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Abstract 

 

Mechanistic Investigations of SpnF- and SpnL-Catalyzed Cyclizations 

in the Biosynthesis of Spinosyn A 

 

Nam Ho Kim, Ph.D. 

The University of Texas at Austin, 2013 

 

Supervisor: Hung-wen Liu 

 

Spinosyn A is a particularly interesting natural product due to its structural 

complexity and potent insecticidal activity. The biosynthetic pathway of spinosyn A is 

interesting as it has two unusual features, the SpnF-catalyzed [4+2] cycloaddition and the 

SpnL-catalyzed cyclization to produce the perhydro-as-indacene core. The work 

described in this dissertation focuses on elucidating the mechanisms of the SpnF- and 

SpnL-catalyzed reactions.  

SpnF has attracted significant interest as a possible Diels-Alderase. To explain 

how SpnF catalyzes the formation of cyclohexene ring, three plausible mechanisms have 

been proposed, the Diels-Alder reaction mechanism, the ionic rearrangement mechanism, 

and the biradical rearrangement mechanism. Kinetic isotope effect studies were 

performed using four deuterium-labeled mechanistic probes, specially the C4-D, C7-D, 

C11-D, and C12-D analogs. Currently, the ionic rearrangement mechanism can be 

excluded, based on the results using the C4-D and C7-D analogs. In addition, how SpnF 

accelerates the reaction was studied to assess the contribution of an entropic 



 x 

preorganization compared to enthalpic transition state stabilization. To measure the 

relative rate enhancements due to structural perturbations, three mechanistic probes were 

synthesized, the linear analog, the C13-14 Unc analog, and the C2-3 Unc analog. 

Unfortunately, the linear analog and C13-14 Unc analog didn’t show any turnover 

activity under either non-enzymatic or enzymatic conditions. Thus, no conclusion could 

be drawn from incubation with these substrate analogs. 

Mechanistic studies of SpnL-catalyzed cyclization were devoted to differentiating 

between the Rauhut-Currier type mechanism and the Michael addition mechanism. 

Biochemical studies using the C13-F analog as a mechanism-based inhibitor showed the 

formation of a covalent adduct with SpnL, which is consistent with the Rauhut-Currier 

type mechanism. Additional experimental data obtained from isotope trace experiments 

and kinetic isotope effect studies using C12-D analog supports the Rauhut-Currier type 

mechanism. Biochemical studies concerning the role of SAM in SpnF and SpnL showed 

that SAM is required for the activity of SpnL, and were inconclusive for SpnF. SpnL 

mutant studies showed that Cys60 and Glu96 may be important for the catalysis of SpnL. 

Chemoenzymatic total synthesis of spinosyn A was completed by chemical etherification 

of 17-pseudoaglycone and D-forosamine. 
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Chapter 1. Investigation of the Biosynthesis of the Polycyclic System in 

Spinosyn A 

 

1.1. BACKGROUND 

Fused polycyclic systems are found in a number of natural products 

biosynthesized by polyketide synthases. Their formation has attracted a great deal of 

attention in terms of the biosynthetic pathways and the mechanism (Figure 1-1).1, 2, 3 

Spinosyn A, which contains a tetracyclic aglycone and two appended sugars, is a 

particularly interesting natural product due to its structural complexity. 4  
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Figure 1-1. Representatives of polyketide natural products containing fused cyclic rings with a 
cyclohexene moiety. 
 

The spinosyns are a family of polyketide natural products that are known for their 

extraordinary insecticidal activity (Figure 1-2).5, 6, 7 Spinosyns are produced by the soil 
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bacterium Saccaropolyspora spinosa. Extraction of the compounds from fermentation 

broths generally yields a mixture of spinosyn A (1, ~85%) and spinosyn D (2, ~15%). 

According to Dow AgroScience, Spinosad® (a mixture of spinosyn A and spinosyn D) 

has several attractive features when compared to most synthetic insect pest control 

products.8, 9 First, it is produced through fermentation of a naturally occurring organism. 

Second, it has high activity even at low concentrations. Third, regardless of whether the 

pest ingests or simply comes into contact with the compound it is an extremely potent 

insecticide. Fourth, it has a lower impact on certain beneficial predatory insects. Lastly, 

among known insecticides, the mechanism of Spinosyn A is unique. Specifically, 

spinosyn A disrupts neuronal activity and excites motor neurons, causing involuntary 

muscle contractions. This eventually leads to paralysis and death. It has been 

demonstrated that spinosyn A interacts with both γ-aminobutyric acid (GABA) receptors 

and nicotinic acetylcholine receptors, implicating their involvement as part of the 

mechanism.10, 11 More recently, knockout studies in Drosophila melanosaster has 

established the Dα6 subunit of the nicotinic acetylcholine receptor as a target site of the 

spinosyn family.12, 13, 14  

Spinosyn A is composed of a 22-membered tetracyclic core and two sugar 

moieties at the C-9 (tri-O-methyl-L-rhamnose) and C-17 (D-forosamine) positions. The 

fused perhydro-as-indacene core, which contains the cyclohexene and cyclopentene 

moieties, contributes to the overall structural complexity. The possible involvement of 

putative “Diels-Alderase” and “Rauhut-Currier type cyclase” in the biosynthesis of this 

perhydro-as-indacene has been suggested. Because of its unusual structure and the potent 
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biological activity, study of biosynthesis and mechanism of enzymes in the pathway has 

been a hot topic.  

OR3

R4

O

OO
O

H H

HH

O

R6O
Me

OR7
OR8

H

ON
Me

R5

9

17

R1

R2

L-rhamnose
D-forosamine

12-membered
macroolactone

perhydro-as-
indacene

74

15

 
 

No. Name R1 R2 R3 R4 R5 R6 R7 R8 LC50 (mg/L) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Spinosyn A 
Spinosyn B 
Spinosyn C 
Spinosyn D 
Spinosyn E 
Spinosyn F 
Spinosyn H 
Spinosyn J 
Spinosyn K 
Spinosyn L 
Spinosyn M 
Spinosyn N 
Spinosyn O 
Spinosyn O 
Spinosyn Q 
Spinosyn R 
Spinosyn S 
Spinosyn T 
Spinosyn U 
Spinosyn V 
Spinosyn W 
Spinosyn Y 

