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Abstract 

Glioma is a type of malignant tumor of the non-neuronal cells of the central 

nervous system, the glia. These tumors are the most common malignant tumors 

of the central nervous system. The most aggressive and most prevalent of these, 

glioblastoma multiforme (GBM) is a deadly disease with a grim prognosis, with 

median survival at diagnosis of less than a year and a half. Standard treatment 

with irradiation and the DNA alkylating drug temozolomide yields incremental 

improvement in survival over irradiation alone but better therapies remain 

needed.  Immune therapies are an emerging class of therapies that have shown 

great promise in the treatment of hematopoietic malignancies and solid tumors. 

These therapies harness the capability of the immune system to target and kill 

large numbers of tumor cells specifically, and it is has been suggested that most 

or all durable responses to treatment of solid tumors involve generation of an 

anti-tumor immune response. Several anecdotal reports of dramatic responses in 

GBM patients after receiving cancer vaccines (a type of immune therapy) 

suggest that immune therapies for glioma could yield substantial increases in 

survival of patients with these tumors. However, the overall record of vaccines for 

the treatment of this disease has been marked by failure, and substantial barriers 

remain to the implementation of other types of immune therapies in glioma 

patients. Several mechanisms by which tumors in general, and brain tumors in 

particular, evade the activity of the immune system have been outlined. These 

include accumulation of immune suppressive cell types, tumor intrinsic changes 
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that directly suppress the activity of infiltrating immune cells, and brain specific 

mechanisms of immune privilege. While these mechanisms are doubtless 

operative in many cases, accumulating evidence from clinical trials of adoptive 

transfer of T cells demonstrate that the accumulation of sufficient numbers of 

tumor-specific T lymphocytes at the tumor site can result in an overwhelming 

anti-tumor immune response and associated durable clinical responses. 

Therefore, my research over the past several years has focused on clinically 

relevant mechanisms in glioma patients that present obstacles to the 

development of a robust T cell mediated anti-tumor immune response. In this 

thesis, I outline experiments performed to understand and develop strategies for 

overcoming two obstacles to expanding large numbers of tumor specific cytolytic 

T lymphocytes in glioma patients: the anti-proliferative effect of the alkylating 

drug temozolomide on in vivo T cell expansion by cancer vaccination, and the 

differentiated phenotype of ex vivo expanded T cells for adoptive immunotherapy 

that is associated with diminished proliferative potential in vivo. A focus in these 

experiments is the targeting of tumors with T cells that are specific for antigenic 

determinants derived from tumor-specific mutations. Engineered T cell responses 

targeting individual patient-specific mutations may someday lead to significant 

improvements in the efficacy of immune therapy for glioma, and ultimately to 

improved outcomes for patients with these malignancies. 
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Chapter 1: Introduction 

 

 

 

It is by no means inconceivable that small accumulations of tumour cells may 

develop and because of their possession of new antigenic potentialities provoke 

an effective immunological reaction, with regression of the tumour and no clinical 

hint of its existence. It has also been suggested that the result of surgery for 

cancer may to a large extent be determined by the degree of resistance, 

presumably immunological in nature, against the tumor cells… 

 

…What is to be sought is some means whereby the protective mechanism of the 

body has its reactivity against minor deviations from self-patterns made more 

sensitive—the converse of the effect of cortisone in dampening down 

immunological reactivity… 

 

—Sir Macfarlane Burnet, 1957  
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Better treatments for glioma are needed 

Glioma is a class of malignant diseases of the central nervous system, and 

accounts for the majority of morbidity and mortality from central nervous system 

tumors (Porter, McCarthy et al. 2010). The most common and most deadly of 

these, glioblastoma multiforme (GBM), has a median survival at diagnosis of less 

than a year and a half, even with the best current treatments (Stupp, Mason et al. 

2005). Standard treatment for GBM includes whole brain irradiation and adjuvant 

chemotherapy with the alkylating drug temozolomide (McNamara, Lwin et al. 

2014).  Temozolomide was approved based on a seminal clinical trial conducted 

in the early 2000s (Stupp, Mason et al. 2005) which represented the first major 

advance in the treatment of the disease over standard radiotherapy in a quarter 

century (Walker, Green et al. 1980). Nonetheless, the prognosis of patients 

diagnosed with this disease remains dismal today and better treatments remain 

needed. Intense research effort has been devoted to developing new classes of 

treatments, including targeted inhibitors, anti-angiogenesis agents like 

bevacizumab, gene therapies and immune therapies (reviewed in Adamson, 

Kanu et al. 2009). Immunotherapy has been recognized as a clinically imporant 

new class of cancer treatments in recent years (Couzin-Frankel 2013), and 

glioma has been no exception to this trend (Okada, Kohanbash et al. 2009). In 

the remainder of this introduction, I outline some of the history and most 

important recent developments in the field of cancer immunotherapy, what these 
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experiments imply about how generally the immune system may be used to 

eradicate large solid tumors, discuss some of the attempts to harness the 

immune system to treat glioma, and explain how these studies influenced the 

design of the experiments described below. 

 

The immune system as a treatment for cancer 

The idea of stimulating the immune system as a treatment for cancer predates 

detailed knowledge of the nature of the immune response to pathogens, as 

William Coley injected patients’ sarcomas with bacterial preparations at the end 

of the 19th century (Coley 1893). MacFarlane Burnet and Lewis Thomas 

developed the modern theory that cellular components of the immune system 

could recognize and destroy tumors in the 1950s (Burnet 1957, Thomas 1959). 

These theories were postulated at the dawn of the age of cellular immunology, as 

the anatomical origin and functional specialization of different classes of 

lymphocytes were only starting to be appreciated in the late 1950s and early 

1960s (Glick G 1956, Good, Dalmasso et al. 1962). More knowledge and better 

techniques for understanding immunology would be needed before these 

theories could be tested, and they fell out of favor for several decades.  

 

During this period, research in the field of tumor immunology focused on defining 

rejection antigens (targeted both by antibodies and T lymphocytes) in 

transplantable tumor lines in rodents; however, this line of inquiry led to neither 



   4 

 

mechanistic understanding of the tumor rejection phenomenon or success in 

achieving this result in the clinic (reviewed in Old 1992). The main thrust of 

cancer research in the 1970s and 1980s was dedicated to understanding the 

genetic basis of the disease, with molecular biology advances allowing the 

identification of both viral and host derived oncogenes as key drivers of cellular 

transformation (Varmus 1989). A renaissance of tumor immunology has been in 

progress since the mid 1990s, with interest being renewed by new understanding 

of the mechanisms by which T cells could function as exogenous suppressors of 

tumor development (Shankaran, Ikeda et al. 2001, Dunn, Bruce et al. 2002). 

These theoretical advances have been followed in the last five years by the first 

successful clinical developments of immune based cancer treatments to the 

stage of FDA approval.  

 

Indeed, the three main immune therapeutic modalities that are in clinical 

development—cancer vaccines, immune modulatory biologic agents and 

adoptive T cell transfer—have each seen prominent clinical successes occur 

since 2010. In 2010, Dendreon’s Provenge, a dendritic cell based prostate 

cancer vaccine, became the first cancer vaccine to receive FDA approval (Karan, 

Holzbeierlein et al. 2012) after demonstrating improved overall survival in a 

Phase III clinical trial (Tanimoto, Hori et al. 2010). In 2011, ipilimumab, a human 

antibody against CTLA4 was approved for sale by the FDA (Lipson and Drake 

2011). Marketed as Yervoy, ipilimumab became the first in what will likely be a 
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soon to expand new class of biologic drugs that modulate the activity of T cells to 

treat solid tumors, after improving survival of patients with metastatic melanoma 

(Hodi, O'Day et al. 2010). Most recently, adoptive transfer of chimeric antigen 

receptor (CAR) transduced T cells has garnered significant media attention 

(Grady 2012) after reports that dramatic remissions have been achieved in 

patients with B cell malignancies (Porter, Levine et al. 2011). Thus, cancer 

immunology and immunotherapy today are fields entering a new phase in their 

development, as theoretical advances are paving the way for new clinical 

successes and eventually routine clinical use (June, Rosenberg et al. 2012). 

These initial hints of success will be followed scientifically by further research into 

the mechanisms of tumor immunology, with the goal of improving the efficacy of 

immune therapies and expanding their use to different types of solid and 

hematopoietic tumors. 

 

Lessons from CAR T cell therapy: requirements for killing a tumor 

One of the most exciting recent developments in the field of cancer 

immunotherapy has been the success of chimeric antigen receptor (CAR) 

transduced T cells in treating B cell malignancies (Kalos, Levine et al. 2011). The 

excitement engendered by this approach has been driven by two main factors: 

First, the clinical responses achieved have been significant, with massive tumors 

shrinking and a dramatic tumor lysis syndrome observed in responding patients 

(Porter, Levine et al. 2011). Second, since the approach unites adoptive T cell 
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transfer with a genetic engineering approach that uses a rationally chosen target, 

it suggests that improved knowledge of immunology and tumor biology could lead 

to successful engineering of immune responses to other tumors. It is worthwhile, 

therefore, to consider why this strategy appears to be so successful, and what 

aspects of its success may be implemented for other tumors. 

 

The idea of transferring T cells with an anti-tumor specificity into a tumor bearing 

host is not new, as the ability to induce immunity to a syngeneic tumor by 

adoptive transfer of spleen cells was first demonstrated over thirty years ago 

(Uyttenhove, Van Snick et al. 1980). This idea has been pioneered in its 

application in human cancer patients by the group led by Rosenberg and Restifo 

in the Surgery Branch of the National Cancer Institute, who began a series of 

clinical trials in the 1990s that demonstrated dramatic responses in patients 

adoptively transferred with T cells grown out of cultures of tumor infiltrating 

lymphocytes (TIL) derived from their own autologous tumor material (Rosenberg, 

Yang et al. 2011). While this approach has undoubtedly proved successful, most 

solid tumors do not bear TIL that can be expanded for adoptive transfer, and 

therefore alternate methods to expand or endow T cells with an anti-tumor 

specificity have been actively researched (Restifo, Dudley et al. 2012). The idea 

of engineering T cells with an artificial, non-MHC restricted, antibody type 

specificity was first implemented by the generation of chimeric genetic constructs 

fusing the genomic sequences encoding the heavy and light chains of an anti-
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hapten immunoglobulin molecule with those encoding the constant regions of the 

T cell receptor alpha and beta chains (Gross, Waks et al. 1989). In subsequent 

years of development, technical improvements have lead to newer and better 

CAR designs, targeting a number of cell surface antigens as well as incorporating 

cytoplasmic signaling domains from a variety of co-stimulatory molecules to 

enhance the immunologic activity of the chimeric constructs (Kalos and June 

2013). 

 

The culmination of these efforts have been several promising early phase clinical 

trials showing dramatic regression of patients bearing CD19+ B cell malignancies 

treated with CAR-transduced autologous T cells (Kochenderfer, Wilson et al. 

2010, Kalos, Levine et al. 2011, Porter, Levine et al. 2011). It is therefore worth 

considering what features of CAR T-cell therapy lead to such dramatic 

responses. The first noteworthy feature is the long term in vivo persistence and 

proliferative capacity of CAR-transduced T cells found after infusion in patients 

that exhibit tumor responses. For example, in one responding patient, six months 

after infusion, large numbers of CAR-expressing CD8 T cells were identified, with 

a variety of CAR expressing cells exhibiting heterogeneous surface 

immunophenotypes. This patient demonstrated subsets of cells expressing both 

memory markers like CD28 and CD127 as well as other cells with immediate ex 

vivo cytolytic capability (Kalos, Levine et al. 2011), suggesting that a correlate of 

success is the engraftment of both effector cells as well as cells with self-renewal 



   8 

 

capability. Indeed, both greater numbers of infused cells as well as greater 

proliferative capacity of infused cells (as assessed by telomere length) have been 

associated with better outcomes in TIL based melanoma adoptive 

immunotherapy (Stupp, Mason et al. 2005, Rosenberg, Yang et al. 2011, Restifo, 

Dudley et al. 2012).  

 

These phenotypes, that are thought to mark the capability for self-renewal (i.e. 

memory phenotype or long-telomere possessing cells), are associated with in 

vivo proliferation of immune cells, and it has been suggested that this in vivo 

proliferation is required to generate sufficient numbers of T cells at the tumor site 

(June, Rosenberg et al. 2012).  Similarly, observations from trials of checkpoint 

blockade biologics, that inhibit T cell regulatory pathways bolster the idea that 

large numbers of tumor infiltrating cells are a prerequisite for successful 

immunotherapy (Pardoll 2012). CTLA-4 blockade is believed to work in 

proportion to the number of locally infiltrating T cells that can be activated (Lipson 

and Drake 2011, Postow, Callahan et al. 2012). PD-1 is another T cell regulatory 

pathway that has been targeted in melanoma (Topalian, Hodi et al. 2012), and 

the activity of PD-1 blockade is likely due to its inhibition of a negative feedback 

loop involving tumor-infiltrating T cell derived interferon gamma and STAT1-

driven tumor expression of PD-L1 (Spranger, Spaapen et al. 2013). 
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A second noteworthy feature of CAR T cell therapy for B cell malignancies is the 

high activity of CD19 CAR-transduced T cells against CD19 expressing targets 

(Zhang, Snyder et al. 2007). This high activity is associated with a large amount 

of in vivo cytolysis, causing a tumor lysis syndrome, cytokine storm, and on-

target off-tumor activity against normal B cells, which can become virtually 

undetectable in treated patients (Porter, Levine et al. 2011). This on-target off-

tumor activity is noteworthy as it has important therapeutic implications. First, it 

suggests that successful immunotherapy may require an immune response so 

potent that it wipes out essentially all target-expressing cells. Indeed, CD19 CAR 

T cell treated patients have had prolonged extremely low levels of serum 

immunoglobulins associated with tumor remissions (Kochenderfer, Wilson et al. 

2010). Second, it implies that CAR therapy will not be readily adaptable to the 

treatment of most solid tumors, at least not as presently constituted with a CAR 

that targets a single, highly expressed, tumor lineage defining cell-surface 

antigen (Maus, Fraietta et al. 2014). The pitfalls of the CAR approach to solid 

tumors are underscored, for example, by clinical trials of HER2-targeting CAR T 

cells that have led to serious, even fatal toxicities (Morgan, Yang et al. 2010, 

Lamers, Sleijfer et al. 2013) and a preclinical model where targeting of cancer 

associated fibroblasts via a CAR against fibroblast activation protein lead to 

targeting of the hematopoietic stem cell niche causing fatal cachexia (Tran, 

Chinnasamy et al. 2013).  
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So what rejection antigens can be targeted in most solid tumors? Studies of TIL 

therapy in melanoma provide the hints of an answer. It has been recognized for 

some time that mutated gene products can lead to novel CD8 T cell epitopes that 

are truly tumor specific (Wolfel, Hauer et al. 1995), and later studies have 

suggested that these types of mutation specific antigens, termed neo-antigens, 

make up the bulk of pre-existing anti-tumor immune responses in melanoma 

(Lennerz, Fatho et al. 2005). More recent, pioneering studies have shown that it 

is possible to prospectively identify such antigens by deep sequencing (Castle, 

Kreiter et al. 2012, Robbins, Lu et al. 2013) 

 

Thus, it seems that at least two necessary components of an effective 

immunotherapy against a large, established solid tumor are the generation of an 

immune response consisting of large numbers of T cells at the tumor site, and 

the targeting of an antigen where all cells that express that antigen can be 

destroyed. As we turn to an examination of efforts at treating glioma-bearing 

patients by immunotherapy it is worthwhile to keep these goals in mind. Gliomas 

are typically not infiltrated by large numbers of lymphocytes (Parney, Waldron et 

al. 2009), and as we shall see, most clinical trials of immune therapy for glioma 

have not had defined antigenic targets or careful measurement of cellular 

correlates of immune response. For these reasons, it is perhaps unsurprising that 

most clinical trials of glioma immunotherapy have achieved underwhelming 

results (Okada, Kohanbash et al. 2009). 
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Immune privileged or immune specialized: Is it plausible to target central 

nervous system malignancies with immune therapy? 

The unique anatomical localization of glioma as a solid tumor of the central 

nervous system (CNS) has led to some unique questions being asked of glioma 

immunotherapy that are not relevant to other solid tumors. Indeed, classic 

allogeneic tissue graft experiments by Medawar defined the CNS as a site of 

“immune privilege,” that is, a site where immune responses are restrained 

(Medawar 1948). The main clinical manifestation of immune responses in the 

CNS was thought to be in autoimmune diseases like multiple sclerosis (Carson, 

Doose et al. 2006). Originally, the mechanism of immune privilege was assumed 

to be anatomical: the brain and eyes lack lymphatic drainage and the vasculature 

of these tissues is specialized to be relatively impermeable to cells and 

substances by a specialized structure called the blood brain barrier (Engelhardt 

and Coisne 2011). Later mechanistic studies revealed operant molecular 

mechanisms that suppress the accumulation and activity of lymphocytic infiltrates 

into the CNS, providing a rationale for the lack of T cell infiltrates in the CNS 

outside of pathophysiological circumstances (Griffith, Brunner et al. 1995).  

