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Abstract 

 

Implantable Intracardiac 

Bioimpedance System 

 

Lucas Martin Holt, M.S.E 

The University of Texas at Austin, 2014 

 

Supervisor: Jonathan W. Valvano 

 

An implantable intracardiac bioimpedance system has been designed to measure the real and 

imaginary parts of impedance in a dynamic cardiac setting. The system is broken into two parts: 

an implantable wireless device and a desktop base station. This measurement is performed using 

both tetrapolar and tripolar electrode configurations where a 20 kHz current field is applied to 

the intracardiac blood pool and myocardium. Epochs of discrete voltage samples from the 

resulting electric field are analyzed using a digital signal processing algorithm to generate 

impedance measurements. Measurements are then wirelessly transmitted from the implantable 

device to a base station where advanced signal processing algorithms are applied and the data is 

plotted in real-time. The final system measures 485 impedance samples/sec, consumes 50 mA 

when active, and has a percent of measurement error less than 1% for the intracardiac 

bioimpedance range. The device has been extensively tested to ensure the quality of 

measurements required for future human use. Instrument design, calibration, verification, 

experimentation, and modeling are the primary topics of this thesis. Moving forward, the system 

will be used in studies where dynamic bioimpedance signals measured in the right and left 

ventricles of the heart will be used to derive stroke volume. 
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Chapter 1: Introduction 

1.1 Motivation 

Electro-physiologists lack the ability to continually monitor stroke volume in patients 

who have been implanted with cardiac resynchronization therapy (CRT) devices. A relative 

stroke volume measurement that requires minimal hardware change in existing CRT technology 

will give CRT companies a powerful decision-making tool. The metric can be used as an input to 

algorithms that CRT devices use to make decisions on how to control a patient’s heart. 

Additionally, changes in heart volume can be used to detect early signs of heart failure [7]. 

Intracardiac bioimpedance derived volume is a solution to these problems that requires no 

mechanical and minimal electrical design changes in existing CRT technology. 

CRT devices are broken into two categories: pacemakers (CRT-P) and defibrillators 

(CRT-D). Pacemakers are designed to measure activity in the heart and correct improper activity 

by depolarizing the myocardium cells with stimulation current. Defibrillators have the added 

feature of a reset button for the heart. A patient experiencing a cardiac arrhythmia, such as 

ventricular tachycardia (vtach) or ventricular fibrillation (vfib), will be automatically 

defibrillated by their CRT-D in an attempt to reset the heart to normal rhythm. This reset is 

performed through the same mechanism that CRT-P devices employ.  However, the required 

stimulus is orders of magnitude larger in CRT-D devices. The myocardium of the heart is 

depolarized using an electrical stimulus. In the case of a defibrillator it is not a local 

depolarization. The myocardium most of the heart is depolarized with a single burst of electrical 

energy. All of the myocardium cells undergo a simultaneous refractory period, and then return to 

normal cardiac operation [9].  
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Currently, shocking algorithms in CRT-D devices are decided upon by intracardiac ECG 

signals measured by the CRT device. As a result, up to 1/5 of all patients with CRT-D devices 

experience shocks that are inappropriate [6]. A bioimpedance-derived stroke volume 

measurement will add reliability to these imperfect shocking algorithms. 

CRT devices are optimized for their patients only at the time of implant; over time, as a 

patient’s physiology changes, efficiency can be lost. Using stroke volume as an input, pacing 

algorithms can tune a patient’s cardiovascular operation for optimized efficiency. This can 

improve patient longevity and quality of life in the long term.  

Research has shown that right ventricular (RV) hemodynamics are a strong indicator of 

heart failure [7]. Continued diagnosis of stroke volume in a patient will provide doctors with a 

powerful decision-making platform. Using this information, a physician can make informed 

decisions about a patient’s health, deciding on ways to further diagnose the problem.  

The stroke volume measurement must not affect the basic operation and structure of the 

current CRT devices. CRTs are composed of electrical components for measurement and control, 

a case for support and sterility, and electrodes for interface with a patient’s heart. By making 

minor changes to the electrical components inside the CRT, an intracardiac bioimpedance signal 

can be leveraged using the existing electrode technology.  

In the long-term, a device that accurately measures intracardiac bioimpedance-derived 

stroke volume will serve as an important tool for doctors and CRT device companies. Including 

this lightweight technology, existing CRT device architectures will save and improve the lives of 

the approximately 600 thousand patients who are implanted with CRT devices yearly [8]. To 

prove that this technology is viable, a precision implantable intracardiac bioimpedance system 
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was developed, tested, and validated. Moving forward, the system will be the cornerstone of 

large animal and human studies to validate the measurement. 

1.2 Previous Research and Devices 

Previous bioimpedance systems for intracardiac measurements have either been high-

resolution non-implantable or low power implantable. In general, high-resolution non-

implantable systems are primarily analog, using a synchronous demodulation implementation 

[2]. In the past, these systems have been used to measure intracardiac bioimpedance signals in 

both large animals and rodents. Commercial implementations of the analog system have been 

developed by Transonic Scisense Inc. under their Advantage Pressure Volume product line. This 

system has been used in cardiovascular hemodynamic research around the world [5]. However, 

power and size limitations of these analog systems limit their use as implantable devices. 

Implantable systems for measurements in rodents have been developed using a mixed-signal 

architecture [1]. In them, bioimpedance measurements are derived from a short-time signal 

processing algorithm. Typically these systems have suffered from tradeoffs between accuracy 

and necessary specifications for implantation.   

1.3 Design Goals 

The implantable intracardiac bioimpedance device is designed to be small, low-power, 

and wirelessly capable with minimal impact on performance. Design objectives are listed in 

Table 1. The size should be less than 3in x 2in x 1in to minimize discomfort for large animals 

that have been implanted. The device should be able to transmit at least 20ft through 2in of 

tissue. To ensure the accuracy of derived stroke volume calculations, measurements should have 

a percent of measurement error less than 1% for the intraventricular bioimpedance range.  To 

ensure adequate resolution, a signal to noise ratio (SNR) greater than 1000 at half of full scale 
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should be achieved. To precisely analyze a dynamic intracardiac bioimpedance signal, at least 

100 samples per heart cycle should be taken. Since a large animal has a maximum heart rate of 

220 bpm, or 3.66 Hz, the device should have a sampling rate of at least 366 Hz. The device 

should be able to continuously capture data and wirelessly transmit the samples to the base 

station for 15 hours. Size limitations of the device restrict the lithium ion battery size to 1000 

mAh. Given these requirements, the device must consume less than 67 mA of current in 

continuous measurement mode. 

Table 1: Desired Device Specifications 

Desired Device Specification Value Special Note 

Dimensions <2inx3inx1in   

Transmission Distance  >20 ft through 2in of tissue 

Percent of Measurement Error  <1 %   

Signal to Noise Ratio >300   

Measurement Frequency >367 HZ   

Battery Life Continuous Mode >15 hours with 1000mAh battery 

 

These aggressive design goals were derived from the system specifications of previous analog 

and mixed signal implementations. Compared to the previous mixed signal system, size and 

power consumption have both increased by a factor of 2 [1]. However, the measurement 

specifications have remained on par with previous analog implementations of the device [2]. The 

primary goal of this device is to create a bioimpedance implant that does not sacrifice precision 

when compared to its analog predecessors.  

1.4 Terminology and Background 

Before discussing the specific application of a bioimpedance measurement, a brief 

overview of impedance and its derivatives are necessary. To start, an explanation of what 

physically creates the values of an impedance measurement is given. Additionally, different 



5 
 

forms of load analysis, such as admittance, are introduced. Lastly, a discussion of phase and 

magnitude are provided. 

