

Copyright

by

Anh Dinh Luong

2014

The Report Committee for Anh Dinh Luong

Certifies that this is the approved version of the following report:

ClosetStylist - an Android app for digitizing closets and

programmatically consulting on what to wear

APPROVED BY

SUPERVISING COMMITTEE:

Adnan Aziz

Christine Julien

Supervisor:

ClosetStylist - an Android app for digitizing closets and

programmatically consulting on what to wear

by

Anh Dinh Luong, B.S.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2014

Dedication

To my parents and my wife.

 v

Acknowledgements

I would like to thank my supervisor, Professor Adnan Aziz, who has provided

guidance on the ClosetStylist project, and to my reader Professor Christine Julien, who

has helped review this paper. I would also like to thank Ile Jugovski and Truong Nguyen

for their support to create a beautiful and user friendly UI for ClosetStylist. Most

importantly, I want to thank my parents and my wife for all the hard work and sacrifices

they have always made to support me throughout my work and studies.

 vi

ClosetStylist - an Android app for digitizing closets and

programmatically consulting on what to wear

Anh Dinh Luong, M.S.E.

The University of Texas at Austin, 2014

Supervisor: Adnan Aziz

We describe the design, algorithm, implementation and experiments with

ClosetStylist – an Android app that helps users digitize their clothing inventory for better

usage, manage outfit worn history, laundry bags, and last but not least, suggest what to

wear based on occasion and weather. The app utilizes a variety of off-the-shelf services

such as location and weather services, combining with our own clothes matching

algorithm to recommend the most suitable outfit to users. In addition to the main features,

ClosetStylist offers a friendly user interface that enables smooth navigation and keeps

users engaged. The app was tested under different mock weather conditions with two sets

of wardrobe, specifically a male closet of 24 items and a female closet of 86 items. The

recommended outfits were displayed on the screen within three seconds of the moment

the user initiated the options from the main menu. The app recommended satisfying

results which we would hand-pick as our daily outfits.

 vii

Table of Contents

Table of Contents .. vii

List of Tables ... ix

List of Figures ..x

Chapter 1 Introduction ..1

1.1 Motivation ..1

1.2 Vision ...2

1.3 Scope ..2

1.4 Report organization ..2

Chapter 2 User Interface Design ..3

2.1 Overview ..3

2.2 Features Lists ...3

2.3 Use Cases ...3

2.4 Mockups ...12

Chapter 3 Implementation...19

3.1 Technology stack ...19

3.2 Architecture..33

3.3 Class diagrams ...40

Chapter 4 Results ...42

4.1 Outfit Of The Day Result ...42

4.2 Display Picture ...43

4.3 Weather service and location service ...44

4.4 Screenshots ..44

4.5 Costs and level of effort ...49

4.6 Lessons learned ..52

Chapter 5 Conclusion ..56

5.1 Summary ..56

5.2 Related work ..57

 viii

5.3 Future work ..58

References ..60

 ix

List of Tables

Table 3.1: Development environment. .. 19
Table 3.2a: Temperature range per Style for male. .. 23
Table 3.2b: Temperature range per Style for female. ... 24
Table 3.3: Occasion Matching score table for male. ... 25
Table 3.4: Occasion Matching score table for female. .. 26

Table 3.5: Pair Matching score table for male. ... 27
Table 3.6: Pair Matching score table for female. .. 28
Table 3.7: Color Matching score table for male and female. 30

Table 4.1: ClosetStylist development costs. ... 50

 x

List of Figures

Figure 2.1: Register diagram .. 4
Figure 2.2: Login diagram .. 6
Figure 2.3: Add new item diagram ... 7
Figure 2.4: View or edit item diagram ... 8
Figure 2.5: Pick an outfit diagram .. 9

Figure 2.6: View outfit history diagram ... 11
Figure 2.7: Laundry bag diagram ... 12
Figure 2.8: Balsamiq user login mockups. ... 13
Figure 2.9: User login and registration mockups. .. 14
Figure 2.10: Main Screen and Side Menu mockups... 15

Figure 2.11: My Closet and Add Item mockups. ... 16

Figure 2.12: Outfit of the Day and Laundry bag mockups... 17
Figure 2.13: Outfit History and Outfit Preview mockups. ... 18
Figure 3.1: 5-step clothes matching algorithm. .. 21

Figure 3.2: ClosetStylist top-level architecture. ... 34
Figure 3.3a: Database tables populated during run time. ... 36

Figure 3.3b: Database tables for clothes matching algorithm. 37
Figure 3.4: Factory Method Pattern for storage. .. 38
Figure 3.5: AbstractFactory classes and ConcreteFactory classes 39

Figure 3.6: AbstractProduct classes and ConcreteProduct classes. 39
Figure 3.7: ClosetStylist class diagram. ... 41

Figure 4.1: User login and registration screenshots. .. 45

Figure 4.2: Main Screen and Side Menu screenshots. .. 46

Figure 4.3: My Closet and Add Item screenshots. ... 47
Figure 4.4: Outfit of the Day and Laundry bag screenshots..................................... 48

Figure 4.5: Outfit History and Outfit Preview screenshots. 49
Figure 4.6: Metrics with CodePro AnalytiX. ... 51
Figure 4.7: Foot print of Closet Stylist. .. 52

 1

Chapter 1 Introduction

1.1 MOTIVATION

Wardrobe stylists are often hired by celebrities, models, public figures, and

wealthy individuals to select their clothing for public appearances, or by professionals in

the entertainment industry for special events. Their services are usually too expensive for

the majority of people. Therefore, while most people love fashion and desire to look

fashionable, not many people can afford these expensive types of services. The goal of

the app to is help people with limited time and style to favorably present themselves and

efficiently organize their closet.

An average person spends hundreds of dollars every year on new clothes, which

often end up getting lost in the closet after a couple times of usage. There are quite a few

issues that my app aspires to address. How should we organize all the items in our

closets? How do we mix and match them wisely to utilize all items in our wardrobe

without breaking our bank account for expensive consultation from costly stylists? How

do we know when our laundry bag is full to avoid running out of clothes? For those

people without a washer and dryer at home, doing laundry could cost several hours

waiting in the Laundromat.

Most people are busy in the morning to prepare for work or school. The lack of

time and failure to check the weather forecast before selecting what to wear usually lead

to a wrong outfit choice for the day. Such trouble can be avoided with an app that can

recommend a suitable outfit based on weather and occasion.

 2

1.2 VISION

ClosetStylist is a mobile app developed to solve the above problems. Its core

functionalities includes assisting women and men to pick the right outfit from their

clothing inventory, organizing their closets digitally, managing their laundry bags, and

keeping track of worn history. The ultimate goal is to help clients get the most fashion

value for their dollar by helping them manage their closets wisely.

1.3 SCOPE

This report focuses on four aspects of the ClosetStylist:

 The formalization of our original ideas into the storyboard and mock-ups.

 The architecture of our app includes our layered design, applied design

patterns, and software stack.

 The implementation of the first prototype in Android, and the cooperation

between our own clothes matching algorithm and off-the shell services.

 The results highlight the output of our algorithm on two sets of wardrobes

under different weather conditions, the application performance, and the

source code analysis.

1.4 REPORT ORGANIZATION

The remainder of the report is organized as follows: chapter 2 discusses the user

interface including mockups and workflow of the app, chapter 3 reviews the technology

stack used in the app, chapter 4 describes the results and pain points, and chapter 5 ends

the report with summary, related and future work.