 

Studies in glioma patients have also provided support for the idea that brain 

tissue itself so thoroughly suppresses T cell immune responses that 
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immunotherapy of glioma could be impractical. A particularly fascinating series of 

observations in patients receiving organ transplants from patients that died of 

glioma are relevant in this vein. Glioblastoma is noteworthy for spreading 

aggressively and distantly within the brain, but metastasizing to more distal sites 

extremely infrequently, almost always within the CNS (e.g., within the spinal cord) 

(Stark, Nabavi et al. 2005). However, after transplantation of a solid organ from a 

patient that died of GBM, a donor derived glial tumor was found in the organ 

recipient, with disseminated disease in several tissues outside of the CNS 

(Frank, Müller et al. 1998). Subsequent reports and retrospective analysis of 

earlier reports of tumors arising in patients receiving organ transplants from 

patients that died of glioma have suggested that this phenomenon is not unique, 

and call into question the suitability of patients that die of glioma as organ donors 

(Schiff, O’Neill et al. 2001, Armanios, Grossman et al. 2004). Furthermore, these 

reports raise several intriguing questions about the immunogenicity of glioma: 

The fact that multiple solid organs transplanted from patients that have died of 

glioma have led to transmissible disease suggests that disseminated but 

clinically undetectable micrometastases outside of the CNS are not uncommon in 

glioma patients. The observation that when transplanted within an organ that 

these micrometastases can lead to disease outside of the CNS, but only in 

immunosuppressed transplant recipients, suggests that the reason why extra-

CNS metastasis of glioma are virtually unknown is because these disseminated 

cells are kept in check by the immune system. Indeed, taken together, it is 
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reasonable to speculate based on these reports that glioma is actually a rather 

“immunogenic” class of tumor, but that it is the specialized immunological milieu 

of the brain that suppresses anti-glioma immune responses. 

 

Early attempts at immunotherapy for glioma were not successful, and reviews of 

the state of the field from the mid-1990s also ascribe the reason for these failures 

to the immune privileged status of the brain (Weller and Fontana 1995, Saas, 

Walker et al. 1997). However, in the last decade a profound shift in the 

understanding of immune privilege has taken place. It is now appreciated that 

non-pathological immune responses can take place in response to infections that 

occur in the CNS (Walker, Calzascia et al. 2003). The CNS, like all other tissues, 

is immunologically specialized, and tissue specific features of the CNS modulate 

the responses of infiltrating immune cells (Matzinger and Kamala 2011). These 

specializations include anatomical differences from most tissues, including the 

aforementioned lack of lymphatic drainage and specialized barriers around brain 

vasculature (Engelhardt and Coisne 2011). The role of these specializations is 

likely to limit the likelihood and extent of inflammation in the tightly spatially 

confined and sensitive post-mitotic tissues of the CNS. However, these 

specializations do not amount to an absolute impermeability of immune cells into 

brain tissue and are in fact immune regulatory specializations that can be 

overcome in order to resolve CNS infections while limiting tissue damage (Galea, 

Bechmann et al. 2007)   
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Of particular relevance for glioma immunotherapy are recent findings 

demonstrating that antigen specific T cells can bypass the blood-brain barrier 

(Galea, Bernardes-Silva et al. 2007), and that there appear to be additional 

layers of regulation to the process consisting of additional anatomical 

specializations, specialized antigen presenting cells and inflammation 

suppressive cell surface molecules and soluble factors. These specializations 

consist of a defined program that exists by which large numbers of antigen 

specific T cells can accumulate in the brain to eradicate target cells while limiting 

localized tissue disruption (Engelhardt and Ransohoff 2012, Ransohoff and 

Engelhardt 2012).  

 

The tumors of patients with GBM are not typically infiltrated by large numbers of 

lymphocytes (Parney, Waldron et al. 2009). However, the density of infiltrating 

lymphocytes varies between patients, and above average numbers of infiltrating 

CD8 T cells are associated with longer survival (Yang, Tihan et al. 2010).  

Perhaps not coincidentally, the change in understanding of the nature of immune 

privilege has taken place simultaneously with the first convincing findings of 

individual patients benefiting from glioma targeting immunotherapies. Here, I 

review major recent findings in the field of glioma immunotherapy. 

 

Glioma immunotherapy: a brief survey of the last ten years 
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A seminal finding that represented one of the first attempts to define a cellular 

correlate of response to glioma immunotherapy was described in 2001 by Prins 

and colleagues at Cedars Sinai (John, Wheeler et al. 2001). A noteworthy figure 

in this publication demonstrates a massive CD8 T cell infiltrate in a re-resected 

GBM following vaccination with dendritic cells (DC) pulsed with MHC-I eluted 

peptides derived from the autologous tumor (ibid). A later publication from the 

same group is also notable for containing one of the first clear descriptions of 

apparent clinical response in individual GBM patients after receiving 

immunotherapy. Specifically, in addition to recapitulating their finding of CD8 T 

cell infiltrate in re-resected GBM lesions after DC vaccination, they demonstrated 

patients responding to vaccination with dramatic pseudoprogressions (regions of 

increased enhancement in imaging studies) followed by tumor regressions that 

likely represent immunological infiltration and an anti-tumor immune response 

(Prins, Soto et al. 2011). Additionally, this study demonstrated that patients 

receiving DC vaccination whose tumors had the mesenchymal tumor gene 

expression profile as defined by microarray (which is typically associated with 

worse-than-average prognosis relative to all GBM) survived significantly longer 

than control patients with this tumor type, while this benefit was not seen in 

patients whose tumors had other gene expression profiles (ibid). 
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While these studies were notable for showing a cellular correlate of vaccine 

efficacy and for attempting to define molecular markers of prognostic 

significance, they were typical of many glioma vaccination approaches in that 

there is no molecularly defined antigenic target of the vaccination and relies on 

autologous tumor material as the source of vaccine antigen. Indeed, a number of 

similarly designed trials using autologous DC pulsed with autologous tumor 

material have been conducted (Rutkowski, De Vleeschouwer et al. 2004, 

Yamanaka, Homma et al. 2005, Fadul, Fisher et al. 2011), and these strategies 

are in active clinical development by firms seeking to commercialize the 

technology (Ottenhausen, Bodhinayake et al. 2013). To date, however, no 

prospective clinical study of autologous DC vaccination for GBM has 

demonstrated enhanced overall survival over control treated patients, and thus 

the answer to the question of whether this type of treatment will ever become a 

standard therapy is unclear.  

 

A weakness of the strategy of autologous DC vaccination is the lack of a 

molecularly characterized antigenic target. This weakness makes it difficult to 

directly assess biomarkers of anti-tumor immune response (e.g., by peptide-MHC 

multimer staining of peripheral blood) and therefore to define reasons for 

treatment failure. An alternative strategy is to vaccinate patients with 

characterized CD8 T cell epitope peptides or with DC pulsed with these peptides. 
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These approaches have proved effective in the treatment of other types of 

tumors, and these strategies typically involve the targeting of commonly 

overexpressed antigens, using CD8 T cell epitopes known for common HLA 

alleles (Walter, Weinschenk et al. 2012). Enough of these overexpressed self-

antigen derived peptides have been determined in glioma that this approach has 

been implemented in clinical trials of GBM patients (Okada, Kalinski et al. 2011). 

Similar to the outcomes reported for DC loaded with autologous material by Prins 

et al., in this study Okada et al. report modestly successful results, with 

circumstantial evidence of benefit in individual patients and a benign safety 

profile (ibid). Interestingly, the use of defined peptide antigens allowed the 

authors in this study to measure antigen specific immune responses in 

vaccinated patients and found increased numbers of antigen specific CD8 T cells 

in peripheral blood several weeks after the first vaccinations were given (ibid).  

 

Another noteworthy example of a clinical trial that targets a defined antigen for 

vaccination in GBM patients was performed by Sampson and coworkers at Duke 

University, which targeted a protein derived from a tumor specific mutation called 

EGFRvIII (Sampson, Heimberger et al. 2010). This protein consists of an 

aberrant version of the EGFR protein caused by an in frame deletion of exons 2-

7 within the EGFR gene, leading to a protein that has lost binding to EGF but 

which has an oncogenic constitutive activity (Gan, Cvrljevic et al. 2013). The 
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protein sequence at the junction of exons 1 and 8 contains an inserted glycine 

and represents a “non-self” antigenic target that can in principle be targeted both 

by antibodies and T cells, as the protein is a cell surface antigen not normally 

encoded in the human genome, and similarly the amino acid sequence spanning 

the deletion is not encoded by any normally expressed genes. Therefore, the 

authors targeted this protein by vaccinating glioma patients with EGFRvIII 

expressing tumors with a 15 amino acid peptide spanning both sides of the 

deletion, covalently linked to the adjuvant keyhole limpet hemocyanin (Sampson, 

Heimberger et al. 2010).  Interestingly, this treatment led to detectable levels of 

anti-EGFRvIII antibodies in the serum of 6 of 14 patients analyzed as well as a 

specific loss of expression of EGFRvIII (but not wild type EGFR) in some patients 

upon recurrence of the tumor after vaccination (ibid).  

 

However, only 3 of 16 patients in this study demonstrated a DTH response and 

no further data were presented characterizing T cell mediated immune responses 

(Sampson, Heimberger et al. 2010). These data, combined with previous reports 

showing that EGFRvIII specific peptides bind common HLA class I molecules 

with only moderate affinity relative to common pathogen derived CD8 T cell 

epitopes (Wikstrand, Reist et al. 1998, Wu, Xiao et al. 2006), suggest that 

EGFRvIII peptide may not represent a good target for T cells derived by peptide 

vaccination. EGFRvIII has an extracellular domain that differs from normal EGFR 
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and can be differentiated by specific monoclonal antibodies (Wikstrand, Hale et 

al. 1995), which has led to interest in EGFRvIII as a target of CAR-transduced 

adoptive T cell therapies. These studies are still in preclinical stages (Morgan, 

Johnson et al. 2012, Ohno, Ohkuri et al. 2013, Choi, Suryadevara et al. 2014), 

but suggest an exciting new avenue to try to translate some of the success that B 

cell targeting CARs have seen, to at least a subset of glioma patients. In this 

vein, CARs have also been developed targeting the IL-13Rα2, a tumor-

associated antigen of unknown normal functional relevance over-expressed in 

some cases of glioma (Brown, Starr et al. 2013). 

Overcoming obstacles to glioma immunotherapy 

These studies highlight several problems that remain to be overcome before 

immunotherapy can become an effective, standard treatment for glioma patients. 

The emphasis that has been seen in targeting glioma by therapeutic vaccination 

using autologous tumor material is due to the relative ease with which this 

strategy can be implemented without knowledge of tumor specific antigens. 

However, vaccination strategies rely on T cell proliferation occurring in vivo, in 

the body of the glioma patient, which not only contains immune suppressive cell 

populations such as regulatory T cells and myeloid derived suppressor cells, but 

has also been exposed to potentially immunosuppressive treatments for the 

glioma, such as conventional chemotherapy with temozolomide, radiotherapy, 

and glucocorticoids like dexamethasone that provide symptomatic relief from 
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edema in the CNS. The latter treatment has been examined as regards the 

immune system of glioma patients and shown be associated with expanded 

populations of suppressive monocytes (Brown, Starr et al. 2013), but the role of 

standard chemotherapy remains unclear, with reports of both improved and 

suppressed immune responses in patients treated with temozolomide 

(Grossman, Ye et al. 2011, Sampson, Aldape et al. 2011).   

 

Another key obstacle in glioma immunotherapy remains the identification and 

effective implementation of therapies that target tumor specific mutations as 

antigenic determinants. The experience of CAR transduced T cell 

immunotherapy of B cell malignancies demonstrates that a potent T cell 

response that can eliminate all host cells bearing its antigenic determinant can 

lead to remission of large solid tumors and sustained clinical response. While 

EGFRvIII-negative GBMs may be unlikely to have suitable targets for CARs, we 

believe it is likely that prospective identification of private, patient specific 

mutations can be targeted with similar efficacy. Numerous groups around the 

world are currently pursuing this strategy for a variety of solid tumors, and it 

seems likely that clinical trials will implement such an idea in the relatively near 

term future.   
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What are the in vivo effects of temozolomide on cancer vaccinations, and what 

do these effects mean for the design of cancer vaccines for glioma patients? How 

can tumor specific mutations be targeted without generating genetically 

engineered antigen receptors for each potential antigen? How can the 

proliferative potential of adoptively transferred CD8 T cells be maintained? 

Below, we present experiments suggesting that temozolomide suppresses in vivo 

T cell proliferation and discuss the implications of these experiments. We discuss 

below the implications of temozolomide treatment in glioma on the targeting of 

these types of mutations with peptide vaccination. Finally, we present data on the 

in vitro expansion of tumor antigen specific CD8 T cells with high proliferative 

potential using a cocktail of small molecules and cytokines. The aim of these 

latter experiments was to develop a relevant translational strategy for 

implementing personalized medicine to target patient specific tumor mutations in 

glioma and other solid tumors. 
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Introduction 

Immune mediated destruction of solid tumors requires the infiltration of adequate 

numbers of effector lymphocytes into the tumor site (Chen and Davis 2005). 

Tumors express mutant proteins termed “neo-antigens” that result from 
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frameshift, gene fusion, and missense mutations (Thomas, Baker et al. 2007).  

These neo-antigens rather than self-antigens tend to dominate the naturally 

occurring immune responses against cancer (Lennerz, Fatho et al. 2005, Sensi 

and Anichini 2006).  The immunogenicity and tumor specificity of the neo-

antigens provide a compelling rationale for their identification and targeting with 

therapeutic cancer vaccines. Recent bioinformatics advances make prospective 

identification of neo-antigens for personalized cancer vaccines feasible (Castle, 

Kreiter et al. 2012). Numerous analyses of individual patients suggest that 

naturally occurring T cell responses against neo-antigens can be associated with 

dramatic responses and long-term survival (Huang, El-Gamil et al. 2004, 

Lennerz, Fatho et al. 2005, Sensi and Anichini 2006). Indeed, it has been 

suggested that the generation of endogenous anti-tumor responses may be 

required for durable success of conventional therapies (Zitvogel, Apetoh et al. 

2008). This hypothesis has led to much interest in combining immunotherapy 

with conventional modalities (Mitchell 2003), but the effect of conventional 

chemotherapy vis-à-vis immunotherapy is incompletely understood. 

Numerous reports indicate a synergy between conventional chemotherapy and 

immune therapy. Synergy is mediated by diverse mechanisms including 

preferential depletion of regulatory T cells (Treg) (Machiels, Reilly et al. 2001, 

Ercolini, Ladle et al. 2005, Banissi, Ghiringhelli et al. 2009), liberation of 

homeostatic or inflammatory cytokines (Schiavoni, Mattei et al. 2000, 

Asavaroengchai, Kotera et al. 2002) and enhanced immunogenicity of 
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chemotherapy treated tumors (Ramakrishnan, Assudani et al. 2010, Michaud, 

Martins et al. 2011). In the context of vaccines targeting self-antigens, 

chemotherapy given prior to vaccination can yield synergy and enhanced survival 

(Machiels, Reilly et al. 2001, Walter, Weinschenk et al. 2012). Vaccination 

against tolerized self-antigens may require Treg depletion to access a latent pool 

of high avidity self-antigen specific CD8 T cells, whereas high avidity neo-antigen 

specific T cells can be generated by immunization without Treg 

depletion(Ercolini, Ladle et al. 2005).     

The reported synergy between chemotherapy and vaccines is somewhat 

paradoxical given that the generation of an adaptive immune response is a highly 

proliferative process, and chemotherapeutic drugs are given for their selective 

toxicity to rapidly proliferating cells.  The generation of a CD8 T cell response to 

an acute viral infection involves responder cells doubling ~14 times in a week 

(Blattman, Antia et al. 2002) and cancer vaccines that utilize neo-antigens with 

potent adjuvants can trigger similar levels of CD8 T cell proliferation (Wick, Martin 

et al. 2011). The number and proliferative potential of infused effectors have 

been associated with clinical response to adoptive immunotherapy of metastatic 

melanoma (Rosenberg, Yang et al. 2011), possibly due to a requirement for local 

proliferation of lymphocytes to generate sufficient effector: target ratios at the 

tumor site (Grange, Buferne et al. 2012, June, Rosenberg et al. 2012). In 

adoptive transfer protocols the transferred lymphocytes are cultured ex vivo and 

therefore are not exposed to chemotherapy(Rosenberg 2011). By contrast 
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cancer vaccines are administered to drive in vivo proliferation of lymphocytes in 

pre-treated patients, and the extent to which chemotherapy inhibits vaccine 

driven immune responses remains unclear.   

The lack of understanding of the effect of chemotherapeutic drugs on cancer 

vaccines is particularly problematic with regard to alkylating chemotherapeutic 

drugs. Alkylating chemotherapies such as temozolomide and cyclophosphamide 

covalently modify DNA and inflict cytotoxic damage on exposed cells (Fu, Calvo 

et al. 2012). These drugs are commonly used for their anti-neoplastic effect to 

treat malignancies that are frequent targets of cancer vaccines such as 

glioblastoma multiforme (GBM) (Prins, Soto et al. 2011) and metastatic 

melanoma (Chapman, Einhorn et al. 1999), and additionally to deplete Treg prior 

to vaccination (Dudek, Mescher et al. 2008, Walter, Weinschenk et al. 2012). 

While case reports suggest that individual patients have benefited from cancer 

vaccines given after standard alkylating chemotherapy for GBM (Okada, Kalinski 

et al. 2011, Prins, Soto et al. 2011), overall cancer vaccines administered after 

temozolomide have had a record of failure (Okada, Kohanbash et al. 2009). 

