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Abstract 

Conditions arise in many geoengineering applications where both tensile and 

compressive normal (effective) stresses act due to change in stress from excavation or 

pore pressure.  However, testing of rock at these stress states associated with low mean 

stress, say p < C0/3, is rare because of experimental difficulties, where p = (σxx + σyy + 

σzz)/3 and Co = uniaxial compressive strength.  

The objective of this research is to evaluate rock failure at low mean stress using dog-

bone specimens of (dry) Dunnville sandstone. Results from these special triaxial 

extension tests were used in conjunction with conventional triaxial extension and 

compression experiments with right-circular cylinders to evaluate four failure criteria: (1) 

Mohr-Coulomb (MC) with a tension cut-off, (2) Paul-Mohr-Coulomb (PMC) with a 

tension cut-off, (3) Hoek-Brown (HB), and (4) Fairhurst (Fh). 

Results for the Dunnville sandstone show that the three failure criteria that either include 

a tension cut-off (MC and PMC) or have a “natural” tension cut-off (Fh) best capture 

failure in the low mean stress regime, -T/3 < p < C0/3, where T = uniaxial tensile 

strength. Of the four criteria considered, Fh provided the best overall fit because it is 

nonlinear and contains a tension cut-off. Fracture surfaces of the dog-bone specimens 

were evaluated for failure mode based on surface roughness and it was found that there is 

a transition of decreasing roughness from tensile failure to hybrid (opening and sliding) 

failure to shear failure. 
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Chapter 1: Introduction 

1.1 Motivation 

Understanding material response to various stress states is of fundamental importance in 

a number of applications in geoengineering. For example, in the excavation problem of a 

tunnel or borehole, it is of interest to understand the response of rock, and in particular, to 

prevent or promote failure. Thus, a greater understanding of rock failure can lead to safer 

designs and improve constructability.  

Failure criteria have been widely studied for rock (Jaeger and Cook 1979). Most work 

has involved stress states from uniaxial compression to conventional triaxial 

compression. Even though data obtained for these studies are valuable, testing is needed 

to characterize failure in the “low” mean stress p regime, defined as 

3

0C
p   (1) 

where 
3

zzyyxx
p

 
  (2) 

and C0 = uniaxial compressive strength (UCS). Stress states at low mean stress can arise 

near a free surface of an excavation, where with at least one normal stress component is 

tensile due to a stress concentration. The phenomenon of core discing is an example 

where failure occurs at low mean stress (Corthésy and Leite 2008). Furthermore, it is well 

known that an increase of pore pressure in saturated rock can lead to tensile failure 

(Cornet and Fairhurst 1974). 

A criterion such as the popular Mohr-Coulomb is often used to determine the stress state 

at failure, as depicted in the principal stress plane σI-σIII with the compression positive 

sign convention (Figure 1). The failure surface has slope N and intercept C0 on the σI – 

axis; the intersection of the failure surface with the hydrostatic axis is denoted V0, the 

theoretical triaxial tensile strength. The uniaxial tensile strength T0 predicted from Mohr-
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Coulomb is not measured in experiments and a tension cut-off is often implemented, with 

very few data to support the approximation beyond the uniaxial stress state. The Mohr-

Coulomb failure envelope on a Mohr diagram is shown in Figure 2, where the parameters 

V0, T0, and T are indicated; the intercept on the shear stress axis is c and the slope is tan , 

where c (cohesion) and  (friction angle) are material parameters related to C0 and N. The 

circle with principal stresses σIII  = T  and σI = σI* forms the tensile cut-off part of the 

failure envelope. This thesis involves the development of experimental techniques to 

evaluate the appropriateness of the tension cut-off and to characterize failure at low mean 

stress states. 

 

 

Figure 1. Mohr-Coulomb failure surface with a tension cut-off in the major (σI) and 

minor (σIII) principal stress plane.  
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Figure 2. Mohr-Coulomb failure envelope with a tension cut-off (bold) and without a 

tension cut-off.  

 

1.2 Objective 

The main focus of this study is to experimentally investigate failure of rock when the 

minor principal stress is tensile and the intermediate and major principal stresses are 

compressive. These tests were conducted using a specific specimen designed in a dog-

bone shaped geometry. Various stress regimes were investigated, including low to 

negative mean stresses, and deformation measurements were recorded. The data in the 

low mean stress regime with the dog-bone specimen were complimented by results from 

uniaxial compression, uniaxial tension, conventional triaxial compression, and 

conventional triaxial extension testing with right circular cylinders. Analysis and 

comparison of these data with different linear and nonlinear failure criteria were 
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performed. The failure mode of tensile, hybrid, or shear failure and orientation of the 

failure plane were also analyzed.  

1.3 Scope and Organization 

This thesis provides experimental data in the low mean stress regime and analyzes how 

well failure criteria predict the stress state at failure.  The thesis is organized into five 

chapters. Chapter 2 gives a review of stress invariants, background of selected failure 

criteria, and previous work performed in extension testing in the low mean stress regime.  

Chapter 3 describes the rock and experimental techniques used in the testing.  Chapter 4 

analyzes results from extension testing of dog-bone specimens in conjunction with 

conventional triaxial and uniaxial data.  The results are discussed in the context of four 

failure criteria and observed fracture surfaces.  Chapter 5 gives conclusions on the subject 

matter. Deformation data and other relevant tables and figures are in the Appendices.  
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Chapter 2: Background 

2.1 Stress Invariants 

Using a Cartesian coordinate system, the Cauchy stress tensor σij gives the state of stress 

(Figure 3) in terms of normal stresses ( i = j ) and shear stresses ( i ≠ j ) acting on an 

element assuming the sign convention of compression positive:  



















zzyzzx

yzyyyx

xzxyxx

ij







  (3) 

 

Figure 3. Stress element in Cartesian coordinate system.  