Me 
H 
H 

Me 
Me 
Me 
Me 
Me 
Me 
Me 
H 
H 

Me 
Me 
Me 
H 

Me 
Me 
Me 
Me 
Me 
Me 

Me 
Me 
H 

Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 

Et 
Et 
Et 
Et 
Me 
Et 
Et 
Et 
Et 
Et 
Et 
Et 
Et 
Et 
Et 
Et 
Me 
Et 
Et 
Et 
Et 
Me 

Me 
Me 
Me 
Me 
Me 
H 

Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 

H 
H 
H 

Me 
H 
H 
H 
H 
H 

Me 
H 

Me 
Me 
H 

Me 
H 
H 
H 
H 

Me 
Me 
H 

Me 
Me 
Me 
Me 
Me 
Me 
H 

Me 
Me 
Me 
Me 
Me 
Me 
Me 
H 
H 
H 
H 
H 
H 

Me 
Me 

Me 
Me 
Me 
Me 
Me 
H 

Me 
H 

Me 
Me 
H 
H 

Me 
H 

Me 
Me 
Me 
H 

Me 
Me 
H 

Me 

Me 
Me 
Me 
Me 
Me 
Me 
Me 
Me 
H 

Me 
Me 
Me 
H 
H 

Me 
Me 
Me 
Me 
H 
H 
H 
H 

0.3 
0.4 
0.8 
0.8 
4.6 
4.5 
5.7 
>80 
3.5 
26 

22.6 
40 
1.4 
>64 
0.5 

14.5 
53 

>64 
22 
17 

>64 
20 

 
Figure 1-2. Chemical structures of the spinosyn family. The LC50 values represent the biological activity 
of the corresponding spinosyn against tobacco budworm, Heliothis virescens. 
 

The spinosyn biosynthetic gene cluster was cloned and characterized by Waldron 

and co-workers in 2001 (Figure 1-3).15 It is approximately 74 kbp long and contains 19 
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open reading frames (ORFs). Combination of computational and experimental techniques 

including BLAST analysis, gene deletion studies, intermediate feeding and trace tracking 

studies, have allowed for a tentative assignment of the function of each ORF.15, 16, 17, 18 

About half of the annotated gene cluster is comprised of five large ORFs which code for 

multimodular type I polyketide synthases (PKSs). Upstream of these PKS genes is 

involved in forosamine biosynthesis, rhamnose methylation, glycosyl transfer, and 

intramolecular C-C bond formation. Careful analysis of the gene cluster has led to a 

hypothesis that the three intramolecular C-C bond formations between C13-C14, C4-C12, 

and C7-C11, are probably formed from the macrolactone immediately after its release 

from the polyketide synthase, SpnE, but prior to the glycosyl transfers. Waldron and co-

workers suggested that the gene products of SpnF, SpnJ, SpnL, and SpnM might be 

involved in the “cross-bridging” reactions to produce the perhydro-as-indacene core.15, 19  

 
 

Figure 1-3. Biosynthetic gene cluster of spinosyn family. 
 

Recently, the “cross-bridging” biosynthetic pathway of spinosyn A has been 

established by Liu group, as shown in Figure 1-4.20, 21, 22 The first step of post-PKS 

modification is the oxidation of the 15′-hydroxyl group to the corresponding ketone by 

SpnJ, a flavin-dependent dehydrogenase.20 This result is in agreement with the proposal 

made by Leadlay and co-workers, implying that the “cross-bridging” process is a post-
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PKS modification, initiated by the oxidation at C-15 position, and followed by a cascade 

of cationic cyclization.23 However, SpnJ turned out to be a monofunctional oxidase, and 

didn′t promote the following cyclization to generate the spinosyn carbocyclic array via an 

oxidative modification of a polyolefin intermediate.24 Interestingly, generation of the 

ketone moiety at C-15 may lower the pKa of the neighboring C-14 position, at which 

point deprotonation may be facilitated by SpnM, the putative hydratase in the second 

step, leading to the highly activated ketone-conjugated polyolefin intermediate. These 

two steps catalyzed by SpnJ and SpnM are particularly important to understand the 

intramolecular C-C bond formations leading to the perhydro-as-indacene core, because 

all of the elements involved in the formation of perhydro-as-indacene are established in 

the resulting polyolefin intermediate. In the third step, SpnF catalyzes two C-C bond 

formations between C-7 and C-11 and between C-4 and C-12, accelerating the rate of the 

[4+2] cycloaddition 500 times faster than the non-enzymatic reaction.21 SpnF is 

interesting due to its unique monofunctional facilitation of the [4+2] cycloaddition in the 

formation of the cyclohexene moiety in the spinosyn A aglycone.  
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Figure 1-4. Established biosynthetic pathway of spinosyn A (1). 
 

Initially, SpnL was expected to catalyze the second cyclization to complete the 

formation of perhydro-as-indacene core before glycosylation of L-rhamnose or D-

forosamine. However, tricyclic intermediate turned out not to be a substrate for SpnL, but 

a substrate for SpnG, a rhamnosyltransferease, producing the 9′-rhamnosyl tricyclic 

intermediate, which is then converted to tetracyclic perhydro-as-indacene intermediate by 

SpnL. Thus, this reaction sequence consists of two steps: the glycosylation of L-rhamnose 

at the C-9 position catalyzed by SpnG when fed a tricyclic intermediate, and the 

conversion of the tricyclic to a tetracyclic core catalyzed by SpnL to give the 9′-L-

rhamnosylated tetracyclic intermediate. SpnL-catalyzed cyclization is thought to be 

facilitated by a C-15 ketone moiety produced by SpnJ, although the reaction mechanism 

is uncertain. The last step for the biosynthesis of spinosyn A may be the second 

glycosylation of D-forosamine, catalyzed by SpnP, a glycosyltransferase. Due to 

difficulties in the preparation of TDP-D-forosamine, the last step of the biosynthesis of 

spinosyn A remains to be confirmed. 
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The mechanisms of the formation of the perhydro-as-indacene core in the 

biosynthesis of spinosyn A are not straightforward, although the reaction sequence of the 

“cross-bridging” biosynthetic pathway has been established. The specific mechanism of 

the first cycloaddition catalyzed by SpnF has not been conclusively determined, although 

there are three plausible mechanisms: Diels-Alder reaction mechanism,24, 25, 26, 27 ionic 

rearrangement mechanism, and biradical cyclization mechanism (Figure 1-5).  
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Figure 1-5.Proposed mechanisms for SpnF-catalyzed [4+2] cycloaddition in the biosynthesis of spinosyn 
A. 
 

