transcriptional start site (Fig. 3.3F). As a control, an 

additional primer set was made for the promoter region of NFKBIA, which contains NFκB 

binding sites and is also upregulated by PMA with similar kinetics as APOBEC3B (note, 

NFKBIA encodes IκB; Figs. 3.3E and F). ChIP was performed for RELA, RELB, 

p100/p52, RNA POL II (positive control), and isotype matched IgG (negative control). As 

expected, RELA, RELB, p100/p52, and RNA POL II were all bound to the NFKBIA 

promoter following PMA treatment (Fig. 3.3G). We also found RNA POL II bound to the 

APOBEC3B gene near the transcriptional start site and throughout the gene body in 

response to PMA (Fig. 3.3G). Interestingly, both RELB and p100/p52 were recruited to 
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the same sites as RNA POL II following PMA treatment, indicating that these factors are 

also involved in driving APOBEC3B expression in response to PMA (Fig. 3.3G). An 

expanded ChIP experiment replicated these data and showed that RNA POL II, RELB, 

and p100/p52 binding are dependent on PKC signaling as treatment with AEB071 

completely ablated all binding to the APOBEC3B promoter (Fig. 3.S5). These ChIP data 

strongly implicate the non-canonical NFκB pathway, specifically the RELB and p100/p52 

heterodimer (and not RELA and p105/p50), in directly inducing APOBEC3B transcription 

in response to PMA induced activation of PKC. 

 

Endogenous APOBEC3B expression requires PKC in multiple cancer cell lines 

We next asked whether the constitutively high levels of endogenous APOBEC3B 

observed in many human cancer cell lines occurs through the PKC pathway (23,69,74). 

For this series of experiments, we selected 4 breast, 4 ovarian, 4 bladder and 4 

head/neck cancer cell lines expressing a 10-fold range of endogenous APOBEC3B 

mRNA levels (Fig. 3.4A). Each line was treated for 48 hrs with 10 µM AEB071, the most 

potent PKC inhibitor identified above, and then APOBEC3B mRNA and protein levels 

were quantified by RT-qPCR and immunoblotting. As above, no effects on the cell cycle 

or cell viability were observed (Fig. 3.S6). This is important since higher concentrations 

of AEB071 are known to cause cell cycle perturbations and apoptosis in certain cell 

types (131-133). APOBEC3B mRNA levels were reduced by more than half in 7/16 cell 

lines, including the breast cancer cell lines MDA-MB-468, MDA-MB-453, and HCC1806, 

the ovarian cancer cell line OVCAR5, and the head/neck lines SQ-20B, JSQ3, and 

TR146 (Fig. 3.4B, histogram). Changes of protein levels largely mirrored the mRNA 

results (Fig. 3.4B, immunoblot). Interestingly, several cell lines including all of the 

bladder cancer cell lines showed little decrease in APOBEC3B expression upon 

treatment with AEB071, suggesting that at least one additional induction mechanism 
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exists. Altogether, these data demonstrate that the PKC axis is responsible for the 

constitutive upregulation of endogenous APOBEC3B in a variety of cancer cell lines 

representing multiple distinct cancer types.  

 

DISCUSSION 

 These studies are the first to establish mechanistic linkages between the PKC-

NFκB signal transduction pathway and upregulation of the DNA mutating enzyme, 

APOBEC3B, in cancer. Our studies suggest a model in which PKCα activation signals 

through the non-canonical NFκB pathway and results in the recruitment of RELB to the 

APOBEC3B gene and its transcriptional activation (Fig. 3.5). This mechanism is 

remarkably specific to APOBEC3B, as expression of the related APOBEC family 

members is not affected. This specificity is concordant with our prior studies indicating 

that APOBEC3B is the only DNA deaminase family member upregulated in these and 

other cancer types in comparison to normal tissues (21,23,69,74). Moreover, PKC 

inhibitor studies with breast, head/neck, and ovarian cancer cell lines indicated that the 

PKC-NFκB pathway contributes to the constitutively high levels of endogenous 

APOBEC3B that have been associated previously with cancer mutagenesis. Additional 

studies will be needed to determine the precise proportions of each tumor type affected 

by this APOBEC3B upregulation mechanism that, based on prior studies from our 

laboratory and others, is expected to endow cancer cells with mutational fuel for 

accelerated tumor evolution. 

A recent publication implicated both the interferon response and the canonical 

and non-canonical NFκB pathways in APOBEC3A and APOBEC3B upregulation and 

clearance of HBV episomes from infected cells (141). Activation of the lymphotoxin-β 

receptor through treatment of infected hepatocytes with bivalent or tetravalent antibodies 

led to the nuclear translocation of both RELA and RELB and the activation of known 
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NFκB pathway genes. These antibody treatments also led to the upregulation of 

APOBEC3A and/or APOBEC3B and to the gratuitous deamination of HBV cccDNA 

cytosines, viral DNA degradation, and long-term virus suppression. Taken together with 

our results presented here, it is tempting to speculate that both the PKC and the 

lymphotoxin-β receptor signaling mechanisms converge upon the non-canonical RELB-

dependent NFκB pathway in order to activate APOBEC3B expression. Thus, our work 

suggests additional strategies such as PMA treatment to induce APOBEC3B 

upregulation and clearance of HBV from infected hepatocytes. However, these 

strategies may induce collateral damage through genomic DNA mutagenesis and should 

be approached carefully. 

 Clear evidence for APOBEC3B overexpression and mutation signatures in 

cervical and head/neck cancers suggested that HPV infection might trigger an innate 

immune response that includes DNA deaminase upregulation (21,22). Subsequent work 

demonstrated that infection by high-risk HPV types (not low-risk types) causes the 

specific upregulation of APOBEC3B, suggesting that this is not simply a gratuitous 

innate immune response to viral infection (69,70). Moreover, the E6 oncoprotein alone 

from high-risk types (again, not low risk) was sufficient to trigger APOBEC3B 

upregulation (69). It is notable that the overall fold induction by HPV is lower than that 

described here, due partly to higher background and partly to a smaller magnitude of 

induction (i.e., 10-20 fold vs. >100-fold here). An independent study suggested that the 

E7 oncoprotein may also contribute to APOBEC3B upregulation (70). The mutator 

phenotype induced by HPV infection is likely fueling tumor evolution as the pattern of 

PI3K-activating mutations in HPV-positive tumors is biased toward cytosine mutations in 

APOBEC-like motifs in the helical domain of the kinase, whereas the pattern in HPV-

negative tumors is split between the helical and kinase domains of the enzyme (16,117). 

Obviously, HPV-mediated upregulation of APOBEC3B only impacts cervical cancers and 
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a proportion of head/neck and bladder carcinomas. In contrast, many more tumor types 

are likely to be susceptible to the mechanism described here. Comprehensive mutation 

surveys estimate that APOBEC (predominantly APOBEC3B) impacts approximately half 

of all human cancers (13,21,22). It will be interesting to determine in future studies 

whether viral and non-viral mechanisms are synergistic, additive, or mutually exclusive. 

 Another major conclusion from our studies is the likelihood that virus infection 

and PKC activation are not the only mechanisms responsible for APOBEC3B induction 

in cancer. PKC inhibition caused little decrease in APOBEC3B mRNA levels in the 

breast cancer cell line HCC1569, the ovarian cancer cell lines A2780, IGROV-1, and 

OVCAR8, the head/neck cancer cell line SSC58, and all 4 bladder cancer cell lines, 

strongly implying independence from this signaling pathway. Several of these lines have 

been deep-sequenced as part of the Cancer Cell Line Encyclopedia, HPV is not present, 

and therefore a viral mechanism does not appear to play a role (although other 

head/neck and bladder cancer lines are known to be HPV-positive and the viral 

mechanism discussed above is a contributing factor). Future studies are therefore likely 

to reveal additional mechanisms for APOBEC3B upregulation, but it is possible that non-

canonical NFκB activation will emerge as a common denominator and hub for 

APOBEC3B upregulation.  

It will also be interesting to determine the relationship between upregulation of 

APOBEC3B and immunotherapy responsiveness, as recent reports have suggested that 

increased tumor mutation loads correlate with stronger anticancer immune responses 

(3,142). It may therefore be useful to induce APOBEC3B, as described here, to create 

even more tumor neoantigens in order to boost efficacies of current immunotherapies. 