 

For any given state of stress, a coordinate system exists such that no shear stresses act on 

three perpendicular faces of the element. The three orthogonal axes of this coordinate 

system (xI, xII, xIII) are the principal axes, and the three corresponding normal stresses are 

stress invariants called the major σI, intermediate σII, and minor σIII principal stresses (σI ≥ 

σII ≥ σIII). 
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

















III

II

I

p









00

00

00

 (4) 

 

Note that σ1, σ2, σ3 can also represent the principal stresses with no regard to order and six 

permutations: 

321       (5a) 

231    (5b) 

312    (5c) 

132    (5d) 

213    (5e) 

123    (5f) 

This coordinate system is useful when constructing a failure surface, e.g. Mohr-Coulomb, 

where a six-sided pyramid appears, as shown in Figure 4. The plane normal to the 

hydrostatic axis is called the -plane, with coordinate axes σ1, σ2, σ3.  
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Figure 4. Six-sided pyramidal failure surface in principal stress space σ1, σ2, σ3 with no 

regard to order (Meyer and Labuz 2013). 

 

Because failure of a material such as rock is often associated with shear stress, it is 

appropriate to separate the stress tensor into two parts: mean stress (hydrostatic pressure) 

and deviatoric stress sij. As defined in Equation 2, mean stress p, where 































3
00

0
3

0

00
3

3

321

321

321







 kkp  (6) 

is related to volume change of the material and for the rock and stress states considered, 

does not involve failure. Deviatoric stress sij, where 
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





























3

2
00

0
3

2
0

00
3

2

321

321

321







 ijijij ps  (7) 

is related to shape change and is typically associated with failure. The shear stress 

parameter q = deviator stress is introduced:  

      2

13

2

32

2

21
2

1

2

3
  jiij ssq  (8) 

For axisymmetric conditions of conventional triaxial testing, it is convenient to express 

the stress state in terms of axial stress a and radial stress r, which is sometimes referred 

to as confining pressure. For loading of a right, circular cylinder (Figure 5), the principal 

stresses are  

1 a  (9) 

32  r  (10) 
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Figure 5. Axisymmetric stress state in conventional triaxial testing. 

 

For the case of axisymmetric loading, q reduces to  

    22

2

1
arraq    (11) 

and  

raq    (12) 

By convention, q > 0 is associated with compression and q < 0 is extension. The mean 

stress is  

3

2 rap
 

  (13) 
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2.2 Failure Criteria 

Failure of rock and other geomaterials has been a topic of concern dating back to the 

classic experiments of Von Karman (1911). Over the years, numerous studies have been 

conducted to describe failure under various stress states and statistical analyses and fitting 

methods have been applied (Murrell 1965; Carter et al. 1991; Pincus 2000; Pariseau 

2007).   

The simplest failure criterion for geomaterials was proposed by Coulomb (1776) in an 

effort to analyze retaining walls. Failure occurs when the shear stress  on a plane is 

equal to the sum of a pressure-dependent component produced by the normal stress  on 

the plane multiplied by a material constant (tan ) and a cohesive component (c) that is 

another material constant: 

 tan c  (14) 

where c = cohesion and   = angle of internal friction. Coulomb’s criterion takes on a 

linear form on a Mohr diagram.  

Mohr (1900) defined a failure criterion that is characterized by a group of Mohr circles 

described by principal stresses. The family of Mohr circles forms an envelope, where the 

normal and shear stresses at failure are found by the tangency of the envelope to the 

Mohr circles (Figure 6).  Mohr’s criterion can be linear or nonlinear. 
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Figure 6. Family of Mohr circles with corresponding failure envelope. 

 

Mohr-Coulomb 

A combination of Mohr’s and Coulomb’s theories (Nadai 1950) has been widely used. 

The Mohr-Coulomb failure criterion (MC) is a linear failure envelope that is a best fitted 

line such that the failure envelope is tangent to the Mohr circles. The failure criterion can 

be written in terms of the major and minor principal stresses, a parameter N, and the 

uniaxial compressive strength C0:  

0CN IIII    (15) 





sin1

sin1




N  (16) 

Note that there is no dependence of the intermediate principal stress. The Mohr-Coulomb 

criterion is popular, as the friction angle and uniaxial compressive strength can be 

determined with a few lab tests. Mohr-Coulomb has been shown to be a reasonable 

approximation for a limited range of confining stresses, as typical failure envelopes 

become nonlinear with increasing confining stress (Tarokh et al. 2016). 
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Another drawback of Mohr-Coulomb is the overestimation of the uniaxial tensile 

strength, often times by greater than an order of magnitude. Paul (1960) suggested 

including a tension cut-off to improve the accuracy of the prediction, as shown in Figure 

1 and described by 

0CN IIII    for 
*

II    (17) 

TIII  for 
*

II    (18) 

where NTCI  0

*  (19) 

It is also convenient to express a failure criterion in terms of mean stress p, deviator stress 

q, and Lode angle  (Figure 7). Using an approach from Nayak and Zienkiewicz (1972), 

the principal stresses can be written in terms of p, q, and θ: 

 cos
3

2
1 qp   (20) 









 




6
sin

3

2
2 qp  (21) 









 




6
sin

3

2
3 qp  (22) 

where the Lode angle θ is related to the stress path. For conventional triaxial compression 

θ = 0o, and for extension, θ = 60o.  Mohr-Coulomb can be expressed in the p-q plane 

with a tension cut-off for the case of conventional triaxial compression θ = 0o:  

0
3

1

3

2
CqpNqp 








  (23) 

  
2

13 0






N

NpC
q  for 

*pp   (24) 

  00 1 CNTq   for 
*

0 ppV   (25) 

The case of conventional triaxial extension θ = 60o.  
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  
12

13 0






N

NpC
q  (26) 

Recall that V0 represents the vertex that is associated with uniform triaxial tension. Using 

a tension cut-off provides an accurate representation of the tensile strength, but it is 

unclear how well it “works” in the low mean stress regime. Of course, the tension cut-off 

makes a third parameter needed to describe the failure surface, or an assumption needs to 

be made on the ratio between uniaxial compressive to uniaxial tensile strengths n: 

T

C
n 0  (27) 

 

 

Figure 7. Representation of -plane and transformation from principal stresses to p-q-. 
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Paul-Mohr-Coulomb 

Meyer and Labuz (2013), based on the work of Paul (1968), proposed a variation of the 

classical Mohr-Coulomb criterion that accounts for the intermediate principal stress, so-

called Paul-Mohr-Coulomb (PMC). It requires three parameters: friction angle in 

compression φc, friction angle in extension φe, and the uniform triaxial tensile strength V0: 

    11
000

 e
III

ec
II

c
I N

V
NN

V
N

V


 (28) 

c

c

cN




sin2

sin1
  (29) 

e

e

eN




sin2

sin1
  (30) 

PMC can be represented in the p-q plane by  











 1

00 V

p
bbp

V

b
q 

  (31) 

where b is the intercept with the q-axis of a particular (θ = constant) multi-axial failure 

surface and be ≤ bθ ≤ bc. For the case of compression bθ = bc and for extension bθ = be. 