 3

Chapter 2 User Interface Design

2.1 OVERVIEW

In this chapter, we explain the user interface design by first providing a list of

features this app offers through some usage scenarios. We then describe in detail some

use cases to clarify the UI/UX flow for the main features of the app. We end this section

with some mockups to show the look and feel of the app.

2.2 FEATURES LISTS

The below bullet points highlight the original features that ClosetStylist was

intended to provide:

o Users can choose any outfits that the app has programmatically picked

from their closets based on occasion and the weather at the current

location, and they can mix match with other garments if they do not like

the app’s initial suggestion.

o Users can easily flip through every item in their own closet, which is a

digital storage of pictures of their clothes taken by built-in camera phone

or imported from a gallery.

o Users can go through their worn history and look for what garments they

have worn on any particular date in the past.

o Users can find how many dirty items are in their laundry bag and schedule

laundry.

2.3 USE CASES

[Amb] has illustrated an effective methodology to model and document the

structures and behavior of software projects. The use cases presented in this section

followed this Agile modeling approach to depict the interaction between the user and the

 4

ClosetStylist app. Each use case consists of a UML activity diagram between two actors

– the user and the ClosetStylist Android app – a precondition that must be satisfied before

starting this case, a purpose (or result) of this use case which describes the achievement

after following the procedure, and the steps to achieve this result.

2.3.1 Register

Register

Android AppUser

P
h

as
e

Launches app

Click on “Don’t have
account – register here”

Fill in required
information

Zipcode
entered?

Get current
location

Register
Persist to
database

Navigate to
main screen

No

Yes

Figure 2.1: Register diagram

 5

The precondition: ClosetStylist has already been installed on the device under

test.

The purpose: show how the user can register an account to use the app for the

very first time and how to populate all the required fields.

The steps: shown in Figure 2.1. The app has its own simple authenticating

method to validate, independent of any social networks, so that the users can still use the

app if they choose to not enable any social network feature. Upon the very first time the

app is launched, users have to click on “Don’t have account – register here” and fill in the

required fields, one of which is the postal code. This field is mentioned here because it is

treated as the default location that the app will use if for any reason it fails to obtain the

current location. If users do not know their current zipcode, they can click on “Get

Location” and the app will find the zip code of the current location. Once the users have

filled in all the required fields, they can click on the “Register” button to log in to the app.

The users’ information is also persisted to the database so that users can login the next

time without repeating the registration step.

2.3.2 Login

The precondition: users have already registered.

The purpose: users have to enter their credentials to login after registration step.

The steps: shown in Figure 2.2. Users launch the app and enter their username

and password. The app will navigate to the main screen where users find helpful

information such as the current location, date, weather, and they can proceed to any of the

four main screens: Outfit of the day, My Closet, My Laundry Bag, My Outfit History.

 6

Login

Android AppUser

P
h

as
e

Launches app

Enter Username, Password, click
on “Let me in”

Credential valid?

Navigate to
main screen

Prompt to re-enter
credential

Yes

No

Figure 2.2: Login diagram

2.3.3 Add new item

The precondition: users are logged in.

The purpose: users have to populate their closets with the pictures of their

clothes taken by built-in camera.

The steps: shown in Figure 2.3. From the main screen, users click on “My

Closet”. In the bottom of the My Closet screen, there is “ADD ITEM” button. After

filling in the required fields, users can take picture of the clothes by clicking on the

camera icon. Once saved, users can crop the newly taken picture to get rid of the

unnecessary parts. Users can choose either “Reset” all of the fields to their default values

or “Save” the detail of this item by clicking on the corresponding button.

 7

Add new item

Android AppUser

Ph
as

e

Login to main
screen

Go to My Closet

Click “ADD ITEM”

Fill in required
fields

Click camera icon

Launch native Android
camera app to take

image

Launch native Android
camera app to crop image

Display all information of
the item and let user save

the item

Persist image to SD card and
other information in the

database.

Save or discard
new image?

Done or cancel new
cropped image?

Save

Discard

Done

Save or reset all fields
of the item?

Cancel

Save

Reset

Figure 2.3: Add new item diagram

 8

2.3.4 View or edit an item

Edit or view item

Android AppUser

P
h

as
e

Login to main
screen

Go to My Closet

Navigate to the correct tab
(“Outer”, “Tab”, “Bottom”)

Display all the items under
that category

Click on the item of
interest

Navigate to the
Edit item screen

Figure 2.4: View or edit item diagram

The precondition: the item has been added to the closet.

The purpose: users can view the detail of an item and update the information if

needed.

The steps: shown in Figure 2.4. From the main screen, users click on “My

Closet”. The wardrobe is categorized as “Outer”, “Top”, and “Bottom”. Users choose the

tab that the wardrobe belongs to and click on the items they want to see. They can change

any of the fields, or can even mark an item is dirty to be sent to laundry bag.

 9

2.3.5 Pick an outfit

Pick outfit

Android AppUser

P
h

as
e

Login to main
screen

Go to “Outfit of the
Day”

Display a list of suggested
outfits based on the weather
and Occasion set to “Casual”

Is Occasion
correct?

Choose correct
Occasion

Click on “WEAR”
Navigate to My
Outfit History

No

Change another
Outfit?

Yes

Click on arrows to move
between suggestions

No

Yes

Figure 2.5: Pick an outfit diagram

 10

The precondition: “My Closet” has been populated with some items in both Top

and Bottom.

The purpose: the app suggests a list of outfits that best fit the user based on the

weather and the chosen occasion.

The steps: shown in Figure 2.5. From the main screen, users click on “Outfit of

the Day”. The app will display a list of suggested outfits based on the current weather and

the occasion set to “Casual”. There are five options for Occasion – “Formal”,

“Semi_Formal”, “Casual”, “Day_Out”, “Night_Out” and users can choose the Occasion

best fit their situation. There are arrows to switch to another Top or Bottom. There are

double-arrows to let the user traverse through the list of suggested outfits. Once the users

decide to choose a particular outfit, they can click on the “WEAR” button at the bottom

and they will be navigated to the “My Outfit History” screen. There is also a rank to

inform the users how far they are from the first suggestion.

2.3.6 View outfit history

The precondition: users have already chosen to wear some outfits.

The purpose: the app displays the outfits that users have already worn on any

particular day.

The steps: shown in Figure 2.6. From the main screen, users click on “My Outfit

History”. This screen displays the outfits that users have worn on a particular day,

starting from today. If users have worn several outfits on the same day, all of them will

be listed in chronological order, starting with the one worn earliest on that day. User can

click on any of them and they will be navigated to the “Outfit Preview” to see a more

detailed picture of the outfit.

 11

View outfit history

Android AppUser
P

h
as

e

Login to main
screen

Go to My Outfit
History

Display items chosen to
wear today

Navigate to a particular date
Display items chosen to

wear that day

Figure 2.6: View outfit history diagram

2.3.7 Laundry bag

The precondition: users have already chosen to wear some outfits.

The purpose: the app displays the dirty items so that the users can schedule to

wash them.

The steps: shown in Figure 2.7. From the main screen, users click on “My

Laundry Bag”. This screen displays all the dirty items as a list. Users can click on any of

them to view more detail.

 12

My laundry bag

Android AppUser
P

h
as

e

Login to main
screen

Go to My Laundry
Bag

Display all dirty items

Figure 2.7: Laundry bag diagram

2.4 MOCKUPS

Balsamiq [Bal] was initially used to create mockups as it was user friendly and its

online version was free for students. Figure 2.8 is an example of original mockups.