Although PKC mutations are rare in cancer, altered expression of several PKC 

isoforms is observed and associated with poor clinical outcomes [(121,122) and 

references therein]. In addition, mutations in GNAQ and GNA11 occur in approximately 
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half of all uveal melanoma samples [(143,144); illustrated as Gq in Fig. 3.5]. Inhibition of 

PKC in these uveal tumors leads to clinical benefits attributed to cell cycle arrest and 

apoptosis (131-134). It is possible that downregulation of APOBEC3B and a subsequent 

decrease in tumor evolution through lowered mutation rates may also contribute to these 

encouraging clinical responses. Based on substantive prior work from our lab and others 

demonstrating a major role for APOBEC3B in cancer mutagenesis and correlating high 

levels of APOBEC3B with poor prognoses for ER-positive breast cancers (26,27), 

together with the studies presented here, we propose that existing inhibitors of the PKC-

NFκB axis such as AEB071 may be repurposed to treat primary tumors in combination 

with existing therapies and help prevent detrimental outcomes such as drug resistance 

and metastases. 

 

METHODS 

Cell lines 

MCF10A, 293T, HeLa, HCC1569, MDA-MB-468, MDA-MB-453, HCC1806, T24, RT4, 

TCCSUP, and J28 were purchased from the American Tissue Culture Collection (ATCC) 

and cultured as recommended. N/TERT-1 and NIKS were provided by Drs. Peter 

Howley (Harvard University) and Paul Lambert (University of Wisconsin), respectively, 

and grown as reported (69). A2780, OVCAR5, IGROV-1, and OVCAR8 were obtained 

from Dr. Scott Kaufmann (Mayo Clinic) and cultured as reported (74). MCF-7L were 

provided by Dr. Douglas Yee (University of Minnesota) and grown in IMEM containing 

5% fetal bovine serum (FBS), penicillin (100 U/ml), streptomycin (100 ug/ml) and 11.25 

nM recombinant human insulin. SQ20B, JSQ3, TR146, and SCC58 were obtained from 

Dr. Mark Herzberg (University of Minnesota) and cultured at 37°C with 5% CO2 in 

DMEM/F12 with 10% FBS, penicillin, streptomycin, and 400 ng/mL hydrocortisone. 
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Reverse transcription quantitative PCR 

For RT-qPCR, cells were trypsinized and pelleted prior to RNA extraction using the 

Roche High Pure RNA Isolation Kit. Triplicate cDNA reactions were made using Roche 

Transcriptor Reverse Transcriptase. qPCR was performed on each reaction using 

previously reported primer-probe combinations for each APOBEC (44). For PKCα, the 

forward and reverse primers were 5’-TGGTTTTGGTTCCCATTTCT and 5’-

CATCCGGGTTTCCTGATTC, respectively, and were used with Roche UPL 1. For TNFα, 

the forward and reverse primers were 5’-CAGCCTCTTCTCCTTCCTGAT and 5’-

GCCAGAGGGCTGATTAGAGA, respectively, and were used with Roche UPL 29 

 

Immunoblotting 

The development and validation of the rabbit monoclonal antibody (mAb) against 

APOBEC3B will be described elsewhere (Brown and Harris, in process). The mAb used 

here is called 10-87-13, and it effectively binds endogenous APOBEC3B in a variety of 

assays including immunoblotting as demonstrated in several experiments. In some cell 

lines, this mAb cross-reacts with endogenous APOBEC3G, but the faster migrating 

APOBEC3B can be readily distinguished from the slower migrating APOBEC3G by 

SDS-PAGE (e.g., Fig. 3.4B). The anti-tubulin (Covance, cat # MMS-407R) and PKCα 

(Cell Signaling, cat # 2056P) antibodies were used in accordance with the 

manufacturer’s specifications. 

 

Deaminase activity assays 

Deaminase activity assays were performed as previously reported (69). In short, 4 pmol 

of a fluorescently labeled oligo with a single target cytosine (5’-

ATTATTATTATTCAAATGGATTTATTTATTTATTTATTTATTT-fluorescein) was treated 

with cell extract containing 0.025 U/rxn UDG (New England BioLabs), UDG buffer, and 
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1.75 U/rxn RNase A (Qiagen) for 2 hours. Abasic sites were cleaved by treatment with 

100 mM NaOH at 95°C for 10 min. Substrate was separated from product using 15% 

TBE-urea gel electrophoresis. Gels were scanned using a FujiFilm Image Reader FLA-

7000. 

 

PMA induction and PKC-NFκB Inhibitors 

For induction experiments, 2.5 x 105 cells were plated in a 6-well plate 1 day prior to 

drug treatment. PMA was then added to the media and incubated at 37°C with 5% CO2 

for 6 hours unless otherwise indicated. For experiments utilizing inhibitors, cells were 

pretreated with inhibitors 30 minutes prior to PMA induction (25ng/mL). PMA (Fisher 

Scientific), cyclohexamide (Acros Organics), Gö6983 (Cayman Chemical), LY294002 

(EMD Chemicals), UO126 (EMD Chemicals), BIM-1 (Cayman Chemical), Gö6976 (Enzo 

Life Sciences), AEB071 (Medchem Express), BAY 11-7082 (R&D Systems), MG132 

(Fisher Scientific), and TPCA-1 (Cayman Chemical) were stored as recommended. 

 

PKC knockdown experiments 

shRNA encoding pLKO.1-based lentiviruses were produced in 293T cells as reported 

(23). MCF10A cells were transduced with PKCα #1 (Open Biosystems, 

TRCN0000001691), PKCα #2 (Open Biosystems, TRCN0000001692), or PKCα #3 

(Open Biosystems, TRCN0000001690) or a control lentivirus. 96 hours later the 

transduced pools were treated with 25ng/mL PMA for 3 (RNA) or 6 (protein) hours, and 

were harvested and analyzed as described above. 

 

RNA sequencing experiments 

Two sets of MCF10A cells in duplicate were treated every 8 hours with media 

supplemented with PMA or DMSO for 48 hours. At 48 hours, RNA was extracted using 
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an RNeasy Mini Kit (Qiagen). Total RNA was submitted to the University of Minnesota 

Genomics Center for sequencing on the Illumina HiSeq 2000 platform. Raw reads were 

analyzed using both DESeq2 (145) and the Tuxedo suite (146) to identify changes in 

mRNA expression in PMA treated versus untreated cells. 

 

Chromatin immunoprecipitation experiments 

MCF10A cells were treated with either DMSO or 25 ng/mL PMA for 2 hours. Cross-

linking was performed with 1% formaldehyde for 10 min at room temperature and 

quenched with 150 mM glycine. Cells were then lysed in Farnham Lysis Buffer at 4°C for 

30 minutes. Nuclei were pelleted, resuspended in RIPA Buffer, and sonicated 

(Diagenode Pico Sonicator) to generate approximately 600 bp DNA fragments. 

Immunoprecipitations were done using Protein G Dynabeads (Invitrogen) and 2 µg 

antibody per sample. Samples were washed in 1 mL low salt wash buffer, 1 mL high salt 

wash buffer, 1 mL LiCl wash buffer, and eluted at 65°C for 30 minutes. Samples were 

reverse cross-linked using 200 mM NaCl and treated with Proteinase K for 12 hours at 

65°C. DNA was purified using a ChIP DNA Clean and Concentrator Kit (Zymo Research) 

and qPCR was performed with SYBR Green master mix (Roche) on a Roche 

LightCycler 480. Values represent the percentage of input DNA immunoprecipitated (IP 

DNA) and are the average of three independent qPCR reactions. All ChIP reagents can 

be found in the supplementary information (Table 3.S1). 
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Figure 3.1 APOBEC3B upregulation by PMA. 

(A) A histogram showing the specific upregulation of APOBEC3B mRNA by PMA. 

MCF10A cells were treated with PMA (25 ng/ml) or vehicle control for 6 hrs, and mRNA 

levels were measured by RT-qPCR (mean and SD are shown for triplicate RT-qPCR 

reactions normalized to TBP). The same data points are shown in the context of a larger 

PMA dose response experiment in Fig. S1. 

(B) A histogram demonstrating the dose responsiveness of APOBEC3B upregulation by 

PMA. Normalization and quantification were calculated as in Fig. 1A. The middle images 

show immunoblots for corresponding APOBEC3B and TUBULIN proteins levels, and the 

lower image shows DNA cytosine deaminase activity for the corresponding whole cell 
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extracts (S, substrate; P, product; percent deamination quantified below each lane).  

