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1 

Introduction 

 Rivers are dynamic conduits through which drainage basins evacuate accumulated 

surface water from rain or melting snow and ice. The erosive properties of flowing water 

over bedrock and loose sediment turn rivers into sediment super highways, with the 

larger North American rivers alone having suspended sediment loads of 10
4
-10

7
 metric 

tons a year (Heimann et al., 2011). Ultimately, most of the world’s rivers meet a 

relatively stagnant body of water at their terminus, which causes current deceleration 

within the channels. For rivers joining the ocean, this loss of energy by the river channel 

causes vast amounts of sediment to be deposited at the coast. Where the rate of this 

sediment deposition outpaces local subsidence, we see the birth of a delta.  

 Deltas are some of the largest depositional features on Earth and while they are 

built by sediment, they are much more than just gravel, sand and mud. The very same 

rivers that build deltas also carry with them fluxes of nutrients that make deltas ideal for 

agriculture and aquaculture. As such, even though deltas account for less than 1% of 

global land area, they are densely populated with plants, animals and humans, the latter 

population now over 500 million (Ericson et al., 2006). Rivers, however, are not the only 

morphodynamic drivers that shape the delta landscape these populations depend on.  
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Figure 1.1: The lunar, or M2, tidal constituent with amplitude indicated by color. White lines are 

cotidal lines which indicate simultaneous tide levels (R. Ray, TOPEX/Poseidon: Revealing 

Hidden Tidal Energy, GSFC, NASA). 

   

 Being sited on the world’s coasts exposes deltas to a host of marine processes 

which can affect the morphodynamics and net deposition of the subaerial and subaqueous 

delta components. Of these allogenic forces, tides are one of the most prevalent and their 

effect on delta morphology led to their inclusion in classifying delta types (Galloway, 

1975). In fact, all the coastlines of the world are influenced by tides (Figure 1.1), with 

some coastlines seeing daily tidal amplitudes over 5 m (Bernier and Thompson, 2010). 

Where river outlets and these large tidal amplitudes overlap, we see the formation of tide-

dominated deltas (Figure 1.2). 
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Figure 1.2: Map of the world’s major river delta systems, with those forming tide-dominated 

deltas indicated by bold type and filled circles. From Goodbred and Saito (2012), modified after 

Hori and Saito (2007). 

 

 As seen in Figure 1.2, major tide-dominated deltas are distributed across the globe 

and their average subaerial landmass ranks them as some of the largest deltas in the world 

(Woodroffe et al., 2006). Yet for all their size, tide-influenced deltas are typically only a 

few meters above sea level at their extent; the largest tidal delta in the world, the Ganges-

Brahmaputra, is only 5 m above sea level (Akter et al., 2016). With typical slopes of 

1·10
-5

 (Wilson and Goodbred, 2015), tide-influenced deltas are vulnerable to both local 

and eustatic sea-level rise, with the latter phenomenon projected to increase global mean 

sea level by at least 0.5 m in the next century (Church et al., 2013). While understanding 

delta response to relative sea-level (RSL) rise is a critical scientific question for all deltas, 

it is especially crucial for tide-influenced deltas as high tide may increase the reach of 

eustatic rise. 

 In this thesis, we present a suite of experiments conducted in Saint Anthony Falls 
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Laboratory’s delta basin facilities. These experiments explore how tide-influenced deltas 

respond to RSL rise, as well as how this response compares to that of river deltas with no 

tidal forcing. Presented as separate journal articles, the following chapters focus on 

different aspects of tide-influenced deltas and further our understanding of these complex 

systems. 

 In Chapter 2, we present 10 physical experiments that vary in their fluvial to tidal 

energies, rates of RSL rise and sediment budgets. Using traditional data collection 

methods (e.g., high resolution topographic scans), we introduce new methods of analysis 

to study net deposition and the morphologic response of experimental deltas. These 

experiments also generate further questions of tidal influence on river deltas based on 

qualitative observations of channel dynamics. Therefore, Chapter 3 explores the apparent 

reduction in distributary channel mobility in deltas affected by tides and presents novel 

techniques for quantifying channel mobility from both time-lapse photography and digital 

elevation model data. Finally, Chapter 4 concludes this thesis with a summary of results 

and a look forward into the experiments of tomorrow. 
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2 

Experimental delta evolution in tidal environments: 

Morphologic response to sea-level rise and net deposition* 

 
*To be submitted as Lentsch, N., Finotello, A., and Paola, C. Experimental delta 

evolution in tidal environments: Morphologic response to sea-level rise and net 

deposition to Journal of Geophysical Research: Earth Surface. 

 

SYNOPSIS 

Tide-influenced deltas are among the largest depositional features on Earth and 

are ecologically and economically important. However, the continued rise in relative sea 

level threatens the sustainability of these landscapes and calls for new insights on their 

morphological response. While field studies of ancient deposits allow for insight into 

delta evolution during times of eustatic adjustment, tidal deltas are notoriously hard to 

identify in the rock record. Here we present a suite of physical experiments aimed at 

reproducing tide-influenced deltas subjected to relative sea-level (RSL) rise. Using new 

analysis techniques, we employ topographic profiles to classify upstream and 

downstream net deposition as well as shoreline migration across the delta topset. These 

profiles are further used in a new method for comparing transgression rates across 

systems with varying sediment budgets. By altering the ratio of fluvial to tidal energy, we 

show that tide-influenced deltas are subjected to shoreline transgression as compared to 

identical, yet purely fluvial, deltas that exhibit static or even regressive shorelines. 

Different magnitudes of net deposition among our experiments clearly reveal how tides 
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effectively remove sediment, which would otherwise be deposited by fluvial processes, 

from the delta topset. Furthermore, strong tidal forcing can reduce the mobility of 

distributary channels and create composite deltas were different processes dominate 

varying areas of the delta plain leading to distinct morphologies. 

1. INTRODUCTION 

River deltas are landforms that form from sediment delivered by rivers to coastal 

areas by means of interconnected channel pathways (Tejedor et al., 2015). Deltas 

evolving under the influence of tides are of particular importance as most of the largest 

modern rivers feed either tide-dominated or tide-influenced deltas (Tänavsuu-

Milkeviciene and Plink-Björklund, 2009) and their associated subaerial and subaqueous 

landmasses make them some of the largest sedimentary environments on Earth 

(Woodroffe et al., 2006). Moreover, the fecund, wide plains created by the combined 

action of fluvial and tidal processes attract large human populations (Goodbred and Saito, 

2012), providing an invaluable asset for some of the largest economies worldwide. 

Example systems include the tide-dominated Changjiang Delta of the Yangtze River 

which hosts many of the world’s largest cities -- Shanghai alone has a population density 

of 2,145 inhabitants per square kilometer (Tian et al., 2011) -- as well as the tide-

dominated Ganges-Brahmaputra Delta which hosts nearly 2% of the world’s population 

even though half of its area is within 5 m of mean sea level (Akter et al., 2016). However, 

the steady rise in RSL currently experienced by most tide-influenced deltas threatens the 

stability of these landscapes and consequently endangers their populations. Yet little 

research exists on the response of deltas subjected to tidal processes and eustatic rise. 
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This may be partially due to the limited number of tidal deltas identified in the rock 

record (Plink-Björklund, 2012), as several “characteristic” tidal features (e.g., funnel 

shaped tidal channels, tidal mouth bars, etc.) are not well preserved in the rock record 

(Dalrymple and Choi, 2007). Physical experiments can help bridge this knowledge gap 

(Malverti et al., 2008; Paola et al., 2009; Kleinhans et al., 2012; Kleinhans et al., 2014). 

Physical models allow for capturing delta evolution at a spatial and temporal 

resolution that is impractical in the field. Recent studies employing physical experiments 

have been able to reproduce several typical tidal features, such as ebb deltas (Kleinhans 

et al., 2012), tidal channel networks (Tambroni et al., 2005; Stefanon et al., 2010; 

Vlaswinkel and Cantelli, 2011) and tidal estuaries (Kleinhans et al., 2014). However, all 

of these experiments functioned by allowing tides to rework a layer of hand-laid 

sediment; due to the limitations of the physical setup or the goals of the research, no 

sediment was introduced via a fluvial system. As most of the largest modern rivers (in 

terms of sedimentation) have their mouths along tide-dominated coasts (Middleton, 

1991), investigating the autogenic processes occurring in a deltaic system influenced by 

the action of tides is a logical evolution of coastal research. 

Using the delta basin facilities of Saint Anthony Falls Laboratory (SAFL), we 

conducted a suite of 10 experiments with varying tidal and fluvial energies. These 

experiments are further characterized by varying sediment discharge and RSL rise rates. 

In this way, we capture not only the differences in how tidal and non-tidal deltas respond 

to RSL rise, but also how a delta system adapts morphologically as forcing becomes 

more dynamic (i.e., high sediment discharge and high RSL rise). In the field, dynamic 
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tidal coasts have been studied and evolutionary classification schemes have attempted to 

couple sequence stratigraphy with RSL rise (Boyd et al., 1992). However, these coasts 

are exposed to multiple marine processes, such as waves and longshore currents, which 

can have a strong influence on net deposition. A further benefit of conducting tidal delta 

research in a closed basin lies in the ability to minimize these marine processes and 

isolate tidal effects. 

