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Chapter 1

Introduction

1.1 Introduction

The spatial distribution of sub-aqueous substrate type can be mapped with a variety of

techniques, including visual, mechanical, and acoustic methods. The distribution of

sediments on the lake floor can be an important factor in the determination of biological

habitats (Che Hasan et al., 2012). The bottom-type is important for many benthic fauna

(Huzarska, 2013). In regions where a certain biological habitat is commercially exploited

or is being monitored for environmental protection, it is important to accurately map the

habitat distribution and to monitor how it is influenced by natural and anthropogenic

change. Visual methods such as diver acquired pictures or video can be used along with

geographic positioning information to determine the spatial extents of certain substrate

types. This approach relies on the diver having some prior knowledge and experience with

the study area to determine boundaries between different sediment types accurately.

Mechanical methods also depend on some knowledge of the study area but are conducted
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in a manner that maximizes spatial coverage. Mechanical methods frequently use a

combination of surficial sediment samples and sediment cores to test the bottom-type.

Both visual and mechanical methods can provide a spatial image of the substrate type

given an appropriately sized study area. Areas where information about the distribution of

sediments over a large area is required cannot be efficiently surveyed with these traditional

methods. Substrate composition can have a significant impact on the lake floor’s acoustic

response and classification methods based on the lake floor acoustic character can provide

a more efficient means of mapping the distribution of substrate over traditional survey

methods. Data collected during an acoustic survey can be analyzed with a variety of

statistical procedures that can be used to infer information about the bottom-type. Different

types of information can be extracted and used for substrate mapping. These data types

can be bathymetric (depth information) or backscatter (intensity of measured return). Each

type of data relies on inherently different properties of the bottom-type for analysis.

1.2 Motivation

Techniques based upon changes in acoustic backscatter from the sea floor have been

widely used for substrate classification (Fonseca et al., 2002; Lamarche et al., 2011; Che

Hasan et al., 2012; Huang et al., 2013). They can identify different sediment types with a

high degree of confidence. While these methods are useful for substrate mapping, they

often fail to resolve fine-scale differences within a particular substrate type. Acoustic

classification of data collected from Horseshoe Reef off Drummond Island, in northern

Lake Huron, MI, was able to resolve areas of (mud from sand), but showed little ability to

differentiate substrate type (i.e., gravel from bouldered areas), while visual observations

resolved variations in texture (Riley et al., 2014). For this survey, substrate classification
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was completed using a commercial software package, QTC (Quester Tangent Corporation)

Swathview, which classifies substrate by integrated analysis of statistical measures

extracted from backscatter data. Brown et al., (2011) show that the backscatter data could

be successfully applied to mapping variations in the seafloor’s geologic facies and noted

the limitations that this method did not take advantage of bathymetric information. Brown

& Blondel (2009) and Wilson et al., (2007) have demonstrated that the features derived

from bathymetric surfaces can be used as the basis for habitat mapping.

1.3 Hypotheses and Research Questions

In this study a new method for classifying lake floor substrate based upon information

derived from the textural characteristics of the lake floor is developed. The hypotheses to

be tested are:

1. This method of substrate classification will be able to resolve areas of differing

textural complexity using bathymetric data produced by a multibeam sonar.

2. The classification can accurately map the bottom type using measures derived from

the bathymetric information.

High-resolution bathymetric data from geologically distinct nearshore regions in western

Lake Superior are used to test these hypotheses. In addition to high-resolution bathymetry

data, photo and video ground-truth samples were collected from each area. These were

used to calibrate the acoustic classification and to assess its accuracy.
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1.4 Background

1.4.1 Variations in Acoustic Returns

Substrate classification schemes based upon backscatter measurements exploit the fact that

the acoustic return off the lake floor varies with substrate type. Three factors determine

this behavior: 1) local geometry of insonification, 2) physical characteristics (i.e.

roughness), 3) intrinsic nature of the surface (i.e. composition, volume scattering)

(Blondel, 2010). If the surface ensonified by the acoustic energy is at an angle that is

facing the sonar, it will result in a stronger return. If the surface is relatively smooth, the

acoustic energy will tend to reflect at the angle of incidence and not produce much

backscattered energy. A rougher surface will exhibit small areas of higher variability,

increasing the likelihood that an area will scatter at angles that differ from the angle of

incidence. This causes “rough” areas to exhibit higher backscatter strength. Consequently,

a patch of gravel generates a stronger return than a patch of muddy sand. Acoustic energy

not only interacts with the surface of the sea floor, but also propagates into the medium

and will interact with heterogeneities within the volume, resulting in a different pattern of

scattering. When interpreting acoustic data it is important to take into consideration the

scale of the insonified features and the frequency of the acoustic waves used. A feature

may result in low volume scattering at a high frequency and appear smooth, while at a

lower frequency, the energy may be able to penetrate further into the medium, leading to a

different measure of volume scattering at the same location.
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1.4.2 Echosounding

The basis of a traditional single-beam echosounder is to take single, consecutive depth

measurements of the lake floor. The recorded depth information can be combined with

geographic positioning information to produce a bathymetric map. The time delay

between the transmitted signal and when the return echo arrives can be measured, and

used to calculate depth:

Depth =

(
1

2

)
× V elocity × Echo T ime (1.1)

A traditional echosounder’s transducer has a relatively wide beam, and it is assumed that

the recorded return is generated from the lake floor is from directly below the survey

vessel. The energy is assumed to travel vertically through the water column.

Consequently, ray path bending correction is not required since the speed of sound is

assumed to vary only with depth.

The returned echo is not a simple pulse but is instead a complicated return that is strongly

influenced by the composition and slope of the sea floor. This is the basis for the RoxAnn

processing system (Marine Microsystems Limited) which uses changes in the returned

echogram to infer substrate change. This method was inspired by observations made by

commercial fishermen who noted that the shape and amplitude of their echosounder’s

return (and related multiple) varied with seafloor composition. The RoxAnn system

exploits the relationship between substrate type and acoustic return through theoretical

predictions and experimental testing (George & Schlagintweit, 1993). The system uses

two parameters (the first and second echo returns) as a means for seabed classification.

The roughness of the seafloor is derived from an initial portion of the first response, and
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the second echo is a measure of the relative hardness of the seafloor. The RoxAnn system

is particularly simple, as its hardware is an add-on package that can process incoming

echosounder data in real time. This was an early adoption of an unsupervised method that

allows for classification based on the natural grouping of measures derived from acoustic

data, which can then be related back to ground-truth samples. In a study that sought to map

the impacts of trawling, a RoxAnn system was used in conjunction with other data types

for a physical impact assessment (Humborstad et al., 2004). It was concluded that while

the RoxAnn system was able to produce a map of the study area, it failed to recognize areas

of increased surface roughness noted by divers. These could only be observed in the data

after additional processing or with calibration with sidescan imagery. This study illustrates

that RoxAnn does not provide information about the composition of the substrate. These

could only be determined if the results are calibrated with ground-truth samples.

1.4.3 Sidescan-Sonar

Sidescan sonar is another way of collecting acoustic data for substrate classification.

Sidescan sonars collect acoustic data of a different type than traditional echosounders. The

acoustic backscattered return from the seafloor is detected by two receiver arrays, a

port-side array, and a starboard-side array. Assuming a flat seafloor, the earlier portion of

the returned signal is assumed to come from the seafloor below the towfish, and later

returns lie further off the trackline. Modern sidescan sonars apply amplitude corrections

for beam pattern and geometrical variations. They do not attempt to correct for

ray-bending effects that occur due to vertical changes in the speed of sound in water. The

sidescan sonar will report the strength of the returned echo, assuming the underlying

geometry of the system is known. The resulting data is usually displayed as a mosaic
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showing a map of backscatter intensity. Because of the geometry of the system, a linear

dependence with time is assumed, so the range of the echo can be calculated using

equation 1.1. This simple relationship requires little processing, allowing for the data to be

projected in real time. However, a key assumption made when using this system is that the

seafloor is perfectly flat and horizontal. In areas where the regional topography is

relatively smooth, the horizontal plane approximation for the geometry is usually

acceptable, and a large-scale feature will be correctly mapped. When the local

straight-line geometry fails to apply, problems arise. For example, if the local topography

is rough, smaller-scale features will not be correctly processed, and the result is that

textural information derived from this data can be incorrectly displayed.

A popular method for acoustic classification of the substrate that uses sidescan sonar data

is a commercial processing suite developed by the Quester Tangent Corporation (QTC),

called QTC Sideview. This software is based on the concept that the statistical

characteristics of the sonar backscatter are dependent on bottom-type. A proposal to

develop a structured class identification system based on the same basic methods utilized

in Swathview was described by Subramaniam et al (1993). They apply the textural

measurements outlined by Haralick (1973) as the basis for their computations. Only later

did QTC develop this novel concept into a functioning processing tool. The QTC method

calculates a series of measures based upon the mapped backscatter which is then processed

using a suite of multivariate statistical algorithms to identify a set of acoustic classes.

These classes can be calibrated with non-acoustic data for a small number of representative

areas, and then applied to an entire survey area with a high-degree of confidence.
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1.4.4 Multibeam Sonar

Bathymetric surveys collected with traditional echosounders often under-sample the

survey area, missing valuable information from locations not directly crossed by the

survey vessel. Multibeam surveys seek to fill in the missing areas. They effectively do the

job of many single beam echosounders, measuring the depth of the seafloor at several

different locations. The area insonified by a multibeam sonar is oriented normal to the

ship’s path and is called a swath.

The width of the swath is usually a fixed angle and will vary with target depth. The swath

is made up of a large number of narrowly focused individual beams separated by a small

angle, and as a result, the data produced by this system can have very high-resolution. The

system measures a large number of soundings per ping cycle. Because there are a large

number of beams used in a multibeam sonar swath, the point on the lake floor sampled by

a beam is not always directly below the ship, and the simple depth measurement given by

Equation 1.1 is no longer valid. Since the beams no longer travel parallel to the gradient of

the sound velocity profile, ray bending effects must be addressed. Finally, the nature of the

narrow beams means they are very sensitive to the vessel’s motion.

The ship’s motion is subject to four possible motions: bulk vertical motion (heave), and a

rotation about three orthogonal axes, x, y, and z. These rotational motions are referred to

as pitch, roll, and yaw. Pitch can be described as a rotation of the vessel about the X axis

in three-space, calculated about the center of mass of the vessel. Rotation about the pitch

axis will effectively shift the position of the measurement in the fore-aft direction. The roll

can be described as a rotation about the Y axis in three-space. Lastly, yaw is a rotation

about the Z axis in three-space. This can be described as a left-to-right deviation of the

vessel, about the track line of the survey. A yaw results in the swath on one side of the
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Multibeam Con�guration

Figure 1.1: Diagram showing the basic layout of a multibeam sonar configuration.
(Seabeam Instruments, (2000)).
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vessel being shifted forward of the true position, while on the opposite side, the swath is

mapped behind the true position.

One of the main differences between a multibeam sonar and a sidescan sonar is the data

acquisition. The sidescan sonar can provide a real-time image of the spatial variation in

backscatter intensity. This can be combined with additional sonar images to create a

“mosaic” image of the seafloor. Unlike a traditional echosounder where the reflected

acoustic beam is assumed to be sourced from directly below the ship, the beams in a

multibeam system are projected into the water column at progressively larger angles away

from the nadir of the ship.

Due to the geometry of the system and the narrow aperture of each beam, the effects of the

ship’s motion must also be considered and corrected for. For conventional echosounders

motion artifacts are not a significant problem because the beam width is quite wide, and

for these instruments, the point of reflection will still tend to be directly below the boat

despite its motion.

1.4.5 Related Methods

In addition to bathymetric data, multibeam sonars can also generate information on the

energy back-scattered from the lake floor. This is similar to the backscatter information

obtained from a sidescan sonar. This data carries information about the physical properties

of the seafloor and can provide supplemental information to traditional multibeam

bathymetric data.

In order to use the collected backscatter imagery for seafloor characterization a series of

geometric and radiometric corrections must be applied to the data. A software tool,
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Geocoder, created by Luciano Fonseca and Brian Calder uses a model-based approach to

make these corrections and classify the substrate from this data (Fonseca & Calder, 2005).

The initial backscatter data is recorded as a time series. Geocoder applies a suite of

geometric corrections and applies each sample of data in the time series to a projected

coordinate system that is interpolated from the acquisition geometry. In addition to the

detailed backscatter corrections, a key aspect of this software is its use of a method of

blending, or “feathering,” which accounts for and handles the inevitable overlap of data

between survey lines. This method assigns a quality factor between overlapping data

points to derive a backscatter value for each pixel in the image. More importantly, the

overlap ensures that there is an amount of redundancy in the final backscatter mosaic.

After correcting geometric and radiometric effects, Geocoder employs a model based

classification scheme that implements Angular Range Analysis (ARA) to associate

sediment type to recorded backscatter. ARA is based upon the observation that backscatter

intensity for a particular substrate type varies with the angle of incidence. Geocoder has

been licensed and implemented in several commercial hydrographic processing systems,

including CARIS HIPS and SIPS (Fonseca & Mayer, 2007). While both Geocoder and

QTC Swathview use acoustic backscatter imagery for seafloor characterization, they are

based on inherently different processes. The Geocoder approach is a model based method,

while the QTC method seeks to derive a set of seafloor parameters using a statistics based

analysis of the data that are calibrated with ground truth samples. Geocoder has

disadvantages, however; the algorithm makes a significant assumption that the angular

response on one side of the ship’s track is the result of one sediment type, which is not true

in many cases (Huang et al., 2013).
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1.5 Assumptions, Limitations, and Alterations

1.5.1 Assumptions

The overall goal of this study was to test the accuracy and feasibility of calculating a series

of measures for a high-resolution bathymetric surface collected using a multibeam sonar

and developing a novel classification scheme based upon that information. The largest

assumption made is that the measures used represent the variability between substrate

types and that changes in the calculated measures truly reflect those changes.

1.5.2 Limitations

Multibeam bathymetric data require corrections based on sound velocity profiles taken

through the water column. Due to wind and current changes, the temperature profile at a

given location can vary on a day-to-day basis, or even throughout the course of a single

day. If surveying cannot be completed in a single day, it is imperative to collect subsequent

data as close to the initial survey date and collect as many sound velocity profiles as

possible to capture the variation in the temperature profile. Due to time and scheduling

restrictions on the R/V Kingfisher, surveying had to be completed during less than ideal

weather conditions. Time at each survey location was limited to two day, impacting the

quality of the collected bathymetric data. Each survey was collected using real-time

positioning information and vessel motion information. The data gathered were stored and

later used in post-processing to correct for the ship’s motion. The instrumentation was

calibrated and designed to be operated within specific parameters and report erroneous

values in extreme conditions. These can include large and sudden changes in vertical
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acceleration, extreme amounts of vessel motion and adverse surface wave conditions. In

both surveys sub-optimal data collection and in certain cases incorrectly reported values

required additional post-processing. Lastly, the algorithms used for the processing of the

collected data are rudimentary and by no means a finished product. As a result, the

working code required a significant amount of both time and resources to process the

collected data. Initial pilot bathymetric data sets were tested on laboratory desktop

computers, and subsequent larger surveys required the use of the Minnesota Super

Computer Institute’s resources to complete processing.

1.5.3 Alterations to Initial Plans

Due to described limitations encountered during the collection of data, several aspects of

the initial design of the project were omitted to either save time or resources during data

processing. In order to accommodate computational limitations and the overall geometry

of the surveys, only a subset of each survey map was processed for substrate classification.

Ground-truth sampling of these regions was changed to accommodate the new parameters.

This limited the number of collected samples in each area and influenced the overall

accuracy of the classification scheme.
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Chapter 2

Methods

2.1 Data Collection

2.1.1 Depth Soundings

The main goal of the study was to map substrate variations using the outlined processing

methodology. This requires on the use of a high-resolution bathymetric dataset that can be

processed to extract the useful textural information. The data used in this study was

acquired with a Reson SeaBat 7101© multibeam echosounder. The instrument was

operated from the R/V Kingfisher using a pole mount that is retracted during transit and

manually deployed at the survey location. The instrumentation was operated from within

the ship, survey parameters were adjusted during surveying by the operator. The

multibeam operated at a frequency of 240 KHz, allowing for a 150° swath width or 75°

port or starboard of nadir. The SeaBat 7101 operates using 511 equidistant acoustic beams

at a maximum operational cycle frequency of 40 Hz. During data collection, the
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instrument’s ping rate was controlled by the water depth. For this study, in the shallowest

locations at both the Lester River and Amnicon River (water depths <3 m) the multibeam

operated at a maximum of 23 Hz. To ensure that the density of soundings on the lake floor

were sufficiently high for this study, the speed of the survey vessel was kept as slow as

safely possible, typically between 4-5 knots. The high ping rate combined with the

relatively slow survey speed allowed for a final bathymetric surface resolution of 25

cm.

2.1.2 Backscatter Data

The multibeam collects not only depth soundings during a ping cycle but also backscatter

information. This data can be used to create mosaic images of the substrate. The

backscatter forms an image of the seafloor which can be used to identify features and

bottom conditions. Like the conventional sidescan data, the backscatter data can be

post-processed to create mosaic images of the bottom. This data, however, cannot be used

to accurately measure depths as the data is collected with an assumption that the lake

bottom is flat.

2.1.3 Sound Velocity Profiles

Processing of the bathymetric data requires an accurate profile of the speed of sound in the

water column. A Y SI CTD©was used to collect sound velocity profiles in multiple

locations at each survey area. Multiple casts were performed before and after data

collection using a wide spatial distribution of sample sites. These profiles are especially

important when a survey is acquired over long periods of time and significant variability in
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temperature within the water column exists. Additionally, for the instrument to apply

beamforming corrections, the speed of sound must also be measured at the instrument

itself. Due to this requirement, the instrument has a sound velocity probe close to the

transducer surface that monitors and records the speed of sound. This information is

added to each depth sounding recorded by the instrument.

2.1.4 Positioning Information

Position and motion information was acquired during the survey with an Appalanix

POS-MV V4©. The instrument combines information derived from a pair of survey-grade

differential GPS receivers with information produced by an Inertial Measurement Unit

(IMU) that contains several accelerometers and gyroscopes, to generate positioning and

motion information with sufficient accuracy that satisfies IHO survey standards (Soediono,

1989). The data are time-tagged during collection and recorded with the bathymetric data

generated by the multibeam.

2.2 Bathymetric Surface Generation

2.2.1 Patch Test

The data collected during the hydrographic survey are recorded by the instrument under

the assumption that the geometry of the transducer head and its relative position with

respect to the frame of reference are known1. A patch test is routinely collected at the

beginning of the survey to identify errors in the mounting of the transducer. The patch test
1On the R/V Kingfisher, the frame of reference is the IMU itself.
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consists of a series of survey lines that are collected over known bathymetric features in

such a way as to isolate individual mounting errors. This information allows for the

post-processing software to correct for misalignments in the sensor head that would

otherwise influence the bathymetric surface if uncorrected. The patch test is used to

resolve the following errors: roll, pitch, and yaw.

• Roll: Measure of the angular misalignment between the transducer and the IMU in

the port/starboard direction.

• Pitch: Measure of the angular misalignment in the fore/aft direction.

• Yaw: Measure of the angular misalignment of the transducer with respect to the

heading sensor.

The patch test also includes a latency test that determines if any time-synchronization

differences exists between the time-tagged data coming from the transducer and position

records. Ideally, the patch test is conducted in a pre-determined area where the bottom

structure is well known. The location of the patch test should include:

• A flat bottom (roll test)

• A sloped bottom (latency, pitch, and yaw tests)

During the patch test, data is collected in specific orientations that readily show any

misalignment in the sensor when viewed in cross-sectional profiles.
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2.2.2 CARIS HIPS and SIPS Processing

2.2.2.1 Introduction

The bathymetric surfaces used in this study were generated in CARIS HIPS and

SIPS©which is an industry-standard processing suite used for hydrographic data. This

software is used to compile raw collected data, create projects, apply various corrections

for vessel motion and refraction effects due to sound velocity variations, and generate

bathymetric products. The general workflow is as follows:

• Patch test calibrations

• Tide corrections

• Sound-velocity corrections

• Merging of the data

• Compute TPU

These steps are described below.

2.2.2.2 Tide Corrections

Tide corrections were not required in this study.
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2.2.2.3 Sound-Velocity Corrections

Sound velocity corrections apply information derived from the SVP data to correct for ray

bending effects linked to sound velocity variations in the water column. The processing

software uses the transducer orientation and positioning information stored within the

vessel file and applies a ray-tracing algorithm using the collected sound velocity profile

data. The raw data collected by the instrument contains two-way travel time information

and beam angle data. The sound velocity correction’s algorithm uses this data to map each

beam’s reflection point on the lake floor.

2.2.2.4 TPU

The total propagated uncertainty (TPU) is used to assign a horizontal and depth error

estimate to each sounding (Yang, 2012). The processing software combines all of the

individual error sources including navigation, gyro, heave, pitch, roll, latency, sensor

characteristics. The TPU values are important for generating bathymetric surfaces that are

IHO compliant (Soediono, 1989).

2.2.2.5 Merging

The merge process converts along/across track depths into latitude, longitude, and depth

by combining the ship’s navigation and motion information with the acquisition geometry

of the vessel. This process geographically references the sounding position and depth. The

merge process must be completed before editing bad picks and the creation of bathymetric

surfaces (Yang, 2012). Merge takes into consideration the following information:

Navigation, Gyro, Draft, Sensor data, Waterline, Motion data, Tide, Refraction

19



coefficients, and observed depth values. The output of the merge process is a processed

depth file for each line, which contains the final computed geographic position for each

depth record.

2.2.2.6 CUBE Processing

The CUBE processing method uses sounding propagation with a disambiguation method

to create a surface (Yang, 2012). Sounding points in the data are propagated to a grid of

estimation nodes for the surface. Based on the sounding’s position and horizontal and

vertical uncertainty, a hypothesis (depth value) is assigned for that node. An iterative

method is used for each subsequent sounding point for the node. Depending on the

uncertainties associated with the sounding, a new hypothesis might be used. Once the

sounding points have been propagated for the nodes, the CUBE method selects the most

appropriate hypothesis to use. Most of the parameters for the creation of the CUBE

surface are user defined, and once a surface has been created, it can be updated later to

more accurately fit the data.

2.3 Processing Outline

The collected data was processed using a workflow that follows the general processing

algorithm used in the commercial software package QTC Swathview©,which uses

measures derived from backscatter measurements to classify the substrate type (Prager

et al., 1995). Several studies have demonstrated that backscatter can be used for various

types of classification methods (Brown et al., 2011; Montereale Gavazzi et al., 2016).

Both supervised and unsupervised classification methods are commonly applied to
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bathymetric studies, in this study an unsupervised classification approach was used. The

key difference between QTC Swathview and the method developed in this study is the use

of textural features (slope, curvature, fractal dimension etc.) as the main variable being

analyzed, rather than measures derived from backscatter data. Traditional backscatter

based systems fall short in their ability to resolve areas that exhibit a large amount of

geometric variance over small spatial extents, and maps produced using these methods fail

to identify key features in the substrate that would be useful for mapping studies.

The general modified processing work flow of the QTC method is as follows:

• The survey area is divided into a series of tiles.

• A series of measures or “features” are calculated for each tile, collectively creating a

Full Feature Vector “FFV.”