Similar to Mohr Coulomb, Paul-Mohr-Coulomb overestimates the uniaxial tensile 

strength. It is suggested to incorporate a tension cut-off also with PMC by either knowing 

the uniaxial tensile strength or again assuming a value of the ratio n. From Figure 8, it 

should be noted that the tension cut-off for the compression surface predicts failure under 

biaxial tension, where σI = 0, σII = σIII = T. 
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Figure 8. Paul-Mohr-Coulomb failure envelopes in compression (blue) and extension 

(red) with a tension cut-off (bold) and without a tension cut-off (dashed). 

 

 

 

Hoek-Brown 

Since many researchers have discovered that the failure envelope for most rock is 

nonlinear over a larger range of mean stresses, Hoek and Brown (1980) proposed a 

criterion in terms of principal stresses that takes the form of a square-root function: 

1
0

0 
C

mC III
bIIII


  (32) 

Hoek and Brown developed the criterion with a fitting parameter mb and the uniaxial 

compressive strength C0. The HB criterion has been widely adopted by the rock 

mechanics community and many parameter generalizations and adaptations have been 
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proposed (Hoek et al. 2002) for rock masses (Hoek and Brown 1988) or for relating the 

criterion’s parameters to typical Mohr-Coulomb parameters (Hoek 1990; Hoek 1994). 

Hoek-Brown can also be expressed in the p-q plane by the transformation equations (20-

22): 

13

1

3

1

3

2

0

0 




C

qp

mCqpqp b
 (33) 

and simplifying we get 






  bbb mCpmCmCCq 00

2

00 3636
6

1
 (341) 

Hoek-Brown typically performs better than Mohr-Coulomb over a wide range of 

confining stresses. However, some have noted that a tension cut-off is still needed for HB 

(Hoek and Martin 2014). Although others have expressed a generalized Hoek-Brown in a 

Mohr diagram (Hoek 1983), an unappealing feature is that the criterion is discontinuous 

in the Mohr plane in the transition from positive to negative shear stress (Pariseau 2007), 

whereas the Fairhurst (1964) failure criterion is continuous (Figure 9). 
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Figure 9. Comparison of Hoek Brown and Fairhurst criteria near the Mohr circle of 

uniaxial tension. 

 

Fairhurst 

Fairhurst (1964) developed a failure criterion in his effort to better understand failure in 

tensile testing for rock. The Griffith fracture criterion can be represented as a parabola in 

a Mohr diagram:  

)(42   TT  (35) 

Griffith’s theory is based on the predicted ratio of n=8, which is typically not observed 

for rock. Fairhurst decided to generalize the criterion for an arbitrary ratio n. The 

parameters for the criterion are the uniaxial tensile (T) and compressive (C0) strengths or 

it can also be expressed in terms of their ratio (n):  
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     TTm
22 1  (36) 

1 nm  (37) 

When the transformation is performed to principal stress plane, the failure criterion has a 

natural tension cut-off (Figure 10):  

TIII   for )2(  mmTI  (38) 
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(40) 

The criterion is not commonly used in practice, but others who have analyzed low mean 

stress failure data have suggested a parabolic failure criterion, and Hoek and Martin 

(2014) have also mentioned the use of the Fairhurst criterion. 

 

Figure 10. (a) Fairhurst parabola in the Mohr plane and (b) principal stress plane.  

 



19 

 

2.3 Failure at Low Mean Stress 

Brace (1964) was one of the earliest researchers to gather significant failure data at low 

mean stresses by performing triaxial extension tests using dog-bone specimens of Blair 

and Webatuck dolomites, Chershire quartzite, Westerly granite, and Frederick diabase. 

All the rocks tested have uniaxial compressive strengths that range from 230 MPa to over 

500 MPa, very strong rock.  

Motivated by the work of Voigt (1899) and Bridgman (1937), Brace used dog-bone 

shaped specimens to perform triaxial testing at low mean stresses. The confining pressure 

and geometry of the specimen, specifically the change in cross-sectional area, generates a 

force in the axial direction and can produce a net tensile force (Figure 11). However, 

difficulty was had in sealing (jacketing) the specimens, as Brace used various metal 

jackets. Results from the study included monotonically increasing fracture inclination 

from normal to the axial stress (θ = 0 for tension failure) to θ = 45 + φ/2 for shear 

failure. He also observed a steeper slope of the failure surface at low mean stress than 

higher mean stress.  

 

Figure 11. Effect of differential area on axial stress for a dog-bone geometry specimen. 
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Ramsey and Chester (2004) used a similar idea to Brace of a dog-bone geometry to 

produce failure at low mean stresses for Carrara marble. A large radius was used to create 

the area difference in the throat region of the specimens but this resulted in a continuous 

variation of the cross-sectional area. Jacketing was accomplished by using clay to fill the 

empty space of the dog-bone specimen to create a pseudo right cylindrical specimen.  

Results were focused on the transition of fracture surfaces from tensile opening to hybrid 

(opening and sliding) to shear sliding. Failure data under very low mean stresses showed 

that the minor principal stress was near the uniaxial tensile strength.  

Others have performed similar testing (Schock and Louis 1982) or some variation like 

tension testing under confining pressure (You 2010) or confined Brazilian testing (Jaeger 

and Hoskins 1966). A Griffith type criterion (Griffith, 1924) for tensile failure reasonably 

agreed with the experiments (Brace, 1964; Jaeger and Hoskins 1966; Schock and Louis 

1982; Ramsey and Chester 2004). Traditional failure criteria were not evaluated in the 

low mean stress regime.  
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Chapter 3: Experimental Techniques 

3.1 Rock Properties 

Dunnville sandstone from central Wisconsin was selected for experimental investigation. 