For these experiments, primary data collection consisted of digital elevation 

models (DEM), which enabled tracking both shoreline position and net deposition across 

the delta topset. We present new methods developed to measure the difference between 

anticipated and actual shoreline migration as well as a new technique for representing the 

evolution of a delta plain in terms of net deposition. Our results show that (1) all other 

conditions being equal, tide-dominated deltas transgress as fluvial-dominated deltas 

remain static or regress under RSL rise. We therefore suggest that (2) tides are effective 

at removing sediment that would otherwise be deposited on the delta topset. Lastly, (3) in 

experiments with the strongest tidal forcing, we observed distributary channels that were 

pinned in place and allowed for the formation of a composite delta as different processes 

dominated across the delta. 

2. EXPERIMENTAL METHODS 

2.1 Delta Basin-2 setup 

Experiments were conducted in SAFL’s Delta Basin-2 (DB-2) facility as this 

basin can produce deltaic deposits subjected to tidal forcing (Figure 2.1a). This square 

basin is 5 m by 5 m and has a depth of 0.5 m. Well-mixed sediment and water, whose 
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quantities were independently and remotely controlled, were fed from a corner of the 

basin to create a semicircular delta. The feed point source was located behind a gravel 

diffuser that helped distribute sediment and water evenly and minimized local scour. The 

base level within the basin was computer controlled through a motorized weir connected 

to a sonar sensor taking water level measurements every 5 seconds. To produce tides, the 

basin was connected to a 2 m by 2m, 0.5 m deep auxiliary basin by two industrial pumps. 

During the flood phase of the tidal cycle, water was pumped into the main basin from the 

auxiliary basin by the flood pump. After the specified upper tidal limit was reached, the 

flood pump ceased allowing for slack water on the delta. The ebb pump then brought the 

water level down to the lower tidal limit and again allowed for a momentary slack water. 

The tidal amplitude, or half the tidal range, and the tidal period were both computer 

controlled. The tidal cycle for these experiments was sinusoidal and any deviations from 

the specified water elevation were identified by the sonar measured water depth. Small 

changes in voltage to the pumps and the weir allowed for error of less than 1 mm in water 

elevation.  

It is important to note that one limitation of this setup is the inability to effectively 

create mixed tidal ranges. In nature, several tide-influenced systems experience mixed 

semidiurnal tide cycles, i.e. they have two high tides and two low tides of different 

magnitude. Given that we were not attempting to create a detailed scale model of a 

specific delta but rather to explore overall morphologic effects of tidal pumping, we do 

not consider this an important limitation. 
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Figure 2.1: (a) Overhead image of Delta Basin-2 (DB-2) with a tide-influenced delta. The added 

equipment schematics are not drawn to scale. (b) An image of the data cart that serves DB-2. The 

cart consists of a high-resolution digital line scan camera capable of generating digital elevation 

models (DEM) with submillimeter resolution. Several overlapping passes were made over the 

deposit with the final DEM generated from stitching the passes together. 

 

2.2 Methods of data collection 

Primary data collection in these experiments consisted of overhead time-lapse 

photography and periodic digital elevation model (DEM) scans. The photography 

entailed a digital single-lens reflex camera affixed above the basin with a wide-angle lens 

to capture the entirety of the deposits. The camera’s resolution and height above the basin 

were such that each pixel is approximately 1 mm by 1 mm in Cartesian space. As a wide 

angle lens was used, the outer portions of the images were subjected to barrel distortion. 

Every image was therefore orthorectified in a batch process so that all portions of the 

deposit were correctly scaled. The camera itself was computer controlled, with the time-

lapse between photos specified by the user. All experiments with tides had a time-lapse 
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interval of half the period to capture both the flood and ebb phase of the tidal cycle. The 

water used as fluvial discharge was dyed blue at the point source with an industrial food 

colorant to aid in channel identification within the images. This highly concentrated dye 

is introduced as a drop every few seconds and therefore has no significant effect on net 

fluvial discharge.  

Additionally, DB-2 is served by a data cart equipped with a high-resolution line 

scan camera for DEM collection (Figure 2.1b). This camera has a plan view resolution of 

1 mm by 1 mm and a vertical resolution of less than 1 mm. Periodically, the experiments 

were paused and the surface of the deposits were allowed to drain slowly so as to not 

affect the surface morphology. The data cart took several overlapping scans and once 

finished, stitched the scans together into one continuous DEM. Water level was then 

slowly raised to the pre-pause position and the experiment continued until the next scan 

time. 

2.3 Experiment run parameters and initial tidal network 

Looking at the effectiveness of physical experiments for reproducing stratigraphy 

and geomorphologies similar to those seen in the field, Paola et al. (2009) showed that 

short term base-level cycles on physical models has further refined sequence stratigraphy 

as a tool. In fact, many of the elements identified in sequence evolution have been 

reproduced experimentally through base-level cycles meant to represent gradual 

transgressions or regressions (Ethridge et al., 2009). Here we produced tidal 

environments experimentally by creating base-level cycles with a much shorter period (2 

min) and a set tidal range (20 or 7 mm from high to low tide). This frequency of base-
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level variation created channels with bidirectional flow perpendicular to the shoreline that 

was strong enough to mobilize sediment during the flood and ebb phases of the tide. The 

period used in these experiments was the same used by Baumgardner (2015) as she points 

out that this time scale is shorter than the avulsion timescale but  long enough to allow for 

a quasi-steady current in the tidal channels. 

A total of 10 experiments were conducted imposing different water and sediment 

discharges, tidal amplitudes and periods, and sea-level rise rates (Table 2.1). Tidal 

amplitudes were selected based on their corresponding energies; 10 mm amplitude tides 

had energies greater than the associated fluvial system, while 3.5 mm amplitude tides had 

lower energies, making it possible to specify the system as tide-dominated or tide-

influenced. These energies are reported in power per unit length in the streamwise 

direction and their formulas have been used to classify both deltas in the field and in 

physical experiments (Baumgardner, 2015).  

 

Table 2.1 Experiment Parameters and Energies 
Experiment Sea-level 

Rise 

[mm/hr] 

Water 

Discharge 

[m
3
/s] 

Sediment 

Discharge 

[m
3
/s] 

Tide  

Amplitude 

[mm] 

Tide  

Period 

[sec] 

Tidal 

Power 

[W/m]
a 

Fluvial 

Power 

[W/m]
a 

DB2-1600 0.5 0 0 10.0 120 4.09e-2 0 
DB2-1601 0.5 5.0e-5 5.0e-7 10.0 120 3.27e-2 9.81e-3 
DB2-1701 0.5 5.0e-5 5.0e-7   3.5 120 1.87e-3 7.36e-3 
DB2-1604 0.5 5.0e-5 5.0e-7 0 0 0 7.85e-3 
DB2-1607 1.0 1.0e-4 1.0e-6 10.0 120 3.85e-2 1.67e-2 
DB2-1608 1.0 1.0e-4 1.0e-6   3.5 120 2.34e-3 1.18e-2 
DB2-1605 1.0 1.0e-4 1.0e-6 0 0 0 1.37e-2 
DB2-1606 2.0 2.0e-4 2.0e-6 10.0 120 4.36e-2 2.94e-2 
DB2-1603 2.0 2.0e-4 2.0e-6   3.5 120 2.16e-3 2.55e-2 
DB2-1602 2.0 2.0e-4 2.0e-6 0 0 0 2.55e-2 
   

   a
Calculated with the energy-based tidal power metrics and stress-based fluvial power metrics of 

Baumgardner (2015). 
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To increase the temporal efficiency of the experiments, a semicircular platform of 

sand-sized sediment was initially hand-laid to within 5 cm of the delta plain’s intended 

starting elevation. Sea level was then raised and the remaining 5 cm were created by 

depositional processes from the point source until a delta topset of approximately 2 m 

radius was formed. To study how systems with established tidal networks respond to RSL 

rise, the first 3 hours of run time were allotted for tidal channel and network growth 

before RSL rise was initiated. This amount of time was deemed reasonable for acquiring 

a mature tidal network by looking at differential elevation between subsequent scans 

(Figure 2.2). In fact, areas of active erosion and deposition were readily identified 

between the first run hour and the third run hour. During the first hour the tidal channels 

were predominately erosional while some deposition occurred on the outer banks and as 

overbank deposits. Data from the third hour still showed erosion near the tidal channel 

inlets, with deposition in the seaward extent of the inlet, but the majority of the channels 

showed a net bypass stage with only minor net deposition on bends. 

As the overall goal of this research is to understand how deltas of varying fluvial 

and tidal energy would respond to sea-level rise, consideration was given to decorrelate a 

delta system’s response to RSL rise alone from its response to combined RSL rise and 

tides. Therefore, the amount of sediment discharge (Qs) was set to maintain a 2 m radius 

shoreline in equilibrium with the rate of sea-level change,  SL, and the area, AT, of the 

delta topset: 

Qs =  SL·AT/f (1) 
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where f is the fraction of sediment discharge trapped in the topset. Here a value of 0.9 

was used for f and was empirically chosen from test experiments conducted at SAFL. If a 

system was fluvial only with no tidal influence (DB2-1602, DB2-1604 and DB2-1605, 

see Table 2.1), the shoreline should remain static for the considered sea-level rise rate. 

Hence, any deviation in shoreline position or net deposition in experiments with active 

tides would be the result of tidal processes. 

 

Figure 2.2: (a) Differential elevation between hour 0 scan and hour 1 scan. Tidal channels show 

clear development via erosion with deposition occurring on some outer banks and the delta plain 

between channels. (b) Differential elevation between hour 2 scan and hour 3 scan. Tidal channels 

still show some signs of erosion, although mostly at the tidal channel extremes: near the inlet and 

the headward extent. The mid-reach of the channels show very little activity and appear to be in a 

stage of net bypass while deposition is concentrated at the channel inlets. 