As the development continued, some limitations of Balsamiq such as the lack of

Android UI elements and the difficulty in sharing feedbacks showed up. Fortunately, our

UI/UX designer, Ile Jugovski, introduced us to InVision App [Inv] which is an extremely

powerful prototyping tool with many great features. He used Adobe Photoshop to design

different assets for the app such as buttons, icons, logos, and backgrounds. Afterwards,

those assets were imported to Invision to create a fully interactive prototype and a

wireframe based on our original Balsamiq mockups. Besides, Invision enabled

collaboration among stakeholders to share vision and gain feedback.

 13

Figure 2.8: Balsamiq user login mockups.

All of the mockups created by Ile will be illustrated in the following section

together with a storyboard we created to help readers easily visualize the workflow of the

app.

 14

2.4.1 Login and Registration

Figure 2.9: User login and registration mockups. Registration screen is scrollable, but

the above right image was modified to show all of the fields.

 15

To begin with, the new user will register with the app using their username,

password, and default location as shown in Figure 2.9. After registration is done, the user

can login and logout of the app.

2.4.2 Main Screen and Side Menu

Figure 2.10: Main Screen and Side Menu mockups.

After registration for the first time or after login, users will come to the main

screen in Figure 2.10 which displays useful information about the current location, date,

and temperature. It also provides options to navigate to the main features of the app such

as picking the Outfit of the Day, organizing My Closet, managing Laundry bag, or

viewing My Outfit History.

To make navigation between screens in the app easier, users can take advantage

of the provided navigation drawer. This panel, which displays the important navigation

 16

options, is hidden except when users swipe from left to right or tap the app icon in the

action bar.

2.4.3 My Closet and Add Item

Figure 2.11: My Closet and Add Item mockups.

In order to use the app, users need to import photos of their clothes from the

phone’s built-in camera and enter additional information about the items. Each item will

be categorized as either top or bottom, together with its corresponding styles, materials,

and color.

After the item is saved in the closet, users can also edit or delete the item from the

closet. Once the closet is fully populated with all the items, “My Closet” screen should

look like the mockup in Figure 2.11.

 17

2.4.4 Outfit of the Day and Laundry bag

Figure 2.12: Outfit of the Day and Laundry bag mockups.

When the user is ready to pick the outfit, he/she can navigate to the Outfit of the

Day shown in Figure 2.12 and find the list of suggested outfits based on today’s weather

and the occasion. The selection algorithm ranks different outfits, each of which consists

of a top, a bottom, and maybe an outer layer if the weather is cold. The user can choose

among different occasions including formal, semi-formal, casual, day-out, night-out and

different outfits will be recommended. A mix and match option is also provided through

the arrows next to top and bottom if user wants a different piece in the recommended

outfit. User can move back and forth between suggested outfits by pressing double

arrows at the bottom of the screen.

The user can decide to wear the outfit by clicking on the “Wear” button, and dirty

items will be placed in laundry bag as shown in Figure 2.12. An item is considered dirty

if it is worn more than a maximum number of worn times, which is assigned to each item

 18

based on style. The reason for doing this comparison instead of moving an item to the

laundry bag right away because there are certain pieces of clothes that we can wear more

than once such as jackets or jeans.

2.4.5 Outfit History and Outfit Preview

Figure 2.13: Outfit History and Outfit Preview mockups.

When the user clicks on the “Wear” button as described in the previous section,

the app will take the user to the Outfit History screen which lists all the outfits have been

chosen today and in the past as shown in Figure 2.13. This screen can also be accessed

from the main screen or the side menu.

Once the user is in the Outfit History screen, the outfit worn today is shown first

and if there is more than one outfit, they will be displayed in chronological order. The

user can find what he/she has worn on any particular day in the past by moving to the tab

for that day, clicking on an outfit entry in the list, and the outfit will be displayed in the

Outfit Preview screen as in Figure 2.13.

 19

Chapter 3 Implementation

3.1 TECHNOLOGY STACK

ClosetStylist is an Android app and hence Java is used as the main programming

language. As stated in [LAAD], Android runs on top of Linux kernel. It is a software

stack for mobile devices, and includes system libraries, application frameworks, and key

apps. In Android, there are four main application components, each with its

corresponding functionality is listed below:

- Activity – the presentation layer.

- Service – the processing layer

- Broadcast Receivers – the communication layer

- Content Providers – the data storage layer

Table 3.1 below shows a summary of my development environment.

Language Java

IDE Eclipse Juno 4.2, Kepler 4.3

Additional code editor GVIM

SDKs JDK 1.6, Android 2.3.3, Facebook 3.0

Test equipment Samsung S3

System Windows 7 64-bit, Ubuntu 12.04 32-bit, Ubuntu 12.10 64-

bit

Table 3.1: Development environment.

The app was initially developed on a laptop with Intel i7-3720 2.6GHz, 16GB

RAM, Windows 64-bit to run on the Android simulator. Due to a Samsung Galaxy S3

connection problem in the Windows system, the development on the S3 device was

 20

moved to a laptop with Intel Core 2 duo, 4GB RAM, Ubuntu 12.10 32-bit, and a desktop

with AMD Quad-Core, 16GB RAM, Ubuntu 12.04 64-bit

In addition to the development environment, several technologies were applied in

this app. Some were open-source, and others were our own implementation. We are

going to describe each of the main technologies, the reason why we chose them over

others, and the deployment.

3.1.1 Location Service

In this app, GeoNames database was used as a service to convert geographic

coordinates (the longitude and latitude) of a location to postal code in order to display the

current city and state in the main screen. Geonames was chosen over Yahoo service

(Yahoo BOSS PlaceFinder) because its free web service of 20 requests per hour was

good enough for this prototype, and Yahoo service used proprietary WOEID (Where On

Earth Identification number). Besides, the later was subject to change by Yahoo, and

would cause problem if we decide to switch to another service. GeoNames also offers a

variety of premium web service plans with higher request limits and meets our

requirements for later revisions of this app.

GeoNames provided a lot of services in many formats such as XML and JSON. In

this app, we employed the service that converted geographic coordinates to postal code

(and then city and country) and vice versa by sending a GET HTTP request. The HTTP

response was in JSON format, and our tasks were to collect and parse the response and

then display it in the main screen of the app.

3.1.2 Weather Service

We looked at several weather services including Yahoo Weather, World Weather

Online, and Open Weather Map. [SWA] provided the sample code to retrieve weather

 21

information from Open Weather Map and made it an ideal choice for our weather service.

The weather response consisted of a lot of information including but not limited to

current conditions, weather forecasts, weather maps, sunrise, and sunset. As of this

writing, only a subset of the returned data was used, including current conditions for

current temperature and its range, and weather map for geographic coordinates.

Open Weather Map offers different pricing plans for different support levels, for

example free, developer, professional, and enterprise. The free plan supports a maximum

of 3,000 requests per minute and 4,000,000 requests per day, which is more than enough

for our first prototype.

3.1.3 Clothes Matching Service

This service utilizes our own algorithm and implementation to provide

suggestions on which wardrobe users should put on based on the available items in their

closets, the current weather information, and the occasion of the event, and gender.

3.1.3.1 High-level design

Laundry Filter

Temperature Filter

Occasion Matching

Pair Matching (Top + Bottom + Outer)

Color Matching

Figure 3.1: 5-step clothes matching algorithm.

 22

There are five steps to create the list of suggested outfits. Each step is an essential

part of the algorithm and must be executed in the same order described in Figure 3.1. The

inputs to the algorithm are all of the factors mentioned above and the output is a list of

outfits in descending order of score. Each outfit consists of a top, bottom, and an optional

outer layer if the temperature is in a certain range. While the first two steps are used to

obtain a valid set of items to select from, the last three steps are used to score points for

each outfit based on several factors. An overview of each step is given below.