(C) A histogram depicting the rapid kinetics of APOBEC3B upregulation following PMA 

treatment. MCF10A cells were treated with a single concentration of PMA (25 ng/ml), 

and mRNA, protein, and activity levels are reported as in Fig. 1B. 

(D) New protein synthesis is dispensable for APOBEC3B mRNA upregulation by PMA. 

Representative dose response experiment for MCF10A cells treated with the indicated 

concentrations of PMA following a 30 min pretreatment with 10 µg/mL cyclohexamide. 

mRNA, protein, and activity levels are reported as in Fig. 1B 
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Figure 3.2 APOBEC3B upregulation by PMA is dependent on PKC. 

(A-F). Histograms reporting the impact of the indicated small molecules on PMA-induced 

APOBEC3B upregulation. APOBEC3B induction was inhibited by Gö6983 (pan-PKC 

inhibitor), BIM-1 (classical and novel PKC inhibitor), Gö6976 (classical PKC selective 

inhibitor), and AEB071 (preclinical PKC inhibitor) but not by LY294002 (PI3K inhibitor) or 

UO126 (MEK inhibitor). MCF10A cells were treated with PMA following a 30 min 

pretreatment with the indicated concentrations of each inhibitor. mRNA expression is 

reported as the mean of 3 independent RT-qPCR reactions normalized to TBP (error 
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bars report SD from triplicate assays).  

(G) Histogram depicting PKC isoforms expressed in MCF10A cells treated with PMA or 

vehicle control. mRNA expression was determined by RNA-seq and is reported as 

fragments per kilobase of exon per million fragments mapped (FKPM) and normalized to 

TBP. 

(H) Histogram showing that PKCα knockdown inhibits APOBEC3B induction by PMA. 

MCF10A cells were treated with PMA following PKCα knockdown using 3 independent 

PKCα specific shRNA encoding lentiviruses and a control. mRNA levels for both PKCα 

(blue) and APOBEC3B (red) are reported. 

(I) Immunoblots confirming PKCα knockdowns and proportional reductions in 

APOBEC3B protein levels. 
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Figure 3.3 Non-canonical NFκB signaling is responsible for APOBEC3B upregulation by 

PMA. 

(A-B) Histograms depicting the dose responsive inhibition of PMA-induced APOBEC3B 

upregulation by BAY 11-7082 (ubiquitination inhibitor) and MG132 (proteasome inhibitor). 

MCF10A cells were treated with PMA following a 30 min pretreatment with the indicated 
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concentrations of each inhibitor. APOBEC3B mRNA expression is reported as the mean 

of 3 independent RT-qPCR reactions normalized to TBP (error bars report SD from 

triplicate assays).  

(C) Histogram depicting NFκB subunit mRNA levels in MCF10A cells treated with PMA 

or vehicle control. Expression was determined by RNA-seq and is reported as fragments 

per kilobase of exon per million fragments mapped (FKPM) and normalized to TBP. 

(D) Plot depicting inhibition of PMA-induced APOBEC3B expression by the IκB kinase 

(IKK) inhibitor, TPCA-1, near the IC50 for IKKα, not IKKβ. MCF10A cells were treated 

with PMA following treatment with varying concentrations of TPCA-1. TNFα (blue) and 

APOBEC3B (red) mRNA levels are reported as the mean of 3 independent RT-qPCR 

reactions normalized to TBP (error bars report SD from triplicate assays). The dotted 

lines denote previously reported in vitro IC50 values for IKKα and IKKβ inhibition by 

TPCA-1 (138).  

(E) Histogram showing the kinetics of NFKBIA upregulation by PMA. MCF10A cells were 

treated with PMA for the indicated times and mRNA values were quantified as in Fig. 3A. 

(F) The APOBEC3B and NFKBIA promoter regions contain several putative NFκB 

binding sites (TSS, transcriptional start site). 

(G) RELB and p105/p52 are specifically and robustly recruited to the APOBEC3B 

promoter region by PMA. ChIP was performed after a treatment with PMA or vehicle 

control for 2 hrs. APOBEC3B sites 4 & 5 and the two NFKBIA sites are reported together 

because they are too close to be distinguished by this procedure. qPCR results are 

reported as percent of the total chromatin input. 
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Figure 3.4 The PKC pathway drives endogenous APOBEC3B expression in cancer cells. 

(A) APOBEC3B mRNA levels in representative breast, ovarian, bladder, and head/neck 

cancer cell lines. mRNA expression is reported as the mean of 3 independent RT-qPCR 

reactions normalized to TBP (error bars report SD from triplicate assays). 

(B) AEB071 downregulates APOBEC3B in multiple cancer cell lines. The histogram 

reports APOBEC3B mRNA levels normalized to the vehicle treated control for each line. 

The dotted line represents a 50% decrease in APOBEC3B expression. The 

corresponding immunoblots show APOBEC3B and TUBULIN levels. Each line was 

treated with AEB071 (10µM) or vehicle control for 48 hours prior to mRNA and protein 

analysis.  
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Figure 3.5 Model for APOBEC3B upreglation by the PKC-NFκB pathway. 

PKCα activation by DAG or PMA leads to IKKα phosphorylation and proteasome-

dependent cleavage of NFκB subunit p100 into the transcriptionally active p52 form. The 

non-canonical NFκB heterodimer containing p52 and RELB is then recruited to the 

APOBEC3B promoter to drive transcription. Red labels represent the small molecules 

and approaches used to interrogate this signal transduction pathway. 
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Table 3.S1 ChIP reagents. 
Category Name  Description 
Antibody Normal Rabbit IgG Santa Cruz (sc-2027) 
Antibody RNA Pol II (Ser 5) Abcam (ab5131) 
Antibody Rel A (p65) Santa Cruz (sc-372x) 
Antibody p105/p50 Millipore (06-886) 
Antibody Rel B Santa Cruz (sc-226x) 
Antibody p105/p52 Cell Signaling (3017) 
Buffer Farnham lysis 

buffer 
5 mM PIPES pH 8 
85 mM KCl 
0.5% Nonidet P-40 
1x EDTA-free Protease Inhibitor Cocktail (Roche) 

Buffer RIPA buffer 50 mM Tris-HCl pH 8 
150 mM NaCl 
5 mM EDTA 
1% Nonidet P-40 
0.5% Deoxycholate 
0.1% SDS 
1x EDTA-free Protease Inhibitor Cocktail (Roche) 

Buffer Low salt wash 
buffer 

20 mM Tris-HCl pH 8 
150 mM NaCl 
2 mM EDTA 
0.1% SDS 
1% Triton X-100 

Buffer High salt wash 
buffer 

20 mM Tris-HCl pH 8 
500 mM NaCl 
2 mM EDTA 
0.1% SDS 
1% Triton X-100 

Buffer LiCl wash buffer 20 mM Tris-HCl pH 8 
0.5 M LiCl 
1% Nonidet P-40 
1% deoxycholate 
1 mM EDTA 

Buffer Elution buffer 100 mM NaHCO3 
1% (w/v) SDS 
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Figure 3.S1 APOBEC3B upregulation by PMA in multiple cell lines. 

A histogram reporting PMA-induced APOBEC3B mRNA levels in the indicated cell lines 

(red bars) relative to the same lines treated with DMSO as a vehicle control (blue bars). 

Cells were treated with 25 ng/ml PMA or DMSO for 6 hrs prior to RNA preparation and 

RT-qPCR. DMSO-treated APOBEC3B expression values relative to those of the 

housekeeping gene TBP are 0.04, 0.07, 0.19, 0.47, 0.30, and 0.02 for 293T, MCF7L, 

HeLa, N/Tert, NIKS, and MCF10A, respectively. Each histogram bar reports the mean of 

3 independent RT-qPCR reactions (error bars show SD from triplicate assays). 

  

Figure S1. APOBEC3B upregulation by PMA in multiple cell lines.
APOBEC3B mRNA levels normalized to DMSO treated controls in the indicated cell 
lines treated with DMSO or 25ng/mL PMA for 6 hrs. mRNA expression is reported as the 
mean of 3 independent RT-qPCR reactions (error bars report SD from triplicate assays).
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Figure 3.S2 APOBEC3 mRNA levels in PMA-treated MCF10A. 