 

3. EXPERIMENTAL RESULTS 

3.1. Experimental and Field Geomorphic Similitude 

 The morphologies shaped in our experiments displayed several distinctive 

features of both tidal channel networks and of tide-influenced deltas. Channels shaped by 

the periodic action of tides start forming along the shoreline and progressively extend 
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toward the sediment source due to the progressive erosion of their headward extent 

driven by flow concentration during the ebb phase (D’Alpaos et al., 2005; Stefanon et al., 

2010). Moreover, tidal channels showed a strong reduction in their width moving from 

the inlet toward the sediment source, thus resembling the classic “funnel-shaped” 

planform typically observed in tidal environments (Ahnert, 1960; Wright et al., 1973; 

Lanzoni and D’Alpaos, 2015) (Figure 2.2a). Furthermore, larger tidal channels tended to 

be straighter, while smaller channels were more sinuous, as is commonly observed in 

unvegetated tidal landscapes (Hughes, 2012). Overall, the tidal-channel networks 

produced in the experiments exhibited a dendritic structure, with maximum stream orders 

of about four or five according to Strahler’s ordering (Strahler, 1957). These higher order 

channels were very persistent in the experiments and had a high preservation potential 

(Belknap and Kraft, 1985), especially if they remained segregated from active fluvial 

channels that could overprint smaller tidal features. 

The delta morphology obtained from the experiments showed clear intertidal 

zones as identified from channel extents. Many of the longitudinal profiles captured in 

DEM data (Figure 2.3a), especially for tide-dominated experiments, show compound 

clinoforms (Figure 2.3b). Such features have been documented for major tidal delta 

systems such as the Ganges-Brahmaputra and Yangtze (Kuehl et al., 1997; Chen et al., 

2000), and are typically associated with tidal acceleration which causes strong shear 

stresses on the inner shelf to form a region of limited deposition separating the subaerial 

and subaqueous clinoforms (Swenson et al., 2005; Goodbred and Saito, 2012). To the 

best of our knowledge, compound clinoforms have not been previously identified in any 
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experimental tidal deltas, marking our work as another benchmark for the capability of 

experimental systems to reproduce tidal morphologies and evolution in a realistic 

manner. 

3.2. Shoreline Position 

Monitoring shoreline migration through time provides suitable indicators of how 

deltas respond to sea-level rise, and it also marks an important boundary between fluvial 

and submarine transport processes, which has strong controls on not only the sedimentary 

structures but also on the preservation potential of stratigraphic sections (Swenson et al., 

2000). Field stratigraphers solve an inverse problem when reconstructing ancient 

shorelines and often are faced with issues of stratigraphic completeness (Barrell, 1917; 

Sadler, 1981), which may necessitate modeling (Mahon et al., 2015). The physical 

experiments in this study allow for forward modeling and multi-dimensional tracking of 

shoreline trajectory at a high temporal resolution. 

For our experiments, DEM data were the primary source of information for 

shoreline position. Starting near the sediment and water point source, topographic data in 

the form of longitudinal profiles was pulled in a radial pattern from 1° to 89° for a total of 

89 profiles per hourly DEM scan (Figure 2.3). Not only did this allow for study of how 

the topset of the delta was evolving through time, but when coupled with controlled sea-

level rise, the intersection of the current ocean level and profile gave the exact shoreline 

position at each time step. 
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Figure 2.3: (a) DEM of tidal delta DB2-1601 showing the locations of every 10

th
 degree 

longitudinal profile. Profiles were taken every degree from 1° to 89° and capture topset evolution. 

(b) An example profile taken from 45° showing the raw topographic data. Features that are 

identifiable include the shelf break as well as a compound clinoform. Using the current ocean 

level, the exact shoreline position was found and tracked throughout the experiment. 

 

After each run hour, mean shoreline position was calculated from the 89 acquired 

shoreline positions across the delta (Figure 2.4). For a fluvial-dominated delta with no 

tides such as DB2-1604, the calculated sediment discharge was able to maintain an 

approximate shoreline radius of 2 m (Figure 2.4). The distributary network of channels 

efficiently distributed sediment across the delta throughout the rise in RSL. Both DB2-

1602 and DB2-1605, which were purely fluvial experiments, started with a topset radius 

smaller than 2 m and their shorelines exhibited subsequent progradation of the delta 

(Figure 2.4). 

In contrast to the fluvial experiments, for all the experiments involving tides, the 

mean shoreline position shows a transgressive delta, regardless if the delta is tide-

influenced or tide-dominated. Experiment DB2-1600, which had no fluvial input, exhibits  
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Figure 2.4: Shoreline position through time separated by relative sea-level rise rate. The 

shoreline was measured as a radius from the sediment and water point source and was plotted for 

89 profiles taken every run hour. Mean shoreline position was also plotted to show the general 

shoreline migration trend. Refer to text for explanation of DB2-1606 results. 

 

the highest rate of transgression, followed by tide-dominated systems (DB2-1601 and 

DB2-1607) and lastly by tide-influenced systems (DB2-1608 and DB2-1701) as seen in 
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Figure 2.4. Note that an error with the weir occurred during experiment DB2-1606 at run 

hour 9, causing a drop in sea-level. Subsequent erosion of the active distributary channel 

in DB2-1606 formed an embayment and the system transitioned to a tidal estuary. 

Although the issue was fixed at run hour 10, the fluvial system was well entrenched into 

the incisional valley feeding the embayment. This allowed for rapid transgression on the 

majority of the delta as the distributive channels could no longer deposit sediment to the 

now submerged portions of the delta plain and this is readily identifiable in the shoreline 

data (Figure 2.4). 

3.3. Mean Profile Method 

 Observing how the shoreline evolves through time gives a general sense of how 

the delta is responding as a whole and implies conditions of nearshore sediment delivery 

or downstream depositional processes. The shoreline profiles shown in Figure 2.4 suggest 

that large amounts of sediment are being removed from systems with tides as the 

shoreline is able to transgress with little resistance. However, this does not explicitly 

capture net deposition metrics and gives no indication of the morphological adaption that 

takes place across the delta plain. Here we introduce a novel approach for comparing 

upstream and downstream net deposition along longitudinal profiles as well as creating 

metrics for comparison across delta systems. This “Mean Profile Method” (MPM) allows 

for the characterization of deposition and erosion along the same topographic profiles 

pulled for calculating shoreline and also quantifies the magnitude of net deposition. 

 



 

 20 

 
Figure 2.5: (a) Computation of the mean profile, . The difference, ∆η, of two elevation profiles 

(η) taken at consecutive time-steps, t and t+1, is computed over the radius of the delta topset, R. 

The mean profile, , is finally computed as the linear regression of ∆η. (b) Diagram depicting the 

variables employed to characterize the mean profile. A profile is divided into an upstream and 

downstream portion based on the position of the mean profile zero-crossing point. The upstream 

and downstream length, ru and rd, are then multiplied by half of the upstream and downstream 

depositional height, a and b, respectively to acquire the net upstream and downstream deposition 

areas, α and β. 

  

The objective of the MPM is to compare subsequent topographic profiles to 

derive the differential elevation which captures the net deposition through time. For each 

delta, a series of topographic profiles, ηt, were assembled over time step t (Figure 2.5a). 

The difference in successive profiles through time, ∆η, gives the absolute change in 

elevation. The linear regression of ∆η produces a simplified or mean profile, , which can 

be used to characterize upstream and downstream net deposition. The mean profile, 

which represents the interpolated elevation data, is separated into an upstream and 

downstream region based on the position of its zero-crossing point (i.e., the point where 

the mean elevation changes sign) (Figure 2.5b). Note that upstream and downstream 

classification of a region in this method does not imply a distinction in geophysical 

processes but instead serve purely as geographic distinctions. The distance from the 

sediment source to the zero-crossing point represents the upstream delta radius, ru, while 

the remaining distance along the profile is designated as the downstream radius, rd. The 
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elevation of the first and last points along the mean profile provide the upstream, a, and 

downstream, b, depositional heights respectively. Quite simply, these depositional 

heights are the maximum and minimum elevation values of . Finally, since the net 

depositional areas defined with this method are right triangles, the upstream and 

downstream net deposition can be found in units of area using: 

α = a·ru/2 (2) 

β = b·rd/2 (3) 

respectively, where the sign dictates positive or negative net deposition. As the initial 

delta geometry was set by deposition of sediment fed from the point source in the corner 

of the basin, each of the deltas started with different topset areas. To allow direct 

comparison of different experiments, α and β are normalized by the delta’s initial topset 

area to obtain the dimensionless values α* and β*, which are then plotted in Cartesian 

space (Figure 2.6). As seen in Figure 2.6b, we can break the Cartesian space into octants 

numbered clockwise starting immediately north of the positive x axis, to represent 

different possibilities of net deposition captured by this method. 

While several variations of the profile shown in Figure 2.5 are captured by 

equations 2 and 3, it is possible that there is no zero-crossing as the profiles show 

deposition or erosion along the entire profile (e.g., quadrants I and III in Figure 2.6b). In 

the case of uniform erosion or deposition along the profile (e.g., line of uniformity in 

Figure 2.6b), α and β are simply:  

α = a·R/2 (4) 

β = b·R/2 (5) 
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Figure 2.6: (a) Scatter plots of α* and β* separated by relative sea-level rise rate. α* and β* 

represent upstream and downstream net deposition respectively. The further away from the origin 

the greater the magnitude of net deposition. (b) A diagram depicting what each octant represents 
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in terms of net deposition profiles. Profiles alone the line of equality have equal upstream and 

downstream net deposition, while lines along the line of uniformity have uniform net deposition 

across the entire profile. 

