
 
 
 
 
 

Nutrient dynamics in Minnesota watersheds 
 
 
 
 

A Thesis 
SUBMITTED TO THE FACULTY OF  

UNIVERSITY OF MINNESOTA 
BY 

 
 
 
 

Evelyn Boardman 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR THE DEGREE OF  
MASTER OF SCIENCE 

 
 
 

Jacques Finlay 
 
 
 
 

December 2016 
 

 
 
 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Evelyn Boardman 2016 
 

 
 



 
 

Acknowledgements 

This work and would not have been possible without the support and guidance of Dr. 

Jacques Finlay. Thank you for the many opportunities to learn and explore over the past 

several years. For their input on the research and writing process, I thank the members of 

the Finlay lab group, Dr. Diana Karwan, and Dr. Sarah Hobbie. For support during 

research and writing, I thank the University of Minnesota Department of Ecology, 

Evolution, and Behavior. For their collaboration on bluff area metrics, I thank Dr. Efi 

Foufoula-Georgiou and Mohammad Danesh-Yazdi. For their water quality monitoring 

efforts and correspondence, I thank the Minnesota Pollution Control Agency. 

Additionally, I am grateful to my family and Ryan Sleeper for their love and support. 

i 
 



 
 

Dedication 

This thesis, like every great adventure, is dedicated to the memory of Lucas Richardson. 

ii 
 



 
 

Abstract 

While excess nitrogen (N) and phosphorus (P) from anthropogenic activities are 

known to contribute to the eutrophication of aquatic ecosystems, curbing their inputs 

poses a management challenge due to poorly understood interactions between land cover, 

nutrient inputs, and climate. In chapter 1 we examined nutrient inputs, losses and 

retention in Minnesota watersheds, across a gradient of environmental variables. 

Fertilizer inputs were dominant sources of N and P inputs to agricultural watersheds, 

driving nutrient losses. Greater runoff decreased retention relative to inputs, suggesting 

increasing precipitation and continued hydrological modifications coupled with high 

nutrient inputs will contribute to sustained high rates of nutrient export. In chapter 2 we 

examined the factors controlling concentration-discharge relationships describing P and 

sediment mobilization in agricultural watersheds in Minnesota, assessed via analyses of 

exponents and coefficients of the relationship for 119 sites. These analyses were 

complemented by investigation of drivers of statewide annual P export, in which we 

observed dissolved P made up a significant proportion of annual loads. P and sediment 

were concentrated with greater discharge at most sites. Mean concentrations were 

elevated by anthropogenic land uses, and bluffs were associated with greater 

concentration of particulates. The mobilization of P is highly sensitive to discharge and 

its different forms deserve explicit consideration when managing nutrient losses.
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Chapter 1 
 

The interactive effects of anthropogenic inputs and climate on nutrient loss and 

retention in Minnesota watersheds 

 

Abstract 

Nonpoint source pollution from anthropogenic activities contributes to eutrophication 

of aquatic ecosystems, and poses a management challenge due to poorly understood 

interactions between land cover, nutrient inputs, and climate. We examined nutrient 

inputs, losses and retention in Minnesota watersheds, ranging from predominantly urban 

and agricultural to predominantly forested, across a gradient of environmental variables. 

Anthropogenic inputs were the main driver of nutrient losses in watersheds with high 

nutrient export. Fertilizer inputs were dominant sources of nitrogen (N) and phosphorus 

(P) inputs to agricultural watersheds, exceeding, on average, imported food and feed and 

atmospheric deposition. P retention was high (average 77%) in predominantly urban and 

agricultural watersheds, but losses remained high in absolute terms (average 55 kg/km2). 

N retention was also relatively high with elevated losses in human-dominated watersheds 

overall (average 75% and 1245 kg/km2). Retention decreased and river export increased 

sharply for watersheds with the highest levels of N inputs and runoff. The relationships 

between retention and inputs were nonlinear and modified by runoff, such that greater 

runoff decreased retention relative to inputs. Without effective interventions to control 

nutrient losses from agricultural watersheds, increasing precipitation and continued 

hydrological modifications coupled with high nutrient inputs will contribute to sustained 

high rates of nutrient export and further exacerbate eutrophication impacts. 

 

Introduction 

Anthropogenic nitrogen (N) and phosphorus (P) inputs strongly impact aquatic 

ecosystems by altering nutrient cycles and trophic structure and increasing the abundance 
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of pathogens, diseases, and toxic algae blooms (Carpenter et al. 1999; Dubrovsky et al. 

2010; Baron et al. 2012). Whereas locating and regulating point sources is relatively 

straightforward, nonpoint source pollution is challenging to manage because of its diffuse 

nature and multiple contributors. Agricultural and urban lands are the primary sources of 

nonpoint nutrient loading (Bernhardt et al. 2008; Baron et al. 2012). In addition to 

increased nutrient inputs, pervasive influences of hydrological alterations in these areas 

also impact the export of nutrients from land to water, often leading to increases in 

concentration and loading to downstream waters.  

Managing nutrient cycling in human dominated landscapes is critical toward 

controlling eutrophication, but is limited by current understanding of the landscape and 

climate factors driving changes in N and P loading. General relationships between land 

use/land cover (LULC), nutrient inputs, and water quality are well known (e.g. Walsh et 

al. 2005; Bernhardt et al. 2008). For example, watersheds with high urban and 

agricultural land development have elevated nitrogen and phosphorus concentrations 

compared to undeveloped watersheds (Dubrovsky et al. 2010). However, identifying the 

nonpoint sources of nutrients leading to eutrophication and the environmental factors that 

contribute most to their losses presents a scientific challenge because of complex 

interactions that mediate transport and processing in response to management and climate 

change. Understanding sources of N and P is critical to reducing pollution of downstream 

lakes and oceans. To understand the mechanisms driving relationships between LULC 

and nutrient retention it is important to identify landscape sources and processing in 

channels and water bodies as elements move downstream. 

Differences in the N and P cycles may cause these nutrients to accumulate and 

mobilize differently in watersheds. In an analysis of three large watersheds in the United 

States, United Kingdom, and China, those with more prolonged intensive agricultural use 

exported more P than they received in inputs between 1990 and 2010, suggesting P 

accumulated during periods of over-fertilization will continue to mobilize long after a 

decrease in inputs (Powers et al. 2016). N fluxes were found to respond to fertilizer and 
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manure applications on a much shorter timescale in California, where agricultural inputs 

to a small portion of watersheds were found to be the main driver of variation in N 

concentrations and led to changes to the seasonality of fluxes (Sobota et al. 2009). While 

N accumulated during dry periods in these watersheds, N is much less likely than P to 

adsorb to soils and persist in watersheds over longer periods of time. Quantifying 

watershed nutrient inputs and losses is one approach to understanding how N and P added 

to watersheds relates to riverine export.  

Nutrient budgets have long proven useful to understanding basic processes 

controlling the flow of materials through watersheds. More recently, these methods have 

been applied to landscape-level studies of multiple watersheds to determine the effects of 

anthropogenic fluxes on nutrient export. Net anthropogenic N and P inputs (NANI & 

NAPI) quantify the human contribution to watershed nutrient cycling, by calculating the 

difference between nutrient import (such as fertilizer inputs, imported food, atmospheric 

deposition, etc.) and export (via food and feed production). In agricultural basins, 

anthropogenic nutrient fluxes such as fertilizer, food and feed inputs may be much greater 

than river fluxes (Howarth et al. 2012; Powers et al. 2016). Greater NANI and NAPI 

result in larger pools of nutrients and increased hydrologic mobilization, thus increasing 

N and P export from watersheds (Howarth et al. 2012; Sharpley et al. 2014; Chen et al. 

2015). Although these methods provide detailed accounts of inputs as they relate to 

nutrient export, they are limited in their ability to distinguish the mechanisms underlying 

the wide unexplained variation in observed loads within urban and agricultural 

watersheds. By looking at inputs and export in the context of landscape and climate 

variability, we aimed to explain the drivers of nutrient retention.  

The Midwestern USA has some of the most productive and intensively farmed 

cropland in the world. The Midwest region is also the location of large tracts of protected 

land and an area characterized by gradients in climate, geology, and glacial history. 

Examining nutrients in the context of intra-regional heterogeneity can provide deeper 

insight into the factors that might influence nutrient export and the ways we manage it. 
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The trajectory of agricultural production in Minnesota has followed much of Midwest in 

transitioning from hay and small grain production to corn and soy production at varying 

points between the 1950s and present day (Foufoula-Georgiou et al. 2015). Changes in 

cultivation have been accompanied by different degrees of ditching, tiling, and wetland 

drainage (Schottler et al. 2014; Lark et al. 2015). These factors, combined with natural 

landscape heterogeneity and extensive water quality monitoring data, facilitate examining 

the influence of climate, land use change, and land cover on nutrient movement through 

human influenced watersheds. 

In addition to high nutrient inputs from fertilizer application, hydrologic factors 

interact with land cover to determine nutrient fluxes. Greater proportions of NANI and 

NAPI are exported in years with greater precipitation, especially in watersheds modified 

by agricultural use (Chen et al. 2014; Chen et al. 2015). The combination of increased 

precipitation and artificial drainage has increased stream flows and decreased hydrologic 

transit times in agricultural Minnesota watersheds (Schottler et al. 2014; Foufoula-

Georgiou et al. 2015; Danesh-Yazdi et al. 2016). Tile drains and channel straightening in 

agricultural areas may quickly transport water away from fields with minimal uptake and 

processing of nutrients, especially in years with elevated precipitation. Understanding 

how hydrology modifies N and P cycles is essential to quantifying the effects of other 

landscape variables on watershed nutrient export. 

In this study we sought to determine how land cover, nutrient inputs, and climate 

interact to influence N and P losses in watersheds across Minnesota. The study 

watersheds spanned gradients of agricultural and urban land cover, anthropogenic inputs 

from fertilizer, food, and feed imports, annual runoff, and wetland presence.  

 

Methods 

Study System 

Sixty-three watersheds in Minnesota were sampled by the Metropolitan Council 

(METC) and Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load 
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Monitoring Network (Fig. 1). Together these datasets describe comprehensive 

environmental and LULC gradients. Water samples and flow data were collected 

throughout the year with a focus on snowmelt and storm event sampling (average 35 

samples per year; Minnesota Pollution Control Agency 2016). We averaged annual total 

phosphorus (TP) and total nitrogen (TN) loads for sites with at least two years of data 

between 2007 and 2011, a period with substantial variation in precipitation. This study 

focused on averaged conditions in order to examine watershed mass balances rather than 

sensitivity to interannual variability in climate or antecedent conditions. Loads were 

normalized by watershed area to produce average annual yields.  

 Watersheds also represent a wide variety of land cover, as defined by the National 

Land Cover Dataset (NLCD). Crop cover ranges from 0-91% (average 48%) and urban 

cover ranging from 1-47% (average 6%). Connected lake and wetland cover, defined as 

lakes and wetlands within 100 m of a stream center line, ranged from 0-18% (average 

3%) and 0-56% (average 6%) of watershed area respectively. Annual average 

precipitation and runoff in the watersheds ranged from 0.62 – 0.94 m (average 0.75 m) 

and 0.10 - 0.34 m (average 0.21 m) respectively during the five-year period. Five year 

average annual yields (2007 – 2011) encompassed a period of substantial variation in 

runoff. These conditions represent the typical range of conditions over the past decade, 

including wet and dry years with no multi-year droughts or flooding. 
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Figure 1. Study watersheds, outlined in black, and land cover information (NLCD 
2011). All river monitoring stations were located in Minnesota, and span a broad range 
of environmental conditions. 
 

GIS-Derived Variables 

All watershed analyses were performed using watershed delineations provided by the 

MPCA and METC. The 2011 NLCD was used to determine the proportion of the 

watershed in land cover categories such as crops, pasture or hay, urban, open water, or 

wetland (Homer et al. 2015). The Minnesota Department of Natural Resources (DNR) 

updated National Wetlands Inventory (NWI), where it was complete for southern and 

east-central Minnesota, was used instead of the NLCD to determine the wetland land 

cover (Minnesota Department of Natural Resources 2015; US Fish and Wildlife Service 

2015).  

The NWI and Minnesota DNR updated NWI were used to determine connected 

wetland cover in watersheds. The USGS National Hydrography Dataset (NHD) was used 

to determine the connected lake and pond cover in watersheds. Wetlands and water 

bodies within 100 m of the center line of an NHD perennial stream were considered 

connected to the channel (Powers et al. 2013). One kilometer gridded precipitation data 
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for 2007 – 2011 were downloaded from the PRISM Climate Group (2016) and used to 

determine mean annual precipitation for each watershed. 

 

NANI, NAPI, and Retention 

The NANI Version 3.0.1 and NAPI Version 3.0.1β toolboxes available from 

Cornell University were used to estimate NANI and NAPI for the 63 MPCA monitoring 

sites completely within the boundaries of the United States. Watersheds smaller than 150 

km2, the recommended minimum watershed size for this method of nutrient input 

calculation, were removed from this analysis. This removed mostly small urban sites 

from the dataset. Input data consisted of: (1) National Atmospheric Deposition Program 

(NADP) model outputs, (2) USGS mineral fertilizer input estimations, (3) the USDA 

agricultural census of crops and animals, and (4) the USA Census (Howarth et al. 1996; 

Boyer et al. 2002). This information was used to determine deposition, agricultural and 

non-agricultural fertilizer imports, agricultural N fixation and net food and feed import or 

export (natural biological N fixation, rock weathering, and septic leakage, and permitted 

discharges from point sources such as wastewater treatment plants are not included in 

input estimates). The balance of these components determines NANI. NAPI was 

estimated using the same input data, but assumes minimal atmospheric P deposition. The 

proportion of N and P retained by the watersheds was calculated as follows, in units of 

kg/km2: 
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Figure 2. NANI and NAPI Toolbox inputs, intermediates, and output (modified from 
Hong et al. 2011). In this study, atmospheric deposition data was obtained from NADP 
model outputs, mineral fertilizer inputs were obtained from the USGS, crop and animal 
data were obtained from the USDA, and population data was obtained from the USA 
Census. The sum of these components is used to calculate NANI and NAPI. 
 

Data Analysis 

Nutrient losses and retention were related to climate, environmental, and landscape 

variables calculated using ArcGIS. Candidate explanatory variables included watershed 

land use, annual precipitation and runoff, NANI and NAPI, and fertilizer inputs of 

inorganic N and P. Multiple linear regression was performed JMP Pro 12 (SAS Institute, 

NC, USA). All forms of nutrient export, NAPI, watershed total and connected lake and 

wetland cover were log transformed to meet statistical assumptions. Backwards stepwise 

multiple linear regression variable selection was based on AIC. 

Additionally, we constructed regression trees (RT) to examine the relationships 

between nutrient export & retention using our GIS-derived landscape variables. The 

regression tree approach uses explanatory variables to divide a response variable into 

increasingly homogeneous groups (De’Ath and Fabricius 2000; Borcard et al. 2011). This 
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approach can handle missing values, nonlinear relationships, and variables that are not 

normally distributed. The variance in the sum of squares explained by each split can be 

quantified, as well as the variance explained by the overall model (R2). All analysis was 

performed in R with the rpart package (R Development Core Team 2014; Therneau et al. 

2015). Using the ANOVA method, we overfit each model and pruned the number of 

splits using the one standard error rule in order to ensure the creation of trees with robust 

predictive power (Borcard et al. 2011). We used ANOVA to examine whether each group 

generated by our splits was significantly different. 

 

Results 

Study watersheds had a wide gradient of annual precipitation, land cover, and 

anthropogenic nutrient inputs (Table 1). Nutrient export, nutrient retention, and fertilizer 

inputs also varied across the study area and were highest in southern and western 

Minnesota’s agricultural watersheds (Fig. 3). Retention of N (average 70%) and P 

(average 60%) were high at most sites, but variable (Table 1; Fig. 3). Some watersheds 

retained nearly all NANI and NAPI, while others lost a substantial fraction of net inputs. 

Watershed N and P retention were lowest in mostly undeveloped watersheds in northern 

Minnesota with thin soils and high wetland cover, where export was low (Fig. 3). 

Moderate levels of nutrient retention were observed in southern Minnesota’s highly 

agricultural watersheds, where hydrologic export was high. The highest levels of nutrient 

retention were observed in central and western Minnesota, where exports tended to be 

lower than southern Minnesota but still elevated compared to undeveloped watersheds. 
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Figure 3. Total nitrogen (a) and total phosphorus (b) export (kg/km2) and total 
nitrogen (c) and total phosphorus (d) retention, computed using hydrologic export 
and estimates of net anthropogenic nutrient inputs. 
 

10 
 



 
 
Table 1. Averages and ranges of values for 62 watersheds used for analyses. All 
watersheds had an area greater than 150 km2, and at least two years of water quality data. 

Parameter Units Average Minimum Maximum 
Anthropogenic Nutrient Inputs 

Inorganic Fertilizer N kg/km2 3309 1 7281 
Atmospheric N Deposition kg/km2 3295 1 7281 

Crop N Fixation kg/km2 3279 0 7473 
Net Food and Feed N kg/km2 -3375 -7700 2264 
Inorganic Fertilizer P kg/km2 620 0 1350 
Net Food and Feed P kg/km2 -314 -1002 587 

NANI kg/km2 3461 279 7990 
NAPI kg/km2 289 2 1131 

     
Hydrologic Export 

Average Estimated TN Export kg/km2 921 97 3350 
Average NOx Export kg/km2 636 7 2925 
Average TKN Export kg/km2 268 85 567 

N Retention . 0.71 0.14 0.97 
TKN : NOx . 3.78 0.15 22.77 

Average TP Export kg/km2 44 3 121 
Average DOP Export kg/km2 23 0 82 

Average Estimated PP Export kg/km2 19 2 69 
P Retention . 0.60 -1.75 0.99 
DOP : PP . 1.17 0.23 6.12 

Average TSS Export kg/km2 17518 243 75140 

     
Watershed Area, Runoff, and Precipitation 

Area km2 3831 176 68117 
Average Runoff m 0.21 0.10 0.34 

Average Precipitation m 0.75 0.62 0.94 
Runoff : Precipitation  0.27 0.14 0.48 

     
Land Cover Characteristics 

Cropland % 48 0 91 
Pasture or Hay % 8 0 24 

Urban % 6 1 23 
Forested % 15 0 61 

Connected Lakes % 3 0 17 
Connected Wetlands % 6 0 56 
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Regression Analyses 

Multiple regression analysis highlighted the importance of agricultural inputs and 

runoff in determining N and P export. In a multiple regression analysis, log-transformed 

TN export was best explained by inorganic fertilizer inputs and runoff (Table 2). Log-

transformed TP export was best explained by inorganic fertilizer inputs, runoff, and the 

sum of crop and pasture land as a percentage of watershed area (Table 2). In both cases, 

greater agricultural intensity and runoff both increased N and P export. Agricultural 

inputs resulted in more N and P with the potential to be washed into lakes and streams. 