The second cyclization catalyzed by SpnL is also very interesting from a 

mechanistic point of view. Two suggested mechanisms are Rauhut-Currier type 

mechanism 29, 30 and Michael addition mechanism 31, 32 (Figure 1-6). 
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Figure 1-6. Plausible mechanisms for SpnL-catalyzed cyclization in the biosynthesis of spinosyn A. 

 
1.2. MECHANISTIC INVESTIGATIONS OF SpnF-CATALYZED [4+2] CYCLOADDITION 

In the following chapter three possible mechanisms of SpnF-catalyzed [4+2] 

cycloaddition, which results in the formation of a cyclohexene moiety, will be discussed.  



 8 

The first possible mechanism of SpnF-catalyzed cycloaddition is the Diels-Alder 

reaction mechanism. The Diels-Alder reaction, named after the two Novel Prize-winning 

(1950) chemists, Otto Paul Hermann Diels and Kurt Alder, who first recognized and 

developed this reaction.25, 26, 27 In a typical Diels-Alder reaction, a cyclohexene system is 

formed through a [4+2] cycloaddition reaction between a conjugated electron-rich 1,3-

diene component and a substituted electron-deficient alkene (dienophile) via a concerted, 

pericyclic, and aromatic transition state.33, 34, 35 The Diels-Alder reaction is generally 

considered as one of the most useful reactions in organic chemistry because it readily 

produces a cyclohexene moiety in a [4+2] cycloaddition process. In fact, it has been 

applied to the synthesis of many natural products, which contains six membered 

carbocyclic ring in their structure (Figure 1-1).36, 37, 38, 39, 40 Several putative Diels-

Alderase reactions have been reported to catalyze [4+2] cycloaddition reaction, but many 

of them appear to be involved in more than one chemical processes. For example, the 

biosynthetic pathways for solanapyrone 41, 42, 43 and lovastatin 44, 45 have been investigated 

in an attempt to discover naturally occurring Diels-Alderase reactions, since their 1,2-

dehydrodecalin moiety has been suspected to be formed through an enzyme-catalyzed 

intramolecular Diels-Alder reaction (Figure 1-7A and Figure 1-7B).  
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Figure 1-7. Candidates for putative Diels-Alderases reactions involved in the biosynthesis of natural 
products containing a cyclohexene moiety. A) Proposed functions of solanapyrone synthase and the 
change in the stereo-outcome of the products in the presence of partially purified enzyme, B) Proposed 
functions of LovB on its substrate, a cyclohexene-containing intermediate in the biosynthesis of 
lovastatin. 
 

The Oikawa group was the first to show solanapyrone synthase capability to 

catalyze the 1,2-dehydrodecalin formation.41, 42, 43 The Vederas and Hutchison groups 

were later demonstrated the activity of LovB as a cyclase.44, 45 Solanapyrone synthase 

from the pathogenic fungus Alternaria solani involved in the biosynthesis of 

solanapyrone, and lovastatin nonaketide synthase (LovB), from Aspergillus terreus 

involved in the biosynthesis of lovastatin. Through their work, these two enzymes were 

shown to influence the stereochemical outcome of the corresponding [4+2] cycloaddition 

reactions, when the respective linear polyketide chain intermediates were used as 

substrates for the formation of 1,2-dehydrodecalin moiety. It was reported that 

Solanapyrone synthase is a multifunctional enzyme, which catalyzes both the oxidation 

of the linear polyketide intermediate to produce the aldehyde precursor and the 

subsequent Diels-Alder reaction to produce the 1,2-dehydrodecalin core of solanapyrone 

(Figure 1-7 (A)). Lovastatin nonaketide synthase (LovB) is a megasynthase responsible 

for the assembly of the nonaketide, which is then converted to the decalin core in the 
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same active site of LovB (Figure 1-7 (B)). Although the stereochemistries of the 1,2-

dehydrodecalin products are different in the presence and in the absence of enzyme in 

both cases, the detailed mechanisms of these two enzymes, especially whether they affect 

the rate of the cyclization reaction are still obscure. 

In addition to these putative Diels-Alderases, macrophomate synthase (MPS) is 

another enzyme known to catalyzes a [4+2] cycloaddition between 2-pyrone and 

oxaloacetate to form macrophomic acid in the fungus Macrophoma commelinae (Figure 

1-8).46, 47 The crystal structure of macrophomate synthase 48 and the results of many 

biochemical experiments showed that binding of 2-pyrone and pyruvate in the active site 

likely results in an electro-cyclic transition state.49, 50 Two plausible mechanisms are 

possible, a concerted Diels-Alder reaction or a stepwise Michael-aldol reaction.51 The 

bicyclic intermediate (Figure 1-8, the compound in the dotted box) proposed for the 

Diels-Alder reaction could be stabilized by a divalent metal ion (probably Mg2+), which 

was used to facilitate the formation of an enolate intermediate in the final step. In the 

Michael-aldol reaction, a nucleophilic attack by the enolate would generate a C-C bond 

and the negative charge could be stabilized by the 2-pyrone core. Subsequently, the 

enolate of the 2-pyrone core could attack the newly formed carbonyl group to generate 

the bicyclic intermediate. Oikawa and co-workers insisted that the high stereospecificity 

observed in an aberrant cyclization product catalyzed by macrophomate synthase is 

consistent with a concerted mechanism, although the normal reaction product is achiral.48 

However, Jorgensen and co-workers computationally demonstrated that a stepwise 

mechanism is energetically more favorable for macrophomate synthase, as compared to 
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the pericyclic Diels-Alder reaction.51 Their conclusion was based on calculation using 

mixed quantum and molecular mechanics (QM/MM) methods, combined with Monte 

Carlo simulations and free-energy perturbation (FEP) calculations. Additionally, the 

Hilvert group demonstrated experimentally that macrophomate synthase operates as a 

promiscuous aldolase consistent with the second half reaction of the stepwise Michael-

aldol reaction.52 Thus, combined results suggested that macrophomate synthase may not 

be a Diels-Alderase. Because none of the early examples can be considered as true Diels-

Alderase, the mechanistic study of SpnF-catalyzed [4+2] cycloaddition reported herein 

represents our attempts to discover the existence of a natural Diels-Alderases. 
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Figure 1-8. Proposed mechanisms for macrophomate synthase in the biosynthesis of macrophomic acid. 
 