 

where R is the radius of the delta topset. This puts the separation of upstream and 

downstream at the center point of the profile. If deposition or erosion is not uniform 

across the profile, the upstream and downstream boundary is dependent on the magnitude 

of the depositional heights a and b. In these cases α and β are also found with equations 4 

and 5, however instead of visualizing the areas as rectangles, the areas are again 

represented by right triangles. In this way, if a or b are small, their corresponding α and β 

values are small and the delineation of upstream and downstream is similar to how ru and 

rd were found. As a and b become closer to equal (e.g., line of uniformity in Figure 2.6b), 

the boundary of upstream and downstream migrates back to the center point and we again 

arrive at equations 4 and 5 with rectangles as our visualization for net deposition. 

4. DISCUSSION 

4.1. Shoreline Migration and a Transgression Anomaly 

For purely fluvial experiments, sediment discharge rates calculated with equation 

1 and shown in Table 1 were capable of either maintaining a pseudo-static shoreline 

radius (DB2-1604) or prompting a prograding radius (DB2-1602 and DB2-1605, see 

Figure 2.4). In marked contrast, every experiment with active tides produced a shoreline 

transgression, regardless of the ratio of fluvial to tidal energy for each system. The only 

difference between tide-dominated and tide-influenced systems, with all other parameters 

equal, appears to be the rate at which the shoreline regresses. 
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When tidal forcing is present, highly dynamic systems (i.e., systems experiencing 

higher RSL rise rates and sediment discharge) appear to transgress more quickly in some 

instances while about the same as less dynamic systems in others. When tides are absent, 

these same highly dynamic systems do not show transgression, implying that tides and 

their processes remove significant amounts of sediment from the delta plain. This also 

counter-intuitively suggests that tidal deltas are more sensitive to the rate of RSL rise, 

regardless of having a sediment budget large enough to combat eustatic rise under non-

tidal conditions. This is in agreement with numerical modeling conducted by Van De 

Lageweg and Slangen (2017), who found that deltas are more easily inundated by higher 

rates of RSL rise irrespective of the ratios of fluvial, wave, or tidal energies acting upon 

them. 

 

 
Figure 2.7: Schematic defining the transgression anomaly (TA). The projected shoreline position, 

Rt*, is based on the RSL rise rate and the initial delta plain profile while the actual shoreline 

position, Rt, is recorded from the intersection of the current profile and ocean level. If the current 

shoreline radius is larger than the projected radius the TA is negative, while shoreline radii that 

are smaller than the projected radius give positive TA values. 

 

To further compare transgression rates between different experiments, it is 

beneficial to compare the actual evolution of shoreline position, Rt, with the position that 
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the shoreline would have maintained throughout the experiment if no depositional or 

erosional processes had occurred, Rt*. The latter is easily derivable by considering the 

intersection between the initial delta profile, assumed to be fixed, and the mean sea level 

at a given time step (Figure 2.7). Any difference between Rt and Rt* would reflect net 

deposition due to the action of fluvial and/or tidal processes. We therefore introduce a 

new metric, the transgression anomaly (TA), as:  

TA = (Rt*/Rt) - 1 (6) 

where systems that transgress faster than expected would have positive TA values and 

negative values for systems which transgress more slowly. Using the same 89 profiles per 

run hour from the shoreline data and the MPM, the initial profile was recorded from the 

first run hour and all subsequent shoreline positions were used to calculate the TA at each 

run hour. This gives 89 individual TA values for each run hour, which were then averaged 

to give one value for that time step (Figure 2.8). 

When the transgression anomaly data is plotted (Figure 2.8), the magnitude of the 

TA value represents how far apart the current shoreline and the projected shoreline are in 

space. The experiment that involved only tides with no sediment input (DB2-1600) is the 

only system that shows TA values that are positive overall. Since net sediment flux in 

DB2-1600 is directed seaward, likely because flow concentration within channels during 

the ebb phase promotes stronger velocities - which in turn causes the system to be ebb-

dominated, the shoreline transgressed more quickly than predicted by the initial profile. 

When any rate of sediment discharge is introduced, the systems show negative TA values 

on average, which indicates aggradation and/or progradation along the delta topset. 
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Figure 2.8: Transgression anomaly (TA) vs. run time separated by relative sea-level (RSL) rise. 

Note that while all experiments were run for 20 hours, profiles in the faster RSL rise rates 

terminate before the last run hour. This is due to how the TA is calculated; the initial profile 

would be completely flooded by these times and the TA can no longer be used. The difference in 

how long this takes between systems is dependent on the initial topset slope. 

 

As the rates of RSL rise and sediment discharge increase in these experiments, the 

slopes of the connecting lines become steeper. This implies that while the shorelines in 

these highly dynamic systems do ultimately transgress (Figure 2.4), they do so at a lower 

rate than systems with no sediment input. The systems that were subjected to high RSL 

rise rates of 2 mm/hr (DB2-1602, DB2-1603 and DB2-1606) also had higher sediment 

and water discharge rates, which produces a fluvial system with higher energy (Table 
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2.1). As fluvial energy in the system increases, the ability of tides to increase 

transgression rates decreases. Conversely, higher tidal energies lead to higher 

transgression rates over systems with comparable sediment budgets. 

The TA dataset implies that the response of dynamic delta systems may be harder 

to predict when based solely on initial conditions. The addition of tidal forcing further 

complicates the morphologic response of a delta as fluvial processes of deposition are 

clearly interrupted when observing the shoreline and TA data. The ebb phase of the tide 

dominates on these deltas and irrespective of the relative energy of the tides, sediment 

that would otherwise be deposited in the topset is instead transported to the foreset, 

bottomset or the representative deep marine. 

While it is possible that tidal deltas that are vegetated or flood-dominant would 

respond to RSL rise differently, calculations of sediment budgets for several of the 

world’s tidal deltas show large amounts of sediment transported to the subaqueous delta 

clinothems. Early calculations for the sediment budget of the Fly delta could only account 

for half of the annual sediment load within the tide-dominated regions (Harris et al., 

1993). It was later discovered that while some of the missing annual sediment budget is 

deposited on the Fly river’s floodplain (Swanson et al., 2008), a large portion is 

appropriated to a composite clinothem forming the inner Gulf of Papua shelf (Slingerland 

et al., 2008). A similar study of the Ganges-Brahmaputra by Goodbred and Kuehl (1999) 

found that two-thirds of the annual sediment discharge is sequestered by the prograding 

subaqueous delta and the deep-sea Bengal fan. Studies of the major East Asian tide-

dominated and tide-influenced deltas have shown that not all sediment removed from the 
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subaerial delta plain is redeposited in the immediate alongshelf clinothem. In fact, 25-

35% of the sediment load in these delta systems is transported between 500-800 km 

alongshore before final disposition in a shore-parallel middle-shelf clinothem (Liu et al., 

2009). This complex picture of continental margin deposition only highlights that several 

components may work in conjunction with tides to enhance sediment flux seawards. 

However, since these experiments are ebb-dominant, they lack a significant landward 

component of suspended sediment transport. Tidal channels downdrift of distributary 

channels with high suspended sediment concentrations have been shown to deliver fines 

onshore if tidal currents are flood-dominant, as is the case in several of the north-south 

trending tidal channels west of the Ganges-Brahmaputra-Meghna river mouth in the Bay 

of Bengal (Barua, 1990; Barua et al., 1994). Therefore, our results that show net-export 

of sediment may reflect dominantly bedload sediment transport.  

4.2. Profile Preference and Net Deposition 

As seen in Figure 2.6, the Mean Profile Method is able to capture delta plain 

evolution in terms of net deposition and its morphologic response. With the exception of 

DB2-1600, which had no sediment input, the majority of topographic profiles plot in 

octants that correspond to positive net deposition (Figure 2.6). However, the capturing of 

sediment in topsets of tidal delta systems does not outpace accommodation space created 

by RSL rise. As seen in the tide-dominated and tide-influenced shoreline and 

transgression anomaly data, transgression occurs in all tidal systems (Figures 2.4 and 

2.8). Using the fluvial only delta systems as a baseline, the axes values give a sense of 

how much α* and β* values increase as the delta systems become more dynamic. For each 
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bracket of RSL rise, the magnitude of upstream and downstream area change also tends 

to increase as the system becomes less tide-influenced. This trend appears to show that 

tides reduce the net deposition occurring on the delta topset. Therefore, the MPM data 

correlates well with the trends seen in the shoreline and TA data and again points to 

sediment bypass occurring within the delta plain. 

While the scatter plot of Figure 2.6 captures the direct results of the MPM, the 

volume of data produced is better represented with a rose diagram. Often used to 

represent wind direction and frequency, here the direction shows which octant the data 

lies in and the percentage of profiles in that octant (Figure 2.9). Lastly, the distance from 

the origin to the data point represents the magnitude of area change in the MPM and is 

represented in the rose diagram with color. The diagrams shown in Figure 2.9 elucidate 

the results of the MPM and show a clearer transition in depositional response from low 

sediment/low RSL rise systems to more dynamic systems. 

Observing Figure 2.9, the tides-only delta system (DB2-1600) shows mostly 

erosion dominated profiles, although approximately 25% of the profiles show upstream 

deposition (octants 7 and 8) with 10% being upstream deposition dominant (octant 8). 

Therefore even though tidal deltas created in DB-2 are ebb-dominated, the subordinate 

currents in the flood phase still have the capability of depositing sediment along tidal 

channel apexes. When sediment carrying fluvial channels are introduced, there is a strong 

transition to upstream dominant deposition and downstream erosional profiles (octant 8). 