It is composed of roughly 95 percent quartz grains and little cementitious materials 

making it a quartz arenite. The rock is light brown to tan in color and the bedding is 

observable. Measurements of porosity, density, P-wave velocity, and S-wave velocity on 

the tested blocks yielded results of 30%, 1.800±0.011 g/cm3, 1971±65 m/s, and 1056±30 

m/s respectively (averages and standard deviations). P-wave and S-wave velocity 

measurements were taken normal to bedding (1930±21 m/s, 1045±28 m/s) and in two 

orthogonal directions parallel to bedding (2012±63 m/s, 1075±16 m/s), and the results 

showed little variation. For this reason, the tested rock is assumed to be isotropic and 

homogeneous.   

 

Figure 12. Photo of Dunnville sandstone. 
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A diamond tipped core barrel and saw blade, along with a tungsten carbide surface 

grinder, were used to fabricate right cylindrical specimens. Length to diameter ratios 

ranged from 1.9 – 2.7, depending on the type of test being performed. 

3.2 Uniaxial Compression and Tension 

Uniaxial compression and tension tests were conducted to determine elastic and strength 

parameters. Two right cylindrical specimens were loaded under uniaxial compression and 

brought to failure while also measuring axial and radial strain by extensometers. These 

tests provided values of uniaxial compressive strength Co, Young’s modulus E, and 

Poisson’s ratio  (Figure 13).  Other specimens that were instrumented with strain gages 

were also used to evaluate Young’s modulus and Poisson’s ratio, but were not brought to 

failure. Results are presented in Table 1. 

An estimate of uniaxial tensile strength was gathered via Brazilian tests on 50 mm 

diameter disks that were roughly 25 mm in thickness. Brazilian tests typically give over 

estimates of tensile strengths (Goodman 1989), so direct tensile tests were performed on 

thin (6 mm thick) coupon samples similar to those used for tensile testing of metals. 

Friction grips were used to grab the wider head area of the specimen and failure 

developed in the thinner throat region. A clip gage was attached to the throat region to 

measure axial strain in tension (Figure 14). 

Table 1. Measured strength and elastic parameters in compression and tension. 

Loading 

Uniaxial 

Strength 

[MPa] 

ν [-] E [GPa] K [GPa] 

Compression 29.3±0.6 0.31±0.02 8.2±0.2 8.9±0.3 

Loading 

Uniaxial 

Strength 

[MPa] 

Brazilian 

[MPa] 
E [GPa]  

Tension 1.0±0.1 2.0±0.1 2.3±0.5  
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(a) 

 

(b) 

 
Figure 13. Uniaxial compression of Dunnville sandstone. (a) Axial stress-axial strain 

response. (b) Radial strain-axial strain  response. 
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Figure 14.  (a) Experimental setup for direct tension testing and (b) coupon specimen. 

 

3.3 Conventional Triaxial Compression and Extension 

Conventional triaxial tests were performed to determine the shear strength of Dunnville 

sandstone. Two different stress paths of triaxial compression (q > 0) and triaxial 

extension (q < 0) were used.  

Conventional triaxial compression tests are performed in a pressure vessel with confining 

fluid pressure pc used to apply the radial stress σr, and an axial (deviatoric) force FD, is 

applied with an actuator.  

r
D

a
A

F
   (21) 

A Hoek-Franklin cell is convenient for extension testing because the axial stress and 

radial stress are applied independently. The Hoek-Franklin cell uses a specially designed 

rubber membrane to isolate the specimen from the confining fluid and seal the pressure 



25 

 

vessel. Since the confining fluid is isolated from the specimen and loading platens, it does 

not act in the axial direction; this allows for extension tests to be performed easily with 

the cell. The axial stress is 

A

F
a   (42) 

Stearic acid was used to reduce friction between the specimen and loading platens (Labuz 

and Bridell 1993). The specimen diameter was nominally 30 mm and the length ranged 

from 65 – 83 mm. Compression tests were performed by triaxial compression loading.  A 

hydrostatic stress state was developed by applying equal axial and radial stresses, then 

axial stress was increased by a specific axial displacement rate until failure, identified by 

a maximum deviator stress. Figure 15 shows triaxial compression specimens failed at 

various confining pressures using the Hoek-Franklin cell. Extension tests were performed 

by triaxial extension unloading. A hydrostatic stress state was developed and then axial 

stress was decreased by a specified axial displacement rate until failure, identified by a 

minimum deviator stress (Figure 16). 

 

Figure 15. Shear failure of triaxial compression specimens at radial stresses of 2.5 (left), 

5, 10, 20 and 30 (right) MPa. 
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Figure 16. Stress path for triaxial compression loading and triaxial extension unloading. 

 

3.4 Dog-bone Triaxial Extension  

The axisymmetric dog-bone specimen was chosen as the geometry to generate tensile 

stress over a portion of the rock, similar to Brace (1964). By this design, the major 

principal stress was applied radially while the minor principal stress was developed in the 

axial direction. This results in a triaxial extension test. 
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Figure 17. Dog-bone specimen. 

 

The axial stress of a dog-bone specimen can be expressed as a sum of two forces over the 

cross-sectional area of the throat, Ai: 

i

a
A

FF 21   (43) 

where F1 is the mechanical force applied by the actuator and F2 is the force generated by 

the confining pressure acting over the differential area of the dog-bone specimen. This 

force acts in tension over the throat cross-sectional area: 

)(2 ior AAF    (44) 
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Equation (43) can then be expressed as 

i

ior
a

A

AAF )(1 



  (45) 

The mechanical force F1 needed to achieve a hydrostatic stress state in the throat region 

of the dog-bone specimen can be solved for a known geometry by setting the axial and 

radial stresses equal: 

i

ior
ra

A

AAF )(1 



  (46) 

irior AAAF   )(1  (47) 

or AF 1  (48) 

To achieve an extensional stress state, the axial stress must be less than the radial stress, 

which can be written in terms of the applied mechanical force F1: 

or AF 1  (49) 

The mechanical force needed to have an axial stress less than or equal to zero can be 

determined by setting Equation 43 equal to zero: 

i

ior

A

AAF )(
0 1 



 (50) 

)(1 ior AAF   (51) 

 

3.5 Dog-bone Geometry 

Rock samples were first cored using a traditional diamond-tipped core barrel to produce 

right circular cylinders. A computer numerically controlled (CNC) lathe was used to 

precisely machine the specified dog-bone specimen with dimensions shown in Figure 18.  
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Figure 18. Dog-bone specimen dimensions. Subscript “i” denotes throat region, subscript 

“o” denotes head region. Dimensions in mm. 