• A matrix of FFVs is created representing the surveyed area, with each row in the

matrix representing a unique tile in the study area.

• PCA analysis is applied to the matrix of FFV’s to reduce the dimensionality of the

dataset.

• A clustering algorithm is applied to the reduced dataset to determine a set of unique

substrate types based upon their acoustic response.

• Results from the clustering can then be assigned a physical character using

ground-truth information.

• An accuracy assessment can be conducted to test the processing approach.
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2.4 Characterization of the Feature Matrix

The first step in processing the bathymetric surface is the calculation of a series of

measures for each tile in the dataset, a “Full Feature Vector” or FFV. A singular matrix, M,

is created from the FFV’s calculated for each tile in the surface. Each row in M consists of

the FFV for a unique tile in the surveyed space. Each column in M represents a single

features type, for all the tiles in the survey.

M =



F1,1 F1,2 F1,3 · · · F1,n

F2,1 F2,2 F2,3 · · · F2,n

... ... ... . . . ...

Fm,1 Fm+1,2 Fm+2,3 · · · Fm,n


(2.1)

For example, a matrix M for a surface subdivided into 200 rows and 200 columns, and

characterized by ten measures would have a shape of (40,000)x(10).

2.5 Features

2.5.1 Texture Based Features

In this study, the measures that can be derived from the bathymetry data can be divided

into four types. Wilson et al. (2007) defines these as slope, orientation, curvature, and

terrain variability. Each one of these four categories contains different calculated measures

of texture. The basis for the calculation of the features relies on the following bi-variate

quadratic representation of the local surface, where Z is the height of the surface, and X
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and Y are the local horizontal plane coordinates relative to the center of the local

space:

Z = aX2 + bY 2 + cXY + dX + eY + f (2.2)

The values of a,b,c,d,e and f are coefficients used in the calculation of Z from Eq 2.2. The

equation can be solved by using a nearest-neighbor combination of cells in the input

bathymetric grid. Since the solution for the quadratic equation uses a (NxN) size matrix,

the analysis of the bathymetric grid can be completed on a variety of scales. The sample

size is user determined, an analysis window that is too large will not capture the pertinent

details about the surface, while an analysis window that is too small will over-classify the

region and not return useful results. The optimal analysis window is determined from user

experience and relation to the overall size of the survey region.

2.5.1.1 Slope

This measure describes the local slope of a point on the bathymetric surface. Assuming

that the local surface is described by Eq 2.2, the slope can be defined in the X and Y

direction as:

Sx =
∂Z

∂X
= 2aX + cY + d (2.3)

Sy =
∂Z

∂Y
= 2bY + cX + e (2.4)
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These can also be defined for a local coordinate systems that originates around the central

cell in the analysis, Z(0,0). The slope can be calculated as:

Slope = arctan(
√
d2 + e2) (2.5)

2.5.1.2 Aspect

While slope is a calculation of how steep the surface is at the center of the cell, the aspect

of the cell describes the orientation of the surface at that position. With regards to the

analysis window, the aspect can also be defined at the steepest downhill direction given as

an azimuth. This is a particularly important measure, as the aspect will impact the local

direction of flow, which could influence the movement of nutrients to different habitats.

With given X and Y coordinates, the calculation of aspect is simply:

Aspect = arctan
a

b
(2.6)

where

a =
∂z

∂x
(2.7)

b =
∂z

∂y
(2.8)

Given the parameterization of the local surface used in equation 2.2, the aspect can be
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defined as:

Aspect = arctan
(e
d

)
(2.9)

2.5.1.3 Curvature

The local curvature is defined as the second spatial derivative of the surface of the grid

cell. This can be considered as an estimate of the local terrain shape. It is a particularly

useful measure to help delineate boundaries within the terrain. There are two measures of

curvature that are commonly used in terrain analysis to describe the overall curvature of

the surface. These are the plan and profile curvature. The plan curvature describes the

curvature in the direction that is parallel to the direction of maximum slope, and the profile

curvature is normal to the direction of maximum slope. From a qualitative perspective, for

a given cell within the analysis window, values of the profile and plan curvature that are

small indicate a concave surface, while larger values suggest a convex surface. By looking

at the values that are calculated for the entire grid, the relative local slope can be derived in

different directions, which is particularly useful in the determination of textural

relationships. Using equation 2.2, the profile and plan curvature can be calculated

as:

Profile Curvature =
[
−200(ad2 + be2 + cde)/(e2 + d2)((1 + e2 + d2)1.5)

]
(2.10)
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PlanCurvature =
[
200(bd2 + ae2 − cde)/((e2 + d2)1.5)

]
(2.11)

2.5.1.4 Terrain Variability

The variation in the bottom type plays a role in the habitat of certain species. An

important factor in describing the variation in the bottom-morphology is the complexity of

the surface. The complexity of the lake floor surface can be evaluated using a series of

metrics adapted from (Riley et al., 1999). The first is Terrain Ruggedness Index (TRI), a

measure of the variation between points on the surface. For a cell defined by an (NxN)

analysis window, the TRI can be calculated as the difference between the absolute value of

a cell and the mean of an [(NxN)− 1] cell neighborhood mean value which can be

expressed as:

TRIn =

[∑N
i=−N

∑N
j=−N |Zij − Z0,0|

]
n2 − 1

(2.12)

The next measure that can be calculated is Rugosity (Jenness, 2002). This is a widely used

measure in material science but can also be applied to marine geoscience to characterize

lake floor habitats. This measure can be defined as:

Rugosity = As/Ap (2.13)

which is the ratio between the surface area, As of a arbitrary area to the planar area, Ap.

The planar area can also be described as the geometrically projected area, where the planar

area is a two-dimensional area that is projected from a three-dimensional surface. In a
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rectilinear system, the relationship between area and projected area can be given as:

A = L · W (2.14)

Aprojected = L · W cos β (2.15)

where L and W are the length and width, and β is the angle between the normal of the

surface, and the normal of the projected plane. Values of rugosity correlate with the

variability of the lake floor; a flat surface will have a rugosity close to 1, where as areas

with high surficial relief will have high rugosity values.

To quantify the variation in a surface, we use TRI and rugosity to assess how the lake floor

changes spatially. Another useful measurement to make is the Fractal Dimension, which is

a measure of the complexity of the surface. The fractal dimension can be used to assess

how much detail of a pattern changes with the scale with which it is measured.

Mandelbrot, (1967) showed that the measured length of the coastline of Great Britain

increases as the scale it is measured decreases. This idea can quantify the measure of

complexity as a ratio of the change in detail to the change in measurement scale. We can

define the basic formula to estimate the fractal dimension, D, where ε is a scaling factor,

and N is a magnification factor:

D = lim
ε−→0

logN (ε)

log
(
1
ε

) (2.16)

As an example, we can say that a smooth curve has a topological dimension, Dt = 1 and a
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fractal dimension, Df = 1. A qualitative analysis of the fractal dimension of a data set can

yield information about the surface’s complexity, where a higher fractal dimension value

will qualitatively mean a higher surface complexity (Gneiting et al., 2012). For this

analysis, the box-counting method is employed. The basic equation that can defines the

box-counting dimension is:

Df = dimbox (S) = lim
ε−→0

logN (ε)

log
(
1
ε

) (2.17)

The methodology used by box-counting to calculate the fractal dimension is to count the

number of boxes, N(ε), that cover the set, S (data surface). The fractal dimension is

calculated by examining how the the ratio between the number of boxes changes by

applying a finer grid to the set, where ε is the side length required to cover the set. The

variogram method is well known for calculating the fractal dimension for spatial data.

This method is based on the assumption that the variation in the surface is a function of

the elevation, z, and the distance between points. Computation of z values can be done

easily, by looking at the differences between points, and the fractal dimension is calculated

from the log-log plot of the variation in z values and the distance between pairs of points

(Klinkenberg, 1994).

Lacunarity is a measure of the surface complexity that is related to fractal dimension. This

feature can be thought of as a measure of how a fractal fills space. An underlying

assumption made in both the calculation of the fractal dimension and lacunarity, that the

representative bathymetric surface expresses a fractal nature. Lacunarity addresses the

spatial patterns of the fractal and, more specifically, quantifies how “gappy” the surface is,

where larger lacunarities represent larger gaps. This term is used here to quantify the

heterogeneity of the surface (Plotnick et al., 1996). Lacunarity is calculated as a derivative
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measure of fractal dimension can stated mathematically as:

Λ(r) = s2s(r)/s
2(r) + 1 (2.18)

where s(r) is the mean, and ss(r) is the variance in the number of data points per box of

size r.

2.5.1.5 Additional Measures

Not only can measures of surface terrain be calculated, we can also calculate measures of

the variability of the surface. In this analysis the following are calculated: difference,

mean, skewness, variance, and kurtosis. The difference and mean measures quanitfy the

variation in the calculated surface from equation 2.2. Skewness is a measure of symmetry,

and kurtosis is a measure of whether a data point is peaked or flat compared to a normal

distribution. Skewness and kurtosis are calculated using the Fisher-Pearson method and

are defined by the following equations where N is the number of data points, Ym is the

mean, and s is the standard deviation:

Skewness =

√
N(N − 1)

N − 1

∑N
i=1(Yi − Ym)3/N

s3
(2.19)

Kurtosis =

∑N
i=1(Yi − Ym)4/N

s4
(2.20)
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2.6 Principal Component Analysis (PCA)

One of the more important steps in the processing algorithm is the use of Principle

Component Analysis (PCA). This allows for not only the reduction in the dimensionality

of the dataset but also allows for a thorough investigation into how the individual measures

impact the analysis and subsequent clustering procedure. If the FFVs possess a large

number of variables, it can be difficult to visualize and interpret the entirety of the data, so

it is common practice to reduce the number of variables in the analysis. This reduction

procedure seeks to assign new variables that are combinations of the original measures

contained in the full feature vector. These new variables are created in a way that seeks to

maximize the amount of variance preserved from the original dataset. The result is a

smaller set of new variables that can be used for the clustering procedure that still

represent the statistical character of the original data. A general mathematical description

of the process follows for the reduction to two principle components, but it should be

noted that this method can be applied to the P th principal component.

Suppose we have a random vector X, such that:

X =



X1

X2

...

Xp


(2.21)

The variance co-variance matrix can be defined as:
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V ar(X) =
∑

=



σ2
1 σ12 · · · σ1p

σ21 σ2
2 · · · σ2p

... ... . . . ...

σp1 σp2 · · · σ2
p


(2.22)

The variance can then be described as linear combinations:

Y1 = e11X1 + e12X2 + · · ·+ e1pXp (2.23)

...

Yp = ep1X1 + ep2X2 + · · ·+ eppXp (2.24)

The coefficients of these linear combinations can be viewed as regression coefficients

described by the vector:

ei =



ei1

ei2
...

eip


(2.25)

The goal of the analysis is to reduce the dimensionality in the form of a collection of

principle components that account for as much of the variance in the data as possible
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(Abdi & Williams, 2010). This is achieved by defining the regression coefficients in such a

way that the variance is maximized and subject to the constraint that the sum of the

squared coefficients is equal to one. This can formally be defined as:

var(Y1) =

p∑
k=1

p∑
l=1

e1ke1lσkl (2.26)

subject to:

p∑
j=1

e21j = 1 (2.27)

This classification can be extended to subsequent components:

var(Yi) =

p∑
k=1

p∑
l=1

eikeilσkl (2.28)

and:

p∑
j=1

e2ij = 1 (2.29)

Lastly, in order to insure that the principle components maximize the variance in the data

but are not correlated with each other, we can define the components such that:

cov(Yi−1, Yi) =

p∑
k=1

p∑
l=1

ei−1,keilσkl = 0 (2.30)
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2.7 Clustering

Once the principle components have been determined, the data is then clustered by the

calculation of an ellipsoid as a prediction interval (Chew, 1969). The clustering algorithm

used in this analysis is a k-means algorithm that is implemented in the Scikit Learn Python

library (Pedregosa & Varoquaux, 2011). The k-means algorithm seeks to partition n

observations into k clusters, in which each observation is associated with the cluster with

the nearest mean. The result is partitioning or segmentation of the data. Which can be

formally stated.

Given n points, x1, x2,, ..., xn ∈ R, the goal of the k-means clustering is to find K centers,

c1, c2, ..., ck ∈ R and assignments q1, q2, · · · , qn ∈ {1, ..., K}, such that the sum of the

distances of the points to the centers:

E(c1, c2, ..., ck, q1, q2, · · · , qn) =
n∑
i=1

‖ xi − cq ‖pp (2.31)

is minimized, where E is the average error. The calculation of a minimized E is a

computationally intensive task, so the value of E is usually approximated, resulting in the

prediction ellipsoid having an associated confidence interval. The algorithm arrives at a

final solution iteratively, re-estimating the centers and assignments with each

iteration.

The initialization of the algorithm is particularly important for the efficiency of the

computations, and the algorithm will sample K points at random. Lloyd’s Algorithm

implemented in the Scikit library uses the following steps:

1. Quantization: Each point x is reassigned to a center closer to it.
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2. Center Estimation: Each center is recalculated to minimize the distance between

points assigned to it.

Problems can arise with this method, particularly in step 1. The number of operations

required in the assignment step can be defined as: O(dnK), where d is the dimensionality

of the data, n is the number of points in the data set, and K is the number of centers,

whereas recomputing the centers can be defined as: O(dn). A larger number of operations

required for the assignment stage, as a result, this is where most of the processing

resources are spent (Pedregosa & Varoquaux, 2011).

2.8 Calibration of Acoustic Classes

Once the data have been run through the clustering algorithm, it is classified based on the

reduced dataset. The classes assigned by the clustering algorithm then must be calibrated

with non-acoustic data. Samples of the lake floor are collected and analyzed to group them

into non-acoustic classes. This grouping is usually done on the basis of grain-size class,

such as the Folk classification (Flemming, 2000). The algorithm’s method uses a

histogram or confusion matrix to identify the best relation between the acoustic class

derived from the data and the substrate class derived from the sediment analysis (Stehman,

1997). The confusion matrix uses a measure of accuracy, in this case the ratio between the

predicted and observed classes. The number of predicted classes are compared to the

number of observed classes in the study, and statistics about the accuracy of the predicted

classes are computed.
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2.9 Implementation of the Processing Algorithm

The algorithms used for the processing of data in this study are written in the Python

programming language. A key advantage of Python is its use of libraries of tools and

functions and calling specific routines from the libraries when needed. This allows the

user to improve the efficiency of each program. Python provides usability and

troubleshooting improvements over other programming languages. However it can suffer

performance losses when working with large datasets.

The processed bathymetric data is first exported as a text file from CARIS HIPS and

SIPS2. In the Python environment, a 2D array is created from the bathymetric information.

This array is generated from the known easting and northing values stored in the original

text file. This process of creating a 2D array is similar to the process used to create a raster

grid in a GIS environment. Each “cell” in the 2D array contains depth information

determined from the original bathymetric data. When creating a bathymetric surface, it is

important to note that the maximum resolution achievable is affected by depth, and sonar

frequency, which control the density of depth soundings collected on the lake floor.

Terrain analysis can be performed on any resolution bathymetric surface, but cell size and

analysis scale will influence the analysis (Wilson et al., 2007; Albani et al., 2004).

2.9.1 Calculation of Measures

The processing code used for this study (Appendix B) is divided into two separate

programs. The first program reads the bathymetric surface created in CARIS HIPS and

SIPS and creates an interpolated surface to fill in any values missing from the data. The
2HIPS (Hydrographic information processing system) and SIPS (Sonar information processing system)
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main structure of the code is a large nested for-loop which calculates the measures for each

tile. This loop systematically moves from cell to cell in the interpolated surface and fits an

(NxN) window to the cell. The coefficients of the bivariate quadratic equation are solved

using an LU decomposition. The values for each of the textural features are then

calculated using the equations and methods described in section 2.5. The final step in the

first program is to dump the calculated FFVs into a master array that will provide input to

the PCA and cluster analysis.

2.9.2 PCA and Clustering

The second program applies the PCA and clustering procedures to the output of the first

program. Using modules from the Python Scikit-Learn library, the data is reduced to a

user defined number of principle components. K-means clustering is applied to the data

using a user defined number of clusters. After the clusters have been determined, the

program assigns a cluster “ID” to each point in the surface. Then the array of points is

output as both an image file and raster file for any additional processing needed.

2.9.3 Additional Computational Resources

Initial testing and troubleshooting with the programs was completed using a relatively

small sample dataset. This made is easier to test changes and different methodologies for

processing and fine tune the efficiency of the algorithms used.As increasingly larger

datasets were tested, it became clear that computational limitations would affect either the

final resolution of the dataset or the spatial extent of the dataset used. Testing indicated
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that using a modern desktop computer3; bathymetric surfaces with file sizes on disk of >

~30-40 MB were time-consuming beyond reasonable limits or de-stabilized the code. As

typical file sizes for the final bathymetric surfaces exceed 200MB for a low-resolution

surface, and upwards of 1GB for higher resolutions, additional processing methods were

developed to alleviate the computational bottlenecks.

These programs utilized the computational resources at the Minnesota Supercomputer

Institute, at the University of Minnesota, Twin Cities.

The use of HPC (high-performance computing) resources was pivotal for the processing of

large bathymetric surfaces for this study. The programs developed for this study used the

Mesabi HPC cluster which contains 24 compute cores, and 64 GB of RAM on each

compute node. When utilizing the Mesabi cluster, many more computational cores and

larger amounts of RAM than are possible with a typical desktop computer. For this study,

jobs were allocated a total of 12 computational cores and approximately 10 GB of RAM.

Due to the fundamental structure of the code used, providing additional resources did not

provide significant performance increases. Initial testing using the Mesabi Cluster

indicated that the lower-resolution bathymetric surfaces exceeded the default time-limit

and required approximately 48 hours to complete the processing and clustering

procedures. Subsequent tests with higher resolution datasets exceeded the Mesabi cluster

time limit of 96 hours to complete the processing. The code outlined in Appendix C offers

a solution by splitting the original bathymetric surface into four smaller sub-surfaces. The

code could also be run in parallel, allowing for each of the sub-surfaces to be calculated on

the Mesabi cluster at one time, effectively reducing the processing by a factor of four.

There is an obvious computational advantage to this approach as the number of operations

required increases exponentially with increasing surface dimensions.

34 Core CPU, 8GB RAM, Solid State Storage
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Chapter 3

Results

3.1 Introduction

The results of several bathymetric surveys conducted as part of this study are presented

here. Initial testing was completed using data collected in the Duluth Harbor Survey.

Surveys were collected off the Lester and Amnicon Rivers in nearshore Lake Superior as

part of the main study. Several factors influenced the selection of the study locations.

These included identifying survey locations where the substrate and morphology of the

system were well understood geological environments that express themselves with the

various combinations of textural signatures and patterns. A major goal of the project was

to test the effects of varying data resolutions and processing scales on the final quality and

accuracy of the methodology. These objectives were accomplished and demonstrate the

need for high-quality, high-resolution bathymetric data, and the numerous effects of data

resolution and processing scale on textural feature calculation.
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3.2 Duluth Harbor

The Duluth Harbor survey was conducted early November 2015 as part of an initial testing

of the Large Lakes Observatory’s (LLO) multibeam installation on the LLO’s new

nearshore vessel, the R/V Kingfisher. The main goal of this survey was to test the

operation of the multibeam on the new vessel and to collect a pilot dataset that could be

utilized to check the processing code. The study site is located in western Lake Superior

near the Superior entrance to the Duluth Harbor. This site is located adjacent to the

navigational channel that leads into the harbor, shown in Figure 3.1

39



0 1 20.5 km0

Lower Left 92°2'33"W 46°41'18"N

Figure 3.1: Duluth Harbor Survey. The location is given by red star on the map.

This area adjacent to the channel has been altered by the dumping of dredge spoil from the

channel, leading to the creation of a large mound of material. The local bathymetry is

fairly straightforward, with a few geomorphic features. The survey area is characterized by

a gently sloping flat bathymetric surface with the large mound of dredge material

superimposed on top. In the southeast section of the study area (Figure 3.2), a large
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geomorphic feature that stands out from the underlying regional bathymetry.
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Figure 3.2: Duluth Harbor Bathymetric Surface. The subset used for classification is high-
lighted in the blue rectangle on the map.

This feature is characterized by a series of asymmetric ridges oriented from southwest to

the northeast. While individual ridges share a common morphology, the arrangement of

the individual ridges produces a sinusoidal “S” shaped curve that starts in the southern

region of the map and curves to the north. The origin of the ridges is not known, and

previous surveying in the same area has indicated that the ridges are composed of
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semi-hard compacted fine material, possibly clays, and silts (Per. Comm. N. Wattrus).

While the origin of the features is unknown, they make an excellent feature target for the

processing methodology. Along with the gentler slope of the dredge spoil, the ridge-like

features produce a significant bathymetric perturbation from the underlying regional

bathymetry. A subset taken from this survey (Figure 3.3) was used in the initial testing and

debugging of the processing code, and testing of computational performance.
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Figure 3.3: Subset bathymetric surface. This subset highlights the ridge-like features in
the Duluth Harbor surface in Figure 2. Location of subset is shown in Figure 3.2 with
highlighted box.
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3.2.1 Characterizing the Feature Matrix

Using the bathymetric surface in Figure 3.2, terrain measures for this subset were

calculated using the processing methodology outlined in the methods section. This data

was chosen to test the clustering procedure due to the large ridge feature that is present in

the smoother regional bathymetry. To determine the effects of data resolution and analysis

window size, the data was processed at multiple resolutions (0.25, 0.5, 1, 1.5 meter

resolutions) and multiple tile sizes (N=7, 9, 13, 15, 17, 21, 33, and 65). An example of

features calculated using the processing methodology is shown in Figure 3.4 at 0.5 meter

resolution and a tile size of N=13.

The processed data in Figure 3.4 shows two of the measures calculated for the analysis,

slope and profile curvature. In total, 12 terrain measures were calculated and subjected to

PCA and cluster analysis. The slope calculation illustrates the ability of the processing

code to identify features in a bathymetric surface. Areas in which topography changes

sharply are clearly defined in the calculated measures. The process not only identifies a

ridge-like feature in Figure 3.4, but also characterizes the underlying regional bathymetry

which includes artifacts linked to problems associated with instrument mounting. These

can be seen in the bathymetry and calculated measures as a series of parallel lineations or

ridges in the regional bathymetric signal that is oriented approximately normal to the ridge

features. This error is present in all the calculated measures and will be discussed further

in later sections.
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25m

N N

Slope Profile Curvature

Figure 3.4: Two examples of features calculated on the Duluth Harbor subset data. On the
left is an example of the slopemeasurement calculated in degrees. On the right is an example
of profile curvature in degrees. Location of subset shown in Figure 3.2 with highlighted box.

3.2.2 PCA and Clustering

The series of terrain measures described in section 2.6 were computed for every cell in the

interpolated bathymetric surface. Principle component analysis (PCA) was applied to the

set of full feature vectors (FFV). The reduced data were clustered using K-means

clustering. Initial clustering into 8 classes did not prove to be advantageous, as the

morphology and the geology of the surface’s bathymetry are relatively simple in this

location. Subsequent clustering analysis used five classes to match the ideal number of

ground-truth classes to be used in the accuracy assessment. Figure 3.5 shows an example
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of clustering analysis applied to a data set reduced to its first three principal components.