APOBEC family member mRNA levels in MCF10A cells treated with the indicated PMA 

concentrations or DMSO as vehicle control for 6 hrs. mRNA expression is reported as 

the mean of 3 independent RT-qPCR reactions normalized to TBP (error bars show SD 

from triplicate assays). The 25 ng/ml data are shown in Fig. 3.1A.   
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Figure S2. APOBEC3 mRNA levels in PMA treated MCF10A.
APOBEC family member mRNA levels in MCF10A cells treated with the indicated 
PMA concentrations or DMSO as vehicle control for 6 hrs. mRNA expression is 
reported as the mean of 3 independent RT-qPCR reactions normalized to TBP (error 
bars report SD from triplicate assays). The 25 ng/ml data are shown in Fig. 1A.
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Figure 3.S3 Extended time course for PMA induction of APOBEC3B. 

APOBEC3B mRNA levels in MCF10A cells treated with 25ng/mL PMA for the indicated 

times. mRNA expression values are normalized to those of the housekeeping gene TBP 

and reported as the mean of 3 independent RT-qPCR reactions (error bars show SD 

from triplicate assays). 

  

Figure S3. Extended PMA timecourse in MCF10A cells
APOBEC3B mRNA levels in MCF10A cells treated with 25ng/mL PMA for the indicated 
times. mRNA expression is reported as the mean of 3 independent RT-qPCR reactions 
and normalized to TBP (error bars report SD from triplicate assays).
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Figure S4. Viability controls for MCF10A cells treated with small molecule inhibitors.
PI staining for cell cycle (histogram) and brightfield microscopy for cellular morphology 
(images) for MCF10A cells treated with 10µM of the indicated small molecule inhibitor 
for 6 hours.
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Figure 3.S4 Viability controls for MCF10A cells treated with small molecule inhibitors. 

PI staining for cell cycle (histogram) and bright field microscopy for cellular morphology 

(images) for MCF10A cells treated with 10 µM of the indicated small molecule inhibitor 

for 6 hrs. Microscopy images were taken at 40x magnification. 
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Figure 3.S5 Expanded ChIP data for MCF10A cells treated with PMA alone or in 

combination with AEB071.  

ChIP was done for the indicated proteins after a treatment with vehicle control, PMA or 

PMA following a 2hr pretreatment with AEB071. APOBEC3B sites 4 & 5 and the two 

NFKBIA sites are reported together because they are too close to be distinguished by 

this procedure. qPCR results are reported as percent of the total chromatin input.  
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Figure 3.S6 Viability controls for cancer cell lines treated with AEB071. 

PI staining for cell cycle for the indicated cancer cell lines treated for 48 hrs with either 

DMSO (blue) or 10 µM AEB071 (red). 
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SUMMARY 

The main physiological function of the APOBEC family of DNA cytosine 

deaminases is defending against viral infection and endogenous retroelement replication 

in human cells. Expression of one family member, APOBEC3B, has emerged as a major 

source of mutation in cancer with adverse pathological consequences. Other APOBEC 

family members may also contribute to carcinogenesis. However, given the known roles 

of this family in immunity, especially in T cells, detection of APOBECs in heterogeneous 

tumor specimens is likely to be confounded by immune cell infiltration. Because T cell 

infiltration has been shown to be a prognostic marker in high-grade serous ovarian 

cancer (HGSOC), we asked whether correlations exist between APOBEC gene 

expression and T cell markers in a cohort of 354 HGSOC patients. We identified a 

strong linear correlation between several T cell markers, including CD3D, CD4, CD8A, 

GZMB, and PRF1, and the expression of the HIV-1 restriction factor APOBEC3G, but 

not the cancer genome mutator APOBEC3B. Using clinical data, we show that high 

APOBEC3G expression correlates more significantly with improved overall and 

progression-free survival than the previously validated T cell markers listed above. 

Finally, we analyzed publically available RNA sequencing data and found that 

APOBEC3G expression correlates with the T cell marker, CD3D, across multiple cancer 

types. Additional correlations were seen between the other HIV restrictive APOBEC3s 

and CD3D, and between the antibody diversification gene, AID, and the B cell marker, 

CD20. Our results highlight the complexity of the tumor microenvironment and identify 

APOBEC3G as a new biomarker for HGSOC. 

 

INTRODUCTION 

In addition to genome instability, immune infiltration is an enabling hallmark of 

cancer (1). Both genome instability and immune infiltration have the unique capability of 
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driving several other hallmarks by increasing genetic and cellular heterogeneity, 

respectively. One challenge in the field of cancer genomics has been to resolve this 

dynamic and complex heterogeneity within the new wealth of deep sequencing data. 

Deconvolution of these data is not trivial because observed differences between cancer 

cells, immune infiltrates, and stromal cells complicate many experimental approaches 

including gene expression profiling and mutation calling. 

Recently, the APOBECs have been implicated as drivers of cancer progression 

[(80,147,148) and references therein]. The APOBECs are an 11-member family of 

cytosine deaminases that convert cytosines to uracils (C-to-U) in ssDNA (48). Their 

enzymatic activity has been shown to be a critical component of both the adaptive and 

innate immune systems [(32) and references therein]. AID is arguably the most studied 

APOBEC due to its known roles in antibody diversification through somatic 

hypermutation and class switch recombination in B cells (33). APOBEC3D, F, G, and H 

are highly established restriction factors of human immunodeficiency virus-1 (HIV-1) 

replication in CD4+ T cells (34). All 4 of these APOBEC3s can be induced upon T cell 

activation or viral infection and are capable of introducing C-to-U lesions in viral cDNA 

intermediates that manifest as G-to-A mutations in proviral genomes (36,37,44). 

While the APOBEC3s have been shown to have important physiologic roles in 

protecting cells from endogenous and exogenous pathogens, their dysregulation has 

also been linked to pathologic consequences. The most significant example is the recent 

finding that APOBEC3B is a major contributor of mutation in breast, ovarian, and several 

other cancers (13,21-23,74). APOBEC3B can deaminate cytosines to promutagenic 

uracil lesions in genomic DNA, which will result in mutations if they are not repaired 

properly. In addition, APOBEC3B is significantly upregulated in multiple cancers and its 

mutation signature is overrepresented in cancer genomes, which is defined by C-to-T/G 

mutations primarily in TCW trinucleotide contexts. Elevated expression of APOBEC3B 
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has also been linked to poor prognosis in estrogen receptor (ER)-positive breast cancers 

(26,27). 

In addition to the identification of APOBEC3B as a major contributor to the 

mutations that drive cancer progression, other APOBECs have also been implicated as 

potential contributors to mutagenesis in cancer (50,65,149). Because many APOBEC 

family members are highly expressed in immune cells, a major confounding factor in the 

quantification of APOBEC expression levels from expression profiling of tumors is 

cellular heterogeneity driven by immune infiltration, as discussed above. To address this 

issue and determine the contribution of immune cell infiltrates to expression of the 

APOBECs within tumor samples, we first examined a cohort of high-grade serous 

ovarian carcinoma (HGSOC) samples, where increased expression of T cell markers is 

known to be associated with improved prognosis (76-79). We found a strong correlation 

between APOBEC3G expression and markers of T cell infiltration. Moreover, 

APOBEC3G was significantly associated with improved prognosis. We also applied 

these findings to multiple cancer types through an analysis of publically available RNA 

sequencing (RNAseq) data from The Cancer Genome Atlas (TCGA). Together our data 

elucidate the complexity of APOBEC expression profiling in heterogeneous tumor 

specimens and identify APOBEC3G as a new biomarker for HGSOC. 

 

RESULTS 

APOBEC3G expression correlates with T-cell activation in HGSOC 

APOBEC3D, F, G, and H are known to be highly expressed in T cells, where 

they form an overlapping innate immune defense against HIV-1 replication (36,37,44). 

Using a cohort of 354 primary HGSOC tumor samples, we asked whether one of these 

family members, APOBEC3G, also associates with T cell infiltrates in heterogeneous 

tumor samples (clinical characteristics in Table 4.1). In addition to APOBEC3G, we also 
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quantified APOBEC3B expression levels both as a negative control and because of its 

known role in ovarian cancer genome mutagenesis (74). To determine the relative 

amount of T cell infiltration we analyzed several markers, including CD3D (total T cells), 

CD4 (helper T cells), CD8A (cytotoxic T cells), GZMB (activated cytotoxic T cells), PRF1 

(activated cytotoxic T cells), and RNF128 (anergic T cells) (150,151). As expected, we 

did not observe any remarkable correlations between APOBEC3B and any of the T cell 

markers (Fig. 4.1A-F). We did find significant correlations between APOBEC3G and all 

T cell markers except RNF128 which is a marker of T cell anergy (Fig. 4.1G-L). 