Alkylating chemotherapeutics have immune inhibitory effects in vitro, specifically 

via selective toxicity to proliferating lymphocytes (Roos, Baumgartner et al. 2004) 

and inhibition of differentiation of immune effectors (Alvino, Pepponi et al. 1999). 

The applicability of these studies to human cancer patients remains unclear: the 

degree of lymphopenia in temozolomide treated glioblastoma patients is a 

negative prognostic factor (Grossman, Ye et al. 2011), but has also been 
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associated with greater vaccine induced antibody responses (Sampson, Aldape 

et al. 2011). To examine the impact of clinically relevant doses of alkylating 

chemotherapeutics on cancer vaccines, we used controlled animal experiments 

that minimized the numerous complicating factors encountered in human 

patients. 

 

 

Materials and Methods  

Cells and culture. GL261 and B16-F10 cells were maintained in DMEM 

supplemented with 10% FBS. The KM3M14 and O94M2 cell lines were derived 

from genetically engineered primary murine gliomas and were generated and 

maintained as described (Wiesner, Decker et al. 2009). Model antigen 

expressing tumors (Quad-GL261 and Quad-KM3M14) were generated by stable 

transfection with Quad antigen cassette (Ohlfest, Andersen et al.), a single 

coding sequence expressing the OT-I and OT-II epitopes of ovalbumin as well as 

human gp100 and mouse Ea.  

Patient samples were thawed from aliquots frozen the day of collection and 

plated overnight before use. T cells were stimulated with IL-2 (R&D Systems) and 

CD3/CD28 activator beads (Invitrogen) as previously described (Trickett and 

Kwan 2003). Viable cell counts were assessed by trypan blue exclusion 

periodically after stimulation and are expressed proportionally relative to the 
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number of viable cells at the beginning of the assay. CD8 T cells were isolated to 

>90% purity by negative selection kit (Miltenyi).  

Patient samples.  GBM patient PBMC samples were obtained with informed 

consent and with approval from the University of Minnesota Institutional Review 

Board. Pre-temozolomide samples were collected the day of surgical resection, 

4-6 weeks before the start of combined chemoradiotherapy. The patients’ ages at 

time of treatment and sexes were as follows: Patient 1, 61 year old male; Patient 

2, 73 year old female; Patient 3, 68 year old female; Patient 4, 46 year old male; 

Patient 5, 62 year old male. All patients had no pre-TMZ treatment besides 

surgery except for Patient 4 who was treated with dexamethasone. All patients 

were treated with 75 mg/m2 of temozolomide daily for 42 days during 

chemoradiotherapy. Post-temozolomide samples were collected 4 weeks after 

the end of chemoradiotherapy (patients 1,4) or 7 weeks after the end of 

chemoradiotherapy, one week after a single adjuvant cycle of 5 days of 150 

mg/m2 temozolomide (patient 5).  

Mice and animal models. Mouse experiments were performed in accordance 

with University of Minnesota Animal Care and Use Committee guidelines. 

C57BL/6J (B6) mice, C57BL/6-Tg(TcraTcrb)1100Mjb/J (OT-I) and B6.PL-

Thy1a/CyJ (Thy1.1+) mice were purchased from the Jackson Laboratory and 

used at 6-10 weeks of age. Nur77GFP reporter mice(Moran, Holzapfel et al. 2011) 

were courtesy of K. Hogquist (University of Minnesota, Minneapolis, MN). 

Gliomas were inoculated as described.(Ohlfest, Andersen et al.) Cell number 



   28 

 

inoculated was 15,000 for GL261 and 30,000 for O94M2 and KM3M14. 75,000 

B16-F10 cells were inoculated in the right flank. Glioma-bearing mice were 

euthanized when they became symptomatic; B16-F10-bearing mice were 

euthanized when tumors became >1000 mm3. For adoptive transfer 2x106 cells 

OT-I CD8 T cells were transferred into Thy1.1+ mice by retro-orbital injection and 

allowed to park for 24 hours before drug treatment. 

Drug treatments. Temozolomide, carboplatin, doxorubicin and 

cyclophosphamide were obtained from Toronto Research Chemicals. 

Carboplatin, doxorubicin and cyclophosphamide were dissolved in PBS and 

administered by intraperitoneal injection. Temozolomide was well suspended in 

PBS immediately before being administered via oral gavage. g-irradiation was 

administered as a positive control for DNA strand breaks at a dosage of 15 Gy, 

30 minutes before experiments. Mouse dosages of temozolomide and 

cyclophosphamide model relevant human pharmacokinetic exposures based on 

a calculated equivalence using published pharmacokinetic exposure data 

(Struck, Alberts et al. 1987, Genka, Deutsch et al. 1990) detailed in Table S2. 

Dosages of carboplatin and doxorubicin were selected based on the maximum 

anti-neoplastic dosages that were previously reported to have an 

immunostimulatory effect by a Treg depletion dependent mechanism (Machiels, 

Reilly et al. 2001). 

Vaccinations. Ova vaccinations were performed with 100 mg of whole chicken 

ovalbumin protein (Fisher) and 10 mg of polyinosinic:polycytidylic acid stabilized 
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with poly-L-lysine(polyICLC, gift of A. Salazar, Oncovir, Washington, DC). All 

peptide vaccines were given with 50 mg of peptide and 10 mg polyICLC. 

Vaccinations were administered as subcutaneous injections at the base of the left 

hind leg.  

Peptides and in vitro stimulation.  SIINFEKL and variant peptides (Anaspec) 

were dissolved in sterile water. All other peptides (New England Peptide) were 

dissolved in minimal DMSO and diluted in sterile water. Splenocytes were 

incubated with peptides for 8 hours (Nur77GFP induction) or 24 hours (elaborated 

IFN-g). Elaborated IFN-g was measured by cytokine bead array (BD) and 

normalized to number of antigen specific T cells enumerated with BD counting 

beads.  For B16-F10 stimulation B6 splenocytes were pulsed with 5 mg /mL of 

the mutant peptide cocktail or irrelevant control (16 and 18 amino acid peptides 

containing the OT-I and OT-II epitopes). Leukocytes from 100 mL of blood from 

B16-F10 bearing animals were incubated with 150,000 antigen pulsed 

splenocytes for 72 hours for IFN-g elaboration.   

The peptide sequences are as follows: GARC-1 RASAALLNKLYAMGL; B16-F10 

mutant peptides: Kif18b-mutant SKPSFQEFVDWENVSPELNSTDQP, Tubb3-

mutant RRKAFLHWYTGEAMDEMEFTEAESN, Cpsf3l-mutant 

FKHIKAFDRTFANNPGPMVVFATPG, Tnpo3-mutant, 

DRNPQFLDPVLAYLMKGLCEKPLAS, Plod2-mutant, 

YNTSHLNNDVWQIFENPVDWKEK. (Castle, Kreiter et al. 2012) 
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Flow cytometry and ELISA. All antibodies except as indicated were from 

eBioscience: Phosphorylated ATM (phosphor-Ser1981) antibody was from 

Millipore. An isotype control for phosphorylated ATM staining was included as a 

control for background staining in non-temozolomide treated lymphocytes and 

was the PE-conjugated murine IgG1 k isotype control from eBioscience. Kb-Ova 

peptide-MHC multimer staining was performed with dextramer (Immudex). PE 

conjugated Db-GARC-1 tetramer was synthesized by NIH tetramer core facility 

(Atlanta, GA). Tetramer falloff assay was performed as described(Blattman, Antia 

et al. 2002) with the following modifications: Kb-Ova dextramer was used to stain 

and free dextramer was bound with biotinylated anti-Kb-Ova monoclonal 

antibody. Data were acquired using a BD FACSCanto II and analyzed using 

Cytobank.org software. Relative affinity and antibody titer were determined by 

ELISA as described (Re, Schiavone et al. 2008). 

 

 

 

 

 

 

 

Results 
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An intrinsic proliferation defect of lymphocytes exposed to alkylating 

chemotherapy 

To assess the proliferative potential of human lymphocytes exposed in vivo to 

alkylating chemotherapy, we examined the ability of T cells in GBM patient 

PBMC obtained ~1 month before the beginning of and ~1 month after the 

cessation of temozolomide chemoradiotherapy to proliferate.  PBMC from healthy 

controls and pre-chemoradiotherapy GBM patients proliferated robustly upon 

stimulation, with viable cell counts increasing by day 4 and approximately 

doubling every other day thereafter (Figure 1A). Post-chemoradiotherapy PBMC 

4 days after stimulation had smaller clusters of PBMC around artificial APC and 

lower numbers of viable cells relative to pre-chemoradiotherapy PBMC (Figure 1, 

A-C).   This proliferative defect was not an artifact of altered suppressor cell 

number in the samples, which were similar in pre- and post-temozolomide patient 

samples (Figure S1). These data suggest that clinical exposure to temozolomide 

causes a proliferative defect in human T cells. 

To choose clinically relevant doses of temozolomide with which to treat mice, we 

selected doses that yielded an equivalent pharmacokinetic exposure as obtained 

after oral dosing in humans (Newlands, Blackledge et al. 1992) (personal 

communication James Gallo, Mount Sinai School of Medicine, New York, NY).  

Low (25 mg/kg), intermediate (55 mg/kg), and high (80 mg/kg) dosages of 

temozolomide given daily for five days led to a transient reduction in lymphocyte 

counts similar in magnitude to that seen in patients treated with temozolomide 
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(Table S2). Medium and high doses inhibited proliferation of splenic T cells to a 

degree similar to the inhibition observed in human GBM patient PBMC cultures 

(Figure 1D). This proliferation defect is cell intrinsic because purified CD8 T cells 

from temozolomide treated mice demonstrated a similar inhibition of proliferation 

and activation of the DNA damage response as assessed by phosphorylated 

Ataxia Telangiectasia Mutated (pATM) staining (Figure 1, E and F).   

Quantitative defects in immune responses to cancer vaccines after 

temozolomide treatment 

To examine the effects of alkylating chemotherapy on neo-antigen cancer 

vaccines we vaccinated mice with the model antigen chicken ovalbumin (Ova) 

and polyICLC (Wick, Martin et al. 2011).  A cluster of four daily subcutaneous 

vaccinations causes a robust CD8 T cell response, with the percentage of  Kb-

Ova-specific CD8 T cells in the blood expanding from essentially undetectable 

levels to ~6% of the CD8 compartment in a week (Figure 2A). This expansion 

from a precursor frequency of ~1/150,000 (Obar, Khanna et al. 2008) to a 

frequency of ~1/20 represents approximately 13 doublings. When followed by 

weekly boosters, similar to many established clinical protocols, a second peak in 

Kb-Ova-specific T cell percentage was observed a week after the third booster 

(Figure 2A). The magnitude of the CD8 T cell response was diminished in a dose 

dependent fashion by temozolomide treatment (Figure 2A). The levels of Ova-

specific antibody circulating in the blood of temozolomide treated mice were also 

lower in a dose dependent fashion (Figure 2B).  
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Given that temozolomide and other alkylating drugs covalently modify DNA and 

that some of the directly produced DNA-alkyl adducts (Degan, Montesano et al. 

1988) or indirectly produced DNA lesions (Hengstler, Hengst et al. 1997, 

Marchesi, Turriziani et al. 2007) are long lived, we measured the magnitude of 

immune responses to vaccines given several weeks after temozolomide 

treatment. B6 mice that were given intermediate dose temozolomide had 

significantly lower percentages of Kb-Ova-specific T cells elicited by a cluster of 

four vaccinations that began 80 days after the last dose of temozolomide relative 

to untreated, age matched controls, with a peak frequency of ~1% versus ~4.5% 

(Figure 2C).  

Antigen experienced memory T cells have an intrinsic resistance to DNA 

intercalating chemotherapy with daunorubicin (Turtle, Swanson et al. 2009), and 

tumor specific T cell clones may be antigen experienced in cancer patients 

(Anichini, Molla et al. 2010). We therefore measured the effect of vaccine driven 

T cell expansion in an antigen experienced memory cell population in mice 

treated with alkylating chemotherapy prior to vaccination. Mice treated with 

intermediate or high dose temozolomide after an initial cluster of vaccines had a 

significant inhibition of antigen specific T cell proliferation when vaccinated with a 

second cluster of vaccines (Figure 2D). The peak percentage of Kb-Ova-specific 

CD8 T cells was approximately 10 fold lower (~2% versus ~20%) in intermediate 

dose temozolomide treated mice versus controls, and the percentage of Kb-Ova-
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specific CD8 T cells decreased immediately following vaccination in high dose 

treated mice (Figure 2D).  

We next quantified the impact of temozolomide on the efficacy of vaccines in 

tumor bearing animals using both model antigens and mutated tumor specific 

neo-antigens. B6 mice were implanted orthotopically with the syngeneic, antigen 

force-expressing Quad-GL261 glioma line (Ohlfest, Andersen et al.). The peak 

percentage of Kb-Ova-specific CD8 T cells in blood elicited by vaccination was 

significantly lower for high dose temozolomide pre-treated animals, and levels 

remained lower after numerous booster vaccines (Figure 3A). The GL261 cell 

line is sensitive to temozolomide (Zhu, Fujita et al. 2011) and therefore the 

median survival for all three treated groups was similar (Figure 3B). However, 

high dose temozolomide treatment abrogated the efficacy of vaccine treatment: 

i.e. mice treated with vaccine survived significantly longer than untreated 

controls, but the benefit of vaccination was lost in temozolomide treated mice.  

While temozolomide increases median survival in glioma patients (Stupp, Mason 

et al. 2005), benefit from treatment is not uniform, and patients with O-6-

methylguanine-DNA methyltransferase  (MGMT) promoter unmethylated tumors 

are less likely to benefit (Hegi, Liu et al. 2008). To model this clinical situation, we 

inoculated B6 mice with a Quad antigen expressing version of the B6 syngeneic 

KM3M14 glioma cell line (Quad-KM3M14), which is highly resistant to 

temozolomide treatment in vitro (data not shown). Intermediate dose 

temozolomide treatment abrogated the magnitude of Kb-Ova-specific CD8 T cell 
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response to a single cluster of four vaccinations with Ova and polyICLC (Figure 

3C).  In addition, a spontaneous Kb-Ova-specific CD8 T cell response observed 

in untreated mice was abrogated in temozolomide treated mice (Figure 3C). For 

this temozolomide insensitive, immunogenic cell line a single course of 

vaccination is a largely curative therapy (Figure 3D). This survival benefit is 

entirely abrogated by temozolomide treatment before vaccination, and median 

survival for temozolomide treated mice was shorter than non-treated controls 

(Figure 3D). Similarly, we found that inhibition of spontaneous immune responses 

by temozolomide treatment could lead to a failure to reject a highly immunogenic 

B6 glioma line expressing the SV40 Large T antigen (Figure S3).  

To examine the impact of temozolomide treatment on mutated self neo-antigens 

we inoculated mice with the GL261 cell line. This cell line expresses an 

immunogenic mutant self protein, GARC-1, which forms a Db-binding CD8 T cell 

epitope based on a single amino acid substitution due to a point mutation (Iizuka, 

Kojima et al. 2006). We vaccinated using a peptide containing the immunogenic 

amino acid substitution in glioma bearing mice, with or without temozolomide 

treatment. A significant reduction in the percentage of activated, Db-GARC-1 

specific CD8 T cells in blood elicited by vaccination was observed (Figure 3E).  

DNA damage response induced by high intensity TCR stimulation following 

alkylating chemotherapy 

Since we observed activation of the DNA damage response in T cells given a 

strong stimulation through the TCR (Figure 1), we hypothesized that the degree 
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of DNA damage response would correlate with TCR signal intensity. To dissect 

this question, OT-I mice were treated drugs and then their splenocytes were 

stimulated with altered peptide ligands that induce varying TCR signal strengths 

(Moran, Holzapfel et al. 2011). All three peptides induced similar levels of 

proliferation and minimal DNA damage response in OT-I cells from untreated 

control animals as assessed by Ki67 and pATM staining respectively (Figure 4A). 

In temozolomide treated animals the frequencies of Ki67+ OT-I cells were 

inhibited for all peptides, but interestingly, the percentage of proliferating cells 

that had activated the DNA damage response (i.e. were pATM+) increased with 

increasing strength of TCR stimulation (Figure 4, A and B).  

To assess induction of DNA damage response in lymphocytes after treatment 

with other DNA damaging cancer therapies, we repeated the above experiments 

after treatment of OT-I mice with cyclophosphamide, carboplatin, doxorubicin and 

g-irradiation. Following treatment with the alkylating chemotherapy 

cyclophosphamide and g-irradiation, there were significantly more proliferating 

cells exhibiting DNA damage in response to the strong antigenic peptides 

SIIQFEKL and SIINFEKL than with the weak antigenic peptide SIIGFEKL or with 

no peptide (Figure 4C). The platinum drug carboplatin and the DNA intercalating 

agent doxorubicin did not lead to this effect, with similar pATM staining in 

proliferating cells stimulated with all peptides (Figure 4D). The induction of the 

DNA damage response upon stimulation after drug treatment was mirrored by 

the defect in CD8 T cell responses to vaccines in B6 mice. Temozolomide and 
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cyclophosphamide lead to markedly and significantly lower peak levels of antigen 

specific CD8 T cells in the blood following vaccination (Figure 4E). By contrast, in 

animals treated with carboplatin and doxorubicin the percentage of antigen 

specific CD8 T cells was incrementally lower and not significantly different from 

untreated controls. This defect is likely accounted for by responder lymphocytes 

both failing to enter cell cycle (as in Figure 4A) as well as undergoing apoptosis 

due to DNA damage response, since a fraction of adoptively transferred OT-I 

became apoptotic (Annexin V+7-AAD+) after vaccination with SIINFEKL peptide 

in temozolomide treated mice (Figure S4).      