The cluster map of the Duluth Harbor subset in Figure 3.5 illustrates the ability of the

K-means algorithm to distinguish different terrains in the bathymetry.
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Figure 3.5: Duluth harbor subset cluster map. Data is clustered into five classes. A) shows
the original bathymetric surface as a shaded relief map. Note that this area highlights the
large ridge features and roll artifacts can be seen in the surrounding surface. B) shows the
clustered data. The bathymetry data was processed at 0.5-meter resolution and measures
calculated using a tile size of N=13. Location of subset shown in Figure 3.2 with highlighted
box.

The classes in the cluster map shown in Figure 3.5 are arbitrarily colored and do not

represent any substrate type at this point. There are similarities between the cluster map
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Fig. 3.5B and the bathymetric surface in Fig. 3.5A. The clustering accurately outlines the

ridges and captures their spatial extents and shapes. This initial clustering will later be

interpreted and used in conjunction with the ground-truth samples to conduct an accuracy

assessment.

One parameter that can be calculated during the PCA is the percent variance explained.

This number is derived from the eigenvalue decomposition of the input data during the

PCA and is a metric that describes how much of the variance a particular measure is

contributing to the overall analysis (Kaiser, 1958). For these data, around 85 percent of the

cumulative variance could be captured by the first five principle components. Adding

additional components to the analysis did not significantly increase the amount of

explained variance in the data being tested.

Figure 3.6 shows a plot of the weighted contribution of each of the measures calculated in

the Duluth Harbor subset. This data was taken from the analysis of the data at 0.5-meter

resolution and a tile size of N=13. Similar plots were constructed for each of the data

resolutions tested as well as different tile sizes. The variables used in the analysis

contribute between five and ten percent of the cumulative variance. This data will be used

in the interpretation as a way to help determine which terrain variable(s) are most

important for substrate classification.
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The results of the analysis of Duluth Harbor data suggest that the processing methodology

is accurately calculating the measures for a given bathymetric surface. The survey data

were analyzed at several resolutions and tile sizes, as well as classified using multiple

numbers of clusters in the K-means algorithm. Figure 3.6 suggests no simple dependence

on any one measure will significantly influence the PCA. This will be discussed in Chapter

4. Figure 3.5A illustrates a significant data quality issue that became apparent when

processing this data set. A significant roll artifact can be seen that effects the entire

bathymetric surface. While figure 3.5B does not show this error found in the cluster map,

the data has been re-classified in post-processing to show the ideal number of classes.

Using a higher number of classes readily identifies the roll “artifact” and segmented it as

its own class(es). Figure 3.5B also shows several red squares that are present in the cluster

map, in all iterations of the PCA and clustering and as a the result of the processing code’s

resolving abilities. An investigation of these areas on the bathymetric surface shows areas

which have significant topographic features, most likely large boulders that exceed the data

resolution. The effect of this is that the processing code will effectively smooth out the

surface centered around that point. This will lead to the measures calculated at this point

taking on the characteristics of the topographic feature which will significantly over

saturate the surrounding bathymetry.

The clustering procedure cannot resolve features larger than the data resolution and tile

size being used. Examples of this effect given in the Supplementary material for plots of

all the measures calculated for this surface. This artifact cannot be avoided as it is an

inherent limiting factor in the underlying mathematics used in the calculations as well as

the multibeam sonar’s maximum resolving abilities.
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3.3 Amnicon River Survey

3.3.1 Introduction

The Amnicon River bathymetry data was collected over a period of two days in August

2016 aboard the R/V Kingfisher. Before the collection of data, patch test calibration

surveys (to correct for transducer misalignment) were conducted. Sound velocity profiles

were collected at several locations throughout the survey using a YSI CTD cast.

Preliminary results from the bathymetric survey were used to design a follow-up cruise to

collect ground-truth samples. From prior knowledge of the area, it was determined that

conventional ponar grab samplers would be inappropriate for the expected substrate type,

so a drop camera was used instead to collect video and photo stills at each sample

location.

Results from the surveys are presented here. They include bathymetric surfaces and

side-scan imagery, sound velocity profiles, and from ground-truth data. Finally, accuracy

assessment results using the ground-truth information and processed bathymetry data are

presented.

3.3.2 Geologic Setting

The watershed of the Amnicon River is characterized by unconsolidated deposits

associated with the last glacial advance into the Lake Superior Basin (Johnson &

Johnston, 1995). Quaternary tills, glaciofluvial, and lacustrine sediments were deposited

by the Wisconsinan ice front. The geology of the area is strongly influenced by changes in
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lake level. At the end of the last glaciation of North America approximately ten thousand

years ago, Glacial Lake Duluth formed against the margin of the retreating ice sheet that

occupied the Superior basin. The Lake level stood approximately 150 meters above the

present day level of Lake Superior (Reidel & Brooks, 2002). Sediments in Lake Superior

are composed of primarily glacio-lacustrine clays associated with ice retreat; they are

commonly underlain by glacial till deposited during the glaciation. These clays consist of

red massive calcareous clays that were derived from the red tills found in the southwestern

part of the lake basin (Thomas & Dell, 1978). The evolution of the region is heavily

influenced by local watershed erosion rates. Incision of the river reduces bank stability

and can lead to mass wasting events. These events are visible as red plumes of sediment

that discharge from the river into Lake Superior after large rain-producing storms and

springtime thaw of the snow pack (Reidel & Brooks, 2002; Johnson & Johnston,

1995)

3.3.3 Study Area and Bathymetric Surfaces

The study area is centered about the outlet of the Amnicon River WI (Figure 3.7). The

survey was designed to collect data as close to shore as possible (Figure 3.8) to take

advantage of the high data-density generated by the multibeam in shallow water. The

overall dimension of the survey was approximately 3km in the along-shore direction and 1

km across-shore. The dimensions of the survey vary slightly laterally along shore to

accommodate the changes in near-shore bathymetry, and to keep the quality of the

collected data as consistent as possible. The planned survey lines are shown in figure

3.8.
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Figure 3.7: Amnicon River Survey Location. Location given by red star on the map.

The actual collected survey lines are shown in Figure 3.9 Water depths encountered in the

area were much lower than anticipated from the published bathymetric charts. This
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resulted in much narrower swath coverage than initially planned. Additional lines were

added in the along-shore direction to ensure complete coverage of the lake floor. In certain

areas, extra passes of the same lines were also required to fill in holes in the data caused by

deviations of the planned line due to sea-state conditions.

The data collected at this site included bathymetric and side-scan sonar data, as well as

multiple sound velocity profiles through the survey area. Two versions of the bathymetric

surface were created in CARIS HIPS at two resolutions, 0.5 and 0.25 meters. The

0.5-meter resolution surface is shown in Figure 3.10. Due to deteriorating weather

conditions and inaccuracies in the bathymetry maps used for planning of the survey, there

are a few gaps in the surface which can also be seen in Figure 3.10. Figure 3.11 shows the

Amnicon bathymetry with the outline of the study area in black. This area was chosen for

processing as it is the largest rectangular area within the overall surface, and contains

many geomorphic features.

Figure 3.11 depicts the bathymetric map generated from the collected data. Many of the

geologic features of interest can be seen in the bathymetric surface but are more easily

seen in the Side-Scan imagery data in Figure 3.12. In the southeastern section of the map,

a series of elongated “U” topographic highs are visible in the bathymetry. The features are

roughly parallel with each other and have similar spatial extents and orientations with

respect to the shoreline. The northwest section of the surface, shown in Figures 3.10,3.12,

is characterized by a relatively “smooth” lake floor that appears not to show much

bathymetric variability. The bathymetry in Figure 3.11 is characterized by gentle slope

dipping lakeward from just less than 3 meters at the most nearshore position to a maximum

depth in the surveyed area of just over 10 meters. There is a slight gradient to the slope

that progresses from southwest to northeast. This additional sediment is likely due to the

orientation and direction of lake currents at this location in Lake Superior. Deposition
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from the sediment plume can also be seen as a slight topographic high in the bathymetry

in Figure 3.10 (shaded in blues), this area corresponds to the shallowest areas of the

survey, where the depth to the lake floor is less than 2.5 meters. Ground truth sampling at

this location was unsuccessful due to the large amount of suspended sediment in the water

column that made capturing photo/video impossible. The northeastern section of the

bathymetric surface display more variability in the lake floor. Most noticeably a slightly

sinuous feature that runs across the lake floor in an approximately north to south direction.

This feature is expressed as a slight bathymetric high which contains a bathymetric low in

the center. In Figure 3.13, this feature is highlighted with the red box on the map.

In the sidescan sonar mosaic shown in Figure 3.12, the lighter color intensities represent

softer or less compacted sediment. The side-scan imagery in Figure 3.12 also show the

area to be relatively homogeneous in its intensity but does show texture on the lake floor.

This is not a completely smooth substrate, which is evident in the measure calculations for

the study area that highlight the variations in lake floor terrain. The fact that the features

are very prevalent as topographic highs in the bathymetry but are not present as lighter

colored anomalies in the side-scan mosaic, indicate that the features are comprised of

relatively hard or compacted material from the surrounding sediment. Closer inspection of

Figure 3.12, reveal slight shadows or depression like features in the side-scan where the

features are located. These areas of strong intensities again suggest that the features are

comprised of more competent sediment.

Figure 3.12 also exhibits large areas that are associated with lighter intensities.

Presumably, these correspond to softer material. These lighter areas are coincident with a

mobile sediment plume that was observed exiting the Amnicon River during surveying.

The nearshore region of the survey area contained a large portion of the plume, and the

imagery shown in Figure 3.12 appears to show its deposition on the lake floor.
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3.3.4 Sound Velocity Variations

Eight sound velocity profiles were collected for post-processing ray-bending corrections

and three others were collected for the calibration patch tests. The profiles for the

Amnicon River are shown in Figure 3.14. The speed of sound at the near-surface differs

between 5-10 m/s between the two non-consecutive survey days. Near the bottom of the

water column, the difference is slightly greater, between 10-20 m/s. While this difference

should be accounted for by the post-processing software, there appear to be multiple

locations in the Amnicon bathymetry that show refraction errors in the outermost portion

of an individual survey line. Depending on the depth, thermocline layers can modulate the

depth and angle at which the acoustic rays propagate (Blondel, 2010).
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Figure 3.14: Sound Velocity profiles for the Amnicon River Survey. The first day’s profiles
are shown with the thick dashed lines, with the patch test SVP sound with the black dashed
line. The second day’s profiles are shown on the right with the medium dashed line, with
the patch test svp shown with the finely dotted line.

3.3.5 Characterizing the Feature Matrix

A subset, indicated by the black rectangle on Figure 3.11, was extracted from the original

bathymetric surface. This surface was also used for planning the ground-truth sampling

campaign. The terrain measures outlined in section 2.6 were calculated for the surface,

using a data resolution of both 0.5 and 0.25 meters. Additionally, for this study a

processing window of size N= (7, 9, 11, 13, 15, 21, 33, 65) was used for the 0.5 meter

resolution data, and an N = (11, 13, 15) was used for the 0.25 meter resolution data. The

testing of multiple tile sizes allows for a more complete analysis of the data, and allows for
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the interpretation of the clustering procedure across multiple spatial scales. The original

bathymetric surface resulted in large file sizes (> 300 MB) that created computational

bottlenecks that made it impossible to analyze the data. To alleviate this issue, the

bathymetric surface was broken into four separate grids, each of which were processed

individually. This extra processing step reduced the individual file size to ~120 MB, and

all four subsets of the data could be processed using the MSI resources in parallel,

essentially reducing the processing time by a factor of four.

An example of the slope calculation of the subset data for the Amnicon River (highlighted

in Figure 3.11) is shown in Figure 3.15. Note the vertical and horizontal lines that run

through the surface that is the result of the subdivision process. Once the terrain features

had been calculated, the partitioned survey area was recombined before PCA and cluster

analysis. The processing method correctly identified regions of variable slope.. This area

does not change slope significantly in context of the regional bathymetry. This area does

show small features on the lake floor which seem to have a common preferred orientation

and changes slope from a background value of just over 1 to around 10 degrees in certain

locations. These features are highly localized and do not have great spatial extent. The

portion of the map that is closest to shore shows very minimal slope values (<2). This area

is coincident with the sediment plume visible in the bathymetry and side-scan data in

Figures 3.11,3.12. Maps similar to the slope calculation for the 0.5 meter resolution and

tile size N=13 are given in the appendices as a series of plots of each of the 4 sub-surfaces

used in the calculation. Figures include the plots of the measures of interest for the study

(slope, curvature, fractal dimension, etc.) as well as the plots of the surface parameters

used for the calculations. These plots are meant to be representative figures used to outline

the processing methodology, and similar plots for other tile sizes used are provided as

supplementary material.
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3.3.6 PCA and Clustering

Principle component analysis was performed on the set of FFV’s constructed from terrain

features extracted from the Amnicon River data at two resolutions for a suite of tile sizes

(N=7, 9, 11, 13, 15, 17, 21, 33, 65). Together with the reduced data, the percent variance

explained is also calculated as part of this analysis. This measure gives an assessment of

the amount of the variance in the original dataset that is explained by each of the

calculated principal components; it can also be used to interpret how a particular measure

is influencing the analysis (Kaiser, 1958). For this study, the FFV’s composed of the

calculated terrain measures were reduced from 12 variables down to 5 principal

components. Retaining components in the PCA did not increase the amount of variance

explained, and conversely reducing the number of components significantly reduces the

cumulative explained variance.
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Figure 3.16: plot of the cumulative variance explained for the Amnicon River data for in-
creasing values of N.

Figure 3.16 shows a graph of cumulative variance explained after reducing the data by

PCA to 5 principal components vs. increasing tile size. For each increase in tile size, a

larger window was used for the calculation of the terrain features for the bathymetric

surface. This figure shows the the amount of variance retained of the reduced dataset was

fairly consistent until the tile size increased to N=21. At that point the amount of the

variance explained by the reduced dataset begins to drop off.

K-Means clustering was used to segment the reduced dataset derived from the PCA. For

this study, a total of 5 clusters were used with the default number of iterations1. A map of
1 Increasing the number of iterations did not have tangible benefits on the analysis, so the default number

of iterations, 300, was used
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the cluster data was produced for each tile size variation used in the analysis, and the full

set of results can be seen in Appendix A.3. The choice of 5 clusters corresponds to the

number of substrate classes that are used for the classification procedure.

Amnicon River Study  Probability Ellipsoids

Figure 3.17: Three-space plot of the clusters assigned for the Amnicon River study area data.
Each axis represents the normalized value of each of the first three principle components.
Q1=P1, Q2=P3, and Q3=P3. Clusters are iteratively assigned to the reduced data and each
of the ellipsoids in the plot represent a 95% confidence interval for each of the 5 clusters
used in the analysis.

Figure 3.17 shows the probability ellipsoids for the clustered Amnicon River data

processed for a tile size of N=7. For this example, the dataset is reduced to its first three

principal components, and the ellipsoids show a three-dimensional representation of the

clustered data. Each point in the reduced dataset is assigned a cluster ID based on the 3

principal components. The ellipsoid represents a 95% confidence interval wherein a point

with a certain combination of components values, P(1,2,3), will be assigned a cluster. A
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full set of probability ellipsoids diagrams can be found in the Supplementary Material.

Once all the points in the dataset have been assigned a cluster ID, the results can be plotted

in map view, shown in Figure 3.182.
2Note: The clustering was conducted in “5-space” for the 5 principal components which is difficult to

visualize, the ellipsoids presented here are reduced to three principal components for illustrative purposes.
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Figure 3.18 shows the cluster map for the Amnicon River dataset calculated for a tile size

of N=15. Along with the larger scale bathymetric features on the lake floor, the clustering

algorithm also identifies many small rectangles scattered throughout the map area (shown

as pink boxes). These anomalies represent an area that is centered about a cell in the

bathymetric surface and are the size of the tile size used during processing. When the

terrain within the tile is saturated by any one of the measures calculated, such as a

significant change in slope, curvature, or aspect, the PCA will be influenced when

calculating the reduced components. The algorithm will then cluster the data according to

the reduced components, and because these localized features on the lake floor have such

different values in the reduced data, they cluster independently, creating a unique class in

the cluster map.

The bathymetric surface in Figures 3.10, 3.18-A shows that the areas where the clustering

procedure mapped a pink box corresponds with a significant feature on the lake floor, such

as a boulder. The PCA and clustering also flagged areas that are associated with residual

errors in the bathymetric surface generated by CARIS HIPS. Several locations in Figure

3.18-B show anomalous lines or “ridges” that appear to be oriented normal to most of the

surrounding features. While most of the residual processing errors were addressed not all

the errors could be removed. The lines or ridges in the cluster map are most likely the

result of refraction errors near the outer portions of the swath. The heave error that

required a significant amount of processing to reduce in the bathymetric map also

expresses itself in small residual patches where the correction reduced but did not remove

all the error. Cluster maps made using small tile sizes (N=7,9) show significant

“overprinting” of the heave error. With increasing tile size, the cluster map becomes

progressively “smoother,” resulting in a more generalized map. The larger tile sizes tested

(N=33, 65) still capture the more prominent geomorphic features in the bathymetry but
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lack significant detail. Progressively more detail is shown with smaller tile sizes. This

change in the clustering with increasing tile size can also be seen in the probability

ellipsoid diagrams for each cluster map. The direction and orientation of each cluster are

tied to the amount of each principal component that is contributing to the analysis. Subtle

changes in the orientation and magnitude of the ellipsoids appear with increasing tile size

which suggests that the clustering is being influenced by different combinations of the

principal components.

3.3.7 Ground Truth Sampling

Data for validating the acoustic classification and accuracy assessment were collected in

late September 2016. Due to the difficulty of collecting physical samples to use for the

calibration, a dive camera attached to a drop frame was used to collect video and photo

stills. In total, 54 data points were collected to use to classify the data, and 18 additional

data points were collected to use for the accuracy assessment. Due to time and resource

limitations, only one day of sampling at the Amnicon River could be completed. This

resulted in sampling being limited to the study area outlined in Figure 3.11. Sampling

locations were chosen at random using a randomly generated geographic point within the

bounds of the study area.
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Figure 3.19: Sampling location map. Two ground truth points, S2 and S19, are highlighted
in red. Due to weather conditions some locations drifted outside the bounds of the study
area.

While there is a reasonable spatial distribution of the sample points, the number of sample

points could be a limiting factor in the accuracy assessment (Congalton, 1991). Figure

3.19 shows a map of the collected ground-truth sample points. For each sample site one

operator deployed the drop camera, while a second crewmember recorded time, depth, and

geographic location information for the sample. The data collected included video while

the camera descended through the water column until it hit bottom. From the video, photo

stills were extracted to use for the grain-size analysis. Using the image editing software

ImageJ, clasts were individually counted, and particle information recorded. Due to poor

weather conditions during sample collection, several photo stills for each sample location

were used to collect particle information.
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Figure 3.20: Photo stills from two sampling locations, S2 and S19, whose locations are
shown in Figure 3.19. The camera frame is marked around the edges using a calibrated
increment to use for a scale.

Figure 3.20 shows two example of photo stills extracted from a ground-truth sample

location. In sample S2, the lake floor appears to be a mix of rounded and angular clasts,

partially buried in the surrounding sediment, which appears to be a fine muddy-sand. In

sample S19, there were very few clasts in the video footage, and the lake floor at this

location is interpreted to be composed of a muddy-sandy bottom. In locations that are

clast-free, small ripples can be seen on the bottom. In total, several types of substrate were

observed in the study area; these included: a predominantly sandy bottom, muddy bottom,

small to large cobbles sparsely distributed in a sandy bottom, and mixtures of cobbles and

gravel.

Several sample locations close to shore visibility so poor that no video or photo samples

could be recorded. Water depths in these areas were very shallow, <3m in Figure 3.10,

3.11 and the areas represented by low-intensity values in the collected side-scan imagery

in Figure 3.11. These samples were taken directly in the sediment-laden plume from the

Amnicon River. While no samples could be collected, indirect evidence of the bottom

substrate came from the drop-camera itself that when recovered, had very fine red clay
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adhered to its base.

The shapes of the clasts at each sample site varied significantly and appeared to be related

to the proximity of the sample site to the Amnicon River outlet. Overall clasts were

relatively heterogeneous in shape, ranging from very well rounded to very angular. It is not

uncommon to see larger angular clasts partially buried in the surrounding sandy matrix,

with well-rounded smaller cobbles and gravel scattered amongst them. Using the particle

information collected using ImageJ, a histogram of particle size could be created for each

sample site as well as an overall particle distribution, as shown in Figure 3.21.

 

Figure 3.21: Total grain size distribution for the Amnicon River survey. Particle diameters
were calculated using ImageJ software and Python Numpy packages.
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Most particles were less than 4 cm in diameter and distributed among larger, more angular

clasts. A small number of outlying clasts that were very large (>12 cm diameter). In some

locations the size of the clasts was larger than the camera frame could reliably measure, so

best case estimates were made to classify to the sample location. In these cases, clasts were

around 0.5 meters in diameter and very angular in shape. They were usually very sparsely

distributed. No compositional information could be determined for the clasts.

3.3.8 Calibration of Physical Classes and Accuracy Assessment

To assign a physical class to the samples, the sizes, and distributions of sediment at each

location were used in conjunction with a modified grain-size classification for coarse

particles (Blair et al., 1995). This classification chart extends the traditional Wentworth

scale to clast sizes well beyond the size of boulders and provides additional subdivisions

within the larger grain sizes. This classification scheme is ideal for both the Amnicon

River survey and the Lester River Survey where the documented clasts are typically cobble

to boulder in size, and vary widely within that range. In the Amnicon River survey, due to

the inability to collect physical samples, grain size distribution could not be assigned to

areas where video samples were not available. As a result, areas that show evidence of fine

material are interpreted as such. Consequently most of the traditional Wentworth

classification scale (large positive φ) would not be appropriate because of the emphasis on

distinctions in the sand and silt categories and no sub-classes within the larger grain sizes

(pebbles, cobbles, boulders). Figure 3.22 shows a chart of the proposed scale used in the

classification of sediments in the Amnicon River, modified after (Blair et al., 1995).
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Figure 3.22: Modified Udden-Wentworth scale for differentiation of coarse sediment. Mod-
ified from Blair et al., (1995).
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Figure 3.23: Modified Blair and McPherson classification scale.
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To assign a physical class for each of the ground-truth points, the particle sizes are

calculated from individual distributions and used to assigned a defined particle

“class”.The classes that were determined to be used for both the Amnicon River and

Lester River surveys are shown on the (Blair et al., 1995) classification chart modified by

the author on figure 3.23. The five classes that were determined to be suitable for this

study were: sand, sand and muddy sand, coarse sediment, mixed sediment, and extremely

coarse sediment. These classes were selected from the original classification chart based

on the nature of the local geology and the ability of the drop-camera to accurately identify

features. The resolution of the camera, weather conditions, and user error all contribute

sources of error to the classification, and further subdivision of the classification scheme

beyond the five classes presented here was not justified with the current methods/data

available. As a result, the clustering algorithm was also limited to a maximum of five

possible clusters. The last step in the classification procedure is to identify and assign a

substrate type to the clustered data using an interpreted cluster map created in ArcGIS.