Interestingly, we found that APOBEC3G had a slightly stronger positive, linear 

correlation with CD8A than CD4 (Fig. 4.1H vs. 4.1I), which is interesting because there 

have not been any studies focused on elucidating the function of APOBEC3G in 

cytotoxic T cells (CTLs). This discovery was further corroborated by additional 

correlations between APOBEC3G and two markers of CTL activation, GZMB and PRF1 

(Fig. 4.1J and 4.1K). The data shown here not only supported previous studies that 

describe APOBEC3G expression in T cells (44,45), but also show an unanticipated 

association between APOBEC3G and CTL activation. 

 

APOBEC3G is a biomarker of improved patient outcomes in HGSOC 

Given the strong correlation between APOBEC3G expression and markers of T 

cell infiltration (Fig. 4.1G-K) and previous studies identifying T cell infiltration as a 

marker of improved patient outcomes in HGSOC (76-79), we next asked whether 

APOBEC3G could be a useful clinical biomarker for HGSOC patient outcomes. Long-

term clinical follow-up data was available for all of the patients from which the above 

samples were taken. We used these clinical data and the expression profiling performed 

above to determine whether APOBEC3G expression could predict progression free 

survival (PFS) and/or overall survival (OS) in HGSOC. As a positive control we also 
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looked at the T cell markers above. Although we did not see a significant difference in 

PFS with respect to CD3D expression, we did observe significantly improved PFS in 

patients with tumor samples expressing higher levels of CD4 and PRF1 (Fig. 4.2A). A 

trend toward a similar result was also observed for CD8A and GZMB (Fig. 4.2A). As 

expected, RNF128 did not correlate with PFS (Fig. 4.2A). Interestingly, APOBEC3G 

surpassed all of these genes as the most indicative marker of improved PFS in HGSOC 

(Fig. 4.2A). The results compiled from an analysis of OS largely mirrored those of PFS 

(Fig. 4.2B). 

 

APOBEC3B expression is not significantly associated with patient outcomes in 

HGSOC 

APOBEC3B has recently been implicated as an endogenous mutagen in several 

humans cancers [(80,147,148) and references therein], including ovarian cancer (74). 

Moreover, its expression has been linked to poor patient outcomes in ER-positive breast 

cancer (26,27). Using the expression data and clinical information from above, we asked 

if APOBEC3B affects patient outcomes in HGSOC. While there was a slight trend toward 

high APOBEC3B and improved, rather than worsened, outcome, we did not observe any 

striking correlation between APOBEC3B and patient outcome in HGSOC (Fig. 4.2A and 

4.2B). These data suggest that APOBEC3B may not have as great of an effect on the 

ovarian cancer genome as it does in breast cancer. 

 

APOBEC expression correlates with immune cell markers in multiple human 

cancers 

To apply our findings from HGSOC to several additional human cancers, we 

analyzed publically available RNAseq data from TCGA. At the time of these analyses, 

the TCGA had RNAseq data available for 7,861 samples spanning 22 different tumor 
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types (Table 4.S1). For each tumor type, we quantified the expression of the APOBEC 

family members and determined correlations with the T cell marker CD3D (Fig. 4.3A; 

heat map). We also performed hierarchical clustering to elucidate similar correlation 

patterns between cancer types (Fig. 4.3A and 4.3B; dendrogram). These analyses 

revealed that, in addition to APOBEC3G, APOBEC3D and H also correlated significantly 

with CD3D across multiple cancer types (Fig. 4.3A). Interestingly, APOBEC3F, which is 

also known to restrict HIV replication, did not correlate as strongly. We also performed 

the same analysis with CD20, which is a well-known marker for B cells (Fig 4.3B). The 

expression of the antibody diversification gene, AID, was the only APOBEC family 

member that significantly correlated with CD20 in a majority of cancer types (Fig. 4.3B). 

These analyses reveal that a majority of the expression of several APOBEC family 

members is likely due to T and B cell immune infiltrates into the tumor microenvironment 

of several cancer types. 

 

DISCUSSION 

The global and HGSOC specific analyses performed here have led to the 

identification of APOBEC3G as a novel biomarker for improved patient outcomes in 

HGSOC. Our analysis of a cohort of 354 HGSOC patients identified a strong correlation 

between APOBEC3G and several markers of T cell infiltration (Fig 4.1G-K). Furthermore, 

clinical data revealed that APOBEC3G also associates with improved outcome better 

than previously validated T cell markers (Fig 4.2A and 4.2B). Finally, our global analysis 

across 22 cancer types identified a striking correlation between several additional HIV 

restrictive APOBECs and a marker of T cells, CD3D, in several heterogeneous tumor 

specimens from the TCGA (Fig 4.3A). Together, our data suggest that APOBEC3G 

predicts improved clinical outcomes by acting as a biomarker for anti-cancer T cell 

responses in heterogeneous tumor samples. 
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While APOBEC3B and AID remain the only substantially supported cytosine 

deaminases to catalyze cancer genome mutagenesis, several other APOBEC family 

members have been implicated as well (50,65,149). APOBEC3B is thought to contribute 

to cancer mutation in several human cancers, including breast, lung, bladder, cervical, 

head/neck, and ovarian cancer (13,21-23,74). Conversely, the carcinogenic effects of 

AID are more limited, as it has only been shown to cause certain types of B cell 

lymphomas (52,53). This idea is supported by our data showing that AID correlates with 

a marker of B cells in several solid  tumor types (Fig. 4.3B). It has also been proposed 

that APOBEC3G drives hepatocellular carcinoma tumorigenesis (50). This is unlikely 

given that most of the APOBEC3G expression seen in primary tumor specimens is likely 

confined to T cell infiltrates (Fig 4.1G-K and 4.3A). 

While we saw a strong correlation between APOBEC3D, G, and H and CD3D in 

our analysis of TCGA data, the correlation was substantially diminished for APOBEC3F 

(Fig. 4.3A). This is interesting because APOBEC3F is thought to play an equally 

important role in HIV-1 restriction in CD4+ T cells as APOBEC3D, G, and H, and prior 

studies have found that APOBEC3F is expressed at comparable levels to APOBEC3D 

and higher than APOBEC3H in human primary CD4+ T cells (36,37,44). Our data 

suggest that either APOBEC3F is not as consistently expressed in T cells associated 

with the tumor microenvironment or that APOBEC3F is highly expressed in other cell 

types within tumor samples. The latter is consistent with previous reports that 

APOBEC3F is readily detectable in several breast and ovarian cancer cell lines where 

immune infiltrates are not present (23,74). 

It is also interesting that APOBEC3G correlates more significantly with cytotoxic 

T cell activation markers than CD4 expression (Fig. 4.1H vs. 4.1I-K). The primary host 

cell for HIV replication is CD4+ T cells and it is here that APOBEC3G is known to restrict 

viral replication through the deamination of cDNA intermediates. Nevertheless, there has 
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been a previous study that detected APOBEC3G expression in CD8+ T cells isolated 

from primary peripheral blood mononuclear cells (45). Together, these data indicate that 

APOBEC3G may have additional roles in other cell types, such as cytotoxic T cells. 

Indeed, alternative functions have been suggested for this cytosine deaminase, including 

the restriction of endogenous retroelements (152) and the long-term evolutionary conflict 

between primates and retroviruses besides HIV-1 (153,154), both of which likely take 

place in multiple cell types. 

Our parallel analysis to determine how APOBEC3B expression affects patient 

outcomes in HGSOC found that APOBEC3B does not have a major impact on clinical 

prognosis (Fig 4.2A and 4.2B). This surprising finding differs significantly from breast 

cancer, where high APOBEC3B expression is associated with poor clinical outcome 

(26,27). One major difference between these two cancer types is the therapeutic options 

available for treatment. There are multiple targeted therapeutics available for the 

treatment of breast cancer that are administered based on molecular markers. In 

contrast, nearly all ovarian cancer patients are treated with frontline platinum-based 

therapies. Because platinum-based therapies induce DNA damage, it would also be 

interesting to determine if these drugs are synergistic with APOBEC3B catalyzed 

cytosine deamination and create a synthetic lethal state in cancer cells. This hypothesis 

is not unfounded as a study has shown that increased mutation loads correlates with 

improved clinical outcomes in HGSOC patients treated with cisplatin (155). Furthermore, 

a negative synergistic effect created by these two forms of DNA damage could explain 

the slight trend toward a correlation between increased APOBEC3B expression and 

improved outcomes. Another, and potentially more likely scenario, is that the levels of 

APOBEC3B mutagenesis in ovarian cancer are not high enough to manifest clinically. 