Lower affinity for antigen of vaccine responder lymphocytes after 

temozolomide treatment 

Due to the greater DNA damage response we observed in OT-I T cells stimulated 

with stronger antigenic peptides, we hypothesized that in vivo vaccine responder 

cells would be skewed towards lymphocytes with antigen receptors with lower 

affinity for cognate antigen. We found that the median fluorescent intensity (MFI) 

of peptide-MHC multimer staining of memory CD8 T cells elicited by vaccination 

was lower in temozolomide treated mice than in controls (Figure 5, A and B). The 

higher initial rate of decay of staining in a multimer falloff assay (Blattman, Antia 

et al. 2002) in temozolomide treated animals also suggested a lower avidity of 

vaccine elicited CD8 T cells for antigen (Figure 5C). Similarly, we measured a 

lower relative affinity of anti-Ova serum Ig in temozolomide treated animals than 

in controls (Figure 5D).  
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Inferior functional characteristics of vaccine responder lymphocytes after 

temozolomide treatment 

The lower affinity of responder lymphocytes for antigen after alkylating 

chemotherapy suggests that post-temozolomide vaccine responder cells are less 

sensitive towards antigenic targets. We hypothesized that these cells would 

receive lower intensity proliferative signals in temozolomide treated mice than 

controls and display inferior effector function upon stimulation. Using the 

Nur77GFP TCR signal strength reporter mouse (Moran, Holzapfel et al. 2011), we 

directly tested this hypothesis by measuring GFP fluorescence intensity in 

vaccine expanded CD8 T cells upon antigenic stimulation. Vaccine expanded Kb-

Ova-specific CD8 T cells from untreated control mice displayed high intensity 

GFP fluorescence upon culture with SIINFEKL peptide (Figure 6, A and B). In 

temozolomide pre-treated mice antigen specific GFP fluorescence upon 

stimulation was significantly lower (Figure 6B).  We next measured IFN-g 

elaboration upon antigenic stimulation in culture and enumerated antigen specific 

cells per well. We calculate that in temozolomide pre-treated animals vaccine 

activated CD8 T cells elaborated 10 fold fewer IFN-g molecules on a per cell 

basis (Figure 6C).  

Diminished efficacy of neo-antigen cancer vaccines after alkylating 

chemotherapy 

To examine the efficacy of neo-antigen cancer vaccines after Treg depleting 

alkylating chemotherapy we used a peptide vaccine targeting five immunogenic 
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point mutations expressed by the B16-F10 melanoma cell line (Castle, Kreiter et 

al. 2012). Despite the fact that mice treated with low dose cyclophosphamide had 

a depletion of Treg cells as both a percentage of CD4 T cells and in absolute 

numbers (data not shown), we found that circulating leukocytes from mice 

vaccinated after cyclophosphamide elaborated significantly less IFN-g upon 

peptide stimulation than in mice receiving vaccine only (Figure 7A). Similarly, the 

survival benefit of vaccinated animals relative to untreated controls was lost in 

animals pre-treated with cyclophosphamide (Figure 7B). A similar finding with 

regard to overall survival was observed in a new follow up long-term survival 

analysis of a previously published clinical trial of an autologous cancer vaccine 

for metastatic melanoma (Dudek, Mescher et al. 2008).  The ten patients who 

received only vaccinations had a median survival of 4.2 years, whereas the ten 

patients treated with low dose cyclophosphamide a week prior to their first 

vaccination had a significantly shorter median survival of 7.5 months (Figure 7C).  

 

Discussion 

We found that alkylating chemotherapy has a long lasting anti-proliferative effect 

on lymphocytes in mice and humans, and this effect leads to inferior responses 

to cancer vaccines targeting mutated self antigens.  Animals pre-treated with 

alkylating chemotherapeutic drugs had lower peak numbers of vaccine 

responding CD8 T cells and lower antibody titers. This impairment corresponds 

to the activation of DNA damage responses in proliferating cells, and this 
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activation of DNA damage responses is greatest in responder cells receiving the 

strongest TCR signals from the vaccine. In turn, this selective toxicity in the cells 

with the highest affinity for cognate antigen leads to impairment of CD8 T cell and 

antibody responses. These responses consist of lymphocytes with on average 

lower affinity antigen receptors that have inferior effector function. Importantly, 

these effects occur were observed even at low, Treg depleting doses of alkylating 

chemotherapeutics (Machiels, Reilly et al. 2001). 

The defects we observed are likely general to all populations rapidly proliferating 

immune responder cells expanded by vaccination (e.g. CD4 T cells, B cells, etc.).  

Activated lymphocytes implement a metabolic and anti-apoptotic program that 

allows for sustained synthesis of macromolecules and cell division (Frauwirth, 

Riley et al. 2002), dividing up to twice a day during the peak of adaptive immune 

responses (Blattman, Antia et al. 2002). Alkylating chemotherapy covalently 

modifies DNA with methyl adducts for methylating drugs like temozolomide or 

dacarbazine (Marchesi, Turriziani et al. 2007) or inter- and intra-strand alkyl 

crosslinks for nitrogen mustard derivatives like cyclophosphamide (Lawley and 

Brookes 1965). These lesions cause stalling of replication forks and double 

strand DNA breaks in proliferating cells (Roos and Kaina 2012). This DNA 

damage is detected by proteins such as ATM which binds to double strand DNA 

breaks and autophosphorylates, in turn activating numerous downstream 

effectors involved in cell cycle arrest and apoptosis such as Chk2 kinase 

(Matsuoka, Rotman et al. 2000) and p53 (Canman, Lim et al. 1998). Proliferation 
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driven toxicity in vaccine responder cells is therefore a side effect of alkylating 

chemotherapy that must be balanced against its reported immunomodulatory 

effects. In the case of neo-antigen vaccines for which Treg depletion is not 

required for efficacy, our data suggest that the negative anti-proliferative effect of 

chemotherapy is dominant over the immunomodulatory effect.  

We observed that the immune inhibitory effect of alkylating chemotherapy was 

long lived, with significant defects in CD8 T cell priming persisting >10 weeks 

after cessation of temozolomide treatment (Figure 2C). The persistence of this 

effect could be due to the fact that DNA repair is induced by proliferative signals 

(Gupta and Sirover 1980), so quiescent naive lymphocytes may not fully repair 

DNA damage. This damage is then “activated” by replication fork read through 

during DNA synthesis in response to proliferative signals like vaccines. 

Numerous studies have examined the effect of alkylating chemotherapy on 

immunotherapeutic modalities. The predominant finding reported has been 

depletion of Treg and induction of lymphopenia (Lutsiak, Semnani et al. 2005, 

Banissi, Ghiringhelli et al. 2009), although high doses have been associated with 

peripheral Treg expansion in rodents (Hirschhorn-Cymerman, Rizzuto et al. 

2009) and humans (Sampson, Aldape et al. 2011). Several studies that have 

reported an immunostimulatory effect of alkylating chemotherapy due to Treg 

depletion have been conducted using transferred cells not exposed to drug 

(Ghiringhelli, Larmonier et al. 2004, Salem, Díaz-Montero et al. 2009, Mitchell, 

Cui et al. 2011). The clinical application of this strategy is complicated by the 



   42 

 

difficulty of generating large numbers of tumor specific lymphocytes ex vivo for 

human patients (Yee 2005), and cancer vaccines are typically administered after 

standard chemotherapies (Zitvogel, Apetoh et al. 2008). Conversely, other 

studies of endogenous anti-tumor immune responses following Treg depletion 

have focused on self-antigens for which breaking tolerance is required (MacLean, 

Miles et al. 1996, Machiels, Reilly et al. 2001, Ercolini, Ladle et al. 2005, Walter, 

Weinschenk et al. 2012) or have not directly compared immune responses in 

exposed and non-exposed lymphocytes (Vaishampayan, Abrams et al. 2002, 

Hirschhorn-Cymerman, Rizzuto et al. 2009).  

We have focused on tumor specific neo-antigens derived from mutated self 

proteins as well as exogenous model antigens, both of which are inherently 

immunogenic, i.e. can readily be targeted by vaccination without additional 

therapy to break tolerance. Such neo-antigens are technically challenging to 

predict from patient tumor samples, but have been retrospectively identified in 

clinically responding patients using tumor cell lines and patient lymphocytes in 

several studies (Sensi and Anichini 2006).  Similarly, clinical experience from 

vaccination with idiotypic immunoglobulin for lymphoma suggests that non-

germline encoded epitopes from hypervariable regions are more immunogenic 

and stimulate CD4 and CD8 cells preferentially over framework regions (Baskar, 

Kobrin et al. 2004). Due to their generation de novo in neoplastic cells, such 

mutant antigenic targets are less likely to cause autoimmune side effects and are 

not subjected to central tolerance that can cause negative selection of high-
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avidity T cells (von Herrath, Dockter et al. 1994). Recent advances in 

bioinformatics have made prospective identification of immunogenic mutations 

possible, and is an active area of further research into personalized cancer 

vaccines (Castle, Kreiter et al. 2012). However, the experience of adoptive 

immunotherapy suggests that the proliferative potential of effector cells is a 

critical variable (Rosenberg, Yang et al. 2011). For personalized cancer vaccines 

targeting tumor specific mutations to be successful, they should be administered 

in a protocol designed to maximize the quality and proliferative ability of 

responder lymphocytes.  

We demonstrated that the generation of T cell responses against mutated self 

proteins by cancer vaccines was inhibited by temozolomide in a mouse model of 

glioma (Figure 3E) and by cyclophosphamide in a mouse model of melanoma 

(Figure 7A). In addition, using the model antigen ovalbumin we found that T cell 

clones that did expand after alkylating chemotherapy had lower affinity for 

cognate antigen, and lower TCR signal strength and inferior effector function 

upon antigenic stimulation (Figures 5 and 6). These differences seem sufficient to 

account for the loss of survival benefit from vaccination that we observed in both 

temozolomide and cyclophosphamide treated mice (Figs. 3B, 3D and 7B). These 

data are suggestive of the possibility that a defect in immune effectors generated 

by vaccination accounts for the shorter overall survival observed in metastatic 

melanoma patients treated with low dose cyclophosphamide shortly before being 

vaccinated versus patients receiving vaccination alone (Figure 7C). While there 
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were no meaningful differences in responses to tumor associated self-antigens in 

these patients with or without cyclophosphamide pre-treatment (Dudek, Mescher 

et al. 2008), it is possible that the difference in survival is accounted for by 

undetected responses against tumor specific neo-antigens.  

In conclusion, we found that vaccine driven and spontaneous adaptive anti-tumor 

immune responses were inhibited by the direct anti-proliferative effect of 

alkylating chemotherapy. These findings are particularly noteworthy since 

alkylating chemotherapy is a standard treatment for several malignancies that 

have been the target of vaccine immunotherapy, including temozolomide for 

GBM (Stupp, Mason et al. 2005) and dacarbazine for metastatic melanoma 

(Chapman, Einhorn et al. 1999). These findings suggest that easily implemented 

modifications of conventional clinical protocols for cancer vaccine trials, such as 

banking unexposed PBMC prior to chemotherapy for use in later immunotherapy, 

could yield improved results. It has been reported, for instance, that 500 mL of 

blood contains sufficient numbers of naïve precursor CD8 T cells to allow large 

numbers of T cells specific to multiple tumor and viral antigens to be expanded in 

vitro (Oelke, Maus et al. 2003). Thus, easily extracted quantities of lymphocytes 

could be frozen and stored, either as source material for the in vitro expansion of 

anti-tumor T cells or as a banked pool of non-drug exposed naïve T cells to be 

infused prior to vaccination.  

Furthermore, future trials of immune therapy could use such prognostic markers 

to stratify patients based on their relative likelihood to benefit from conventional 
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alkylating chemotherapy versus cancer vaccines, and prioritize immune therapy 

over chemotherapy in those most likely to benefit. MGMT promoter methylation 

status in glioblastoma is prognostic of response to temozolomide and is widely 

measured clinically (Hegi, Liu et al. 2008), whereas tumors with the 

mesenchymal gene expression pattern have a poor survival prognosis but 

appear to be more sensitive to active immune therapy than glioblastomas with 

other gene expression patterns (Prins, Soto et al. 2011). Altering clinical 

protocols and basing patient treatment on known prognostic indicators of 

treatment response could minimize harm of conventional therapies to cancer 

vaccines and maximize efficacy, leading to improved outcomes for patients 

treated with these vaccines.  
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Figure 1. Clinically relevant doses of temozolomide inhibit T lymphocyte 

proliferation in humans and mice.  PBMC were collected from healthy 

volunteers and GBM patients ~1 month before temozolomide (TMZ) 

chemoradiotherapy or ~1 month after chemoradiotherapy. Lymphocyte cultures 

were stimulated with CD3/CD28 beads and IL-2 and viable counts were 

assessed in 3 or 4 technical replicates. (A) Viable cell counts for Patient 1 PBMC 

samples obtained pre- and post-chemoradiotherapy are shown alongside those 

of a healthy volunteer as a control.  Error bars indicate SEM. *, p<0.05. (B) 

Representative PBMC cultures are shown at 100x total magnification. (C) Viable 

cell counts 4 days post stimulation of PBMC are shown for three healthy 

volunteers, three pre-chemoradiotherapy GBM patients and three post-

chemoradiotherapy patients. (D) C57BL/6 mice (n=3 per group) were treated with 

the indicated dosages of TMZ daily for 5 days and 2 days after the last dose mice 

were sacrificed and splenocytes plated with CD3/CD28 beads and IL-2. 

Representative of two independent experiments. Error bars indicate SEM. *, 

p<0.05; **, p<0.01. (E) Purified CD8 T cells from mice treated with the indicated 

dosages of TMZ (n=3 per group) were stimulated as above. (E) Viable cell counts 

were assessed. Data are pooled from two independent experiments. Error bars 

indicate SEM. ***, p<0.001. (F) Aliquots of CD8 T cells stimulated as in (E) were 

taken for FACS analysis of phosphorylated ATM on day 4 post-stimulation.  
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Figure 2. Temozolomide exposure leads to a dose dependent inhibition of 

adaptive immune responses to vaccination. (A) C57BL/6 mice (n=7-8 per 

group) were treated with the indicated dosages of TMZ for 5 days, and 2 days 

after the last dose were vaccinated daily for 4 days with Ova and poly ICLC 

followed by weekly booster vaccinations as indicated. Kb-Ova specific CD8 T 

cells in the blood were assessed by flow cytometry. Error bars indicate SEM. *, 

p<0.05; **, p<0.01; ***, p<0.001. One representative experiment is shown; this 

experiment was performed independently three times with similar results. (B) The 

mice in (A) were terminally bled 70 days after the first vaccination and anti-Ova 

IgG/IgM was quantified by ELISA. Error bars indicate SEM. ***, p<0.001. (C) 

C57/BL6 mice (n=9 per group) were treated with TMZ at the indicated dosages 

for 5 days and 80 days after the last dose of TMZ were vaccinated daily for 4 

days, with antigen specific CD8 T cells in blood assessed as above.  Error bars 

indicate SEM. **, p<0.01; ***, p<0.001. The experiment shown is representative 

of two independent experiments with similar results. (D) C57BL/6 mice (n=5 per 

group) were vaccinated daily for 4 days and immunological memory was allowed 

to establish for 1 mo. at which point TMZ was administered daily for 5 days at the 

indicated dosages. The mice were again vaccinated daily for 4 days and given 

booster vaccinations weekly as indicated, and throughout antigen specific CD8 T 

cells in blood were assessed by flow cytometry. Error bars indicate SEM. **, 

p<0.01; ***, p<0.001.Representative of two independent experiments. 
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Figure 3. Temozolomide exposure leads to inhibition of immune responses 

in tumor bearing animals. C57BL/6 mice (n=5-8 per group) were inoculated 

with Quad-GL261 cell line and in the indicated groups treated on days 6-10 after 

tumor inoculation with 80 mg/kg of TMZ and vaccinated with Ova and polyICLC 

on days 12-15, 19, 26, 33 and 40. (A) The percentage of Kb-Ova specific CD8 T 

cells in the blood was assessed at the indicated time points before control mice 

became moribund. Error bars indicate SEM. **, p<0.01; ***, p<0.001. (B) The 

percentage of mice in each group surviving is shown. P values shown are for log 

rank test. ns, not significant (p>0.05); ***, p<0.001. Representative of two 

independent experiments with similar results. (C) C57BL/6 mice (n=5-6 per 

group) were inoculated with Quad-KM3M14  and in the indicated groups were 

treated on days 3-7 after tumor inoculation with 55 mg/kg of TMZ and vaccinated 

with Ova and poly ICLC on days 10-13. Kb-Ova specific CD8 T cells were 

assessed by flow cytometry on day 17. Error bars indicate SEM. ns, not 

significant (p>0.05); *, p<0.01;   **, p<0.01; ***, p<0.001. (D) The percentage of 

mice in each group surviving is shown. P values shown are for log rank test. ns, 

not significant (p>0.05); **, p<0.01.  (E) C57BL/6 mice (n=6-8 per group) were 

inoculated with GL261 tumors and in the indicated groups treated with 55 mg/kg 

TMZ on days 6-10 after tumor inoculation and vaccinated with GARC-1 peptide 

and poly ICLC on days 12-15. Db-GARC-1 specific activated CD8 T cells were 

assessed in blood by flow cytometry on day 19. Error bars indicate SEM. ns, not 
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significant (p>0.05); *, p<0.01. Representative of two independent experiments 

with similar results. 
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Figure 4. Strong TCR signals induce DNA damage response following 

alkylating chemotherapy. (A) OT-I mice were treated with temozolomide for five 

days and two days later splenocytes were stimulated in vitro with peptide for 48 

hours. Cells were stained for CD8, phosphorylated ATM and Ki67 and analyzed 

by flow cytometry. Representative plots are gated on CD8+ cells. (B) Aggregate 

data of flow cytometry as performed in (A). Percentage of proliferating (Ki67+) 

cells that were positive for phosphorylated ATM is plotted. Each experiment was 

performed with three technical replicates derived from the splenocytes of one 

mouse treated as indicated. Error bars indicate SEM.  ns, not significant 

(p>0.05); **, p<0.01; ***, p<0.001. Data shown are pooled from two independent 

experiments with similar outcome. (C) and (D) Aggregate data of flow cytometry 

performed as in (A) for OT-I mice given the indicated treatments. Error bars 

indicate SEM.  ns, not significant (p>0.05); **, p<0.01; ***, p<0.001. (E) C57BL/6 

mice (n=6-9 per group) were given the indicated treatments then vaccinated daily 

for 4 days with ovalbumin and poly ICLC. 7 days after the first vaccine antigen 

specific cells in blood were assessed by flow cytometry. Error bars indicate SEM. 

ns, not significant (p>0.05); *, p<0.05; **, p<0.01. Data are pooled from three 

independent experiments with similar results.   
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Figure 5. The affinity of vaccine responding lymphocytes is lower following 

temozolomide. (A)  C57BL/6 mice (n=5 per group) were treated with TMZ as 

indicated and vaccinated daily for 4 days with Ova and poly ICLC. 30 days later 

splenocytes were stained for Kb-Ova and CD8 and analyzed by flow cytometry. 