Laundry Filter: eliminate dirty items from the process.

Temperature Filter: eliminate items that do not cover the range of today’s

maximum temperature and minimum temperature of the current location.

Occasion Matching: each item is given a score for the chosen occasion. For

example, a short is graded low for the “Formal” occasion but it gets high score in the

“Day_Out” occasion.

Pair Matching: each combination of a top item with a bottom item (and

optionally an outer layer) will be scored based on its category. This point is added

together with the point of each item in the previous step to the outfit.

Color Matching: the color combination of the top, the bottom, and the outer of

the outfit will be given a score. This is added to the points from the previous steps to

produce the final score. The result is a list of outfits in the order of descending points.

3.1.3.2 Low-level design:

A deeper discussion on the low-level design and implementation is provided for

each of the five steps.

 23

3.1.3.2.1 Step 1 - Laundry Filter

This step is pretty simple, given that each item has a “dirty” attribute to specify an

item is clean or dirty. The implementation is simply a query the database of clothes in the

closet to obtain a list of clean items.

3.1.3.2.2 Step 2 - Temperature Filter

This step eliminates items that are not in today's temperature range. As for

implementation, we assigned each item an appropriate range of temperature. The range

needed to be chosen carefully to not exclude items that can be layered together in cold

weather. This explains the reason for assigning a wide temperature range for most items

(-999 to 999) to not filter them out. The numbers -999 and 999 were chosen for the sole

purpose of representing an extremely low or high temperature, and there was no

calculation in our algorithm that requires an exact value. As a result, any big number that

was substantially higher than the maximum and lower than the minimum of the regular

temperature range could certainly be used in lieu of -999 and 999 in this step.

Style – Men
Temp
Min

Temp
Max

Pants -999 999

Jeans -999 999

Shorts -999 999

Dress_Shirt -999 999

Casual_Button_Down_Shirt -999 999

Polo -999 999

T_Shirt_Short_Sleeve -999 999

T_Shirt_Long_Sleeve -999 999

Sweater_And_Sweatshirt -999 999

Coat_And_Jacket_Light -999 75

Coat_And_Jacket_Heavy -999 40

Table 3.2a: Temperature range per Style for male.

 24

Style - Women
Temp
Min

Temp
Max

Pants -999 999

Jeans -999 999

Legging_Skinny -999 999

Shorts -999 999

Skirts -999 999

Collared_And_Button_Down -999 999

Blouse_Short_Sleeve -999 999

Blouse_Long_Sleeve -999 999

Blouse_Sleeveless -999 999

T_Shirt_Long_Sleeve -999 999

T_Shirt_Short_Sleeve -999 999

Tank_Camisoles -999 999

Party_Top -999 999

Tunic -999 999

Pull_Over -999 999

Cardigan -999 999

Sweater_And_Sweatshirt -999 999

Vest -999 999

Coat_And_Jacket_Light -999 75

Coat_And_Jacket_Heavy -999 40

Table 3.2b: Temperature range per Style for female.

We could not possibly assign a temperature range for every single existing

clothing piece; hence we chose to classify them into various groups. The attributes of

each item were good candidates for classification because they already grouped items

into small sets with something in common. The next task was to select the single attribute

that was most correlated to the temperature range of an item. This attribute must not be

too common to avoid grouping too many items to the same range but not too specific to

avoid creating a massive look-up table. Material and style were the contenders of our

attribute selection process. Style was chosen over material because of two reasons. First,

most of the items had a mix of fabric materials, and therefore it was difficult to indicate

 25

what range an item covered based on the materials. Second, we often layered up as long

as all the items look good together, which indicated that style was a better pick than

material.

The look-up Table 3.2a and 3.2b is used to define the range of each style per

gender.

3.1.3.2.3 Step 3 - Occasion Matching

Each item was given different point based on gender, category, style, and

occasion. This step had higher weight than pairing and color matching steps because

occasion matching was more important to the final outfit in our opinions.

In this step, the list of items output from the above steps was processed together

with the selected occasion by the methods of the OccasionMatching object, and the result

was two lists of items with score, one for top and one for bottom.

Table 3.3 and Table 3.4 shows the score tables of Occasion Matching of male and

female, respectively.

 Point

Category Style Formal Semi_Formal Casual Day_Out Night_Out

Bottom Pants 40 40 5 0 20

Bottom Jeans 5 20 40 20 40

Bottom Shorts 0 0 20 40 0

Top Dress_Shirt 40 40 5 0 5

Top Casual_Button_Down_Shirt 5 20 20 20 40

Top Polo 5 20 40 5 20

Top T_Shirt_Short_Sleeve 0 0 20 40 5

Top T_Shirt_Long_Sleeve 0 5 20 5 20

Top Sweater_And_Sweatshirt 0 5 20 20 5

Top Coat_And_Jacket_Light 40 40 5 0 20

Top Coat_And_Jacket_Heavy 5 5 5 5 20

Table 3.3: Occasion Matching score table for male.

 26

 Point

Category Style Formal Semi_Formal Casual Day_Out Night_Out

Bottom Pants 40 40 5 0 20

Bottom Jeans 5 20 40 20 20

Bottom Legging_Skinny 0 5 20 20 40

Bottom Shorts 0 0 5 40 5

Bottom Skirts 5 20 20 20 20

Top Collared_And_Button_Down 40 20 0 0 5

Top Blouse_Short_Sleeve 20 40 20 20 20

Top Blouse_Long_Sleeve 40 40 5 5 20

Top Blouse_Sleeveless 5 20 20 40 20

Top T_Shirt_Long_Sleeve 5 20 40 5 5

Top T_Shirt_Short_Sleeve 0 5 40 40 5

Top Tank_Camisoles 0 0 5 40 20

Top Party_Top 0 0 5 20 40

Top Tunic 0 5 20 20 20

Top Pull_Over 0 0 20 20 0

Top Sweater_And_Sweatshirt 20 20 5 5 20

Top Coat_And_Jacket_Light 40 20 0 0 20

Top Cardigan 40 40 20 5 20

Top Vest 40 20 5 0 20

Top Coat_And_Jacket_Heavy 5 5 5 5 20

Table 3.4: Occasion Matching score table for female.

3.1.3.2.4 Step 4 - Pair matching

In this step, each of the items in the top list was paired with an item in the bottom

list outputted from the previous step; and an optional outer item was picked from the top

list. At the end of this step, we obtained a single list, in which each entry contained a

combination of a top item, a bottom item, and an optional outer piece, together with the

total score of this combination.

 27

The score came from look-up tables (Table 3.5 and Table 3.6). Each row

contained a top style, a bottom style, and an optional outer piece based on the top-bottom

style and gender. Style played a critical role in these tables as it was the first and foremost

factor considered when we paired top and bottom garments in reality. We assigned a

score to the combination in each row according to our own fashion judgment; but the

design was flexible enough to adjust to any different score system simply by modifying

the score in these tables. It is worthwhile to point out that the grading scale was lower

than that of the occasion matching step because this step was considered less important,

and as a result should have less weight on the final score.

Bottom Top Point Outer
Pants Dress_Shirt 20 No

Pants Casual_Button_Down_Shirt 5 No

Pants Polo 20 No

Jeans Casual_Button_Down_Shirt 5 No

Jeans Polo 16 No

Jeans T_Shirt_Short_Sleeve 20 No

Jeans T_Shirt_Long_Sleeve 20 No

Shorts Casual_Button_Down_Shirt 6 No

Shorts Polo 6 No

Shorts T_Shirt_Short_Sleeve 20 No

Shorts T_Shirt_Long_Sleeve 5 No

Table 3.5: Pair Matching score table for male.