For deltas experiencing 0.5 mm/hr of RSL rise (DB2-1600, DB2-1601, DB2-1604 and 

DB2-1701), as the fraction of fluvial power to tidal power increases there is a small 
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transition (~5%) to upstream erosional and downstream dominant deposition (octant 3). It 

is possible that upstream scour at the point source is responsible for this small conversion 

of profiles as tide-influenced deltas created a slight slack water near the point source 

during high tide. This slack water condition allowed for increased deposition of 

suspended sediment which helped mitigate local scour. 

The delta systems exposed to 1.0 mm/hr of RSL rise (DB2-1605, DB2-1607 and 

DB2-1608) show an overall decrease in upstream dominant deposition and downstream 

erosional profiles (octant 8) as the systems transition to profiles in the first quadrant 

which are depositional along the entire profile. Again as these delta systems become less 

tide-influenced there is a slight increase in the number of profiles that show upstream 

erosion and downstream dominant deposition (octant 3). Finally, the systems with RSL 

rise rates of 2.0 mm/hr (DB2-1602, DB2-1603 and DB2-1606) have almost all profiles in 

the first quadrant of deposition up- and downstream with the exception of DB2-1606 

which created an estuary style embayment. The tide-influenced delta (DB2-1603) showed 

slightly more profiles which were downstream dominant depositional (octant 2) and the 

fluvial only delta (DB2-1602) showed the opposite with slightly more upstream dominant 

depositional profiles (octant 1). 

 Not only do the delta systems vary in their preferred profiles as they become 

more dynamic, but the average net area change increases overall as more sediment and 

accommodation space is introduced. Although DB2-1600 had 10 mm amplitude tides, the 

net area change is the smallest as no source of sediment exists. Conversely, the delta  
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Figure 2.9: (a) Rose diagrams of α* and β* for different relative sea-level rise rates. Percentages 

represent frequency of profiles falling within a certain octant. Color depicts the net area change 

which is also how far the α* and β* values, which are proxies for upstream and downstream 

deposition respectively, plot from the origin (b) A diagram depicting what each octant represents 

in terms of net deposition profiles. 

 

systems with the highest sediment discharge and RSL rise rates have profiles with the 

highest net deposition. Comparing DB2-1602 and DB2-1603 gives a sense of how much 

net deposition needs to occur to outpace RSL rise. DB2-1602, which was a fluvial only 

delta that prograded, has the largest values of net deposition. DB2-1603, which had the 

same sediment discharge rate but also had 3.5 mm tides, experienced transgression and 

shows less overall net deposition. 

A parallel exists in these delta systems between the recorded magnitude of the 

transgression anomaly and the magnitude of net area change. The deltas that had TA 

values closer to zero show the smallest net deposition while the opposite is true for deltas 

that diverged the fastest and furthest from a zero TA value. While highly dynamic deltas 

seem to be more suited to counteract the effect of RSL rise, tidal influence in these 

systems ultimately allowed for a transgression to occur. This coincides with delta 

research of very energetic river mouths, such as the Amazon (Kuehl et al., 1986) and Fly 

(Harris et al., 1993) which show delta growth primarily in the form of a subaqueous mud 

clinoform leaving the subaerial delta susceptible to transgression. Both of these delta 

systems are subjected to tidal forcing and it is believed that tidal focusing inhibits 

sediment accumulation on the delta topset (Nittrouer et al., 1986; Allison, 1998). 

In contrast to most modern deltas, research on the very dynamic Ganges-

Brahmaputra delta has shown that the subaerial delta front has prograded over the last 
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200 years in the face of Holocene sea-level rise (Allison, 1998; Akter et al., 2016). This 

draws attention to several factors present in that system as compared to these 

experimental deltas. Chief among them is the lack of vegetation on the delta top and 

absence of multiple grain sizes. Vegetation found in mangroves and salt marshes in 

particular interact with fine grained clastics to promote the capture of suspended 

sediment. While these inclusions may account for the lack of transgression in the Ganges-

Brahmaputra Delta, some of the tide-dominated experiments shown here do replicate the 

composite nature of the Ganges Delta. 

For example, DB2-1606 (10 mm tides with 2 mm/hr RSL rise) is unique as it is 

the only experiment that indicates how a delta experiencing regression and valley-style 

erosion responds to subsequent transgression. The majority of expected profiles for the 

other delta systems fall in octants 1, 2 and 8 with less than 10% also in octant 3. 

However, as all of the fluvial discharge was trapped within the embayment, a large 

portion of the delta was influenced by tides only, which created profiles in octants 4 and 

7. Accounting for roughly 16% of the total profiles, these are upstream dominant 

erosional and downstream depositional (octant 4) and upstream depositional and 

downstream dominant erosional (octant 7). Profiles from these portions of the delta are 

directly comparable to the majority of profiles found in DB2-1600 which was a delta 

system with only tides and no fluvial input. Therefore, different areas of DB2-1606 show 

parity to multiple delta types as different processes dominated in these sections. 

Field studies of asymmetric wave-influenced deltas (e.g., Danube and Brazos 

deltas) have shown differences in sedimentary facies updrift and downdrift of the main 
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channel outlet. Bhattacharya and Giosan (2003) believe this variation is due to several 

modifying processes active in the downdrift area such as lagoonal, lacustrine, fluvial, 

tidal and vegetation-related sedimentation. More recently, large deltas can be considered 

a composite system if different portions are controlled by fluvial, tidal or wave processes 

which give distinctive morphologies across the delta (Goodbred and Saito, 2012). 

Although DB2-1606 is unique in that it was the only experiment that behaved as an 

estuary, it was not the only delta system to show varying topset morphologies. 

4.3. Composite Deltas 

During the entirety of experiment DB2-1601, a tide-dominated delta experiencing 

a steady 0.5 mm/hr RSL rise, the main distributary channel was pinned to the delta’s 

northernmost boundary by the strong 10 mm amplitude tides. Periodically a smaller 

secondary channel would branch off from the main channel and attempt to fill in the 

accommodation space being created throughout the delta. As a mature tidal network was 

already formed on the remaining delta plain, a unique interaction between the secondary 

fluvial channel and the tidal network existed. Distributary channels would preferentially 

meet the headward extent of the tidal channels and evacuate their sediment load down the 

channel with very little overbank deposition. The relationship between the fluvial and 

tidal systems in DB2-1601 led to the development of a composite delta system with 

varying tidal and fluvial morphologies seen across the delta. 

The delta can be qualitatively discretized into four regions based on the varying 

influences of tides and fluvial channels. The area where the main distributary channel 

was pinned during the entirety of the experiment we classified as fluvial dominated. The 
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immediate flanks of this channel were classified as fluvial influenced. Regions where the 

tidal forcing appeared to outweigh fluvial influence, we identified as tide influenced, and 

where the tidal network rarely interacted with distributary channels, we named tide 

dominated. Using these four regions, shoreline position, transgression anomaly and mean 

profile method data can be compared (Figure 2.10). 

 

Figure 2.10: Composite delta data for DB2-1601: 10mm tides. The delta was separated into four 

regions based on the observed influence of fluvial vs. tidal processes. (a) Mean shoreline position 

through time for each region. (b) Transgression anomaly (TA) through time for each region. (c) 
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Scatter plot of mean α* and β* values for each delta region to indicate the preferred net 

depositional profile. 

 

While the selection of these areas was based on observation, the shoreline 

position and transgression anomaly values fall in line with the observed results seen 

across experiments with varying tidal and fluvial energies. As fluvial power decreases, 

transgression of the shoreline increases and the TA moves closer to values of zero 

(Figures 2.10a and 2.10b). For the MPM, the mean α* and β* were plotted to show the 

preferred profile for each section (Figure 2.10c). This preferential profile transitions from 

upstream deposition dominant and downstream depositional (octant 1) to roughly 

uniform upstream and downstream deposition as the fluvial system becomes the 

dominant force. These results display the ability of physical delta models to 

morphologically replicate composite delta environments. As experimental delta facilities 

continue to evolve, improved modeling of marine processes will improve our 

understanding of composite deltas. 

5. CONCLUSIONS 

The experiments presented here have shown that physical models of tidal 

environments can be extended to depositional systems such as deltas. These results open 

an avenue of experimental research that previously focused on systems such as estuaries 

and gives credibility to the recorded response of these tidal deltas to the allogenic forcing 

of RSL rise. While several complexities found in the field such as multiple grain sizes, 

vegetation and flood dominant currents are not included, we believe these experiments 

provide a baseline for comparing the response between fluvial- and tide-dominated delta 

systems to eustatic variation. Furthermore, using DEM data in the form of longitudinal 
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profiles, we have shown the transgression anomaly to be a useful method for comparing 

shoreline transgression between deltas experiencing different rates of RSL rise. The 

usefulness of these profiles is further exemplified by a newly developed mean profile 

method, which not only simplifies upstream and downstream deposition profiles, but uses 

the normalized area change between subsequent profiles as a metric for net deposition. 