Antigen specific cells were gated as shown. (B) Aggregate data of a 

representative experiment performed as in (A). Error bars indicate SEM. **, 

p<0.01. Data shown are representative of two independent experiments with 

similar results. (C) C57BL/6 mice (n=3-4 per group) were treated with the TMZ as 

indicated and vaccinated daily for 4 days with Ova and poly ICLC. 7 days later 

splenocytes were stained for Kb-Ova and CD8. Relative affinity of vaccine 

responding CD8 T cells was calculated by observing decay in normalized total 

fluorescence by flow cytometry as described in Materials and Methods. Curves 

shown are first order exponential decays fit to data. Error bars indicate SEM. *, 

p<0.05; **, p<0.01. Data shown are pooled data of two independent experiments 

with similar results. (D) C57BL/6 (n=7-8 per group) mice were treated with the 

TMZ as indicated and vaccinated daily for 4 days with Ova and poly ICLC 

followed by 4 weekly boosters (as in Figure 2A) and terminally bled 70 days after 

the first vaccination. Relative affinity was calculated by dividing the absorbance of 

ELISA wells plated with PBS (control) by those plated with 1 M guanidinium 

chloride (chaotropic agent). Error bars indicate SEM. *, p<0.05; **, p<0.01; ***, 

p<0.001. 
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Figure 6. CD8 T cells expanded by vaccines following temozolomide have 

inferior functional characteristics.  (A) Nur77GFP TCR signal strength reporter 

mice (n=4 per group) were treated with the TMZ as indicated and vaccinated 

daily for 4 days with Ova and poly ICLC. 7 days later splenocytes were plated 

with the indicated amount of SIINFEKL peptide for 8 hours. Antigen specific T 

cells were identified by staining for Kb-Ova and CD8, and GFP intensity of 

antigen specific cells was assessed by flow cytometry. (B) Aggregate data of 

experiments performed as described in (A). Error bars indicate SEM. *, p<0.05; 

**, p<0.01; ***, p<0.001. Data shown are pooled from two independent 

experiments with similar results. (C) C57BL/6 mice (n=3-4 per group) were 

treated with the TMZ as indicated and vaccinated daily for 4 days with ovalbumin 

and poly ICLC. 7 days later mice splenocytes were plated for 24 hours with the 

indicated amount of SIINFEKL peptide. Elaborated IFN-g was measured by 

cytokine bead array and normalized to antigen specific T cells as indicated in 

Materials and Methods. Error bars indicate SEM. *, p<0.05; **, p<0.01. Data 

shown are pooled data from two independent experiments with similar results.  
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Figure 7. Cyclophosphamide pre-treatment is associated with less survival 

benefit from melanoma vaccines. (A) C57BL/6 mice (n=9 per group) were 

implanted subcutaneously with 7.5*104 B16-F10 melanoma cells. Mice were 

given cyclophosphamide as indicated day 2 after tumor inoculation and 

vaccinated with B16-F10 cell line mutant peptides and poly ICLC on days 3-6 

and17-20 after tumor inoculation. On day 10 after tumor inoculation leukocytes 

from 100 mL blood were incubated with splenocyte APC pulsed either with 

irrelevant (Ova-derived) peptides or B16-F10 mutant peptide cocktail. Elaborated 

IFN-g was measured by cytokine bead array for all 9 mice per group for 

vaccinated groups, 4 per group for non-vaccinated groups. Error bars indicate 

SEM. *, p<0.05. (B) Survival of mice in (A). Mice were sacrificed when tumors 

reached >1000 mm3 in volume, survival is depicted by Kaplan-Meier plot. P 

values shown are for log rank test. ns, not significant (p>0.05); *, p<0.05. (C) 

Patients with metastatic melanoma (n=10 per group) were enrolled in a clinical 

trial of the large multivalent immunogen and treated with autologous vaccinations 

either with or without a single dose of 300 mg/m2 of cyclophosphamide one week 

beforehand. Overall survival is depicted by Kaplan-Meier plot. P values shown 

are for log rank test. *, p<0.05. 
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Supplementary Figure 1. Suppressive cell populations are similar in GBM 

patient PBMC before and after temozolomide treatment. GBM patient PBMC 

were treated identically to those input into proliferation assays and were 

assessed by flow cytometry. A representative patient sample is shown with (A) 

Treg defined as CD4+ FoxP3+ cells (B) monocytic myeloid derived suppressor 

cells defined as CD14+HLA-DR- and (C) granulocytic myeloid derived 

suppressor cells defined as CD15+CD33+.  
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Supplementary Figure 2. Human dosages of temozolomide are modeled in 

mice. Transient lymphopenia is observed in C57BL/6 mice (n=4 per group) given 

indicated dosages of TMZ. Complete blood counts were obtained from 20 mL of 

blood using Hemavet machine (Drew Scientific), with absolute lymphocyte counts 

shown. Error bars indicate SEM. 
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Supplementary Figure 3. Spontaneous anti-tumor immune responses are 

inhibited by temozolomide treatment. (A) C57/BL6 mice (n=5 per group) were 

implanted with 30,000 cells of the immunogenic syngeneic glioma cell line 

O94M2 which express the SV40 Large T antigen. Mice were treated as indicated 

with temozolomide on days 3-7 after tumor implantation and tumor growth was 

tracked with bioluminescent imaging. (B) Survival of mice in (A) is indicated with 

Kaplan Meier plot. P values shown are for log rank test. **, p<0.01. 
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Supplementary Figure 4. Adoptively transferred OT-I undergo apoptosis 

following temozolomide exposure and vaccination. (A) 2x106 Thy1.2+ OT-I 

CD8 T cells were transferred into Thy1.1+ host mice (n=3 per group). Mice were 

given the indicated treatment and then vaccinated in the left leg with SIINFEKL 

and polyICLC.  24 hrs later both the vaccinated (left) and opposite (right) inguinal 

lymph nodes were stained for Thy1.2, CD8, Annexin V and viability (7-AAD). 

Representative flow plots gated on CD8+Thy1.2+ (OT-I) or CD8+Thy1.2- (bulk 

CD8) are shown. 
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Supplementary Figure 5. Treg are depleted by low dose 

cyclophosphamide. C57BL/6 mice (n=5 per group) were implanted with 75,000 

B16-F10 melanoma cells and treated with an intraperitoneal injection of 

150mg/kg cyclophosphamide 2 days later. Four days after cyclophosphamide 

injection blood was stained for flow cytometry for CD3, CD4, CD8, CD25, and 

FoxP3. Treg (CD4+CD25+FoxP3+) in blood were assessed (A) as a percentage 

of CD4 T cells and (B) as absolute number of cells per microliter as assessed by 

flow cytometry counting beads. Error bars indicate SEM. **, p<0.01. 
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Table 1. Dosages of temozolomide in humans and mice. 

Species / 

Dose 

Time Dose 

(human) 

Dose(mice) Lymphocytes rel. 

to normal 

Human / 

Standard 

42 days 3150 mg/m2 n/a ~10-50% 

Human / 

Adjuvant 

5 days / 

cycle 

1000 mg/m2 n/a ~10-30% 

Human /  

Intense 

Adjuvant 

21 days / 

cycle  

2100 mg/m2 n/a  ~10-20% 

Mouse / High 5 days ~3000 mg/m2 

equiv. 

80 mg/kg ~10-15% 

Mouse / 

Medium 

5 days ~2100 mg/m2 55 mg/kg  ~40-50% 

Mouse / Low 5 days ~1000 mg/m2 25 mg/kg  ~55-65% 
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Alkylating chemotherapy and immunotherapy 
 

 
Due to the hypothesis that sustained remissions of advanced cancer in response 

to conventional therapy may require endogenous immune responses to mediate 

their lasting effect, much interest has been generated by the prospect of 

combined chemo-immunotherapy.(Zitvogel, Apetoh et al. 2008) Using alkylating 

drugs as well as other cytotoxic chemotherapeutic agents, immune stimulatory 

effects have been reported by several mechanisms. These include the liberation 

of inflammatory and homeostatic cytokines by cytotoxic 

chemotherapy,(Asavaroengchai, Kotera et al. 2002) the immune stimulatory 

effect of the immunogenic death of tumor cells caused by 

chemotherapy,(Michaud, Martins et al. 2011) and the direct tumor sensitizing 

effect of chemotherapy to the cytolytic activity of immune cells.(Ramakrishnan, 

Assudani et al. 2010) Additionally, much interest has been directed to 

combination of conventional chemotherapy and active immunotherapeutic 

strategies such as cancer vaccines, to try to derive synergy between two 

complimentary approaches.(Brode and Cooke 2008) 

 

This has particularly been the case for a widely used class of chemotherapeutic 

drugs, the alkylating chemotherapies. Alkylating chemotherapy refers to a class 

of DNA damaging chemotherapeutic agents that covalently modify DNA by either 

methylation or the generation of inter-strand or intra-strand alkyl 
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crosslinks.(Lawley and Brookes 1965, Marchesi, Turriziani et al. 2007) These 

agents include some of the oldest anti-neoplastic drugs known such as nitrogen 

mustard, and also many agents still in common clinical use such as 

cyclophosphamide, dacarbazine and temozolomide.(Marchesi, Turriziani et al. 

2007) While these agents act non-specifically and alkylate many chemical 

species within the cell, their anti-neoplastic effect is mediated by accumulation of 

DNA damage, particularly in cells that proliferate rapidly, such as lymphocytes or 

transformed cells.(Roos, Baumgartner et al. 2004, Roos and Kaina 2012) Given 

their routine use for a number of common cancers, these drugs have been used 

in many clinical protocols of experimental immune therapies.(Dudek, Mescher et 

al. 2008, Prins, Soto et al. 2011, Walter, Weinschenk et al. 2012) Additionally, 

investigations into the utility of these drugs as conditioning regimens before 

adoptive transfer of immune cells(Restifo, Dudley et al. 2012) as well as of their 

immune modulatory effects(Machiels, Reilly et al. 2001) have led to interest in 

combination chemo-immunotherapy regimens using alkylating agents.  

 

Previous work has demonstrated that in addition to their anti-neoplastic effects, 

alkylating chemotherapy selectively depletes certain immune populations. In 

particular, regulatory T cells (Treg) seem particularly susceptible to alkylating 

chemotherapy,(Banissi, Ghiringhelli et al. 2009) likely due to the fact that these 

cells proliferate in response to toleregenic stimuli in the steady state.(Seneschal, 

Clark et al. 2012) This has led to interest in the use of alkylating chemotherapy 
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as a conditioning regimen before vaccination in order to deplete Treg. While 

evidence exists that low dose alkylating chemotherapy can exert a stimulatory 

effect in the context of vaccinations targeting self-antigens which are normally 

suppressed by Treg, it is unclear how generalizable this finding is.(Ercolini, Ladle 

et al. 2005, Walter, Weinschenk et al. 2012) Indeed, given the profound 

proliferative burst that occurs during the initiation of an adaptive immune 

response,(Blattman, Antia et al. 2002) it is counter-intuitive that an anti-

proliferative chemotherapeutic drug would be immune stimulatory. Our research 

group has recently published findings that indicate that, indeed, the anti-

proliferative effect of alkylating chemotherapy exerts an immune suppressive 

effect upon subsequent vaccination that acts in a cell intrinsic manner in 

responder lymphocytes.(Litterman, Zellmer et al. 2013) This effect is particularly 

important in the case of tumor neo-antigens which are derived from “mutated-

self” proteins that are immunogeneic even in non-Treg depleted hosts. Here we 

present a summary of the key findings of this paper and put forth a theoretical 

framework to explain how the quality of the T cells responsive to a given antigen 

could affect the outcome of alkylating chemotherapy given prior to vaccination. 

We conclude by discussing the implications of these data for clinical researchers, 

particularly for tumor immunotherapy targeting patient specific neo-antigens or 

using autologous tumor material from tumors harboring large numbers of 

mutations, such as melanoma or carcinoma of the lung.  
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Regulatory T cell depletion can be beneficial for immunization against self 

antigens 

 

The immunological rationale for the combination of anti-proliferative alkylating 

chemotherapy with vaccination has been due to the depleting effect of alkylating 

chemotherapy on regulatory T cell populations. This finding has been reported for 

both conventional and metronomic dosing schedules in rodents and has also 

been observed in human patients treated with these drugs.(Ercolini, Ladle et al. 

2005, Banissi, Ghiringhelli et al. 2009, Fadul, Fisher et al. 2011, Walter, 

Weinschenk et al. 2012) While at high doses alkylating drugs can cause a 

general leukopenia associated with a susceptibility to opportunistic 

infections(Grossman, Ye et al. 2011) (for instance, due to a profound 

neutropenia), at commonly used clinical doses these drugs have a relatively 

benign safety profile and are not commonly associated with lymphopenia as a 

dose limiting toxicity.(Wick and Weller 2005)  Indeed, we and others have 

observed that it appears that Treg are semi-selectively depleted, decreasing both 

in absolute number and in relative proportion to other lymphocytes upon 

alkylating chemotherapy treatment.(Ercolini, Ladle et al. 2005, Litterman, Zellmer 

et al. 2013) We speculate that this is due to the fact that Treg are more likely to 

be undergoing cell division in the steady state than naïve T cells. Indeed, recent 

work examining the effect of toleregenic antigen presenting cells upon Treg in the 

steady state seems to support this idea. In the skin, for instance, the majority of 
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cycling T cells in normal individuals are Treg, which proliferate in an antigen 

specific way to local antigen presenting cells, presumably in response to self 

antigens.(Seneschal, Clark et al. 2012)  

 

Experiments in mouse tumor models overexpressing tolerized self-antigens have 

demonstrated a mechanism to explain why regulatory T cell depletion by 

alkylating chemotherapy may have a beneficial effect in this context. Using 

human HER2-ovexpressing transgenic mice as hosts for a tumor driven by 

human HER2, Jaffee and colleagues found that diverse chemotherapeutic drugs 

could lead to synergy with vaccination, if administered before the vaccinations 

began.(Machiels, Reilly et al. 2001) This effect was mediated by an enhanced 

tumoricidal T cell priming. Later work demonstrated that this enhanced priming 

was due to depletion of Treg allowing recruitment into the immune response of 

self-specific T cells that were not activated in the presence of Treg.(Ercolini, 

Ladle et al. 2005) Interestingly, this beneficial effect of chemotherapy driven Treg 

depletion appears self antigen specific, as only human HER2 transgenic mice 

benefited from chemotherapy pre-treatment, as wild-type mice could generate 

anti-HER2 CD8 T cell responses without Treg depletion.(Ercolini, Ladle et al. 

2005) The finding that only self-specific responses require Treg depletion is 

concordant not only with the fact that typical immune responses to pathogens 

occur routinely in Treg replete hosts, but also with the lymphoproliferative and 

autoimmune phenotype of individuals with an impaired regulatory T cell 
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compartment.(d'Hennezel, Ben-Shoshan et al. 2009, Hofer, Krichevsky et al. 