 

The specific dog-bone design was selected with two primary factors in mind. The first 

was the desire for a uniform state of stress in the throat of the specimen. The throat is a 

2:1 length to diameter ratio, similar to a typical cylindrical specimen. The issue of a stress 

concentrator arises due to the radius to create the dog-bone shape. This impacts the stress 

near the boundary of the throat region, but if the length is large enough, there will be a 

region of uniform stress in the throat. Indeed, results from an elastic stress analysis show 

this to be the case (Figure 19a), and the state of stress is more or less the same through 

50% of the throat length (Li). 

The stress analysis in Figure 19a also illustrates that the region of highest stress is located 

near the radius (r = 12.7 mm), in the transition between the throat and the head. The 
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stress concentration factor (SCF) is 1.1, which was judged to be adequate in allowing 

failure to develop in the uniform stress region. Other researchers have used a specimen of 

large radius (r = 91 mm), shown in Figure 19b, which features a continuous variation in 

cross-sectional area. This specimen design reduces the SCF but a region of uniform stress 

does not exist along the axis (Figure 19b). For tensile failure, where the fracture plane 

develops normal to the minor principal stress, the change in stress state along the axial 

direction is not an issue. For hybrid failure, where the fracture plane is oblique to the 

minor principal stress, the state of stress varies considerably. 

Figure 20 shows the axial stress at two sections, one at mid-length (Li/2) and one at 20% 

of Li/2, for the two different geometries. Obviously, because of the varying cross-

sectional area, the axial stress varies along the throat of the specimen. For the design used 

in this study, where the cross-section is constant over the length Li, the stress distribution 

does not vary due to location of the profile and the deviation in axial stress along the 

throat length is less than one percent. 
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(a) 

 

(b) 

 

Figure 19. Elastic stress analysis in axial direction using FLAC for dog-bone specimen 

geometry with (a) uniform throat region and (b) without uniform throat region. 
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(a) 

 

(b) 

 

Figure 20. (a) Profiles of axial stress distribution across radius of uniform and non-

uniform dog-bone specimens. (b) Locations of profiles (bold, dashed) for both dog-bone 

specimens. 
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The second factor for the specific dimensions was the minimum mean stress. One 

objective was to perform a test where the specimen was under zero or negative mean 

stress at failure. A state of stress where mean stress is zero is the special case of pure 

shear. 

rap  20   (52) 

The axial stress can be rewritten in the form  

r

i

ior

i A

AA

A

F



2

)(



  (53) 

The force can be set to zero, which eliminates the compressive force component of 

Equation 43: 

)2( 



i

io

r

i A

AA

A

F
  (54) 

)3( ior AAF   (55) 

io AAF 30   (56) 

3
i

o

D

D
 (57) 

Equation 57 shows that zero/negative mean stress is not a function of the radial stress but 

instead only of the ratio of outer to inner diameters of the specimen. The diameter ratio 

for the specimens tested was two, meaning that a test of negative mean stress is possible. 

The theoretical lowest mean stress that can be achieved is one associated with the 

uniaxial tensile strength: 

3

T
p


  (58) 
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3.6 Experimental Setup 

Dog-bone triaxial extension tests were performed using the MTS 815 Rock Mechanics 

Test System load frame with the MTS 286 pressure confining unit. In order to perform a 

triaxial extension test where the axial stress is less than the radial stress, the specimen 

needs to be isolated in the axial direction such that no confining pressure acts on the 

plane normal to the axis of the specimen. Stainless steel platens shown in Figure 21 were 

specifically designed for triaxial extension testing with the MTS load frame. The platens 

have grooves on the flange for O-rings and six bolt holes evenly positioned around the 

platen. Sealing, which means isolating the confining fluid to act only in the radial 

direction, is ensured by the O-rings at the platen-load cell and platen-actuator interfaces.  

 

Figure 21. Stainless steel extension platens. 

 

Typical triaxial tests use some form of pre-molded rubber membrane to seal the specimen 

from the confining fluid, but with the area change of a dog-bone specimen this is not 

easily accomplished. Instead, a thin layer of polyurethane was applied to the entire 

specimen and over the specimen-platen interfaces. The thin layer of polyurethane fully 

transfers the fluid pressure to the specimen and provides excellent sealing (Figure 22).  
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Figure 22. Polyurethane coated specimen with extension platens. 

 

The load frame is equipped with an internal pressure equilibrated load cell that reads only 

deviator force and not the force that is applied from confining pressure. The load cell 

gives output in tension for the specimen to be in an extension stress state (σr > σa). When 

the internal load cell reads tension, it is not because the load cell is being pulled, but 

rather it is extending due to the force from the confining fluid being greater than the axial 

force from the specimen on the load cell. The deviator force that is read by the load cell is 

the sum of both force components in the axial direction of the dog-bone specimen plus a 

force taken by the polyurethane coating: 
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Figure 23. Dog-bone triaxial extension experimental schematic. (1) dog-bone specimen, 

(2) polyurethane coating, (3) stainless steel extension platens, (4) pressure equilibrated 

load cell, (5) loading rod, (6) actuator, (7) O-rings, (8) confining fluid, (9) pressure 

vessel. 