1.4.1 Physical Sources of Impedance 

Impedance is a load measurement that describes how resistive a circuit is to a change in 

current. The impedance of a circuit is determined by the value and orientation of the basic 

elements that comprise it. The real part of impedance is resistance. The imaginary part of 

impedance is reactance. In general, these fundamental equations define impedance, Z, and the 

impedance contributed by resistors, capacitors, and inductors. R is resistance in ohms (Ω), X is 

reactance in (Ω), C is capacitance in farads (F), L is inductance in henrys (H), w is frequency in 

(rad/s), and j denotes an imaginary unit. 

       

     

   
 

   
 

       

1.4.2 Admittance and Impedance 

 Admittance is another load measurement defined as the inverse of impedance; it is 

sometimes a much simpler way to analyze the properties of a circuit. Since it is described as the 

inverse of impedance, admittance is a measure of how easily a circuit allows current to flow. 

Although the instrument discussed in this thesis measures impedance, its measurements can be 

used to obtain admittance. Some forms of derived stroke volume are much simpler to analyze in 

terms of admittance. In short, admittance is an effective way to analyze circuit models where all 

components are in parallel; impedance is more useful for analyzing circuits where all 

components are in series. Biological systems invariably consist of a mixture of parallel and series 

components. The following equations define admittance, Y, in terms of impedance. Like 
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impedance, admittance is a complex number. The real part of admittance is conductance. The 

imaginary part admittance is susceptance. In the following equation, conductance is G and 

susceptance is B;  both in siemens (S). 

       

       
 

    
  

    

     
  

  
 

     
 

  
  

     
 

1.4.3 Phase and Magnitude 

 Impedance and admittance can be analyzed in terms of either real and imaginary or 

magnitude and phase. Sometimes, it is useful to interpret admittance and impedance signals in 

terms of magnitude and phase. Phase has the unit of radians (rad) for both admittance and 

impedance. In most cases, the phase is multiplied by 180/π to convert it to degrees (ᵒ). The 

magnitude of admittance has the unit (S). The magnitude of impedance has the unit (Ω). 

             

        
 

 
         

            

        
 

 
         

1.5 Circuit Models For Intracardiac Bioimpedance 

 Simplified circuit models for the interaction of muscle (myocardium) and blood are the 

basis for intracardiac bioimpedance measurements. In general, two basic circuit models are 

accepted: a cross ventricular series model [3], and an intraventricular parallel model [10]. In 

humans, a cross ventricular series model is useful for deriving left ventricular stroke volume 
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measurements. Whereas, an intraventricular parallel model is better suited for calculating right 

ventricular stroke volume.  

 The myocardium of the heart is approximated to be a parallel combination of resistance 

and capacitance. The capacitive component of the myocardium is the result of living myocyte 

membrane. Since the cell membrane is selectively permeable to certain ions, it acts as a charge 

separator. This is comparable to the properties of the dielectric for a capacitor.  The resistive 

component of the myocardium comes from the extracellular fluid surrounding the myocardium 

as well as the resistive properties of the cell membrane.  

 

Figure 1. Myocardium Circuit Model 

 In a, cross ventricular measurement, the resistance of the ventricular blood pool is mostly 

in series with the myocardium. The measurement is made from the outside of the free wall in the 

left ventricle to the septal wall of the right ventricle. Since the measurement is made from the 

exterior of the left ventricle, the current field passes through the myocardium first and then 

passes though the left ventricular blood pool. For this reason, the approximated circuit model has 

the blood resistance in series with the myocardium circuit model. This model has both series and 

parallel components. It is therefore more difficult to analyze, and there is no apparent benefit to 

using admittance or impedance. 
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Figure 2. Cross Ventricular Circuit Model 

 For the intraventricular parallel model, the resistance of the ventricular blood pool is 

primarily in parallel with the myocardium. For this measurement, a single shaft with multiple 

electrodes is placed into the right ventricle of the heart. The current field emanates from the 

center of the blood pool passing through both myocardium and the blood pool at the same time. 

Since the current field passes through both components of the model at the same time, a parallel 

circuit model is appropriate. Since all components are in parallel, it is beneficial to analyze the 

circuit in terms of admittance.  
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Figure 3. Intraventricular Circuit Model 

1.6 Measurement Method 

In theory, measuring impedance is a simple application of Ohm’s law. The process 

begins with an ideal alternating current (AC) source of known phase and magnitude. The current 

source is applied to the load of interest. Then, the resulting voltage across the load is measured. 

To calculate the impedance of the load, the output voltage is divided by the input current. Using 

phase and magnitude, or phasor notation, this calculation becomes trivial. The following 

equations describe this process using phasors and ohm’s law. 
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Figure 4. Theoretical Impedance Measurement 

This fundamental equation applies for bioimpedance as well. In a traditional circuit, 

charge is carried by the free electrons on the surface of a metal. By contrast, in a biological 

system charge is carried by ions such as sodium (Na+) and chloride (Cl-). In a biological system 

it is easier to think of voltage in its traditional form, an electric field. Therefore, ohm’s law is 

applicable: 

        

Where, J is current density (A/m
2
).  E is, electric field (V/m), and   is conductivity (S/m) 
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Chapter 2: Implementation 

2.1 Top Level System 

The system is made up of two primary components, the implantable device and the base 

station. The implantable device acquires the raw impedance signal and wirelessly transmits it to 

the base station for processing.  The base station consists of both an access point and a front end 

application. The access point acquires the data from the device, and the front end application 

handles display, interpretation, and storage of the data. 

 

Figure 5. System Block Diagram 

2.2 Implantable Device 

The implant was designed to be accurate, low-power, and wireless -apable. To ensure 

quality of measurement, high performance active components were selected. To ensure low-

power operation, a mixed signal implementation was chosen. The CC430F5137 microcontroller 

from the MSP430 processor line was selected because of its low power MSP430 characteristics 

and its wireless communication capabilities.  
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Figure 6. Implantable Device 

 

Table 2: Achieved Device Specifications 

Achieved Specification Value Special Note 

Dimensions <2inx3inx1in   

Transmission Distance  >50 ft through 2in of tissue 

Percent of Measurement Error  <1 %   

Resolution .05 ohms   

Measurement Frequency 488 HZ   

Battery Life Continuous Mode 20 hours with 1000mAh battery 

 

2.2.1 Mixed Signal Processing 

A mixed signal architecture was used because of the size and power constraints 

associated with the implantable device. The measurement begins with the generation of a phase 

reference current source. This current source is applied to the biological tissue of the heart and 

the resulting electric field is measured. The analog electric field measurements are conditioned 

by analog filters before they are sampled by the analog to digital converter (ADC) of the 

microcontroller. Once the electric field has been digitized, epochs of data are run through an 
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assembly optimized signal processing. The outputs from the digital algorithm represent the 

measured bioimpedance at a specific instance in time. 

2.2.1.1 Current Source Generation 

A reference phase current source is generated by the microcontroller using a basic digital 

to analog converter (DAC), several signal conditioning op-amps, and an op-amp in a current 

source configuration. It is designed to have an RMS current of 100 uA and at a frequency of 20 

kHz. The digital outputs of the microcontroller are generated in a way that allows the current 

source to behave as a phase reference for the voltage signal.  

The DAC is connected to an output port. Since the DAC has a finite number of discrete 

voltages, a 2-pole Sallen Key low pass filter is used to smooth the DAC output. Once 

conditioned, the voltage signal from the DAC is fed to a voltage to current convertor. The output 

current across the load is a linear function of the input voltage.  