More precipitation reaching streams via runoff was associated with greater mobilization 

and transport of nutrients.  

Due to a combination of nonlinear responses and highly skewed retention 

distributions, multiple linear regression did not explain as much of the variation in N and 

P retention (Table 2). For example, while N and P hydrologic export tended to increase 

with greater anthropogenic inputs, N and P retention appeared to have threshold 

responses to nutrient inputs (Fig. 4). Log-transformed TN retention was best explained by 

runoff and urban land as a percentage of watershed area while TP retention was best 

explained by the sum of crop and pasture land as a percentage of watershed area and 

runoff. In both regressions, greater runoff was associated with lower retention, likely due 

to the positive influence of runoff on nutrient export described previously.  
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Table 2. Results of multiple regression analyses for total N and P export and retention. 
Candidate variables included NANI and NAPI as well as their components, runoff and 
precipitation, and watershed land cover characteristics. All forms of nutrient export, the 
ratio of DOP to PP, NAPI, watershed total and connected lake and wetland cover were 
log transformed to meet statistical assumptions. NANI and NAPI were not included as 
predictors of retention as they directly contributed to its calculation; however, 
components of these variables were included as potential predictors. 

Dependent Variable n R2 Term Coefficient P-value Cumulative AIC* 

ln(Total N Export) 61 0.87 Inorganic N 
Fertilizer 0.0004 <0.001 99.0 

   
 Runoff 5.86 <0.001 56.8 

   
 Intercept 3.94   

       

ln(Total P Export) 61 0.84 Inorganic P 
Fertilizer 0.0004 <0.001 100.7 

   Crop + Pasture 
Cover 0.02 0.003 95.5 

   
 Runoff 0.31 <0.001 75.9 

   
 Intercept 1.11   

       
ln(Total N 
Retention) 61 0.54 Runoff -4.39 <0.001 46.8 

   
 Urban 0.07 <0.001 29.0 

   
 Intercept 0.11   

       

Total P Retention 61 0.43 Crop + Pasture 
Cover 0.009 <0.001 105.4 

   
 Runoff -3.33 0.001 98.0 

   
 Intercept 0.78   

* AIC values are reported for models that include the previous terms, indicating improvement in the model 
by including an additional term. 
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Figure 4. Bivariate plots of N export and retention vs. NANI and N fertilizer 
inputs and P export and retention vs. NAPI and P fertilizer inputs.  
 

Nitrogen Regression Tree Analyses 

Average TN export partitioned into two groups based on NANI (R2 = 0. 74). Total 

nitrogen export was lowest at sites where NANI was less than 4150 kg/km2 (average TN 

export = 303 kg/km2; Fig. 5). The lowest NANI watersheds were in northern Minnesota 

in areas of high forest and wetland cover and minimal inorganic fertilizer inputs (Fig. 5). 

Some sites with higher anthropogenic activity in western and southern Minnesota also 

fell into this category. 

TN export was higher in sites where NANI was greater than 4150 kg/km2 (average 

TN export = 1,860 kg/km2; Fig. 5). Sites with the highest NANI were highly agricultural 

watersheds in southern Minnesota. Within this group, fertilizer inputs were much greater 

than inputs from other sources. 
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a) 

 

b) 

  

Figure 5. a) Regression tree for TN export, partitioned into two groups: (1) Low 
NANI and (2) High NANI. b) Bivariate plot of TN export and NANI showing the 
partition between the two groups. Groups were significantly different (p < 0.05). 

 

TN retention partitioned into two groups based on N fertilizer application (R2 = 0.46). 

Watersheds with low N fertilizer application (i.e. less than 155 kg/km2) had lower and 

highly variable levels of N retention (average TN retention = 40% in sites with low 

fertilizer application compared to 75% in the higher fertilizer application group; Fig. 6). 

Estimates of retention for northern Minnesota sites were surprisingly low relative to the 

rest of the state, given their low total N exports (average TN export = 222 kg/km2 in sites 

with low fertilizer application compared to 1085 kg/km2 in the higher fertilizer 

application group). The dominant form of N inputs where fertilizer inputs were low was 

atmospheric deposition (Appendix 2). 

Of the sites with inorganic N fertilizer inputs greater than 155 kg/km2, all but three 

had application rates greater than 1000 kg/km2. The sites in the higher fertilizer group 

had higher urban and agricultural land use than those in the lower fertilizer group 

(average 4% urban and agricultural land in the low fertilizer group and 73% in the higher 
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fertilizer group; Fig. 6). In this group, N retention ranged from 45 to 93%, and variation 

in N inputs and runoff were important in determining retention (Table 2, Fig. 9). For 

example, sites with moderate levels of fertilizer application had higher retention than 

those with the highest levels (Fig. 6b).  

a) 
 

 

b) 

 

Figure 6. a) Regression tree for N retention, partitioned into two groups: (1) low 
inorganic N fertilizer and (2) high inorganic N fertilizer. b) Bivariate plot of TN 
retention and N fertilizer inputs showing the partition between the two groups. Groups 
are significantly different (p < 0.05). 

 

Phosphorus Regression Tree Analyses 

Total P export was partitioned into three groups based on inorganic P fertilizer (R2 = 

0.71). Watersheds with P fertilization less than 448 kg/km2 had lower P export than those 

with greater fertilizer inputs (average TP export in the lowest fertilizer application group 

= 14 kg/km2; Fig. 7). Sites with lower fertilizer inputs were mainly wetland-dominated 

watersheds in northern Minnesota with low inputs and low export.  

Sites with P fertilization in the 448 – 869 kg/km2 range had higher export, and sites 

with P fertilization greater than 869 kg/km2 had the highest export (average TP export = 
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43 and 78 respectively; Fig. 7). The sites with the highest fertilizer input and export were 

highly agricultural watersheds in the southern half of Minnesota. In findings consistent 

with our multiple regression analysis, fertilizer inputs and agricultural intensity were 

positively related to greater P export. 

 
a)  b) 

 
Figure 7. a) Regression tree for TP export, partitioned into three groups: (1) low 
inorganic P fertilizer; (2) moderate fertilizer; and (3) high fertilizer. b) Bivariate plot of 
TP export and P fertilizer inputs showing the partitions between the three groups. 
Groups are significantly different (p < 0.05). 
 

Total P retention was partitioned into two groups based on inorganic P fertilizer 

inputs (R2 = 0.51). P retention was low but highly variable at sites with inorganic P 

fertilization less than 29 kg/km2 (average P retention = -0.35; Fig. 8). All of these sites 

were wetland and forest-dominated sites in northern Minnesota that had low P inputs and 

exports, which resulted in low calculated P retention (average TP export = 13 kg/km2 in 

the group with low fertilizer application and 50 kg/km2 in the higher application group). 

As with N retention, losses of P from natural sources that were not accounted for in the 

NAPI calculations lead to high variability in P retention. At sites with P fertilization 

greater than 29 kg/km2, which included major agricultural areas, retention was uniformly 
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high but hydrologic exports were high as well (average TP retention = 0.79; Fig. 8). An 

average of 21% of NAPI was exported as TP (16% when three outliers are excluded).  

 
a)  

 

b) 

 
Figure 8. a) Regression tree for P retention, partitioned into two groups: (1) inorganic 
P fertilizer inputs less than 35 kg/km2 and (2) inputs greater than 35 kg/km2. b) 
Bivariate plot of TP retention and P fertilizer inputs showing the partition between the 
two groups. Groups were significantly different (p < 0.05). 

 

Discussion 

Across gradients in human impacts and natural landscape features, our results 

demonstrate that nutrient transport and retention is driven by a combination of 

anthropogenic inputs and environmental variables. In highly agricultural and urban 

watersheds, high losses are driven by high anthropogenic inputs. The relationship 

between nutrient inputs and retention was nonlinear and modified by watershed runoff. 

The similarities and contrasts in the factors driving N and P retention in Minnesota’s 

watersheds provide insight into current nutrient management activities and future 

challenges in the face of climate and land cover change. 
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Nitrogen Transport and Retention 

Total N export was strongly influenced by anthropogenic inputs and runoff. N export 

was greater from watersheds with higher fertilizer inputs and more N was lost from 

watersheds with higher runoff. Higher export from sites with higher fertilizer inputs 

confirms observations from the United States, Europe, and China that intensive 

agriculture and fertilizer application reduce a watershed’s ability to retain N (Howarth et 

al. 2012; Chen et al. 2014). However, the variability in retention suggests modifiers 

beyond just inputs to the landscape are important to explaining N losses. Factors such as 

timing of storms in relation to fertilizer application seasonality of plant growth could 

affect the amount of N that gets flushed from watersheds. Agricultural practices and crop 

types have also been shown to influence the amount of excess N in agricultural fields, 

and thus the amount that might be washed into waterways. Corn-soybean systems relying 

on fertilizer and fields managed with less crop rotation had more excess nitrogen than 

those relying on biological nitrogen fixation and those with more complex crop rotation 

strategies (Blesh and Drinkwater 2013). Landscape features, such as lakes and wetlands, 

may also retain water and nutrients. 

Higher runoff was associated with higher export and lower N retention across all 

sites, but the effect of runoff differed between sites with high and low anthropogenic 

influence. Runoff was positively related to export at sites with higher NANI, but not at 

those with low NANI (Fig. 9). Runoff was associated with a decrease in N retention at 

both high and low levels of fertilizer inputs, but the intercept was lower and slope steeper 

than for sites with high levels of fertilizer inputs. These results demonstrate a critical 

interaction between climate, management and watershed N losses. 

The interaction between the timing and amount of precipitation and the hydrological 

configuration of the watershed determine runoff, but annual nutrient yield and runoff 

metrics mask much of the variability related to the timing of nutrient export. For instance, 

lakes have been shown to reduce interannual variability in total N and total P export in 

wet vs. drought years for agricultural watersheds (Powers et al. 2013). Waterbodies are 
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more likely to be altered or disconnected in developed watersheds (Steele and Heffernan 

2013). Fewer waterbodies, coupled with documented higher and faster flows in 

Minnesota, reduce time for nutrient processing and make hydrologic export more 

sensitive to flow (Schottler et al. 2014; Danesh-Yazdi et al. 2016). The presence of lakes 

and wetlands in northern Minnesota may reduce the flow sensitivity of N export by 

slowing flows in comparison to sites with significant anthropogenic modification of 

hydrologic pathways, such as storm drains, ditches and tile drainage.  

 

a)                                                                        b) 

 

Figure 9. Plots of a) N export vs. runoff in sites with high (triangles) and low (circles) 
NANI (see Fig. 5 for groups) with regression lines and the regression line for the 
combined dataset (dashed) and b) N retention vs. runoff in sites with high (triangles) and 
low (circles) NANI (see Fig. 6 for groups) with regression lines and the regression line 
for the combined dataset (dashed). 
 

In northern Minnesota, anthropogenic inputs were low, yet retention was also low 

across a range of annual runoff conditions. One explanation for this pattern is that natural 

sources of N, such as biological N fixation, are not accounted for in NANI calculations, 

and lead to lower estimates of retention in sites with the lowest NANI (Sobota et al. 

2013). The relatively few measurements of N fixation in similar areas of northern 
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Minnesota suggest N inputs from fixation from between 0.5 kg N ha-1 yr-1 in an acidic 

bog to 1.82 kg N ha-1 yr-1 in a fen with greater alder coverage (Urban and Eisenreich 

1988; Hill et al. 2016). Thus, N fixation cannot completely account for the low N 

retention in the northern, wetland dominated sites. 

Low N retention in northern MN watersheds was likely due to relatively high losses 

of organic N, which are less tightly controlled by ecosystem processes compared to 

inorganic N (Neff et al. 2003). Organic N represents a greater fraction of total N fluxes in 

watersheds with high wetland cover, such as those in northern Minnesota, compared to 

those lacking substantial wetland coverage (Pellerin et al. 2004). Inorganic N in lakes of 

northern MN contribute less than 30% of total N in oligotrophic lakes, 14-50% in other 

lakes, and less than 10% in a reservoir (Urban and Eisenreich 1988; Axler et al. 1994; 

Johnston et al. 2001). Streams and rivers are similarly dominated by organic N (Sterner et 

al. 2007). Finally, although we were unable to directly estimate organic N, NO3 losses 

were low (unpublished analyses), further supporting dominance of organic over inorganic 

N forms. Thus, production and transport of organic N in wetlands likely represents a 

source of N that is less bioavailable for plants and microbes, and likely accounts for the 

observed low retention of N in northern watersheds. 

 

Phosphorus Transport and Retention 

As with TN export and retention, TP export and retention were strongly dependent on 

agricultural intensity. The sites with low fertilizer inputs and low crop and pasture cover 

had low export while increasing fertilizer and crop and pasture cover were associated 

with greater TP export. Greater runoff appears to mobilize more P and increase export, 

decreasing retention. As with N retention, P retention was higher at sites with greater 

agricultural intensity and fertilizer inputs. 

Hydrologic changes in agricultural areas may increase P export by modifying runoff. 

Recent increases in precipitation and tile drain installations may promote the efficient 

transport of water away from fields, reducing time for P sorption and processing in soils 

21 
 



 
 
and natural channels (Schottler et al. 2014; Foufoula-Georgiou et al. 2015). Tile drainage 

is sensitive to climate, with greater flows and nutrient export in years with greater 

precipitation (Christianson and Harmel 2015). A study of P export from tile drained 

watersheds in Indiana found approximately half of TP losses originated in tile drain 

discharge, which remains linked to surface runoff via macropore flow (Smith et al. 2014). 

This suggests agricultural drainage systems are transporting larger P loads through faster 

flows compared to watersheds with more infiltration through soils and heterogeneous 

natural channels. These hydrologic changes can further alter nutrient cycles in 

agricultural watersheds to interactively increase nutrient export. 

Phosphorus retention was uniformly high in all watersheds except for those in 

northern Minnesota with very low anthropogenic activity and four notable outliers in 

human dominated watersheds: the Cedar, Shell Rock, and Marsh rivers, as well as Carver 

creek. Most of the land cover (76-95%) in northern Minnesota watersheds was forest, 

waterbodies, and wetlands. As with N retention, the inputs and hydrologic export of P in 

these watersheds were consistently low, leading to some error in retention calculations 

which only consider anthropogenic inputs and exclude weathering inputs. The Cedar and 

Shell Rock rivers have high permitted discharge contributions of TP from the Austin and 

Albert Lea wastewater treatment plants, discussed in detail below. Significant urban land 

use in Carver creek and the Shell Rock and Cedar rivers (9-12%) also suggest human 

sewage may be contributing to septic exports to these waterways. Additionally, these 

outlier watersheds have high crop production and therefore export more food and feed 

than they import, which lowers their NAPI in relation to runoff. 

Phosphorus retention in both the agricultural and mixed urban-agricultural watersheds 

considered in this study was uniformly high, except for the outliers described above. 

These P retention findings are consistent with previous studies finding high P retention in 

human-dominated watersheds. In the Chesapeake Bay area, Lake Michigan and Lake 

Erie watersheds, and Central California, 5-10 % of NAPI was exported via rivers (Russell 

et al. 2008; Han et al. 2009; Sobota et al. 2009), while 35 % of net inputs occurred in the 
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Illinois River where wastewater treatment plant effluent was a major source (David and 

Gentry 2000).  

Permitted discharges are not explicitly considered in NAPI calculations as these 

exports ultimately originate as, and are represented by, food and feed inputs (Chen et al. 

2015). However, the proximity of point sources to river outlets likely enhances their 

influence on watershed P export. Using data obtained from the MPCA, we calculated the 

average N and P discharge from all permitted facility point source discharges for 

watersheds completely in Minnesota between 2007 and 2011 and found they were on 

average a small proportion of annual river export (N = 4%; P = 9.5%). The Shell Rock 

and Cedar Rivers stood out as outliers with permitted discharges at 55 and 59% of annual 

P export respectively, which likely contributed to the lower retention compared to other 

similar agricultural watersheds. As a small proportion of NAPI is exported each year and 

a small fraction of this is from permitted sources, nonpoint nutrient sources of nutrients 

are the main driver of nutrient loads in almost all watersheds. 

 

Implications for Management of Nutrient Retention  

Our results underscore the importance of reducing nutrient inputs to achieve lower N 

and P exports. Nutrient management by farms to optimize rates and types of fertilizer and 

manure applied, treating and managing water released by tile drains, and managing 

vegetation (e.g. planting cover crops or perennials to reduce soil and nutrient losses, 

genetic modification of crops) to require less fertilizer while maintaining crop yields 

could all reduce NANI and NAPI (Minnesota Pollution Control Agency 2013). Farms 

that relied on biological nitrogen fixation and crop rotations to maintain productivity had 

lower N surpluses than those which relied on fertilizer N (Blesh and Drinkwater 2013). 

Fertilizer is the largest N import in agricultural areas and higher NANI is associated with 

lower N retention in developed watersheds (Howarth et al. 2012). In our watersheds, 

inorganic fertilizer was almost always the largest NAPI component where there was 

significant agricultural activity (i.e. crop cover > 20%), although food and feed imports 
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were important in some watersheds with higher urban land use and livestock impacts. 

Manure P exceeded inorganic P fertilizer for three sites with agricultural land covering 

over 20% of watershed area. Continued attention to strategies that minimize excess 

fertilizer application and maximize N and P removal in crops would increase nutrient 

retention (e.g. Dodd and Sharpley 2016; McIsaac et al. 2016). 

Hydrological and biogeochemical processes are often intertwined, but landscape 

features connected to flowpaths may affect the two differently. For instance, wetland 

connectivity has been shown to decrease P loads downstream, but can increase P 

concentrations because of reduced runoff, anoxic release of dissolved P, and particulate P 

losses (Zhang et al. 2012; Dupas et al. 2015). Increased discharge may flush more N and 

P out of terrestrial and into aquatic ecosystems. High discharge also decreases residence 

time in water bodies and contact time with sediments (Han et al. 2009). Thus, it is 

essential to include not only the wetland cover present in the watershed, but how those 

wetlands are connected and configured, to understand variability in watershed N and P 

retention. The interactive effects of hydrology and chemistry could amplify or dampen 

the effects of either process alone on nutrient retention. 

Even wetlands seemingly disconnected from surface waters may still be connected to 

groundwater. The USGS has predicted groundwater nitrate concentrations using wetland 

cover and soil organic carbon to model removal via denitrification (Dubrovsky et al. 