Indeed, the strength of the APOBEC3B mutation signature was not as strong in ovarian 

cancer as many other cancer types despite similar expression levels (13,21-23,74). The 
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underlying causes for this discrepancy are currently unknown, but several factors could 

be involved, including DNA repair efficiency and regulatory protein modifications. 

Regardless, more work is needed to determine the threshold of APOBEC3B 

mutagenesis needed to confer a clinical impact. 

 

MATERIALS AND METHODS 

Ovarian cancer cohort analysis 

Primary tumor samples from 354 HGSOC patients were selected based on 

morphology, grade, stage, and availability of clinical outcome data (IRB #13-002487). 

TRIzol based RNA extractions were performed following crysectioning of each snap 

frozen tissue specimen. cDNA was synthesized in triplicate using Transcriptor Reverse 

Transcriptase (Roche) and RT-qPCR for APOBEC3B, APOBEC3G, CD3D, CD4, CD8A, 

GZMB, PRF1, RNF128, and TBP was performed using the primer and probe 

combinations listed in Table 4.S2 and validation in Fig 4.S1. Correlations were 

determined using Spearman’s correlation and Spearman’s correlation coefficient (rs) and 

p-values are reported. Kaplan-Meier plots were constructed in GraphPad Prism and p-

values were calculated using the Mantel-Cox log-rank test. 

 

TCGA analysis 

The most recent version of all normalized RNAseqV2 data as of July 2015 was 

acquired from TCGA. mRNA expression for each APOBEC family member, CD3D, and 

CD20 were quantifed based on normalized read counts. rs and p-values for linear 

models of APOBEC versus immune-marker genes were calculated using Spearman’s 

correlation with the R statistical package.  
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Table 4.1 HGSOC clinical characteristics 
 
  
 Total (n=354) 
Morphology  

Serous 354 (100%) 
  
Grade  

2 11 (3.1%) 
3 343 (96.9%) 

  
Stage  

1 14 (3.9%) 
2 8 (2.3%) 
3 253 (71.5%) 
4 79 (22.3%) 

  
Debulking Status  

No residual disease 162 (45.8%) 
<=1 cm remaining 144 (40.7%) 
<=1 cm remaining, possibly 0 48 (13.5%) 
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Figure 4.1 Correlations between APOBEC3 expression and T cell markers in HGSOC. 

Dot plots illustrating correlations between APOBEC3B (A-F) or APOBEC3G (G-L) 

expression and the indicated T cell marker. mRNA expression was determined using 

B

A

-8

-4

0

4

C
D
3D
/T
B
P

-8

-4

0

4

C
D
3D
/T
B
P

-8

-4

0

4

8

C
D
4/
TB
P

-8

-4

0

4

8

C
D
4/
TB
P

-12

-8

-4

0

C
D
8A
/T
B
P

-12

-8

-4

0

C
D
8A
/T
B
P

-8

-4

0

4

G
ZM
B
/T
B
P

-8

-4

0

4
G
ZM
B
/T
B
P

-8

-4

0

4

P
R
F1
/T
B
P

-8

-4

0

4

P
R
F1
/T
B
P

-4 0 4-8 -4 0 4
APOBEC3B/TBP

-8

-4

0

4

R
N
F1
28
/T
B
P

R
N
F1
28
/T
B
P

rs=0.1057
p=0.0505

rs=0.0889
p=0.1003

rs=0.1107
p=0.0408

rs=0.1726
p=0.0013

rs=0.0732
p=0.1763

rs=0.6159
p<0.0001

rs=0.5825
p<0.0001

rs=0.6168
p<0.0001

rs=0.6591
p<0.0001

rs=0.6422
p<0.0001

rs=0.0161
p=0.7665

C

D

E

F

H

G

I

J

-8

-4

0

4
rs=-0.0781
p=0.1496

L

-12 -12

APOBEC3G/TBP



	  

	   114 

RT-qPCR and all data was normalized to the housekeeping gene, TBP. Spearman’s 

correlation coefficients (ρ) and p-values were calculated using Spearman’s correlation. 

Best-fit lines are shown for qualitative comparison, and were calculated using linear 

regression models. 
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Figure 4.2 Clinical Correlates of APOBEC3 and T cell marker expression in HGSOC. 

Kaplan-Meier plots illustrating associations between progression free survival (A) or 

overall survival (B) and either one of the T cell markers or APOBEC expression. 

Samples were split at the median and p-values were calculated using the Mantel-Cox 

log-rank test. 
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Figure 4.3 Correlations between APOBEC expression and immune cell markers across 

22 cancer types. 

Heat map of Spearman’s correlation coefficients calculated from the comparison of 

CD3D (A) or CD20 (B) with the indicated APOBEC family member. Expression levels 

were determined using TCGA RNAseq data. Annotation of the cancer abbreviations can 

be found in Table 4.S1. Dark red squares indicate strong positive correlations, dark blue 

squares indicate strong negative correlations and white squares indicate a lack of 

correlation.  
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Table 4.S1 Summary of samples used in TCGA analysis 

 

Cancer type TCGA 
Abbreviation Number of samples 

Bladder urothelial carcinoma BLCA 408 
Breast invasive carcinoma BRCA 1,066 

Cervical squamous cell carcinoma and 
endocervical adenocarcinoma CESC 306 

Esophageal carcinoma ESCA 185 
Glioblastoma multiforme GBM 169 

Head and neck squamous cell carcinoma HNSC 521 
Kidney renal clear cell carcinoma KIRC 103 

Kidney renal papillary cell carcinoma KIRP 291 
Acute Myeloid Leukemia LAML 173 
Brain lower grade glioma LGG 534 

Liver hepatocellular carcinoma LIHC 327 
Lung adenocarcinoma LUAD 513 

Lung squamous cell carcinoma LUSC 502 
Ovarian serous cystadenocarcinoma OV 266 

Pancreatic adenocarcinoma PAAD 99 
Prostate adenocarcinoma PRAD 498 
Rectum adenocarcinoma READ 167 

Skin cutaneous melanoma SKCM 472 
Stomach adenocarcinoma STAD 415 
Testicular germ cell tumors TGCT 156 

Thyroid carcinoma THCA 513 
Uterine corpus endometrial carcinoma UCEC 177 

 Total 7,861 
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Table 4.S2 RT-qPCR primer and probe sets 
Gene 

symbol 
mRNA NCBI 
accession 5’ Primer sequence 3’ Primer sequence Probe 

name 
APOBEC3B NM_004900 gaccctttggtccttcgac gcacagccccaggagaag UPL1 
APOBEC3G NM_021822 ccgaggacccgaaggttac tccaacagtgctgaaattcg UPL79 

CD3D NM_000732 ctaccgtgcaagttcattatcg aaggagcagagtggcaatga UPL83 
CD4 NM_000616 gatacttacatctgtgaagtggagga agcaggtgggtgtcagagtt UPL63 

CD8A NM_001768 tcatggccttaccagtgacc aggttccaggtccgatcc UPL51 
GZMB NM_004131 gagacgacttcgtgctgaca ccccaaggtgacatttatgg UPL60 
PRF1 NM_001083116 ccgcttctctatacgggattc gcagcagcaggagaaggat UPL68 

RNF128 NM_024539 gtgcacctcttgccttacg ccttttatttcacaacgacagaaa UPL51 
TBP NM_003194 cccatgactcccatgacc tttacaaccaagattcactgtgg UPL51 
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Figure 4.S1 Validation of RT-qPCR assays 

(A) Histograms reporting mRNA levels of CD3D, CD4, and CD8A in peripheral blood 

mononuclear cells and CD4+ T cells isolated from the same donor. mRNA levels were 

quantified by RT-qPCR and represent the average of triplicate reactions. Error bars 

denote standard deviation (SD). 