2012) In addition to the above mentioned apparent self-specificity of Tregs 

themselves, it has been posited that Treg can act as a sink for stimulatory 

cytokines like IL-2 produced in response to antigenic stimulation of T cells. By 

sequestering the small amounts of IL-2 generated in response to weak self-

antigens, Treg may raise the threshold for mounting a T cell response in order to 

delineate a sharp, all-or-none boundary between typically ineffective, weak 

antigens (“self”) and inherently immunogenic, strong antigens (“non-self”). (Hofer, 

Krichevsky et al. 2012) Interestingly, data from a recent clinical trial seem to 

provide experimental support in man for the viewpoint that alkylating 

chemotherapy pre-treatment can drive responses from a normally non-reactive, 

latent precursor population of T cells with self specificities. In an early phase 

clinical trial of a pool peptide vaccine consisting of highly tumor expressed HLA-

A2 restricted self peptides, Walter and colleagues reported enhanced immune 

responses and overall survival upon low dose cyclophosphamide pre-treatment 

prior to vaccination.(Walter, Weinschenk et al. 2012)  

 

Alkylating chemotherapy has an anti-proliferative effect on responder 

lymphocytes 

 

In addition to their Treg depleting effects, alkylating chemotherapy also affects all 

exposed cells in the host, including any potentially tumor reactive lymphocytes 
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that would be expanded by a vaccine. For antigens that are inherently 

immunogenic, the effect of Treg depletion may be neglible, and therefore we 

sought to understand the responder cell intrinsic effect of alkylating 

chemotherapy on immune responses to this class of “non-self” antigens.(Ercolini, 

Ladle et al. 2005) We did indeed find a surprisingly long-lived anti-proliferative 

effect of alkylating chemotherapy on immune responses, with both the magnitude 

and quality of response to neo-antigens being impaired for at least 10 weeks 

after the administration of temozolomide.(Litterman, Zellmer et al. 2013) Both B 

and T cell responses had lower peak magnitudes, and both the antibodies and 

TCRs of the measured responses had lower affinity for cognate antigen. In all 

cases it seemed that these defects stem directly from the DNA damaging nature 

of the chemotherapy. Indeed, while temozolomide treated mouse splenocytes do 

not stain positively for phosphorylated ATM (a key marker of the DNA damage 

response) directly after isolation, upon ex vivo TCR stimulation a robust induction 

of phospho-ATM is observed. Our key finding (reproduced in Figure 1A) was that 

this proliferation-induced induction of DNA damage after alkylating chemotherapy 

is dependent on the strength of antigenic stimulation, with only a modest 

induction of phospho-ATM for a weak antigen-TCR pair (the altered peptide 

variant SIIGFEKL and the OT-I TCR, respectively) but strong induction for a high 

affinity antigen-receptor pair (SIINFEKL and OT-I).  
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We hypothesized that adaptive immune responses would be most impaired, 

therefore, for non-self antigens against which precursor populations with high 

affinity antigen receptors are present. We found this to be the case for both a 

model antigen (chicken ovalbumin) as well as for previously published neo-

antigens identified in syngeneic mouse models of melanoma and glioma. After 

low dose cyclophosphamide or temozolomide treatment, respectively, neo-

antigen reactive cells were undetectable in tumor bearing animals upon peptide 

vaccination.(Litterman, Zellmer et al. 2013)  

 

In light of these new data from animal models, we performed a retrospective 

analysis of overall survival of patients enrolled on an early phase clinical trial of 

the large multivalent immunogen vaccine for metastatic melanoma.(Dudek, 

Mescher et al. 2008) In this clinical trial, cell surface proteins were extracted from 

each patient’s tumor material and were adsorbed onto cell-sized silica beads. 

Interestingly, the clinical trial design was such that there were two cohorts of 10 

patients each that received an identically prepared vaccine but where one cohort 

received low dose cyclophosphamide a week before the first vaccination and the 

other received just the vaccinations.  In a new long-term overall survival analysis 

presented in Figure 1B, an intriguing difference in overall survival can be seen: 

median survival in the vaccine only group was over 4 years, compared to ~7 

months for the cyclophosphamide and vaccine group. Immune monitoring 

conducted at the time of the trial revealed minimal detectable responses against 
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several common over-expressed tumor associated antigens in vaccinated 

patients.(Dudek, Mescher et al. 2008) While it is difficult to test the hypothesis, 

we speculate that the long term survival of the patients who received the vaccine 

only may have been due to the generation of immune responses against patient 

specific neo-antigens, and that this process was abrogated in the group that 

received cyclophosphamide pre-treatment. We note that multiple investigators 

have found that immune responses to patient specific mutations are prevalent 

among tumor infiltrating lymphocytes in metastatic melanoma, suggesting that 

peptides derived from these mutations may be the most “immunogenic” antigens 

present.(Lennerz, Fatho et al. 2005, Robbins, Lu et al. 2013) Additionally, we 

note that a follow up phase II clinical trial of the large multivalent immunogen 

vaccine that used an HLA-transfected allogeneic melanoma cell line failed to 

demonstrate the same long term survival of vaccinated patients,(Jha, Miller et al. 

2012) providing additional circumstantial evidence that private mutations were 

the source of the responses seen in the original trial, which were inhibited by 

cyclophosphamide pre-treatment.  

 

A hierarchy of tumor antigens and differential susceptibilities of 

associated immune responses to alkylating chemotherapy 

 

Recent reviews summarizing new findings gleaned from genome wide analyses 

posit a hierarchy of tumor antigens: overexpressed self antigens are widely 
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shared among different patients but minimally immunogenic, whereas neo-

antigens are highly immunogenic but unlikely to be shared by more than one 

patient.(Hacohen 2013, Kvistborg, van Buuren et al. 2013) In addition, we 

propose that the differing nature of the T cell repertoire reactive to these different 

types of tumor antigens leads to a spectrum of  susceptibility to impairment by 

alkylating chemotherapy, as shown in Figure 2. At one end of the spectrum, 

normal self proteins are present in the thymus during T cell development and 

abundantly expressed in the periphery in the steady state, leading to minimally 

reactive T cells with low affinity TCRs that cannot be activated in the presence of 

Treg. The low intensity proliferative signals that these cells receive from cognate 

antigen and their requirement for Treg depletion for successful activation can 

lead to synergy between Treg depleting alkylating chemotherapy and vaccination 

against these antigens. At the other end of the spectrum, responses to non-self 

proteins like model antigens or tumor neo-antigens can be generated in Treg 

replete animals or patients and generate high intensity proliferative signals in 

responder lymphocytes. Responses to these antigens, therefore, are impaired by 

DNA damage induced upon vaccination after alkylating chemotherapy. 

 

Recent clinical trials using chimeric antigen receptor transduced autologous T 

cells show the kinds of dramatic responses that are achievable when an 

overwhelming immune response targets every cell in the body that expresses a 

tumor antigen.(Porter, Levine et al. 2011)  Given their high immunogenicity and 
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their restricted expression solely in tumor cells, neo-antigens represent extremely 

attractive targets for active immunotherapy. Recent advances in bioinformatics 

make the targeting of these antigens possible in principle, and are driving further 

research towards implementing this strategy as a clinical reality. We stress the 

potential pitfall for this strategy that conventional or immunomodulatory alkylating 

chemotherapy may pose, since it is used for several malignancies that would 

make desirable targets of these strategies including metastatic melanoma, 

carcinoma of the lung and glioblastoma. For cancers for which it is not feasible or 

preferable to dispense with this chemotherapy altogether, it is likely possible to 

modify clinical protocols to yield synergy between chemotherapy and immune 

therapy by sparing responder lymphocytes from the chemotherapy. This would 

entail extracting large numbers of PBMCs before chemotherapy and either 

expanding neo-antigen specific cells in culture or transducing them with an 

artificial neo-antigen specificity, perhaps using a TCR cloned from immunized 

HLA-transgenic mice.(Restifo, Dudley et al. 2012) More simply, re-infusing non-

drug exposed naïve lymphocytes before immunization with peptide vaccinations 

or viral vectors could also yield an enhanced effect.  Furthermore, for 

malignancies in which drugs other than alkylating agents can successfully be 

used for anti-neoplastic effect, targeted therapies or different classes of 

chemotherapeutic drugs with less impact on T cells are likely preferable. For 

instance, we examined both a DNA intercalating agent (doxorubicin) and a 

platinum agent (carboplatin) and did not observe nearly the same degree of anti-



   84 

 

proliferative effect on T cells upon vaccination.(Litterman, Zellmer et al. 2013) 

Targeted therapies, such as sorafenib or vemurafenib, should also be studied in 

this context. By developing clinical strategies that allow chemotherapy and 

immune therapy to synergize, improved results of experimental immune therapy 

trials may be achieved. 
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Figure 1. Deleterious effect on vaccination of alkylating chemotherapy A. 

High TCR signal strength leads to DNA damage in alkylating chemotherapy-

exposed lymphocytes. OT-I mice were treated with temozolomide or left 

untreated, and their splenocytes were stimulated with the indicated SIINFEKL 

peptide variants. Stronger peptides (SIINFEKL, SIIQFEKL) lead to greater 

induction of DNA double strand breaks (measured with an antibody against 

phosphorylated ATM) in proliferating (Ki67+) cells than no stimulation or weaker 

peptide (SIIGFEKL).  B. Shorter duration of overall survival upon vaccination with 

an autologous cancer vaccine for metastatic melanoma upon pre-treatment with 

cyclophosphamide. Patients enrolled in a clinical trial of the large multivalent 

immunogen (detailed in Dudek et al., 2008) were either treated with 300 mg/m2 or 

left untreated a week before the first vaccination. Overall survival is depicted, 10 

patients per group. 
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Figure 2. The outcome of vaccination after alkylating chemotherapy may 

depend upon the type of antigen targeted. Overexpressed self-antigens likely 

require depletion of regulatory T cells in order to generate robust responses, 

providing a rationale for “immunomodulatory” doses of alkylating chemotherapy. 

Mutated neo-antigens are recognized by T cells with high affinity antigen 

receptors and do not require regulatory T cell depletion. For these antigens, the 

DNA damage inducing nature of alkylating chemotherapy is deleterious. 
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Introduction 

Adoptive immunotherapy is a promising treatment for hematopoietic 

malignancies and solid tumors that consists of infusion of ex vivo manipulated 

immune cells with an anti-tumor specificity.(Rosenberg 2011, Restifo, Dudley et 

al. 2012) This specificity is either an inherent property of cultured tumor infiltrating 

lymphocytes(Rosenberg, Yang et al. 2011, Restifo, Dudley et al. 2012) or is 

introduced by antigen specific expansion(Oelke, Maus et al. 2003) or  

transduction with an antigen receptor gene,(Porter, Levine et al. 2011, Robbins, 

Morgan et al. 2011) but in either case the T cells are typically stimulated with the 

potent T cell mitogen and growth factor IL-2. Repeated rounds of stimulation of 

CD8+ T lymphocytes in the presence of IL-2 lead to acquisition of effector 

function and enhanced in vitro killing of target cells but also to terminal 

differentiation and loss of proliferative capacity associated with inferior tumor 

control.(Gattinoni, Klebanoff et al. 2005, Gattinoni, Klebanoff et al. 2012) 

Numerous signaling pathways and transcriptional controllers have been identified 

as enhancing self renewal capability and memory formation of CD8 T cells, 

including signaling by common g-chain cytokines other than IL-2 (particularly IL-7 

and IL-21)(Schluns, Kieper et al. 2000, Cui, Liu et al. 2011, Yang, Ji et al. 2012), 

the Wnt/b-catenin pathway,(Gattinoni, Zhong et al. 2009) and inhibition of cell 

growth and metabolism pathways.(Araki, Turner et al. 2009, Pearce, Walsh et al. 

2009, Sukumar, Liu et al. 2013) 
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The coupling of proliferation and differentiation of CD8 T cells is particularly 

problematic for antigen specific cultures, which use multiple stimulations with 

autologous or artificial antigen presenting cells pulsed with specific peptides to 

massively expand antigen specific cells from very low precursor frequencies in 

peripheral blood.(Oelke, Maus et al. 2003, Weber, Caruana et al. 2013) This 

approach is appealing because it does not require tumor infiltrating lymphocytes 

or tumor-restricted expression of targets for chimeric antigen receptors, and can 

be adapted to use patient specific neo-antigens identified prospectively by deep 

sequencing.(Restifo, Dudley et al. 2012, Hacohen 2013, Heemskerk, Kvistborg et 

al. 2013, Kvistborg, van Buuren et al. 2013)  

 

Results and Discussion 

As a model system to investigate modifications to antigen specific cell culture 

conditions that would yield less differentiated, memory-like CD8 T cells from 

patient PBMC, we mixed congenically marked OT-I CD8 T cells with polyclonal 

C57BL/6 CD8 T cells at a ratio of ~1:100, approximating a frequency achievable 

from the naïve repertoire via peptide-MHC multimer enrichment.(Legoux and 

Moon 2012) We screened individual modifications to the culture protocol by 

mixing SIINFEKL pulsed bone marrow derived dendritic cells (BMDC) with the 

mixed CD8 T cells in media containing either alternate cytokines besides IL-2, or 

IL-2 and added drugs and assaying the percentage of memory phenotype 
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CD44+CD62L+ OT-I T cells after two weeks in culture. We identified numerous 

modified culture conditions that yielded small sub-populations CD62L+ cells 

(Supplementary Fig. 1), and when these modifications were combined in a 

cocktail of memory inducing factors (IL-21 and IL-7 instead of IL-2, plus 2-

deoxyglucose and the GSK3b inhibitor TWS119) we noted an additive effect, with 

sustained antigen specific proliferation of OT-I cells (Fig. 1a) where 

approximately half of the cells remained CD62L+ (Fig. 1b). While the 

accumulation of Celltrace diluted cells is slower for cells cultured in this cocktail 

of factors (Fig 1a.), this slower proliferation is balanced by enhanced survival of 

cells in this culture, as we observed a greater viability of cells cultured in the 

cocktail versus cells grown in IL-2 (Supplementary Fig. 2). We enumerated the 

number of antigen specific cells grown by this method and observed roughly 

equivalent numbers of viable antigen-specific cells at various time points in 

cultures grown with this cocktail of factors as in cultures of cells grown in IL-2 

(Supplementary Fig. 3), indicating that this method could be used with similar 

amounts of starting material as in conventional expansion protocols. 

 

To further characterize these cells, we performed RNAseq analysis on sorted 

OT-I cells derived from naïve (CD44loCD62L+) OT-I mouse spleens, cocktail 

cultured cells and differentiated (CD44hiCD62L-) IL-2 cultured cells. Since the 

extent of differentiation of mouse CD8 T cells has been identified as a 

determinant of in vivo expansion and anti-tumor efficacy we sorted the 
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heterogeneous cocktail cultured cells into CD44hiCD62L-, CD44hiCD62L+ and 

CD44loCD62L+ before extracting RNA (Fig. 1c). Principal component analysis 

and unsupervised non-hierarchical clustering revealed that all three populations 

cultured in the memory cocktail exhibited gene transcription profiles that 

clustered close to one another, were highly distinct from cells grown in IL-2 and 

clustered closer to naïve cells than IL-2 grown cells (Fig. 1d).  In order to 

compare our in vitro derived cells with bona fide memory cells differentiated in 

response to an infection, we compared the transcriptome of our cultured OT-I 

cells to OT-I CD8 T cells at various time points of an in vivo immune response to 

L. monocytogenes Ova described by the Immunological Genome Consortium 

(Best, Blair et al. 2013). This analysis revealed that cells grown in IL-2 in vitro 

and early effector OT-I cells in vivo (1-6 days after infection) showed similar 

transcriptional profiles, highly expressing genes involved in effector function 

(Gzma, Ifng, Il2ra, Sema7a).  Cocktail grown cells and late memory cells (100 

days after infection) also had transcriptional profiles that were similar to one 

another, showing levels of expression of effector genes that were intermediate 

between naïve cells and IL-2 grown cells, and higher levels of genes involved in 

self-renewal and survival like Bcl2 and Tcf7 than IL-2 grown cells or early effector 

cells. (Fig. 1d, Supplementary Fig. 4)  Upstream regulator analysis identified 

numerous transcriptional regulators activated in cocktail grown cells versus IL-2 

grown cells. These included factors previously described as master regulators of 

CD8 T cell memory including FOXO1(Hess Michelini, Doedens et al. 2013) and 
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BCL6,(Ichii, Sakamoto et al. 2002) as well as novel transcription factors that have 

not been described as having a role in CD8 T cell memory. Tentatively identified 

novel factors of biological interest are related to pathways of resistance to aging, 

stress response and metabolism such as SIRT1 and FOXM1(Brunet, Sweeney et 

al. 2004, Laoukili, Stahl et al. 2007) as well as factors that have proven critical to 

other aspects of immune function, such as FOXM1 and MYB in the regulation of 

proliferation in germinal center B cells (Lefebvre, Rajbhandari et al. 2010).  

 

In order to assay the cocktail cultured OT-I cells for efficacy in treating a solid 

tumor, we transferred equal numbers of IL-2 or cocktail cultured OT-I cells 

intravenously into mice bearing established Quad-KM3M14 gliomas (that express 

the ovalbumin epitope SIINFEKL) after treatment with the conditioning 

chemotherapy temozolomide (Litterman, Zellmer et al. 2013). Upon in vivo 

restimulation with a vaccination consisting of the ovalbumin epitope SIINFEKL 

peptide and polyinosinic-polycytidylic acid stabilized with poly-L-lysine (poly 

ICLC) (Fig. 2a), IL-2 cultured cells rapidly expanded and then quickly contracted, 

whereas the cocktail cultured cells expanded to a greater extent and maintained 

a significantly higher percentage of CD8 T cells in the blood for several weeks 

after vaccination (Fig. 2b). Even when normalized to the percentage of CD8 T 

cells present in blood 2 days after transfer to account for different rates of initial 

engraftment, the in vivo fold-expansion and persistence of the cocktail treated 

cells were greater (Fig. 2c). This greater expansion and persistence was 
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associated with improved tumor control and enhanced overall survival of glioma 

bearing mice in mice that received cocktail grown cells versus mice that received 

IL-2 grown cells or control mice that received no transferred cells (Fig. 2d,e).  