Based on our results generated from these new methods, we find that: 

 

(1) Tidal deltas show transgressive shorelines, regardless of tidal strength, under 

conditions in which fluvial deltas show shoreline stasis or regression;  

 

(2) The most dynamic fluvial-dominated delta system showed longitudinal profiles with 

up to two times the net deposition found in its tide-dominated and tide-influenced 

counterparts pointing to sediment removal by tides; 

 

(3) As tidal delta systems become more dynamic (i.e., high sediment discharge and high 

RSL rise rates), they transition from predominately upstream deposition and downstream 

erosion to up- and downstream deposition; 

 

(4) Strong tidal forcing can immobilize distributary channels and leads to composite delta 

morphologies as tidal and fluvial processes dominate different regions of the delta. 
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While all of the world’s deltas are vulnerable to sea-level fluctuations due to their 

low gradients, as seen here tides can potentially compound the local effect of sea-level 

rise as their cycle amplifies the mean eustatic trend. Going forward, new consideration 

must be given to the effectiveness of sediment removal in delta systems affected by ebb-

dominated tidal currents. We believe that these initial findings improve our current 

understanding of tidal delta evolution and this in turn should allow for more 

comprehensive and accurate modeling of these dynamic depocenters, an increasingly 

important tool as modern sea-level continues to rise, threatening these populous deltas. 

NOTATION 

 

Qs sediment discharge (m
3
/s) 

 SL rate of sea-level change (mm/hr) 

AT area of delta topset (mm
2
) 

f fraction of sediment discharge trapped in delta topset 

ηt topographic profile at time step t 

t time step (hr) 

∆η difference in successive topographic profiles 

 linear regression of ∆η 
ru upstream radius (mm) 

rd downstream radius (mm) 

a upstream depositional height (mm) 

b downstream depositional height (mm) 

α area of upstream net deposition (mm
2
) 

β area of downstream net deposition (mm
2
) 

α* α normalized by initial topset area (-) 

β* β normalized by initial topset area (-) 

R radius of the delta topset (mm) 

Rt actual shoreline position (mm) 

Rt*  projected shoreline position (mm) 

TA transgression anomaly (-) 
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3 

Reduction of deltaic channel mobility by tidal action* 

 
*Submitted as Lentsch, N., Finotello, A., and Paola, C. Reduction of deltaic channel 

mobility by tidal action to Geology. 

 

SYNOPSIS 

As Holocene river deltas continue to experience sea-level rise, they use sediment 

carried by distributary channels to counteract delta-plain drowning. Many deltas 

worldwide are subjected to tidal action, which strongly affects the morphodynamics of 

distributary channels and could also influence their mobility. Here we show, through 

physical laboratory experiments, that distributary-channel mobility can be dramatically 

reduced in systems affected by tides in comparison to an identical system with no tides, 

and that the mobility of distributary-channels decreases as the ratio of tidal to fluvial 

energy increases. We also show, using a new approach to create synthetic stratigraphy by 

coupling digital elevation model data and time-lapse photography, that the decrease in 

distributary-channel mobility in tide-influenced deltaic systems increases channel 

stacking and connectivity. 

INTRODUCTION 

Deltaic environments support productive coastal ecosystems and large human 

populations, with the tide-influenced megadeltas of Asia (e.g., the Ganges-Brahmaputra, 

Mekong, Changjiang, etc.) alone hosting over 200 million humans (Woodroffe et al., 



 

 40 

2006; Goodbred and Saito, 2012). Understanding how these deltas respond 

morphologically to rising relative sea level is therefore critical for managing the evolving 

landscape and the population it supports. While there are numerous examples of modern 

tidal deltas,  the study of ancient deposits allows a long-term view of the evolution of 

delta morphology (Blum and Törnqvist, 2000). However, tidal deltas are difficult to 

identify definitively from the stratigraphic record and few clear examples have been 

recognized in the rock record (Plink-Björklund, 2012): some key morphological 

indicators, such as tidal mouth bars and funnel shaped tidal channels, are not readily 

identifiable in ancient deposits (Dalrymple and Choi, 2007). Physical experiments 

(Malverti et al., 2008; Paola et al., 2009; Kleinhans et al., 2012) offer an additional 

source of insight allowing, for example, study of processes such as distributary-channel 

mobility at a temporal and spatial resolution that is impractical in the field.  

While recent studies with tides in physical experiments have successfully created 

tidal networks (Vlaswinkel and Cantelli, 2011; Kleinhans et al., 2012) and estuaries 

(Kleinhans et al., 2014), their focus was not on depositional distributive networks. 

Distributary channels are crucial to understanding the eco-morphodynamic evolution of 

deltas as they are the main conduits through which water, sediment and nutrients 

propagate. Channel mobility is thought to be strongly influenced by localized 

sedimentation (Bridge and Jarvis, 1976; Pizzuto, 1987; Slingerland and Smith, 1998; 

Hajek and Edmonds, 2014). However, little is known about the effect of tides on channel 

mobility, though their morphologic effects  have been explored since the fundamental 

work of Galloway (1975), and expanded upon by Nienhuis et al. (2015). While there 
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have been advances in modeling nearshore processes and their effects on distributary-

channel mobility (Swenson, 2005), the overall effect of tidal action on distributary 

channel mobility, and its stratigraphic record, are not well understood.  

Here we present the results of experiments carried out at Saint Anthony Falls 

Laboratory (SAFL) to investigate how tidal forcing affects morphodynamic and 

stratigraphic evolution of deltas under depositional conditions. Specifically, we 

investigate how tides influence channel mobility by varying total tidal energy relative to 

fluvial energy. We combine data from time-lapse photography and high resolution digital 

elevation models (DEM), using a new procedure, to derive two types of in situ synthetic 

stratigraphy. We first describe the experiments and data collection; we then quantify the 

mobility of distributary channels subjected to varying tidal energies and use synthetic 

stratigraphy to compare channel body distribution and connectivity. Our results show that 

tides significantly reduce the mobility of distributary channels in deltaic systems. 

METHODS 

We conducted a series of delta experiments at SAFL in a 5 m x 5 m x 0.5 m basin 

with a computer-controlled system that allows for continuously varying water and 

sediment inputs, and programmable changes in base level. The latter is regulated via an 

electrically operated weir, while sediment and water are supplied by a feed system in one 

corner of the basin. The basin is unique in that it also can produce sinuous tides via two 

large pumps connecting the main basin to an auxiliary basin. More information on the 

experimental setup, is in the GSA Data Repository
1
 (Fig. A.1). 
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Three delta experiments are the focus of this study; their varying tidal parameters 

can be found in Table 3.1 (Table A.1 in the GSA Data Repository
1
 contains information 

on supplemental experiments). Prior to each experiment, we grew an approximately 

uniform 2 m radius delta using walnut-shell sand (D50 ~ 320 μm) that, owing to its low 

density (1350 kg/m
3
), can be easily entrained and deposited by both tidal and fluvial 

currents (Baumgardner, 2015). Then we imposed a steady relative mean-sea level rise 

that continued for the whole experiment. Sediment and water discharges were set to keep 

pace with base-level rise, maintaining a constant delta-topset area. To isolate the effects 

of tides on distributary-channel mobility, base-level rise and sediment and water 

discharge are constant while tide parameters vary for each experiment. 

TABLE 3.1 EXPERIMENT PARAMETERS AND ENERGIES 

Experiment Tide  

Amplitude 

(mm) 

Tide  

Period 

(sec) 

Tidal 

Power 

(W/m)
* 

Fluvial 

Power 

(W/m)
* 

Total 

Aggradation 

(mm) 
DB2-1601 10.0 120 3.27e-2 9.81e-3 10.0 
DB2-1701   3.5 120 1.87e-3 7.36e-3 30.0 
DB2-1604 N/A

† N/A
† N/A

† 7.85e-3 10.0 
   Note: Sediment discharge (5e-7 m

3
/s), water discharge (5e-5 m

3
/s) and base-level rise (0.5 mm/hr) are the 

same for all experiments and were held constant throughout each.
 

   *
Calculated with the energy-based tidal power metrics and stress-based fluvial power metrics of 

Baumgardner (2015).
 

   †
N/A = not applicable. 

 

 The main observations during each run were overhead time-lapse imaging every 

3 mins for DB2-1601 and 1 min for DB2-1604 and DB2-1701, and high resolution (<1 

mm vertical, 1 mm horizontal) topographic scans (DEM), taken every hour. Data analysis 

focused on (1) measuring how changing relative tidal strength influenced channel 

mobility, and (2) measuring how changes in mobility were recorded stratigraphically. We 

adopted a method similar to Wickert et al. (2013) and Baumgardner (2015) in which 

channel mobility is measured by change in wet/dry pixel state between sequential images. 
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These state changes are normalized by the number of common pixels in both images to 

give a state change fraction, which is then divided by the time step between images to 

compute the state change fraction per time (Fig. 3.1). We then use mean state change 

fraction per time ( ) values to compare channel mobility between experiments. 

 

Figure 3.1: State change in pixel fraction per time versus run time for all three experiments. Each 

data point represents the change in “wet” and “dry” pixels for consecutive images which is used 

here as a proxy for channel mobility. Spikes in the plotted data are associated with avulsions 

which see rapid rates of change as a channel is abandoned in favor of a new flow path. Mean state 

change fraction per time for the entire experiment ( ) is calculated for each and is a quick 

reference for overall channel mobility across delta systems. Note the missing data points for the 

last two hours of DB2-1601 as the marker dye ran out; they are not used when calculating . 

 

To study the stratigraphic signature of changes in channel mobility, we need to 

visualize the buried channels. Unlike previous experiments that preserved well defined 

channel bodies in cross-section (Kim et al., 2006; Sheets et al., 2007), the well-sorted, 

low-density sand we used does not yield visible buried channels. To compensate, we used 

the images and DEMs to construct synthetic stratigraphy along a given transect on the 

delta top. Since the focus of the present work is on distributary channels, we focused on 

one topographic transect located just outside the intertidal zone (Fig. 3.2A). As for the 
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DEM data, to reduce noise and aid in identifying channels, we applied a Savitzky-Golay 

filter, which preserves relevant high frequency components of the data (Schafer, 2011), to 

each transect profile. The filter has a window of 50 data points (corresponding to 50 mm) 

and its coefficients are specified by a 2
nd

 degree polynomial via unweighted linear least-

squares regression. After filtering, we plot elevation data along the transect for each 

hourly scan with subsequent topography clipping previous values wherever the later 

elevation is lower (Fig. 3.2B). 