  
   

  
 

 

Figure 7. Op-amp Current Configuration 
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 The high-level process is as follows: the DAC is used to create the current and the ADC 

is used to measure the resulting voltage. Signal processing allows for impedance to be measured 

from the ADC samples.  

2.2.1.2 Electric Field Measurement and Conditioning 

The electric field is measured using an instrumentation amplifier that has its positive and 

negative terminals across a section of the heart using intracardiac CRT electrodes. Since the 

current source is not to exceed 100 uA RMS, the resulting electric field within the cardiac system 

is small. The typical sensing region within the heart has an equivalent load of less than 100 Ω.  

The gain of the instrumentation amplifier is set to achieve maximum peak to peak output swing 

for a 100 Ω load assuming a 100 uA RMS current source. Doing this ensures the maximum 

common mode rejection ratio for the instrumentation amp. 

To remove non-linearity associated with the electrode electrolyte interface, the electric 

field measurement is ideally performed in a tetra-polar configuration. The current source and 

voltage sensing nodes are separated from each other. In the following picture: nodes 1 and 4 

represent current source electrodes and nodes 2 and 3 represent voltage sensing electrodes. 

Hence, to make a bioimpedance measurement four electrodes should be used. A more detailed 

explanation on this topic will be provided in Chapter 5.  
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Figure 8. Electric Field Measurement 

 After the instrumentation amplifier, the electric field signal is put through a band-pass 

filter. This filter’s primary purpose is to act as an anti-aliasing filter for the digital domain. 

However, it was chosen to be a band pass filter in order to attenuate low-frequency differential 

signals present in the body. 

2.2.1.3 Short-Time Signal Processing Function 

Epochs of discrete electric field samples are analyzed using a single bin short-time signal 

processing algorithm. This algorithm allows the determination of the complex electrical 

properties in real time. An epoch of data is fed into the algorithm at a fixed sampling rate. The 

output of the algorithm is proportional to the bioimpedance of interest (See Appendix). Given 

these specifications, an assembly optimized signal processing algorithm was developed using 

less than 150 add and shift operations. This allows the device to capture impedance samples at a 

rate of 485 Hz. Since the cardiac system is dynamic, a sampling rate much greater than the heart 

rate frequency is necessary. Assuming a maximum heart rate of 220 bpm or 3.66 Hz the 

implantable device is capable of capturing over 130 bioimpedance samples per heart beat.  
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2.2.2 Power Management 

The implantable device supports two forms of low power operation: MSP430 low power 

mode 3 (LPM3) with analog power disable, and magnetically controlled reed switching. In both 

cases, the purpose is to put the device in sleep mode when impedance measurements are not 

being made. This is important energy saving feature for implantation. While impedance 

measurements are being made 50mA of current is consumed. With a 1000mAhr battery, 20 hours 

of impedance data can be collected. By placing the device into sleep mode, the 20 hours of data 

collection can be dispersed across the required length of time the implant must run.  

To achieve low power operation using software a combination of built in processor 

capabilities and analog power disabling is used. LPM3 is a built in sleep state of the 

CC430F5137 and other MSP430 microcontrollers. By issuing a software command, the user can 

put the processor into LPM3. However, the analog components present on the device will still be 

active. To solve this issue, paired p-channel n-channel MOSFETS are used. A GPIO pin controls 

the gate of the n-channel MOSFET which controls the supply voltage to the analog section of the 

chip using a p-channel MOSFET. To properly put the implant into LPM3, the user must perform 

the following actions: disable analog power using the GPIO pin, turn off OSC2 (RFCLK), set the 

MCLK, SMCLK, and ACLK source the VLO (Very Low Power) 10 kHz oscillator, initialize a 

timer interrupt to wake the device from LPM3, make all port pins grounded outputs, and finally 

set the appropriate system register bits to instantiate LPM3. In theory, the processor consumes 

7uA of current in LPM3. The implantable intracardiac system consumes 45uA in LPM3. This is 

most likely the result of current leakage to ground in the regulator.  

A magnetically controlled reed switch is an alternative form of low-power control. This 

much simpler solution, places a magnetically controlled reed switch at the power trace coming 
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from the battery. When a magnet is placed over the device, the switch is closed and the implant 

runs in continuous mode. When the magnet isn’t present, the switch is open and the implant is 

completely off. This solution significantly decreases the complexity of the software and drops 

current consumption to 0uA when off. However, there is the added difficulty of having to strap a 

magnet to the subject when measurements are being taken.  

2.2.3 Communication 

A wireless communication channel is used to send impedance samples from the 

implantable device to the desktop base station for processing. The CC430F5137 microcontroller 

comes with a built-in RF block. The RF block internal to the CC430F5137 MCU is a CC1101 

RF core. For optimized data transmission a predefined stack protocol is not used. The CC1101 

RF core is configured with a custom initialization routine, and an application specific 

communication packet for impedance measurements has been developed. The hardware 

capabilities for error detection in the CC1101 RF core are enabled. Error correction methods 

were not utilized; in the event of error detection the packet is discarded. To change the 

initialization routine TI Smart RF Studio should be used. Using this Texas Instruments (TI) 

application support software for the RF core settings can be easily changed. The tool gives users 

the ability to change characteristics such as:  base frequency, modulation format, channel 

number, data rate, channel spacing, and transmit power.  

2.3 Base Station 

The purpose of the base station is to receive, process, plot, and save wireless impedance 

measurements from the implant in real-time. It consists of two parts: a wireless access point and 

a desktop computer with front end application software. The wireless access point uses a 

CC4306F137 to communicate with the CC430F5137 in the implant. It sends the received 
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wireless packets to the desktop computer using a USB interface. The front end application 

software is written in a scripting language called Processing. This java derived language was 

selected because of its built in rolling graph library.  

2.3.1 Access Point 

The access point, designed by Katy Loeffler [1], communicates wirelessly with the 

implant using an EM430F6137RF900 evaluation module, and then passes the wireless 

communication packets via USB to the desktop computer. The EM430F6137RF900 evaluation 

module produced by Texas Instruments has a CC430F6137 microcontroller on it. Both the 

CC430F6137 (access point) and the CC430F5137 (implant) have CC1101 RF cores. This means 

that they are able to communicate wirelessly with one another. The PCB developed by Katy 

Loeffler [1] has burg headers to interface with the EM430F6137RF900 evaluation module, 4 

LED indicators, and a UART to USB chip. The evaluation module receives the RF packets and 

sends them to the computer though UART. The UART to USB conversion chip then sends the 

packets in USB format to the desktop computer. The communication packets from the access 

point are received by the desktop computer using a standard COM port interface. At this point 

the front end application takes over. 

2.3.2 Front End Application 

The front end application unpacks, processes, plots, and saves the data from the COM 

port using a scripting language called Processing. The USB data packets are packed using an 

algorithm that Dr. Valvano developed. The packing algorithm is similar to a standard binary 

coded decimal format. In short, the algorithm assures that no zeros are transmitted in the data. 

This is done because zeros are used to indicate the end of a packet. The first job of the front end 

application is to reverse the packing algorithm, converting the USB packet back to its original 16 
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bit signed integer format. The raw real and imaginary impedance values are stored to an archive 

file before any processing is applied. Archiving the raw data allows for alternative analysis 

techniques to be used in post processing. The real and imaginary impedance values are then 

processed. Firstly, they are both run through an FIR filter with 15 Hz cutoff and 25 Hz stop band. 

The maximum heart rate for a large animal is around 3 Hz (180BPM). Hence, a 15 Hz cutoff 

allows for analysis of at most the 5
th

 harmonic of heart rate in large animals. Next, the real and 

imaginary components of the impedance measurement are used to isolate the resistive 

contribution from the blood. One of two equations to isolate the resistance contribution from the 

blood must be selected. The first assumes that the blood and muscle in the cardiovascular 

impedance measurement are in parallel with each other [5]. The second assumes that the blood 

and muscle of the cardiovascular impedance measurement are in series with each other [3]. 