 28

Table 3.6: Pair Matching score table for female.

 29

3.1.3.2.5 Step 5 - Color matching

It is impossible to list every color because the number is infinite. We decided on

twelve basic colors: beige, black, blue, brown, gray, green, orange, pink, red, violet,

white, yellow, and an additional option of ‘multicolor_pattern’ to accommodate items

with more than one color. Therefore, we had a total of 13 colors to work with.

Subsequently, these 13 colors were further divided into two groups – “Color” (blue,

green, violet, red, yellow, orange, pink, multicolor_pattern) and “Neutral” (gray, white,

black, brown, beige). [CWL] listed which colors were complementary to one another.

Besides, “Neutral” colors could be easily matched with other while the “Color” colors

were more restricted. These relations were expressed through the points given to each

combination of these colors in the color score Table 3.7. The reason that we opted for a

single group called multicolor_pattern to represent all the multiple colored and patterned

items was to avoid foreseeable issues that could be incurred later on. First, it was

potentially difficult for users to interpret the multicolor pattern accurately. We could

alternatively write an excellent image analysis program that can detect the right colors

and pattern of the item. However, this option would be beyond the scope of this project.

Secondly, even if the app could automatically obtain the accurate color and pattern of any

item, it would take substantial research efforts to create a reasonable algorithm for clothes

matching to account for the infinite number of multiple colors and patterns.

In this step, the list resulting from the above step was run with the ColorMatching

object to create a final list of the same objects as in step 4, with the score updated to

include the color factor. It should be emphasized that there was only one table for both

genders because we did not see any extra benefit to separate color scoring scheme based

on gender. Nevertheless, our design could be easily expanded and modified to include

different tables for male and female if needed down the road.

 30

Bottom Top Point
Beige Black 2

Beige Blue 4

Beige Brown 22

Beige Gray 24

Beige Green 20

Beige Multicolor_Pattern 6

Beige Orange 10

Beige Pink 8

Beige Red 16

Beige Violet 18

Beige White 12

Beige Yellow 14

Black Beige 4

Black Blue 6

Black Brown 24

Black Gray 20

Black Green 18

Black Multicolor_Pattern 8

Black Orange 10

Black Pink 12

Black Red 22

Black Violet 14

Black White 2

Black Yellow 16

Blue Beige 6

Blue Black 8

Blue Brown 10

Blue Gray 12

Blue Orange 2

Blue White 4

Brown Beige 2

Brown Black 16

Brown Blue 10

Brown Gray 12

Brown Green 8

Table 3.7: Color Matching score table for male and female.

 31

Brown Multicolor_Pattern 8

Brown Orange 10

Brown Pink 12

Brown Red 18

Brown Violet 14

Brown White 4

Brown Yellow 6

Gray Beige 24

Gray Black 20

Gray Blue 10

Gray Brown 18

Gray Green 12

Gray Multicolor_Pattern 8

Gray Orange 2

Gray Pink 6

Gray Red 4

Gray Violet 14

Gray White 22

Gray Yellow 16

Green Beige 14

Green Black 12

Green Brown 10

Green Gray 8

Green White 6

Green Yellow 4

Green Blue 2

Multicolor_Pattern Beige 2

Multicolor_Pattern Black 4

Multicolor_Pattern Brown 10

Multicolor_Pattern Gray 8

Multicolor_Pattern White 6

Orange Beige 10

Orange Black 4

Orange Blue 2

Orange Brown 6

Orange Gray 12

Orange White 8

Table 3.7: Color Matching score table for male and female (cont.).

 32

Pink Beige 6

Pink Black 2

Pink Brown 4

Pink Gray 10

Pink White 8

Red Beige 6

Red Black 10

Red Brown 8

Red Gray 4

Red White 2

Violet Beige 8

Violet Black 10

Violet Brown 12

Violet Gray 14

Violet White 4

Violet Yellow 2

Violet Pink 6

White Beige 10

White Black 2

White Blue 12

White Brown 8

White Gray 24

White Green 20

White Multicolor_Pattern 4

White Orange 18

White Pink 16

White Red 6

White Violet 14

White Yellow 22

Yellow Beige 8

Yellow Black 4

Yellow Brown 6

Yellow Gray 10

Yellow Green 12

Yellow Violet 2

Yellow White 14

 Table 3.7: Color Matching score table for male and female (cont.).

 33

3.1.4 Robotium

[Rob] Robotium is a powerful Android test automation tool for both emulator and

real devices. It was applied to run several ClosetStylist’s unit test cases that do not span

over two applications, i.e., when launching the camera app to take pictures of new items

or importing pictures from the gallery, due to the limitation of Robotium. The test cases

include registering, logging in, verifying that the main screen displays correct

information, checking “My Closet”, picking “Outfit of the Day”, managing “Laundry

Bag”, and traversing “Outfit History”.

This tool has been very helpful to catch unexpected behaviors every time our code

was modified, or new features were added. For example, we mistakenly eliminated all top

of the top items while we were tuning our clothes matching algorithm, and Robotium

notified us by asserting the test case.

3.2 ARCHITECTURE

The ClosetStylist design is composed of three main layers: presentation layer,

application layer, and data layer. The layer design is mainly for code reusability and

portability. Thanks to this design, we were able to save to a lot of time and effort when

switching to new UI implementation as described in the following sections. In addition,

multiple design patterns have been applied to provide flexibility to switch between

different services.

Figure 3.2 below shows the top-level architectural design of ClosetStylist.

 34

Presentation

Application

Weather Service

Location Service

ClothesMatching
Service

UI

Data

SQLite
Database

Storage
for

Pictures

Interfaces
Common classes

Enum classes
Helper classes

Figure 3.2: ClosetStylist top-level architecture.

3.2.1 Core

The core code includes common classes, common interfaces, helper classes, and

enum classes that are used to glue different layers together. The purpose of this layer is to

connect different layers through common interfaces and features so that upper layers can

work seamlessly with the information of the lower layers.

3.2.2 Presentation layer

This layer contains the UI and UX modules of the app. The purpose of this layer

is to implement the behavioral logic and to provide good user experience with the app’s

flow as well as look and feel of the app. The design of this layer strictly follows that of

Android design and eases the task of UI update in the future.

 35

We first drafted and implemented our own UI design to verify that it worked with

the backend code. Although the UI was fully functional, it was primitive and was not

well polished to attract users. We decided to hire Ile, a professional UI/UX designer, to

provide consultation on our UX flow and create beautiful UI elements. After UI/UX

design was established, we contracted Truong to write the UI code to create the layout

through XML files, setup event listeners to intercept user’s interaction with the app such

as touching a view, and swiping left to right to access the drawer. We then implemented

the handlers to take the right action when the registered listeners were triggered by user

interaction. The layer design proved to be helpful as we were able to keep most of the

back end code intact when switching our code base to the new UI implementation.

3.2.3 Application layer

The application layer consists of all the services employed in this app, including

the weather service, location service, and clothes matching service. The purpose of this

layer is to implement application logic and provide all the features of the app including

organizing the user’s closet, programmatically suggesting outfits, keeping track of outfit

history, and managing the laundry bag. This layer contains most of the backend work that

we implemented ourselves to send HTTP requests and parse HTTP responses from

weather and location services, to run our matching algorithm, and to interface with the UI

layer above and the data layer below.