 

polyD FFFF  21  (59) 

A pressure dependent force correction was applied to account for the thickness of the 

polyurethane coating tpoly on the specimen since the polyurethane does carry load:  
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])2[(
4

22

ipolyirpoly DtDF  


 (60) 

The force taken by the polyurethane coating is added to the deviatoric force output: 

r

i

polyD

a
A

FF
 


  (61) 

Extension unloading was the stress path taken for all dog-bone tests, where the specimen 

is hydrostatically loaded to the desired radial stress, then the axial stress is unloaded to 

failure. The unloading was performed by displacement control at a rate of 0.5 micron per 

second. Axial strain was measured by resistive strain gages in the throat region at three 

locations separated by 120o. A thin layer of epoxy adhesive was applied to the surface of 

the specimen prior to strain gage application. The polyurethane coating covers the strain 

gages and lead wires (Figure 24). 

 

Figure 24. Axial resistive strain gages on dog-bone specimen. 
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Chapter 4: Results and Discussion 

4.1 Measurements of Elastic Parameters 

The bulk modulus of Dunnville sandstone was measured on dog-bone specimens during 

the hydrostatic loading phase of the triaxial extension unloading stress path. The axial 

portion of mean stress was applied mechanically unlike the hydrostatic compression tests 

on right cylindrical specimens where both axial and radial stress was applied with 

confining fluid. Axial strain was reported using the average of three axial strain gages 

and radial strain was reported from a single gage. 

Figure 25. Measured bulk modulus during the hydrostatic loading of a dog-bone 

extension test. 
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Bulk modulus was measured on three dog-bone specimens and yielded values of 9.9, 8.6, 

9.1 GPa (Figure 25). These values match well with the results from right cylindrical 

specimens reported in Table 1. This result also gives confidence in the axial stress 

correction from Equation 61.  

Deformation was measured during the deviatoric (unloading) phase of the dog-bone 

triaxial extension stress path. Figure 26 shows an axial stress – axial strain curve from a 

hydrostatic state of stress (p = 20 MPa) to a post-failure stress state. The specimen 

behaved elastically from σa = 20 – 12 MPa. Yield occurred at σa < 12 MPa.  

Figure 27a shows the Young’s modulus in extension under a constant radial stress of 20 

MPa. Young’s modulus was measured on dog-bone specimens at various radial stresses 

and compared to values measured under triaxial compression in Figure 27b, where the 

two smallest values of mean stress correspond to Young’s modulus under uniaxial 

compression and tension. The axial stress component of the mean stress reported is the 

average stress from the linear portion of the load/unload curve.  

Figure 27b shows that both in extension and compression Young’s modulus plateaus 

once the mean stress is large enough. The variation in E near constant value is due to 

microcracks closing under pressure, where under low mean stress pre-existing cracks are 

not closed and therefore the rock is not as stiff.  
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(a) 

 

(b) 

 

Figure 26. Axial stress – axial strain curves for a dog-bone specimen, DB4, under 20 

MPa confining pressure. (a) Complete stress-strain behavior. (b) Response at failure. 
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(a) 

 

(b) 

 

Figure 27. (a) Average axial stress – axial strain response for a dog-bone specimen under 

20 MPa confining pressure. (b) Comparison of Young’s Modulus versus mean stress in 

extension and compression. 
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4.2 Failure Criteria Fitting 

Eleven dog-bone specimens were tested under the triaxial extension unloading stress path 

with nine of the specimens having one principal stress in tension and seven in the low 

mean stress regime (Table 2). Figures 28 and 29 show the dog-bone triaxial extension 

data in comparison with nine conventional triaxial compression and four conventional 

triaxial extension tests. 

Table 2. Failure stresses of eleven dog-bone triaxial extension specimens 

Specimen σa  [MPa] σr  [MPa] p  [MPa] q  [MPa] 

DB 9 -1.40 0.5 -0.13 -1.90 

DB 12 -1.50 0.75 0.00 -2.25 

DB 5 -1.79 1.0 0.07 -2.79 

DB 8 -1.66 5.0 2.78 -6.66 

DB 2 -1.11 10.0 6.30 -11.11 

DB 7 -1.38 15.0 9.54 -16.38 

DB 3 -1.02 15.0 9.66 -16.02 

DB 4 -1.01 20.0 13.00 -21.01 

DB 6 -0.26 25.0 16.58 -25.26 

DB 17 1.11 30.0 20.37 -28.89 

DB 14 9.69 60.0 43.23 -50.31 

 

It can be seen in Figure 28b that the uniaxial tensile strength is smaller in magnitude than 

some of the minor principal stresses of the dog-bone extension tests. This can be 

attributed to variation in the rock, as well as the difference in testing procedure and 

apparatus between the two different types of tests. Also, it is difficult to eliminate 

bending in uniaxial tension.  
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(a) 

 

(b) 

 

Figure 28. (a) Experimental failure data in σI-σIII plane. (b) Close-up of low mean stress 

region. 
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 (a) 

 

(b) 

 

Figure 29. Experimental failure data in (a) σa-σr plane, (b) p-q plane. 
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The four different failure criteria were fitted using appropriate methods for each criterion: 

linear least squares (MC), plane fitting (PMC), non-linear least squares (HB and Fh). For 

Mohr-Coulomb and Paul-Mohr-Coulomb, the measured direct tensile strength was used 

as a third and fourth parameter respectively instead of assuming a uniaxial strength ratio 

n. The Fairhurst tensile strength was determined as one of the fitted parameters for the 

criterion. The fitted values are listed in Table 3. 

Table 3. Fitted parameters for Mohr-Coulomb, Paul-Mohr-Coulomb, Hoek-Brown, and 

Fairhurst failure criteria. 

Failure Criteria Parameter 1 Parameter 2 Parameter 3 Parameter 4 

Mohr-Coulomb C0 = 32.9 MPa  = 22.4 o T = 1.0 MPa N/A 

Paul-Mohr-Coulomb V0 = 23.6 MPa c = 23.4 o e = 24.0 o T = 1.0 MPa 

Hoek-Brown C0 = 29.3 MPa mb = 5.9 N/A N/A 

Fairhurst C0 = 32.9 MPa T0 = 1.5 MPa N/A N/A 

 

The four different criteria fits are shown in Figures 31-34 in the σa-σr plane. It can be 

seen that both linear failure criteria struggle to capture the failure envelope over the range 

of radial stresses that were used in this study. The linear criteria are conservative at small 

radial stresses and then become incautious at larger confining stresses. The nonlinear 

criteria also appear to have this trait, but not to the degree of the linear criteria.  
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Figure 30. Normalized orthogonal error determination.  