2010). Watersheds with high inputs of N to the groundwater and little removal via 

wetlands may have harmful concentrations of nitrate in drinking water. Depending on the 

degree of connection between surface and groundwater, high nitrate groundwater may 

also contribute to greater concentrations and export in streams. 

 

Consequences of Land Cover and Climate Change 

Lag effects in the relationship between nutrient inputs and river export should also be 

taken into consideration when evaluating nutrient management or assessing the effect of 

land cover change. N fluxes from a watershed in China have been shown to be 
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significantly related to the previous 7 years of NANI and are thought to receive inputs 

from soil that are not considered in NANI calculations (Chen et al. 2014). Work in the 

same watershed estimated legacy P at 8-58% of annual TP export and suggested the 

reason for the exponential relationship between NAPI and TP export may be due to P 

saturation from past inputs (Haygarth et al. 2014; Chen et al. 2015). It may take years or 

even decades before reductions in nutrients or other strategies to increase retention, such 

as wetland restoration, are fully effective (Ulén et al. 2015). Conversely, there may be a 

lag between the timing of increased nutrient inputs or changes to the landscape and 

worsening water quality. 

To better understand the trends in P accumulation over time and the potential effects 

of historical inputs on current losses, we examined past P fertilizer inputs to the study 

watersheds. Using USDA agricultural census data, we estimated historic fertilizer inputs 

using methods modified from the work of Dietz et al. (2015). We used county-level areas 

of corn, wheat, and soy planted multiplied by fertilization rate data. Fertilizer inputs have 

fluctuated but remained high in most watersheds included in this study, increasing, 

stabilizing or decreasing depending on location and land use (Fig. 10). Watersheds near 

the Twin Cities metropolitan area especially show decreases in fertilizer inputs as land 

use has transitioned from agricultural to suburban and urban land use (Fig. 10 c & f). 

Fertilization and P accumulation, particularly in southern and western Minnesota, show 

few signs of the major declines that would be necessary to begin depleting P stores in the 

landscape (Fig. 10 a-b & d-e). 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Figure 10. Representative plots showing watersheds with fluctuating fertilizer P inputs 
that remain relatively high with stable agricultural land cover, increase over time due to 
agricultural intensification, and decrease over time due to urbanization. Plots show 
annual estimates of inorganic P fertilizer inputs (a-c) and cumulative P fertilizer inputs 
(d-f) for the Le Sueur River (a,d), Marsh River (b,e), and Sand Creek (c,f) from 1972 – 
2011. 
 

Recent observations have suggested watersheds go through stages of equilibrium 

between P inputs and outputs, P accumulation where inputs are greater than outputs, and 

depletion characterized by sustained high outputs after inputs have declined (Haygarth et 

al. 2014; Powers et al. 2016). Our estimates of past fertilizer inputs suggest in most 

watersheds we studied, they have fluctuated over time but have not significantly 

decreased, in contrast to watersheds which have experienced declines in P fertilization 

and now have greater export than inputs due to this legacy of accumulation (Powers et al. 

2016). Following crop price increases due to greater demand for biofuels between 2008 
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and 2012, Minnesota converted more wetlands to cropland than any state in the US, with 

the highest rates of conversion in central and western Minnesota (Lark et al. 2015). 

Because of the sensitivity of nutrient export and retention to agricultural nutrient inputs 

and high rates of land conversion in the watersheds that retained the most N and P in our 

analyses, our results indicate more N and P of all forms could be lost from watersheds as 

wetlands are drained. Conversion of wetlands to cropland would increase the land area 

receiving N and P fertilizer inputs. In watersheds with significant human presence, 

nutrient export increases with more intensive agriculture. Wetlands are also likely 

important to nutrient retention beyond just having low inputs, either for slowing reducing 

runoff, trapping nutrients, or acting as biogeochemical reactors. Therefore, continued 

conversion of wetlands to crops is likely to result in water quality deterioration. 

 

Conclusions 

Anthropogenic inputs, especially of fertilizer, coupled with hydrologic drivers are 

important to determining N and P losses from in Minnesota watersheds. By examining 

inputs and export in the context of landscape and climate variability, we quantified the 

effects of agricultural intensity on N and P losses and retention across a gradient of land 

use and precipitation. While retention was high in urban and some agricultural 

watersheds, losses were also high in the most intensively managed areas, responding 

strongly to greater fertilizer application and runoff. This suggests there may be an optimal 

level of nutrient inputs that allow for agricultural productivity while retaining the added 

nutrients. Climate change and agricultural intensification in watersheds with high nutrient 

retention threaten to increase nutrient losses throughout the state. Further exploration of 

the factors affecting nutrient retention can aid in directing management strategies toward 

a sensible combination of nutrient input reduction, flow retention and infiltration, and 

promotion of biogeochemical reactions. 
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Chapter 2 
 

P and sediment dynamics in highly agricultural watersheds 

 

Abstract 

Excessive nutrient loading from agricultural watersheds is the dominant contributor to 

eutrophication in Minnesota and the Gulf of Mexico. While excess phosphorus (P) is 

known to contribute to this problem, P poses a management challenge because of 

difficulties tracing its source and curbing hydrologic losses of both its particulate and 

dissolved forms. We examined the factors controlling annual watershed P losses for 62 

sites, and concentration-discharge relationships that describe P and sediment mobilization 

in streams of primarily agricultural regions in southern and western Minnesota for 119 

sites. The exponent, or slope, of the concentration-discharge relationship describes the 

rate of change in concentration per unit change in discharge, while the coefficient, or 

vertical offset, of the relationship defines the center of mass of the data determined by the 

supply of P and water. Particulate and dissolved P both made up a significant proportion 

of annual export, suggesting the importance of managing both forms of P. Agricultural 

and urban land cover were significantly related to particulate and dissolved P 

concentration-discharge coefficients, showing anthropogenic activities elevate mean P 

concentrations. The presence of bluffs, produced by rapid downcutting of stream 

channels during the Holocene, was associated with high particulate concentration-

discharge exponents showing small near channel areas are highly sensitive to flow 

conditions and represent major sources of sediment and PP. Lakes and permitted 

discharges were associated with more variable concentrations across different levels of 

discharge, resulting in diluting and chemostatic relationships with flow. The unique 

factors determining dissolved and particulate P export deserve explicit and sometimes 

different consideration within management strategies to reduce nutrient losses. 
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Introduction 

Decades of study on the lake and watershed conditions that promote algal blooms and 

other aspects of eutrophication have shed light on the sources of phosphorus (P) that 

contribute to excessive nutrient loading (e.g. Carpenter and N. F. Caraco, D. L. Correll, 

R. W. Howarth, A. N. Sharpley 1998; Sharpley et al. 2014; Christianson et al. 2016). P 

concentrations are highest in areas with agricultural and urban land use, and losses of 

nutrients from nonpoint sources have not often decreased in response to conservation 

efforts in the United States (Dubrovsky et al. 2010; García et al. 2016). Despite large 

investments in improving water quality in lakes and rivers, eutrophication problems 

persist.  

The upper Midwest is a heterogeneous landscape comprising important source areas 

of P, including agriculture and urban centers, as well as natural features such as forests, 

lakes and wetlands. Fertilizer and manure are well documented as primary sources of P in 

agricultural watersheds, but in urban areas a combination of point source wastewater 

inputs and nonpoint source runoff have historically contributed to high nutrient export 

(Carpenter et al. 1998; Han et al. 2011; Sharpley et al. 2014; Chen et al. 2015). 

Investments in improved wastewater treatment and regulations on residential fertilizer 

use have reduced the point and nonpoint source P contributions to Minnesota’s 

waterways (Barr Engineering Company 2004; Hargan et al. 2011). However, current and 

historical agricultural P inputs remain a significant contributor to hydrologic P losses. 

Minnesota, like much of the upper Midwest, has diverse land use, climate and glacial 

history, all of which may influence P transport from land to water. The driftless region in 

the southeast corner of Minnesota was not glaciated during the last ice age (Syverson and 

Colgan 2011). Watersheds in this area have knickzones at the boundary of glaciated and 

unglaciated areas with high contributions of sediment from near-channel terraces 

downstream (Stout et al. 2014). The Red River Basin in northwestern Minnesota is 

characterized by fine lake bed sediments from glacial Lake Aggasiz which contribute to 

high silt loads in some of the watershed’s low gradient streams, especially those with 
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lower lake and wetland cover (Stoner et al. 1993). The Minnesota River Basin, which 

was largely glaciated, rapidly downcut when Lake Agassiz drained, and continues to have 

high rates of erosion from knickzones and bluffs as a result (Engstrom et al. 2009; 

Belmont et al. 2011).  

Sediment has long been emphasized as the primary vehicle for the transport of P and 

cycling of P in lakes and streams (e.g. Dodd and Sharpley 2016). When P is applied to 

fields, it can rapidly adsorb to soils and remain there for long periods of time (Sharpley et 

al. 2014). Since the 1850s, the primary source of sediment to the Mississippi River has 

shifted from field erosion to bank and bluff erosion (Belmont et al. 2011). Grundtner et 

al. (2014) found sediment P in the Mississippi River’s Lake Pepin originated in the 

transport of fine particles from stream banks prior to 1850, but afterward only from 

sediments enriched by historic pollution. Increases in sediment total P in Mississippi 

River’s Lake Pepin since European settlement have been attributed to historic fertilizer 

application, corn-soy crop cultivation, wastewater treatment discharges, and increases in 

river flows (Engstrom et al. 2009; Mulla and Sekely 2009). Losses of sediment and P 

remain high despite investments in best management practices to control soil erosion 

(Heathcote et al. 2013).  

Dissolved P has been shown to contribute significantly to total P losses in some 

watersheds, but has received less management focus than particulate P (e.g. Gentry et al. 

2007; Kröger et al. 2013; King et al. 2014). Phosphorus is usually measured as total 

phosphorus (TP) and dissolved forms of P, such as soluble reactive phosphorus (SRP) 

and orthophosphate (OP). Most of the dissolved P pool consists of OP , which is readily 

available for uptake by organisms (Sharpley and Withers 1994). TP includes less-

available forms of P, such as particulate P (PP). Dissolved P losses have been attributed 

to a number of sources, including fertilizer inputs, sewage point sources, natural 

weathering, and plant residues (Hansen et al. 2000; Harrison et al. 2005; Jacobson et al. 

2006). There is no current consensus on the factors controlling the form and quantity of P 

exported from agricultural watersheds. 
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Watershed runoff is important to determining the amount and timing of nutrient 

losses, and is influenced by changes in climate and land use (Kalkhoff et al. 2016). 

Precipitation patterns and landscape features interact to determine the timing and quantity 

of streamflow. Land use in southern Minnesota has shifted from hay and small grain 

cultivation to corn and soy cultivations during the 20th century, with accompanying 

increases in watershed ditching and tiling (Foufoula-Georgiou et al. 2015). These 

changes have been linked to changes in rainfall-runoff relationships such as sharper rising 

limbs on hydrographs, altered peak flows, and increases in annual water yields (Rahman 

et al. 2014; Schottler et al. 2014; Foufoula-Georgiou et al. 2015). The combination of 

agricultural drainage and increased precipitation have resulted in streamflow increases in 

southern Minnesota’s agricultural watersheds (Schottler et al. 2014; Foufoula-Georgiou 

et al. 2015). How nutrient concentrations will respond to changes in discharge and land 

use is unknown. 

Nutrient and sediment concentration-discharge relationships describe the relationship 

between the concentration of particulates and solutes across varying levels of discharge. 

These relationships have been used to infer the source of weathering products and 

nutrients elevated by anthropogenic activities, as well as the conditions which mobilize 

them (Godsey et al. 2009; Thompson et al. 2011). These relationships are often described 

by the power function equation [ ] where a describes the vertical offset of the 

curve and b describes the per-unit increase in concentration as discharge increases (Fig. 

11; Godsey et al. 2009). Concentrating relationships (b > 0) imply higher flows are 

mobilizing more of a water-borne constituent, particularly through erosion or greater 

landscape connectivity. Diluting relationships (b < 0) suggest relatively consistent inputs 

are diluted by greater discharge (Godsey et al. 2009). Chemostatic relationships (b = 0) 

suggest no significant change in concentration across a range of discharge, a pattern 

observed for mineral weathering products, total nitrogen, and total phosphorus (Godsey 

et al. 2009; Basu et al. 2010). 
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This study investigated the factors controlling P and sediment dynamics in 

predominantly agricultural watersheds, using concentration-discharge relationships to 

gain insight into the controls on P and sediment mobilization. We examined climate and 

landscape conditions to explain variation in the coefficients and exponents of the 

concentration-discharge equations and annual P and sediment export. We hypothesized 

land cover and nutrient inputs would be related to P concentration-discharge 

relationships, but expected different factors may be important to determining dissolved 

vs. particulate P dynamics. 

 

 
Figure 11. The power functions for concentration-discharge relationships for 
different constituents may generally follow one of three patterns: concentrating 
(dotted; exponent > 0), diluting (dashed; exponent < 0), or chemostatic (solid; 
exponent not significantly different from 0). 
  

Methods 

Concentration-Discharge Relationships 

We obtained concentration and mean daily discharge data from 119 sites primarily in 

southern and western Minnesota monitored by the Minnesota Pollution Control Agency 

(MPCA) as part of their Watershed Pollutant Load Monitoring Network. Water samples 

and flow data are collected throughout the year at major watershed sites (area greater than 
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1350 mi2) and during the period of ice-out through October 31st at subwatershed sites 

(MPCA 2016). For each parameter, 10-15% of sites in our database had no winter 

sampling. One TP site and three OP and PP sites were sampled in the spring and summer 

only. Sampling efforts focus on snowmelt and storm events, resulting in observations 

distributed across the range of flows observed at each site (average samples per year = 25 

for subwatersheds and 35 for major watersheds; MPCA 2016). The dataset includes 

172,517 observations collected between 2000 and 2016 (Fig. 12). We selected 116 sites 

where cultivation of crops, pasture, or hay was the predominant land use and three 

predominantly wetland and forest sites for comparison. For 108 sites, agricultural land 

use accounted for over 50% of the watershed, allowing us to focus analyses on 

identifying sources of P and the factors controlling its export in agricultural areas. 

Primarily urban sites were not the focus of this monitoring, and thus were not included in 

our dataset. The agricultural watersheds had significant variation in agricultural intensity, 

lake and wetland cover, point discharges of wastewater, and geomorphology. 

We matched constituent concentrations of total phosphorus (TP), orthophosphate-

phosphorus (OP), estimated particulate phosphorus (PP), total suspended solids (TSS), 

and volatile suspended solids (VSS) with mean daily discharge on the date of sampling 

and ran regressions on log-transformed variables to obtain the concentration-discharge 

relationship at all sites with at least 25 matched observations (Table 3). PP was estimated 

as the difference between TP and OP. For the rating curve equation relating concentration 

(C) and discharge (Q): 

[ ]    Equation 1 

the curve’s coefficient (a) and exponent (b) tend to be inversely correlated and not 

independent from one another (Warrick 2015). Therefore, we used the form of the rating 

curve equation recommended by Warrick (2015) where the daily discharge (Q) is divided 

by the geometric mean of daily discharge (QGM) corresponding to each sampled date at a 

site: 

[ ]   Equation 2 
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Using this form of the equation the vertical offset of the curve (â) is equal to the center of 

mass of the data and is an indicator of nutrient, sediment, and water supply. This allowed 

us to examine the concentration coincident with the geometric mean of discharge in the 

context of environmental variables. 

We used linear regressions on log-transformed concentrations and log-transformed 

normalized discharge to characterize the concentration-discharge relationships. These 

analyses were done in R, by fitting the equation recommended by Warrick (2015):  

  Equation 3 

We evaluated whether the concentration-discharge relationships exhibited a significant 

trend using the p-value of the exponent (b). Sites with a significant positive exponent (p < 

0.05) were classified as concentrating. Sites with a significant negative exponent (p < 

0.05) were classified as diluting. Sites where the exponent was not significant (p > 0.05) 

were classified as chemostatic. We also performed linear regressions on log-transformed 

PP:TSS and VSS:TSS versus log-transformed normalized discharge to examine how the 

dynamics of sediment and P compare across a range of discharge. VSS describes the 

proportion of TSS that can be combusted, and thus tends to be organic-rich material. We 

classified these relationships for all sites into those with ratios that significantly increase 

with discharge, decrease with discharge, or ratios with no significant response to 

discharge. 

Taking antecedent flow conditions into account is important for predictive modeling 

of sediment and P concentrations, but for this analysis we aimed to determine the 

landscape variables most related to overall relationships between discharge, sediment and 

P. For matched TSS and mean daily flow samples in Minnesota, Vaughan and Belmont 

(2016) found separating observations by rising and falling limb improved the fit of 

sediment rating curves. However, similar explanatory variables were important for both 

the coefficients and exponents of the sediment rating curves for the combined and 

divided data, with similar model fits (Vaughan and Belmont 2016). We expect the fit of 

equations relating dissolved and particulate P concentrations with discharge would be 

34 
 



 
 
improved by taking hysteresis into account, but combining samples taken on the rising 

and falling limbs of storms provides an overall assessment of the sensitivity of P to 

hydrologic conditions.  

 
Figure 12. Sites used for concentration-discharge and annual load analyses. Most of 
the watersheds are primarily agricultural drainages located in the Minnesota River 
Basin, outlined in black. 
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Table 3. Number of concentration observations matched with daily flow data for each 
parameter obtained and the number of sites from our database with more than 25 matched 
observations. 

Parameter Total P Ortho-P Estimated PP 
(TP-OP) 

TSS VSS 

# of observations matched with 
discharge data 19011 17076 16606 18498 12518 

# of sites with >25 observations 118 114 112 117 105 

  
Explanatory Variables 

We delineated watersheds using the locations of monitoring sites provided by the 

MPCA, the USGS National Hydrography Dataset (NHD) flowlines, and the USGS 

National Elevation Dataset 30 m digital elevation model. We used the 2011 National 

Land Cover Dataset (NLCD) to calculate the proportional land cover of each watershed 

(Homer et al. 2015). We combined all levels of urban cover into one urban class and all 

levels wetland cover into one wetland class. We used county-level fertilizer input data 

from the USGS, normalized by the proportion of each county within our watersheds to 

estimate P and N fertilizer inputs to our watersheds (Gronberg and Spahr 2012). Using 

30-year average precipitation downloaded from the PRISM Climate Group (2016), we 

determined mean annual precipitation for each watershed.  

To better understand the role of lake retention and processing in P transport, we 

calculated the percentage of each watershed that drains through a lake. We selected lakes 

larger than 4 hectares, placed a pour point at the area of greatest flow accumulation in the 

lake and delineated the upstream watershed. We compared the area of these watersheds 

with the watershed area upstream of the sites where concentration and discharge data 

were collected. 