The second proposed mechanism for SpnF-catalyzed cycloaddition may occur 

through a series of ionic rearrangements, a process akin to those involved in terpenoid 

biosynthesis. Monoterpene limonene is biosynthetically produced from a cationic 

cyclization of geranyl diphosphate (GPP) (Figure 1-9).53 Loss of diphosphate ion from 

geranyl diphosphate (GPP) results in an allylic cation, which undergoes a 1,3-cationic 

rearrangement and rephosphorylation to give linalyl diphosphate (LPP). A second loss of 
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diphosphate ion from linalyl diphosphate (LPP) initiates the cationic cyclization through 

a 1,5-cationic rearrangement to give a cyclohexene moiety. Finally, deprotonation 

completes the biosynthesis of limonene. Sesquiterpene biosynthesis also arises by 

cationic cyclizations of farnesyl diphosphate (FPP) through a series of cationic 

rearrangement (Figure 1-10). For example, the biosynthesis of epi-aristolochene 54 is 

initiated by the loss of diphosphate ion from farnesyl diphosphate (FPP), followed by 1,3-

cationic rearrangement, cyclization, and deprotonation to produce a neutral triene 

intermediate. Further cyclization is initiated by reprotonation at C-6, followed by a 1,2-

hydride migration, a 1,2-methyl shift, and then the deprotonation at C-8 to give a 

cyclohexene moiety and complete the biosynthesis of epi-aristolochene.  
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Figure 1-9. Mechanism of the formation of the monoterpene limonene from geranyl diphosphate (GPP). 
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Figure 1-10. Mechanism of the biosynthesis of the sesquiterpene epi-aristolochene from fanesyl 
diphosphate (FPP). 
 

The proposed ionic rearrangement mechanism for SpnF-catalyzed cycloaddition 

follows a similar process. Initially, an intermediate containing an anionic oxygen at C-15 
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and a carbocation at C-11 arises through the ionic rearrangement of the dienone 

component to give a highly activated dienophile moiety, where the negative charge at C-

15 can be stabilized by hydrogen bonding with an amino acid residue or a metal ion in 

the active site of SpnF (Figure 1-11, upper intermediate in the dotted box). Then, diene 

makes the first C-C bond between C-7 and C-11 leaving a positive charge at the C-4 

position (Figure 1-11, bottom intermediate in the dotted box). Finally, the negative 

charge on oxygen at the C-15 position returns to C-12, and immediately makes a C-C 

bond between C-4 and C-12 to finish the [4+2] cycloaddition producing a cyclohexene 

moiety. Alternatively, ionic rearrangement may produce the intermediate possessing 

anionic oxygen at the C-15 position and positive charge at the C-4 position, which can 

then be to make the first C-C bond between C-7 and C-11 positions (Figure 1-11, bottom 

intermediate in the dotted box). Then, the anion at C-15 can return to the carbocation at 

C-4 to make the second C-C bond between C-4 and C-12. Although two possible 

intermediates are presented, this mechanism can be referred to as the ionic rearrangement 

mechanism, since the overall reaction is initiated by the formation of a carbocation by 

ionic rearrangement. No matter the specific process is used for the SpnF-catalyzed [4+2] 

cycloaddition, the ionic rearrangement mechanism is obviously a series of cascade 

stepwise process.  
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Figure 1-11. Detailed ionic rearrangement mechanism for SpnF-catalyzed [4+2] cycloaddition in the 
biosynthesis of spinosyn A. 
 

Radical cyclizations are chemical transformations that yields cyclic products via 

radical intermediates, and are one of the most powerful and versatile methods for the 

construction of mono- and polycyclic systems.55, 56, 57, 58, 59 These reactions are widely 

used in the field of organic synthesis due to their high functional group tolerance, mild 

reaction conditions, and high levels of regio- and stereochemical product specificity. 

Radical cyclization reactions usually proceed in three basic steps; selective radical 

generation, radical cyclization, and conversion of the cyclized radical intermediate to 

product.60 First, the generation of an initial carbon radical is facilitated by using one of a 

number of suitable precursors, such as halides, thio- and selenoethers, alcohols, 

aldehydes, and even hydrocarbons. The use of metal hydrides (tin, silicon, and mercury 

hydrides) is common in radical cyclization reactions, even though there is the possibility 

of reducing the initially formed radical by the metal hydride. Second, the radical 

cyclization step is the attack of a double or triple bond by the initially formed radical to 

make a carbon-carbon bond. Usually this is the intramolecular addition of the initially 

generated radical to a double or triple bond comprising of a carbon-carbon bond, a 
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carbon-oxygen bond or a carbon-nitrogen bond. Sometimes polycycles and macrocycles 

can be formed using radical cyclization. To generate a polycyclic system, rings can be 

pre-formed and a single ring closed with radical cyclization, or multiple rings can be 

produced in a tandem process. Macrocyclizations have the unique property of exhibiting 

endo selectivity. Finally, the resulting cyclized radical is converted to the desired product 

through one of several quenching methods, such as trapping with a radical scavenger, a 

fragmentation reaction, or an electron-transfer reaction, depending on the radical 

cyclization employed. It is important that the radical cyclization step must be faster than 

the trapping of the initially generated radical otherwise the cyclization will stop with an 

incomplete transformation. The most common products are five- and six-membered 

rings, and the formation of smaller or larger rings is rarely observed. However, various 

side reactions make the radical cyclization method problematic, and cyclization is 

especially slow for small and large rings, excepting macrocyclization. Compared to the 

aforementioned cationic cyclization through ionic rearrangement, the advantage of 

radical cyclizations include: reactions are not complicated by Wagner-Meerwein 

rearrangement (carbocation 1,2-rearrangement),61, 62 do not require strongly acidic 

conditions, and can be kinetically controlled. In addition, radical cyclizations are much 

faster than analogous anionic cyclizations, and can avoid β-elimination side reactions.  

The biosynthesis of natural products through radical cyclization is rare despite 

many organic syntheses using radical cyclization to prepare natural products have been 

developed. The avermectins, a complex of chemically related agents isolated from 

Streptomyces avermitilis, show promise as an extraordinarily potent anthemintic, were 
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investigated to determine if their hexahydrobenzofuran fragment is biosynthesized by 

radical cyclization (Figure12).63, 64, 65, 66 Synthetically, the acyclic precursor was treated 

with tri-n-butyltin hydride and azobisisobutyronitrile (AIBN) to initiate the desired 

tandem intramolecular cyclization followed by the incorporation of tri-n-butyltin radicals 

by intermolecular addition to give the allylstannane intermediate, which was then 

oxidized with peracid to yield the desired polycyclic core system.  
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Figure 1-12. Synthetic scheme for the construction of hexahydrobenzofuran fragment of avermectins. 
 