Reasons for the selection of each model will be discussed in depth in chapter 5, but for now it is 

important to know that the front end application allows the user to select between the two 

analysis techniques in real-time. By analyzing isolated resistance samples from the blood as a 

function of time, a relative stroke volume measurement is derived. The simplest analysis 

technique is to take the maximum minus the minimum of the isolated resistance of the blood 

over a given cardiac cycle. The front end application saves and plots each of these four channels: 

filtered real, filtered imaginary, isolated blood resistance, and derived stroke volume. The real-

time plot allows for easy visualization of data during experiments, and the saved tab delimited 

files allow for analysis after the experiment.  
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Chapter 3: Evolution and Manufacturing 

3.1 Evolution of Device 

The device has evolved through 5 PCB revisions for reasons such as: performance, 

hardware bugs, and form factor. Revision one was intended to explore a variety of circuit 

implementations. Using the first revision, the optimal circuit implementation was realized. In 

revision two, most of the optional circuit configurations were removed. Only one configuration 

option was left on the board. Revision three removed the final optional circuit configuration. It 

also fixed a bug that caused the wireless communication not to function. Revision four altered 

the form factor of the device. In previous revisions, the device was connected to pacing leads 

using alligator clips. In revision five, the alligator clips were replaced with screw tap terminals. 

Revision five increased mechanical reliability and wireless transmission range.  

3.1.1 Revision 1 

 

Figure 9. PCB Revision One 

The first revision of the device was used for circuit exploration. In the bottom right-hand 

corner a jumper key is provided. This key allows the user to select among the different circuit 
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configurations that are available. Circuit options revolve around 3 features: output filter, current 

source input, and instrumentation amplifier reference voltage.  Additionally, a single turn pot 

allows for the adjustment of the stimulation current. The output filter has three possible options: 

low pass filter, band-pass filter, and none. The current source can be driven with an active, 

passive, or gain one signal source. The instrumentation amplifier reference can be set to either 

1.25 V or 0.625 V. All possible configurations were tested for accuracy (expected value) and 

resolution (standard deviation). The optimal circuit configuration uses a100 uA stimulation 

current, an active signal source, and a band pass filter at the output.  

3.1.2 Revisions 2 and 3 

 

Figure 10. PCB Revision Two 

 

Figure 11. PCB Revision Three 
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 Revisions two and three are only slightly different from one another. In revision two, 

wireless functionality started working with limited range. This revision also removed most of the 

circuit configuration options from revision one. Only the option to enable or disable the output       

band-pass filter was left. In revision three, this option was removed, leaving the output band-pass 

filter permanently enabled. Revision three modified the layout of the RF components. All RF 

passive components were moved as close to the processor as possible. Additionally, the signal 

trace to the antenna was significantly thickened to achieve 50 ohm single ended trace impedance, 

as required by the data sheet for the antenna and balun filter. Lastly, revision three modified the 

way that the circuit connects to calibration elements and pacing electrodes. Permanently attached 

alligator clips were manufactured and soldered to the device. This feature removed variability in 

connectors used with the circuit.  

3.1.3 Revisions 4 and 5 

 

Figure 12. PCB Revision Four 
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Figure 13. PCB Revision Five 

 Revisions four and five made minimal electrical changes and significant form factor 

changes. In revision four, the analog supply voltage was altered. Instead of being generated 

directly from the battery voltage it was decided that the analog supply should be generated from 

the regulated digital supply. By deriving the analog supply voltage from the digital supply, a 

stable system voltage is supplied to the device over the battery life-cycle. This is important 

because instrumentation phase offset drifts with supply voltage. The use of screw tap terminals 

instead of alligator clips was the biggest form factor change. This type of connection mimics the 

connectors found in a traditional pacemaker. This functionality is important for the device to 

become an implant. Additionally, a mechanical switch was added to allow quick switching 

between the two different measurement configurations. The physical size of the device was also 

optimized in this revision. In revision five, a layout issue with the wireless communication was 

corrected. Per the data sheet, the antenna is not supposed to have a ground plane underneath it. 

After fixing this issue, wireless range increased fivefold.  

3.2 Attaching Processor (Wipe Soldering) 

The processor is attached using a technique known as “wipe soldering”. The process 

starts by attaching the ground pad underneath the processor. A minimal amount of solder paste is 
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applied to the square pad in the center of the footprint using a syringe. The processor is then 

placed on the footprint, taking special care to align the processor pins with the pads of the 

footprint. Using a heat gun, the solder paste on the center pad is reflowed. The heat gun should 

be set 500 °F on the lowest airflow setting. 500 °F is the necessary reflow temperature, and the 

lowest airflow setting prevents the heat gun from blowing the processor off the footprint. Once 

firmly attached to the ground pad, the wipe soldering can begin. Using a flux pin, apply flux to 

each of the four processor edges. A micro-tip soldering iron set to 680 °F is then used to solder 

the processor pins. Create a small bead of liquid solder on the tip of the iron from a spool of thin 

and soft solder. Under a microscope, wipe the iron across one of the edges of the processor 

where it meets with the footprint. Care should be taken not apply to much pressure while wiping 

the iron across the edge of the processor, occasionally this can rip out the pads. Some of the 

processor pads will be fused together. To fix this, take the iron and run it between the bridged 

pads. Repeat this process for the other three edges of the processor.  

3.3 Passive Component Matching and Tolerances 

Specific components in the design must adhere to strict tolerances to ensure proper filter 

pass bands and high common mode rejection ratio (CMRR) in differential sections of the design. 

The low pass filter that handles signal conditioning for the current source must be constructed 

with ±1% resistors and ±5% capacitors. Similarly, the band pass filter at the output must be 

constructed with the same component tolerances. In general, the higher the quality factor (Q) of 

the filter the more important component tolerances are.  Extreme care must be taken to match the 

components at the input to the instrumentation amplifier. A simple passive high pass filter is 

placed at the input to both the plus and minus terminals of the instrumentation amplifier. The 

purpose of the high pass filter is to re-reference the DC potential of the impedance signal to 
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system reference voltage. Therefore, its corner frequency should be placed far enough away from 

the signal frequency of interest so that gain and phase interactions do not occur. In this system, 

the corner frequency was placed at 15.9 Hz. It is very important that both the plus and minus 

input terminal have corner frequencies that are close to one another because this significantly 

effects the effective CMRR of the instrumentation amplifier. For this reason, ±1% capacitors and 

±.1% resistors are used. Additionally, components within each batch of components are matched 

by hand to tighten the tolerances even further.  

3.4 Important Active Component Specifications 

To ensure the effective operation of the circuit, amplifier slew rate and voltage reference 

sink/source current should be properly selected. The impedance signal is measured with a 20 

kHz sinusoid with maximum amplitude of 1 V. This yields an effective signal slew rate of ~.125 

V/ µS. In this bio-impedance application phase information is extremely important. To ensure 

the stability of phase measurements, op-amps and instrumentation amps with 5X slew rate 

should be used. The instrumentation amplifier AD8227 has a slew rate of .8 V/ µS and the 

operational amplifier OPA376 has a slew rate of 2 V/ µS. Additionally, many voltage references 

are not designed to both sink and source current. In this application, the voltage reference must 

be able both sink and source current. The TI REF3125 selected is capable of ±10 mA. 
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Chapter 4: Device Calibration and Testing 

4.1 Stimulation Current Magnitude Stability 

The 100 uA RMS 20 kHz current source is a key component in the bioimpedance 

measurement system. Its stability is important for high precision impedance measurements. The 

current source must be able to activate and stabilize quickly in order for low-power operation to 

be possible. While active, its output current must not drift. Additionally, the source must be 

stable across a wide range of loads. This component of the device was extensively tested to 

ensure quality of measurement.  