The ground truth points can be used to validate and test the accuracy of the classification.

The clusters within the map are assigned a physical substrate type using the modified

classification chart. The bulk grain size distribution for all ground truth points that lie

within the map’s “class” is used as the physical substrate type.
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Figure 3.24: Modified grain-size char with ground-truth points plotted based on grain size
distributions obtained for each sample location. Red points represent the ground-truth sam-
ples and the blue points represent the separate set of ground-truth points to be used for the
accuracy assessment.
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Figure 3.24 shows the Amnicon River ground-truth points plotted on the modified grain

size chart from (Blair et al., 1995). Particles plotted in Figure 3.24 are then assigned a

numeric value from 1 to 5 based on where the points plot. A value of 1 is given to the

“sand” class, 2 for “sand and muddy sand,” 3 for “extremely coarse sediment,” 4 for

“coarse sediments”, and a value of 5 for “mixed sediment.” Once a sediment class has

been determined for the accuracy points, the representative sediment class must be

determined for the cluster map to test the accuracy of the classification. To accomplish this

goal, all of the ground truth points are sorted based on in which cluster they are located on

the map. The ground truth point locations are plotted in ArcGIS along with the cluster

map to determine the appropriate cluster for each sample point. Once the points have a

cluster assigned to them and are sorted by the cluster’s number, the mode is taken for each

cluster. The sediment class that corresponds with the most frequently occurring ground

truth point is then assigned to the cluster. Finally, the cluster map can be assigned

sediment classes for each of its different classes, and the accuracy of the classification can

be tested. To test the accuracy of the classification, the independent ground-truth points

are plotted on the cluster map following the same process. The sediment class is assigned

a numeric value based on where the point is located. The numeric values of the cluster

map sediment class assigned to the point can be tested using the Python Pandas_ml

confusion matrix package. Two arrays containing the numeric values for the true sediment

class and the predicted sediment class from the cluster map are compared using a binary

confusion matrix (Sinhrks, 2017). From this analysis, overall statistics and individual class

statistics can be computed. Here the overall accuracy for each tile size tested is determined

for both the 0.5 and 0.25-meter resolution data (Table 3.1), but a full detailed listing of

each confusion matrix is available in Appendix A.1
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Data Resolution (meters) Tile Size (N) Overall Accuracy (%)
0.5 7 16.6
0.5 9 16.6
0.5 11 18.7
0.5 13 13.3
0.5 15 18.7
0.5 17 33.3
0.5 21 16.6
0.5 33 5.5
0.5 65 11.1
0.25 11 11.1
0.25 13 22.2
0.25 15 33.3

Table 3.1: Accuracy Assessment Results

Along with the class statistics, the Pandas_ml package generates a plot of the confusion

matrix. Figure 3.25 shows an example of a plotted confusion matrix for the Amnicon

River survey, using a tile size of N=11. The Y-axis represents the numeric values of the

sediment class that were determined from the independent accuracy assessment

ground-truth points. The X-axis shows the predicted class numeric value determined from

the main set of collected ground-truth samples. The plot is shown as a heatmap, with

darker colors representing more instances where the actual class matched with the

predicted class. In this example, white colors represent a predicted class that did not match

any of the actual sediment classes, and shades of gray represent 1-2 predicted samples that

matched with the actual sediment class. The black squares represent three samples that

were correctly predicted by the classification scheme.
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Figure 3.25: Example Confusion matrix from the Amnicon River Survey, Tile size N11.

It is clear from the table of reported accuracy that the classification scheme used in this

study contains numerous flaws and shortcomings that eventually impacted the accuracy,

these will be discussed in Chapter 4.
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3.4 Lester River Survey

The Lester River bathymetry dataset was collected on the 26th of July 2016 aboard the

R/V Kingfisher as the first of two surveys collected for this study. The primary goal of the

cruise was to collect multibeam bathymetry data in the nearshore environment centered

around the outlet of the Lester River.

A second cruise was conducted to collect ground-truth samples from the surveyed area.

Based on prior knowledge of the area, conventional ponar grab samplers were considered

to be inappropriate for the substrate type, which was known to be primarily very rocky.

Instead a dive drop camera was used to collect video and photo stills at each sample

location. Also, the extremely clear water conditions and shallow bathymetry made it

possible to visually inspect the bottom type during sample collection.

The collected bathymetry and terrain features were processed using the methods outlined

in Chapter 2. PCA and clustering were then applied to these features to classify the

bathymetric surface. The analysis was performed using a range of tile (N) sizes and data

resolutions. Ground truth points were used to classify and assign physical substrate types

to the clustered data for use in an accuracy assessment.

3.4.1 Lester River Geologic Setting

Situated on the Minnesota North Shore of Lake Superior, the Lester River meets with

Amity Creek just before outflowing into the Lake. The Minnesota side of the North Shore

is characterized by vertical cliffs and numerous streams which have cut through the rocks

to reach a current base level, around 150 meters lower than during the time of Glacial Lake
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Duluth. There are numerous rocky outcrops near the bottom of the cliffs, and North Shore

beaches are gravelly in nature (Johnson & Johnston, 1995; Ojakangas & Matsch, 1982).

The area is characterized by a bedrock geology that consists of Upper Precambrian

Volcanic Rocks associated with the failed Mid-Continent Rift event approximately 1.1 Ga

(Green, 1989). The Lester River incises lava flows at the east edge of Duluth exhibiting

very steep cliffs. The area is subjected to intense wave action, resulting in weathering and

erosion of large blocks of volcanic material in the nearshore region [Personal Comm. J.

Swenson]. Due to the clear water in the nearshore regions near the Lester River, the

bedrock surface can be readily seen from the surface, revealing areas of smooth and

fractured bedrock, and rubble fields that are the result of erosion due to wave action. The

fracturing of the volcanic material results in substantial boulders (>1 m diameter) that

make up the rubble fields. Lastly, volcanic dikes that are exposed in the bedrock cliffs can

be traced lakeward.

3.4.2 Study Area

The study area was located near the outlet of the Lester River along the North Shore

Duluth, MN (Figure 3.26). To maximize the amount of data collected by the multibeam

instrument, survey lines were positioned as close to shore as possible, and run parallel to

the regional bathymetric contour. The overall dimension of the survey was just over 3km

in the alongshore direction and roughly 200 meters in the across-shore direction.

Measured bathymetry ranged from a minimum depth of 1 meter to a maximum depth of

14.5 meters. To address changes in the nearshore bathymetry, additional survey lines were

added during data collection to cover areas that had initially poor lake floor coverage,

shown in Figure 3.27.
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Figure 3.26: Lester River Survey Location. Location is given by red star on the map.

Data collected at this site include bathymetry, side-scan sonar, sound velocity profiles, and

video/photo ground-truth samples. The final bathymetric surface created in CARIS HIPS

was gridded at a maximum resolution of 0.25 meters.

Even with the addition of several survey lines, inaccuracies in the base maps used for the

initial planning resulted in several gaps that run parallel to the ship’s track line. Because

the surveyed area was not rectangular, a different interpolation technique based on the

KDTree algorithm3 was applied to permit the processing of the irregularly shaped survey

area. The final bathymetry surface created at 0.5-meter resolution is shown in Figure

3.28.

The underlying bathymetric trend for the Lester River survey can be characterized by a

moderately sloping profile perpendicular to shore. The shallowest portions of the

survey(>1-meter depth) were encountered near the outlet of the Lester River where a slight
3A detailed explanation of the KDTree Algorithm used for this study is discussed later in Section 3.5
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topographic high radiates out from the mouth of the river (Figure 3.29-A). The beach in

this area is composed of rounded gravel and pebbles with some finer sediment deposited

from the river.

The bathymetric surface is primarily comprised of a mixture of smooth and fractured

bedrock, with several rubble fields likely created from constant wave action along the

North Shore. Features of interest for the classification scheme are areas defined by the

fractured bedrock. The resulting lake floor in these regions is very rough and exhibits

quite extreme variations in the bathymetric terrain (Figure 3.29-B). Two ridges formed by

volcanic dikes cut the bathymetric surface in the across-shore direction (3.29-C, D). The

dike in Figure 3.29-C forms a coherent feature that extends across most of the mapped

bathymetric surface. The second dike shown in figure 3.29-D is less defined and appears

to be more fractured, and weathered pieces of the dike can be seen scattered locally. A

cross-sectional profile of the dike is shown in Figure 3.30.

In this survey, errors in the measured sound velocities resulted in the refraction correction

for the bathymetry not being applied correctly. The error is probably linked to significant

lateral drift of the instrumentation when deployed. This drift caused the instrument to

sample areas that did not reflect the actual position of the boat. The expression of this

error is most clearly seen in the outer beams in the swaths which are not mapped to their

correct locations. Close to the Lester River where water entering the lake probably had a

very different temperature compared to the lake, these beams are mapped to a position

higher than the actual depth. In an individual line, this error is not noticeable, however

when two adjacent lines overlap they show a significant refraction error in the outer

beams. The error is particularly evident if the lines were run in opposite direction, in this

case, the roll error magnifies the effect. Swaths taken from the two lines exhibit a

“crossed” or interfingered pattern where the beams overlap. This creates small artificial
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ridges and valleys in the bathymetric surface, which, if not addressed, introduce variability

at small spatial scales that will influence the PCA and clustering procedures.

3.4.3 Sound Velocity Variations

Several sound velocity profiles were collected for the Lester River survey; four for the

post-processing ray-bending correction and two additional profiles for the patch-test. The

locations of the profiles for the Lester River are shown in Figure 3.31, and the velocity

profiles are shown in Figure 3.32. The profiles were determined using temperature and

conductivity information collected using a YSI CTD© cast. The profiles in Figure 3.31

exhibit a variation in the speed of sound from the near-surface to the lake floor of

approximately 20-25 m/s over a ~12-meter depth range. The four profiles used for the

speed of sound correction collectively show a similarly steep decline in the speed of sound

with depth. While the sound velocity profiles used for the patch test4 show slightly higher

sound velocities with depth, they follow a similar trend with depth. Due to a strong

offshore current in the near-shore region in the survey area, as the CTD was lowered into

the water, it drifted away from the survey vessel. The post processing software assumes

the profile is collected at a single geographic location; however, drift of the instrument

effectively averages a larger spatial cross-section of the water column. The effects of the

sound velocity profiles will be discussed at length in Chapter 4.
4Patch test conducted over a known bathymetric target in the southwest corner of the survey area.
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Figure 3.30: The bottom figure shows the location of the first depth cross section at the
Lester River. The section intersects one of the volcanic dikes present. The black line on the
map marks its location. The top figure shows the depth profile. The dike is clearly visible
in the profile at around 35 meters’ distance.
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Figure 3.32: Sound velocity profiles for the Lester River Survey. The profiles in red were
used for the bathymetric sound velocity correction in the post-processing workflow. The
black dashed line show the velocity profiles that were used for the patch test calibration
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3.4.4 Characterization of the Feature Matrix

Using the bathymetric surface shown in Figure 3.28, the terrain measures outlined in

section 2.6 were calculated. Due to additional processing limitations5, the measures for

the surface were only calculated for a data resolution of 0.5 meters. For this study the

lakefloor was classified using a range of processing window sizes of N=(7, 9, 11, 13, 15).

Multiple tile sizes permits a more complete analysis of the data, and captures details about

the bathymetry’s terrain information at different spatial scales. This made it possible to

determine which measures are scale dependent. The fractal dimension and lacunarity

could not be calculated because of the need to apply the KDTree algorithm. The

conventional processing methodology accounts for NaN values in the input data by

implementing the KDTree algorithm. The box-counting method used to calculate fractal

dimension and lacunarity (Klinkenberg, 1994), is significantly affected by the addition of

NaN values. The change in the array structure causes a mathematical domain error and

therefore these measures were be calculated for the Lester River.

Figure 3.33 shows the calculated slope measure for the Lester River. The surface

illustrates the ability of the processing methodology to identify and calculate slope values

correctly. Several areas exhibit significant variations in the calculated slope. The volcanic

dikes profiled in Figure 3.30 introduce considerable local variations in slope, and several

bars at the mouth of the Lester River also show spatially localized but significant changes

in the calculated slope. The bathymetric surface regionally deepens from the northwest to

southeast perpendicular to the shoreline (shown in Figure 3.31). Maps of calculated

measures for the tile sizes N=(7, 9, 11, 13) are included in the Supplemental

Material.
5The fundamental structure of the processing code was designed around 0.5 meter data, and sufficient

alterations to the code could not be made during this study
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Figure 3.33 illustrates the effect of the refraction error on the calculated measures. In the

slope map, these express themselves as a series of ridges that run parallel to the shoreline

and to the survey lines. The ridges are the expression of the refraction error described in

section 2.9.4 and show a significant deviation from the regional trend in the lake floor

bathymetry across the entire survey area.
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3.4.5 PCA and Clustering

Using the processing methodology outlined in Chapter 2, principle component analysis

was applied to a series of measures of the processed depth surface excluding the fractal

dimension and lacunarity. The PCA was run on each set of measures created from

processing the bathymetric data at each tile size. In addition to the reduced data set, the

percent variance was also calculated for each component. This measure gives a first-order

approximation to how well the calculated measures correlate to the reduced data (Kaiser,

1958). For this survey, the ten measures calculated were reduced to a set of five principle

components which maximizes the amount of variance explained by the data (~90 percent).

The effect of the not being able to include the fractal dimension and lacunarity measures

into the PCA analysis are discussed at length in Chapter 4. Figure 3.34 shows a plot of the

cumulative variance explained for the Lester River as a function of tile size tested. Plots of

the explained variance for each component (1-5). are included in the Supplemental

Material for this thesis.
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Lester River Cumulative Variance vs. Tile Size

Figure 3.34: Plot of the cumulative variance explained resulting from the PC analysis for
the Lester River survey. The plot shows cumulative variance explained as a function of tile
size tested.

The cumulative variance is the summation of the variance explained by each of the five

principle components derived in the analysis. Figure 3.34 shows that the cumulative

variance increases with increasing tile size for this data set. This contrasts with the

Amnicon River survey which showed little to no variation of variance explained over this

tile size range. While the figure shows a clear increase in the variance explained, the

author would like to note the scale of the Y-axis used in the plot. In total, there is a less

than 2 percent change of variance explained from a tile size of N=7 to N=15. K-Means

clustering was used to segment and classify the reduced data set.

Figure 3.35 shows the probability ellipsoids for the clustered Lester River data at a tile size
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of N=11. These ellipsoids are used to display a three-dimensional representation of the

clustered data. This data is representative of the first three principle components. The

figure indicates that most of the clusters are tightly centered around a small range of

principle components, demonstrated by the red and white clusters in Figure 3.35. It is also

very apparent that one of the clusters is influenced by a significant range of principle

component values (burgundy ellipsoid). The scale on the three-space axis should be noted

here, which is a significantly larger range of values than either the Duluth Harbor or the

Amnicon River survey. This could suggest a fault in the calculated measures or the

clustering procedure, as this result suggests that one cluster is being heavily influenced by

a wide range of values. Once the clustering procedure has assigned a unique cluster ID, a

value of 0 through 4 is allocated to the cell, representing the cluster on the map.
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Figure 3.35: Three-space plot of the clusters assigned for the Lester River survey. Each axis
represents the normalized value of each of the first three principle components. Q1=P1,
Q2=P2, Q3=P3. Clusters are iteratively assigned to the reduced data, and each of the ellip-
soids in the plot represents a 95% confidence interval for each of the 5 clusters used in the
analysis.

Figure 3.36 shows the cluster map for the Lester River data set that was processed at a tile

size of N=11. The clustering algorithm has the ability to identify regions of differing

terrain here, and specific features identified in Figure 3.31. The refraction error is also

readily observable as a series of red and white lines that run parallel to shore. These

anomalies correspond to the areas of overlap between survey lines and are not real

geologic features but rather the expression of an incorrect speed of sound correction. The
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texture of the bathymetric surface will ultimately influence the clustering procedure.

Significant changes in the calculated textural measures will result in a stronger influence

on the PCA and cluster algorithm. Likewise, areas of low textural variability should not

influence the PCA and subsequent clustering procedure and will be assigned a class

separate from areas of higher variability. Flat-lying areas in Figure 3.36 have been

clustered together as one class (shown in light blue), and the two volcanic dikes from

Figure 3.30 are shown in red and white.
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Figure 3.36 illustrates the limitation of the data resolution tested here and the limitations

of the using the KDTree algorithm to account for the irregular surface boundaries. In the

upper northeast section of the survey area, the clustering created a significant amount of

noise in the classes defined by the colors red and white. While this area does in fact show

significant terrain variability in the bathymetric profile of Figure 3.28, this is not reflected

in the clustered map which does not demonstrate a consistent signature of real geologic

features except in a few select locations. Comparing the bathymetric surfaces created for

the Amnicon survey and the Lester River survey, it is clear that the KDTree algorithm,

while making it possible to process an irregular surface, results in a much poorer quality

bathymetric surface. Finally, in addition to the obvious refraction errors that are

manifested in the clustered map, there are several locations within the Lester River survey

that exhibit residual heave error. Heave corrections were applied to the Lester River data

as well, however in a few select survey lines the error was not be completely removed.

Additional cluster maps for the other tile sizes tested N=(7, 9, 13, 15) are found in the

Supplemental Material.

3.4.6 Ground Truth Sampling

Ground truth sample points were collected on August 6th, 2016 to calibrate the cluster

maps and to validate the result of the classification. A drop-camera frame was used to

collect video and photo stills. In total, 42 samples were collected to calibrate the clustered

data and an additional 12 points were collected to test the accuracy of the classification

(Figure 3.37). Similar to the Amnicon River Survey, only one day of sampling could be

completed, and the number of points to use for the calibration and validation were limited.

Samples were collected within the boundary of the collected bathymetry.
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S34

S42

Figure 3.37: Lester River Sampling location map. Collected points are shown with light
blue and blue dots on the map. Two sample points, S34 and S42 are highlighted in red.
Due to weather conditions and overall accuracy of the GPS system being used, some of the
collected points fall just outside of the bathymetric surface boundary.
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4 cm

S34 S42

Figure 3.38: Ground Truth samples S34 and S42 collected at the Lester River, locations
shown in Figure 12. Sample S34 is characterized by a heterogeneous mix of gravel and
cobbles. Clasts range from rounded to angular, and sit on a silty, sandy bedrock covered
bottom. Sample S42 is located near the mouth of the Lester River but does not show de-
position from the river. The sample location is characterized by a bedrock surface that is
covered with a thin veneer of silty sediment.

Congalton (1991) reported that the number of sample points collected may limit the

accuracy assessment of the clustered data. Unlike the Amnicon River survey area, the

Lester River survey’s geology is primarily composed of rocks associated with the North

Shore Volcanic group, and many of the ground-truth points proved to be a smooth bedrock

surface covered by a thin veneer of fine-silty sediment. This sediment is easily mobilized,

during collection of several samples when the camera frame hit the lake bottom, the

surface sediment re-mobilized, creating a plume in the water. The surface of this sediment

is often marked by small (2-4 cm in wavelength) ripples (Figure 3.38). More than half of

the samples collected, including the separate points collected to validate the classification,

were characterized by this bedrock surface.

An unfavorable sea state during sample collection made it difficult to collect good

samples, so at each sample location that contained measurable clasts, multiple photo stills
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were used for the classification. Many sites that were not classified as a smooth bedrock

surface contained a mix of gravel to cobble-sized clasts, with a heterogeneous

combination of rounded and angular shapes. At most sites these clasts appear to rest on a

fractured bedrock surface. Grooves and fractures were often present in these sample

locations. Almost all of the collected ground truth samples contain a thin layer of the fine

sediment that is very apparent on the smooth bedrock surfaces.

A select number of sample locations appeared to show large boulders (>1m in diameter)

that contain smaller cobbles and gravel scattered throughout. The boulder size can only be

estimated as they appear to be larger in size than the camera frame being used as a scale,

but the estimated dimensions match personal observations of the boulders (pers. Comm. J.

Swenson). A full set of images for the Lester River survey ground truth sample is found

are the Supplemental Material. Ground truth samples were assigned a classification using

the same methodology employed for the Amnicon River survey. The modified Wentworth

scale from (Blair et al., 1995) was further subdivided for use in this study.

Due to the nature of the Lester River survey’s geology and the geomorphological

expression of the lake floor, only three distinct substrate classes could be identified using

the collected ground-truth samples. These classes were I) a smooth bedrock surface, II)

fractured bedrock surface, and III) mixed/coarse sediments. Whenever five classes were

not representative of the actual substrate ditribution, classes were combined to better fit

the interpretation of the data. The process for determining the sediment class for the

clusters derived from the PCA results is identical to that used for the Amnicon River

survey. Numeric values are assigned to the clusters from the texture-based analysis and for

each of the identified sediment classes.

Using the most frequently occurring sediment class, the clusters on the map were assigned
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a sediment type. The accuracy assessment sample points were used to validate and

calculate accuracy statistics with the calibrated cluster maps using the Pandas_ml

Confusion Matrix Python package (Sinhrks, 2017).Once the sediment classes were

determined for both the cluster maps and the accuracy assessment points, the

representative numeric values were tested using a binary confusion matrix. From this

analysis, overall statistics about the accuracy assessment were computed. Due to

complications in the processing of the measures for the Lester River, the 0.25-meter

resolution bathymetric surface could not be processed, so only the accuracy values for the

0.5-meter resolution surface are reported (Table 3.2).

Data Resolution (meters) Tile Size (N) Overall Accuracy (%)
0.5 7 70
0.5 9 60
0.5 11 70
0.5 13 70
0.5 15 70

Table 3.2: Lester River Accuracy Assessment Values

The accuracy values reported for the Lester River are significantly higher than the reported

values for the Amnicon River survey, which will be discussed further in the next

section.
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Figure 3.39: Example Confusion matrix plot for the Lester River Survey. Accuracy assess-
ment from the tile size N=7.

Figure 3.39 shows an example of the plotted confusion matrix for the Lester River survey.

Due to the limited number of physical classes and the lack of sample points, the confusion

matrices are very simple, and the accuracy statistics were quickly calculated. Confusion

matrix plots for each tile size are available in Appendix A.1.
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3.5 Error Corrections

3.5.1 Erroneous Residual Heave Error Corrections

Initial processing of both the Amnicon River and Lester River Data produced bathymetric

surfaces which exhibited a significant ripple artifact. Patch test calibrations were

re-checked to ensure there were no unaccounted sources of error that could have

influenced the final surface. The error that is present can be described as having a

quasi-periodic nature, and the magnitude of the error is consistent across the swath. Roll

and pitch errors were ruled out during the patch test, and the expression of the artifacts in

the bathymetry was much larger in magnitude than what the reported heave values could

produce, suggesting an anomalous heave error.

The TPU analysis for representative lines indicated that the main source of vertical error

for a given group of depth soundings was associated with the heave record. Looking at a

profile of the depth soundings in the along-track direction, the magnitude of the ripple can

be measured and estimated. The regular nature of the error can be seen here, and it was a

magnitude of ±0.2-0.3 meters, considerably larger than the recorded heave of ±0.05-0.1

meters. It did not account for the actual magnitude of heave motion that is expressed in the

bathymetry. An additional post-processing routine was developed to calculate and apply a

residual heave correction to the bathymetry using a Python script, listed in Appendix

B.1

The goal of the script was to analyze the bathymetry on an individual line basis and use

simple statistics to calculate a new heave value for each time stamp in the original record.

