Development and Testing of a Miniaturized, Dual-Frequency, Software-Defined GPS Receiver for Space Applications

Andrew J. Joplin, E. Glenn Lightsey, Todd E. Humphreys

The University of Texas at Austin

February 1, 2012

Outline

- Motivation
- Goals
- Background
- Initial Testing
- On-Orbit Acquisition/Duty Cycling
- LEO Navigation
- Radio Occultation Observation
- GEO Navigation
- Hardware/Flight Testing
- Conclusions

Andrew Joplin 02/01/2012

Motivation

- Why is there a need for a small, high-precision GPS receiver for space missions?
 - Space science missions often require precise positioning
 - Use of legacy high-precision receivers on small satellites restricted by <u>volume</u>, <u>mass</u>, and <u>power</u> requirements
- Why use small satellites for space science missions?
 - Low cost encourages university involvement
 - Large constellations of small satellites provide more instrument coverage at a fraction of the cost

Goals

- <1 W Orbit-Average Power
- <500 g Mass
- 0.5U CubeSat Form Factor
- Sub-Meter Low Earth Orbit (LEO) Navigation
- Ionospheric Occultation Observation
- Geosynchronous Orbit (GEO) Navigation

Background

Background: CASES

- CASES: Connected Autonomous Space
 Environment Sensor
 - Software-defined, dual-frequency receiver
 - Developed by the University of Texas and Cornell University
 - Designed to measure ionospheric scintillation
 - Data Output

CASES: A Smart, Compact GPS Software Receiver for Space Weather Monitoring. 2011 ION GNSS Conference

- Navigation, observations, raw IQ, TEC, SV data

Background: FOTON

- FOTON: Fast, Orbital, TEC, Observables, and Navigation Receiver
 - Space-based, dual-frequency, software-defined receiver
 - Developed from CASES
 - Hardware repackaged into smaller form factor
 - Software altered to allow LEO navigation

Background: FOTON

- Hardware (COTS components on custom boards)
 - Bobyn RF Front End
 - TI C6457 Digital Signal Processor
 - Interface Board (Z-Board)
 - Volume: 0.5U CubeSat form factor (8.3 x 9.6 x 3.8 cm)
 - Mass: 326 g
 - Power: 4.5 W, <1 W orbit average power
- Software
 - Tracks GPS L1 C/A, L2C, and L5

- Configurable for tracking other L-band signals
- Arbitrary number of channels, limited by data downlink

Andrew Joplin 02/01/2012

Background: Software Changes

- Terrestrial → Space-based Conversion:
 - Release ITAR altitude/speed limits* Done
 - Widen Doppler range to ±40 kHz (increases memory requirements) Done
- Radio Occultation:
 - Occultation prediction In Process
 - Suppress clock fix-up during occultation Done
 - Open-loop tracking Done
 - Data bit prediction Done

*Software uploads/testing done within ITAR-restricted lab

Andrew Joplin 02/01/2012

Initial Testing

Initial Testing

- Testing on Spirent GPS signal simulator
 - Baseline receiver (Rx) testing
 - Ionosphere and Troposphere not simulated
 - Satellite (SV) clock and ephemeris errors not simulated
- Tests include:
 - Static simulation
 - Rectangular track (low-dynamics) simulation
 - Low earth orbit simulations

Initial Testing Terrestrial Tests

Static Simulation

• 0.46 m RMS error

Rectangular Track Simulation

• 0.83 m, 0.12 m/s RMS error

Initial Testing LEO Doppler Test

Tracked Doppler

- Before software updates
- Tracked 1-3 signals
- ± 10 kHz Doppler range

Simulated Doppler

- Inclined, 90 min. period LEO
- Produced ± 40 kHz Doppler

Initial Testing LEO Benchmark Tests

- Simulated polar LEO
- Double-difference of observables
 - Removes geometry and Rx clock effects
 - Leaves only Rx- and channelspecific noise
- RMS Errors:
 - Pseudorange: 0.1616 m
 - Carrier Phase: 0.5973 mm
 - Range Rate: 0.0569 m/s

14

On-Orbit Acquisition/Duty Cycling

On-Orbit Acquisition/Duty Cycling

On-Orbit Acquisition/Duty Cycling

- Current on-orbit acquisition capability:
 - DSP reset time: 15 sec
 - FFT-based acquisition: <5 sec
 - Ephemeris retrieval: <30 sec
 - Overall time to first fix (TFF): <1 min.
- TFF dominated by DSP reset and ephemeris retrieval
 - Store ephemerides in memory (in process)
 - Operate DSP in low-power mode (in process)
 - TFF of a few seconds attainable
- Duty cycling is possible