 

We next sought to test if this approach would be feasible using antigen specific 

CD8 T cells enriched from the polyclonal repertoire. We stained C57BL/6 

splenocytes and lymph node cells with a Kb-Ova specific dextramer and 

performed magnetic enrichment with anti-PE microbeads. The bound fraction 

eluted after performing this enrichment contained naïve antigen specific cells at 

frequencies comparable to our OT-I experiments, which could be expanded when 

cultured with SIINFEKL pulsed BMDC in either IL-2 or cocktail containing media. 

(Supplementary Fig. 5a). Similarly to the OT-I system, IL-2 cultured cells upon 

expansion were almost uniformly negative for expression of CD62L, whereas 

cocktail cultured cells were heterogeneous with a large fraction remaining 

positive for CD62L after antigen specific expansion (Supplementary Fig. 5b). To 

test the applicability of this cocktail to human cells, we performed magnetic 

enrichment of antigen specific CD8 cells from naïve human PBMC by using HLA-

A*0201 dextramers specific for both viral (Diamond, York et al. 1997)  (Fig. 3a) 

and tumor neo-antigen (Wolfel, Hauer et al. 1995) epitopes (Supplementary Fig. 

6)  and cultured those cells with antigen pulsed autologous monocyte-derived 

dendritic cells (moDCs). In both culture conditions, antigen specific CD8 T cells 

preferentially expanded upon culture with antigen pulsed moDCs (Fig. 3a). 
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Antigen specific CD8 T cells cultured in the cocktail of memory inducing factors 

expressed high levels of cell surface molecules that were differentially expressed 

between IL-2 and cocktail treated mouse cells including CD95 (Fas receptor) and 

CCR7 and which serve as markers of a memory phenotype and enhanced in vivo 

persistence upon adoptive transfer in primates(Berger, Jensen et al. 2008) (Fig. 

3b).  To test the applicability of the cocktail for applications requiring polyclonal 

expansion (e.g. before chimeric antigen receptor transduction) we used 

CD3/CD28 beads to expand polyclonal human CD8 T cells. We observed a 

similar degree of expansion in both groups as assessed by dilution of Celltrace 

dye, and found that the cocktail grown cells expressed memory marker cell 

surface proteins (Fig. 3c). The phenotype of these cells seems to correspond to 

a conventional TCM phenotype and does not seem to be enriched for TSCM as has 

been reported (Gattinoni, Lugli et al. 2011), as the CD8+ cells expanded with 

polyclonal stimulation were essentially all CD45RO+ within three days of 

stimulation (Supplementary Fig. 7).  

 

We have demonstrated that naïve CD8 T cells cultured with antigenic stimulation 

(either in the form of a specific peptide MHC complexes or via anti-CD3) in the 

presence of a cocktail of memory-formation associated small molecules and 

cytokines adopt a differential gene expression program relative to cells grown in 

IL-2. In mice, these cells have a greater proliferative potential and persistence in 

vivo and therefore have greater anti-tumor activity. Coupling this method with a 
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peptide-MHC multimer pulldown allows the rapid (2-3 week) culturing of antigen 

specific T cell pools with a less differentiated phenotype than cells grown in IL-2. 

While these cells retain some naïve like characteristics (for instance, greater in 

vivo expansion upon adoptive transfer than differentiated effector cells) the 

predominant phenotypic and transcriptional characteristics of these cells 

demonstrate activation and expansion by antigen, and resemble antigen-specific 

memory cells expanded after the resolution of a primary infection. The generation 

of such antigen-specific memory-like CD8 T cells could prove advantageous for 

cancer immunotherapy, particularly if coupled with prospective bioinformatics 

based identification of tumor specific mutation derived neo-antigens. This 

combination of factors may also be useful for expanding minimally differentiated 

T cells prior to transduction with antigen receptor expressing vectors, or as a 

jumping off point for the further optimization of T cell expansion protocols to limit 

differentiation. Finally, by analyzing the genetic program instantiated by these 

less differentiated cells, we have outlined some of the transcriptional controllers 

that could be useful targets of future genetic engineering approaches that would 

seek to enforce maintenance of proliferative capacity in T cells in extended 

culture prior to adoptive immunotherapy.  

 

 

 

Materials and Methods 
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T cell culture 

All immune cells were cultured in a T cell medium consisting of RPMI 1640 with 

25 mM HEPES, supplemented with 10% heat-inactivated fetal bovine serum and 

1:100 with penicillin streptomycin, non-essential amino acids and sodium 

pyruvate and 50 mM b-mercaptoethanol. Mouse CD8 T cells were isolated by 

pressing mouse spleen and lymph node cells through a 40 micron nylon mesh 

filter in RPMI followed by negative selection with a magnetic isolation kit for CD8a 

T cells (Miltenyi). For OT-I experiments mouse CD8 T cells were separately 

isolated from C57BL/6-Tg(TcraTcrb)1100Mjb/J (hereafter OT-I/Thy1.2) 

mice(Hogquist, Jameson et al. 1994) and B6.PL-Thy1a/CyJ (hereafter Thy1.1) 

mice and mixed at a ratio of 1:100. HLA-typed PBMC from CMV-seronegative 

donors were obtained from Precision Bioservices. Human CD8 T cells were 

isolated by separation from freshly thawed PBMC by negative selection with a 

magnetic isolation kit for CD8a T cells (Miltenyi). Antigen specific cells were 

enriched as previously described(Legoux and Moon 2012) from freshly isolated 

lymph node and spleen cells (mouse) or overnight incubated PBMC (human) 

after staining with dextramers according to manufacturer’s instructions 

(Immudex). T cells were incubated mixed with peptide pulsed dendritic cells at a 

ratio of 2:1 or CD3/CD28 beads (Invitrogen) at a ratio of 1:1 and plated at a 

density of 10,000-20,000 T cells per well of round bottom 96 well plates in a 

volume of 150-200 mL per well. Fresh media containing the same concentration 
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of cytokines and drugs was added to each well at half the volume initially plated 

after 3-4 days.  Cells were spun over a histopaque-1077 (Sigma-Aldrich) gradient 

to remove dead cells, counted and re-plated with fresh dendritic cells or 

CD3/CD28 beads once a week.  

 

Generation of Dendritic Cells 

Bone-marrow derived dendritic cells (BMDC) were cultured as previously 

described.(Muccioli, Pate et al. 2011) C57BL/6 femora, tibiae, humeri and pelves 

were rinsed with RPMI through a 40 micron nylson mesh, washed, red blood cell 

lysed with ACK buffer, washed again and plated in T cell media supplemented 

with murine GM-CSF for 7-9 days. BMDC were matured 24 hours before use by 

addition of 2 mg of polyinosinic:polycytidylic acid stabilized with poly-L-

lysine(polyICLC, provided by Oncovir) per mL of culture medium.  Human 

monocyte derived dendritic cells (moDC)(Oelke, Maus et al. 2003) were 

generated by isolating monocytes from freshly thawed PBMC with CD14 positive 

selection microbeads (Miltenyi) and culturing these monocytes for 8-10 days in T 

cell medium supplemented with human GM-CSF and human IL-4. moDC were 

matured 24 hours before use by addition of 2 mg of polyICLC per mL of culture 

medium. For both mouse BMDC and human moDC, dendritic cells were coated 

with cognate antigen peptide by adding peptide to matured dendritic cells at a 

concentration of 20 mg/mL and incubating at 37° C for 2 h. Dendritic cells were 
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washed 4 times in RPMI to remove excess peptide from media before being 

mixed with T cells.  

 

Cytokines and small molecules   

All cytokines except for human IL-2 were from Peprotech. Mouse cells were 

plated in T cell medium containing 1 ng/mL recombinant murine IL-2, or 10 ng/mL 

murine IL-7 and 20 ng/mL murine IL-21. Human cells were plated in T cell 

medium containing 80 IU/mL recombinant human IL-2 (R&D Systems), or 10 

ng/mL human IL-7 and 20 ng/mL human IL-21. Human and mouse cells were 

incubated with 2-deoxyglucose (Sigma) at a concentration of 400 mM, and 

TWS119 (Selleck Chemical) at a concentration of 4 mM. For generation of bone-

marrow derived dendritic cells, mouse bone marrow cells were plated in 20 

ng/mL murine GM-CSF. For generation of monocyte-derived dendritic cells, 

human monocytes were plated in 100 ng/mL human GM-CSF and 50 ng/mL 

human IL-4.  

 

Animals, tumor model, adoptive transfers, peptides and flow cytometry  

Mouse experiments were performed in accordance with University of Minnesota 

Animal Care and Use Committee guidelines. C57BL/6J mice, OT-I and Thy1.1 

mice were purchased from the Jackson Laboratory and used at 6-10 weeks of 

age.  
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Thy1.1 mice were inoculated with 30,000 cells of the SIINFEKL expressing 

syngeneic C57BL/6 glioma line Quad-KM3M14 in the ventral striatum as 

previously described. (Litterman, Zellmer et al. 2013) Tumor take and growth 

were assessed with bioluminescent imaging using a Xenogen IVIS 100 imager. 

Mice were treated with 75mg/kg temozolomide (Toronto Research Chemicals) 

suspended in sterile PBS by oral gavage daily for five days starting five days 

after the tumor was inoculated. One day after the last dose of temozolomide mice 

were given an adoptive transfer of 750,000 OT-I T cells as an intravenous 

injection into the retro-orbital venous sinus. Mice were vaccinated with 50 mg of 

Ova peptide (Anaspec) and 10 mg of polyICLC via a subcutaneous injection in 

the thigh near the inguinal lymph node 2 and 5 days after the adoptive transfer. 

Transferred T cell levels were measured by flow cytometry using 50 mL of blood 

extracted from the retro-orbital venous sinus. All antibodies used were from 

eBioscience. Ova (SIINFEKL) and CMV pp65 (NLVPMVATV) peptides were from 

Anaspec. CDK4 R24C (ACDPHSGHFV) peptide was from Genscript. Dextramers 

were from Immudex. Flow cytometry was performed using BD FacsCanto, LSRII 

and LSR Fortessa flow cytometers. Cell sorting for RNAseq was performed using 

a BD FacsAria II. Flow cytometry data was analyzed with Cytobank software.  

 

RNA sequencing and Gene expression Data analysis 

OT-I CD8 T cells were sorted as indicated in the text. Cells were pelleted and 

total RNA was extracted using the Arcturus PicoPure RNA Isolation Kit (Life 
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Technologies). Each sample was divided into three technical replicates and 

sequenced to a depth of ~40 million paired-end 50 base pair reads using the 

Illumina HiSeq 2000 sequencer (Illumina). Fastq files generated from RNA 

sequencing were mapped to the mm10 mouse genome using TopHat 

2.0.(Trapnell, Pachter et al. 2009) Differential expression was calculated using 

Cuffdiff 2.1.1.(Trapnell, Williams et al. 2010)  

 

Expression data for 28 mouse samples from the Immunological Genome Project 

Consortium (http://www.immgen.org/) was downloaded from the Gene 

Expression Omnibus (GEO) (GEO accession no series GSE15907: specific files 

GSM605891-6, GSM605898-605911, GSM920634-920641) for comparison to 

the gene expression data based in this study. These files were normalized 

according to methods described in Best et al., 2013. Expression data described 

in this study was compared to gene expression data described in the gene list 

and data provided in Supplementary Table 1 from Best et al., 2013 (44 mouse 

samples). In the microarray data described above, multiple probes for a gene 

were averaged. Data sets from each gene expression technique (RNA 

sequencing and Microarray) were separately normalized using the average value 

of each gene. All data sets were uploaded and analyzed using Genedata Analyst 

v7.6. Hierarchical clustering was performed with Cluster v3.0 (Eisen, Spellman et 

al. 1998) using the Euclidean distance metric and average linkage. Treeview 

v1.1.3(Heard, Kaufmann et al. 2009) was used to create heatmaps. To explore 
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functional networks, selected gene expression lists with both fold-change of >2 

and direction of change were submitted to Ingenuity Pathway Transcriptional 

Regulators Analysis (www.ingenuity.com). 
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Figure 1. CD8 T cells cultured in a cocktail of cytokines and small 

molecules resemble memory cells. (a) Flow cytometric analysis of 

congenically marked OT-I CD8 T cells mixed ~1:100 with bulk CD8 T cells and 

expanded with SIINFEKL pulsed bone-marrow derived dendritic cells in IL-2 or 

cocktail of small molecules and cytokines (see methods).  (b) Representative 

plots of expression of the phenotypic markers CD62L and CD44 on Thy1.2+ OT-I 

CD8 T cells. Plots in (a,b) representative of more than five independent 

experiments. (c) Plots of pre- and post-sort Thy1.2+ OT-I CD8 T cells grown as in 

(a) and purified by FACS for RNAseq analysis. (d) Unsupervised hierarchical 

clustering of RNAseq of populations sorted as in (c) showing all genes with a >2 

fold difference between groups 1 and 3. Inset: principal component analysis of 

genes with >2-fold difference between any two groups for populations depicted in 

(c), and heatmap of selected biologically relevant genes in populations depicted 

in (c) and at selected time points of the OT-I response to L. monocytogenes Ova 

(from 21).  
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Figure 2. Memory-like antigen-specific cultured CD8 T cells have greater 

anti-tumor efficacy than cells cultured in IL-2. (a) Schematic illustration of 

tumor treatment experiment. Mice were implanted with 30,000 Ova-expressing 

Quad-KM3M14 syngeneic glioma cells and treated with conditioning 

temozolomide. 750,000 OT-I cells grown as in (Figure 1a) were adoptively 

transferred and mice were boosted with two subcutaneous vaccinations with 

SIINFEKL peptide and polyICLC. (b) Thy1.2+ OT-I CD8 T cells as a percentage 

of total CD8 T cells in blood. **, p<0.01; ***, p<0.001; ****, p<0.0001, IL-2 

cultured cells versus cocktail cultured cells (Student’s two-tailed t test). (c) 

Percentage of Thy1.2+ OT-I CD8 T cells of total CD8 T cells in blood, expressed 

as fold increase over the percentage of cells 2 days after transfer. **, p<0.01; ***, 

p<0.001, IL-2 cultured cells versus cocktail cultured cells (Student’s two-tailed t 

test). (d) Bioluminescent tumor signal of mice adoptively transferred with no cells, 

IL-2 cultured cells, or cocktail cultured cells. *, p<0.05;  **, p<0.01; ***, p<0.001, 

for indicated comparisons. (e) Survival of mice in (d). *p<0.05; ***, p<0.001, for 

indicated comparisons (log-rank test). Data depicted are one representative 

experiment of two separate experiments with similar outcomes.  
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Figure 3. Antigen specific and polyclonal culture of memory-like CD8 T 

cells from human PBMC. (a) Flow cytometric analysis of CD8 T cells cultured 

from CMV-seronegative HLA-A*0201+ PBMC after pulldown with CMV-specific 

HLA-A*0201-pp65 dextramer. Cells were cultured in IL-2 or cocktail of memory-

associated cytokines and small molecules. Plots depict dextramer-stained cells at 

pulldown and after 1, 2 or 3 weeks in culture with autologous antigen-pulsed 

monocyte-derived dendritic cells. (b) Representative plots of expression of the 

phenotypic markers of memory CCR7 and CD95 (Fas) on HLA-A*0201-pp65 

dextramer positive gated cells.  Plots in (a,b) representative of experiments 

performed with cells from two donors and two separate antigens. (c) Flow 

cytometric analysis of MACS isolated CD8 T cells from human PBMC expanded 

with CD3/CD28 antibody coated beads in IL-2 or cocktail containing media. Cells 

were labeled with Celltrace violet and divided cells were gated as shown for 

analysis of phenotypic markers CCR7 and CD95. Plots are representative of five 

independent experiments with PBMC from three donors.  
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Supplementary Figure 1. Individual modifications to culture medium that 

yield a fraction of CD62L+ cells in extended culture. Thy1.2+ OT-I CD8 T 

cells were mixed with bulk Thy1.1+ CD8 T cells ~1:100 and cultured with the 

individual modification to an IL-2 containing culture medium indicated. Flow 

cytometric analyses of Thy1.2+ OT-I cells cultured for 10 days are shown.  
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Supplementary Figure 2. Greater viability of cells cultured in cocktail 

containing medium. OT-I CD8 T cells were mixed with bulk CD8 T cells ~1:100 

and cultured in IL-2 containing medium or cocktail containing medium in a 96 well 

round bottom plate. The percentage viable cells was assessed by flow cytometry 

after 10 days in culture (after being split on day 7) by staining with live cell 

impermeable viability dye and gating on viability dye and forward scatter.  
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Supplementary Figure 3. Expansion of OT-I CD8 T cells in IL-2 and cocktail 

containing medium. OT-I CD8 T cells were mixed with bulk CD8 T cells ~1:100 

and cultured in IL-2 containing medium or cocktail containing medium in a 96 well 

round bottom plate. The number of viable cells was enumerated by Trypan Blue 

exclusion and the percentage of OT-I CD8 T cells was measured by flow 

cytometry. The fold expansion of the absolute number of OT-I cells in culture is 

shown over time as the number of OT-I CD8 T cells per well at a given time 

divided by the number per well on the first day in culture. Each time point is 

shown as the mean of four biological replicates (wells) per time point. 
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Supplementary Figure 4. Comparison of gene expression profiles between 

antigen-specific cell culture and a natural immune response. A heatmap of 

RNAseq gene expression levels of OT-I CD8 T cells cultured and sorted as in 

Figure 1c,d is shown side by side with timecourse data of microarray gene 

expression levels of OT-I CD8 T cells extracted from adoptively transferred 

C57BL/6 recipients infected with L. monocytogenes Ova from the Immunological 

Genome Consortium. Scale bars reflect differing sensitivities of RNAseq and 

microarray. 
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Supplementary Figure 5.  Expansion of Ova-specific CD8 T cells from 

C57BL/6 mouse after dextramer pulldown. (a) Flow cytometric analysis of 

CD8 T cells cultured from C57BL/6 mouse spleen and lymph node cells after 

pulldown with Kb-Ova dextramer. Cells were cultured in IL-2 or cocktail of 

memory-associated cytokines and small molecules. Plots depict dextramer-

stained cells at pulldown and after 1 or 2 weeks in culture with antigen-pulsed 

bone marrow-derived dendritic cells. (b) Representative plots of expression of the 

phenotypic markers CD62L and CD44 on Kb-Ova dextramer positive gated cells.  