To accomplish this, the following processed bathymetry data was exported from CARIS

HIPS as a text file: Lat, Long, Depth, Time, Line #, Profile #, and Beam #. This data was
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read into Python and separated into columns. The bathymetry information for a line was

first interpolated to fill in any missing data points. The heave error is a relatively

high-amplitude, high frequency artifact, so the regional underlying bathymetry can be

removed from the interpolated bathymetry with a low-pass filter.

The error is assumed to be consistent across individual swaths, so that all points in a swath

experience a vertical shift. A median filter is applied across each swath in the data to

determine a representative value of the heave record at that point. A final heave record is

then exported as a text file to be brought back into CARIS HIPS. Figure 3.40 shows a plot

of an original heave record with the new heave derived from the processing algorithm.

The new heave record was then re-merged with the bathymetry information and the

bathymetric surface re-computed. The source of the error has not been verified, but

communications with the manufacturer indicate that a faulty firmware update may have

led to the error.
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Figure 3.40: Plot of an original heave record (dashed line) with the new derived heave (solid
line).

3.5.2 Refraction Error Corrections

In addition to the residual heave error present in the initial bathymetric surface, a

significant refraction error was clearly evident, mainly in overlapping adjacent swaths.

The outermost beams in a swath are most sensitive to errors in the sound velocity

correction profile. Viewed in cross section, the refraction error is expressed as a curving
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up of the swath in the outermost sections, which produces a characteristic bow tie

appearance in overlapping swaths taken from adjacent survey lines.

In both surveys, the error is thought to be associated with problems in the CTD readings.

These readings can be affected by water currents or suspended sediment in the water

column. The latter is particularly likely in the Amnicon River survey where

sediment-laden outflow from the river was present in much the survey area. This sediment

can be seen in the acquired video, showing that it is a hypopycnal flow, and the last ~1m of

the water column has drastically different characteristics. These variations could impact

the sound velocity profiles. Lateral variations within an SVP are likely due to the

temperature field being perturbed by locally strong currents, as evidenced by the extreme

drift of the CTD during deployment.

This error can be mitigated by removing as much of the overlapping swaths between lines

as possible, and manually adjusting the sound velocity profile in select places. Both

methods were required in this study. Overlapping portions of two swaths were removed to

improve the physical appearance of the bathymetric surface, however this does not reduce

the refraction error. CARIS HIPS includes a Refraction Editor tool that can be used to

adjust the sound velocity information at specific depths. The tool allows the user to select

an appropriate depth and position along an individual line and choose to increase or

decrease the speed of sound to correct for the error. In most cases, the sound velocity had

to be increased by 5-7 m/s at varying depths to reduce and flatten the swaths to a realistic

profile, and reduce as much of the “bowtie” as possible. While this technique can account

for most of the errors present, it is extremely time-consuming and requires an experienced

user.
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3.6 Irregular Surface Boundary Conditions

The processing of bathymetric datasets was initially restricted to rectangular grids. This

limitation was imposed by programming decisions made when the processing algorithm

was implemented. When the bathymetric surface is read into the program, the code creates

and interpolates a secondary surface with which the measures are calculated. This

interpolation process allows for any small gaps in the data to be filled. These gaps in the

data can arise from rejected data points that did not meet hydrographic standards. The

design of the Amnicon River Survey data was conducted to maximize the largest

rectangular area that could be extracted from the bathymetric surface. This also influenced

the ground-truth sampling methodology to maximize coverage within this boundary.

The interpolation method used applied a nearest-neighbor approximation. This simple

method for interpolating multivariate data fills in missing data using the value of the point

nearest to the cell being evaluated. If the data is gridded at sufficient resolution the

interpolated surface is accurate and representative of the true surface. However, when the

input data has large spatial gaps (regardless of origin), the interpolation method will

attempt to cast the nearest value from the data into an empty area. This results in a large

number of incorrectly assigned values, and a significant negative impact on the analysis, as

shown in Figure 3.41
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Figure 3.41: A) Snippet of the Lester River Bathymetric surface, which includes a large gap
of missing data at the end of a survey track-line. B) The interpolated surface generated using
Python. The missing information in A has been interpolated using the nearest-neighbor
approximation. The dashed line shows the extent of the original surface.

The method used to eliminate the erroneous interpolation errors was based on an

implementation of the k-d tree algorithm used for masking data. The algorithm creates a

node point using every data point in the surface. These node values form a binary tree

structure, and the overall tree structure is created by successively splitting nodes into

half-spaces (Maneewongvatana & Mount, 1999). The benefit of using this algorithm is

that the tree can be queried for the r closest neighbors of any given point or for only those

points that are within a threshold distance of the node point. This makes it possible to test

the input data within proximity to other values in the surface, and identify where the

boundaries of the surface are, and appropriately interpolate the surface. The method

chosen interpolated the input using the original methodology outlined with the nearest

neighbor algorithm. The k-d tree algorithm queried for null data values within the grid.

The following section of code outlines the original interpolation method:
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1 . x , y = np . mgrid [ x1 : xn : complex ( numx+1 , 0 ) , y1 : yn : complex ( numy+1 , 0 ) ]

2 . p o i n t s = ( e a s t i n g , n o r t h i n g )

3 . s u r f a c e = g r i d d a t a ( p o i n t s , depth , ( x , y ) , method = ’ n e a r e s t ’ )

The easting and northing points are the geographic positions of each depth value

calculated from the bathymetric surface with the associated depth value at that point. This

Python-Scipy implementation creates a grid of x and y coordinates and interpolates a

surface using the spatial positions and depth values (Maneewongvatana & Mount, 1999;

Van Der Walt et al., 2011). The next step in processing is to use the k-d tree to query the

interpolated surface:

1 . t r e e = KDTree ( np . c_ [ e a s t i n g , n o r t h i n g ] )

2 . d i s t , _ = t r e e . que ry ( np . c_ [ x . r a v e l ( ) , y . r a v e l ( ) ] , k =1)

3 . d i s t = d i s t . r e s h a p e ( s u r f a c e . shape )

4 . s u r f a c e [ d i s t > 0 . 5 ] =np . nan

The workflow for this process created a tree that had the same spatial dimensions of the

interpolated grid using the easting and northing values. Line 2 uses the Numpy function

np.ravel() to flatten the two-dimensional x and y data arrays. This allows for the k-d tree

algorithm to use a one-dimensional querying process. The last step, Line 4, is to compare

the original interpolated surface with the query that had just been created. In this

implementation, the initial surface is tested for points within the query that are greater than

0.5 distance units, or one cell at the data’s resolution. If the condition is true, then the

function np.nan sets the value of the cell to not-a-number (NaN), which indicates that the

cell should be ignored during processing of the terrain measures.
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Figure 3.42: In A) The original surface extracted from CARIS of Lester River surface snip-
pet. In B) the interpolated surface created in Python using the K-D Tree interpolation algo-
rithm. The white areas represent cells in the surface that have been filled with NaN values.
The K-D Tree method accurately honors the original surface boundaries.

Once the data has been interpolated correctly, the standard processing workflow can be

applied to calculate the measures in the FFV. The original code developed for this study

cannot calculate these measures for several reasons. The processing algorithm outlined in

section 2.6 uses a bi-variate quadratic surface that is fit to a local window about that

cell.

The coefficients of the bi-variate equation cannot be determined if one of the cells within

the local window contains a NaN value. To address this issue, the processing code was

altered to process irregular surfaces; this is particularly important for the Lester River

survey which could not be readily reduced to a rectangular grid. In future studies, the

processing code should be restructured to accommodate irregular surfaces. Since this was

beyond the scope of this study, an additional masking procedure was introduced to
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calculate the measures. In the main algorithm, calculation of the measures is performed by

looping over the x,y coordinates of the rectangular grid, extracting a local window about

the cell of interest, and computing the measures. This process is repeated for each point in

the grid. This procedure assumes about the local window around the cell has a complete

set of values, and contains no NaNs. For this study, a simple “brute force” approach was

implemented that checked the points in the window for any NaN values, Figure 3.44 If any

NaN’s are detected, the main loop skips to the next point. This process is outlined in the

following section of code:

1 . f o r i i n r ange ( s t a r t x , endx ) :

2 . imin = i − h a l f _ t i l e

3 . imax = i + h a l f _ t i l e +1

4 .

5 . f o r j i n r ange ( s t a r t y , endy ) :

6 . jmin = j − h a l f _ t i l e

7 . jmax = j + h a l f _ t i l e +1

8 .

9 . z = s u r f a c e [ imin : imax , jmin : jmax ]

10 . t e s t = np . i s n a n ( z ) . any ( )

11 .

12 . i f t e s t :

1 3 . c o n t i n u e

14 . p r i n t i , j , t e s t , ’No Data ! ’

15 .

16 . e l s e :

17 . p r i n t i , j , t e s t , ’We have a comple t e window ’
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Figure 3.43: Illustration of how the masking code searches the local window around a cell.
The red point indicates the current cell, and the red arrow point to the neighboring cells.
Here the gray boxes indicate cells that do contain data values and the white boxes do not.

The advantage of checking each local window is its simplicity which does not require

significant restructuring of the processing code. The disadvantage of this approach is that

it incurs new overhead, increasing processing time. This method also slightly reduces the

size of the final surface. Cells around the boundary of the surface most likely do not to
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contain a full set of local window values. This means that there will be a buffer window

around the surface that contains cells that do not meet the “check” requirements.

Figure 3.44: A synthetic Data model showing an irregular boundary condition. The cells
shaded in gray contain data values and the white empty cells contain NaN’s. The checking
procedure will move through every cell in the grid to ensure the cell has a data value in all
its neighbors within the local window. In this model, if a cell does not contain a full set
of values, it is shown with a red circle, likewise a cell contains a green circle if there is a
full set of values around the cell of interest, its: North, South, East, West, and 4 diagonal
neighbors. The cells with red cells create a “buffer” window of points around the entirety
of the bathymetric surface, slightly reducing the overall size of the processed grid.

Figure 3.44 shows a simple model of the Lester River survey and the 2D array generated

by the processing code. While most Python functions used in the processing code come

from pre-defined libraries, such as Numpy or Scikit, which can handle NaN values, several

of the mathematical functions used were coded specifically for this study and cannot

handle NaN values as an input. This resulted in numerous errors and complications in the
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processing of the Lester River data. The KDTree algorithm used to for the Lester River

data did work to correctly interpolate the bathymetric surface, however it significantly

reduced the overall quality of the data, commonly resulting in a grainy or sometimes

patchy texture to the bathymetry (See Supplemental Material). The reduced quality of this

surface impacted the performance of the PCA and clustering. Cluster maps calculated for

several tile size variations exhibit significant departures from the expected results, and in

many cases, clusters did not show any coherent clustering that correlated with recognized

physical features (i.e. bedrock or volcanic dikes). As a result, the cluster maps could not

be used for any type of accurate substrate classification.
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Chapter 4

Discussion

4.1 Overview

The following section will review the important aspects of the processing methodology

and the results of both study areas. The discussion of the feature calculation process will

include an analysis of the calculated features and their variation with changes in

processing tile size. The goal of this study was to assess the accuracy of the proposed

classification method, which is based on the use of terrain measures. The choice of

measures used in the classification scheme is an integral part in the processing and may

significantly impact the accuracy of the classification. While the aim of this study was not

to classify the habitats of near-shore fauna, some of the principles used in habitat studies

apply here, particularly their analysis of features at multiple spatial scales. Animals often

exhibit preferences for certain types of terrain. Habitat selection is likely based upon a

combination of small and large scales (Wilson et al., 2007).
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The impact of the tile size on the principle component of measured features derived from

the bathymetric surface is also examined. The main sources of error in the processing

methodology will be reviewed, including the two major acquisition sources of error, the

residual heave and refraction. The results of the accuracy assessment will be discussed as

well as the impact of the ground-truth sampling and validation method on the final

reported accuracies. Finally, several limiting factors that became apparent during this

project will be examined in detail. These include the overall performance and issues

associated with the processing code and the possibility of using multiple types of sonar

data to improve the quality and accuracy of the classification method.

The question of what additional benefits might be gained by analyzing the data at multiple

scales should be clearly addressed as it directly impacts the PCA and clustering analysis.

Each survey area was processed using a range of tile sizes. Several of the textural

measures exhibit changes that correlate with increasing analysis tile sizes.

Several important aspects of this study are the effects of spatial scale regarding both study

sites. We want to answer the following questions:

• What information can be derived from multibeam bathymetric data?

• What additional benefits can be achieved by processing data at multiple spatial

scales?

• What spatial scales are most relevant to both study areas?

Additional important questions that will be addressed in the following section are:

• Can the derived terrain measures be used to predict substrate type?

• Does the spatial scale used in the analysis impact the classification accuracy?
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4.2 Variations in Calculated Features with Tile Size

To answer some of these important questions, the calculated measures should be

considered in more detail. The twelve measures used in this study comprise 4 different

areas of terrain analysis that may be useful for the classification of substrate. The terrain

measures derived from the processed bathymetry can be divided into four areas: slope,

orientation, curvature/relative position, and terrain variability (Figure 4.1). For the

Amnicon survey, the full set of measures were calculated, while the Lester River

encountered data processing issues resulting in the fractal dimension and lacunarity

measures being unable to be calculated.
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Bathymetry

Slope Orientation

Curvature
Relative Position

Terrain 
Variability

Plan, Pro�le Curvature Roughness, rugosity
TRI, Fractal Dimension

Aspect
(Eastness)
(Northness)

Figure 4.1: Terrain measures that are derived from bathymetry data. Modified fromWilson
(2007).

Due to processing limitations and data quality issues, data used for the interpretation of

the effects of tile size variation are taken solely from the Amnicon River survey. The

nature of the geology of both study sites limited the maximum achievable surface

resolutions. Bathymetric surfaces were produced at resolutions of 0.5 and 0.25 meters for

the Amnicon River survey and 0.5 meters for the Lester River survey.

The data quality and processing issues at the Lester River should be addressed before

presenting a more detailed discussion of the calculated measures. The shape of the
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surveyed area at the Lester River presented several problems for the processing and

calculation of the terrain measures. The most significant problem was associated with the

interpolation of the bathymetric surface from the original HIPS data. The default gridding

algorithm works well in the absence of of gaps in the data, however, data quality issues

presented significant problems for the algorithm used for the interpolation of the

bathymetric surface.

The processing of various measures was possible due to a small change in the code. A

detailed description of this process in described in Appendix B.1. A significant drawback

of this change, however, is that it did not permit the calculation of either the fractal

dimension or lacunarity measures for the Lester River survey. These related measures are

important factors in terrain analysis and are often referred to a measure of surface

complexity (Herzfeld & Overbeck, 1999). Real landscapes typically exhibit fractal

behavior and landscape topography is best described by fractal geometry. Thus, fractal

dimension and lacunarity are generally good indicators of the textural complexity of a lake

floor. Since the nature of this study was to examine the bathymetry at different spatial

scales and analysis scales, it was expected that both measures would play an integral role

in the validation process. The use of the KDTree algorithm for the Lester River data

resulted in reducing the quality of the interpolated surface. As a result, the PCA and

clustering was negatively impacted by the inability to include both (lacunarity and fractal

dimension) measures.

The variation in mean slope with increasing tile size shows an important trend in the

multi-scale analysis. When using smaller tile sizes, the window is more sensitive to

fine-scale features in the bathymetry than larger windows. A cluster map using a tile size

of N=7 looks significantly different from a map calculated using a tile size of N=33 of the

same area, as shown in Figure 4.2 A and B.
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Larger tile sizes highlight features on a broader spatial scale. A significant characteristic

of these analyses is that the calculated values of slope vary with tile size, as shown in

Figure 4.3.

Figure 4.3: Variations in the calculated slope from the 0.5-meter resolution Amnicon River
data.

The maximum slope reported for each tile size varies significantly and appears to decrease

in a quasi-exponential fashion, while the minimum slope, regardless of tile size, is zero.

The mean slope decreases but does so gradually and appears to asymptotically level off

with large tile sizes (>N=65). Lastly, the values of slope vary with the resolution of the
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bathymetric surface analyzed. This effectively sets the minimum distance at which terrain

calculations can be performed. Several versions of the same bathymetric surface were

exported from HIPS at a range of resolutions. The highest meaningful resolution possible

was 0.25-meters. This is determined by the data, which was collected in extremely shallow

waters with a high ping rate. The mean value for the fractal dimension is calculated for

each tile size variation of the Amnicon River survey. Using the value of the mean fractal

dimension, D, for each tile size variation, patterns in the spatial distribution arise in the

data (Hartley et al., 2004) and indicate that some intermediate tile size could possibly

mark the boundary between local and regional scale properties of the fractal dimension,

which in turn relates to the properties of the surface being analyzed.
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Figure 4.4: Mean slope variation for Amnicon River Bathymetry through various tile sizes,
n. The dashed lines represent best-fit lines through the two interpreted local and regional
areas of tile size.

Figure 4.4 shows the mean slope calculated for the Amnicon River as a function of tile

size. Mean slope decreases with increasing tile size and there appears to be an inflection

point in the mean slope around a tile size of N=21. Smaller tile are described by local

features, and tile sizes larger than at the inflection point are described by regional features.

A similar behavior is observed for other calculated measures including the fractal

dimension, TRI, and curvature. It is not known if this is a general characteristic of all

bathymetric surfaces, but analysis using this property will be useful in determining the

appropriate scale to capture local vs. regional scale properties of the analyzed
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terrain.

4.3 Principal Component Analysis vs. Tile Size

4.3.1 Contribution to Explained Variance

The results of PCA applied to a collection of measures derived from a bathymetric surface

using a range of tile sizes can provide information about the effects of spatial and analysis

scale of the data on the processed measures. The amount of variance in the data explained

by the PCA is the easiest way to determine if the measures calculated accurately represent

the properties of the data. After each analysis, the variance associated with each of the

reduced components can be computed from the eigenvectors of the correlation matrix

created during the processing. By summing the individual component’s variance for each

tile size analysis, the cumulative variance for the entire dataset can be computed.

Figure 4.5 shows the cumulative variance explained for each tile size that was tested in this

study. The blue bars represent values of the cumulative variance that were obtained using

the 0.5-meter resolution bathymetry, and the red bars represent results obtained using the

0.25-meter resolution data. For most of the smaller tile sizes tested using the 0.5-meter

resolution data, there does not appear to be any correlation between the amount of

variance explained and the tile size used, the amount of variance is consistently around

~85 percent. As tile size increases, there is a reduction of variance explained by the PCA;

the largest decrease occurs with a tile size of N=65, which accounts for around 78 percent

of the variance. A similar pattern is seen when higher-resolution (0.25-meter) versions of

the data are analyzed. In this case, the cumulative variance is steady at just over 85
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percent. Due to processing constraints, additional tile sizes were not tested to see if the

trend in explained variance continues.

Figure 4.5: Plot of Cumulative Variance explained for the Amnicon River Survey with in-
creasing tile size, N. The bars in blue are for data representing a surface resolution of 0.5 me-
ters, and the red bars are for a data resolution of 0.25 meters and a tile size of N= (11,13,15).

Unlike the Amnicon River data, analysis of the data collected in the Lester River survey

shows an opposite progression of the explained variance with increasing tile size, as

illustrated in Figure 4.6. In this case, the smallest tile size explains the least amount, and

the amount of variance explained increases with increasing tile sizes. Unlike the Amnicon

River Survey, which exhibits a complex lake floor terrain, the Lester River site is
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characterized by a maximum of three terrain types. The most common terrain type

observed is a smooth bedrock surface that covers large portions of the survey area. The

amount of variance explained in the Lester River dataset may be more appropriately

defined using larger tile sizes that are well suited to characterize the regional trends in the

lake floor geology, smaller tiles do a poor job, which suggest that the smaller tiles have a

poorer ability to recognize smaller or localized features such as boulders or a fractured

bedrock surface.

Figure 4.6: Plot of cumulative variance explained for the Lester River data at increasing tile
sizes, N. Data used in this analysis was gridded at a resolution of 0.5 meters.

As tile size increases, the processing code calculates the terms of the quadratic equation

outlined in Chapter 2 over a larger window, effectively capturing the lower frequency
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detail of the lake floor terrain. As a result, smaller, more subtle variations in the actual

lake floor are no longer picked up by the feature calculation, and the surface is, therefore,

more generalized. This generalized surface carries less information about the lake floor’s

terrain and complexity, and less of the variance is explained with increasing tile size.

While a trend associated with decreasing tile size was anticipated before processing of the

data began, no observable trend of increasing explained variance with smaller tile sizes

was found for the Amnicon River dataset. This is interpreted to be a consequence of the

limitations of the data resolution. There appear to be some slight improvement in the

degree of variance explained when the PCA is repeated for the same tile size, using higher

resolution versions of the same dataset, as shown in Figure 4.5 (red bars), but they are not

very insignificant improvements. At some point, the data’s resolution and the resolving

ability of the tile sizes will be reached. The smallest spatial scale possible using this

methodology would use a tile size of N = 3, representing the smallest possible window

size (Wood, 2009). Unless higher-resolution data is collected and processed, the

maximum amount of variance explained from the original data set appears to be

maximized at small tile sizes (N ≤ 17).

The percent contribution from each principle component also appears to vary as a function

of tile size. Trends of variance explained as the spatial scale of the analysis increases may

hold information about the nature of the processing methodology or underlying properties

of the survey locations. Figure 4.7 shows the contribution of each principal component as

a function of tile size. The first component shows a very subtle increase in contribution

with increasing tile size, with a significant decrease at a tile size of N=21. Principle

component two, however, shows a decreasing progression in variance explained, in

contrast to components 3-5.
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Figure 4.7: The contribution of each principle component plotted as a function of tile size.
Data is computed from the Amnicon River Survey. Note the scale of the Y-axis of each
sub-plot, the percent contribution changes significantly from one component to another
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The fifth component shows an average contribution of between 8 and 8.5 percent, which

changes very little with increasing tile size. With the exception of component two, these

results suggest that the principal components calculated for the Amnicon River are not

very sensitive to tile size increases at these spatial scales.

Trends in the average mean values calculated suggest that there is a dependence on tile

size, potentially useful for determining the appropriate spatial scale for an analysis (Figure

4.4).

4.3.2 Principal Component Loading

Lastly, the trend in loading values for principal components should be discussed. Loading

values are the correlation coefficients between the variables and principal components.

The squared loading value is the percent of variance in that variable explained by the

component.