The Njardarson group demonstrated the utilization of radical cyclization to 

produce the symmetrically substituted bicyclic natural products, guttiferone and 

hyperforin, commonly used as a natural remedy of St. John′s wort and a promising 

potential anticancer agent (Figure 1-13).67 Retrosynthetic analysis of guttiferone G relies 

on the late stage desymmetrization of intermediate. This intermediate is rapidly accessed 

via tandem 5-exo radical cyclizations enabled by oxidative dearomatization of 

strategically functionalized para-hydroquinone. It has been reported that this 

dearomatization proceeds uneventfully to produce a ketal from the phenol intermediate, 

which is cyclized to form the desired symmetrical bridged bicyclic product as the only 

product when (TMS)3SiH and Et3B are used as the solvent with a yield of 73%. 
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Figure 1-13. Retrosynthetic analysis of guttiferone G and chemical structure of hyperforin. 
 

In nature, the closest examples of radical cyclization are the [2+2] cycloreversion 

reaction catalyzed by DNA photolyases 68, 69 and the (6-4) photolyase-catalyzed reaction 

of the (6-4) photoproduct of DNA 70, 71 which is formed by irradiation with visible light. 

Photolyases are enzymes that use visible light as the energy source with the help of two 

chromophoric cofactors, reduced flavin adenine dinucleotide and either N
5,N10-

methenyltetrahydropteroylpolyglutamate with 3-6 glutamate residues or 8-hydroxy-7,8-

didemethyl-5-deazariboflavin. Many biochemical experiments have provided evidences 

supporting radical-mediated cycloreversion. The simplified reaction mechanisms for 

these two enzymes are depicted in Figure 1-14.  
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Figure 1-14. Mechanisms proposed for DNA photolyase (top) and (6-4) photolyase (bottom). 
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In the “cross-bridging” reaction catalyzed by SpnF, radical cyclization is expected 

to proceed in a stepwise manner via two plausible biradical intermediates to make the 

first carbon-carbon bond between the C-4 to C-7 diene and the C-11 to C-12 alkene 

(Figure 1-15). Then, the newly generated biradical intermediate undergoes the second 

carbon-carbon bond formation to complete the [4+2] cycloaddition and produce the 

cyclohexene moiety. A biradical intermediate possessing radicals at C-4 and C-12 is 

believed to be thermodynamically more stable due to the delocalization of electron 

through resonance stabilization. By comparison, the biradical intermediate having 

unpaired electrons at the C-7 and C-11 may be a kinetic intermediate due to the partial 

stabilization of one component.  
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Figure 1-15. Detailed biradical cyclization mechanism for SpnF-catalyzed [4+2] cycloaddition in the 
biosynthesis of spinosyn A. 
 

1.3. MECHANISTIC INVESTIGATIONS OF SpnL-CATALYZED CYCLIZATION 

SpnL catalyzes the formation of cyclopentene ring between two conjugated 

alkenes. This begs the question, what is the mechanism SpnL uses to initiate this reaction. 

At a glance, SpnL-catalyzed cyclization is similar to a well-known organic 

reaction, the Rauhut-Currier reaction 29, 30 (also called the vinylogous Morita-Baylis-

Hillman reaction), which describes the dimerization or isomerization of activated alkenes 

adjacent to electron-withdrawing functional groups such as ketones, esters, and nitriles 



 19 

(specifically, enones) in the presence of an organophosphine of the type R3P. This 

reaction was reported in 1963 by the Rauhut and Currier group (Figure 1-16).  
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Figure 1-16. Rauhut-Currier reaction reported in 1963 by the Rauhut-Currier group. 
 

A large number of scientific inquiries involve the Morita-Baylis-Hillman 

reaction,72, 73, 74 reflecting its potential to greatly affect organic synthesis, whereas the 

Rauhut-Currier reaction 29, 30 has not received as much attention due to the low reactivity 

of its substrates and difficulty in controlling the selectivity of the cross-coupling reaction. 

Interestingly, the Morita-Baylis-Hillman (MBH) and Rauhut-Currier (RC) reactions 

merge the concepts of conjugate addition and latent enolate generation. Unlike the MBH 

reaction, which utilizes the coupling of an activated alkene (latent enolate) with an 

aldehyde, the definition of a Rauhut-Currier reaction has been recently extended to more 

general reactions, including any coupling of one active alkene (latent enolate) to a second 

alkenyl Michael acceptor to produce a new C-C bond between the α-position of one 

activated alkene and the β-position of a second alkene with a help of nucleophilic 

catalyst. The mechanism of the Rauhut-Currier reaction has been well studied. The 

Baizer and Anderson group have shown that the α-position of one alkene is first activated 

by a nucleophilic attack by an organophosphine to give a ylide, and that newly formed 

alkyl anion attacks the β-position of the second alkene to make a C-C bond. Furthermore, 

they demonstrated that the newly formed alkyl anion on the second alkene abstracts the 
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proton on the junction position to make the more stable ylide. The phosphorus ylide is 

then released to product a dimer molecule (Figure 1-17). An interesting aspect of the 

Rauhut-Currier reaction is that the first alkene retains its original alkene moiety and the 

second alkene loses its original alkene moiety. A general intramolecular Rauhut-Currier 

reaction is depicted in Figure 1-8, which may be utilized by SpnL-catalyzed cyclization 

in the biosynthesis of spinosyn A.  

 
 

Figure 1-17. General intramolecular Rauhut-Currier reaction. 
 

In nature, a number of natural products seem to possess a skeleton similar to the 

product of the Rauhut-Currier reaction. However, to my knowledge, no enzyme capable 

of catalyzing “Rauhut-Currier” reaction has been reported. The Moore and Erguden 

group have reported an interesting and unique application of the intramolecular Rauhut-

Currier reaction in the synthesis of a fused tetraquinane ring system en route to the 

synthesis of the natural product waihoensene (Figure 1-18).75 In their synthesis, the 

cycloisomerization of tricyclic bis(enone) catalyzed by thiophenol and sodium 

thiophenolate produced angularly fused tetraquinane with an excellent yield of 93%. The 

reaction mechanism begins with the nucleophilic conjugate addition of the thiolate to the 

target. This is followed by a transannular Michael reaction, resulting in a tetracyclic 
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intermediate. An intramolecular E2 trans-diaxial elimination reaction then proceeds to 

produce the desired product and regenerate the thiophenolate.  
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Figure 1-18. Synthesis of a fused tetraquinane ring system as an intermediate for the synthesis of 
waihoensene. 
 