3.2.4 Data layer

This layer includes two main components: the storage to store big-size pictures

and the database to store smaller information about the user’s profile, clothing items,

outfit history, and look-up tables for the matching service. The purpose of this layer is to

provide data management for the app. The SD card was chosen over Cloud storage as the

 36

picture storage because we wanted to keep the picture-retrieving latency low to help the

responsiveness of the app. For small information, we used the Android built-in database

SQLite to manage. It should be noted that for each item, only the path to the SD card is

saved in the SQLite of the item table and this is how we can link the information in the

SQLite database and the pictures in SD card.

An overview of the data tables created for the app is shown in Figure 3.3a and

3.3b.

itemData_db

PK _id

 name
 brand
 description
 imageLink
 cropImageLink
 color
 TempMin
 TempMax
 category
 age
 material
 style
 dirty
 wornTime
 maxWornTime

userProfile_db

PK _id

 username
 password
 gender
 zip
 laundrySchedule
 laundryDay
 longtitude
 latitude

outfitHistory_db

PK _id

 Bottom
 Top
 Outer
 Point
 DateTime

Figure 3.3a: Database tables populated during run time.

 37

occasionMatchingMale_db

PK _id

 Category
 Style
 Formal
 Semi_Formal
 Casual
 Day_Out
 Night_Out

pairMatchingMale_db

PK _id

 Bottom
 Top
 Point
 Outer

colorMatchingDefault_db

PK _id

 Bottom
 Top
 Point

pairMatchingFemale_db

PK _id

 Bottom
 Top
 Point
 Outer

occasionMatchingFemale_db

PK _id

 Category
 Style
 Formal
 Semi_Formal
 Casual
 Day_Out
 Night_Out

Figure 3.3b: Database tables for clothes matching algorithm, populated at built time.

3.2.5 Design patterns

[HFDP] shows many design patterns to provide flexibility for future expansion

while keeping closed for code modification. In this section, we describe how some of

these are employed in our design for this app.

3.2.5.1 Factory Method Pattern

This pattern is applied to create different concrete storage types. The SD card is

chosen at the moment for the main storage for pictures, but the design is opened to

replace SD card with another type of storage such as Google App Engine with much of

the code intact because the creator class is written without knowledge of the actual

products that will be created. In other words, the implementation of the product is

decoupled from its use. In addition, a new storage type will not affect the Creator class.

Figure 3.9 follows the Factory Method Pattern defined in [HFDP] to illustrate the

deployment in our app.

 38

+getOutputImageFileUri() : Uri
+getOutputImageFile() : File
+deleteItemImagesFromStorage()
+isFileExist() : bool
+deleteFileIfExist()

<<interface>> StorageInterface

GoogleAppEngineStorage

SDCardStorage

+createStorage() : <<interface>> StorageInterface
+getInstance(in itemData : ItemData) : <<interface>> StorageInterface

StorageFactory

SDCardStorageFactory

GoogleAppEngineStorageFactory

Figure 3.4: Factory Method Pattern for storage.

In Figure 3.4, the abstract Creator class is StorageFactory, and the concrete

Creator classes are SDCardStorageFactory and GoogleAppEngineStorageFactory. The

Product is StorageInterface; the concrete Product classes implementing this interface are

SDCardStorage and GoogleAppEngineStorage; the Factory Method is createStorage.

3.2.5.2 Abstract Factory Pattern

The Clothes Matching service consists of five steps. While steps one and two can

be filtered by querying the database, steps three to five require more complicated

implementation based on gender (limited to male and female for now). Abstract Factory

pattern was applied to provide an interface to create a family of matching steps: occasion

matching, pair matching, color matching. Writing code using this interface helped us

decouple our code from actual factory that created these concrete matching steps (i.e.,

object classes). This also enables us to expand to a variety of genders if we need to in the

future. Once the users register their genders, we can subsequently assign the correct

matching steps. Figure 3.5 and Figure 3.6 follows the Abstract Factory Pattern defined in

[HFDP] to illustrate the deployment in our app.

 39

Figure 3.5: AbstractFactory classes and ConcreteFactory classes of Abstract Factory

Pattern applied in Clothes Matching service.

Figure 3.6: AbstractProduct classes and ConcreteProduct classes of the Abstract Factory

Pattern applied in Clothes Matching service (OccasionMatching,

PairMatching, and ColorMatching classes).

 40

3.2.5.2 Template Pattern

This pattern is applied to the ClothesMatching class to encapsulate the five-step

algorithm described above. ClothesMatchingMale and ClothesMatchingFemale are the

two subclasses of ClothesMatching and we can modify the implementation steps if we

need to tailor our need for each gender. This provides a framework to plug in new

genders in the future. Besides, the algorithm lives in one place (ClothesMatching class),

so it is easy for code change later on. ClothesMatching focuses on the algorithm and lets

subclasses such as ClothesMatchingMale and ClothesMatchingFemale redefine certain

steps of that algorithm without changing the algorithm’s five-step structure.

3.3 CLASS DIAGRAMS

Figure 3.7 displays a simplified class diagram, which consists of the main classes

such as item information, user profile, place record (or location), weather information,

four main UI fragments, and how they are linked together. The UI fragments classes were

designed to decouple as much as possible from the core classes for expansibility and

flexibility. Throughout this project, expansibility and flexibility is always treated as the

highest priority in our design.

 41

Figure 3.7: ClosetStylist class diagram.

 42

Chapter 4 Results

ClosetStylist utilizes both off-the-shelf weather and location technologies together

with our clothes matching algorithms; therefore, it is essential that each one fulfills its

part and works with one another smoothly to provide great user experience. Besides, it is

also important for the app to deliver accurate weather information, provide reasonable

outfit suggestions, and be responsive to users.

4.1 OUTFIT OF THE DAY RESULT

The five-step clothes matching algorithm was considered the most important

feature of the app. Therefore, many different trials were executed to fine-tune this

algorithm until the result was optimal. The tables in each step were used as the knobs to

control the clothes matching service. We tried making the temperature filter dependent on

both style and material by creating temperature filter tables for both style and material.

As we conducted more experiments, the material did not turn out to be an obvious

indicator (as explained above, because we could layer up with multiple clothing pieces);

so we removed the temperature range based on material. In addition, upon realizing that

the list of suggestions did not change significantly among occasion options, we decided

to increase the weight of occasion matching scores. This change proved to be helpful as it

made the algorithm produce similar results as we would have hand-picked the outfits.

Although the app works properly in many scenarios, we are aware of certain

limitations to the algorithm:

 If the closet does not have many items in various styles, the service will

recommend very similar outfits.

 If there are many items in the same style, the algorithm tends to provide the

same suggestion lists for different occasions.

 43

 At the moment, the suggestion list is not much different between these 2 pairs

of occasions: Formal and Semi_Formal, Day_Out and Night_Out.

 When the weather is cold, the outer item is not changed drastically when

traversing through the suggested outfit list.

 Our data tables were created based on two sample sets of wardrobe: a male set

of 24 items and a female set of 86 items. More testing samples are needed to

assure that the algorithm can return optimal results in a wide variety of

clothing inventory.

4.2 DISPLAY PICTURE

Loading images of garments is critical for most of the features of this app.

Displaying the pictures taken by the cell phones bears a lot of unanticipated problems.

Android devices have a limitation as little as 16MB memory for an application due to the

constrained system resource of handheld devices. Rich images taken by cell phones

usually have a size in megabytes and can easily exhaust per-app limit on some devices.

When the bitmap object is loaded, it consumes the entire available memory budget, the

app usually crashes with the following message “java.lang.OutofMemoryError: bitmap

size exceeds VM budget.” To avoid these types of exceptions, images must be processed

before being loaded in the app.