Table 4.1: Loading Percentages from Amnicon River Survey Tile Size N=17
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Table 4.1 shows the loading values, converted to percentages, for the Amnicon River

Survey, processed with a tile size of N=17. Values in which the loading contributes more

than ten percent are shown in bold. This identifies measures that are well correlated with

the principle components. For example, in principal component one, variance, slope, TRI,

and rugosity are well correlated, and aspect is very poorly correlated. Similar plots for the

other tile sizes tested are given in the Supplementary Material. Component two shows that

both measures of curvature play a significant role in the component contribution to the

analysis. Fractal dimension and lacunarity measures, which are often thought to be good

indicators of surface complexity, do not register as important factors until the third

principal component, which constitutes slightly more than 15 percent overall contribution

to the variance of the data. This may indicate that for this survey location, complexities in

the lake floor do not play as an important of a role as slope, TRI, rugosity, and both

curvature terms which contribute much of the first two principal components, as well as

the slope measure. The curvature terms, which are measured in orthogonal directions to

each other, are sensitive to features on the lake floor which express themselves as abrupt

changes in slope over short spatial scales. Many of the lake floor features seen in the

bathymetric surfaces for both the Amnicon and Lester River exhibit large features such as

boulders which show significant changes in the slope and curvature, which could

significantly influencing the computation of the principal components.
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Table 4.2: Loading Percentages from the Lester River Survey. Tile size N=15

Table 4.2 contains the loading values, again expressed as percentages, for the PCA of the

Lester River dataset, using a tile size of N=15. Despite the fact that the Lester River and

the Amnicon River surveys are in geologically distinct areas of Lake Superior, there are

some clear similarities between the measures calculated at each location. The greatest

values of the loading terms for each principle component are shown in bold in Table 4.2.

The first and second components of the PCA for measures calculated for both data sets are

described by the same loading terms; this may indicate that a few measures are

particularly sensitive to this analysis, the slope, TRI, rugosity, and curvature terms.

4.3.3 Weighted Contribution of Individual Components

It appears that there is not a strong correlation between tile size and the amount of variance

explained by the principle component analysis. Two questions that must still be addressed

are: “Which variables individually impact the overall analysis, and how do they contribute
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to the clustering of the surfaces?”. To understand how individual features contribute to the

analysis, the percent contribution of each feature to a principle component can be

calculated from the eigenvectors of the correlation matrix. Since the individual principle

components contribute differing amount of the overall variance, i.e. principle component

1 carries 25% of the overall variance, and component 2 carries 15% of the overall variance

etc., to compute how much a variable influences the cumulative variance, a weighted

average of the variable’s contribution is computed using each of the principle components.

The contribution of each variable is plotted as a function of tile size in Figure 4.8.

Using data from the Amnicon River survey, measures that exhibit an increasing weighted

contribution with increasing tile size are shown in Figure 4.9. These measures include:

mean, variance, skewness, kurtosis, aspect, fractal dimension, lacunarity, profile

curvature, and Terrain Ruggedness Index (TRI). While these measures show an increase in

their weighted contributions, the amount of change from the smallest to largest tile size is

very small (≤1 %).

No variable has a significantly higher contribution than the others. Contributions range

from just over 5.5 percent to just over 10 percent maximum, with most of the variables

falling around 8.5 percent weighted contribution. Further examination reveals more subtle

trends for individual variables; some measures exhibit an overall decrease in contribution

with increasing tile size, while others show an increasing contribution with increasing tile

size. Figure 4.10 highlights the weighted contribution of variables that have an overall

decreasing trend of their contribution with increasing tile size. For the Amnicon River

survey, variables that show this behavior are slope, plan curvature, and rugosity. The trend

in slope is consistent with the trend in mean slope detailed in the feature calculation

section of the discussion. The trend in rugosity is also consistent with the trends in other

calculated measures. Because the rugosity calculation is the ratio of the surface area of the
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analysis window to the planar area of the analysis window, flat-lying areas have a rugosity

that approaches a value of 1 (Values for the Amnicon Survey typically ranged from 1.0 to

1.1). As the size of the analysis window increases with increasing tile size, the bathymetry

of the lake floor is smoothed out, and smaller features on the lake floor that are below the

threshold of the resolving ability of the data are essentially removed from the analysis.

This causes the mean value of the rugosity approach a value of 1 with increasing tile sizes,

consequently leading to less variability in the calculated values.
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4.4 Sources of Error

Two of the largest sources of error that were encountered in this study were the residual

heave and sound velocity errors described in sections 2.9.3 and 2.9.4. The corrections

developed to improve the data quality were described in Chapter 2. The implications of

these errors and the processing used to address them are discussed here with an emphasis

on the accuracy assessment and future work.

4.4.1 Residual Heave Correction

The residual heave error manifested itself as a series of periodic ripples or ridges in the

bathymetric surface that run perpendicular to the vessel’s trackline. The anomalous ridge

spanned the entire swath width and showed a periodicity and magnitude which suggest

that the error was related to the sea-state during data collection. If an individual section of

the bathymetric surface was analyzed before residual heave processing, the error expressed

itself as larger amplitude ripples when the vessel was moving from the southwest to north

east. This corresponds to wind direction during the survey which was relatively eastward.

During collection of the multibeam data, sailing in this direction was particularly difficult,

as the vessel was traveling directly into the waves.

The source of the error was never confirmed. The instrument used during data collection,

an Applanix POS-MV V4, was replaced by a new model, so testing of the old unit is

unlikely to happen in the future. Personal communication with the manufacturer of the

instrument indicated that a faulty firmware upgrade completed in the past had caused users

to record erroneous heave values. Again, the validity of this claim could not be tested by

the time this study was completed.
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Before the heave anomaly correction was applied to the Lester River and the Amnicon

River surveys, the heave error present made the clustering and classification of the data

impossible. The error shows significant variations in amplitude over very small spatial

scales, and terrain measures sensitive to this expression would oversaturate the real

geological signal of the lake floor. The correction described in section 2.9.3 removed a

significant portion of the error from the bathymetric surface, resulting in a more usable

surface for classification purposes.
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The residual heave error remained an underlying problem for this study however. As it

could not be completely removed in all areas of the bathymetric surfaces.

Figure 4.12 shows a plot of the sources of uncertainty calculated from the TPU (Total

Propagated Uncertainty)1 calculation performed in CARIS HIPS and SIPS after the

residual heave correction has been applied.

Figure 4.12: Error sources for small section of the Amnicon River Bathymetric Surface.
Note the error reported here is the vertical uncertainty of the selected depth soundings.

The TPU calculation considers all sources of error, including sonar uncertainties, sound
1See section 2.9.2.4
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velocity errors, and general uncertainties in the vessel motion including heave. This

example was taken from a small section of corrected data shown in Figure 4.11. Even after

the anomalous heave correction was applied, the heave motion still accounts for over 80

percent of the uncertainty in the depth soundings. The heave correction could have been

implemented using many different methods and approaches. The approach utilized in this

study worked well for most of the data in both bathymetric surfaces, however it was not

able to remove all the error. The correction does make a few assumptions to process the

heave from the surface, including interpolating the individual lines to a common swath

width, choosing an appropriate bandpass filter size, and verifying that the heave error is

uniform across the swath and perpendicular to the track line direction.

Figure 4.13 shows an example of the cluster map produced for the Lester River using a tile

size of N=11. The cluster in light green most likely represents the bedrock surface at the

Lester River, but it is clear that along track lines, the light purple cluster is present in a

pattern that is representative of the residual heave error. While the entire Lester River

bathymetric surface was processed with the residual heave correction, residual errors are

still present and express themselves in the clustered data. This results in the clustering of

artificial classes that are not representative of the true lake floor geology or morphology,

which will ultimately impact the accuracy of the classification method. The refraction

error discussed in the following section is also exhibited by the purple/pink bands in

Figure 4.13.
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4.4.2 Sound Velocity (Refraction) Errors

Both surveys suffered from errors associated with poorly defined sound velocity profiles.

The error manifests itself as incorrectly processed depth soundings on the bathymetric

surface. The ray-tracing algorithm used by HIPS to process the multibeam depth

soundings requires an accurate speed of sound profile through the water column to

correctly map soundings. The correction assumes that locally the sound velocity profile

can be thought of as being 1D in nature, and it exhibits little or no local lateral variations.

In the outer portions of a swath profile, the error produced by an incorrect sound velocity

is magnified by the non-linear nature of Snell’s Law. These errors therefore manifest

themselves in the bathymetric surfaces, most significantly near the outer portions of the

swath. Because the survey lines were collected in a way designed to maximize overlap

between adjacent swaths and minimize gaps in the data, the areas that are most prone to

the sound velocity error are most easily seen in areas of overlapping swath profiles.

4.5 Accuracy Assessment

In this section, the various aspects of the classification method used to perform the

accuracy assessment will be discussed. The impact of the ground-truth sampling method,

selection of collected points, and application of the ground-truth samples are discussed.

Finally, the calibration method and its use of a confusion matrix to determine the accuracy

statistics for the method will be addressed.
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4.5.1 Ground Truth Sampling

Ground-truth sampling is one of the most important aspects of this study. The collection

of accurate data points impacts everything from the sample statistics calculated to the final

reported accuracy of the calibration scheme. If the data points are not collected and

processed in a thoughtful and careful manner, errors can be magnified and negatively

impact the assessment. The collection of the ground-truth samples is where most of the

errors for this study arose. First, the camera frame used for the collection of the

photo/videos was much too small. For the objectives of this study, which were to not only

classify the substrate, but also analyze the terrain of the lake floor, the camera’s field of

view was too small in critical locations to accurately characterize some sample points.

This required the use of multiple photos to create an “average” ground-truth point for one

sample location.

The next issue was the camera’s limited contrast; while the camera was the best option

available at the time of sample collection, it was severely restricted and required the use of

a separate lighting source to capture accurate photo/video in most locations. Due to the

limited video quality, automated methods, such as the tools available in ImageJ or

Photoshop, could not be applied to characterize the clast sizes for each sample, so manual

interpretation was required to collect statistics about each sample location. While the

utmost care was taken to collect quality data, the manual interpretation of each location

undoubtedly introduced errors in the calibration compared to automated or purpose built

image editing tools.

Thirdly, the number and spatial distribution of ground-truth points significantly impacted

the potential of this study. Only one day was available for ground-truth sampling at each

survey site. Data acquisition was relatively streamlined thanks to the use of the ship’s
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winch, however the accuracy and quality of the collected sample depended heavily on

sea-state during collection. Strong currents at the Lester River location frequently toppled

the camera frame on its side by the time it reached the lakefloor, requiring constant

maneuvering of the ship to properly align the camera frame.

Due to the difficulty collecting good samples, fewer than 50 ground-truth samples were

collected at either survey location, 42 at the Lester River and 48 at the Amnicon River.

Additionally, only 10 accuracy assessment points could be collected at the Lester River

and 18 for the Amnicon Survey. Determining the sediment class from a small number of

ground-truth points significantly reduced the potential accuracy of the classification

method. Additionally, the accuracy of the classified data was only tested with a handful of

data points, which did not provide a representative measure of the methods’s true

accuracy. While the data points were distributed in a random manner, the accuracy

reported indicates a lack of coverage in the ground truth sampling.

4.5.2 Calibration Method

Due to the limited number of samples collected during the study, the accuracy of the

classification method was severely degraded. Initial processing of the ground-truth sample

points identified five different classes of the substrate from the photo stills and video. The

clustering procedure used this as the upper bound for the number of classes used in the

calculation of the cluster maps. During the calibration of the cluster maps, it was

concluded that the distribution of ground-truth points did not account for all five sediment

types. In most cases, the ground-truth points were only able to cover four sediment types,

and in several cases for the Amnicon River survey, only three sediment types were

accounted for. The result is that the calibration of the sediment classes for the cluster maps
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over simplified the substrate types on the lake floor, not accurately representing the true

distribution of sediments and particles.

In the case of the Amnicon River survey, the spatial distribution of the ground-truth points

did not accurately capture the true distribution substrate on the lake floor reflected in the

acoustic data. The number of points used to calibrate the cluster maps was much too low

(Monserud & Leemans, 1992) for the number of classes that were determined from the

photo stills and video. In several cases, the over simplification resulted in all the classes in

the cluster map being assigned the same sediment class ID. The reported accuracies for the

Amnicon reflect these effects as significantly lower-than-expected results, averaging ~20

percent accuracy reported from the confusion matrices.

The calibrated Lester River data exhibited the previously described errors, as well as

several additional problems. Ground-truth samples for the Lester River Survey could only

resolve three types of distinct substrate types. There are undoubtedly more than three

types, but with the previously described camera limitations, more sediment classes could

not be determined. As a result, the cluster maps were reclassified using standard ArcGIS

raster tools to reduce the number of substrate classes available. This extra processing

combined with the extremely low number of ground-truth points created an overly

simplistic model of the Lester River area. Several of the predicted class arrays used for the

confusion matrix calculation only contained one sediment type. This is obviously not an

accurate picture of the substrate, and the over-simplified cluster map produced

anomalously high accuracy, around 70 percent for the Lester River. A more thorough

assessment would likely yield more reasonable numbers.
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Chapter 5

Conclusions

5.1 Future Work

This section aims to identify opportunities to improve the methods and results outlined in

this study. It will address areas in which improvements can and should be made to the

usability of the processing methodology to increase the accuracy of the classification. It

will address opportunities for future work that can incorporate additional data sources into

the processing scheme. The study suffered from two major sources of error, residual heave

error and refraction error associated with bad SVPs. These are areas where significant

care should be taken in future surveys to ensure a correctly processed bathymetric surface.

While the occurrence of heave errors encountered during this study could not be

necessarily predicted, future surveying should make certain that the instrumentation used

to capture vessel motion is up to date with the most recent firmware and software to avoid

potentially uncorrectable data. Additionally, due to time constraints, the processing

methodology used to correct for the residual heave error was an empirical, imperfect
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method. The processing assumes that the “true” heave value extracted from the processed

line is uniform across the swath. While in most places the approximation using the swath

profile is sufficient, any natural features that parallel the swath profile will either add and

subtract to the value of the derived heave record. If the residual heave error is a persistent

problem for future surveying, a more robust method for removing the error should be

developed and implemented to reduce the effects on the classification process.

The ground-truth sampling conducted for this study is another area that should be

investigated further in future surveys. The methodology behind the sample collection was

appropriate, however the number of samples and equipment used was a significant limiting

factor for this study. Time on the water dedicated to sampling was restricted to one day for

each survey site. The result of this was not sufficiently accurate to represent the lake

floor’s true substrate. Suggested numbers of samples that should be collected for each

predicted class in a classification indicate the number of points taken at both the Lester

River and the Amnicon River surveys was not high enough to accurately capture the

necessary distribution for an accurate classification (Congalton, 1991). Several days

should be devoted to solely the collection of ground-truth points. Additionally, the

equipment used to collect the video and photo images should be reconsidered to make

sample collection easier and more accurate. The camera frame constructed for this study

was built under time and resource constraints; as a result, its size was insufficient in many

cases to accurately measure the size of larger particles on the lake floor.

Arguably, the most important area for future work relating to this study is the addition of

different data types in the feature calculation. One of the most common types of data

incorporated into multibeam classification studies is acoustic backscatter information. As

previously noted, backscatter, which is recorded with the bathymetric data, is affected by

the physical properties of the substrate. Backscatter-derived measures have been widely
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applied in recent multibeam studies and offer a more robust set of information about the

lake floor than terrain measures alone (Blondel & Gómez Sichi, 2009). Images of the lake

floor that are produced using the measured acoustic return intensities can be processed by

the images gray levels. A new set of measures often referred to as the Haralick measures,

calculates a series of second order statistics that define the images texture (Haralick et al.,

1973; Haralick, 1979). Numerous studies have used these measures for predictive

classification and seabed segmentation (Subramaniam et al., 1993; Ojala et al., 1996;

Blondel & Gómez Sichi, 2009). More recent studies have used the properties of the

acoustic response to identify regions of the different substrates (Collier & Brown, 2005;

Che Hasan et al., 2012; Lucieer et al., 2016). These studies use algorithms that relate the

angular response of the acoustic return with the physical seabed type. These studies

suggest that backscatter based measures offer more detailed datasets to classify the

substrate. Future work for this study should consider incorporating these measures into the

existing processing methodology.

5.2 Final Conclusions

This study attempted to test the hypotheses that the new method of processing multibeam

bathymetric data would be able to resolve an area of high textural variability and could

accurately classify the bottom type of the lake floor. The results confirm the ability of the

processing methods, including the Python code developed in this study, to resolve a high

degree of terrain variability. The results also suggest that the processing methods did not

accurately classify the substrate in the areas of this study. The bathymetry of the Amnicon

River survey area reveals a relatively flat lake floor, with both local and regional scale

geomorphic features. The overall bathymetric surface shows a gentle slope away from the
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shoreline, spanning a range of surveyed depths from 1.5 to slightly over 10 meters. Shoal

areas in the shallow areas of the survey area indicate depositional features, which are most

likely related to the outflow of sediment from the Amnicon River and a nearby creek. The

sidescan imagery from the Amnicon River survey suggests that the shallowest areas of the

survey area are composed of softer sediment, presumably associated with the location of

outflow of the Amnicon River. Several large “U” shaped features form extended

topographic highs on the bathymetric surface and appear to be areas of more compacted

sediment on the sidescan imagery. There also is what appears to be a relic fluvial channel

in the bathymetry which is more prominently visible in the sidescan imagery, which

extends from the shallowest area of the bathymetric surface to the outermost surveyed

areas.

The Lester River survey reveals a flat lying lake floor close to the North Shore shoreline,

with several prominent geologic features. The area surveyed recorded a minimum depth of

just under 1-meter and a maximum of around 14 meters. Outflow from the Lester River

itself is visible on the bathymetric surface as a fan of material that gently covers the

surrounding area. There is also a series of bar-like features that lie adjacent to the river

mouth. Two dikes extend from the shoreline lakeward and form visible bathymetric highs.

The high-resolution bathymetric surfaces also indicate that areas of the bedrock lake floor

are highly fractured in some areas, and visibly weathered areas of the shoreline manifest as

rubble fields containing large boulders (> 0.5-meter diameter) of weathered volcanic rock.

The processing code developed during this study was able to successfully calculate a

collection of terrain measures that were used to form a classification scheme that utilized

principal component analysis and clustering. Due to the structure of the algorithm used for

processing, several changes had to made during the study. These included adapting the

code to run on the MSI (Minnesota Supercomputing Institute) Mesabi computing cluster
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to overcome time and computing resource constraints resulting from the processing of

high-resolution bathymetric surfaces. Several additions to the processing code were also

made to account for the residual heave and refraction corrections, the two main sources of

error encountered in this study.

Acquisition related errors could not be completely corrected in either survey. These errors

manifest themselves in the results of the clustering procedure as tangible errors in the

resulting substrate maps. These errors must be addressed in future surveys to ensure

accurate classification results. Initially, the classification results for the Amnicon River

were discouraging. The clustering of the study area seemed to capture most of the terrain

elements visible in the bathymetric and sidescan data. The principle component analysis

also indicated that the feature calculation captured a significant amount of the statistical

variability within the data (~85%). Similar results for the amount of variance captured by

the processing were recorded for the Lester River. However, even with a significant

amount of processed data, the resulting accuracy assessment still reported low accuracy

for the Amnicon River data set. The accuracy assessment for the Amnicon and Lester

River study sites was heavily influenced by the ground truth sampling. The number of

classes used for the clustering procedure was determined from the number of physical

classes that were observed in the photo and video samples. In both surveys, the number of

classes were reduced due to the lack of sample points identifying the full amount of

previously determined physical classes in the clustered data. The number of classes

determined for the cluster maps appears to represent the lake floor terrain accurately, but

the number of sample points does not accurately capture the distribution of sediment

classes. A larger number of sample points would have successfully identified more of the

physical classes observed in the photo and video samples. At the Lester River, the lack of

sample points appears to have over-simplified the classified map. The sample points
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classified the survey into an insufficient number of classes which were composed of just a

few physical sediment types. The lack of an accurate representation also influenced the

sample points used for the accuracy assessment. Because of the over-simplified cluster

map and the limited number of physical classes, the reported accuracy was extremely high

and most likely does not reflect a representative accuracy for this study area. Although this

study did not produce the expected results, several important factors discovered during the

data collection and processing suggest several areas for future studies to pursue with this

methodology. The results presented for the Amnicon and Lester River highlight the

importance of the features used for processing. There appears to be a spatial dependence

in some of the measures used in this study which could be applied to future studies

focusing on habitat delineation. Clearly, additional time and resources devoted to

ground-truth sampling are crucial for achieving a successful substrate classification.

In conclusion, while this study did not meet the goals set initially, it provided a wealth of

information about terrain analysis in the near-shore region and the geomorphology of

several near-shore areas of Lake Superior. It also significantly advanced the development

of code to be used in future studies. This study identified several common sources of error,

and provided initial solutions, and suggested additional data sources to be used in future

studies to help improve the accuracy of the classification methodology presented

here.
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Glossary

• Analysis window

– Local square grid centered around the central pixel being processed. The size

of the window is user defined by any odd number, N, greater than or equal to

three.

• Confusion Matrix

– A confusion matrix is a table that is used to describe the performance of a

classification model on a set of test data for which the true values are know,

testing a “binary” classifier.

• Loading Values

– The correlation coefficients between the variables and factors of the principal

component analysis. The squared loading term is the percent of variance in

that variable explained by the factor.

• Sound Velocity Profile (SVP)

– A plot of the speed of sound as a function of depth in the water column used by

ray-tracing algorithms to predict the path of sound propagating through the

water.

• Swath/Swath Profile

– A multibeam sonar is used to measure depth in a line extending outwards and

normal to the direction of motion of the transducer head. As the head moves

forward, the profile sweep out a “ribbon” shaped surface of depth
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measurements, known as a swath. Each time the transducer transmits and

receives one cycle, the depth measurements collected comprise one “swath

profile”. An entire survey line is made up of thousands of individual swath

profiles.

• Tile Size

– An odd integer, N, which is greater or equal to 3, which defines the size of the

analysis window during the feature calculation.

• Total Propagated Uncertainty (TPU)

– The total propagated uncertainty for a depth sounding is derived from a

combination of estimates of the accuracy of each individual sensor, estimates

such as:

∗ navigation/gyro/heave/pitch/roll/tide errors

∗ Latency error estimate

∗ sensor offset error estimate

– These uncertainty estimates are combined with individual sensor

characteristics to calculate horizontal and vertical uncertainty values for every

sounding along a track line.