We obtained data from the MPCA for all permitted facility discharges of P between 

2007 and 2011. We used the 5-year averaged sum of total P loads from these point 

sources normalized by watershed area. We calculated fertilizer inputs using USGS 

county-level inorganic P fertilizer input estimations (Gronberg and Spahr 2012). We 
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weighted fertilizer inputs by the proportion of each county overlapping the watershed, 

and calculated the sum of total P inputs normalized by watershed area. 

We obtained estimates of bluff area for each site (Danesh-Yadzi and Foufoula-

Georgiou, unpublished data). River bluffs were mapped using LiDAR elevation data 

from the Minnesota Geospatial Information Office. Within a moving 12 meter by 12 

meter window, areas with elevation differences greater than 4 meters were converted to 

polygons and clipped to a buffer that extended 3 meters beyond the calculated channel 

size for each watershed (Danesh-Yazdi and Foufoula-Georgiou, unpublished data; 

Danesh-Yazdi et al. 2016). We normalized the total bluff area by watershed area.  

We did not include annual metrics for flow as continuous flow measurements are not 

available for all sites. We did not consider variation in background weathering derived 

sources of P due to the low contributions of P from this source relative to anthropogenic 

inputs and previous research that has examined the effects of soil type and geology on 

sediment dynamics (Johnes and Hodgkinson 1998; Vaughan and Belmont 2016). 

 

Statistical Analysis 

Variation in concentration-discharge coefficients and exponents was examined using 

land cover, watershed lake drainage, precipitation, normalized bluff area, normalized 

inorganic P fertilizer inputs, normalized permitted discharges, and watershed area. 

Multiple linear regressions were performed in JMP Pro 12 (SAS Institute, NC, USA). 

Pasture and hay cover, wetland cover, watershed area, and normalized bluff area were log 

transformed to meet statistical assumptions. Forward stepwise multiple linear regression 

variable selection was based on AIC. We calculated partial R2 values by squaring partial 

correlations obtained in R using the ppcor package (Kim 2015). 

 

Annual Nutrient Loads 

To complement our analyses of P sources, we examined the dissolved and particulate 

contribution to annual loads in 62 watersheds monitored by the MPCA and Metropolitan 
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Council (METC). Flow and water quality data were collected by these organizations 

throughout the year at watersheds ranging in size from 79 to 68,117 km2 and calculated 

by the MPCA using the model FLUX32 (MPCA 2016). We averaged annual loads over 

the period of 2007-2011 to obtain estimates of the contribution of dissolved loads over a 

representative period which included high and low flow years. We estimated PP by 

subtracting orthophosphate-P (OP) from TP. Our analyses showed most (mean = 88%, 

SE = 9%) of the dissolved phosphorus in highly agricultural watersheds is present as OP 

(unpublished data). We calculated land cover and fertilizer inputs as described above and 

mean annual precipitation using annual precipitation data from 2007 – 2011 downloaded 

from the PRISM Climate Group (2016). Additionally, we estimated connected lake and 

wetland cover by intersecting USGS National Hydrography Dataset (NHD) flowlines 

with NHD waterbodies and the National Wetlands Inventory (NWI) or an updated NWI, 

where it was complete for southern and east-central Minnesota (Minnesota Department of 

Natural Resources 2015; US Fish and Wildlife Service 2015).  

 

Results 

Concentration Discharge Relationships 

Sites exhibited a range of concentrating, diluting, and chemostatic concentration-

discharge relationships for TP, OP, PP, TSS and VSS (Fig. 13; Appendix 3). One striking 

finding of this study was the prevalence of concentrating relationships across most of the 

study sites for all parameters (Table 4).  

The spread in these relationships suggest the relationship between P concentration 

and discharge may be sensitive to variation in environmental factors such as land cover 

and topography (Fig. 14). Few concentrations increase at a rate greater than or equal to 

1:1 with discharge. The median exponents (b) for all concentrations were less than 0.5, 

suggesting variability in discharge was much greater than the variability in nutrient 

concentrations, as expected (Table 4). 
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a) 

 
b) 

 
 
Figure 13. Sample plots showing (a) different concentrating relationships where TP 
increases with different slopes across a similar range of discharges and (b) a lake inlet-
outlet pairing that switches from a chemostatic to a diluting relationship. Untransformed 
data are plotted in log-log space. 
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Table 4. Number of concentrating, diluting, and chemostatic power function exponents 
for concentration discharge relationships with at least 25 matched observations and the 
median, mean, and range of exponent values (b). 

Parameter Concentrating Diluting Chemostatic b Median b Mean b range 
TP 86 (73%) 11 (9%) 21 (18%) 0.21 0.27 -0.40 – 1.17 
OP 76 (67%) 8 (7%) 30 (26%) 0.28 0.29 -0.55 – 1.07 
PP 72 (64%) 11 (10%) 29 (26%) 0.16 0.26 -0.30 – 1.36 
TSS 93 (79%) 6 (5%) 18 (15%) 0.43 0.46 -0.32 – 1.83 
VSS 77 (73%) 24 (23%) 4 (4 %) 0.25 0.30 -0.38 – 1.60 
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Figure 14. Distributions of power function coefficients and exponents. 
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Drivers of Concentration-Discharge Relationships 

The concentration-discharge coefficient (â), representing the center of mass of 

concentration data and determined by the supply both of P and discharge, showed 

sensitivity to watershed land use metrics associated with anthropogenic activities (Table 

5). The coefficient for dissolved P was positively related to crop and urban cover. The PP 

coefficient was positively related to P fertilizer inputs and pasture and hay land use. TP 

coefficient was positively correlated with permitted discharge P and P fertilizer inputs. 

Together these results consistently suggest anthropogenic nutrient inputs to agricultural 

and urban lands raise the concentration of dissolved P concentrations in receiving waters. 

For TSS and VSS concentration-discharge relationships, which were largely 

characterized by concentrating exponents (b), higher coefficients were associated with 

greater watershed area. This could indicate greater sediment supply in larger watersheds. 

Watershed area was also highly correlated with bluff area, so to remove this influence 

when comparing bluff presence at sites ranging in size from 6 to 4,620 km2, bluff area 

was normalized by drainage area for analysis. This suggests larger drainage areas are 

associated with greater watershed runoff and therefore higher stream power, which may 

mobilize more sediment and P from near-channel sources.  

Flow sensitivity of dissolved P, or represented by the OP concentration-discharge 

exponent (b), were best explained by the percentage of the watershed that drained 

through lakes, permitted discharge P, crops, and wetlands. The negative relationship 

between the exponent and its predictor variables suggest these represent sources 

consistent across different magnitudes of flow, sources that contribute greater dissolved P 

at low flows, or that there is greater P retention where lakes and wetlands are present. 

The PP exponent was strongly positively related to watershed area normalized bluff 

area, suggesting areas prone to erosion may contribute more PP as discharge increases. 

As with dissolved P, lower PP exponents were also associated with more drainage 

through lakes, crops, and wetlands. The TP exponent was significantly related to the 

combined predictor variables for PP and dissolved P. Similar to the P results; the TSS and 
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VSS exponents were also negatively related to lake drainage and crop cover and 

positively related to bluff area. Bluff area was not correlated with crop cover. However, 

bluff area was inversely correlated with the proportion of the watershed lake draining 

through a lake, likely because lakes existed in flatter areas of the landscape than bluffs. 

 

Table 5. Results of forward stepwise multiple regression analyses of concentration-
discharge relationship exponents and coefficients. All are significant at p < 0.05, with 
variables significant at p < 0.001 shown in bold. Partial R2 and slope directions (+/-) are 
shown for predictor variables in the final models.  

Predictor OP PP TP TSS VSS 
a b a b a b a b a b 

Mean Annual Precipitation 
 
 
 

         

% of Watershed Area that 
Drains through a Lake 

 
 
 

0.01 
(-)  0.21 

(-)  0.10 
(-)  0.17 

(-)  0.31 
(-) 

Permitted Discharge TP 
Inputs 

 
 
 

0.09 
(-)   0.07 

(+) 
0.07 
(-)     

P Fertilizer Inputs 
 
 
 

 0.27 
(+)  0.35 

(+)      

Crops 0.10 
(+) 

0.04 
(-) 

 
 
 

0.33 
(-)  0.35 

(-)  0.23 
(-)  0.22 

(-) 

ln(% Pasture and Hay) 
   0.06 

(+) 

 
 
 

      

ln(% Wetlands)  0.11 
(-)  

 
 
 

 0.05 
(-)   0.08 

(-)  

ln(% Urban) 0.13 
(+)   

 
 
 

      

ln(Watershed Area)    
 
 
 

  0.43 
(+)  0.28 

(+)  

ln(Normalized Bluff Area) 
 

 
 

  0.22 
(+)  0.05 

(+) 
0.07 
(+) 

0.22 
(+)  0.16 

(+) 

Total R2 0.27 0.49 0.32 0.63 0.34 0.67 0.26 0.59 0.22 0.54 
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Phosphorus and Sediment Relationships 

a) 

            
b) 

 
Figure 15. Sample plots showing (a) the ratio of PP to TSS decreasing with increasing 
discharge and a relationship with no significant difference between PP:TSS across different 
levels of discharge and (b) an upstream to downstream continuum in which the 
downstream site has higher bluff area where VSS:TSS switches from no significant 
response across a range of discharge to decreasing with greater discharge. Untransformed 
data are plotted in log-log space. 
 

Although PP, VSS, and TSS exhibited concentrating relationships with discharge at 

most sites, the magnitude of TSS concentrations increased more relative to discharge than 
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PP and VSS concentrations (Tables 6-7; Fig. 15-16). Lower exponents (b) for the power 

function equations relating these ratios and discharge were associated with greater bluff 

area. In contrast to TSS and VSS results, lower coefficients (â) in the power function 

equation relating the ratios with discharge were associated with greater watershed area. 

This suggests at sites with larger drainage areas, which have greater bluff area, more TSS 

is present relative to PP and VSS. The larger sites in the Minnesota River Basin and 

driftless region tend to be downstream of knickzones, which are areas with a slope 

change that is uncharacteristic for the watershed, and associated with high near-channel 

erosion (Belmont et al. 2011; Stout et al. 2014).  

The proportion of the watershed that drained through a lake was associated with a 

greater coefficient (â) in the power function equation relating the PP:TSS ratio and 

discharge. Particles rich in P, such as algae, are more common downstream of lakes while 

particles low in P may settle out in lakes. We did not include a seasonal analysis, but 

acknowledge the ratio of P and organic matter to TSS is likely to vary seasonally, and 

affect the chemostatic and concentrating relationships observed.  

 

Table 6. Number of increasing, decreasing, and no significant response power function 
exponents for relationships of PP:TSS and VSS:TSS with discharge with at least 25 
matched observations and the median, mean, and range of exponent values (b). 

Parameter Increasing Decreasing No Response b Median b Mean b range 
PP:TSS 6 (6%) 81 (74%) 22 (20%) -0.18 -0.18 -0.58 – 0.29 
VSS:TSS 3 (3%) 87 (83%) 15 (14%) -0.16 -0.17 -1.28 – 0.30 
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Figure 16. Summary of power function exponents (b) for the relationships between log-
transformed PP:TSS and VSS:TSS versus log-transformed normalized discharge. 
Exponents were categorized by whether the ratios significantly decreased, increased, or 
showed no significant response (NSD) with increasing discharge. 
 

Table 7. Results of forward stepwise multiple regression analyses of PP:TSS and 
VSS:TSS vs. discharge exponents and coefficients. All are significant at p < 0.05, with 
variables significant at p < 0.001 shown in bold. Partial R2 and slope directions (+/-) are 
shown for predictor variables in the final models. 

Predictor PP:TSS VSS:TSS 
a b a b 

Mean Annual Precipitation     
% of Watershed Area that Drains through a Lake 0.18 (+)    
Permitted Discharge TP Inputs     
P Fertilizer Inputs     
Crops     
ln(% Pasture and Hay)     
ln(% Wetlands)     
ln(% Urban)  0.12 (-)   
ln(Watershed Area) 0.38 (-)  0.09 (-)  
ln(Normalized Bluff Area)  0.08 (-)  0.27 (-) 
Total R2 0.33 0.25 0.09 0.27 

 

Annual Nutrient Loads 

A significant portion of Minnesota’s annual total P is exported in the dissolved form 

(Fig. 17). The range in dissolved P contribution to annual total phosphorus in loads 

calculated by the MPCA ranged from 7 to nearly 100 % (average 46%) at 62 sites during 

the study period (2007 to 2011). In southern Minnesota’s highly agricultural watersheds, 
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where total P export is the highest in the state, the dissolved phosphorus load ranges from 

about half of to over 100% of the particulate P load. Lightly developed watersheds in 

northern MN had the lowest dissolved P and lowest total P loads overall.  

Forward stepwise multiple regression showed OP export was best explained by 

fertilizer inputs, urban land use, and connected lake cover in the watershed (Table 8). PP 

export was best explained by TSS export (which was highly influenced by bluff and bank 

erosion), urban land cover, and mean annual runoff. As with the concentration-discharge 

relationships, human impacts from agricultural and urban land uses are associated with 

greater OP, while lakes are associated with lower OP. PP increases were closely 

associated with increases in TSS, but also greater urban land cover and runoff. The 

association between PP and runoff confirms the flow sensitivity of PP, while both historic 

and current P inputs may elevate losses from urban areas. 
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Figure 17. Total phosphorus (a), orthophosphate-phosphorus (b), and estimated 
particulate phosphorus (c) export (kg/km2). The ratio of OP:PP (d). 
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Table 8. Results of forward stepwise multiple regression analyses of OP and estimated PP 
export. Partial R2 and slope directions (+/-) are shown for predictor variables in the final 
models. 

Predictor OP 
(n=56) 

PP 
(n=56) 

Mean Annual Precipitation   
Mean Annual Runoff  0.16 (+) 
P Fertilizer Inputs 0.55 (+)  
ln(TSS Export)  0.73 (+) 
ln(Watershed Area)   
% Crops   
ln(% Urban) 0.35 (+) 0.34 (+) 
ln(Connected Lakes) 0.22 (-)  
ln(Connected Wetlands)   
Total R2 0.88 0.87 

 

Discussion 

Prevalence of Concentrating Relationships 

The exponents (b) for the parameters in this study were much higher than those 

observed for the concentration-discharge relationships of weathering products. Godsey et 

al. (2009) found concentrations of weathering products (Ca, Mg, Na, and Si) were 

relatively stable across a range of several orders of magnitude in discharge, suggesting 

hydrology drives loading but not concentrations. Similar chemostatic behaviors observed 

for P were hypothesized to stem from a consistent transport-limited source of P, such as 

legacy P from anthropogenic inputs to the landscape (Basu et al. 2011). The prevalence 

of exponents significantly higher than zero, including some near one in driftless-region 

watersheds, suggests hydrology drives both loading and concentrations in many of the 

sites we examined. In an unpublished analysis, concentrating relationships tended to 

remain concentrating across all seasons. Higher discharge may connect more sediment 

and P source areas, as well as increase stream power and mobilize more near-channel 

materials (Heathwaite et al. 2005). 

While concentrations at most sites increased with discharge, the ratios of PP:TSS and 

VSS:TSS were negatively related to discharge. This shows for a large majority of sites, 

increasing flow mobilizes sediments that are relatively depleted in P and organic matter, 

indicating inputs from deeper soil layers. Increases in discharge have been associated 
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with a shift in sediment from erosion of agricultural fields to bluff erosion, a sediment 

source that is less rich in P and organic matter (Belmont et al. 2011; Grundtner et al. 

2014). Sediment sources lower in P and organic matter, such as bluffs, become more 

important during higher flows. Solids rich in P and organic matter, derived within 

channels, riparian zones or in some cases point sources, represent a more consistent input 

and an important source of particulates during low flow conditions, when there is more 

time for sorption and assimilation of dissolved P. These can include algae from ditches, 

lakes, and wetlands as well as sediments with bound P from fertilizer or wastewater 

treatment facilities. 

 

Factors Controlling P Concentrations 

Concentrating relationships for PP, TP (which includes PP), TSS, and VSS with 

discharge were positively associated with watershed bluff area. Additionally, bluff area 

was associated with higher TSS and VSS baseline concentrations. The local relief of 

rivers, encompassing bluffs and other large features that contribute sediment to rivers, has 

been associated with the exponents and coefficients of concentration-discharge 

relationships between sediment and TSS in Minnesota (Vaughan and Belmont 2016). The 

only exponents not associated with bluff area were those of dissolved P, suggesting a 

different source drives its loss across different levels of discharge. Therefore, a small area 

of the watershed influenced by hydrology and landscape development is highly 

influential in determining the sensitivity of particulates to discharge.  

Diluting exponents were much less common than concentrating exponents. Lower 

exponents were associated with higher proportion of watershed area draining through a 

lake, higher wetland cover, and higher permitted discharge inputs. Nutrient processing in 

waterbodies can reduce variability in P export across different flow regimes (Powers et 

al. 2015). Sites with relatively high permitted discharge inputs, such as the Shell Rock 

River downstream of Albert Lea, MN (63 kg/km2) and Cedar River downstream of 

Austin, MN (55 kg/km2), have elevated baseflow concentrations that reduce P variability 
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across different flows. Sites characterized by dilution of P may require special 

consideration for load calculations and designing best management practices for nutrient 

reduction. For instance, reducing point sources of P may assume additional importance in 

reducing loads at these sites. Additionally, concentration-discharge relationships 

characterized by lake and wetland nutrient processing indicate potential difficulties 

identifying the original sources of P and seasonal differences in the flows at which they 

are mobilized. 

In the sites examined, crop cover was also associated with lower exponents across the 

study sites, suggesting P and sediments were less concentrating with discharge as 

agricultural intensity increased. This result is somewhat surprising, given crop cover was 

inversely correlated with lake drainage and wetland area. However, across the study sites, 

crop cover was consistently high (27-92%; average 72%) and crop cover was positively 

correlated with urban land cover. Sites with high crop cover also included sites with the 

highest permitted discharge inputs from urban wastewater treatment facilities, which 

contributed to lower exponents, while driftless region sites had moderate crop cover and 

higher exponents.  