[DAN] provides guidelines and sample code to process images off the UI thread,

and then load them efficiently to the app. We applied the guidelines to sample images

using AsyncTask on a different thread from the UI thread. Once the images were resized,

we displayed the newly processed images on the screen. This allowed us to display a list

of the images in My Closet screen or multiple images in Outfit of the Day screen

smoothly as the user scrolled up and down.

 44

4.3 WEATHER SERVICE AND LOCATION SERVICE

The app uses the location service from geonames [Geo] to find the city and

country based on the current location, and then obtains the weather information from

Open Weather Map service.

The result for location service provided the correct city and country, but the zip

code was not quite exact. However, this result was acceptable for our app because we did

not need exact location with the assumption that the weather within a city did not change

significantly.

Regarding the weather, we compared the temperature returned from the Open

Weather Map service with the weather.com information, and it was within the -5 to +5

Fahrenheit range. This was acceptable because the granularity in our algorithm was

bigger than this.

4.4 SCREENSHOTS

In this section, some screenshots whose mockups were presented earlier are

shown to compare between the original design and the result. There are many factors led

to modifications from the originals, for example, change in design, imperfect pictures of

clothes, etc. All of the changes will be explained in the following.

4.4.1 Login and Registration

Figure 4.1 shows the screenshots of the mockups in Figure 2.9. In the user login

screenshot, the Facebook login was removed because we decided to implement our own

login, and Facebook login is treated as an option to enable certain social features. The

other method we could have chosen was to utilize Facebook login to authorize people

using our app. The decision was made to give users a freedom to opt out of social

 45

features if they want to and also to reduce some features in this first ClosetStylist

prototype.

Figure 4.1: User login and registration screenshots.

In the register mockups, there was a user’s profile picture, which was intended to

be used in the Outfit of the Day screen to help the user visualize the outfit on his or her

body. However, that screen already looked a little busy with too many items, and hence

the profile picture was removed in the registration step.

 46

4.4.2 Main Screen and Side Menu

The screenshots in Figure 4.2 look like their mockups in Figure 2.10, and there

was no change from the original design.

Figure 4.2: Main Screen and Side Menu screenshots.

 47

4.4.3 My Closet and Add Item

Figure 4.3: My Closet and Add Item screenshots.

Compared to their mockups in Figure 2.11, there was some cosmetic change to

the screenshots in Figure 4.3. In My Closet screen, the tabs’ titles were changed to more

generic terms such as “Jacket” to “Outer”, “T-Shirt” to “Top”, while “Shoes” was

omitted as it would be too complex for the first prototype. The fields in Add Item were

re-arranged to fit longer category, style, and material fields.

 48

4.4.4 Outfit of the Day and Laundry bag

Figure 4.4: Outfit of the Day and Laundry bag screenshots.

There were some changes from the screenshots in Figure 4.4 compared to their

counterpart in Figure 2.12. It can be easily noticed that hat, shoes, and user’s profile

picture were omitted from the original design due to limited space on the screen. It was

very complex to scale all items as in the original design because each image could be

taken at different angles and different zoom levels. To simplify our app, some items were

omitted. There was not much change in My Laundry bag.

 49

4.4.5 Outfit History and Outfit Preview

Figure 4.5: Outfit History and Outfit Preview screenshots.

Similar to the change in Figure 4.4, screenshots in Figures 4.5 had the hat, shoes,

and user’s profile picture deleted.

4.5 COSTS AND LEVEL OF EFFORT

During development, GitHub was used as the source control tool, and the project

was left as public to be used for free. Table 4.1 shows the cost of equipment and services

spent on the ClosetStylist app.

 50

Item Costs

Samsung S3 Free

UI/UX Design $150

UI Development $500

Table 4.1: ClosetStylist development costs.

The app was developed from March to August of 2014. The following section

shows how many hours were spent on different aspects of the project:

o 40 hours for architecture design.

o 30 hours for original UI design.

o 10 hours for final UI design.

o 20 for UI development collaboration.

o 260 hours for studying Android, researching, coding, and testing.

o 40 hours for writing the report.

Figure 4.5 shows the result after running CodePro AnalytiX tool [Cpro] against

the multiple metrics. An entry in red means there is some code violation in some

predefined criteria of metric, and there is room for improvement. For example, the

cyclomatic complexity violation simply means the average number of branched keywords

per method such as “if”, “while”, “for”, etc. is above a predefined threshold in the metric.

There is some other basic information about code such as 10427 lines of code were

written in 92 Java files and 39 XML files, the average number of lines per method were

8.74, etc.

 51

Figure 4.6: Metrics with CodePro AnalytiX.

Figure 4.7 shows the foot print of ClosetStylist from the Android Application

Manager, it occupies the total of 4.65 MB memory, of which 4.58 MB is for application

code and 68 KB is for data.

 52

Figure 4.7: Foot print of Closet Stylist.

4.6 LESSONS LEARNED

Android is a very powerful framework, and it takes a lot of time and effort to

master and use it efficiently. Starting to learn Android from the beginning of 2014, I had

encountered quite a few challenges while implementing the app. Nevertheless, as

Android is being used in hundreds of millions of devices, the eco system is huge and it

was often easy to find the solution for problems I was facing as someone else had dealt

 53

with similar problems. Stackoverflow and Android developer websites were my

companions throughout the project.

Git is another new tool I learned in this project. Although I was familiar with

SVN, another source control tool, I decided to learn Git and used it as the source control

for this project. It did take me a lot of time to get used to running Git from command line

because I often worked with TortoiseSVN – a UI tool on Windows systems. [VCG],

which is referenced in Advanced Programming Tool class [APT], is a helpful source with

many good examples. It has helped me tremendously throughout the development

process.

Below are the most highlighted things to do and not to do that I collected after

finishing the first prototype of ClosetStylist:

Dos:

o Use mock data to avoid running out of request quota for location service. I

learned this trick from [APT] while working on MileageRun lab, and this

proved to be helpful to avoid hitting the limit on number of requests per

time unit.

o Design UI/UX carefully to avoid missing any features, especially close to

the release date. Hiring a professional designer to assist you is a great idea

because there are many subtle front-end elements that back-end

developers may consider trivial but could turn out to be quite significant to

users.

o Use Robotium to leverage test efforts. Although this tool has certain

shortcomings as it cannot run test cases such as launching camera app or

gallery app, it is still a very powerful tool that can save you a lot of time

and effort.

 54

o Put more efforts into processing the images taken from built-in camera or

imported from a gallery. Taking pictures of clothes is not as easy as it may

seem, and is time-consuming even with a handy camera phone. We ended

up laying our clothes on the floor and the couch to take pictures, trying not

to catch the shadow in the background. If we want to release this app, we

must figure out a better way to tackle this issue.

Dont’s:

o Couple UI with the backend code. To some degree, the Android

architecture provides a tight coupling between the UI and core. Attention

needs to be paid to avoid this coupling as it will be catastrophic if any

change in UI (which happens quite often) requires a change in backend

code or vice versa.

o Wait until the last minute to integrate social media, especially Facebook.

For a simple post, it is straightforward with the provided sample code. For

customized post including pictures, mastering the sample code and the

APIs is essential. Another problem is their APIs change more often than

their guidance and many samples are obsolete due to deprecated APIs.

Also, beware that their APIs may not be compatible with the latest

development Android version.

o Connect Samsung Galaxy S3 phone to Windows system to run Android

app. Although it was easy to find the driver and configure the phone to

work on the Ubuntu systems, the Windows system was not the same. I

tried different software ranging from the official Kies program from

Samsung to some unofficial software found on Internet but to no avail. It

 55

caused inexplicable errors when I ran the Microsoft C compiler, which is

the build tool I used at work; and I had to re-install Windows.