• Track Line/Survey Line

– A planned line that is geographically positioned to use for navigational

purposes. A series of lines are planned and surveyed as close to the line as

possible to ensure adequate swath coverage on the lake floor.
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Additional Figures
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A1 Amnicon River Confusion Matrices

169



Amnicon River Survey Accuracy Assesment Confusion Matrices 

N7 

N9



Amnicon River Survey Accuracy Assesment Confusion Matrices 

N11

N13



Amnicon River Survey Accuracy Assesment Confusion Matrices 

N15

N17



Amnicon River Survey Accuracy Assesment Confusion Matrices 

N21

N33



Amnicon River Survey Accuracy Assesment Confusion Matrices 

N65



Amnicon River Survey Accuracy Assesment Confusion Matrices 0.25-Meter Resolution 

N11

N13

N15



A2 Lester River Confusion Matrices
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A3 Amnicon River Cluster Maps
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Processing Code
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B1 Feature Calculation Python Code
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import sys
import os
import math

import pickle
import matplotlib 
matplotlib.use('Agg')

from PIL import Image
from pylab import *
import numpy as np

from scipy.interpolate import griddata
import scipy.stats as stats
import scipy.signal as signal

import matplotlib.pyplot as plt
import scipy.ndimage as image_proc

import scipy.linalg as linalg

def set2NaN(x):
    nrL, ncL = x.shape
    x1 = x.reshape((nrL*ncL))
    for io in range(len(x1)):
        if x1[io] == 0.:
#   Tell where this point is
#           print "set2NaN io:",io," nrL, ncL:", nrL, ncL," i,j:", int(io/ncL),mod(io,ncL)
            x1[io] = np.NAN

    x = x1.reshape((nrL, ncL))
    return x

def T_AREA_V(a,b,c):
    
    ab = b - a
    ac = c - a
    return np.linalg.norm(np.cross(ab, ac), axis=2)
    
    
# Let's calculate the input variables for T_AREA_V, a,b,c. 
# this will put all the values in ndarray's, which will
# allow for the vectorization of the calculations. 

def t_area(x,y,surface,dx,numx,numy):
    
    a = np.zeros((numx,numy,3), dtype=float)
    b = np.zeros_like(a)
    c = np.zeros_like(a)
    d = np.zeros_like(a)
    
    # Calculate the a,b,c, and d terms
    
    a[...,0] = x[:-1,:-1]
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    a[...,1] = y[:-1,:-1]
    a[...,2] = surface[:-1,:-1]
    
    b[...,0] = x[:-1,:-1] + dx
    b[...,1] = y[:-1,:-1]
    b[...,2] = surface[1:,:-1]
    
    d[...,0] = b[...,0]
    d[...,1] = y[:-1,:-1] + dx 
    d[...,2] = surface[1:,1:]
    
    c[...,0] = x[:-1,:-1]
    c[...,1] = d[...,1]
    c[...,2] = surface[:-1,1:]
    
    # In this case, the :-1,:-1 is equivalent to [ii,jj]
    # and [1:,1:] is the same as [ii+1,jj+1]
    
    # Run the results through the function vectorized function T_AREA_V^^^
    # and get the result of the orignial t_area without any loops!
    
    return 0.25 * (T_AREA_V(a,b,c) + T_AREA_V(d,b,c) + T_AREA_V(b,a,d) + T_AREA_V(c,a,d))        
                
                        
                                        

def MAD_outlier_removal(x):

#   Determine the median value of x

    median = np.median(x, axis=0)
    print "median value:", median

#   Determine the median difference from the array's median

    diff = np.sqrt(np.sum((x - median)**2, axis=-1))
    MAD = np.median(diff)
    MAD = np.median(np.absolute(x-median), axis=0)
    print "MAD:", MAD

#   Estimate the standard deviation from the MAD value

    sd = 1.4826*MAD

#   Calculate clipping values based upon standard deviation

    ur_limit = median + sd
    lr_limit = median - sd

    print "lr_limit:",lr_limit,"  ur_limit:", ur_limit

#   Clip the data based upon these limits

    np.clip(x, lr_limit, ur_limit, out=x)
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    return x

def weight(x,xmin,xmax):
    w = 0
    if x < xmin:
        return w
    if x >= xmax:
        w = 1.
        return w
    w = 0.5*(1.- math.cos(math.pi*((x-xmin)/(xmax-xmin))))
    return w

def cell_setup(n):
    cell = np.zeros((n**3,5))
    ijk = 0
    for k in range(1,13,1):
        k2 = int((k-0.5)/2.)+1
        k3 = int((k-0.5)/3.)+1
        k4 = int((k-0.5)/4.)+1
        k6 = int((k-0.5)/6.)+1
        for j in range(1,13,1):
            j2 = int((j-0.5)/2.)+1
            j3 = int((j-0.5)/3.)+1
            j4 = int((j-0.5)/4.)+1
            j6 = int((j-0.5)/6.)+1
            for i in range(1,13,1):
                i2 = int((i-0.5)/2.)+1
                i3 = int((i-0.5)/3.)+1
                i4 = int((i-0.5)/4.)+1
                i6 = int((i-0.5)/6.)+1
                
                cell[ijk,0] = int(ijk + 1)
                cell[ijk,1] = int((k2-1)*36 + (j2-1)*6 + i2)
                cell[ijk,2] = int((k3-1)*16 + (j3-1)*4 + i3)
                cell[ijk,3] = int((k4-1)*9 + (j4-1)*3 + i4)
                cell[ijk,4] = int((k6-1)*4 + (j6-1)*2 + i6)
                ijk = ijk + 1

    return cell

def boxcount(z,dx,nside,cell,slice_size,box_size):
    # fractal dimension calculation using box-counting method

    n = 5 # number of graph points for simple linear regression
    gx = [] # x coordinates of graph points
    gy = [] # y coordinates of graph points
    

    boxCount = np.zeros((5)) 
    cell_set = np.reshape(np.zeros((5*(nside**3))), (nside**3,5))
   
    nslice=nside**2

# Box is centered at the mid-point of the tile. Calculate for each point in the
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# tile, which voxel the contains the point

    z0 = z[nside/2,nside/2]-dx*nside/2
    
    for j in range(1,9):
        for i in range(1,9):
            ij = (j-1)*6 + i
#            print 'i, j:', i, j

            delz1 = z[i-1,j-1]-z0
            delz2 = z[i-1,j]-z0
            delz3 = z[i,j-1]-z0
            delz4 = z[i,j]-z0
            delz = 0.25*(delz1+delz2+delz3+delz4)
            
            if delz < 0.0:
                break
            slice = ceil(delz)
#            print " delz:",delz," slice:",slice
        
            # Identify the voxel occupied by current point
            ijk = int(slice-1.)*nslice + (j-1)*nside + i
            
            for k in range(5):
                if cell_set[cell[ijk,k],k] != 1:
                   cell_set[cell[ijk,k],k] = 1

#   Set any cells deeper than this one equal to one aswell
#                   index = cell[ijk,k]
#                   for l in range(int(index),box_size[k],slice_size[k]):
#                       cell_set[l,k] = 1
               
# Count number of filled boxes for each box size
    boxCount = np.sum(cell_set,axis=0)
#   print "boxCount:", boxCount
    
    for ib in range(1,n+1):
#       print "ib:",ib," x(ib):",math.log(1.0/ib),"  y(ib):",math.log(boxCount[ib-1])
        gx.append( math.log(1.0/ib) )
        gy.append( math.log(boxCount[ib-1]) )
    
# simple linear regression
    m, b = np.polyfit(gx,gy,1)
#   print "Polyfit: Slope:", m,' Intercept:', b
   #fd = m-1
    #fd = max(2.,m)
    fd = m
    return(fd,b)

def roughness(surface,tile_size,half_tile,N,startx,endx,starty,endy,dx,xlocal,xlocal_2,ylocal,ylocal_2,LU):
   
    for i in range(startx,endx):
        imin = i - half_tile
        imax = i + half_tile+1
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        for j in range(starty,endy):
            jmin = j - half_tile
            jmax = j + half_tile+1
            
            z = surface[imin:imax,jmin:jmax]
            tri_patch = tri_area[imin:imax-1,jmin:jmax-1]
            surface_area = np.sum(tri_patch,dtype=float)
            tile_area = ((tile_size-1)*dx)**2
            Rugosity[i,j] = surface_area/tile_area
            
            z_TRI = z.reshape(N)
            z_0 = surface[i,j]
            TRIndex[i,j] = TRI(z_TRI,z_0,tile_size)
            
            B[0] = np.sum( z * xlocal_2 )
            B[1] = np.sum( z * ylocal_2 )
            B[2] = np.sum( z * xlocal * ylocal )
            B[3] = np.sum( z * xlocal )
            B[4] = np.sum( z * ylocal )
            B[5] = np.sum( z )
            
            X = linalg.lu_solve(LU,B)
            
            x2,y2 = np.mgrid[0:tile_size,0:tile_size]
            x2 = (x2-half_tile)*dx
            y2 = (y2-half_tile)*dx
            
            z_calc = X[2]*x2*y2 + X[3]*x2 + X[4]*y2  + X[5] - z
            z_min = z_calc[z_calc!=0].min()
            z_max = z_calc[z_calc!=0].max()
            
            
            difference = np.reshape(z_calc,tile_size*tile_size)
            
            mean = np.mean(difference)
            var = stats.tvar(difference,limits=None)
            skew = stats.skew(difference,axis=None)
            kurt = stats.kurtosis(difference,axis=None)
            
            Difference[i,j] = z_max-z_min
            Diff_mean[i,j] = mean
            Diff_var[i,j] = var
            Diff_skew[i,j] = skew
            Diff_kurt[i,j] = kurt
            
            for k in range(0,6):
                params[k,i,j] = X[k]
                
    return(params)

def TRI(z,z0,n):
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    zsum = 0.0
    for ii in range(0,n*n):
        zsum = zsum + abs(z[ii]-z0)

    TRI_value = zsum/(n*n - 1)
    return(TRI_value)

def moving_average(x):

#   First pass

    filter1 = np.ones((3,3)) / 9
    pass1 = signal.convolve2d(filter1, x)
    nrows, ncols = pass1.shape

#   extract the unpadded portion of the result

    x1 = pass1[1:nrows-1, 1:ncols-1]

#   Second pass

    filter2 = np.ones((5,5)) / 25
    pass2 = signal.convolve2d(filter2, x1)
    nrows, ncols = pass2.shape

#   extract the unpadded portion of the result

    x2 = pass2[2:nrows-2, 2:ncols-2]

    return(x2)  

def set_band(x, value, width):
    
    nr, nc = x.shape
    xb = x

#   Set top
    for ir in range(0,width):
        xb[ir,:] = value

#   Set bottom
    for ir in range(nr-width,nr):
        xb[ir,:] = value

#   Set left side
    for ic in range(0,width):
        xb[:,ic] = value

#   Set right side
    for ic in range(nc-width,nc):
        xb[:,ic] = value

    return(x)
#
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#   Ask for the name of a file to open. If it doesn't exist tell me
#
#   Read a CARIS ASCII txt file with 4 entries per row x,y,depth and std dev.
#   Each entry seperated from its neighbor by a space
#

file_name = 'Tile_C.txt'

#   Attempt to open the named file

if os.path.exists( file_name ):
    print " File exists!"
else:
    print " File does not exist!"
    sys.exit()

#
#   Read the data in (as (x,y,z) triplets) - seperate into 3 1-D vectors
#
data = np.genfromtxt(file_name,skip_header=1)
easting = data[:,0]
northing = data[:,1]
depth = data[:,2]

#   Print some information on the grid for the user

x1=easting.min()
xn=easting.max()
y1=northing.min()
yn=northing.max()

print 'Easting MIN:',x1,' Easting MAX:',xn
print 'Northing MIN:',y1,' Northing MAX:',yn
print 'Depth MIN:',depth.min(),' Depth MAX:',depth.max()

#   Determine the grid size
dx =0.5

#   Tell the user what the step-size is in the grid
print 'Grid step size:', dx

#   dx = 0.5

#   Determine the size of the grid

numx=int((xn-x1)/dx) + 1
numy=int((yn-y1)/dx) + 1

#   Tell the user size of the grid

print 'NUMX:', numx,' NUMY:',numy

#   Create a grid
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x, y = np.mgrid[x1:xn:complex(numx+1,0), y1:yn:complex(numy+1,0)]
points = (easting,northing)
surface = griddata(points,depth,(x, y),method="nearest",fill_value=10.)
np.savetxt("Original_Surface.txt",surface)
np.savetxt("Easting.txt",x)
np.savetxt("Northing.txt",y)

background = moving_average(surface)
nr,nc = background.shape
print "The size of the background field is:",nr,", ",nc

#nr, nc = surface.shape
residual = set_band((surface - background), 0., 6)

#   Make some figures

fig=plt.figure(1, figsize=(11., 8.5), dpi=80)
fig.subplots_adjust(left=0.2, wspace=0.6)
    
plt1=fig.add_subplot(121)
plt.imshow(surface.T,origin='lower')
plt.colorbar()
plt.title('Input Data')

plt1=fig.add_subplot(122)
plt.imshow(residual.T,origin='lower')
plt.colorbar()
plt.title('Residual')
plt.savefig(' Input and Residual Data.eps',format='eps',dpi=600)

#   Calculate the t_area array
tri_area = np.zeros((numx,numy),dtype=float)
tri_area = t_area(x,y,surface,dx,numx,numy)

#   Assign list of tile sizes to test

tile_list = np.array([13])
list_len = len(tile_list)

max_tile = tile_list.max()
half_max_tile = int(max_tile/2)
pcaX1 = half_max_tile
pcaY1 = half_max_tile
pcaXn = numx - half_max_tile
pcaYn = numy - half_max_tile

#   Number of points in x and y direction which have features calculated
#   for every tile size.

numx_pca = numx+1 - 2*half_max_tile
numy_pca = numy+1 - 2*half_max_tile

#   Create an empty 2D numpy array to hold the features.Each row in the matrix
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#   contains all the features calculated for every tile size associated with a
#   single point in the grid (only those points with a full tile count).

pca = np.empty([numx_pca*numy_pca,list_len*13])

iteration = -1
for loop in range(len(tile_list)):
    iteration = iteration+1
    tile_size = max_tile

    half_tile = int(tile_size/2)
    startx = half_tile
    endx = int(numx-half_tile-1)
    starty = half_tile
    endy = int(numy-half_tile-1)
    
#   create an array to hold the inverted parameters of the bivariate quadratic
#   at each grid point within the space - buffered by blanks = tile_size/2

    params = np.zeros((6,numx,numy), dtype=float)

    A = np.zeros((6,6), dtype=float)

#   Calculate the non-zero terms in the forward matrix - per Jo Wood's thesis

    N = tile_size * tile_size

#   Calculate local grid centered on mid-point of tile

    local_xmin = (0. - half_tile) * dx
    local_xmax = half_tile * dx
    local_ymin = local_xmin
    local_ymax = local_xmax

    xlocal, ylocal = np.mgrid[local_xmin:local_xmax:complex(tile_size), local_ymin:local_ymax:

#   Calculate non-zero entries in param

    np.reshape(xlocal,N)
    np.reshape(ylocal,N)

    xlocal_2 = np.square(xlocal)

    xlocal_4 = np.square(xlocal_2)

    ylocal_2 = np.square(ylocal)

    x2x2 = xlocal_2 * xlocal_2

    x2y2 = xlocal_2 * ylocal_2

    sumx2 = np.sum(xlocal_2)
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    sumx4 = np.sum(xlocal_4)
    sumx2y2 = np.sum(x2y2)

#   Update params

    A[0,0] = sumx4
    A[1,1] = sumx4
    A[0,1] = sumx2y2
    A[1,0] = sumx2y2
    A[5,0] = sumx2
    A[5,1] = sumx2
    A[0,5] = sumx2
    A[1,5] = sumx2
    A[2,2] = sumx2y2
    A[3,3] = sumx2
    A[4,4] = sumx2
    A[5,5] = float(N)
    
    #   LU decomposition

    LU = linalg.lu_factor(A)

#   Set-up some matrices to hold calculated features

    B = np.zeros(6,dtype=float)
    TRIndex = np.zeros((numx,numy),dtype=float)
    Rugosity = np.ones((numx,numy), dtype=float)
    Difference = np.zeros((numx,numy), dtype=float)
    Diff_mean = np.zeros((numx,numy), dtype=float)
    Diff_var = np.zeros((numx,numy), dtype=float)
    Diff_skew = np.zeros((numx,numy), dtype=float)
    Diff_kurt = np.zeros((numx,numy), dtype=float)

    #   Calculate area covered by a tile

    tile_area = ((tile_size-1)*dx)**2
    #   Initialize the arrays to hold the Fractal Dimension and Lacunarity information

    FractalDim = np.ones((numx,numy)) *2.00
    Lacunarity = np.zeros((numx,numy))

    #   Number of points in x and y direction which have features calculated
    #   for every tile size.

    #   Initialize the cell index file

    nside=12
    cell = cell_setup(nside)
    print ' Cell set-up is:', cell.shape
    
    #   Set-up array containing the slice size of each cell configuration
    slice_size = np.array([144,36,16,9,4])

    #   Set-uo array containing the size of each cell configuration
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    box_size = np.array([1728,216,64,27,8])
    
    #starty = 6
    #endy = numy-6
    #startx = 6
    #endx = numx-6
    #half_tile = 6

    half_tile = int(tile_size/2)
    startx = half_tile + 1
    endx = int(numx-half_tile)
    starty = half_tile + 1
    endy = int(numy-half_tile)
    
    xf, yf = np.mgrid[x1:xn:complex(numx,0), y1:yn:complex(numy,0)]
    pointsf = (easting,northing)
    surfacef = griddata(points,depth,(xf, yf),method="nearest",fill_value=10.)

    #   Loop over rows

    for j in range(starty, endy):
        jmin=j-half_tile
        jmax=j+half_tile+1

        #   Loop over columns

        for i in range(startx, endx):
            imin=i-half_tile
            imax=i+half_tile+1
            
            #   Extract a subset of points from the input grid, centered on the current
            #   point. The size of tile is given by the current entry of the tile list.

            zf = surfacef[imin:imax, jmin:jmax]
            #  print 'Tile created. Size:', z.shape

            #   Calculate fractal dimension of the tile using 3D box-counting

            fd, intercept = boxcount(zf,dx,nside,cell,slice_size,box_size)
            FractalDim[i,j] = fd
            Lacunarity[i,j] = intercept

            #   Extract a subset of points from the input grid, centered on the current
            #   point. The size of tile is given by the current entry of the tile list.

            z = surface[imin:imax, jmin:jmax]

    params = roughness(surface,tile_size,half_tile,N,startx,endx,starty,endy,dx,xlocal,xlocal_2,ylocal,ylocal_2,LU)

        #   Loops over x and y completed!
##################################################################################################

   #   Seperate the six individual parameters calculated for each node in the grid
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    a = params[0,:,:]
    b = params[1,:,:]
    c = params[2,:,:]
    d = params[3,:,:]
    e = params[4,:,:]
    f = params[5,:,:]

#   Calculate the slope at each grid node
    d2 = np.square(d)
    e2 = np.square(e)
    slope = np.degrees( np.arctan( np.sqrt(d2 + e2) ) )

#   Calculate the aspect at each grid node
    e1 = e.reshape(numx*numy)
    d1 = d.reshape(numx*numy)
    
    aspect1 = np.zeros(numx*numy)
    for i in range(0,numx*numy):
        if d1[i] == 0.0:
            aspect1[i] = 0
        else:
            aspect1[i] = np.arctan( e1[i]/d1[i] )

    TOP = (-200*(a*d2 + b*e2 + c*d*e))
    BOT1 = ((e2+d2)*(1+e2+d2)**1.5)
    BOT2 = (e2+d2)**1.5

    nxny = numx*numy

    TOP = np.reshape(TOP,nxny)
    BOT1 = np.reshape(BOT1, nxny)
    BOT2 = np.reshape(BOT2, nxny)

    profc1 = np.zeros(nxny, dtype=float)
    planc1 = np.zeros(nxny, dtype=float)
    
    for i in range(0,nxny):
        if BOT1[i] != 0.0:
            profc1[i] = TOP[i]/BOT1[i]
        if BOT2[i] != 0.0:
            planc1[i] = TOP[i]/BOT2[i]

    profc1 = np.clip(profc1,-100.,100.)
    planc1 = np.clip(planc1,-100.,100.)
    
#   Window the slope, aspect, profc, and planc data, using a Hann taper, 
#   to remove the smallest slopes

 #   slope_min = 1.
  #  slope_max = 3.
    
#   Flatten the slope array
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    slope_flat = slope.reshape(numx*numy)
    #for io in range(numx*numy):
       #wt = weight(slope_flat[io], slope_min, slope_max)
#       slope_flat[io] = slope_flat[io]*wt
       #aspect1[io] = aspect1[io]*wt
#       profc1[io] = profc1[io]*wt
#       planc1[io] = planc1[io]*wt

#   Clip some of the calculated features using the MAD_outlier_removal function

    #MAD_outlier_removal(slope_flat)
    #MAD_outlier_removal(aspect1)
    #MAD_outlier_removal(profc1)
    #MAD_outlier_removal(planc1)

    
    slope=slope_flat.reshape((numx,numy)) 
    aspect = aspect1.reshape(numx,numy)   
    profc = np.reshape(profc1,(numx,numy))
    planc = np.reshape(planc1,(numx,numy))

#   Set 0's in FractalDim and Lacunarity to NaN

    #print "Calling set2NaN for FractalDim"
    #set2NaN(FractalDim)
    #print "Calling set2NaN for Lacunarity"
    #set2NaN(Lacunarity)
    
    #   Make some figures

    fig=plt.figure(2, figsize=(11., 8.5), dpi=80)
    fig.subplots_adjust(left=0.2, wspace=0.6)
    
    plt1=fig.add_subplot(331)
    plt.imshow(surface.T,origin='lower')
    plt.colorbar()
    plt.title('Input Data')
    
    plt1=fig.add_subplot(332)
    plt.imshow(a.T,origin='lower')
    plt.colorbar()
    plt.title('a')

    plt1=fig.add_subplot(333)
    plt.imshow(b.T,origin='lower')
    plt.title('b')
    plt.colorbar()

    plt1=fig.add_subplot(334)
    plt.imshow(c.T,origin='lower')
    plt.colorbar()
    plt.title('c')

    plt1=fig.add_subplot(335)
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    plt.imshow(d.T,origin='lower')
    plt.colorbar()
    plt.title('d')

    plt1=fig.add_subplot(336)
    plt.imshow(e.T,origin='lower')
    plt.colorbar()
    plt.title('e')

    plt1=fig.add_subplot(337)
    plt.imshow(f.T,origin='lower')
    plt.colorbar()
    plt.title('f')

    ax = plt.gca()

    plt_title = 'Amnicon Test Data - %d'%(tile_list[loop],)
    plt.suptitle(plt_title)
    plt.savefig('Testplot_data.eps',format='eps',dpi=600)

   

    fig1=plt.figure(3, figsize=(11.,8.5), dpi=80)

    plt1=fig1.add_subplot(331)
    plt.imshow(slope.T,origin='lower')
    plt.colorbar()
    plt.title('Slope')
    np.savetxt("slope_TileC.txt",slope.T)

    plt1=fig1.add_subplot(332)
    plt.imshow(aspect.T,origin='lower')
    plt.title('Aspect')
    plt.colorbar()

    plt1=fig1.add_subplot(333)
    plt.imshow(profc.T,origin='lower')
    plt.title('Profc')
    plt.colorbar()

    plt1=fig1.add_subplot(334)
    plt.imshow(planc.T,origin='lower')
    plt.title('Planc')
    plt.colorbar()

    plt1=fig1.add_subplot(335)
    plt.imshow(TRIndex.T,origin='lower')
    plt.title('TRI')
    plt.colorbar()

    plt1=fig1.add_subplot(336)
    plt.imshow(Rugosity.T,origin='lower')
    plt.title('Rugosity')
    plt.colorbar()
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    plt1=fig1.add_subplot(337)
    plt.imshow(Difference.T,origin='lower')
    plt.title('Difference')
    plt.colorbar()
    
    plt_title2 = 'Amnicon Test Data - %d'%(tile_list[loop],)
    plt.suptitle(plt_title2)
    plt.savefig('Measures Data.eps',format='eps',dpi=600)

    

    fig2=plt.figure(4, figsize=(11.,8.5), dpi=80)

    plt2=fig2.add_subplot(231)
    plt.imshow(Diff_mean.T,origin='lower')
    plt.colorbar()
    plt.title('Mean')  

    plt2=fig2.add_subplot(232)
    plt.imshow(Diff_var.T,origin='lower')
    plt.title('Variance')
    plt.colorbar()

    plt2=fig2.add_subplot(233)
    plt.imshow(Diff_skew.T,origin='lower')
    plt.title('Skewness')
    plt.colorbar()

    plt2=fig2.add_subplot(234)
    plt.imshow(Diff_kurt.T,origin='lower')
    plt.title('Kurtosis')
    plt.colorbar()
    
    plt_title3 = 'Amnicon Test Dataset Difference- %d'%(tile_list[loop],)
    plt.suptitle(plt_title3)
    plt.savefig('Measures Data_Difference.eps',format='eps',dpi=600)