Fertilizer inputs, crop cover, pasture and hay, permitted discharge inputs, and urban 

land were associated with higher concentration-discharge relationship coefficients (â) 

across the sites examined, suggesting these factors can increase P concentration 

baselines. The coefficient of TSS rising limb concentration-discharge relationships was 

positively related to agricultural land use in another study of Minnesota watersheds, 

suggesting the importance of anthropogenic landscape modifications to both P and 

sediment dynamics (Vaughan and Belmont 2016). Urban land use is likely associated 

with greater permitted discharge inputs. Crop cover is associated with more fertilizer 

inputs. Pasture and hay are associated with lower fertilizer inputs, but may have greater P 

inputs from manure and vegetation. Higher soil P has been shown to contribute to higher 

dissolved P in runoff, likely leading to higher coefficients in areas with more agricultural 

land use (Sharpley et al. 2014). 
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Although hydrology drives P losses in most of the watersheds examined, considering 

the original source of the phosphorus is still important. Higher fertilizer inputs and crop 

cover are associated with greater P coefficients, suggesting nutrient enrichment of 

Minnesota’s soils elevates the baseline for nutrient export, particularly from agricultural 

watersheds.  

 

Contrasts in Controls on Dissolved and Particulate P 

Although management attention has historically been directed toward reduced PP 

loads, we found dissolved P was a significant portion of annual P export in 62 watersheds 

across Minnesota. Both PP export and OP export increased with greater urban land cover, 

but PP export was strongly positively associated with greater TSS and runoff whereas OP 

export was positively associated with greater P fertilizer inputs and negatively associated 

with connected lake area. Urban land cover and permitted discharges were important to 

determining dissolved P concentration-discharge coefficients and exponents respectively, 

suggesting urban septic and point source discharges may be important sources to 

dissolved P. 

The likelihood different sources contribute to dissolved and particulate P suggests 

they may respond differently to changes in flow within storm events. Clockwise and 

counterclockwise hysteresis loops have been observed in TSS, dissolved P and PP 

concentrations during storm events, suggesting the importance of sediment and P source 

proximity and ease of mobilization to the sampled stream (Meyer and Likens 1979; 

House and Warwick 1998; Bowes et al. 2005). Preferential flow from ditched and 

drained fields, coupled with near-channel P sources, could increase the magnitude of 

hysteresis loops in agricultural landscapes (Heathwaite and Dils 2000; Bowes et al. 

2005). Although near-channel sources of dissolved P are likely significant, evidence for 

the importance of near-channel factors in determining TSS and PP concentrations 

suggests particulate mobilization may be especially sensitive to the rising limb of storm 

hydrographs (Dodd and Sharpley 2016).  
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Implications for P Management 

The importance of flow in determining sediment and P concentrations and export 

suggests best management practices that reduce flows, such as controlled tile drain 

releases and constructed wetlands, may effectively reduce losses (Basu et al. 2010; 

Lemke et al. 2011). These measures may be especially effective at reducing TSS and PP 

losses in watersheds with naturally erosive landscape features and high concentration-

discharge relationship exponents, but how dissolved P might respond is less clear. While 

we found PP and dissolved P are both important contributors to watershed loads, the 

factors associated their baseline concentrations and relationships with discharge were 

different and likely require individual attention when considering management strategies. 

In addition to quantity of flow, hydrologic connectivity affects the forms of P that are 

lost. Lakes and wetlands, which we found were important to reducing concentrations of 

sediment and all forms of P, are often disconnected or drained as land is converted to 

agricultural use (Steele and Heffernan 2014; Lark et al. 2015). Furthermore, while tile 

drains may decrease particulate P losses in surface runoff, a significant proportion of 

discharge and annual P, particularly dissolved P, export can come from tile drains 

(Robertson and Saad 2013; King et al. 2014; Smith et al. 2014). This suggests P applied 

to agricultural fields may be more efficiently transported to streams through this 

additional landscape connectivity where there are fewer basins to retain nutrients and 

more ditch and tile drainage. 

Best management practices have tended to place focus on reducing particulate P, but 

this emphasis may not effectively reduce dissolved P. A review by Dodd and Sharpley 

(2016) found conservation practices, such as vegetated buffers and wetlands, 

implemented to reduce particulate P may increase organic and inorganic dissolved P. 

While vegetated buffers have been shown to trap particulate P transported via overland 

flow, some studies have shown buffers are net exporters of dissolved P due to conditions 

that promote microbial processing and desorption processes (Roberts et al. 2012; Dupas 
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et al. 2015). Flushing of dissolved reactive P was found to occur when soils were re-

wetted after dry periods in the fall and when anoxic conditions released bound P in late 

winter (Dupas et al. 2015). Additionally, conservation practices to promote soil health in 

some cases contribute to fertilizer build-up in the soil, which may then be released via 

desorption and microbial transformations (Dodd and Sharpley 2015). Thus, while buffers 

may trap some PP from upland erosion of fields, they may increase dissolved P export 

while doing little to curb bluff erosion. 

The flow-sensitivity of sediment and P losses suggests efforts to reduce flows may 

result in water quality improvements. For instance, lakes and wetland conservation 

coupled with controls on agricultural drainage would likely decrease nutrient and 

sediment export by maximizing settling times and in-channel processing (Bowes et al. 

2008). Slower flows may also reduce sediment loss from areas prone to erosion. 

Reductions of urban point and nonpoint sources of P may additionally decrease dissolved 

P export. Minimizing fertilizer inputs to agricultural fields would likely curb both 

dissolved and particulate P export. Although the legacy effect of P renders the translation 

of management actions to reductions in nutrient export a slow process, tailoring these 

actions to the dominant P sources in a watershed is likely to yield the largest reduction in 

losses.  
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Appendix 1: Watershed N, P, and Environmental Characteristics 
Table 9. Watershed N inputs, export and retention. 

Watershed 
Monitoring 

Organization 
Organization 
Site Identifier 

NANI 
(kg/km2) 

N Fertilizer 
Inputs (kg/km2) 

TN 
(kg/km2) 

NOx 
(kg/km2) 

TKN 
(kg/km2) 

N 
Retention N:P 

Baptism River MPCA H01092001 298 1 257 52 205 0.14 39.24 
Bevens Creek METC BEL 4,511 4,954 2,221 1,775 446 0.51 23.42 
Bevens Creek METC BEU 4,624 5,079 2,105 1,657 449 0.54 22.41 
Big Fork River MPCA E77069001 346 49 178 8 170 0.49 22.77 

Blue Earth River MPCA W30091001 7,479 7,281 2,458 2,146 312 0.67 30.18 
Blue Earth River MPCA E30092001 7,281 6,945 2,354 2,029 325 0.68 32.89 

Bois de Sioux River MPCA E54018001 4,027 5,312 302 112 190 0.93 7.08 
Buffalo River MPCA H58033001 3,000 3,332 348 143 204 0.88 8.75 
Cannon River MPCA E39004002 5,248 5,194 1,654 1,264 390 0.68 21.91 
Carver Creek METC CA 3,479 3,819 749 384 365 0.78 14.89 
Cedar River MPCA E48020001 6,110 6,463 3,350 2,925 426 0.45 32.15 

Chippewa River MPCA E26057001 3,901 4,238 620 275 237 0.84 25.95 
Clearwater River MPCA E66050001 2,002 2,132 240 83 157 0.88 16.14 

Cloquet River MPCA H04048001 397 20 157 14 143 0.60 33.99 
Cottonwood River MPCA E29001001 5,623 5,771 2,565 1,683 462 0.54 41.86 
Crow Wing River MPCA E12039001 1,902 1,271 185 55 130 0.90 17.32 

Hawk Creek MPCA H25037001 4,878 5,228 2,262 1,752 511 0.54 23.12 
Kawishiwi River MPCA E72061001 279 5 97 12 85 0.65 38.16 

Kettle River MPCA E35065001 726 289 277 31 246 0.62 17.72 
Lac qui Parle River MPCA E24023001 3,593 4,195 566 362 204 0.84 14.44 

Le Sueur River MPCA E32077001 6,854 5,991 2,558 2,133 424 0.63 23.56 
Leaf River MPCA H13058001 2,484 1,929 348 142 206 0.86 20.07 

Little Fork River MPCA E76090001 347 33 246 13 232 0.29 14.74 
Long Prairie River MPCA H14034001 2,691 1,639 279 70 210 0.90 13.68 

Marsh River MPCA E59008001 3,141 4,144 392 204 188 0.88 7.47 
Minnehaha Creek METC MH 6,805 2,631 NA NA NA NA NA 

Nemadji River MPCA E05011002 576 124 394 21 373 0.32 6.25 
North Fork Crow River MPCA H18088001 5,201 3,925 554 263 291 0.89 14.59 
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Otter Tail River MPCA H56105001 2,428 2,002 197 56 141 0.92 12.22 
Pine River MPCA H11051001 614 185 114 12 102 0.81 26.13 

Pomme De Terre River MPCA E23007001 4,141 4,322 405 212 192 0.90 12.90 
Poplar River MPCA H01063003 284 1 203 50 153 0.29 37.30 
Rapid River MPCA H78007001 375 123 314 13 301 0.16 27.02 

Red Lake River MPCA E63078001 1,384 1,396 167 48 119 0.88 9.89 
Red River of the North MPCA E61046001 3,060 3,701 229 84 145 0.93 6.42 

Redwood River MPCA E27035001 5,080 4,857 2,093 1,286 415 0.59 30.17 
Rock River MPCA H83016001 7,744 5,391 2,207 1,742 465 0.72 24.70 
Root River MPCA H43007002 4,315 4,243 1,862 1,557 305 0.57 26.53 
Rum River MPCA H21101001 2,014 1,212 246 72 174 0.88 11.46 
Sand Creek METC SA 4,353 3,763 1,203 819 384 0.72 16.33 

Sand Hill River MPCA E61039001 3,019 3,816 333 157 176 0.89 9.55 
Sauk River MPCA W16058002 5,344 3,009 494 259 236 0.91 16.05 

Shell Rock River MPCA H49009001 5,402 5,960 1,651 1,084 567 0.69 13.69 
Snake River MPCA H68011001 2,395 2,861 220 62 158 0.91 6.84 
Snake River MPCA E36076001 1,369 893 318 33 285 0.77 13.82 

South Fork Crow River MPCA H19001001 5,245 5,473 1,939 1,486 453 0.63 26.54 
Split Rock Creek MPCA H82015001 7,990 5,394 1,027 742 285 0.87 18.18 
St. Louis River MPCA E03174001 396 29 203 22 181 0.49 21.33 
Straight River MPCA E39101001 6,685 7,188 2,283 1,930 352 0.66 31.84 
Sunrise River MPCA H37030001 2,711 1,805 314 152 163 0.88 21.05 
Tamarac River MPCA H69051002 2,335 2,780 331 107 224 0.86 8.17 

Thief River MPCA E65014001 1,626 1,775 177 20 157 0.89 16.97 
Two Rivers MPCA H70012001 2,232 2,542 355 88 267 0.84 8.73 

Vermillion River METC VR 4,986 4,547 NA NA NA NA NA 
Vermillion River MPCA E73002001 365 25 168 7 161 0.54 29.07 
Watonwan River MPCA E31051001 6,883 6,388 2,212 1,856 356 0.68 40.06 

Wells Creek MPCA H38006002 3,588 4,202 692 575 117 0.81 22.83 
West Fork Des Moines River MPCA E51107001 5,250 5,370 1,512 1,090 422 0.71 29.80 

Whitewater River MPCA H40016001 4,159 4,011 1,997 1,570 427 0.52 22.41 
Wild Rice River MPCA E60112001 2,088 2,388 283 103 180 0.86 8.32 

Yellow Bank River MPCA E22012001 4,189 4,699 473 254 219 0.89 9.03 
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Yellow Medicine River MPCA E25075001 4,237 4,434 1,204 828 261 0.72 28.35 
Zumbro River MPCA H41043001 4,535 4,787 2,387 1,974 413 0.47 25.29 

 

Table 10. Watershed P inputs, export and retention. 

Watershed Monitoring 
Organization 

Organization 
Site 

Identifier 

NAPI 
(kg/km2) 

P 
Fertilizer 

Inputs 
(kg/km2) 

P 
Manure 
Inputs 

(kg/km2) 

TP 
(kg/km2) 

DOP 
(kg/km2) 

P 
Retention 

Baptism River MPCA H01092001 3 0 1 7 2 -1.46 
Bevens Creek METC BEL 469 929 520 95 NA 0.8 
Bevens Creek METC BEU 516 953 539 94 NA 0.82 
Big Fork River MPCA E77069001 13 9 13 8 2 0.38 

Blue Earth River MPCA W30091001 346 1,275 597 81 24 0.76 
Blue Earth River MPCA E30092001 364 1,246 589 72 26 0.8 

Bois de Sioux River MPCA E54018001 227 1,001 187 43 25 0.81 
Buffalo River MPCA H58033001 257 626 198 40 21 0.85 
Cannon River MPCA E39004002 362 974 515 75 38 0.79 
Carver Creek METC CA 39 714 342 50 NA -0.28 
Cedar River MPCA E48020001 236 1,214 487 104 79 0.56 

Chippewa River MPCA E26057001 478 796 495 24 11 0.95 
Clearwater River MPCA E66050001 148 401 120 15 7 0.9 

Cloquet River MPCA H04048001 9 4 8 5 1 0.5 
Cottonwood River MPCA E29001001 335 1,085 594 61 25 0.82 
Crow Wing River MPCA E12039001 308 239 277 11 4 0.97 

Hawk Creek MPCA H25037001 643 982 702 98 51 0.85 
Kawishiwi River MPCA E72061001 4 1 2 3 0 0.36 

Kettle River MPCA E35065001 62 54 90 16 4 0.75 
Lac qui Parle River MPCA E24023001 231 808 341 39 21 0.83 

Le Sueur River MPCA E32077001 411 1,126 603 109 40 0.74 
Leaf River MPCA H13058001 377 362 329 17 8 0.95 

Little Fork River MPCA E76090001 11 6 10 17 4 -0.54 
Long Prairie River MPCA H14034001 481 308 479 20 10 0.96 
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Marsh River MPCA E59008001 69 779 95 53 36 0.23 
Minnehaha Creek METC MH 1,033 446 114 9 NA 0.99 

Nemadji River MPCA E05011002 24 22 60 63 54 -1.65 
North Fork Crow River MPCA H18088001 924 737 823 38 26 0.96 

Otter Tail River MPCA H56105001 333 376 312 16 6 0.95 
Pine River MPCA H11051001 74 35 66 4 1 0.94 

Pomme De Terre River MPCA E23007001 414 812 496 31 21 0.92 
Poplar River MPCA H01063003 2 0 0 5 2 -1.75 
Rapid River MPCA H78007001 13 23 14 12 3 0.08 

Red Lake River MPCA E63078001 82 262 74 17 6 0.8 
Red River of the North MPCA E61046001 193 664 130 36 20 0.81 

Redwood River MPCA E27035001 417 913 657 69 45 0.83 
Rock River MPCA H83016001 824 1,013 816 89 64 0.89 
Root River MPCA H43007002 301 796 507 70 32 0.77 
Rum River MPCA H21101001 313 225 182 21 12 0.93 
Sand Creek METC SA 364 704 367 74 NA 0.8 

Sand Hill River MPCA E61039001 200 717 87 35 14 0.83 
Sauk River MPCA W16058002 1,131 565 983 31 18 0.97 

Shell Rock River MPCA H49009001 118 1,120 390 121 82 -0.02 
Snake River MPCA H68011001 147 538 84 32 18 0.78 
Snake River MPCA E36076001 168 168 136 23 7 0.86 

South Fork Crow River MPCA H19001001 591 1,026 534 73 52 0.88 
Split Rock Creek MPCA H82015001 1,040 1,031 819 56 41 0.95 
St. Louis River MPCA E03174001 10 5 11 10 3 0.09 
Straight River MPCA E39101001 399 1,350 570 72 54 0.82 
Sunrise River MPCA H37030001 331 334 114 15 6 0.95 
Tamarac River MPCA H69051002 148 523 84 40 21 0.73 

Thief River MPCA E65014001 97 334 67 10 5 0.89 
Two Rivers MPCA H70012001 209 478 81 41 20 0.81 

Vermillion River METC VR 589 840 314 24 NA 0.96 
Vermillion River MPCA E73002001 11 4 10 6 1 0.48 
Watonwan River MPCA E31051001 380 1,201 569 55 30 0.85 

Wells Creek MPCA H38006002 80 789 497 30 14 0.62 
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West Fork Des Moines River MPCA E51107001 160 1,009 508 51 19 0.68 
Whitewater River MPCA H40016001 374 752 528 89 44 0.76 
Wild Rice River MPCA E60112001 91 449 126 34 13 0.63 

Yellow Bank River MPCA E22012001 508 947 372 52 32 0.9 
Yellow Medicine River MPCA E25075001 262 833 482 42 29 0.84 

Zumbro River MPCA H41043001 292 898 533 94 53 0.68 
 

Table 11. Watershed area, precipitation, and selected land cover characteristics. 