 

Figure 3.2: A: DEM image of experiment DB2-1601 with several tidal channels evident. The 

red-dashed line indicates the transect location for the generated synthetic stratigraphy. B: 

Synthetic stratigraphy where each horizon depicts the topography at an hourly DEM scan. 

Subsequent scans clip lower elevations to represent areas of erosion. All topographic profiles 

were smoothed using a Savitzky-Golay filter with a window size of 50 mm and channel thalwegs 

are identified with red circles. While all experiments experienced the same base-level rise rate, 

DB2-1701 shows a larger cross-section as it was allowed to aggrade for longer. 

 

The DEM scans capture a snapshot of the delta topset only every hour, so we use 

the image data, which are much more frequent, to approximate some of this missing 

temporal information. Therefore, we developed a method for generating synthetic 

stratigraphy from overhead time-lapse photography. While images cannot provide 

elevation data, they give active channel locations throughout the experiment. All photos 
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were orthorectified and,  using dyed water, we created binary maps of wet and dry 

regions based on an HSV color threshold (Wickert et al., 2013). Since the entire system 

experiences uniform base-level rise, the time step between images can be easily 

converted to a mean elevation change. Therefore, channels can be stacked in a way 

similar to the DEM process, except that the channel depth is not known. 

To overcome this problem, we superimposed every DEM scan with the image 

corresponding to the nearest time step, allowing for depth measurements of active 

channels. For each of the three experiments, we measured channel width (B) and depth 

(h) from wet/dry images and DEM data, respectively. We then classified channels into 

width bins, (bin increment = 10 mm, and widths in the range 0<B<300 mm). For each 

bin, we calculated an empirical distribution function of channel depth. This partition 

allows us to account for variation in channel aspect ratio (β = B/h) that emerges from our 

analyses (see Figs. A.2 and A.3). We then randomly selected a channel depth from the 

empirical distribution function associated with the local channel width, the latter being 

known from the wet/dry image. Using the same transect coordinates as the DEM data 

(Fig. 3.2A), we generated synthetic stratigraphy every 6 min from the images (Fig. 3.3) to 

allow for 9 additional horizons each hour as compared to the DEM data. 
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Figure 3.3: Image generated synthetic stratigraphy where each horizon depicts channel locations 

every 6 min. For every 10 mm of channel width, a bin was created of measured depths from DEM 

data. The sinuous depths depicted here were selected from a pdf based on the channel’s width bin. 

Subsequent horizons clip lower elevations to represent areas of erosion. 

 

RESULTS AND DISCUSSION 

The synthetic stratigraphy results from both the DEM and image based methods 

show good correlation qualitatively (Figs. 3.2B and 3.3). This is encouraging as the DEM 

scans capture absolute topography and do not statistically assign channel depths. More 

importantly, both types of synthetic stratigraphy show a clear difference in distributary-

channel body distribution from a system with strong tides (DB2-1601) to a system with 

no tides (DB2-1604). The stacking density of channel bodies has long been used as an 

index of channel mobility and avulsion rates both in the field  (Allen, 1978; Bridge and 

Leeder, 1979; Mackey and Bridge, 1995; Mohrig et al., 2000), and in physical 

experiments  (Sheets et al., 2007; Hajek et al., 2010). In the case of DB2-1601, the tides 

hold the main distributary channel captive in its location throughout the experiment. 

Small secondary channels periodically branch from the main channel to distribute 

sediment to other portions of the delta, but large areas are allowed to drown from the 
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overall base-level rise. This is not the case for DB2-1604, which had no tides yet the 

same values of sediment and water discharge. The distributary channels in this 

experiment effectively distribute sediment across the delta and maintain a relatively static 

shoreline (see Fig. A.4). Therefore, we expect systems with stronger tidal influence to 

display stratigraphy with higher channel connectivity and amalgamation due in part to 

decreased avulsion rates, and this is clearly visible in Figures 3.2B and 3.3. 

Results for state change fraction per time (Fig. 3.1) show that even in a weakly 

tide-influenced delta (DB2-1701), the mobility of distributary channels is still reduced. In 

fact, both lateral migration and avulsion frequency drop significantly as tidal strength 

increases. The results for the synthetic stratigraphy for this case are not as clear; the 

channel bodies in DB2-1701 appear to show slightly higher stacking density than those 

found in the purely fluvial case (Figs. 3.2B and 3.3), the reduction in mobility is weaker 

and is not easily distinguished from the background noise. For a field comparison, a 

method such as the one developed by Hajek et al. (2010) to measure channel clustering 

may be useful in that tide-dominated deltas should display stronger grouping of channel 

bodies. 

To compare our results to field cases, we must also consider the energy of the 

tidal and fluvial components of deltaic forcing. We use a method developed by 

Baumgardner (2015) to calculate energy-based tidal power and stress-based fluvial power 

metrics of a system. Tidal energy (ΩT) is derived from the height of the tidal prism, HT, 

and the tidal period, T, as 

ΩT = ρgHT
3
/ST,        (1) 
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where ρ is the density of water, g is gravitational acceleration and S is the nearshore 

slope. Fluvial energy (ΩF) is derived from channel discharge, Q, and slope, S, as 

 ΩF = ρgQS.         (2) 

Both of these equations have units of W/m and represent the power per unit length in the 

streamwise direction (complete derivation is in Baumgardner, 2015). In our experiments 

the energy of the tides in DB2-1601 is higher than that of the fluvial power produced by 

the distributary-channels, while the opposite is true for DB2-1701 (Table 3.1). 

Comparing these energies with the mean state change fraction per time of the channels 

( ), we see that, overall, the mobility of channels increases as relative tidal energy 

decreases (Fig. 3.4). 

 

Figure 3.4: Relative fluvial (ΩF) and tidal (ΩT) energy versus the mean state change fraction per 

time ( ), here used as a proxy for mobility. This study consists of DB2-1601 and DB2-1701, 

while information on the supplemental experiments can be found in Table A.1 within the GSA 

Data Repository
1
. The fluvial only range represents the span of motilities found for experiments 

that had no tidal influence. Overall, as fluvial energy grows over tidal energy there is an increase 

in channel mobility. 
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We propose that the decrease in distributary-channel mobility, especially in terms 

of avulsion frequency, is due to the ability of tides to remobilize sediment distributed by 

the fluvial system. Tidal channels are formed and grow due to progressive erosion at their 

head, which is known from the field to occur mainly during the ebb phase (D’Alpaos et 

al., 2005). When a delta experiences base-level rise, as is the case for all experiments 

presented here, tidal inlets are forced to widen and deepen to accommodate the larger 

tidal prism (D’Alpaos et al., 2009). These effects together can remove large amounts of 

sediment that would otherwise be available to aggrade the beds of the channels. Whether 

one views superevelation (Heller and Paola, 1996) or critical levee slope (Mackey and 

Bridge, 1995) as the driver of channel avulsion, both mechanisms require deposition, a 

process that is impeded in the tidal deltas of this study. In the field, abundant fine 

sediment can in some cases allow net onshore tidal transport of sediment in off-channel 

areas, as for example in the Ganges-Brahmaputra-Meghna Delta of Bangladesh (Wilson 

and Goodbred, 2015). In that case, the channel-stabilization mechanism we describe here 

could be counteracted by the onshore fine-sediment transport.  

 Morphodynamic backwater effects can also drive deltaic channel mobility 

(Edmonds et al., 2009; Hoyal and Sheets, 2009). Edmonds et al. (2009) suggest that 

development of river mouth bars plays an important role in backwater avulsions. As the 

mouth bar reaches a critical size, it triggers a wave of bed aggradation that moves 

upstream, promoting overbank flows and levee erosion, eventually triggering an avulsion. 

Again, this mechanism requires deposition, especially near the shoreline, where in our 

experiments the influence of tidal erosion is greatest. We suggest that tides also act to 
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reduce avulsions by effectively removing this mouth-bar sediment. Overall, the two 

mechanisms we identify are both linked to the net removal of bed-material sediment from 

the channel network by tidal action. 

 

1
GSA Data Repository items can be found in Appendix A. 
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4 

Conclusion 

 Within this thesis we have 1) used physical experiments to produce realistic tidal 

morphologies in a net depositional delta system, 2) developed methods for comparing 

shoreline position and transgression rates among datasets, as well as 3) established 

metrics to quantify net deposition on delta topsets, which together offer 4) a novel 

approach for tracking channel mobility in both fluvial- and tide-dominated environments, 

and finally with this approach 5) created synthetic stratigraphy from combined image and 

DEM data to link surface processes to the rock record. Combining these techniques and 

methods, our overall findings are that: 

 1. tide-influenced deltas show transgressive shorelines, regardless of tidal strength, 

under conditions in which fluvial deltas show shoreline stasis or regression; 

 2. the most dynamic fluvial-dominated delta system showed longitudinal profiles 

with up to two times the net deposition found in its tide-dominated and tide-

influenced counterparts, pointing to sediment removal by tides; 

 3. as tide-influenced delta systems become more dynamic (i.e., high sediment 

discharge and high RSL rise rates), they transition from predominantly upstream 

deposition and downstream erosion to up- and downstream deposition; 

 4. strong tidal forcing can immobilize distributary channels and lead to composite 
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delta morphologies as tidal and fluvial processes dominate different regions of 

the delta; 

 5. tides act to reduce channel mobility, and mobility reduction increases as relative 

tidal strength increases; 

 7. the reduced mobility of distributary channels is reflected in stratigraphy as 

increased clustering and amalgamation of channel bodies; 

 6. synthetic stratigraphy created using images with statistical input from sparse 

DEM data shows good agreement to synthetic stratigraphy created from DEM 

data alone. 