Plots in (a,b) representative of two independent experiments.  
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Supplementary Figure 6.  Expansion of neo-antigen-specific CD8 T cells 

from healthy human PBMC after dextramer pulldown. (a) Flow cytometric 

analysis of CD8 T cells cultured from HLA-A*0201+ PBMC after pulldown with 

HLA-A*0201- CDK4R24C dextramer. Cells were cultured in IL-2 or cocktail of 

memory-associated cytokines and small molecules. Plots depict dextramer-

stained cells at pulldown and after 2 weeks in culture with autologous antigen-

pulsed monocyte-derived dendritic cells. (b) Representative plot of expression of 

the phenotypic markers of memory CCR7 and CD95 (Fas) on HLA-A*0201- 

CDK4R24C dextramer positive gated cells.   
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Supplementary Figure 7.  Polyclonal expanded CD8 T cells rapidly become 

CD45RO+. (a) Flow cytometric analysis of CD8 T cells cultured from PBMC three 

days after stimulation with CD3/CD28 beads and either IL-2 or cocktail of 

memory-associated cytokines and small molecules. Plots depict representative 

CD45RO staining of viable CD8+ T cells.   
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Conclusions 
 
The preceding three chapters have outlined a number of obstacles to successful 

immunotherapy of glioma. The treatment of glioma by standard therapies 

includes the use of known immunosuppressive drugs like glucocorticoids. 

Additionally, patients with GBM are treated with the cytotoxic chemotherapy 

temozolomide. Temozolomide is an alkylating chemotherapeutic drug that exerts 

its activity by inducing DNA methylation at guanine and adenine residues, which 

causes DNA double strand breaks and resultant cytotoxicity in rapidly dividing 

cells. While prior studies have defined the negative in vitro effects of 

temozolomide on proliferation in immune cells (Alvino, Pepponi et al. 1999), 

reports in vivo in patients receiving vaccines for GBM have been contradictory 

(Sampson, Aldape et al. 2011). Therefore, we set out to define the in vivo effect 

of clinically relevant doses of temozolomide on endogenous immune responses 

to vaccination following drug exposure. Collectively, our results show that 

temozolomide and other alkylating chemotherapeutic drugs have long lasting 

immunosuppressive effects, and argue that vaccination strategies for GBM 

should be designed to minimize the exposure of responder immune cells to 

temozolomide.  

 

In addition, we considered the effect of alkylating chemotherapy on different 

vaccine target antigens. Chemotherapy has been reported to enhance the 

immune responses to vaccination, particularly in the case of over-expressed self-
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antigens (Machiels, Reilly et al. 2001, Ercolini, Ladle et al. 2005). By contrast, our 

results using model antigens and mutated tumor neo-antigens showed impaired 

responses following alkylating chemotherapy. The difference in immunogenicity 

for the different classes of antigens are likely to be due to the nature of antigen 

receptors in the pre-immune repertoire that are specific to each. Antigen 

receptors on T lymphocytes which have high affinity for abundantly expressed 

self proteins are likely to lead to either negative selection in the thymus, 

development into the regulatory T cell lineage, or peripheral tolerance (Kyewski 

and Klein 2006). Antigens derived from tumor specific mutations are “non-self” 

antigens for which lymphocytes with high affinity antigen receptors are more 

likely to be present in the periphery. The mechanism of enhancement of immune 

responses by chemotherapy has been proposed to be due to the selective 

depletion of regulatory T cells, which are more likely than naïve lymphocytes to 

undergo cell cycle in the steady state (Ercolini, Ladle et al. 2005, Walter, 

Weinschenk et al. 2012). Normal immune responses to high affinity viral epitope 

antigens occur in regulatory T cell replete hosts, and the same is likely true for 

spontaneously occurring immune responses to mutated neo-antigens present in 

immunogenic tumors like melanoma (Lennerz, Fatho et al. 2005). Therefore, we 

propose a differential effect of alkylating chemotherapy on mutated neo-antigens, 

with the long lasting anti-proliferative effect on responder lymphocytes 

dominating and causing suppression of immune responses. This will be of 
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particular importance in the case of diseases like GBM where the only effective 

standard treatments are alkylating chemotherapies.  

 

Finally, we present evidence showing that antigen specific CD8 T cells can be 

expanded in a cocktail of factors that allow numerical expansion while preserving 

a less differentiated phenotype. This type of strategy is likely to be useful for 

adoptive immunotherapy of solid tumors where pre-existing pools of tumor 

infiltrating lymphocytes are not present for ex vivo expansion, and in tumors 

where there are not good targets for chimeric antigen receptor transduced 

lymphocytes. Both of these conditions seem to be the case for the majority of 

cases of glioma, specifically the approximately 75-80% of cases that do not 

express the cell surface neo-antigen EGFRvIII. To conclude, I examine some of 

the future directions in glioma immunotherapy and solid tumor immunotherapy, 

and discuss the implications of the results presented in this work to these future 

developments. 

 

Future Directions 

Immune therapy is rapidly gaining acceptance as a standard tool in the treatment 

of disseminated solid tumors (Couzin-Frankel 2013). Due to their mechanism of 

action, which does not depend on a single type of genetic lesion (unlike targeted 

therapies), and the observation of dramatic individual responses to multiple 

metastatic tumor lesions (Postow, Callahan et al. 2012), immune checkpoint 
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inhibitors are being used to treat many patients with many types of solid tumors 

(Pardoll 2012). New checkpoint inhibitors will continue to receive FDA approval, 

most immediately inhibitors of the PD-1-PD-L1 pathway (Topalian, Hodi et al. 

2012). Given the success of this new class of immune stimulatory drugs, it seems 

likely that this type of immune checkpoint blockade therapy will be added to trials 

of other types of immune therapy such as therapeutic vaccination or adoptive 

transfer of T cells; indeed, the trial that lead to the approval of ipilimumab was 

conducted with a design that paired the checkpoint inhibiting antibody with a 

therapeutic vaccination (Hodi, O'Day et al. 2010).  

 

 

New pathways and technologies for unleashing T cell activity 

Given the complexity of T cell signaling pathways, it seems likely that CTLA-4 

and PD-1 are simply the first in a relatively large number of “druggable” T cell 

regulatory pathways. These include, for example, members of the TNF super-

family of receptors (Croft, Benedict et al. 2013) some of which such as OX40 are 

in early stage clinical development (Curti, Kovacsovics-Bankowski et al. 2013). 

Further targets may be developed by genome scale interrogations. An interesting 

recent example of this type of screening, of T cell pathways that can be effective 

in improving T cell immunotherapy, used a genome wide shRNA lentiviral library 

to identify Ppp2r2d as a gene encoding a phosphatase that could be a useful 
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target in T cells to inhibit to improve cancer immunotherapy (Zhou, Shaffer et al. 

2014).  

An interesting facet of adoptive immunotherapy strategies is that the ex vivo 

manipulation of the T cell product to be infused allows the potential for complex 

genetic manipulations of the therapeutic cells. This ability to alter the function of 

just the anti-tumor T cells allows both the prospect of specifically and not globally 

inhibiting negative T cell pathways. For example, in the case of CTLA-4 blockade 

this could improve specificity and decrease toxicity, which can be significant for 

first generation immune checkpoint blockade therapies like ipilimumab (Weber 

2009). T cell negative regulatory pathways that are not “druggable” due to a lack 

of a cell surface target or the existence of a suitable target of a small molecule 

inhibitor can in principle be targeted in the setting of adoptive immunotherapy by, 

for example, short hairpin RNAs (Zhou, Shaffer et al. 2014). Similarly, genetic 

circuits that modulate T cell differentiation can be manipulated in cells for 

adoptive transfer by exogenous overexpression or inhibition of specific 

microRNAs (Ohno, Ohkuri et al. 2013) or other genetic engineering techniques 

(Kalos and June 2013). Genome editing nucleases have seen proof-of-principle 

use to edit hematopoietic cells for adoptive transfer (Urnov, Rebar et al. 2010). 

More versatile modern nuclease technologies like TALENs and CRISPR/Cas9 

nucleases are gaining traction (Gaj, Gersbach et al. 2013), and can be adapted 

for use in adoptive immunotherapy by targeting T cell regulatory pathways. 

Additionally, the creation of fusion protein effectors for technologies like CRISPR 
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that can target specific genomic loci have been used to modulate transcriptional 

activity or other epigenetic states (Konermann, Brigham et al. 2013). It seems 

likely that these technologies will be used in the near future to enforce 

advantageous states of T cell differentiation or even lead to super-physiological, 

a la carte implementation of T cell programs, for instance to enforce high levels of 

self renewal, cytotoxicity and resistance to tolerance or anergy. 

 

New ways for T cells to find their targets 

In addition to more advanced control of T cell responses through both new 

immune modulatory drugs and genetic engineering of adoptively transferred T 

cells, an area of immunotherapy that will likely change rapidly is the identify of the 

antigenic determinants of tumors that are targeted. The experience of targeting 

B-lineage defining markers like CD19 with CAR transduced T cells demonstrates 

that a sufficiently large immune response targeting a single antigen can have a 

dramatic effect, but unfortunately the B-cell lineage antigens seem to be rather 

exceptional in the field of cell surface cancer targets. It has been suggested that 

chimeric antigen receptors may be used to target a broader range of solid tumors 

by technical improvements that would allow chimeric antigen receptors to 

implement Boolean logic in target discrimination: i.e. only kill cells if they express 

target A and target B (Satta, Mezzanzanica et al. 2013). Some early designs of 

bi-specific chimeric antigen receptors (Grada, Hegde et al. 2013) or even more 

exotic methods for implementing this type of Boolean target discrimination 
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(Douglas, Bachelet et al. 2012) have been published. However, these strategies 

are in their infancy, and it remains unclear if these technologies and patterns of 

expression of cell surface antigens will be robust enough to allow widespread 

successful implementation of these strategies for most or many solid tumors. 

 

The number of T cell “druggable” mutations 

Given these limitations, it is possible that the most relevant new strategy being 

attempted to is to target solid tumors using T cell epitopes derived from tumor 

specific mutations. A number of recent reviews have outlined how this type of 

strategy may possibly be implemented in the clinic (Restifo, Dudley et al. 2012, 

Hacohen 2013, Heemskerk, Kvistborg et al. 2013). Significant questions remain 

unaddressed, however. Are there enough antigens to target? Early studies have 

demonstrated that only a minor fraction of mutations yield an epitope that can be 

targeted by a T cell response. In a mouse model of melanoma, only 16 of 50 

predicted immunogenic epitope peptides derived from mutations determined by 

deep sequencing that were tested in vivo were verified as eliciting a T cell 

immune response, and the genes tested were those predicted to be most 

immunogenic of ~600 expressed mutations (Castle, Kreiter et al. 2012). In a 

study of melanoma patients, Rosenberg and colleagues found that about 10% of 

predicted immunogenic peptides identified by deep sequencing elicited 

responses from cultures of tumor infiltrating lymphocytes (Robbins, Lu et al. 

2013). Thus, a reasonable estimate of the percentage of mutations that yield 
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immunological targets is on the order of 1%, although it may be somewhat higher 

or lower.  

 

The number of mutations present in human cancers varies quite dramatically 

across tumor types, with some gliomas like pilocytic astrocytoma lying at the very 

lowest end with less than 1 mutation per 10 megabases (Alexandrov, Nik-Zainal 

et al. 2013). This compares unfavorably, from the perspective of finding 

immunologically targetable mutations, with melanoma, which on average 

contains 10 mutations per megabase, and highly mutated cases of which can 

contain 100 mutations per megabase (ibid). Both GBM and low grade glioma lie 

somewhere in the middle of this spectrum, with an observed range of about 1-10 

mutations per megabase (ibid). While this would imply ~3,000-30,000 mutations 

across the genome in GBM, only ~2% of the human genome is coding, and of 

the 60-600 mutations in coding sequence that would be expected, only some 

fraction would be expressed. Thus, it seems likely that a typical GBM might only 

have one or a small handful, and at most perhaps 10 mutations that would 

generate T cell epitopes that could be targeted. However, these epitopes would 

more likely be targeted by T cell receptors that exist in the peripheral T cell 

repertoire due to their “non-self” nature. Again, the experience with B cell 

malignancies suggests that a sufficiently robust immune response targeting a 

single antigen can lead to the destruction of all or nearly all cells in the body 

expressing that antigen. Another data point arguing for the possibility of targeting 
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GBM with T cells is the previously discussed apparent immunogenicity of 

disseminated GBM cells outside of the CNS.  

 

The future of strategies that target private, patient specific mutations is unclear. It 

is likely that their proving ground will be in the treatment of tumors that have 

heavy mutational burdens, like non-small cell lung cancer and melanoma 

(Alexandrov, Nik-Zainal et al. 2013). However, this strategy is exciting for a 

number of reasons: it promises to bring highly effective targeting of tumors to the 

setting of solid tumors; it promises a high therapeutic index and low toxicity 

relative to immunotherapies targeting self-antigens, since the targets would by 

definition only be expressed in tumor cells; and finally, this type of therapy would 

allow rapid next generation sequencing technologies to make a direct and 

dramatic impact on how patients are treated and their outcomes, a development 

that has thus far seen more hype than reality (Kurzrock, Kantarjian et al. 2014).  

 

Towards personalized immunotherapy as a treatment for glioma  

The potential use of next-generation sequencing to define personalized antigenic 

targets is one of many ways in which cancer immunotherapy is a field where 

cutting edge developments in biology and biotechnology are being rapidly 

translated into new clinical strategies. Similarly, in adoptive immunotherapy 

genetic engineering approaches and synthetic biology developments are rapidly 

changing what is possible (Kalos and June 2013, Maus, Fraietta et al. 2014). 
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Indeed, adoptively transferred immune cells can be considered a completely new 

paradigm in oncology, a type of living medicine that is different in kind from the 

small molecule drugs and biologic drugs that have come before (Fischbach, 

Bluestone et al. 2013).  

 

Taken together, one can use the trends in the field, as well as the findings 

described in this thesis, to envision an ideal potential immunotherapeutic 

approach for GBM patients that could become practical to implement in the next 

five to ten years. Upon diagnosis, tumor resection could be used as a source of 

material for characterization of tumor antigens by deep sequencing. Both DNA 

and mRNA from tumor and matched normal tissue could be extracted and 

sequenced to determine highly expressed mutations, and mutations that 

generate likely neo-antigens could be predicted in silico. In parallel, these 

analyses would allow other clinically relevant traits like presence of the EGFRvIII 

generating mutation and MGMT expression levels or promoter methylation status 

to be assayed. Patient treatment could then be guided by the prognostic 

significance of these findings, for instance, by prioritizing immunotherapy over 

temozolomide treatment for patients whose tumors exhibit both the 

“immunogenic” mesenchymal gene expression profile (Prins, Soto et al. 2011) 

and the temozolomide resistant MGMT expressing phenotype (Hegi, Liu et al. 

2008). Given likely advances in sequencing technology, it seems realistic that 

these types of analyses could be performed in the roughly six week recovery 
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period typically allowed between surgery and adjuvant treatment. For patients 

with EGFRvIII present, peripheral blood T cells could be transduced with a CAR 

targeting this antigen. For other patients, tumor specific neo-antigens could be 

determined and T cells specific for these epitopes could be expanded from 

PBMC prior to temozolomide treatment. Temozolomide treatment and whole 

brain irradiation could then be administered as they are today. In this case, 

however, the pre-existing immune response could amplify the effectiveness of 

conventional chemoradiotherapy by sensitizing tumor cells to T cell mediated 

cytolysis, as has been described (Ramakrishnan, Assudani et al. 2010) 

 

 

This vision of a radically remodeled treatment of brain tumor treatment prioritizing 

the generation of effective, personalized immunotherapy is tremendously 

exciting. However, for these intellectually fascinating developments to be 

translated to the clinic, careful experiments are required to define the parameters 

that determine success or failure of these treatments. The experiments I have 

undertaken and described in this thesis were designed with these considerations 

in mind. Hopefully, better understanding of how to generate and manipulate 

immune responses against solid tumors will lead to better outcomes for cancer 

patients, particularly those with the deadliest types of solid tumors that are 

currently incurable, like glioblastoma multiforme.  
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