Watershed 
Monitoring 

Organization 

Organization 
Site 

Identifier 
Area 
(km2) 

Precipitation 
(m) 

Runoff 
(m) 

Crops 
(%) 

Urban 
(%) 

Wetlands 
(%) 

NANI: 
NAPI 

Export 
N:P 

Baptism River MPCA H01092001 358 0.77 0.32 0 2 3 112.0 39.2 
Bevens Creek METC BEL 335 0.79 0.19 66 7 4 9.6 23.4 
Bevens Creek METC BEU 223 0.79 0.18 64 7 4 9.0 22.4 
Big Fork River MPCA E77069001 3,833 0.7 0.16 0 2 49 27.4 22.8 

Blue Earth River MPCA W30091001 3,994 0.84 0.27 86 7 27 21.6 30.2 
Blue Earth River MPCA E30092001 6,242 0.83 0.26 79 7 15 20.0 32.9 

Bois de Sioux River MPCA E54018001 4,869 0.69 0.13 77 4 5 17.8 7.1 
Buffalo River MPCA H58033001 2,869 0.74 0.17 86 4 6 11.7 8.8 
Cannon River MPCA E39004002 3,471 0.83 0.26 56 8 7 14.5 21.9 
Carver Creek METC CA 213 0.76 0.15 41 10 4 88.6 14.9 
Cedar River MPCA E48020001 1,033 0.87 0.31 80 9 5 25.9 32.1 

Chippewa River MPCA E26057001 4,869 0.7 0.13 67 5 3 8.2 25.9 
Clearwater River MPCA E66050001 3,574 0.7 0.13 33 4 3 13.5 16.1 

Cloquet River MPCA H04048001 2,028 0.71 0.18 0 2 3 42.9 34.0 
Cottonwood River MPCA E29001001 3,367 0.78 0.21 85 6 3 16.8 41.9 
Crow Wing River MPCA E12039001 9,738 0.7 0.16 10 4 3 6.2 17.3 

Hawk Creek MPCA H25037001 1,307 0.76 0.25 82 7 40 7.6 23.1 
Kawishiwi River MPCA E72061001 3,186 0.69 0.14 0 1 27 70.7 38.2 

Kettle River MPCA E35065001 2,248 0.8 0.25 2 4 3 11.7 17.7 
Lac qui Parle River MPCA E24023001 2,486 0.73 0.15 62 4 3 15.5 14.4 

Le Sueur River MPCA E32077001 2,875 0.85 0.28 82 7 2 16.7 23.6 
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Leaf River MPCA H13058001 2,253 0.68 0.22 10 4 3 6.6 20.1 
Little Fork River MPCA E76090001 4,351 0.7 0.2 0 2 6 32.1 14.7 

Long Prairie River MPCA H14034001 2,030 0.72 0.22 26 6 5 5.6 13.7 
Marsh River MPCA E59008001 570 0.66 0.13 85 4 10 45.8 7.5 

Minnehaha Creek METC MH 439 0.74 0.1 4 47 8 6.6 NA 
Nemadji River MPCA E05011002 1,088 0.79 0.32 1 3 6 24.1 6.2 

North Fork Crow River MPCA H18088001 3,496 0.77 0.25 57 6 39 5.6 14.6 
Otter Tail River MPCA H56105001 4,941 0.73 0.18 27 6 48 7.3 12.2 

Pine River MPCA H11051001 2,018 0.69 0.16 1 3 15 8.3 26.1 
Pomme De Terre River MPCA E23007001 2,344 0.69 0.14 63 5 34 10.0 12.9 

Poplar River MPCA H01063003 295 0.77 0.27 0 2 26 143.3 37.3 
Rapid River MPCA H78007001 1,813 0.63 0.3 1 1 46 29.6 27.0 

Red Lake River MPCA E63078001 14,711 0.65 0.1 24 2 45 16.8 9.9 
Red River of the North MPCA E61046001 68,117 0.65 0.11 66 5 24 15.9 6.4 

Redwood River MPCA E27035001 1,629 0.77 0.2 77 6 34 12.2 30.2 
Rock River MPCA H83016001 1,085 0.81 0.31 76 6 40 9.4 24.7 
Root River MPCA H43007002 4,120 0.94 0.31 43 6 24 14.3 26.5 
Rum River MPCA H21101001 4,065 0.79 0.19 20 14 22 6.4 11.5 
Sand Creek METC SA 614 0.77 0.16 52 6 10 12.0 16.3 

Sand Hill River MPCA E61039001 1,088 0.67 0.13 70 5 5 15.1 9.6 
Sauk River MPCA W16058002 2,698 0.77 0.18 49 7 2 4.7 16.1 

Shell Rock River MPCA H49009001 495 0.86 0.34 70 12 14 45.7 13.7 
Snake River MPCA H68011001 1,974 0.62 0.12 77 5 3 16.3 6.8 
Snake River MPCA E36076001 2,523 0.83 0.26 8 4 15 8.1 13.8 

South Fork Crow River MPCA H19001001 3,286 0.77 0.28 72 6 0 8.9 26.5 
Split Rock Creek MPCA H82015001 803 0.76 0.17 79 6 1 7.7 18.2 
St. Louis River MPCA E03174001 8,884 0.69 0.18 0 3 1 37.9 21.3 
Straight River MPCA E39101001 1,127 0.87 0.28 74 10 0 16.8 31.8 
Sunrise River MPCA H37030001 985 0.73 0.16 25 9 3 8.2 21.1 
Tamarac River MPCA H69051002 931 0.64 0.18 91 5 7 15.7 8.2 

Thief River MPCA E65014001 2,551 0.67 0.12 33 2 3 16.7 17.0 
Two Rivers MPCA H70012001 2,745 0.64 0.21 85 5 8 10.7 8.7 

Vermillion River METC VR 605 0.81 0.21 51 23 2 8.5 NA 
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Vermillion River MPCA E73002001 2,344 0.7 0.21 0 1 3 32.8 29.1 
Watonwan River MPCA E31051001 2,204 0.8 0.23 87 6 94 18.1 40.1 

Wells Creek MPCA H38006002 176 0.85 0.18 41 4 1 44.9 22.8 
West Fork Des Moines River MPCA E51107001 3,237 0.82 0.24 81 6 1 32.9 29.8 

Whitewater River MPCA H40016001 702 0.92 0.27 50 6 5 11.1 22.4 
Wild Rice River MPCA E60112001 4,040 0.72 0.16 52 3 3 23.0 8.3 

Yellow Bank River MPCA E22012001 1,189 0.72 0.13 53 4 1 8.2 9.0 
Yellow Medicine River MPCA E25075001 1,725 0.74 0.17 77 5 4 16.2 28.4 

Zumbro River MPCA H41043001 3,674 0.88 0.34 56 8 3 15.5 25.3 
 

Appendix 2: NANI and TN components for with lowest NANI 

Table 12. NANI and TN components for the 10 sites monitored by the MPCA with lowest NANI 

Monitoring Site 
NANI 

(kg/km2) 

Fertilize
r N 

(kg/km2) 

Atmospheric 
Deposition 
(kg/km2) 

Agricultural 
N Fixation 
(kg/km2) 

Net Food 
& Feed 
Imports 
(kg/km2) 

TN 
(kg/km2) 

NOx 
(kg/km2) 

TKN 
(kg/km2) 

TKN: 
NOx 

Kawishiwi River 279.3 5.2 252.1 6.3 15.8 96.9 11.5 85.4 7.4 
Poplar River 283.8 0.6 274.0 0.4 8.8 202.5 49.7 152.9 3.1 

Baptism River 297.8 1.5 284.3 0.9 11.1 256.6 51.7 204.9 4.0 
Big Fork River 346.2 48.9 251.7 60.7 -15.1 178.0 8.1 170.0 21.1 

Little Fork River 346.9 33.3 256.0 45.0 12.5 245.6 13.4 232.2 17.3 
Vermillion River 364.8 25.3 262.3 35.4 41.8 168.3 7.4 160.9 21.7 

Rapid River 374.8 123.0 230.7 149.2 -128.1 314.5 13.2 301.3 22.8 
St. Louis River 396.0 28.5 294.6 39.5 33.4 202.8 21.6 181.2 8.4 
Cloquet River 397.4 20.1 314.5 27.8 35.0 157.0 13.7 143.3 10.4 
Nemadji River 575.5 124.4 317.2 194.1 -60.1 394.1 21.2 372.9 17.6 

 

Appendix 3: Concentration-discharge relationships 
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Table 13. Concentration-discharge relationship sample size (n), coefficient (â), exponent (b), R2, p-value, and classification (class) for 
total phosphorus, orthophosphate phosphorus and particulate phosphorus. The concentration-discharge relationships at sites with at 
least 25 observations were classified as concentrating (conc.; exponent > 0), diluting (dil.; exponent < 0), or chemostatic (chem.; 
exponent not significantly different from 0). 

Site 
TP OP PP 

n a b R2 p Class n a b R2 p Class n a b R2 p Class 
Beaver Creek nr Beaver Falls, CSAH2 400 -1.62 0.25 0.27 0.00 Conc. 367 -2.34 0.30 0.24 0.00 Conc. 370 -2.43 0.25 0.26 0.00 Conc. 
Beaver Creek nr Valley Springs, 10th Ave 50 -1.48 0.46 0.46 0.00 Conc. 37 -2.98 0.61 0.59 0.00 Conc. 37 -1.70 0.37 0.41 0.00 Conc. 
Big Cobb River nr Beauford, CR16 252 -1.65 0.20 0.36 0.00 Conc. 247 -2.83 0.29 0.21 0.00 Conc. 240 -2.17 0.14 0.19 0.00 Conc. 
Blue Earth River nr Blue Earth, 105th St 62 -1.66 0.23 0.26 0.00 Conc. 62 -2.43 0.43 0.39 0.00 Conc. 61 -2.45 0.06 0.02 0.27 Chem. 
Blue Earth River nr Rapidan, MN 358 -1.75 0.38 0.46 0.00 Conc. 357 -3.12 0.49 0.44 0.00 Conc. 343 -2.12 0.33 0.30 0.00 Conc. 
Blue Earth River nr Winnebago, CSAH12 57 -1.52 0.25 0.26 0.00 Conc. 57 -2.76 0.51 0.47 0.00 Conc. 56 -1.94 0.09 0.03 0.17 Chem. 
Bluff Creek nr Bluffton, 585th Ave 11 -2.48 -0.01 0.00 0.91   0           0           
Bois de Sioux River nr Doran 204 -1.24 0.13 0.22 0.00 Conc. 203 -1.69 0.15 0.17 0.00 Conc. 189 -2.46 0.10 0.05 0.00 Conc. 
Bois de Sioux River nr White Rock, SD 22 -1.32 -0.04 0.02 0.52   22 -1.73 -0.03 0.00 0.77   22 -2.59 -0.05 0.02 0.56   
Buffalo Creek nr Glencoe, CR1 122 -1.16 -0.22 0.30 0.00 Dil. 62 -1.77 -0.25 0.25 0.00 Dil. 61 -2.49 -0.16 0.22 0.00 Dil. 
Buffalo River nr Georgetown, CR108 321 -1.67 0.28 0.36 0.00 Conc. 301 -2.27 0.28 0.26 0.00 Conc. 284 -2.53 0.21 0.11 0.00 Conc. 
Buffalo River nr Glyndon, CSAH19 34 -1.74 0.73 0.79 0.00 Conc. 34 -2.61 0.54 0.49 0.00 Conc. 34 -2.37 0.93 0.83 0.00 Conc. 
Buffalo River nr Glyndon, CSAH68 45 -1.93 0.34 0.37 0.00 Conc. 37 -2.69 0.27 0.12 0.04 Conc. 36 -2.65 0.60 0.60 0.00 Conc. 
Cannon River at Morristown, CSAH16 52 -1.52 -0.09 0.07 0.05 Chem. 33 -1.71 -0.25 0.29 0.00 Dil. 38 -2.49 -0.04 0.01 0.50 Chem. 
Cannon River at Welch, MN 40 -1.73 0.32 0.25 0.00 Conc. 30 -3.05 0.18 0.05 0.24 Chem. 30 -2.27 0.58 0.41 0.00 Conc. 
Cedar River nr Austin 393 -1.14 -0.20 0.17 0.00 Dil. 387 -1.53 -0.26 0.17 0.00 Dil. 380 -2.59 0.05 0.01 0.05 Chem. 
Cedar River nr Lansing, CR2 64 -1.93 0.12 0.08 0.02 Conc. 34 -2.30 0.18 0.14 0.03 Conc. 34 -3.07 0.15 0.18 0.01 Conc. 
Chetomba Creek nr Maynard, 880th AVE 341 -2.19 0.17 0.17 0.00 Conc. 300 -2.97 0.25 0.24 0.00 Conc. 315 -2.85 0.11 0.09 0.00 Conc. 
Chippewa River at Benson, US12 40 -1.89 0.19 0.11 0.03 Conc. 41 -3.40 0.45 0.21 0.00 Conc. 40 -2.23 0.07 0.02 0.45 Chem. 
Chippewa River nr Clontarf, CSAH22 291 -1.94 0.07 0.02 0.03 Conc. 270 -3.38 0.40 0.15 0.00 Conc. 275 -2.30 -0.12 0.04 0.00 Dil. 
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Chippewa River nr Cyrus, 140th St 199 -1.83 0.04 0.01 0.22 Chem. 166 -3.61 0.43 0.22 0.00 Conc. 192 -2.13 -0.13 0.05 0.00 Dil. 
Chippewa River nr Milan, MN40 400 -1.90 0.28 0.24 0.00 Conc. 396 -3.14 0.38 0.18 0.00 Conc. 383 -2.30 0.16 0.08 0.00 Conc. 
Clear Creek nr Seaforth, CR56 170 -1.86 0.14 0.11 0.00 Conc. 165 -2.49 0.24 0.21 0.00 Conc. 154 -2.87 0.03 0.00 0.45 Chem. 
Clearwater River nr Clearwater, CR145 15 -3.70 0.20 0.24 0.06   15 -4.53 -0.01 0.00 0.95   14 -4.20 0.20 0.16 0.15   
Cloquet River nr Burnett, CR694 159 -3.91 -0.01 0.00 0.83 Chem. 145 -4.59 0.00 0.00 0.88 Chem. 114 -4.27 0.03 0.00 0.74 Chem. 
Cottonwood River nr Lamberton, US14 214 -1.74 0.18 0.21 0.00 Conc. 209 -2.86 0.29 0.36 0.00 Conc. 209 -2.28 0.10 0.06 0.00 Conc. 
Cottonwood River nr Leavenworth, CR8 240 -1.73 0.30 0.41 0.00 Conc. 235 -3.02 0.42 0.47 0.00 Conc. 232 -2.15 0.25 0.27 0.00 Conc. 
Cottonwood River nr New Ulm, MN68 501 -1.93 0.50 0.57 0.00 Conc. 474 -3.09 0.49 0.44 0.00 Conc. 442 -2.29 0.46 0.45 0.00 Conc. 
Crow Creek nr Morton, Noble Ave 37 -2.05 0.22 0.17 0.01 Conc. 36 -2.41 0.18 0.09 0.07 Chem. 26 -2.97 0.35 0.46 0.00 Conc. 
Deerhorn Creek nr Lawndale, 240th Ave 21 -2.45 -0.15 0.01 0.64   0           0           
Dobbins Creek at Austin, CR61 32 -2.65 0.44 0.48 0.00 Conc. 33 -3.12 0.47 0.50 0.00 Conc. 31 -3.55 0.45 0.53 0.00 Conc. 
Dry Weather Creek nr Watson, 85th Ave 
NW 268 -2.11 0.19 0.17 0.00 Conc. 252 -2.88 0.24 0.16 0.00 Conc. 250 -2.77 0.14 0.14 0.00 Conc. 

Dry Wood Creek nr Hancock, CSAH7 68 -0.87 0.00 0.00 0.92 Chem. 66 -1.44 0.10 0.10 0.01 Conc. 65 -1.79 -0.11 0.13 0.00 Dil. 
East Branch Blue Earth River at Blue Earth, 
Main St 57 -1.56 0.11 0.08 0.03 Conc. 57 -2.52 0.17 0.06 0.06 Chem. 55 -2.17 0.04 0.01 0.47 Chem. 

East Branch Chippewa River nr Benson, 
CR78 264 -2.18 0.08 0.04 0.00 Conc. 272 -3.20 0.09 0.02 0.02 Conc. 247 -2.67 0.04 0.01 0.14 Chem. 

Elk River nr Big Lake 98 -2.40 0.01 0.00 0.80 Chem. 87 -3.94 0.05 0.00 0.55 Chem. 86 -2.66 0.00 0.00 0.99 Chem. 
Gilchrist Lake Inlet nr Sedan, TWP170 36 -3.08 0.03 0.00 0.78 Chem. 35 -4.12 -0.09 0.01 0.63 Chem. 32 -3.52 -0.02 0.00 0.91 Chem. 
Gilchrist Lake Outlet nr Sedan, CSAH10 36 -3.18 -0.19 0.17 0.01 Dil. 34 -4.46 -0.06 0.02 0.49 Chem. 35 -3.50 -0.25 0.16 0.02 Dil. 
Hawk Creek nr Granite Falls, CR52 446 -0.99 0.00 0.00 0.96 Chem. 432 -1.72 -0.03 0.00 0.34 Chem. 407 -1.97 0.13 0.07 0.00 Conc. 
Hawk Creek nr Maynard, MN23 393 -0.69 -0.19 0.13 0.00 Dil. 373 -1.34 -0.24 0.10 0.00 Dil. 362 -1.76 -0.01 0.00 0.69 Chem. 
Hawk Creek nr Priam, CR116 332 -0.03 -0.59 0.54 0.00 Dil. 315 -0.49 -0.77 0.49 0.00 Dil. 298 -1.66 -0.10 0.03 0.00 Dil. 
High Island Creek nr Arlington, CR9 189 -1.68 -0.02 0.00 0.56 Chem. 190 -2.51 0.09 0.02 0.04 Conc. 185 -2.56 -0.09 0.06 0.00 Dil. 
High Island Creek nr Henderson, CSAH6 216 -1.58 0.31 0.34 0.00 Conc. 219 -2.77 0.29 0.19 0.00 Conc. 212 -2.11 0.32 0.34 0.00 Conc. 
Huse Creek nr Sunburg, 62nd St NW 36 -2.63 -0.06 0.02 0.40 Chem. 33 -3.02 -0.12 0.09 0.10 Chem. 25 -3.57 -0.08 0.02 0.47   
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Kandiyohi CD27 nr Sunburg, CSAH1 139 -1.59 -0.11 0.09 0.00 Dil. 125 -2.04 -0.15 0.10 0.00 Dil. 128 -2.80 -0.02 0.00 0.58 Chem. 
Kittleson Creek nr Fertile, CSAH1 35 -2.67 0.05 0.04 0.24 Chem. 29 -3.80 -0.04 0.01 0.54 Chem. 29 -3.19 0.10 0.12 0.07 Chem. 
Lac qui Parle River nr Lac qui Parle, 
CSAH31 378 -2.00 0.28 0.39 0.00 Conc. 343 -2.95 0.34 0.31 0.00 Conc. 354 -2.54 0.18 0.17 0.00 Conc. 

Lac Qui Parle River nr Providence, 
CSAH23 201 -1.97 0.18 0.29 0.00 Conc. 187 -3.22 0.19 0.12 0.00 Conc. 190 -2.40 0.16 0.20 0.00 Conc. 