 These experiments show the profound effect that tides have on distributary delta 

systems. Not only are they dominant in shaping the plan form morphology we see, but 

their influence on sediment transport can be found far offshore while their nearshore 

stabilization of channels will surely leave a signature in the rock record. As our 

understanding of tidal systems continues to evolve, we must consider how we identify 

tide-influenced deltas in the field, as well as how we model their response to continued 

sea-level rise. 

A PATH FORWARD 

 After conducting numerous experiments with deltas affected by tidal forcing, it is 

clear that physical models are a viable tool for expanding our knowledge of depositional 

systems influenced by a range of allogenic forces. In fact, our original research goal was 

to include deltas affected by wave action as they represent a significant number of the 

world’s deltas. DB-2 can produce depositional systems with wave forcing as the basin is 
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equipped with a wave generator. Using the methods we developed for tracking shoreline 

position, net deposition, channel mobility, and synthetic stratigraphy generation, future 

experiments with waves would greatly compliment the research presented here. 

 These experiments were partially inspired by the Venice Lagoon, a system with no 

fluvial input but strong tidal forcing and a chain of barrier islands which limits the inlets 

to the lagoon. It may be possible to use both tides and waves in conjunction to recreate a 

similar system and again test its response to sea-level rise, as this is of serious concern to 

everyone living on tidal deltas. Venice and its lagoon, for example, represent a world 

treasure under threat from rising sea level in conjunction with waves and tides. If 

anything, the research presented here has only inspired more work with several avenues 

of study branching from this initial tidal investigation. 

 Lastly, we hope for continued work on synthetic stratigraphy generators, especially 

in regards to teasing channel depths out of image data. The methods shown here still rely 

on DEM data and statistical analysis; however, it may be possible to limit the amount of 

DEM data needed and place more emphasis on the images themselves. Future work 

should focus on using a combination of active channel color from images and the color at 

control points where the depth is known. Ultimately, the fertility of such a tool would be 

great as it would drastically reduce costs for several types of research related to fluvial 

systems. 

 Like the tidal systems of this study, the ebb and flow of research is never truly 

done. 
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A 

Appendix A: GSA Data Repository 

EXPERIMENTAL METHODS 

All experiments (Table A.1) were conducted at Saint Anthony Falls Laboratory in 

the Delta Basin-2 (DB-2) facility. This basin has the capability of producing deltaic 

deposits subjected to tidal forcing (Fig. A.1). The main basin is square, 5 m by 5 m, and 

has a depth of 0.5 m. The northwest corner of the basin is fed well-mixed sediment and 

water, which is precisely computer controlled, to create a semicircular delta lobe. The 

point source of sediment and water is located behind a rock wall which acts as a diffuser 

to help minimize local turbulence and scour. Base level is also computer controlled by 

utilizing a motorized weir which is in sync with an ocean elevation sensor that takes 

water depth measurements every 5 seconds. There is not a direct method of creating 

subsidence as the bottom of the basin is static, however raising base level can be thought 

of as either sea-level rise or comparatively as subsidence. 
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TABLE A.1 EXPERIMENT PARAMETERS AND ENERGIES 

Experiment Sea-level 

Rise 

(mm/hr) 

Water 

Discharge 

(m
3
/s) 

Sediment 

Discharge 

(m
3
/s) 

Tide  

Amplitude 

(mm) 

Tide  

Period 

(sec) 

Tidal 

Power 

(W/m)
* 

Fluvial 

Power 

(W/m)
* 

Total 

Aggradation 

(mm) 
DB2-1601 0.5 5.0e-5 5.0e-7 10.0 120 3.27e-2 9.81e-3 10.0 
DB2-1701 0.5 5.0e-5 5.0e-7   3.5 120 1.87e-3 7.36e-3 30.0 
DB2-1604 0.5 5.0e-5 5.0e-7 N/A

† N/A
† N/A

† 7.85e-3 10.0 
DB2-1607 1.0 1.0e-4 1.0e-6 10.0 120 3.85e-2 1.67e-2 28.0 
DB2-1608 1.0 1.0e-4 1.0e-6   3.5 120 2.34e-3 1.18e-2 29.0 
DB2-1605 1.0 1.0e-4 1.0e-6 N/A

† N/A
† N/A

† 1.37e-2 30.0 
DB2-1606 2.0 2.0e-4 2.0e-6 10.0 120 4.36e-2 2.94e-2 30.0 
DB2-1603 2.0 2.0e-4 2.0e-6   3.5 120 2.16e-3 2.55e-2 98.0 
DB2-1602 2.0 2.0e-4 2.0e-6 N/A

† N/A
† N/A

† 2.55e-2 100.0 
 Note: The bold experiments were the focus of the article while the supplemental experiments were used in 

Figure 3.4.
 

*
Calculated with the energy-based tidal power metrics and stress-based fluvial power metrics of Baumgardner 

(2015).
 

   †
N/A = not applicable; these experiments did not include tides. 

 

To create tides, water is transferred by two industrial pumps from the main basin 

to a connected auxiliary basin. This 2 m by 2 m basin has a similar depth of 0.5 m and 

stores the volume of water necessary to create a desired tidal range in the main basin. 

During the flood phase of the tidal cycle, water is pumped into the main basin by the 

flood pump. After the specified upper tidal limit is reached, the flood pump ceases 

allowing for a slack water condition on the delta. The ebb pump then brings the water 

level down to the lower tidal limit and again allows for a momentary slack water 

condition. The tidal amplitude, or half the tidal range, and the tidal period are both user 

defined in a computer control system. The tidal cycle for these experiments is perfectly 

sinusoidal and any deviations from the specified water elevation are identified by the 

difference in measured water depth and computer calculated water depth. Small changes 

in voltage to the pumps and elevation to the weir produce an error of less than 1 mm in 

water elevation. It is important to note that the current programing in DB-2 does not 

allow for mixed tidal ranges. In nature, several tide-influenced systems experience mixed 
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semidiurnal tide cycles, i.e. they have two high tides and two low tides of different 

magnitude. However, most of the world’s coastlines experience diurnal and semidiurnal 

tidal cycles (Hardisty, 2009), and are thus represented well by these experiments. 

 

Figure A.1: Schematic of Delta Basin-2 from Baumgardner (2015). The weir system works in 

conjunction with the ocean elevation sensor to maintain the desired ocean level. The tide pumps 

bring water in and out of the basin from an auxiliary basin to create the tides. The inlets of the 

pumps are behind a false wall in the main basin to minimize any currents created by the point 

sources (i.e., the flood and ebb pipes). 

 

IMAGE BASED CHANNEL DEPTH STATISTICS 

For purposes of statistically assigning channel depths to channels identified in 

images, we superimposed every DEM scan with the image corresponding to the nearest 

time step, allowing for depth measurements of active channels. For each of the three 

experiments, channel width (B) and depth (h) measurements are therefore derived from 
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wet/dry images and DEM data, respectively. Channels are then classified into different 

bins, according to their width (each bin size corresponds to 10 mm, and the analyses span 

the range 0<B<300 mm). Within every bin, we calculate the empirical distribution 

function of channel depth. This partition allows us to account for the nonlinearity in 

channel aspect ratio (β = B/h) that emerges from our analyses (see Fig. A.2). We then 

randomly select a channel depth (h0*) from the empirical distribution function associated 

with the local channel width (B0*), the latter being known from the wet/dry image.  

When a channel maintains its position over two consecutive time-steps, giving 

rise to a stacked-channel pattern, we assign the uppermost channel a depth value of h1*- 

selected from the probability distribution corresponding to the width B1* of the 

considered channel - whose experimental probability p(h1*) equals p(h0*), where p(h0*) 

is conditional to  B0* of the lower stacked channel. This is provided that two stacked 

channels are considered related to each other only if the relative variation of their width 

does not exceed 25% (|B0*/B1*|<0.25), this assumption is demonstrated to be applicable 

as the variations of depth (∆h*=h0*-h*) for stacked channels are negligible over the 

entire variability range of channel width (see Fig. A.3). 
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Figure A.2: Violin plot of channel depth (h) binned according to the corresponding channel 

width (B) for experiment DB2-1701. The mean (black lines) and the median (red lines) of the 

distributions are also shown. 

 

 

Figure A.3: Variation of depth for stacked channels (∆h*) is plotted against width of the 

lowermost stacked channel (B0*) for experiment DB2-1701. The dotted line represents the best 

linear fit for the observed data. 
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Figure A.4: Mean shoreline position thru time. The fluvial only experiment (DB2-1604) shows a 

static shoreline radius, while both 10 mm tides (DB2-1601) and 3.5 mm tides (DB2-1701) 

experiments show transgression. 

 

REFERENCES CITED 

Baumgardner, S.E., 2015, Quantifying Galloway: Fluvial, tidal and wave influence on 

experimental and field deltas [Ph.D. thesis]: University of Minnesota, 113 p. 

Hardisty, J., 2009, Modelling tidal stream power, in The Analysis of Tidal Stream Power, 

Wiley, West Sussex, p. 121–149. 

 