4.1.1 Warm-up and Drift Test 

The current source was tested for warm-up time and drift using a fixed load of 50 ohms 

and a Fluke multi-meter capable of measuring true RMS current. The device was programmed 

with test firmware that continuously takes impedance measurements in a loop. The effect is a 

continuous stimulation waveform. Using the current breakout jumper, the Fluke was connected 

in series with the 50 ohm load and the RMS current was measured. With the help of a stop 

watch, the display current was recorded at routine intervals. The results show that the current 

source does not drift over the course of hours, and has a sub millisecond warm-up time. 

Table 3: Current Source Warm-up and Drift 

Time (minutes) Current (uV RMS) 

0 99.9 

1 99.89 

5 99.88 

10 99.88 

20 99.87 

30 99.87 

60 99.87 

120 99.88 
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4.1.2 Resistor Sweep Test 

The device is intended to work with a wide range of pacing electrodes, and each of these 

electrodes will have varying electrode-electrolyte interface properties. The current source must 

be able to drive stimulation current through all of these electrode-electrolyte interfaces. Simply 

put, it must be functional over a wide range of test loads. To test this, the same firmware and 

measurement setup from the warm-up and drift test were used. A variable resistor box was 

connected to the device. The load was swept from 1 ohm to 5000 ohms. The results show that the 

current source is relatively stable over a large load range. 

Table 4: Current Source Resistor Sweep 

Load (ohms) Current (uA RMS) 

1 99.89 

10 99.85 

50 99.69 

100 99.5 

200 99.39 

300 99.39 

500 99.37 

1000 99.38 

2000 99.45 

5000 99.91 

 

4.2 Output Waveform Stability 

The analog bioimpedance signal must adhere to certain amplitude and frequency 

requirements. The output signal’s amplitude when connected to the maximum of the load range 

is not to exceed 1V peak and should be centered at 1.25 V. This requirement ensures that the 

sinusoidal impedance signal will be bounded between .25V and 2.25V. The analog to digital 

conversion (ADC) reference on the CC430F5137 microcontroller is 2.5V. By adhering to these 

signal requirements no ADC clipping will occur. The bioimpedance signal is measured using a 
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20 kHz stimulation current. Given the stability of the current source, the final output waveform 

should also be 20 kHz. Ideally, the frequency of this signal will be tightly bounded over time, 

and have a low frequency jitter.  

To test both frequency and amplitude stability of the output waveform, the device was 

placed in continuous test mode. In continuous test mode, a constant stimulation current is 

generated by running “admittance acquire” data in a loop. The device was connected to a 50 ohm 

load. An oscilloscope measurement was made at the input to the analog to digital converter. 

Amplitude and frequency measurements where then made by capturing a single oscilloscope 

fram. Amplitude measurements were performed using the horizontal cursors and period 

measurements were made using the vertical cursors. Ten sample functions of the output 

waveform were taken at random. The corresponding measurements are listed in the table below. 

 

Figure 14. Amplitude Jitter and Test Setup 
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Figure 15. Frequency Jitter 

Table 5: Output Waveform Stability Frequency and Amplitude 

Test Number Period (us) Frequency (Hz) Pk-Pk (V) 

1 49.5 20202.0202 1.03 

2 49.5 20202.0202 1.03 

3 49.5 20202.0202 1.03 

4 49.5 20202.0202 1.03 

5 49.7 20120.72435 1.03 

6 49.3 20283.97566 1.03 

7 49.5 20202.0202 1.03 

8 49.7 20120.72435 1.03 

9 49.5 20202.0202 1.03 

10 49.5 20202.0202 1.03 

Average 49.52 20193.95658 1.03 

 

The amplitude appears to be very stable, and although the frequency has some fluctuation 

the results can be explained. The oscilloscope that was used has a period resolution of .2 μs. 

Since the fluctuations seen were ± one resolution period the results can not accepted as truth. To 

better understand the frequency jitter of the system an oscilloscope with better period resolution 

must be used. 

4.3 Sample and Hold Time Configuration 
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The CC430F5137 allows the user to configure the hold time of the built in analog to 

digital converter. For proper sampling, the hold time must adhere to specific timing 

requirements. The following equation can be found on page 425 of the CC430 user manual. 

                                          

Since the input to the ADC is driven by an op-amp RS can be set to zero. By substitution, 

“tsample” is equal to 973 ns. The ADC12CTL0 register allows the user to control the number of 

clock cycles the ADC will hold samples for. The register can be configured in powers of 2. In 

this system, the clock frequency of the ADC is configured to be 5 MHz. By division, this yields a 

hold time of 4.85 clock cycles. The closest power of 2 that satisfies this requirement is 8 clock 

cycles. For more information on register configuration refer to page 438 of the user manual [15]. 

4.4 Instrumentation Phase Offset and Calibration 

Before use, the device must be calibrated for phase offset. These phase offsets occur 

because of several independent instrument characteristics. The instrument has parasitic 

inductances, and capacitances. The active components delay the signal in time resulting in a 

phase delay. There is a fixed time delay between DAC output and ADC sampling. These factors 

as well as others cumulatively add to instrumentation phase offset. Ideally, when measuring a 

purely resistive load the instrument should yield a zero phase measurement. For this reason, 

calibration is performed using resistors. It has empirically been shown that the instrumentation 

phase offset is variable with load. It has been proposed that the phase contributions of the active 

components are variable with signal amplitude. To solve this problem, the calibration is 

performed across a range of resistive loads that covers the entire measurement range.  

This process begins by collecting a series of resistors that span the measurement range. 

At 20 kHz, the magnitude of intraventricular bioimpedances range from 20 to 40 ohms. Hence, a 
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set of 7 calibration resistors ranging from 10 to 91 ohms were used to calibrate the device. Using 

the “buckstopper.pde” processing script, 1000 samples are taken at each resistor value. The 

“Cicruit_Cal_Large_Animal_Final.m” matlab script is then used to generate calibration 

coefficients for the device. Additionally, the matlab script generates graphs for visual inspection 

of a quality calibration. An example calibration is provided bellow. The calibration outputs two 

graphs and one table. The outputs are shown bellow. 

 

Figure 16(a,b,c,d left to right). Resistor Sweep Calibration Results 
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Figure 17(a,b,c left to right). Resistor Sweep Calibration Curves 

Table 6: Embedded Calibration Arrays  

int adc_val_c1[7]={2727,5596,8061,11038,14094,21000,25495,}; 

long real_calibration_c1[7]={625,500,50,50,100,100,125,}; 

long imag_calibration_c1[7]={-322,-219,-21,-21,-41,-41,-51,}; 

long divide_calibration_c1[7]={213068,165424,16435,16435,32754,32754,40913,}; 

long offset_calibration_c1=-25; 

 

 The calibration results from Fig 16 , Fig 17, and Table 6 display a quality calibration. In 

figure 15, the first two graphs represent the uncalibrated real and imaginary components of the 

impedance signal. In a resistor sweep, the measured real impedance and the nominal real 

impedance should be equivalent. In short, if you measure a 50 ohm resistor the device should 

yield a 50 ohm real impedance measurement. Additionally, the measured imaginary impedance 

and nominal impedance should always be zero. When measuring a resistor, there is not an 

imaginary impedance component.  Clearly, the uncalibrated data is not representative of the 

expected result.  
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The first step in calibration is to compensate for instrumentation phase offset. To do this, 

fig. 17a is used. This graph shows a trend of measured phase angle as a function of the measured 

real impedance. In theory, the instrumentation phase offset should be a constant. However, in 

practice it is a function of the signal amplitude, and is termed “Load Dependent Phase Offset”. In 

this calibration, there is a load dependent phase range of approximately 5°. In a quality 

calibration this number can vary from 2° to 6° depending on process variations in the 

instrumentation and operational amplifiers used in the design. To reverse the phase offset, the 

phase is essentially zeroed while preserving the magnitude of the complex number. This can be 

accomplished by multiplying by a complex number with unit magnitude and a phase that is the 

inverse of the offset.  