Krische and Agapiou demonstrated the use of highly reactive and chemoselective 

thioenoates in the Rauhut-Currier reaction for the synthesis of the furanosequiterpene 

lactone (±)-ricciocarpin A (Figure 1-19).76 Interestingly, compared to the less active 

analogous enolate-enone, the thienolate-enone substrate showed superior reactivity and 

exquisite chemoselectivity in providing the desired cyclized product with an 81% yield.  
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Figure 1-19. Utilization of Rauhut-Currier reaction for the synthesis of (±)-ricciocarpin A. 
 

Sorensen and co-workers successfully completed the synthesis of (+)-harziphilone 

with the use of a tertiary amine-catalyzed Rauhut-Currier reaction (Figure 1-20).77 The 

mechanism they proposed begins with the enone component being activated with a mild 

catalyst, DABCO (10 mol%) to give an DABCO-decorated enolate, which attacks the β-

position of conjugated alkyne through an intramolecular Michael addition to yield a 

chemoselectively monocyclized zwitterion intermediate. The (+)-harziphilone is finally 

produced through either a direct intramolecular substitution or a β-elimination followed 

by 6π-electrocyclization. 



 22 

O

O Me

HO

HO
Me

O

O Me

HO

HO
Me

N
N

O

HO

HO
Me

N
N

O

Me

O

HO

HO
Me

O

Me

O

HO

HO
Me

O

Me

DABCO (10 mol%)
CHCl3, rt, 24 h, 70%

intramolecular
1,4-addition

intramolecular
1,4-addition

proton transfer

β-elimination

intramolecular
substitution

6π-electrocyclization

(+)-harziphilone

 
 

Figure 1-20. Synthesis of (+)-harziphilone using Rauhut-Currier reaction. 
 

Roush and co-workers demonstrated the use of an intramolecular Rauhut-Currier 

cycloisomerization to generate the as-indacene core of the antimitotic agent FR182877 

(Figure 1-21).78 Their total synthesis of (-)-spinosyn A also features a diastereoselective 

transannular Rauhut-Currier reaction (Figure 1-22).79, 80, 81, 82 The substrate for the 

Rauhut-Currier reaction was prepared from an intramolecular Horner-Wadsworth-

Emmons macrolactonization followed by a transannular Diels-Alder reaction. PMe3 

provided in excess activated the enone to give an enolate, which proceeded with excellent 

diastereoselectivity to generate the perhydro-as-indacene core.  
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Figure 1-21. Intramolecular Rauhut-Currier cycloisomerization for the preparation of as-indacene ring in 
FR182877. 
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Figure 1-22. Diastereoselective synthesis of perhydro-as-indacene core in (-)-spinosyn A. 
 

Although covalent catalysis is prevalent in enzymatic reactions, evidence to 

suggest that it is involved in generating an enolate to form a new C-C bond is rare. In 

nature, the closest example of the Rauhut-Currier type mechanism is the reaction 

catalyzed by thimidylate synthase (Figure 1-23),83, 84, 85, 86 which is regarded as a Baylis-

Morita-Hillman reaction. The reaction is initiated by the nucleophilic addition of a 

cysteine residue in thymidylate synthase to the C-6 position of 2′-deoxyuridine-5′-

monophosphate (dUMP) resulting in an activated enolate. The resulting enolate then 

attacks the positively charged activated imine of N
5,N10-methylene-5,6,7,8-

tetrahydrofolate to practically hijack a methyl group and eventually produce 2′-

deoxythimidine-5′-monophosphate (TMP).  
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Figure 1-23. Proposed mechanism of the reaction catalyzed by thymidylate synthase (R = 2′-
deoxyribose-5′-monophosphate, R′= (para-aminobenzoyl)-glutamate). 
 

Utilization of the Rauhut-Currier reaction is an impressive step in the chemical 

synthesis of spinosyn A because it inspired the proposed mechanism of SpnL-catalyzed 

cyclization in the biosynthesis of spinosyn A.79, 80, 81, 82 While trimethylphosphine was the 

chemical reagent used as the nucleophile to initiate the Rauhut-Currier reaction in organic 
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synthesis, a nucleophilic side chain of an amino acid residue in SpnL such as cysteine or 

lysine, is expected to activate the enone component in the biosynthesis of spinosyn A, as 

shown in Figure 1-6. After activation, the C-C bond between C-3 and C-14 is made 

through Michael addition of the enolate to the C-3 position, followed by protonation at 

the C-2 position. Finally, the nucleophile covalently attached to the C-13 position is 

released by 1,2-elimination catalyzed by deprotonation at the C-14 position with an 

active site base to complete the synthesis of perhydro-as-indacene core in spinosyn A.  

The second proposed mechanism is the Michael addition mechanism, which uses 

the base to activate the enone component.31, 32 The Michael reaction or Michael addition, 

was originally defined by Arthur Michael. It is an organic reaction describing the 

nucleophilic addition of a carbanion or nucleophile to an α,β-unsaturated carbonyl moiety 

to produce a 1,5-diketo-containing moiety (Figure 1-24). In general, the moiety 

containing an acidic hydrogen adjacent to electron-withdrawing groups, such as an acyl 

and cyano group, to produce a carbanion or nucleophile under basic conditions is called 

the Michael donor. The moiety containing an activated alkene adjacent to ketone which 

produces an enone by nucleophilic addition of the Michael donor is called the Michael 

acceptor. During the Michael addition, deprotonation of an acidic proton by base leads to 

formation of a carbanion, which is stabilized by its adjacent electron-withdrawing group 

as part of a resonance structure (namely, enolate). This nucleophile makes a C-C bond 

when coupled to the electrophilic alkene to form another carbanion or enolate. 

Protonation of this second carbanion by the protonated base or solvent finishes the 

Michael addition to give a 1,5-diketo-structure. The overall reaction is highly efficient 
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and is usually irreversible at ambient temperature. The energy coordination of the 

reaction is predominantly determined by orbital, rather than electrostatic, considerations. 