Andrew Joplin 02/01/2012

LEO Navigation Kalman Filter

- Extended Sequential Kalman Filter (EKF)
- Combine L1 pseudorange and Doppler with assumed LEO dynamics to smooth nav solution
- State: ECEF position/velocity, Rx clock bias/rate
- State dynamics model:
 - Pos/vel: J2 gravity model + noise
 - Clock: 1st order + noise

LEO Navigation Kalman Filter

- Tested with LEO simulation
- Comparison of EKF with point-wise linear least-squares solutions:

	Kalman Filter	Point Solutions
RMS Position (m)	0.544	0.739
RMS Velocity (m/s)	0.0121	0.247

• Can be improved with higher-fidelity dynamics model

LEO Navigation Dual-Frequency Capability

- Ionospheric modelling algorithm:
 - Running estimate of TEC (Total Electron Content) used to model ionosphere real-time
 - L2 pseudorange not otherwise used in nav solution
- LEO Test:
 - Polar LEO simulation
 - Ionosphere, L2C simulated

LEO Navigation Dual-Frequency Capability

- Point Solution Results
 - RMS Errors:
 - Pos: **1.47** m
 - Vel: 0.29 m/s
 - Results can be improved with a Kalman filter that ingests L2C pseudorange

Radio Occultation Observation

Radio Occultation Observation

- Rising/setting GPS satellite transmits through multiple layers of ionosphere
- GPS receiver on LEO satellite measures time history of ionospheric delay/total electron

Radio Occultation Observation

- FOTON software already designed to measure TEC
- Dual-frequency LEO simulation demonstrates:
 - Low elevation tracking
 - TEC estimation
- To do:
 - Occultation prediction

- Geosynchronous Earth Orbit (GEO) outside of GPS orbit
 - Low signal strength, navigation very challenging
- FOTON GEO Simulation Results
 - Used OCXO + coherent accumulation
 - Unable to pull in side lobes
 - Tracked 2-4 SVs at a time over 2 hr period
 - RMS Errors:
 - 10 m horizontal, 155 m vertical
 - 0.75 m/s horizontal, 15 m/s vertical
- Better results attainable using data bit wipe-off
 - Already implemented, but not tested in GEO

Andrew Joplin 02/01/2012

GPS

Visible region in primary beam

GPS side lobe

GPS side lobe

http://www.gpsworld.com

HEO

42.6 degrees

Hardware/Flight Testing

Hardware/Flight Testing

- Completed:
 - Vibration testing
 - Thermal testing
 - Vacuum testing
- Upcoming:
 - Sounding rocket launch (Cornell): March 2012
 - Armadillo CubeSat launch (UT): 2014

Conclusions

- FOTON a high-precision, adaptable, space-based software receiver
- Duty cycling allows <1 W orbit average power
- 326 g, 0.5U volume small enough for CubeSats
- Kalman filter + dual-frequency \rightarrow meter-level navigation
- Low elevation tracking, TEC estimation demonstrates occultation observation potential
- Data bit wipe-off + long coherent integration → GEO navigation possible
- Upcoming test flights in 2012-2014

Acknowledgements

- UT Radionavigation Laboratory radionavlab.ae.utexas.edu
- UT Center for Space Research <u>www.csr.utexas.edu</u>
- UT Satellite Design Laboratory
- Cornell University gps.ece.cornell.edu

Backup Slides

Motivation

- Why dual-frequency?
 - Increased precision using ionosphere-free pseudorange
 - Direct computation of ionospheric delay
- Why software-defined?
 - Quick development just recompile and test
 - Adaptable use for navigation, ionospheric sensing, ...
 - Reconfigurable on-orbit

Kalman Filter-Based POD

- LEO Simulation Testing
 - Repeat benchmark test simulation

Kalman Filter-Based POD

- RMS Errors:
 - Pos: **0.544** m (vs. 0.739 m)
 - Vel: **0.0121 m/s** (vs. 0.247 m/s)
- Can be improved with more accurate dynamics model

- High Earth Orbits (HEO) and Geosynchronous Earth Orbits (GEO) very challenging for GPS navigation
- Weak signals from GPS transmitter side lobes
- Very slow geometric change

- More stable clock (e.g. OCXO)
 - Allows smaller PLL bandwidth (increases C/No)
- Long coherent integration of weak signals
 - Pulls in signal from GPS side lobe
 - Requires data bit wipe-off
- Kalman filtering

Description and Performance of the GPS Block I and II L-Band Antenna and Link Budget. 1993 Institute of Navigation Conference, 1993.

80

-10-

-15

-20

-25

-30

-35

-40

Relative Antenna Gain (dB)

Andrew Joplin 02/01/2012

20

40

Zenith Angle (deg)

60

• Results