 56

Chapter 5 Conclusion

5.1 SUMMARY

After six months of development, the first prototype of ClosetStylist app was

completed and met all of the original goals. The architecture was designed with certain

flexibility and extensibility for future work. Some off-the-shelf technologies such as

location service and weather service were integrated to work coherently with our clothes

matching service to deliver the following key features of the app: picking outfit

programmatically based on weather and occasion options, viewing outfit history,

organizing closet, and managing laundry. The clothes matching algorithm provided good

suggestions resulted in nice outfits.

With all that said, the app still leaves a lot to be desired.

 The image processing method needs to be enhanced to provide user with

more edit capability than just cropping.

 Social media needs to be integrated more aggressively than just simply a

login to Facebook such as letting friends vote on the outfits and sharing

them.

 Items such as hat, bags, and shoes are part of a complete outfit and should

be part of the recommendation.

In conclusion, the prototype of the ClosetStylitst app has integrated well with

multiple technologies to implement features that can help people get the most out of what

they already had in their closets. It has laid out a good foundation for future work towards

releasing an official Android app.

 57

5.2 RELATED WORK

There are many fashion apps available but not many of them offer all of the

features of ClosetStylist. [5FADYC] lists some apps that can help to digitize our closets,

and while all of them support iOS, only two of them support Android. The following

section will review the most interesting ones of them and compare with the supported

features in ClosetStylist.

5.2.1 Stylebook

This is an iOS app, and it has the most similar functionalities with our

ClosetStylist app. Their goal is to curate customers wardrobe’s and choose new pieces

that fit into their current closet.

The app provides many neat functionalities: match other pieces in the closet with

a specific top, make quick outfit collage, search for the right items to buy by using

shopping features, mix match different pieces in the outfit editor, suggest which items in

closet should be replaced.

Although our ClosetStylist app offers some similar features, we differentiate from

this app by programmatically suggesting outfits based on the current weather.

5.2.2 Pose

Pose is a tool to keep track of daily outfits and it is available in both iOS and

Android. It is deeply integrated into social networks and resembles Instagram in many

ways, for example, it let users share and discover inspiring looks from other users as well

as your own garments’ pictures.

Although this offers great experience in social networks, it does not provide some

fundamental features of ClosetStylist such as managing laundry bag or suggesting outfit

to wear.

 58

5.2.3 Netrobe

This app is only available in iOS. It offers quite appealing features including

managing clothes, and mixmatching outfits from the garments populated. The

ClosetStylist features lacked in this app are laundry bag maintenance and outfit

suggestion.

5.3 FUTURE WORK

This ClosetStylist prototype serves multiple purposes: prove a concept, learn how

to program Android, learn how to manage a smart phone app project with a professional

UI/UX designer and a UI developer. Although we were successfully developed a

prototype, the features offered at the moment is still a very small subset of the full feature

set that could attract high adoption. Some of them are discussed in the following sections.

5.3.1 Integration with social networks such as Facebook

We were able to login to Facebook, but we did not have enough time to

implement sharing the outfit on Facebook because sharing images of the outfit is a

complicated process. Given that this app requires displaying pictures, Twitter may not be

a good social network to share. Instagram may be a better choice.

Without social media, it is very difficult to promote the app, and that is why this is

the highest priority in our to-do list.

5.3.2 Detect the item’s color automatically

Manually entering color is not too much work, but it would be nice if we can

detect the color of the item and fulfill it automatically. The challenge is with multi-color

items. Another obstacle is how to distinguish between the item and the background.

Although this is a nice feature to have, the effort would be massive unless we can find a

library or tools out there that already support this.

 59

5.3.3 Support more items

Currently, the app can handle regular “Tops” items, such as blouse, shirt, t-shirt,

etc. but not dress. Other things that users would like to put together when going out

including hats, shoes, bags, belts are not supported. These bear a lot of work because not

only displaying them will make the phone screen too crowded but also the algorithm to

choose an outfit will be much more complex. Nevertheless, these are essential to make a

fully functional app.

5.3.4 Add support for travelling

Adding support for travelers to pick the items for their trip is another functionality

that we would like to add in the future. The users will enter their destination or a list of

destinations together with the begin and end dates, and the app will programmatically

suggest the outfits they should pack to be most efficient for their trip based on the

weather forecast at the destinations.

5.3.5 Create app for iOS

Although Android powers about 70 percent of mobile devices, iOS is still a very

big player in this area, especially in terms of money. If we want to make a popular app,

iOS must be supported to bring in customers and generate revenue.

 60

References

 [Amb] "UML 2 Activity Diagramming Guidelines." UML 2 Activity Diagramming

Guidelines. Ed. Scott Ambler. Ambysoft Inc. Web. 23 Oct. 2014.

<http://www.agilemodeling.com/style/activityDiagram.htm>.

 [Bal] "Balsamiq." . Rapid, Effective and Fun Wireframing Software. Balsamiq. Web.

23 Oct. 2014. <http://www.balsamiq.com>.

 [Ecl] "Eclipse Downloads." Eclipse RSS. Eclipse Foundation, 1 Jan. 2004. Web. 23

Oct. 2014. <http://www.eclipse.org/downloads/>.

[SWA] Azzola, Francesco. "Surviving W/ Android." Android Weather App: JSON,

HTTP and Openweathermap. 21 May 2013. Web. 23 Oct. 2014.

<http://www.survivingwithandroid.com/2013/05/build-weather-app-json-http-

android.html>.

[Inv] "Free Web & Mobile (iOS, Android) Prototyping and UI Mockup Tool | InVision."

InVision. InVision. Web. 23 Oct. 2014. <http://www.invisionapp.com/>.

[Geo] "GeoNames." GeoNames. Web. 23 Oct. 2014. <http://www.geonames.org/>.

[Rob] Reda, Renas. "User Scenario Testing for Android." Robotium - The World's

Leading Android™ Test Automation Framework. Google. Web. 23 Oct. 2014.

<https://code.google.com/p/robotium>.

[TCW] Centeno, Antonio. "The Color Wheel – Color Coordination for Men." Real Men

Real Style. RMRS. Web. 23 Oct. 2014. <http://www.realmenrealstyle.com/color-

wheel-color-coordination-men/>.

[HFDP] Elisabeth Freeman , Eric Freeman , Bert Bates , Kathy Sierra, Head First Design

Patterns, O' Reilly & Associates, Inc., 2004

[DAN] "Displaying Bitmaps Efficiently." Android Developers. Google. Web. 23 Oct.

2014. <http://developer.android.com/training/displaying-bitmaps/index.html>.

[Cpro] "Java Developer Tools." CodePro Analytix User Guide. Google. Web. 23 Oct.

2014. <https://developers.google.com/java-dev-tools/codepro/doc/>.

 [5FADYC] "5 Fashion Apps to Digitize Your Closet." Mashable. Mashable, 1 Jan. 2013.

Web. 23 Oct. 2014. <http://mashable.com/2012/07/13/closet-management-apps/>.

[LAAD] Jackson, Wallace. "Exploring Android App Development: The Lingo of

Android and Building Your First Hello World App!" Learn Android App

Development. Berkeley, Calif.: Apress, 2013. Print.

[VCG] Loeliger, Jon, and Matthew McCullough. Version Control with Git. Second ed.

(California): O'Reilly, 2012. Print.

[APT] Aziz, Adnan. "EE382V - Advanced Programming Tools." Advanced

Programming Tools. 1 Aug. 2013. Web. 5 Nov. 2014.