According to the frontier orbital theory, the highest occupied molecular orbital (HOMO) 

in a stabilized enolate is highly polarized by an electron-withdrawing group making the 

central carbon electron-deficient and the α-carbon electron-rich (highly nucleophilic). 

The energy of the lowest unoccupied molecular orbital (LUMO) in the α,β-unsaturated 

carbonyl moiety is lowered by an electron-withdrawing group, with the α-carbon 

becoming electron-rich and the β-carbon becoming electron-deficient (highly 

electrophilic). Both polarized frontier orbitals are of similar energy, and react efficiently 

to form a new C-C bond from one pair of in-phase overlap between HOMO in the 

Michael donor and LUMO in the Michael acceptor.  
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Figure 1-24. General mechanism of Michael addition. 
 

Organic syntheses of natural products often rely on the Michael addition to make 

new C-C bonds between two α,β-unsaturated carbonyl-containing components. Indeed, 

Michael addition is considered one of the most powerful and reliable tools for the 

stereocontrolled formation of carbon-carbon and carbon-heteroatom bonds in natural 

product synthesis. In 2003, Halland and co-workers reported the synthesis of the 

anticoagulant (S)-warfarin by a one step intermolecular asymmetric Michael addition of 
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4-hydroxycoumarin and benzylideneacetone in the presence of an imidazolidine catalyst 

with an enantioselectivity of 82% ee (Figure 1-25).87  
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Figure 1-25. Asymmetric synthesis of (S)-warfarin using Michael addition. 
 

Evans and co-workers reported the production of the synthetic intermediate of (-)-

tetracycline and (-)-oxytetracycline through stereoselective transannular Michael addition 

(Figure 1-26).88 Fukayama and co-workers also used Michael addition reaction in their 

synthesis of (-)-kainic acid, which was isolated from the Japanese marine algae Digenea 

simplex, and displays potent anthelminthic properties (Figure 1-27).89, 90, 91  
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Figure 1-26. Preparation of synthetic intermediate for (-)-tetracycline and (-)-oxytetracycline. 
 

NH
O

HH
OAc

Me

MeO2C O OMe
H

N

CO2Me

Boc
O

N
Boc

CO2Me
H

HH

O

Me
H

N
H

CO2Me
H

HH
Me CO2Me

(-)-kainic acid

LHMDS, DMF
-60 oC, 20 min
95%, 82% de

 
 

Figure 1-27. Preparation of synthetic intermediate for (-)-kainic acid. 
 

Zalkow and co-workers demonstrated that the precursor of (+)-atisirene, an 

enatiomer of a diterpenoid isolated from Erythroxylon monogynum, could be synthesized 

from an optically active enone ester using an intramolecular double Michael reaction 

(Figure 1-28).92, 93 The Ihara group also demonstrated the use of an intramolecular 
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double Michael reaction to synthesize a precursor of atisine, a natural product found in 

Aconitium heterophyllum (Figure 1-29).93, 94, 95, 96, 97, 98, 99 

O

O

OMe

H
Me

Me

Me

LHMDS

H
Me

Me

Me

H
O

MeO2C

92%, 100% de

H
Me

Me

Me

H

(+)-atisirene  
 

Figure 1-28. Preparation of synthetic precursor of (+)-atisirene using intramolecular double Michael 
reaction. 
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Figure 1-29. Preparation of synthetic precursor of atisine using intramolecular double Michael reaction. 
 

SpnL-catalyzed cyclization through the Michael addition mechanism is obviously 

initiated by a simple deprotonation at C-12, although the source of the catalytic base is 

unknown. After Michael addition to make the C-C bond between C-3 and C-14, an 

isomerization of the double bond from ∆12,13 to ∆13,14 completes the perhydro-as-indacene 

core of spinosyn A (Figure 1-6).  

1.4. DEUTERIUM-LABELED SUBSTRATE ANALOGS FOR MECHANISTIC STUDIES OF 

NATURAL PRODUCT BIOSYNTHESIS  

In the biosynthesis of spinosyn A, the [4+2] cycloaddition by SpnF to produce the 

stereospecific cyclohexene moiety is consistent with a typical Diels-Alder reaction 

between a diene (C-4 to C-7) and a dienophile (C-11 to C-12) via the stereospecific endo-

mode syn-addition through a pericyclic transition state. However, there is no 

experimental data to support this mechanism. In fact, there is no evidence to distinguish 

any of these three plausible mechanisms for this enzymatic reaction. To study the 
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mechanism of SpnF-catalyzed cycloaddition, a kinetic isotope effect study was proposed. 

We designed four mechanistic probes containing deuterium at the reaction centers, 

specifically, a [C4-2H] analog (C4-D analog), a [C7-2H] analog (C7-D analog), a [C11-

2H] analog (C11-D analog), and a [C12-2H] analog (C12-D analog) (Figure 1-30). 
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Figure 1-30. Mechanistic probes for SpnF-catalyzed cycloaddition (C4-D, C7-D, C11-D, and C12-D 
analogs). 
 

The primary difference between the two proposed mechanisms for SpnL-

catalyzed cyclization is the mode of activation of the conjugated enone component of C-

12 to C-15, a nucleophilic attack at the C-13 position in the Rauhut-Currier type 

mechanism or a deprotonation at C-12 position in the Michael addition mechanism. Thus, 

several mechanistic probes, such as C12-D and C13-D analogs, were designed to 

distinguish between the two mechanisms (Figure 1-31), using the kinetic isotope effect. 
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Figure 1-31. Mechanistic probes for SpnL-catalyzed cyclization (C12-D and C13-D). 
 

Generally, an isotopic replacement involved in bond breakage or rehybridization 

leads to the change in the rate of reaction.100 Substitution of hydrogen (H) with deuterium 

(D) affords a relatively large isotope effect when the bonds being broken or formed are 

connected with hydrogen, as compared to the isotope effect with other atoms. The 

magnitude of the isotope effect, expressed by kH/kD, can provide valuable information 
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about the reaction mechanism. Primary kinetic isotope effects are directly related to the 

bond breaking or bond forming event at the X-H/X-D bond, whereas secondary kinetic 

isotope effects arise from a rehybridization (α-) or an isotopic substitution remote from 

the bonds undergoing reaction (β-).  