    
    
    InputData = surface[startx:endx, starty:endy]
    FracD = FractalDim[startx:endx, starty:endy]
    Lacuna = Lacunarity[startx:endx, starty:endy]

    fig=plt.figure(5, figsize=(11., 8.5), dpi=100)
    fig.subplots_adjust(left=0.2, wspace=0.6)
    
    plt1=fig.add_subplot(121)
    #plt.imshow(FractalDim.T,origin='lower')
    plt.imshow(FracD.T,origin='lower')
    plt.colorbar()
    plt.title('Fractal Dimension')

    plt1=fig.add_subplot(122)
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    #plt.imshow(Lacunarity.T,origin='lower')
    plt.imshow(Lacuna.T,origin='lower')
    plt.colorbar()
    plt.title('Lacunarity')

    plt_title = 'Amncion Test Dataset Fractal Dimension '
    plt.suptitle(plt_title)

    plt.savefig('Fractal Dimension Test.eps',format='eps',dpi=600)

    

#   Create the PCA array. Output in feature order, all tiles together

    npts = numx*numy
    npts_PCA = numx_pca * numy_pca

    pcaX_upper = pcaXn + 1
    pcaY_upper = pcaYn + 1
    
    temp_array = surface[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    surface1D = temp_array.reshape(npts_PCA)
    offset1 = iteration 
    pca[:,offset1] = surface1D[:]
        
    temp_array = Diff_mean[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    mean1D = temp_array.reshape(npts_PCA)
    offset2 = list_len+ iteration
    pca[:,offset2] = mean1D[:]
    
    temp_array = Diff_var[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    var1D = temp_array.reshape(npts_PCA)
    offset3 = 2*list_len + iteration
    pca[:,offset3] = var1D[:]
    
    temp_array = Diff_skew[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    skew1D = temp_array.reshape(npts_PCA)
    offset4 = 3*list_len + iteration 
    pca[:,offset4] = skew1D[:]
    
    temp_array = Diff_kurt[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    kurt1D = temp_array.reshape(npts_PCA)
    offset5 = 4*list_len + iteration
    pca[:,offset5] = kurt1D[:]

    temp_array = slope[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    slope1D = temp_array.reshape(npts_PCA)
    offset6 = 5*list_len + iteration
    pca[:,offset6] = slope1D[:]

    temp_array = aspect[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    aspect1D = temp_array.reshape(npts_PCA)
    offset7 = 6*list_len + iteration
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    pca[:,offset7] = aspect1D[:]

    temp_array = planc[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    planc1D = temp_array.reshape(npts_PCA)
    offset8 = 7*list_len + iteration
    pca[:,offset8] = planc1D[:]

    temp_array = profc[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    profc1D = temp_array.reshape(npts_PCA)
    offset9 = 8*list_len + iteration
    pca[:,offset9] = profc1D[:]

    temp_array = TRIndex[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    TRIndex1D = temp_array.reshape(npts_PCA)
    offset10 = 9*list_len + iteration
    pca[:,offset10] = TRIndex1D[:]

    temp_array = Rugosity[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    Rugosity1D = temp_array.reshape(npts_PCA)
    offset11 = 10*list_len + iteration
    pca[:,offset11] = Rugosity1D[:]

    temp_array = FractalDim[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    FD = temp_array.reshape(npts_PCA)
    offset12 = 11*list_len + iteration
    pca[:,offset12] = FD[:]

    temp_array = Lacunarity[pcaX1:pcaX_upper,pcaY1:pcaY_upper]
    L = temp_array.reshape(npts_PCA)
    offset13 = 12*list_len + iteration
    pca[:,offset13] = L[:]

#Tell me how big the pca array is

print 'Congratulations, you calculated your PCA array. It is ',pca.shape
print 'Mean value of each parameter:'
print np.mean(pca,axis=0,dtype=np.float64)
print 'Std. deviation of each parameter:'
print np.std(pca,axis=0,dtype=np.float64)
print 'The range of values in each column is:'
print np.ptp(pca,axis=0)

# Dump the PCA array into a pickle file for later processing

with open('PCAfile_Test_0.5','wb') as f:
    pickle.dump((numx_pca,numy_pca,pca), f)
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#
#   Open the PCA input matrix stored in a PICKLE file
#   Apply Randomized PCA to reduce dimensionality and plot
#
import matplotlib
matplotlib.use('Agg')
import scipy
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.colors import LightSource
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from sklearn.decomposition import RandomizedPCA
import pickle

from sklearn.cluster import KMeans
from sklearn.cluster import AgglomerativeClustering

def ellipseoid(P,color_entry, pvalue, y=None, z=None, units=None, show=True):
    """Calculates an ellipse(oid) as prediction interval for multivariate data.

    The prediction ellipse (or ellipsoid) is a prediction interval for a sample
    of a bivariate (or trivariate) random variable and is such that there is
    pvalue*100% of probability that a new observation will be contained in the
    ellipse (or ellipsoid) (Chew, 1966). [1]_.

    The semi-axes of the prediction ellipse(oid) are found by calculating the
    eigenvalues of the covariance matrix of the data and adjust the size of the
    semi-axes to account for the necessary prediction probability. 

    Parameters
    ----------
    P : 1-D or 2-D array_like
        For a 1-D array, P is the abscissa values of the [x,y] or [x,y,z] data.
        For a 2-D array, P is the joined values of the [x,y] or [x,y,z] data.
        The shape of the 2-D array should be (n, 2) or (n, 3) where n is the
        number of observations.
    y : 1-D array_like, optional (default = None)
        Ordinate values of the [x, y] or [x,y,z] data.
    z : 1-D array_like, optional (default = None)
        Ordinate values of the [x, y] or [x,y,z] data.
    pvalue : float, optional (default = .95)
        Desired prediction probability of the ellipse(oid).
    units : str, optional (default = None)
        Units of the input data.
    show : bool, optional (default = True)
        True (1) plots data in a matplotlib figure, False (0) to not plot.

    Returns
    -------
    volume : float
        Area of the ellipse or volume of the ellipsoid according to the inputs.
    axes : 2-D array
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        Lengths of the semi-axes ellipse(oid) (largest first).
    angles : 1-D array
        Angles of the semi-axes ellipse(oid). For the ellipsoid (3D adata), the
        angles are the Euler angles calculated in the XYZ sequence.
    center : 1-D array
        Centroid of the ellipse(oid).
    rotation : 2-D array
        Rotation matrix of the semi-axes of the ellipse(oid).

    Notes
    -----
    The directions and lengths of the semi-axes are found, respectively, as the
    eigenvectors and eigenvalues of the covariance matrix of the data using
    the concept of principal components analysis (PCA) [2]_ or singular value
    decomposition (SVD) [3]_.
    
    See [4]_ for a discussion about prediction and confidence intervals and
    their use in posturography.

    References
    ----------
    .. [1] http://www.jstor.org/stable/2282774.
    .. [2] http://en.wikipedia.org/wiki/Principal_component_analysis.
    .. [3] http://en.wikipedia.org/wiki/Singular_value_decomposition.
    .. [4] http://www.sciencedirect.com/science/article/pii/S0966636213005961.

    Examples
    --------
    >>> import numpy as np
    >>> from ellipseoid import ellipseoid
    >>> y = np.cumsum(np.random.randn(3000)) / 50
    >>> x = np.cumsum(np.random.randn(3000)) / 100
    >>> area, axes, angles, center, R = ellipseoid(x, y, units='cm', show=True)
    >>> P = np.random.randn(1000, 3)
    >>> P[:, 2] = P[:, 2] + P[:, 1]*.5
    >>> P[:, 1] = P[:, 1] + P[:, 0]*.5
    >>> volume, axes, angles, center, R = ellipseoid(P, units='cm', show=True)
    """

    import scipy
    import scipy.stats as sstats

    P = np.array(P, ndmin=2, dtype=float)
    if P.shape[0] == 1:
        P = P.T
    elif P.shape[1] > 3:
        P = P.T
    if y is not None:
        y = np.array(y, copy=False, ndmin=2, dtype=float)
        if y.shape[0] == 1:
            y = y.T
        P = np.concatenate((P, y), axis=1)
    if z is not None:
        z = np.array(z, copy=False, ndmin=2, dtype=float)

2



        if z.shape[0] == 1:
            z = z.T
        P = np.concatenate((P, z), axis=1)
    # covariance matrix
    cov = np.cov(P, rowvar=0)
    # singular value decomposition
    # and Eigenvalue decomposition
    U, s, Vt = np.linalg.svd(cov)
    
    # semi-axes (largest first)
    p, n = s.size, P.shape[0]

    saxes = np.sqrt(s * sstats.f.ppf(pvalue, p, n-p) * (n-1) * p * (n+1)/(n*(n-p)))
    volume = 4/3*np.pi*np.prod(saxes) if p == 3 else np.pi*np.prod(saxes)
    
    # rotation matrix
    R = Vt
    if s.size == 2:
        angles = np.array([np.rad2deg(np.arctan2(R[1, 0], R[0, 0])),
                           90-np.rad2deg(np.arctan2(R[1, 0], -R[0, 0]))])
    else:
        angles = rotXYZ(R, unit='deg')

    center = np.mean(P, axis=0)

    if show:
        lims = plot_blob(P, saxes, center, R, units, color_entry, fig, ax)

    return volume, saxes, angles, center, R, lims

def plot_setup():

        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D
                        

        fig = plt.figure(figsize=(7, 7))
        ax = fig.add_axes([0, 0, 1, 1], projection='3d')
        ax.view_init(20, 30)
                
        return fig, ax

    
def plot_wrapup(lims, fig, ax, units=None):

        import matplotlib.pyplot as plt
                           
        ax.set_xlim(lims)
        ax.set_ylim(lims)
        ax.set_zlim(lims)
        
        if units is not None:
                units2 = ' [%s]' % units
                units = units + r'$^3$'
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        else:
                units2 = ''
        
        ax.set_zlabel('Q3' + units2, fontsize=18)
        ax.set_xlabel('Q1' + units2, fontsize=18)
        ax.set_ylabel('Q2' + units2, fontsize=18)
        ax.view_init(elev=20.,azim=74)
        plt.title('Probability Ellipsoids with %d Clusters'%(n_clusters))
        plt.savefig('Probability Ellipsoids_Lester.eps',format='eps',dpi=600)

        return

def plot_blob(P, saxes, center, R, units, color_entry, fig, ax):

        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D
        
        u = np.linspace(0, 2*np.pi,50)
        v = np.linspace(0, np.pi, 50)
        x = saxes[0]*np.outer(np.cos(u), np.sin(v))
        y = saxes[1]*np.outer(np.sin(u), np.sin(v))
        z = saxes[2]*np.outer(np.ones_like(u), np.cos(v))

# rotate data
        for i in range(len(x)):
                for j in range(len(x)):
                        [x[i,j],y[i,j],z[i,j]]=np.dot([x[i,j],y[i,j],z[i,j]],R)+

        ax.plot_wireframe(x, y, z, color=color_entry, linewidth=0.1)
                  
#      lims = [np.min([P.min(), x.min(), y.min(), z.min()]),
#             np.max([P.max(), x.max(), y.max(), z.max()])]

        lims = [np.min([x.min(), y.min(), z.min()]),
                np.max([x.max(), y.max(), z.max()])]
        
        return lims

def rotXYZ(R, unit='deg'):
    """ Compute Euler angles from matrix R using XYZ sequence."""

    angles = np.zeros(3)
    angles[0] = np.arctan2(R[2, 1], R[2, 2])
    angles[1] = np.arctan2(-R[2, 0], np.sqrt(R[0, 0]**2 + R[1, 0]**2))
    angles[2] = np.arctan2(R[1, 0], R[0, 0])

    if unit[:3].lower() == 'deg':  # convert from rad to degree
        angles = np.rad2deg(angles)

    return angles

############## MAIN PROGRAM##################
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#
#   Create a text array holding the colors to use
#

import matplotlib.colors as colors
import matplotlib.cm as cmx

#   Open the Pickle file

file_name = "PCAfile_AmncionTest_0.5"

# Open the file for reading

with open( file_name, 'rb' ) as f:
# Read the file
    Xrange, Yrange, input_data = pickle.load(f)

print "Xrange:",Xrange,"  Yrange:",Yrange

XYrange = Xrange*Yrange

# Close the pickle file

#fileObject.close()

# Strip off original data (column 1)

cparams = input_data[:,1:]

# Auto-scale the input data
#   First calculate the mean and standard deviation of each COLUMN.

mean = np.mean(cparams, axis=0)
print " Column mean:"
print mean
stdev = np.std(cparams, axis=0)
print " Column STD DEV.:"
print stdev

nrows, ncols = cparams.shape

for ii in range(ncols):
    cparams[:,ii] = (cparams[:,ii]-mean[ii])/stdev[ii]

#   Reduce the dataset to its first 5 principal components
pca = RandomizedPCA(n_components=5, random_state=0)

#   Reduce the dataset to its first 5 principal components
#pca = RandomizedPCA(n_components=3, random_state=0)

X_red = pca.fit_transform(cparams)
print 'X_red is:',X_red.shape
A = pca.explained_variance_ratio_
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B = np.cumsum(np.round(A, decimals=4)*100)
Z = np.cov(X_red.T)
print 'Explained variance ratio'
print A
print 'Cumulative Amount of Variance Explained'
print B

#   Ask the user for how many clusters to use
n_clusters = 5

#   K-means clustering
k_means = KMeans(n_clusters)
k_means.fit(X_red)
clusterID = k_means.predict(X_red)

print "Cluster Centers",k_means.cluster_centers_

####### COMPUTE THE LOADINGS FOR THE COMPONENTS ########
loadings = pca.components_
A = np.square(loadings)
B = (A*100) # Convert to percents
num_components = 5
Percent = np.zeros((5,12))
objects = ('var1','var2','var3','var4,','var5','var6','var7','var8','var9','var10'
y_pos = np.arange(len(objects))
for i in range (num_components):
    Percent[i] = B[i,:]
    
### Put data in columns for easy plotting ###
## should have the number of columns equal the number of 
## components you are working with ##

P = Percent.transpose()
# Save data to txt file for plotting
np.savetxt('Components.txt',P,delimiter=',') 

### Make a plot of the components individual Contributions ####
Number_variables = len(P)
Number_components = len(P[0])
print "Number of Components: %d" % Number_components
print "Number of Variables: %d" % Number_variables

Component_Labels = []
for i in range(Number_variables):
    Component_Labels.append("V %d" % i)

#ind = np.arange(Number_variables)
#C = dict()
#for i in range(Number_components):
    #C[i] = Percent[:,i]
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#width = 0.35

#fig, ax = plt.subplots()
#p1 = plt.bar(ind,C[0],width, color = 'r')
#p2 = plt.bar(ind,C[1],width,color = 'y',bottom=C[0])

#ax.set_ylabel('Contribution')
#ax.set_title('Percent Contribution by variable')
#ax.set_xticks(ind +width)
#ax.set_xticklabels((Component_Labels))
#plt.savefig('Components.eps',format='eps',dpi=100)

    
  
#########################################################

#   Add cluster labels to the FFV and reduced FFV
input_data=np.insert(input_data,13,clusterID.T,1)
X_red=np.insert(X_red,3,clusterID.T,1)

#   Generate a new image using the classified labels

Backscatter  = input_data[:,0]
ValueInClass = input_data[:,13]

Value = np.reshape(ValueInClass,(Xrange,Yrange))
Backscatter = np.reshape(Backscatter,(Xrange,Yrange))

#   Flip the data so they plot the right way up!

Value = Value[:,::-1]
Backscatter = Backscatter[:,::-1]

#   Define the colormap
NWcmap = plt.get_cmap('seismic',n_clusters)
cNorm = colors.Normalize(vmin=0,vmax=n_clusters-1)
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=NWcmap)

### CREATE AN ASCII FILE THAT WILL BE CONVERTED TO A RASTER IN ARCGIS ###
### This will create an ascii file of the clustered data, for later output ###
### Make sure you enter the lower left coordinates correctly, and 
### remove the # characters in the ascii file after its created ##############

Raster_output = Value
header = "ncols     %s\n" % Raster_output.shape[1]
header += "nrows    %s\n" % Raster_output.shape[0]
header += "xllcenter 293659.0\n"
header += "yllcenter 5089906.5\n"
header += "cellsize 0.5\n"
header += "NODATA_value -9999\n"

np.savetxt("Drummond_Island5.asc", Value, \
header=header, fmt="%1.2f")
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#############################################################################

#   Plot input image, shaded relief image and the classified result

#   Create shaded relief image

#   create light source object.
ls = LightSource(azdeg=270,altdeg=65)
#   shade data, creating an rgb array.
rgb = ls.shade(Backscatter.T,plt.cm.copper)

###### This is where the image of the classified data is plotted ####
fig0=plt.figure(2)
ax=fig0.add_subplot(133)
im =ax.imshow(Value.T,cmap=NWcmap, interpolation='nearest', norm=cNorm)
bounds = range(n_clusters-1)
fig0.colorbar(im,ticks=bounds,boundaries=bounds)         
plt.title('Number of Classes = 8')
####################################
ax=fig0.add_subplot(132)
plt.imshow(rgb)
####################################
plt.title('imshow with shading')

ax=fig0.add_subplot(131)
ax.imshow(Backscatter.T,cmap=cm.Greys_r, interpolation='nearest')

plt.savefig('Image with shading_12.eps',format='eps',dpi=600)

#   Set-up the plot
LIMIN = 1000000.
LIMAX = 0-LIMIN

fig, ax = plot_setup()

for iclass in range(n_clusters):

#   Isolate the points in class1,2, and 3

    CLASS_0 = X_red[np.where(X_red[:, 3] == iclass)]

    P0 = CLASS_0[:,:3]
    colorVal = scalarMap.to_rgba(iclass)
    volume0, axes0, angles0, center0, R0, lims = ellipseoid(P0, color_entry=colorVal, pvalue

    if (iclass == 0):
        plot_lims = [np.min([LIMIN,lims[0]]),
                     np.max([LIMAX,lims[1]])]
    else:
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        plot_lims = [np.min([plot_lims[0],lims[0]]),
                     np.max([plot_lims[1],lims[1]])]    

#   Plotting of ellipsoids completed, now plot axes and post the image

plot_wrapup(plot_lims, fig, ax)
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from matplotlib import pyplot as plt
from scipy.interpolate import griddata

import numpy as np
import scipy.ndimage.filters as filters
import os

def split_filepath(s):
    """
    get filename and extension from filepath 
    filepath -> (filename, extension)
    """
    if not '.' in s: return (s, '')
    r = s.rsplit('.', 1)
    return (r[0], r[1])

# Open file exported from CARIS
str=raw_input('Enter name of the input file: ')
name=split_filepath(str)

print "The input string was:  ",str
print "The modified string was:  ",name[0]
newname = name[0]+'_Heave'
print "The new name is:  ",newname

f = open(str,'r')

#f = open('Lester_TestLine.txt', 'r')

# Set-up multi-image plot

fig=plt.figure()
a=fig.add_subplot(5,1,1)

# Read and ignore one line of header information

header1 = f.readline()

list_of_depths =[]
list_of_beams = []
list_of_swaths =[]

# Loop over lines and extract variables of interest

for line in f:
    
# Extract the contents of the line as a string

    line = line.strip()

# Break the extracted string into "chunks" delimited by delimiter
    
    columns = line.split(",")
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# Interpret the values of specific chunks. Add to lists of similar variables
# one per swath read in
  
    depth = float(columns[2])
    swath = int(columns[7])
    beam =int(columns[8])
    
    list_of_depths.append(depth)
    list_of_swaths.append(swath)
    list_of_beams.append(beam)
 
print "List of depth points is", len(list_of_depths)
print "Minimum swath:", min(list_of_swaths),", Maximum swath:", max(list_of_swaths)
print "Minimum beam:", min(list_of_beams),", Maximum beam:", max(list_of_beams)

nswath = max(list_of_swaths)-min(list_of_swaths) + 1

# Data input complete, close the input file and release memory
   
f.close()

# Create a 2D numpy array of 511 cols and nswath rows to hold the input bathymetry
# data. There are 511 beams in each swath of the Reson 7101 multibeam.

bathy=np.empty([511,nswath],dtype=float)

# Fill the array

for point in range(0,len(list_of_depths)):
    x = list_of_beams[point]-1
    y = list_of_swaths[point]-1
    z = list_of_depths[point]
    bathy[x,y] = z

# Plot the data
   
imgplot=plt.imshow(bathy, interpolation='nearest', clim=(5,20))

# Give the plot a title and a colorscale
a.set_title('Bathy')
plt.colorbar(orientation='horizontal')

# Interpolate the input file to fill in holes

grid_x, grid_y = np.mgrid[1:512,1:nswath+1]
xy=np.vstack((list_of_beams,list_of_swaths)).T
values=np.array(list_of_depths)
bathy_interp=griddata(xy,values,(grid_x,grid_y), method='nearest')

# Plot the interpolated data
a=fig.add_subplot(5,1,2)
imgplot=plt.imshow(bathy_interp, interpolation='nearest', clim=(5,20))
a.set_title('Interpolated Bathy')
plt.colorbar(orientation='horizontal')
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# Apply a low-pass filter to isolate the regional bathymetry from the heave
result5=filters.uniform_filter(bathy_interp, size=30, mode='reflect')

# Plot the regional bathymetry
a=fig.add_subplot(5,1,3)
imgplot=plt.imshow(result5, interpolation='nearest', clim=(5,20))
a.set_title('Low Pass')
plt.colorbar(orientation='horizontal')

# Subtract the result of the low pass filter from the data, display the 
# result and save it.

differ=bathy_interp-result5

# Apply a median filter to each swath in the residual field to extract 
# the heave record
heave = np.zeros(nswath)

# Do NOT utilize outer beams - taken to be first/last 50 beams
for swath in range(0,nswath):
    heave[swath]=np.median(differ[50:460,swath])
    
# Plot the residual field - which contains the heave information

a=fig.add_subplot(5,1,4)
imgplot=plt.imshow(differ, interpolation='nearest', clim=(-0.75,0.75))
a.set_title('Difference')
plt.colorbar(orientation='horizontal')

# Plot the extracted heave record
a=fig.add_subplot(5,1,5)
swathindx=np.arange(0,nswath,1)
plt.plot(swathindx,heave,'k')
plt.show()

#Ask the user how many heave values they want, then interpolate the 
#record appropriately
ninterp=int(input("How many heave records are required? "))
heavestep=np.linspace(0,nswath,ninterp)
heave_interp =np.interp(heavestep,swathindx,heave)
# Export the extracted heave record as a text file
#np.savetxt('ExtractedHeave.txt',heave,newline='\n', fmt='%6.3f')
np.savetxt(newname,heave_interp,newline='\n', fmt='%6.3f')
# Save the generated file as an ASCII file
#np.savetxt('Lester_bathy.asc', bathy, delimiter='\t',fmt='%6.2f')
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