 

It is also evident that the three criteria that use the tension cut-off more accurately capture 

the low mean stress regime compared with the Hoek-Brown criterion. Table 4 provides a 

breakdown of the error in different (preassigned) stress regimes. The orthogonal distance 

from the prediction to the data point, the error, was normalized by the distance from the 

origin to the point on the failure surface that corresponds to the data (Figure 30). The 

linear failure criteria have higher error in the high mean stress (p ≥ C0) regime, but the 

error is small at low mean stress (p < C0/3) because of the tension cut-off. Hoek-Brown 

does a better job predicting failure at high mean stress than low mean stress. The 

Fairhurst criterion shows the smallest error. This is because the tension cut-off has shown 

to work best for low mean stress and a nonlinear criterion is best in the high mean stress 

regime.  
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Table 4. Normalized orthogonal error per data point for the four different failure criteria 

under different stress regimes: low mean stress p < C0/3, high mean stress p ≥ C0/3, 

tensile-compressive σa < 0 ≤ σr, compressive-compressive 0 < σa , 0 ≤ σr.  

Failure Criteria 
Low mean 

stress [MPa] 

High mean 

stress [MPa] 

σa < 0 ≤ σr 

[MPa] 

0 < σa , 0 ≤ σr 

[MPa] 

Total 

[MPa] 

Mohr-Coulomb 0.07 0.08 0.06 0.09 0.08 

Paul-Mohr-Coulomb 0.06 0.04 0.05 0.04 0.05 

Hoek-Brown 0.46 0.03 0.37 0.03 0.17 

Fairhurst 0.01 0.02 0.02 0.02 0.02 

 

 

 

 
Figure 31. Fitted Mohr-Coulomb failure criterion in σa-σr plane.  
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Figure 32. Fitted Paul-Mohr-Coulomb failure criterion in σa-σr plane. 

 

 
Figure 33. Fitted Hoek-Brown failure criterion in σa-σr plane. 
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Figure 34. Fitted Fairhurst failure criterion in σa-σr plane. 

 

 
Figure 35. Fitted Mohr-Coulomb failure criterion in p-q plane. 
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Figure 36. Fitted Paul-Mohr-Coulomb failure criterion in p-q plane. 

 

 
Figure 37. Fitted Hoek-Brown failure criterion in p-q plane. 
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Figure 38. Fitted Fairhurst failure criterion in p-q plane. 

 

 

4.3 Fracture Properties 

Three dog-bone specimens were tested at high mean stress with all three principal 

stresses compressive in order to ensure that shear fracture developed in extension. All 

three of these dog-bone tests, the three largest mean stresses in Figure 39a, exhibited 

shear fracture, and as others (Ramsey and Chester, 2004) have shown, the fracture angle 

in extension increases with mean stress. The fracture angle is measured between the 

normal to the fracture surface and the minimum principal stress direction (Fig. 39b). In 

the low mean stress regime, there appears to be little to no correlation between fracture 

angle and mean stress, because all of the low mean stress specimens have angles varying 

between 2o and 10o.  
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(a) 

 

(b) 

 

Figure 39. (a) Fracture angle versus mean stress on dog-bone specimens. Error bars are 

one standard deviation. (b) Fracture angle orientation. 
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Since the orientation of the low mean stress fractures had little correlation, the individual 

fracture surfaces were analyzed for surface roughness to gain insight on the failure mode. 

Figure 40 shows six dog-bone fracture surfaces with increasing mean stress. The two 

specimens failed under high mean stress show crushed grains, suggesting a shear fracture 

formed. The two specimens failed under low mean stress show little to no signs of sliding 

as the fracture surfaces appear to be clean; this would suggest tensile (opening mode) 

failure.  

 

 

Figure 40. Photographs of dog-bone fracture surfaces immediately after testing with 

increasing mean stress from top left to lower right (p = 0.0, 0.1, 6.3, 13.0, 20.4, 43.2 

MPa). 

 

The fracture surfaces of eight dog-bone specimens, one uniaxial tension specimen, and 

one triaxial compression specimen were analyzed using a HP 3D Scanner Pro S3. The 
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scanner uses enhanced structured light scanning technology and an automatic 360o 

turntable to create a 3D model. The scanner resolution is 50 microns between vertices 

and each scan can have up to 2.3 million vertices. The scan can be edited using David 3D 

Scanner Pro software to only show vertices on the fracture surface.  

The scans were used to estimate the surface roughness of the fracture surfaces (Figure 

42), with the hypothesis that a tension fracture (opening mode) would have a larger 

surface roughness parameter than a shear fracture (sliding mode). The vertices were 

formulated into triangles and the surface area of an individual triangle was calculated 

using the cross product:  

bcbaAi 
2

1
 (62) 

A surface roughness parameter R was determined using the sum of the individual triangle 

areas and a reference area of the surface: 


i

i

ref

A
A

R
1

1  (63) 

The scans were performed at a resolution of 50 micron between vertices. The reference 

area Aref was also calculated using Equation 62, but from a scan resolution of 500 

microns. This was done to allow for larger irregularities in the fracture surface to not 

affect the surface roughness parameter.  
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Figure 41. Area determination of a triangle in 3-dimensional coordinate system.  

 

 

Figure 42. Contour of scanned fracture surface.  
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Figure 43 shows the correlation between the surface roughness and mean stress. A 

specimen that failed by tensile (opening mode) fracture has a rougher surface than one 

failed by shear. The dog-bone specimens that failed under low mean stress appear to 

follow a transition from the surface roughness of tensile failure to shear failure, as 

opposed to having similar surface roughness to either the tension failure or shear failure.  