Now that the phase of the measured impedance has been corrected, the impedance 

measurement must be multiplied by a gain factor. The purpose of this is to relate the uncalibrated 

impedance measurement to the actual resistor value that is being measured. Fig. 17b shows that a 

linear relationship between the phase calibrated impedance measurement and the nominal 

impedance value exists. In reality, the equation for the line relating the two values has a very 

small offset. Hence, only a scalar value is necessary to relate nominal impedance to measured 

impedance. 

After applying both phase and gain calibration to the uncalibrated impedance sample it 

can be seen that the resulting impedance sample approaches ideal. Fig. 16c shows a line of 

identity between nominal and measured real impedance values. Fig. 16d shows imaginary 

impedance values after phase calibration, but before gain calibration. It can be seen that the 

calibrated imaginary impedance has decreased by a factor of 1000 when compared to the 

uncalibrated imaginary impedance. Once multiplied by the scaling factor it is essentially zero. As 
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expected, when measuring a purely resistive load the system should yield the value of the resistor 

in the real and zero in the imaginary. Note that the imaginary measurements shown in the first 

graph are not multiplied by the scaling factor yet. 

At this point, the calibration is moved to the embedded device. This is done to ensure that 

each device keeps track of its own calibration. This calibration could be performed after the 

impedance measurements have been wirelessly transmitted to the computer. However, with 

multiple devices there are multiple calibrations. By implementing the calibration on the 

embedded device the user need not worry about using different calibrations in the processing 

script that receives the wireless transmissions. The calibrations are implemented efficiently in 

fixed point. The matlab script automatically generates the fixed point calibrations. Since the 

calibrations are done in fixed point there is a precision limitation. The third graph in figure 16 

displays the results of these auto generated calibrations.  Ideally, this graph should be a inverse 

line of identity relating phase offset to phase calibration. Table 6 contains the calibration arrays 

used on the embedded device. These arrays are auto generated by the matlab script as well. 

4.5 Complex Impedance Measurement Testing 

The accuracy of complex impedance measurements produced by the device were 

analyzed extensively. To do this, a series of complex loads that cover the entire measurement 

range were used. For each load value, 1000 samples were taken using the device. For each set of 

1000 samples standard deviation (STD) and expected value (EV) were calculated. Percent of 

measurement error is calculated by comparing the expected value of the samples to the 

calculated impedance of the load. Standard deviation is used to estimate noise in the 

measurement. A measure of signal to noise ratio (SNR) is calculated by dividing the expected 

value by the standard deviation.  
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Table 7: Expected Value and Standard Deviation 

Res(Ω) Cap (nF) Calc ReZ (Ω) Calc ImZ (Ω) EV ReZ (Ω) STD ReZ EV ImZ (Ω) STD ImZ 

49.77 23.5 48.69691305 -7.228832679 48.71690647 0.011151125 -7.219842948 0.032141474 

49.77 49.6 45.3210169 -14.19973374 45.35357401 0.020689677 -14.38585021 0.037001558 

49.77 101 35.37204826 -22.56734463 35.67054801 0.019186612 -21.99051786 0.017797565 

28.56 23.5 28.35425333 -2.415324676 28.37381209 0.008972371 -2.385258657 0.02482607 

28.56 49.6 27.66569867 -4.974079929 27.6447867 0.008751082 -5.00356856 0.019103565 

28.56 101 25.18438451 -9.220238523 25.11609021 0.011588914 -9.430758526 0.018341566 

10.03 23.5 10.02103165 -0.299786773 10.0425261 0.004992959 -0.334473291 0.010467682 

10.03 101 9.866887492 -1.26862633 9.86518718 0.00497143 -1.314669526 0.009106174 

 

 In the above table the test loads and their corresponding calculated and measured 

impedances are given. Intraventricular bioimpedance signals range from 20-j1 ohm to 40-j10 

ohm. The test loads are representative of this range. In all cases, resistors and capacitors were 

placed in parallel with one another. Calculated impedances were made using a parallel circuit 

model, circuit values measured with a precision fluke multimeter, and a 20200 Hz frequency. 

The expected value (EV) and standard deviation (STD) of 1000 measurements taken by the 

device at each test load are also given. 

Table 8: Percent of Measurement Error 

Resistor (Ω) Capacitor (nF) % Measurement Error ReZ % Measurement Error ImZ 

49.77 23.5 0.041056843 0.124359367 

49.77 49.6 0.071836664 1.310703927 

49.77 101 0.843885955 2.556024104 

28.56 23.5 0.068979987 1.244802382 

28.56 49.6 0.075588084 0.592845927 

28.56 101 0.271177181 2.283238146 

10.03 23.5 0.214493381 11.57039639 

10.03 101 0.017232512 3.629374182 
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 The percent of measurement error for the device is given above. The results of the 

percent of measurement error for the real part of impedance show a high level of accuracy. The 

imaginary component of impedance is less accurate when compared to the real component. 

However, the largest inaccuracies occur with test loads that are not realistic for intraventricular 

bioimpedance measurements. In short, low magnitude measurements and measurements with 

phase angles greater than 30° are unrealistic. Even so, the percent of measurement error for the 

imaginary component is acceptable. 

Table 9: Signal to Noise Ratio 

Resistor (Ω) Capacitor (nF) SNR ReZ SNR ImZ 

49.77 23.5 4368.788588 224.6270047 

49.77 49.6 2192.08707 388.7903946 

49.77 101 1859.137421 1235.591388 

28.56 23.5 3162.353718 96.07878451 

28.56 49.6 3159.013442 261.9180479 

28.56 101 2167.251493 514.1741215 

10.03 23.5 2011.337656 31.95294688 

10.03 101 1984.376156 144.3712293 

 The signal to noise ratio (SNR) of the device is provided in the above table. The SNR for 

the real component of impedance appears to scale inversely with capacitance.  However, no 

apparent trend for the SNR of the imaginary component has been recognized. By analyzing the 

STD of the measured values it can be seen that the noise of the measured real and imaginary 

components of the signal is not a constant. The function that relates this noise to its 

corresponding load has not yet been identified. From the graph, one thing is clear; the device has 

a higher SNR for the real component within the measurement range of interest.  

4.6 Maximum Sampling Rate 

The device software runs open-loop in order to take impedance measurements as fast as 

possible. The software sequentially takes raw data samples, calculates an impedance sample, 
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calibrates the sample, and finally wirelessly transmits the sample. A timer interrupt is not used to 

enforce a fixed frequency of this sequential action, code runs in an open loop as fast as possible. 

In order to properly analyze the data, it is important to know the exact frequency that the device 

takes impedance measurements at. To do this, an oscilloscope was used to measure the time 

period between current stimulation pulses. An example oscilloscope measurement is provided 

bellow. 

 

Figure 18. Maximum Sampling Period Measurement 

The time period between pulses was measured using the horizontal cursor measurement feature. 