Le Sueur River at St. Clair, CSAH28 182 -1.62 0.18 0.28 0.00 Conc. 187 -2.66 0.24 0.17 0.00 Conc. 181 -2.22 0.21 0.29 0.00 Conc. 
Le Sueur River nr Rapidan, CR8 250 -1.59 0.44 0.60 0.00 Conc. 256 -2.93 0.50 0.47 0.00 Conc. 248 -1.97 0.43 0.52 0.00 Conc. 
Le Sueur River nr Rapidan, MN66 233 -1.48 0.44 0.56 0.00 Conc. 222 -2.61 0.48 0.45 0.00 Conc. 218 -1.89 0.43 0.39 0.00 Conc. 
Little Beauford Ditch nr Beauford, MN22 282 -1.87 0.24 0.18 0.00 Conc. 283 -2.40 0.27 0.18 0.00 Conc. 269 -2.81 0.22 0.16 0.00 Conc. 
Little Cottonwood River nr Courtland, 
MN68 23 -2.08 0.41 0.39 0.00   23 -3.28 0.49 0.26 0.01   23 -2.49 0.34 0.39 0.00   

Little Fork River nr Linden Grove, TH73 29 -2.53 0.02 0.03 0.38 Chem. 29 -4.00 -0.01 0.00 0.86 Chem. 29 -2.81 0.03 0.04 0.30 Chem. 
Little Rock Creek nr Rice, 15th Ave NW 40 -2.66 0.34 0.61 0.00 Conc. 40 -3.78 0.25 0.31 0.00 Conc. 40 -3.12 0.39 0.53 0.00 Conc. 
Long Prairie River nr Philbrook, 313th Ave 191 -2.70 0.20 0.10 0.00 Conc. 170 -3.44 0.01 0.00 0.82 Chem. 163 -3.45 0.31 0.16 0.00 Conc. 
M.F.Crow River nr New London, Town 
Hall Road 158 -3.17 0.08 0.05 0.01 Conc. 23 -3.96 -0.05 0.01 0.66   21 -3.52 0.09 0.07 0.26   

Maple River nr Rapidan, CR35 413 -1.58 0.33 0.56 0.00 Conc. 399 -2.28 0.43 0.45 0.00 Conc. 387 -2.49 0.27 0.24 0.00 Conc. 
Maple River nr Sterling Center, CR18 264 -1.55 0.14 0.18 0.00 Conc. 264 -2.12 0.21 0.19 0.00 Conc. 261 -2.68 0.05 0.02 0.04 Conc. 
Middle Branch Root River nr Fillmore, 
CSAH5 52 -1.86 0.75 0.52 0.00 Conc. 52 -2.34 0.54 0.33 0.00 Conc. 44 -2.79 1.04 0.56 0.00 Conc. 

Middle Fork Crow River nr Spicer, 275th st 71 -2.89 0.06 0.02 0.21 Chem. 5 -2.76 0.28 0.03 0.80   3 -2.91 0.05 0.00 0.97   
Minnesota River at St. Peter, MN22 93 -1.35 0.33 0.39 0.00 Conc. 93 -2.81 0.56 0.32 0.00 Conc. 92 -1.73 0.23 0.22 0.00 Conc. 
Minnesota River nr Jordan 0           0           0           
Minnesota River nr Lac Qui Parle 149 -2.01 0.13 0.07 0.00 Conc. 148 -2.74 0.12 0.02 0.09 Chem. 145 -3.08 0.15 0.08 0.00 Conc. 
Mustinka River nr Norcross, MN9 50 -1.31 0.14 0.23 0.00 Conc. 47 -2.29 0.22 0.15 0.01 Conc. 50 -1.92 0.06 0.03 0.22 Chem. 
Mustinka River nr Wheaton, CSAH9 102 -1.34 0.22 0.41 0.00 Conc. 102 -1.76 0.26 0.30 0.00 Conc. 96 -2.76 0.17 0.23 0.00 Conc. 
Nicollet CD13A nr North Star, MN99 180 -2.15 -0.02 0.00 0.57 Chem. 173 -2.66 -0.03 0.00 0.51 Chem. 154 -3.06 0.04 0.01 0.29 Chem. 
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Nicollet CD46A nr North Star, CSAH13 177 -1.74 0.01 0.00 0.56 Chem. 167 -2.22 0.02 0.00 0.42 Chem. 161 -2.98 0.05 0.01 0.24 Chem. 
North Branch Kandiyohi CD29 nr Sunburg, 
CSAH1 (W side) 75 -2.26 -0.01 0.00 0.81 Chem. 67 -3.21 -0.15 0.04 0.09 Chem. 67 -2.92 0.12 0.07 0.03 Conc. 

North Branch Middle Fork Zumbro River 
nr Oronoco,5th St 49 -1.74 0.72 0.62 0.00 Conc. 49 -2.58 0.62 0.55 0.00 Conc. 49 -2.40 0.81 0.63 0.00 Conc. 

North Eden Creek nr Franklin, CSAH10 41 -2.42 0.36 0.46 0.00 Conc. 38 -2.72 0.20 0.16 0.01 Conc. 27 -3.10 0.46 0.55 0.00 Conc. 
North Fork Whitewater River nr Elba, 
Fairwater St 84 -1.96 0.88 0.65 0.00 Conc. 0           0           

North Fork Zumbro River nr Mazeppa, 
CSAH7 49 -1.55 0.90 0.71 0.00 Conc. 48 -2.22 0.69 0.53 0.00 Conc. 47 -2.29 1.14 0.79 0.00 Conc. 

Otter Tail River at Breckenridge, CSAH16 152 -2.70 0.78 0.40 0.00 Conc. 137 -3.47 0.65 0.19 0.00 Conc. 128 -3.24 0.43 0.14 0.00 Conc. 
Pipestone Creek nr Pipestone, CSAH13 67 -2.08 0.29 0.41 0.00 Conc. 67 -3.07 0.51 0.47 0.00 Conc. 66 -2.76 0.05 0.02 0.26 Chem. 
Plum Creek nr Walnut Grove, CSAH10 156 -1.93 0.43 0.36 0.00 Conc. 148 -3.04 0.31 0.30 0.00 Conc. 142 -2.51 0.48 0.31 0.00 Conc. 
Pomme De Terre River at Appleton 340 -1.84 0.45 0.41 0.00 Conc. 259 -2.74 0.70 0.34 0.00 Conc. 253 -2.62 0.13 0.03 0.01 Conc. 
Pomme de Terre River nr Hoffman, CR76 89 -2.24 0.44 0.28 0.00 Conc. 89 -3.73 1.07 0.35 0.00 Conc. 88 -2.67 -0.03 0.00 0.79 Chem. 
Red Lake River at Fisher, MN 287 -2.26 0.50 0.47 0.00 Conc. 248 -3.47 0.51 0.35 0.00 Conc. 258 -2.55 0.41 0.41 0.00 Conc. 
Red Lake River nr Red Lake Falls, CR13 62 -2.81 0.35 0.47 0.00 Conc. 43 -3.79 0.41 0.33 0.00 Conc. 53 -3.14 0.30 0.42 0.00 Conc. 
Red River of the North at Grand Forks, ND 178 -1.28 0.23 0.25 0.00 Conc. 178 -1.94 0.14 0.11 0.00 Conc. 166 -2.09 0.35 0.22 0.00 Conc. 
Redwood River at Russell, CR15 172 -2.29 0.28 0.40 0.00 Conc. 171 -3.30 0.23 0.22 0.00 Conc. 165 -2.81 0.30 0.39 0.00 Conc. 
Redwood River nr Redwood Falls, MN 430 -0.81 -0.15 0.17 0.00 Dil. 421 -1.41 -0.18 0.09 0.00 Dil. 409 -1.98 0.04 0.01 0.17 Chem. 
Rock River nr Hardwick, CR8 37 -2.26 0.00 0.00 0.97 Chem. 37 -3.50 0.07 0.04 0.27 Chem. 37 -2.72 -0.04 0.02 0.42 Chem. 
Root River nr Houston, MN 117 -1.67 1.17 0.71 0.00 Conc. 116 -2.57 0.89 0.47 0.00 Conc. 114 -2.27 1.36 0.76 0.00 Conc. 
Root River nr Mound Prairie, CSAH25 222 -1.90 1.12 0.72 0.00 Conc. 180 -2.64 0.99 0.64 0.00 Conc. 173 -2.62 1.17 0.68 0.00 Conc. 
Root River nr Pilot Mound 328 -1.98 0.87 0.55 0.00 Conc. 283 -3.06 0.73 0.44 0.00 Conc. 271 -2.32 0.81 0.46 0.00 Conc. 
Roseau River below State Ditch 51 nr 
Caribou, MN 8 -2.30 0.10 0.09 0.48   8 -2.99 0.13 0.06 0.57   8 -3.10 0.01 0.00 0.94   

S Br. Wild Rice River at CR27 nr Felton, 
MN 39 -2.01 0.35 0.42 0.00 Conc. 39 -2.36 0.36 0.32 0.00 Conc. 39 -3.37 0.32 0.48 0.00 Conc. 
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Sand Hill River at Climax, MN 293 -2.06 0.50 0.56 0.00 Conc. 271 -2.87 0.46 0.38 0.00 Conc. 242 -2.57 0.42 0.32 0.00 Conc. 
Sauk River nr St. Martin, CR12 129 -1.94 0.20 0.14 0.00 Conc. 62 -2.68 0.15 0.04 0.14 Chem. 58 -2.71 0.20 0.10 0.01 Conc. 
Seven Mile Creek nr North Star, 0.3mi us 
of US169 6 -2.22 0.42 0.34 0.22   12 -2.47 0.65 0.76 0.00   4 -3.56 0.40 0.67 0.18   

Seven Mile Creek nr North Star, 0.6mi us 
of US169 22 -2.30 0.61 0.60 0.00   35 -2.55 0.57 0.69 0.00 Conc. 13 -2.43 0.50 0.28 0.07   

Shakopee Creek nr Benson, UNN TWP 
road (1 mile W MN29) 308 -1.52 -0.12 0.11 0.00 Dil. 287 -3.01 0.00 0.00 0.97 Chem. 295 -1.89 -0.18 0.26 0.00 Dil. 

Shakopee Lake Inlet nr De Graff, CSAH4 89 -1.88 0.01 0.00 0.90 Chem. 84 -2.82 -0.10 0.02 0.24 Chem. 83 -2.65 0.12 0.05 0.04 Conc. 
Shakopee Lake Outlet nr De Graff, Chip-
Swift St NE 88 -1.68 -0.17 0.17 0.00 Dil. 78 -3.46 0.04 0.00 0.66 Chem. 84 -1.99 -0.30 0.41 0.00 Dil. 

Shell Rock River nr Gordonsville, CSAH1 166 -0.98 -0.40 0.55 0.00 Dil. 163 -1.68 -0.55 0.30 0.00 Dil. 158 -2.37 -0.14 0.06 0.00 Dil. 
Sleepy Eye Creek nr Cobden, CR8 245 -1.84 0.27 0.36 0.00 Conc. 241 -2.73 0.43 0.57 0.00 Conc. 237 -2.63 0.16 0.10 0.00 Conc. 
South Branch Buffalo River nr Baker, 
CR57 24 -2.14 0.10 0.08 0.17   2 -2.59 0.20 1.00     2 -3.57 -1.04 1.00     

South Branch Buffalo River nr Glyndon, 
CR79 (28th AveS) 88 -1.62 0.13 0.16 0.00 Conc. 79 -1.99 0.18 0.19 0.00 Conc. 79 -2.92 0.01 0.00 0.88 Chem. 

South Branch Middle Fork Zumbro River 
nr Oronoco,5th St 47 -1.46 0.65 0.64 0.00 Conc. 47 -2.54 0.50 0.42 0.00 Conc. 47 -2.03 0.79 0.70 0.00 Conc. 

South Branch Root River at Lanesboro, 
Rochelle Ave N 118 -1.77 0.72 0.57 0.00 Conc. 55 -2.26 0.49 0.34 0.00 Conc. 52 -2.37 0.77 0.48 0.00 Conc. 

South Branch Two Rivers River at Hallock, 
MN175 27 -1.78 0.13 0.11 0.09 Chem. 27 -2.42 -0.02 0.00 0.85 Chem. 27 -2.65 0.34 0.53 0.00 Conc. 

South Branch Yellow Medicine River nr 
Minneota, CSAH26 34 -1.86 0.35 0.57 0.00 Conc. 33 -3.17 0.32 0.42 0.00 Conc. 34 -2.19 0.36 0.59 0.00 Conc. 

South Fork Crow River nr Cosmos, MN7 158 -1.69 0.06 0.05 0.01 Conc. 114 -2.75 0.09 0.03 0.07 Chem. 121 -2.21 0.02 0.01 0.42 Chem. 
South Fork Watonwan River nr Madelia, 
CSAH13 54 -1.88 0.16 0.24 0.00 Conc. 46 -3.21 0.23 0.10 0.03 Conc. 46 -2.27 0.24 0.31 0.00 Conc. 

South Fork Whitewater River nr Altura, 
CR112 105 -1.76 0.73 0.61 0.00 Conc. 27 -3.14 0.37 0.11 0.10 Chem. 27 -2.56 0.63 0.33 0.00 Conc. 

Split Rock Creek nr Jasper, 201st St 111 -1.77 0.42 0.63 0.00 Conc. 109 -2.24 0.50 0.56 0.00 Conc. 97 -2.93 0.21 0.19 0.00 Conc. 
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Spring Creek nr Hanley Falls, 480th St 98 -1.61 -0.11 0.06 0.02 Dil. 95 -2.31 -0.03 0.00 0.63 Chem. 92 -2.48 -0.14 0.13 0.00 Dil. 
Spring Creek nr Sleepy Eye, CSAH10 42 -2.32 0.61 0.69 0.00 Conc. 39 -2.75 0.40 0.38 0.00 Conc. 28 -2.79 0.68 0.72 0.00 Conc. 
Ten Mile Creek nr Lac Qui Parle, CSAH18 52 -2.04 0.31 0.24 0.00 Conc. 49 -2.63 0.31 0.17 0.00 Conc. 49 -3.07 0.40 0.34 0.00 Conc. 
Thief River nr Holt, CSAH7 76 -2.46 0.02 0.00 0.60 Chem. 58 -3.55 0.02 0.00 0.78 Chem. 74 -2.85 0.01 0.00 0.73 Chem. 
Threemile Creek nr Green Valley, CR67 171 -2.02 0.21 0.25 0.00 Conc. 168 -3.07 0.30 0.27 0.00 Conc. 166 -2.68 0.14 0.10 0.00 Conc. 
Turtle Creek at Austin, 43rd St 138 -1.76 0.28 0.34 0.00 Conc. 139 -2.64 0.46 0.34 0.00 Conc. 138 -2.57 0.05 0.01 0.22 Chem. 
Vermillion River at Farmington, Denmark 
Ave 101 -2.71 0.62 0.42 0.00 Conc. 0           0           

Vermillion River nr Vermillion, CSAH85 208 -1.82 0.34 0.05 0.00 Conc. 7 -1.15 -0.67 0.07 0.58   7 -2.22 -0.32 0.01 0.81   
Wabasha Creek nr Franklin, CSAH11 41 -1.50 0.18 0.17 0.01 Conc. 38 -2.06 0.10 0.04 0.23 Chem. 35 -2.66 0.37 0.39 0.00 Conc. 
Watonwan River nr Garden City, CSAH13 414 -1.52 0.08 0.04 0.00 Conc. 373 -2.22 0.25 0.18 0.00 Conc. 371 -2.50 0.04 0.01 0.14 Chem. 
Watonwan River nr La Salle, CSAH3 125 -1.48 0.05 0.01 0.22 Chem. 113 -2.12 0.02 0.00 0.74 Chem. 113 -2.49 0.07 0.02 0.18 Chem. 
West Branch Lac Qui Parle River at 
Dawson, Diagonal St 214 -2.07 0.08 0.05 0.00 Conc. 201 -2.84 0.13 0.06 0.00 Conc. 204 -2.83 0.05 0.02 0.03 Conc. 

West Branch Rum River nr Princeton, 
CR102 68 -2.41 0.16 0.33 0.00 Conc. 57 -3.22 0.08 0.04 0.13 Chem. 57 -3.05 0.23 0.57 0.00 Conc. 

West Fork Beaver Creek nr Bechyn, 320th 
St 110 -1.52 0.15 0.13 0.00 Conc. 100 -2.22 0.36 0.33 0.00 Conc. 98 -2.41 -0.07 0.03 0.08 Chem. 

West Fork Des Moines River at Jackson, 
River St 173 -1.57 -0.04 0.02 0.11 Chem. 172 -2.79 -0.03 0.00 0.56 Chem. 171 -2.28 0.08 0.05 0.00 Conc. 

West Fork Des Moines River nr Avoca, 
CSAH6 50 -2.16 0.40 0.68 0.00 Conc. 50 -3.53 0.40 0.36 0.00 Conc. 49 -2.54 0.34 0.51 0.00 Conc. 

Whitewater River nr Beaver, CSAH30 179 -1.98 1.12 0.76 0.00 Conc. 180 -2.49 0.92 0.61 0.00 Conc. 169 -2.99 1.34 0.72 0.00 Conc. 
Yellow Bank River nr Odessa, CSAH40 174 -2.08 0.52 0.53 0.00 Conc. 149 -2.61 0.51 0.40 0.00 Conc. 137 -3.06 0.50 0.55 0.00 Conc. 
Yellow Medicine River nr Granite Falls 96 -1.73 0.25 0.20 0.00 Conc. 96 -2.78 0.28 0.20 0.00 Conc. 91 -2.17 0.20 0.14 0.00 Conc. 
Yellow Medicine River nr Hanley Falls, 
CR18 109 -1.89 0.25 0.26 0.00 Conc. 104 -3.05 0.26 0.18 0.00 Conc. 103 -2.33 0.25 0.23 0.00 Conc. 
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Table 14. Concentration-discharge relationship sample size (n), coefficient (â), exponent (b), R2, p-value, and classification (class) for 
total suspended solids and volatile suspended solids. The concentration-discharge relationships at sites with at least 25 observations 
were classified as concentrating (conc.; exponent > 0), diluting (dil.; exponent < 0), or chemostatic (chem.; exponent not significantly 
different from 0). 