 

Figure 43. 3D scanned fracture surface roughness versus mean stress. 
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Chapter 5: Conclusions 

Little data exist on failure of rock at low mean stress or under a stress state with one 

tensile principal stress. Triaxial tests were performed with a dog-bone specimen, which 

involves a geometry of different cross-sectional area, such that the differential area 

provides an opportunity to generate a tensile force in the axial direction. Stress states with 

mean stress p = (σ1 + σ2 + σ3)/3 ranging from p = -T/3 = -0.3 MPa for uniaxial tension to 

p = C0/3 = 9.8 MPa for uniaxial compression were achieved, where T = uniaxial tensile 

strength and C0 = uniaxial compressive strength. Conventional triaxial compression and 

extension tests on dry Dunnville sandstone were used in conjunction with dog-bone 

extension tests. 

Two linear and two nonlinear, with respect to principal stresses, failure criteria were fit to 

the data. The linear failure criteria, Mohr-Coulomb and Paul-Mohr-Coulomb both with 

tension cut-offs, fit the high mean stress (p > C0 /3) data poorly, but fit the low mean 

stress data well because of the implementation of the tension cut-off. The Hoek-Brown 

criterion did a poor job with the low mean stress data, as it over estimated the tensile 

strength, but did a good job fitting the high mean stress data. The Fairhurst criterion 

provided the best overall fit because it is nonlinear, which works well for high mean 

stress states, and has a natural tension cut-off, which was proven to work best for the low 

mean stress states.  

The fracture surfaces were analyzed using a 3D scanner to gather insight on the failure 

mode at various levels of mean stress. Visual signs of shear-type failure were observed in 

specimens failed under high mean stress, and no such signs of shearing were observed in 

specimens at low mean stresses.  A surface roughness parameter was defined based on a 

surface area ratio and showed that specimens failed at low mean stresses exhibited a 

higher surface roughness than those failed at high mean stresses, and there was a 

transition from opening mode fracture to shear fracture.  This transition could be 

considered a hybrid fracture given the nature of the principal stresses at failure. 
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From the combination of failure and surface roughness analyses, the results showed that 

at low mean stresses tension was the main failure mode and a tension cut-off is the best 

form of predicting failure at low mean stresses. 

The work done in this study can be expanded for different types of rocks. These studies 

should look into the surface roughness parameter’s dependence on stress state. Also, 

more failure criteria should be used for analysis to determine if one can better 

characterize the failure envelope in the low mean stress regime.  
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Appendix A – Tables of Rock Properties 
 

Table 5. Density measurements. 

Test Density, ρ  [g/cm3] 

1 1.809 

2 1.815 

3 1.803 

4 1.810 

5 1.813 

6 1.804 

7 1.790 

8 1.807 

9 1.792 

10 1.793 

11 1.807 

12 1.780 

13 1.786 

14 1.789 

Average 1.800 

Standard Deviation 0.011 

 

Table 6. Wave velocity measurements. 

 Perpendicular Parallel 

Trial 
P-Wave, Vp  

[m/s] 

S-Wave, Vs  

[m/s] 

P-Wave, Vp  

[m/s] 

S-Wave, Vs  

[m/s] 

1 1910 1059 1890 1064 

2 1910 989 1990 1063 

3 1920 1064 2010 1098 

4 1930 1061 2033 N/A 

5 1950 1053 2073 N/A 

6 1960 N/A 2076 N/A 

Average 1930 1045 2012 1075 

Standard 

Deviation 
21 28 63 16 

 

 

 



63 

 

 

Table 7. Uniaxial compressive strength measurements. 

Test UCS  [MPa] 

1 28.8 

2 29.7 

Average 29.3 

Standard Deviation 0.6 

 

Table 8. Poisson’s ratio measurements. 

Test Poisson’s Ratio, ν  [-] 

1 0.33 

2 0.32 

3 0.31 

4 0.28 

5 0.29 

6 0.30 

7 0.30 

8 0.30 

9 0.34 

10 0.34 

11 0.34 

Average 0.31 

Standard Deviation 0.02 

 

Table 9. Young’s modulus in compression measurements. 

Test 
Young’s Modulus, E  

[GPa] 

1 8.2 

2 8.1 

3 8.1 

4 8.5 

Average 8.2 

Standard Deviation 0.2 
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Table 10. Bulk modulus measurements. 

Test Bulk Modulus, K  [GPa] 

1 8.9 

2 8.6 

3 8.7 

4 9.1 

5 9.0 

6 8.8 

7 9.5 

Average 8.9 

Standard Deviation 0.3 

 

Table 11. Uniaxial tensile strength measurements. 

Test Tensile Strength, T  [MPa] 

1 1.2 

2 0.9 

3 1.0 

4 0.9 

5 1.0 

Average 1.0 

Standard Deviation 0.1 

 

Table 12. Brazilian tensile strength measurements. 

Test 
Brazilian Tensile 

Strength [MPa] 

1 2.3 

2 2.2 

3 2.0 

4 2.1 

5 1.9 

6 2.1 

7 2.0 

8 1.8 

9 2.0 

10 2.1 

Average 2.0 

Standard Deviation 0.1 
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Table 13. Young’s modulus in tension measurements. 

Test Young’s Modulus, E  [GPa] 

1 1.7 

2 2.8 

3 2.5 

4 2.1 

Average 2.3 

Standard Deviation 0.5 
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Appendix B – Dog-bone Extension Stress-Strain  
 

 
Figure 44. Stress-strain curves for specimen DB2 under 10 MPa confining pressure. 
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Figure 45. Stress-strain curves for specimen DB3 under 15 MPa confining pressure. 

 

 
Figure 46. Stress-strain curves for specimen DB6 under 25 MPa confining pressure. 
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Figure 47. Stress-strain curves for specimen DB7 under 15 MPa confining pressure. 

 

 
Figure 48. Stress-strain curves for specimen DB8 under 5 MPa confining pressure. 

-2

0

2

4

6

8

10

12

14

-1.5 -1 -0.5 0 0.5 1 1.5

A
xi

al
 S

tr
es

s,
 σ

a 
[M

P
a]

Axial Strain, εa [10-3]

strain gage 1

strain gage 2

strain gage 3

-2

-1

0

1

2

3

4

5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

A
xi

al
 S

tr
es

s,
 σ

a
[M

P
a]

Axial Strain, εa [10-3]

strain gage 1

strain gage 3

strain gage 2



69 

 

 
Figure 49. Stress-strain curves for specimen DB12 under 0.75 MPa confining pressure. 
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