(B) Histograms reporting surface expression of CD3δ, CD4, and CD8α in peripheral 

blood mononuclear cells and CD4+ T cells isolated from the same donor. Each bar 

represents the percent of live cells that are positive for each marker as quantified by flow 

cytomety. 
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CONCLUSIONS 

Chapter 2: APOBEC3B upregulation and genomic mutation patterns in serous 

ovarian carcinoma 

 Following our initial studies in breast cancer (23), we were interested in applying 

our findings of APOBEC3B mutagenesis to other cancer types. Given the similar 

mutation spectra observed in early sequencing studies of breast and ovarian cancer (73), 

we performed an in depth analysis of APOBEC3B expression and mutation in ovarian 

cancer [(74) and Chapter 2]. These studies identified APOBEC3B mRNA upregulation in 

a majority of ovarian cancer cell lines and primary tumors. Functional studies using a 

FRET-based DNA cytosine deaminase activity assay showed that APOBEC3B mRNA 

upregulation correlates with cytosine deaminase activity in several APOBEC3B high and 

low cell lines. Using the same assay, in combination with knockdown and fractionation 

procedures, we further revealed that APOBEC3B is responsible for all detectable 

cytosine deaminase activity and that this activity is primarily limited to the nuclear 

compartment. Furthermore, our collaborators at the Mayo Clinic had performed whole 

genome deep sequencing on 16 of the low stage ovarian tumors used in this study. We 

were able to use these data together with our APOBEC3B RT-qPCR results to positively 

correlate APOBEC3B mRNA expression with total numbers of mutations in these tumors. 

Interestingly, we found that there were more transversion mutations at C/G base pairs 

than transition mutations, suggesting that this is the major outcome of DNA damage at 

these sites in ovarian cancer. Consistent with this finding, we also saw a significant 

positive correlation between APOBEC3B mRNA expression and the total number of 

transversion mutations at C/G base pairs rather than transitions, which we had 

previously reported in breast cancer. The transversion mutations also appeared to be 

processed at the expense of transition mutations, as a trend toward a negative 
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correlation with transition mutations at C/G base pairs was observed. The APOBEC3B 

trinucleotide signature was also more enriched at the sites of transversions than 

transistions, further suggesting that APOBEC3B is in fact responsible for the initiation of 

transversion mutations in ovarian cancer. 

 

Chapter 3: APOBEC3B upregulation by the PKC-NFκB pathway in multiple human 

cancers 

 The most common question that is asked when discussing the role of 

APOBEC3B in cancer mutation is: How does this protein become upregulated in 

cancer? We have, therefore, put much effort into answering this question, and have 

made advances in determining multiple pathways that contribute to APOBEC3B 

upregulation [(69,156) and Chapter 3]. Global analyses of APOBEC3B expression and 

signatures of mutation in cancer identified that cervical and head/neck cancer both had 

high APOBEC3B expression and an enrichment for the predicted APOBEC3B mutation 

signature (13,21,22). Because human papilloma virus (HPV) is known to be a major 

driver of these cancer types and the APOBEC3 family has well known roles in innate 

immunity to viral infections including HPV (35), we hypothesized that APOBEC3B 

upregulation in cancer may be a result of HPV infection. Indeed, several studies have 

shown this to be the case through functional experiments and bioinformatic analyses 

(16,69-72,117). Nevertheless, this mechanism can only explain APOBEC3B 

upregulation in the relatively small subset of cancers that are caused by HPV (i.e. >90% 

of cervical cancers (157) and ~13% of head/neck cancers (117)). 

 In the studies described in Chapter 3, we successfully determined a mechanism 

of APOBEC3B upregulation in non-viral cancers (156). Early studies examining genes 

altered by phorbol stimulation of oral keratinocytes were the first to clone a cDNA with 

sequence similarities to APOBEC3A and APOBEC3B (75). With this knowledge, we 
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were able to determine that PMA is capable of specifically upregulating APOBEC3B in 

several human cell lines, including the breast epithelial cell line, MCF10A. Using this cell 

line as a model system, we further determined that PMA signals through PKCα to 

activate non-canonical NFκB driven transcription of the APOBEC3B locus. This was 

determined using a combination of pharmacologic, biochemical, genetic, and 

bioinformatic approaches. To extend these findings to cancer cells, we treated a panel of 

cancer cell lines with the pre-clinical PKC inhibitor, AEB071, and observed at least a 

50% decrease in APOBEC3B expression in nearly half of the cell lines. In conclusion, 

we have identified a novel mechanism of APOBEC3B regulation in which alterations 

along the PKC-NFκB signaling axis lead to increased expression of APOBEC3B in 

several tumor types. 

 

Chapter 4: APOBEC3G expression correlates with T cell infiltration and improved 

clinical outcomes in high-grade serous ovarian carcinoma 

Genetic and cellular heterogeneity often complicate the analysis of primary tumor 

specimens. While identifying cytosine deamination as a novel source of genetic 

heterogeneity in cancer has been a major focus of my thesis research, our lab is also 

interested in understanding how cellular heterogeneity within tumor samples can affect 

the detection of APOBEC expression. A focused study of high-grade serous ovarian 

cancer (HGSOC) showed that APOBEC3G closely associates with markers of T cell 

infiltration. The availability of clinical data allowed us to examine clinical outcome in our 

cohort, as well. Interestingly, high APOBEC3G expression correlates with improved 

outcomes. Based on our data and prior literature showing that additional T cell markers 

also correlate with improved outcomes in HGSOC (76-79), we hypothesize that 

APOBEC3G is a biomarker for anti-tumor immune responses. In addition to these 

findings, we also determined that APOBECB does not significantly associate with clinical 
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outcome in HGSOC. This is in contrast to multiple publications identifying APOBEC3B 

as a positive prognostic marker in estrogen receptor (ER)-positive breast cancer (26,27), 

and suggests that an effective anti-tumor immune response may outweigh the 

mutagenic contribution from APOBEC3B in ovarian cancer cells. Finally, we apply our 

findings in HGSOC to several other cancer types by performing a bioinformatic analysis 

of publicly available RNA sequencing (RNAseq) data from the The Cancer Genome 

Atlas (TCGA), and show correlations between several HIV-1 restrictive APOBEC3 family 

members and the T cell marker, CD3D.  

 

DISCUSSION 

In depth vs global analyses of mutation signatures 

 Our studies of ovarian cancer in conjunction with global analyses of mutation 

signatures in cancer highlight the importance of in depth analyses in individual cancer 

types. Several studies mining publically available data sets of thousands of tumor 

genomes (primarily exomic regions) were unable to identify a significant APOBEC3B 

mutation signature in ovarian cancer (13,21,22). Conversely, the work shown here 

elucidates a distinguishable APOBEC3B mutation signature in whole genome 

sequences of just 16 ovarian tumors [(74) and Chapter 2]. Multiple factors may 

contribute to these differential results. First, whole genome sequencing is likely to allow 

for a more accurate quantification of mutation signature than exome sequencing, since, 

on average, over 10-fold more mutations were detected in each tumor used in our study. 

This is significant because some of the TCGA tumors had as few as 2 somatic mutations 

in their exomes (83). Second, it is important to carefully choose the samples used in any 

mutational analysis. Many of the treatments for ovarian and other cancers are mutation-

inducing genotoxic agents, and, therefore, these drugs are likely to skew the mutation 

spectra and hide signatures of additional sources of mutation. Samples taken from 
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patients that have not been treated with DNA damaging agents are therefore important 

for mutation analyses. Furthermore, the stage and grade of the specimens should be 

considered as the age and aggressiveness of the tumor can also have an effect on 

mutation loads. Overall, in depth study of individual cancer types are likely to identify 

additional mutation sources that may be overlooked by large-scale analyses. 

 

Fundamental differences between APOBEC3B catalyzed mutation in breast and 

ovarian cancer 

 A recent publication from the TCGA identified several similarities between a 

specific subtype of breast cancer called triple negative breast cancer (TNBC) and 

HGSOC (91). Of note, these analyses revealed comparable frequently mutated genes 

(including TP53, RB1, and BRCA1/2), mRNA expression profiles, and responses to 

platinum-based drugs and taxanes as therapeutic approaches for these cancer types. 

Interestingly, our studies highlight some of the differences observed between breast and 

ovarian cancer with respect to APOBEC3B catalyzed mutation. These distinctions are 

discussed below. 