As shown, the calculated period is 2.06 ms. Hence, the sampling rate is 485 Hz. This sampling 

rate is significantly higher than the maximum heart frequency of interest. Assuming a maximum 

heart rate of 220 beats per minute (BPM) and useful information up to the 3
rd

 harmonic the 

maximum frequency is 11 Hz. Since the heart signal is greatly oversampled by the device it is 

possible to do accurate time-based analysis.  
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Chapter 5: Electrode Configurations, Calibration, and Saline Experiments 

5.1 Tri-polar Configuration 

 The tri-polar electrode configuration can used to measure impedance data related to 

volume in the right ventricle (RV) of the heart. Standard right ventricular shocking leads come 

equipped with 3 independent electrical contacts. Ideally, impedance measurements should be 

made using four contacts. In this way, stimulation pathways and sensing pathways can be 

separated from each other. This method minimizes the effects of the electrode electrolyte 

interface that reduce accuracy in the impedance measurement. The tri-polar measurement is not 

ideal; however, given the available RV shocking lead it is the best possible measurement 

configuration.  

 

 

Figure 19. Tri-polar Electrode Configuration 
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 In the above image three electrical contacts comprise the RV shocking lead. From top to 

bottom these contacts are: coil, ring, and screw. One of these contacts must act as both a 

stimulation node and a sensing node. The other two can act independently as either a sensing 

node or a stimulation node. The largest contact, the coil, is the ideal contact to act as a shared 

node. In practice, the configuration is as follows: coil is shared node, ring is sensing node, and 

screw is stimulation node.  

5.1.1 Analysis Techniques 

To analyze RV tri-polar data, a parallel circuit model of the blood and muscle is used. For 

reference, parallel circuit models were discussed in chapter 1. An equation for removing the 

muscular component of the impedance signal has been developed in previous research in our 

group [5]. The equation is formulated in terms of the measured Admittance Y. Additionally; the 

equation is formulated using the empirically measured tissue properties (σ/ϵ) ratio in order to 

remove the impedance contribution from the muscle. This ratio defines a fixed relationship 

between the resistive and capacitive properties in myocardial tissue. The following equation 

isolates Gb, the conductance of blood. 

 

 

Figure 20. Admittance Method 

5.1.2 Volume Sensitivity 
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Saline experiments have been conducted to prove that the tri-polar electrode 

configuration is sensitive to changes in volume. In the experiment, impedance measurements 

were taken in different sized cuvettes. Overall cuvette volumes ranged from 7.9 ml to 50.3 ml. 

Cuvettes were filled with 8300 (uS/cm) conductivity solution. Impedance measurements were 

taken in each of the cuvettes recorded, and plotted in terms of admittance Y.   

Table 10. Tri-polar Volume Results 

Cuvette # R (mm) Volume (mL) Mag |Y| (μS) Phase Y (°) 

1 15.9 7.9 32642 -2.38 

2 17.5 9.6 40147 -2.15 

3 19.1 11.5 44088 -2.01 

4 29.5 27.3 59707 -1.58 

5 34 36.3 62381 -1.74 

6 40 50.3 61918 -1.76 

 

 

Figure 21. Tri-polar volume graph 

 Fig. 21 shows that the bulk admittance measured by the system increases as the volume 

of solution is increases. It can also be seen that the measured admittance trends towards a 

maximum value as the volume increases. This is because the associated current density decays 
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rapidly moving away from the origin of stimulation. Hence, the associated current density very 

far away from the origin of stimulation is negligible.  

5.2 Tetra-polar Configuration 

.  The tetra-polar configuration usually used to make left-ventricular impedance 

measurements. In this configuration, the electrical contacts are split between two independent 

pacing leads. Two of the contacts are associated with the ring and screw of the RV shocking 

lead. The other two contacts are associated with the ring and the tip of the bi-ventricular lead that 

is snaked through the coronary sinus and rests in posterior vein of the left ventricle. In this way, 

one stimulation node and one sensing node are associated with each of the independent pacing 

leads. In an ideal impedance measurement, the distance between electrodes should be fixed. 

Therefore, it is ideal to have all nodes on a single lead. However, it is physiologically 

unacceptable to permanently implant a lead inside the left ventricle. Therefore, a cross-

ventricular impedance measurement is made using two independent leads.  

 

Figure 22. Tetra-polar Configuration 
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 In fig. 21 it can be seen that the measurement is made across the left-ventricle of the heart 

using two independent pacing leads. The field geometry sketch is provided purely for the 

purpose of illustration, and does not represent the actual electro-magnetic field of the system.  

5.2.1 Analysis Techniques 

Similarly to the tri-polar configuration, the same technique is used to remove unwanted 

impedance contributions from the muscle. The formulation of this model was originally 

proposed by Porterfield [3], and has since been revised by Larson [2]. The model rests on the 

assumptions of an idealized first order approximation of the equivalent circuit model for the 

system. Refer to the series parallel model that was discussed in chapter 1. The equation is 

formulated in terms of impedance Z, and also takes advantage of the (σ/ϵ) ratio described in the 

previous section.  

 

5.2.2 Distance Sensitivity 

Saline experiments have been conducted to show that tetra-polar impedance 

measurements in a cross ventricular configuration are correlated with distance. In the 

experiment, a large plastic vessel of 7000 (uS/cm) saline was used. A stationary RV shocking 

lead was placed in the saline 2 inches away from the wall of the plastic vessel. A second bi-

ventricular pacing lead was placed in the saline at a varying distance away from the RV shocking 

lead. The distance between the two leads was varied from 5 to 80 mm. Impedance measurements 

were taken and plotted as a function of distance.  
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Figure 23. Distance Experiment Setup 

 

Table 11. Cross Ventricular Tetra-polar Experiment  

Distance 
mm 

Real 
(ohms) 

Imaginary 
(ohms) 

5 1.56 0.8 

10 5.61 0.76 

15 8.78 0.4 

20 10.96 0.28 

25 12.5 0.23 

30 13.61 0.22 

35 14.74 0.21 

40 15.64 0.03 

45 16.5 0.01 

50 17.19 0 

55 17.94 0 

60 18.58 -0.01 

65 19.33 -0.01 

70 20.03 -0.02 

75 20.84 -0.02 

80 21.72 -0.03 
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Figure 24. Cross Ventricular Tetra-polar Experiment Real 

 

‘  

Figure 25. Cross Ventricular Tetra-polar Experiment Imaginary 

 As the distance between electrodes increases the measured impedance increases. At the 

lower distances, non-idealities in the measurement system are more prevalent. From fig. 25, it 

can be seen that an imaginary impedance measurement of nearly one ohm is seen at the smallest 

distances. In saline, there should be a negligible imaginary contribution to the impedance signal. 
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It is possible that this is a calibration issue, or due to mutual capacitance between electrodes.  In 

practice, impedance measurements across the left-ventricle of the heart are typically greater than 

20 ohms, approximately 40 mm. In saline we expect the imaginary part of the impedance 

measurement to be zero. The measured imaginary impedance for distances greater than 40 mm 

approaches zero. 
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Chapter 6: Conclusion 

6.1 Unresolved Problems 

Unresolved problems still remain in both the circuit and the current data analysis 

methods. 

 From the data that has been collected to evaluate measurement error in the device, it is 

clear that the imaginary components of the impedance samples are less accurate than the real 

components. This is likely the result of load dependent phase issues that significantly affect the 

imaginary impedance component for the test loads of interest. As stated previously, this has 

largely been determined to be a slew rate limitation of the instrumentation amplifier. However, 

given the voltage and power limitations of the system, this instrumentation amplifier is best in 

class. Alternative solutions to this problem that still allow for a low power implementation would 

be a tremendous benefit to the accuracy of the device.  