Site TSS VSS 
n a b R2 p Class n a b R2 p Class 

Beaver Creek nr Beaver Falls, CSAH2 396 3.20 0.60 0.53 0.00 Conc. 155 2.21 0.44 0.47 0.00 Conc. 
Beaver Creek nr Valley Springs, 10th Ave 48 4.69 0.64 0.45 0.00 Conc. 48 2.82 0.38 0.23 0.00 Conc. 
Big Cobb River nr Beauford, CR16 253 4.20 0.35 0.50 0.00 Conc. 250 2.33 0.19 0.30 0.00 Conc. 
Blue Earth River nr Blue Earth, 105th St 60 3.40 0.32 0.25 0.00 Conc. 60 2.14 0.11 0.05 0.08 Chem. 
Blue Earth River nr Rapidan, MN 361 4.26 0.63 0.47 0.00 Conc. 356 2.47 0.30 0.24 0.00 Conc. 
Blue Earth River nr Winnebago, CSAH12 55 4.35 0.28 0.16 0.00 Conc. 55 2.76 0.12 0.05 0.10 Chem. 
Bluff Creek nr Bluffton, 585th Ave 9 1.60 0.14 0.16 0.23   9 1.16 0.20 0.38 0.04   
Bois de Sioux River nr Doran, MN 159 3.75 0.25 0.17 0.00 Conc. 156 2.17 0.14 0.09 0.00 Conc. 
Bois de Sioux River nr White Rock, SD 20 2.44 -0.14 0.04 0.36   20 1.14 -0.12 0.04 0.36   
Buffalo Creek nr Glencoe, CR1 171 3.19 0.05 0.02 0.07 Chem. 97 1.95 -0.01 0.00 0.91 Chem. 
Buffalo River nr Georgetown, CR108 312 3.93 0.45 0.26 0.00 Conc. 190 2.08 0.34 0.25 0.00 Conc. 
Buffalo River nr Glyndon, CSAH19 32 4.71 1.10 0.86 0.00 Conc. 32 2.77 0.84 0.77 0.00 Conc. 
Buffalo River nr Glyndon, CSAH68 43 3.67 0.63 0.47 0.00 Conc. 31 1.78 0.52 0.44 0.00 Conc. 
Cannon River at Morristown, CSAH16 50 2.00 0.12 0.06 0.09 Chem. 49 1.27 -0.03 0.00 0.65 Chem. 
Cannon River at Welch, MN 1 2.66 1.11 0.92 0.18   0           
Cedar River nr Austin, MN 325 2.83 0.64 0.59 0.00 Conc. 301 1.52 0.38 0.38 0.00 Conc. 
Cedar River nr Lansing, CR2 65 2.22 0.56 0.47 0.00 Conc. 49 0.90 0.46 0.46 0.00 Conc. 
Chetomba Creek nr Maynard, 880th AVE 338 2.86 0.20 0.14 0.00 Conc. 98 1.58 0.22 0.17 0.00 Conc. 
Chippewa River at Benson, US12 39 3.91 0.27 0.10 0.05 Conc. 38 2.63 0.10 0.02 0.39 Chem. 
Chippewa River nr Clontarf, CSAH22 291 3.71 -0.09 0.01 0.07 Chem. 91 2.28 -0.10 0.02 0.18 Chem. 
Chippewa River nr Cyrus, 140th St 215 3.39 -0.31 0.09 0.00 Dil. 50 2.29 -0.27 0.14 0.01 Dil. 
Chippewa River nr Milan, MN40 399 3.84 0.31 0.15 0.00 Conc. 214 2.29 0.26 0.11 0.00 Conc. 
Clear Creek nr Seaforth, CR56 167 3.45 0.20 0.14 0.00 Conc. 90 1.77 -0.04 0.01 0.30 Chem. 
Clearwater River nr Clearwater, CR145 13 1.66 0.53 0.59 0.00   0           
Cloquet River nr Burnett, CR694 160 1.14 0.51 0.27 0.00 Conc. 143 0.60 0.27 0.22 0.00 Conc. 
Cottonwood River nr Lamberton, US14 212 4.12 0.27 0.21 0.00 Conc. 111 2.25 0.12 0.11 0.00 Conc. 
Cottonwood River nr Leavenworth, CR8 238 4.25 0.46 0.40 0.00 Conc. 154 2.55 0.19 0.18 0.00 Conc. 
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Cottonwood River nr New Ulm, MN68 442 4.21 0.76 0.58 0.00 Conc. 278 2.63 0.36 0.39 0.00 Conc. 
Crow Creek nr Morton, Noble Ave 35 2.47 0.53 0.54 0.00 Conc. 35 1.45 0.27 0.32 0.00 Conc. 
Deerhorn Creek nr Lawndale, 240th Ave 21 2.95 0.30 0.18 0.04   0           
Dobbins Creek at Austin, CR61 58 2.45 0.67 0.46 0.00 Conc. 31 0.83 0.57 0.62 0.00 Conc. 
Dry Weather Creek nr Watson, 85th Ave NW 281 2.60 0.44 0.44 0.00 Conc. 67 1.56 0.20 0.19 0.00 Conc. 
Dry Wood Creek nr Hancock, CSAH7 66 3.86 0.01 0.00 0.88 Chem. 66 2.57 -0.05 0.02 0.28 Chem. 
East Branch Blue Earth River at Blue Earth, Main St 55 3.99 0.24 0.13 0.01 Conc. 55 2.56 0.10 0.05 0.11 Chem. 
East Branch Chippewa River nr Benson, CR78 260 3.45 0.02 0.00 0.54 Chem. 83 1.92 0.10 0.03 0.10 Chem. 
Elk River nr Big Lake, MN 93 2.17 -0.16 0.03 0.07 Chem. 91 3.19 0.11 0.01 0.51 Chem. 
Gilchrist Lake Inlet nr Sedan, TWP170 34 1.73 -0.15 0.02 0.47 Chem. 5 1.32 0.32 0.15 0.39   
Gilchrist Lake Outlet nr Sedan, CSAH10 34 1.80 -0.21 0.09 0.08 Chem. 5 1.46 -0.52 0.35 0.16   
Hawk Creek nr Granite Falls, CR52 441 3.64 0.48 0.39 0.00 Conc. 270 2.24 0.37 0.34 0.00 Conc. 
Hawk Creek nr Maynard, MN23 391 3.69 0.35 0.27 0.00 Conc. 152 2.40 0.26 0.17 0.00 Conc. 
Hawk Creek nr Priam, CR116 328 2.84 0.41 0.29 0.00 Conc. 99 1.77 0.42 0.34 0.00 Conc. 
High Island Creek nr Arlington, CR9 189 3.37 -0.12 0.07 0.00 Dil. 172 2.08 -0.14 0.12 0.00 Dil. 
High Island Creek nr Henderson, CSAH6 218 4.41 0.67 0.61 0.00 Conc. 195 2.63 0.36 0.37 0.00 Conc. 
Huse Creek nr Sunburg, 62nd St NW 34 1.50 -0.21 0.06 0.16 Chem. 2 0.92 0.27 0.50 0.30   
Kandiyohi CD27 nr Sunburg, CSAH1 136 2.20 0.03 0.00 0.51 Chem. 6 0.78 -0.15 0.22 0.24   
Kittleson Creek nr Fertile, CSAH1 33 2.33 0.33 0.39 0.00 Conc. 33 1.12 0.19 0.29 0.00 Conc. 
Lac qui Parle River nr Lac qui Parle, CSAH31 361 3.60 0.49 0.55 0.00 Conc. 244 2.02 0.27 0.32 0.00 Conc. 
Lac Qui Parle River nr Providence, CSAH23 195 3.89 0.29 0.33 0.00 Conc. 105 2.27 0.21 0.18 0.00 Conc. 
Le Sueur River at St. Clair, CSAH28 186 4.27 0.37 0.45 0.00 Conc. 182 2.29 0.24 0.30 0.00 Conc. 
Le Sueur River nr Rapidan, CR8 256 4.73 0.65 0.60 0.00 Conc. 253 2.60 0.41 0.47 0.00 Conc. 
Le Sueur River nr Rapidan, MN66 193 4.87 0.65 0.49 0.00 Conc. 128 2.65 0.51 0.44 0.00 Conc. 
Little Beauford Ditch nr Beauford, MN22 267 3.09 0.34 0.24 0.00 Conc. 178 1.36 0.20 0.11 0.00 Conc. 
Little Cottonwood River nr Courtland, MN68 6 4.17 0.72 0.78 0.00   0           
Little Fork River nr Linden Grove, TH73 27 2.98 0.13 0.37 0.00 Conc. 27 1.48 0.05 0.12 0.07 Chem. 
Little Rock Creek nr Rice, 15th Ave NW NA           0           
Long Prairie River nr Philbrook, 313th Ave 200 1.34 0.58 0.28 0.00 Conc. 79 1.06 0.30 0.21 0.00 Conc. 
M.F.Crow River nr New London, Town Hall Road 158 1.34 0.35 0.27 0.00 Conc. 0           
Maple River nr Rapidan, CR35 428 4.41 0.56 0.55 0.00 Conc. 390 2.47 0.32 0.36 0.00 Conc. 
Maple River nr Sterling Center, CR18 273 3.83 0.15 0.11 0.00 Conc. 255 2.13 0.04 0.01 0.10 Chem. 
Middle Branch Root River nr Fillmore, CSAH5 50 4.05 1.18 0.82 0.00 Conc. 50 2.33 0.99 0.80 0.00 Conc. 
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Middle Fork Crow River nr Spicer, 275th st 69 1.54 0.27 0.18 0.00 Conc. 0           
Minnesota River at St. Peter, MN22 91 4.63 0.65 0.53 0.00 Conc. 90 2.95 0.38 0.38 0.00 Conc. 
Minnesota River nr Jordan, MN 10 5.51 0.71 0.75 0.00   10 3.48 0.43 0.50 0.01   
Minnesota River nr Lac Qui Parle, MN 146 3.15 0.26 0.10 0.00 Conc. 146 1.85 0.06 0.01 0.15 Chem. 
Mustinka River nr Norcross, MN9 48 4.19 0.23 0.21 0.00 Conc. 47 2.26 0.09 0.04 0.18 Chem. 
Mustinka River nr Wheaton, CSAH9 103 3.75 0.34 0.45 0.00 Conc. 100 2.07 0.20 0.26 0.00 Conc. 
Nicollet CD13A nr North Star, MN99 184 2.41 0.20 0.09 0.00 Conc. 0           
Nicollet CD46A nr North Star, CSAH13 177 2.83 0.37 0.25 0.00 Conc. 0           
North Branch Kandiyohi CD29 nr Sunburg, CSAH1 (W side) 73 1.85 0.11 0.03 0.15 Chem. 2 1.00 0.00 0.00 0.97   
North Branch Middle Fork Zumbro River nr Oronoco,5th St 47 3.88 1.11 0.71 0.00 Conc. 47 1.93 0.82 0.58 0.00 Conc. 
North Eden Creek nr Franklin, CSAH10 39 2.21 0.68 0.70 0.00 Conc. 39 1.30 0.41 0.62 0.00 Conc. 
North Fork Whitewater River nr Elba, Fairwater St 81 2.62 1.80 0.69 0.00 Conc. 81 1.25 1.32 0.67 0.00 Conc. 
North Fork Zumbro River nr Mazeppa, CSAH7 47 3.88 1.67 0.87 0.00 Conc. 47 2.01 1.12 0.79 0.00 Conc. 
Otter Tail River at Breckenridge, CSAH16 153 3.58 0.43 0.12 0.00 Conc. 144 1.74 0.23 0.06 0.00 Conc. 
Pipestone Creek nr Pipestone, CSAH13 41 3.75 0.27 0.24 0.00 Conc. 41 2.30 0.16 0.14 0.01 Conc. 
Plum Creek nr Walnut Grove, CSAH10 152 4.05 0.66 0.34 0.00 Conc. 64 1.86 0.30 0.38 0.00 Conc. 
Pomme De Terre River at Appleton, MN 314 3.64 0.28 0.07 0.00 Conc. 231 2.06 0.14 0.03 0.01 Conc. 
Pomme de Terre River nr Hoffman, CR76 87 3.12 -0.32 0.05 0.03 Dil. 87 2.13 -0.20 0.03 0.09 Chem. 
Red Lake River at Fisher, MN 242 3.98 0.72 0.48 0.00 Conc. 215 2.01 0.48 0.45 0.00 Conc. 
Red Lake River nr Red Lake Falls, CR13 60 2.67 0.49 0.41 0.00 Conc. 38 1.31 0.26 0.20 0.00 Conc. 
Red River of the North at Grand Forks, ND 176 4.60 0.63 0.38 0.00 Conc. 144 2.39 0.50 0.41 0.00 Conc. 
Redwood River at Russell, CR15 162 3.15 0.51 0.59 0.00 Conc. 129 2.05 0.30 0.46 0.00 Conc. 
Redwood River nr Redwood Falls, MN 375 3.98 0.44 0.34 0.00 Conc. 251 2.41 0.15 0.09 0.00 Conc. 
Rock River nr Hardwick, CR8 33 3.42 -0.04 0.01 0.59 Chem. 0           
Root River nr Houston, MN 115 4.88 1.67 0.74 0.00 Conc. 111 2.72 1.50 0.70 0.00 Conc. 
Root River nr Mound Prairie, CSAH25 220 4.34 1.55 0.73 0.00 Conc. 220 2.68 1.03 0.30 0.00 Conc. 
Root River nr Pilot Mound, MN 291 4.06 1.43 0.66 0.00 Conc. 117 3.40 0.34 0.06 0.01 Conc. 
Roseau River below State Ditch 51 nr Caribou, MN NA           0           
S Br. Wild Rice River at CR27 nr Felton, MN 40 2.63 0.61 0.66 0.00 Conc. 39 1.35 0.36 0.54 0.00 Conc. 
Sand Hill River at Climax, MN 253 4.02 0.57 0.47 0.00 Conc. 212 1.97 0.41 0.47 0.00 Conc. 
Sauk River nr St. Martin, CR12 124 2.52 0.09 0.01 0.27 Chem. 0           
Seven Mile Creek nr North Star, 0.3mi us of US169 1 3.74 2.25 0.56 0.46   0           
Seven Mile Creek nr North Star, 0.6mi us of US169 26 2.19 0.76 0.50 0.00 Conc. 0           
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Shakopee Creek nr Benson, UNN TWP road (1 mile W 
MN29) 284 4.17 -0.12 0.05 0.00 Dil. 88 2.69 -0.07 0.05 0.04 Dil. 

Shakopee Lake Inlet nr De Graff, CSAH4 87 2.92 0.15 0.04 0.06 Chem. 30 1.95 0.15 0.08 0.12 Chem. 
Shakopee Lake Outlet nr De Graff, Chip-Swift St NE 84 3.69 -0.27 0.23 0.00 Dil. 31 2.45 -0.38 0.40 0.00 Dil. 
Shell Rock River nr Gordonsville, CSAH1 161 2.60 0.17 0.05 0.00 Conc. 158 1.81 0.05 0.01 0.35 Chem. 
Sleepy Eye Creek nr Cobden, CR8 231 3.57 0.37 0.28 0.00 Conc. 146 2.07 0.16 0.13 0.00 Conc. 
South Branch Buffalo River nr Baker, CR57 22 3.09 0.14 0.12 0.10   0           
South Branch Buffalo River nr Glyndon, CR79 (28th AveS) 89 3.37 0.03 0.00 0.55 Chem. 75 1.74 0.03 0.01 0.53 Chem. 
South Branch Middle Fork Zumbro River nr Oronoco,5th St 45 4.15 1.17 0.77 0.00 Conc. 45 2.29 0.85 0.67 0.00 Conc. 
South Branch Root River at Lanesboro, Rochelle Ave N 116 4.29 1.19 0.68 0.00 Conc. 116 3.85 0.32 0.08 0.00 Conc. 
South Branch Two Rivers River at Hallock, MN175 25 3.51 0.63 0.65 0.00 Conc. 25 1.36 0.47 0.60 0.00 Conc. 
South Branch Yellow Medicine River nr Minneota, CSAH26 32 4.24 0.49 0.66 0.00 Conc. 31 2.69 0.36 0.61 0.00 Conc. 
South Fork Crow River nr Cosmos, MN7 75 3.38 0.00 0.00 0.99 Chem. 75 2.10 0.03 0.01 0.37 Chem. 
South Fork Watonwan River nr Madelia, CSAH13 52 3.67 0.40 0.53 0.00 Conc. 52 2.38 0.25 0.36 0.00 Conc. 
South Fork Whitewater River nr Altura, CR112 126 2.92 0.38 0.15 0.00 Conc. 75 1.55 1.22 0.69 0.00 Conc. 
Split Rock Creek nr Jasper, 201st St 107 3.91 0.35 0.31 0.00 Conc. 107 2.33 0.24 0.21 0.00 Conc. 
Spring Creek nr Hanley Falls, 480th St 94 2.76 -0.07 0.02 0.17 Chem. 49 1.80 -0.04 0.02 0.39 Chem. 
Spring Creek nr Sleepy Eye, CSAH10 40 2.67 1.04 0.82 0.00 Conc. 40 1.54 0.60 0.70 0.00 Conc. 
Ten Mile Creek nr Lac Qui Parle, CSAH18 50 2.65 0.43 0.39 0.00 Conc. 50 1.24 0.22 0.14 0.01 Conc. 
Thief River nr Holt, CSAH7 73 3.05 0.17 0.08 0.02 Conc. 58 1.30 0.07 0.03 0.23 Chem. 
Threemile Creek nr Green Valley, CR67 140 3.76 0.18 0.11 0.00 Conc. 98 2.14 0.06 0.03 0.09 Chem. 
Turtle Creek at Austin, 43rd St 137 3.60 0.08 0.02 0.08 Chem. 119 2.05 0.14 0.05 0.01 Conc. 
Vermillion River at Farmington, Denmark Ave 99 2.14 0.57 0.24 0.00 Conc. 99 1.01 0.53 0.29 0.00 Conc. 
Vermillion River nr Vermillion, CSAH85 206 2.56 0.56 0.15 0.00 Conc. 206 1.39 0.39 0.12 0.00 Conc. 
Wabasha Creek nr Franklin, CSAH11 39 2.84 0.50 0.36 0.00 Conc. 39 1.72 0.33 0.33 0.00 Conc. 
Watonwan River nr Garden City, CSAH13 412 4.18 0.47 0.44 0.00 Conc. 374 2.54 0.22 0.19 0.00 Conc. 
Watonwan River nr La Salle, CSAH3 123 4.02 0.33 0.22 0.00 Conc. 123 2.43 0.22 0.16 0.00 Conc. 
West Branch Lac Qui Parle River at Dawson, Diagonal St 206 2.86 0.26 0.30 0.00 Conc. 139 1.55 0.14 0.13 0.00 Conc. 
West Branch Rum River nr Princeton, CR102 66 1.65 0.33 0.46 0.00 Conc. 66 3.17 0.42 0.14 0.00 Conc. 
West Fork Beaver Creek nr Bechyn, 320th St 108 3.32 -0.22 0.15 0.00 Dil. 63 1.80 -0.10 0.02 0.22 Chem. 
West Fork Des Moines River at Jackson, River St 153 3.93 0.38 0.37 0.00 Conc. 152 2.64 0.17 0.12 0.00 Conc. 
West Fork Des Moines River nr Avoca, CSAH6 48 4.33 0.43 0.49 0.00 Conc. 48 2.77 0.30 0.46 0.00 Conc. 
Whitewater River nr Beaver, CSAH30 181 3.90 1.83 0.80 0.00 Conc. 178 1.84 1.59 0.80 0.00 Conc. 
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Yellow Bank River nr Odessa, CSAH40 195 3.17 0.80 0.65 0.00 Conc. 172 1.74 0.49 0.53 0.00 Conc. 
Yellow Medicine River nr Granite Falls, MN 73 3.72 0.58 0.56 0.00 Conc. 72 2.46 0.38 0.52 0.00 Conc. 
Yellow Medicine River nr Hanley Falls, CR18 106 3.90 0.44 0.42 0.00 Conc. 54 2.61 0.23 0.30 0.00 Conc. 
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