First, the mutagenic outcome of cytosine deamination is different in breast and 

ovarian cancer [(23,74) and Chapter 2]. While both observations are substantiated by 

work on AID in antibody diversification (33), it is interesting to speculate on the 

underlying mechanisms responsible for differential uracil repair in cancer. In breast 

cancer, the most likely source of the observed correlation between APOBEC3B and 

transition mutations is a lack of effective uracil excision, which forces uracils to go 

through DNA replication. Uracil is known to template as a T and the resulting C-to-T 

mutation will be fixed in the genome following an additional round of DNA synthesis. It is 

possible that, in ovarian cancer, increased uracil excision rates create abasic sites that 

act as substrates for translesion DNA synthesis. It is currently unknown whether there 
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are differential rates of uracil excision in these two cancer types, but functional studies 

have shown that eliminating uracil excision or translesion synthesis in yeast results in a 

loss of transversion mutations resulting from active DNA cytosine deamination (28,59). If 

the underlying pathways are identified in human cancer cells, they may provide a new 

therapeutic intervention strategy aimed at increasing APOBEC3B mutagenesis through 

inhibition of the dominant uracil processing pathways. This strategy has been termed 

synthetic lethality and is currently being leveraged clinically through the use of PARP 

inhibitors in BRCA1/2 mutant tumors [(158,159) and reviewed recently by (160)].  

 Second, the enrichment of the APOBEC3B signature was significantly less than 

that of breast cancer (21-23,74). This was a surprising observation given that 

APOBEC3B mRNA overexpression in these tumor types is nearly identical (21,23,74). At 

the time of these studies, antibodies capable of detecting endogenous APOBEC3B 

protein levels were not available, so the correlation between APOBEC3B mRNA and 

protein expression was unclear. Some studies since, including the data presented in 

Chapter 3, have shown a close association between APOBEC3B mRNA and protein 

expression, suggesting that this discrepancy is likely not due to differential protein 

expression. Future studies will be needed to determine whether APOBEC3B is regulated 

at the posttranslational level, including protein modification, negative regulation through 

interactions with other proteins and/or nucleic acids, or the requirement for a binding 

partner for catalytic activity as has been shown for APOBEC1 and RNA binding proteins 

ACF and RBM47 (161,162). An additional confounding factor may be that the repair of 

uracil lesions is more efficient in ovarian cancer samples or that the repair pathway 

utilized in ovarian cancer introduces a mutation signature of its own. 

Third, is that APOBEC3B does not have a clear clinical impact in ovarian cancer 

as it does in ER-positive breast cancer (26,27). This discrepancy may be explained by 

several of the above discussion points, including the weaker mutation signature 
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observed in ovarian cancer genomes and complications due to differential therapeutic 

options. The most probable source of the difference in clinical impact is that the 

enrichment of the APOBEC3B mutation signature in ovarian cancer genomes is weaker 

than breast cancer [(23,74) (21) and Chapter 2]. As discussed above, additional studies 

will be needed to determine why the mutation signature is not as evident in ovarian 

cancer. An alternative hypothesis is that the many targeted therapies available to treat 

breast cancer are more susceptible to resistance driven by APOBEC3B catalyzed 

mutation. In fact, some studies have found that resistance can be acquired with only one 

mutation (163-165). This is in stark contrast to the therapeutic options approved for the 

treatment of ovarian cancer. Nearly all ovarian cancers are initially treated with cisplatin 

and the underlying reasons why over half of patients relapse are not well defined. If this 

is the case, it may be important to avoid treating tumors expressing high levels of 

APOBEC3B with certain targeted therapies.  

 

Elucidating the complete APOBEC3B regulatory network in cancer 

 While HPV infection and activation of the PKC-NFκB pathway have the potential 

to explain a majority of APOBEC3B upregulation in cancer, several observations indicate 

that there may also be additional mechanisms. The clearest evidence is that several of 

the known HPV negative cell lines analyzed above did not show significant 

downregulation of APOBEC3B expression upon PKC inhibition. This is particularly 

evident in bladder cancer. Several alternative hypotheses must be tested to determine 

why this is the case. First, activation of the PKC-NFκB pathway may take place 

downstream of PKC. Activation of these proteins would eliminate the dependency on 

PKC and could explain the lack of an effect upon PKC inhibition. To conclusively test this 

hypothesis, better inhibitors for these downstream proteins need to be developed. 

Second, there may be alternative ways of activating non-canonical NFκB signaling. For 
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example, it is known that lymphotoxin-β receptor mediated activation of NIK is a potent 

agonist of this pathway (135,136). This hypothesis could be test by either stimulating this 

pathway with lymphotoxin-β ligand or inhibiting the pathway with either lymphotoxin-β 

receptor blocking antibodies or NIK inhibitors. Third, there may be one or more 

completely independent mechanisms present in the nonresponsive cell lines, especially 

those that are derived from bladder tumors. This may be the case since no correlations 

have been identified between APOBEC3B and the expression of other genes within 

large publically available sequencing datasets, suggesting that the complete 

transcriptional regulatory network of APOBEC3B expression in cancer may be complex. 

It is also interesting to speculate whether the mechanism responsible for 

upregulation of APOBEC3B expression by HPV infection feeds into the PKC-NFκB  

axis or if this is a completely independent pathway. As stated above, parallel studies 

suggests that the E6 oncoprotein encoded by HPV is sufficient to induce APOBEC3B 

expression in cervical and head/neck cancer (69). E6 is known to degrade the tumor 

suppressor TP53 (166,167), suggesting that HPV could alleviate APOBEC3B 

transcriptional repression through the degradation of TP53 by E6. While this mechanistic 

linkage needs to be tested experimentally, it is consistent with our finding that 

APOBEC3B upregulation correlates with TP53 mutation in breast cancer cell lines (23). 

It is also possible that the mechanism employed by HPV converges with the regulatory 

pathway elucidated here. Indeed, there is evidence that HPV E6 can stimulate NFκB 

signaling (168-171).  

 Our studies also suggest a new strategy for the inhibition of APOBEC3B 

catalyzed mutagenesis in cancer through transcriptional downregulation of APOBEC3B 

expression using inhibitors of the PKC-NFκB pathway. In fact, the AEB071 PKC inhibitor 

used throughout our work has shown promising results in preclinical and clinical studies 

as an anti-cancer agent (131-134). While the goal of this approach would not necessarily 
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be to kill cancer cells, inhibitors of the PKC-NFκB pathway may be used to decrease 

A3B mutagenesis in order to reduce the likelihood of drug resistance and recurrence. 

 

Developing APOBEC3G as a biomarker in ovarian cancer 

In addition to our discovery of the impact and regulation of APOBEC3B in ovarian 

cancer, our comprehensive clinical analysis of APOBEC3 expression in HGSOC also 

identified APOBEC3G as positive prognostic marker (Chapter 4). The correlations 

between APOBEC3G expression and markers of T cell infiltration together with previous 

work demonstrating that several T cell markers correlate with improved prognosis (76-

79), indicate that APOBEC3G functions in a similar capacity. In fact, APOBEC3G 

correlated more significantly with improved outcomes than several canonical T cell 

markers, including CD3D, CD4, CD8A, GZMB1, and PRF1. These studies must be 

coupled with additional functional studies to determine why APOBEC3G correlates 

strongly with CTL activation, since nearly all of the research performed on APOBEC3G 

has focused on CD4+ T cell biology. It would also be interesting to determine if this anti-

tumor CTL response helps to explain the lack of a clinical effect that APOBEC3B has on 

ovarian cancer. Perhaps this response shadows the effect of APOBEC3B catalyzed 

mutation in ovarian cancer cells. 

 

CLOSING REMARKS 

Cancer is a major health concern in the United States and worldwide. Over 1,500 

people die from this disease every day in the United states alone (172). Because many 

of the aggressive characteristics that lead to poor outcomes for cancer patients are 

driven by tumor heterogeneity, a more comprehensive understanding of the sources of 

this diversity will likely lead to new and improved therapies. This is especially true for 

ovarian cancer where genetic diversity driven genomic instability is a major underlying 
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cause of tumorigenesis (83) and few therapeutic options are available. The main goal of 

my thesis research has been to determine how the DNA cytosine deaminase, 

APOBEC3B, contributes to genetic diversity in ovarian cancer with the ultimate goal of 

making a translational impact on patient outcomes. Here, I show that APOBEC3B 

upregulation leads to increased mutation in ovarian cancer genomes (Chapter 2) and 

that the PKC-NFκB pathway drives this upregulation in multiple human cancers 

(Chapter 3). These findings suggest new therapeutic strategies aimed at leveraging 

existing PKC inhibitors to transcriptionally downregulated APOBEC3B, slow tumor 

evolution, lengthen the durability of existing anti-cancer drugs and improve patient 

outcomes. 
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