The current cross-ventricular tetra-polar analysis techniques are based largely on 

speculation and suffer from the limitations associated with a highly-idealized first order 

approximation of the problem. Additional studies in conscience ambulatory subjects are 

required, for both the right ventricular and cross-left ventricular measurement techniques, to 

study the effects of long term drift, motion, and respiration.  

6.2 Future Direction 

With the high accuracy low power bioimpedance measurement system fully developed, 

intraventricular monitoring of stroke volume in-vivo can begin. Additionally, an application of 

the device for the purpose of non-invasive external stroke volume measurements will be 

explored. Signal processing techniques to evaluate the data in real-time will also need to be 

developed for both potential applications.  
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In-vivo experimentation will focus on measuring right ventricular and cross-left 

ventricular impedance in cardiovascular physiologies similar to that of a human.  In these 

experiments, cardiovascular physicians will implant pacing leads in orientations that mimic 

current human medical practices. Impedance measurements will then be taken while modulating 

stroke volume using known physiological mechanisms. For example, stroke volume can be 

modulated by: performing an inferior vena cava (IVC) occlusion, using a pacemaker to control 

heart rate [12], administering beta-adrenergic agonists or their opposing beta-adrenergic blockers 

[11], or through  a controlled exercise routine. Trends in impedance measurements will then be 

evaluated and then correlated with stroke volume.  In practice, a measure of “truth” for stroke 

volume does not exist. However, several approximate modalities are available. These include but 

are not limited to: thermal dilution with Swan Ganz catheter, aortic-cuff type flow probes, 

catheter type flow probes, 3D/2D trans-esophageal echo [13], and 3D/2D trans-thoracic echo. 

Before moving into in-vivo experiments these modalities must be thoroughly evaluated for their 

surgical complexity and relative accuracy. 

In the 1960’s impedance science behind impedance cardiography was developed. 

Overall, experimental results were found to be inaccurate and of little clinical significance [14]. 

However, cardiologists have expressed interest in a portable device that can be used to 

continually monitor the stroke volume of patients placed in intensive care as a result of severe 

cardiovascular events. The developed impedance device is wireless, low-power, and cost-

effective making it an ideal candidate for portable continuous monitoring. For this to be possible, 

algorithms capable of removing respiration and motion artifact in real time must be developed.  

Moving forward, research and development efforts will focus on creating signal 

processing algorithms to interpret bioimpedance signal reliably. These algorithms will focus 
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heavily on isolating relevant information about the cardiovascular system in the presence of 

multiple noise sources. These algorithms are expected to execute in real-time in a completely 

automated manor. Eventually, this technology has the potential to improve patient outcomes on a 

global scale.  

 

If you don’t do it this year, you’ll be another year older when you do. 

-Warren Miller 
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Appendix 

Discrete Fourier Transform, DFT 

Input: N time samples  

{an} = {a0,a1,a2,…,aN-1}  

Output: a set of N frequency bins 

{Ak} = {A0,A1,A2,…,AN-1} 

 







1N

0n
N

kn

nk WaA
  where   eW /Nj2

N
  

 k=0,1,2,…,N-1 

While the DFT deals only with samples and bins, with no concept of seconds and Hz, when 

looking at ADC samples spaced at intervals T (in sec). The equivalent sampling rate fs (Hz) is 

defined as 1/T (sec).  Frequency bin k represents signal components around k*fS/N (in Hz). The 

value at each bin corresponds to the amount energy that the time sampled signal contains in the 

specific frequency range that the bin covers. The DFT resolution in Hz/bin is the reciprocal of 

the total time spent gathering time samples; i.e., 1/(NT).  

 

The DFT is a powerful tool that can be used for a number of signal processing applications. 

These include but are not limited to the following: filtering, demodulation, and frequency 

profiling.  

 

In the impedance device that was developed, the DFT was used for the purpose of demodulating 

the raw voltage samples measured by the system. A continues block of raw voltage samples were 

taken, and the DFT was used to measure the amount of energy at a specific frequency. Several 

methods for demodulation of a signal exist. However, the DFT was selected because it can be 

efficiently implemented in software, and has no hardware overhead. 

 

 

 

 

  



50 
 

References 

 [1]  Loeffler, K. (2012). Development of an implantable system to measure the pressure-

volume relationship in ambulatory rodent hearts. (Master's thesis). 

[2]  Larson, E. (2012). Admittance measurement for assessment of cardiac hemodynamics in 

clinical and research applications. (Dotoral Dissertation). 

[3]  Porterfield, J. (2010). Admittance measurement for early detection of congestive heart 

failure. (Doctoral dissertation). 

[4] A. T. Kottam, J. Porterfield, K. Raghavan, D. Fernandez, M. D. Feldman, J. W. Valvano 

and J. A. Pearce, "Real time pressure-volume loops in mice using complex admittance: 

measurement and implications," Proceedings of the 28th IEEE EMBS Annual 

International Conference, pp. 4336-4339, 2006.  

[5]  J. E. Porterfield, A. T. Kottam, K. Raghavan, D. Escobedo, J. T. Jenkins, E. R. Larson, R. 

J. Trevino, J. W. Valvano, J. A. Pearce and M. D. Feldman, "Dynamic correction for 

parallel conductance, Gp, and gain factor, alpha, in invasive murine left ventricular 

volume measurements," J. Appl. Physiol., vol. 107, pp. 1693-1703, 2009.  

[6]  Riatt, M. (2013). Inappropriate implantable defibrillator shocks an adverse outcome that 

can be prevented. Journal of America College of Cardiology,62(15), 1351-1352. 

Retrieved from http://content.onlinejacc.org/article.aspx?articleid=1699351 

[7]  P. B. Adamson, A. Magalski, F. Braunschweig, M. Bohm, D. Reynolds, D. 

Steinhaus, A. Luby, C. Linde, L. Ryden, B. Cremers, T. Takle, and T. Bennett, 

"Ongoing right ventricular hemodynamics in heart failure: clinical value of 

measurements derived from an implantable monitoring system," J Am Coll 

Cardiol, vol. 41, pp. 565‐71, Feb 19 2003. 



51 
 

[8]  Greenspon, A. (2012). Trends in permanent pacemaker implantation in the united states 

from 1993 to 2009: increasing complexity of patients and procedures.Journal of America 

College of Cardiology,16(60), 1540-1545. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/22999727 

[9]  Implantable cardioverter-defibrillator (icd) - topic overview. (2010, August 9). 

Retrieved from http://www.webmd.com/heart-disease/tc/implantable-cardioverter-

defibrillator-icd-topic-overview 

[10]  Raghavan, K. (2009). Electrical conductivity and permittivity of murine 

myocardium. IEEE Transaction on Biomedical Engineering, 56(8), doi: 0018-9294 

[11]  Merta, M., et al. "Beta-blocker therapy influences the hemodynamic response to inotropic 

agents in patients with heart failure." J Am Coll Cardiol 40 (2002): 1248-1258. 

[12]  Barber, Gerald, et al. "Hemodynamic responses to isolated increments in heart rate by 

atrial pacing after a Fontan procedure." American heart journal 115.4 (1988): 837-841. 

[13]  Nagueh, Sherif F., et al. "Recommendations for the evaluation of left ventricular diastolic 

function by echocardiography." European Journal of Echocardiography10.2 (2009): 

165-193.  

[14] Allen, Michael T., et al. "Methodological guidelines for impedance 

cardiography." Psychophysiology 27.1 (1990): 1-23. 

[15]  Texas Instruments. CC430 User's Guide. Dallas: 2010. Web. 

<http://www.ti.com/lit/ug/slau259e/slau259e.pdf>. 