Basically, all isotope effects originate from the differences in the frequencies of 

the various vibrational modes of a molecule that arise by isotope substitution. For a bond 

breaking during the rate-determining step of a reaction (which is expected to be a primary 

kinetic isotope effect), the potential energy of the system does not change with isotope 

substitution. However, the shape of the potential wells on an energy surface is supposed 

to change with the vibrational modes undergoing the most change during the reaction. 

Zero-point energy (ZPE) for the lowest point in the potential energy well is expressed as 

e0 = ½·hν, from the quantized energies, en = (n+½)·hν, of the vibrational modes, where ν 

is the frequency of the vibrational mode being considered, expressed by � � �
��� �

�	, 

where 
� � �
��
�
���. Thus, the frequency is directly proportional to the square root of the 

force constant for the bond, and inversely proportional to the square root of the reduced 

mass (mr). The reduced mass for a bond between a heavy atom (carbon, nitrogen, or 

oxygen) and a light atom (H or D) is significantly affected by an H/D substitution. The 

stretching frequency for a bond with deuterium is lower, and the ZPE for a bond is also 

lower than that of hydrogen. Therefore, in the case of homolytic cleavage of a C-H or C-

D bond, more activation energy is required for a C-D bond than a C-H bond (Figure 1-

32). In other word, the difference between C-H ZPE and C-D ZPE defines the magnitude 
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of the isotope effect, and kH/kD is greater than 1. Mechanistically, the maximum value of 

the primary kinetic isotope effect is approximately kH/kD = 6.5, assuming that the bond is 

completely broken in the transition state. Most isotope effects are less than this value due 

to the partial cleavage of the bond in the transition state.  

 
 

Figure 1-32. A Morse potential for a C-H bond showing that the activation energy for homolysis of a 
C-D bond is larger than for a C-H bond. 
 

Secondary kinetic isotope effects occur from isotopic substitutions at a bond that 

is not being broken, and typically undergoes a change in bond hybridization or 

participation of the bond in hyperconjugation, as defined as an α or β secondary isotope 

effects. The α effect occurs when the atom undergoing the reaction has the associated 

isotope, while the β effect occurs when the neighboring atom has the isotope. When a C-

H bond with sp3 hybridization is changed to sp2 hybridization, only a limited number of 

vibrational modes undergo a large change. These modes include stretches, as well as in-

plane and out-of-plane bending motions (Figure 1-33). A change of sp2 hybrid to sp 

gives a similar change of vibrational modes as well. Changes in the force constant for 

stretches of a bond undergoing hybridization are not large enough to make a significant 

isotope effects, although C-H bond strengths and force constants for the stretching 
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vibrations decrease in the order sp > sp2 > sp3. The difference in force constants for an in-

plane bend is due in small part to the same frequency of the sp3 and sp2 hybridized 

carbons. The in-plane and out-of-plane bends for a sp3 hybridized carbon are degenerate. 

However, the in-plane bend is a much stiffer motion for the sp2 hybridized carbon than 

the out-of-plane bend due to the lower steric hindrance for the out-of-plane bend of a sp2 

hybridized carbon. Thus, there is a significant difference in zero potential energy 

difference between C-H and C-D bonds in reaction that involve rehybridization between 

sp3 and sp2 due to a large difference in force constant for the out-of-plane bend of an sp3 

hybrid versus an sp2 hybrid, resulting in a measurable secondary isotope effect. A normal 

secondary kinetic isotope effect arises from the slower reaction due to the substitution of 

hydrogen with deuterium on the carbon undergoing rehybridization. An inverse 

secondary kinetic isotope effect occurs when the reaction proceeds faster with deuterium 

than with hydrogen.  

 Frequencies (cm-1) for 

vibrational mode H
 

H
 

stretching 2900 2800 
in-plane bending 1350 1350 
out-of-plane bending 1350 800 
 

Figure 1-33. Vibrational modes for C-H bonds on sp3 and sp2 hybridized carbons. 
 

The flavoenzyme tryptophan 2-monooxygenase (TMO) from Pseudomonas 

savastanoi catalyzes the oxidative decarboxylation of L-tryptophan (Figure 1-34A) in the 

first step of a two-step biosynthetic pathway for the plant hormone indoleacetic acid.101, 

102 For the amine oxidation to imine, there are three mechanisms proposed with alanine 
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instead of L-tryptophan (Figure 1-34B): the direct hydride transfer mechanism (Figure 

1-35A), the covalent flavin-alanine intermediate mechanism (Figure 1-35B), and the 

radical intermediate mechanism (Figure 1-35C). 
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Figure 1-34. Reaction of tryptophan 2-monooxygenase (TMO). A) Oxidative decarboxylation of 
tryptophan, B) Two-step pathway of TMO with alanine. 
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Figure 1-35. Proposed mechanisms for TMO. A) Direct hydride transfer mechanism, B) Covalent 
flavin-alanine intermediate mechanism, and C) Radical intermediate mechanism. 
 

The Fitzpatrick group demonstrated that the deuterium isotope effect on the rate 

constant for flavin reduction by α-deuterated alanine was 6.3 ± 0.9, corresponding to a 
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primary kinetic isotope effect.103, 104 Taken together with other biochemical results, the 

TMO oxidation of alanine was suggested to proceed through a hydride transfer 

mechanism.  

In contrast, D-amino acid oxidase catalyzes the oxidation of D-amino acids to their 

respective imino acids by transfer of a hydride equivalent to the tightly bound FAD and 

subsequently transferring of electrons to molecular oxygen to form hydrogen peroxide. 

Previous results suggested two possible mechanisms, the direct nucleophilic attack 

mechanism and the radical mechanism (Figure 1-36).105, 106  
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Figure 1-36. Proposed mechanisms of D-amino acid oxidase. Top) radical mechanism, and Bottom) 
nucleophilic attack mechanism. 
 

Secondary kinetic isotope effect experiments using deuterated nitroethane and 1-

nitropropane were performed over a pH range of 6-11, and an average value of α-D
V/K 

was determined to be 0.84 ± 0.02, the inverse secondary kinetic isotope effect, indicating 

a significant sp2 to sp3 rehybridization in the transition state.105, 106 Assuming that 

deprotonation is very fast initially, only an anion intermediate can generate sp2-

hybridized carbon at α-position. This strongly suggests that the reaction proceeds through 
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the direct nucleophilic attack mechanism rather than the two single electron transfers 

(biradical) mechanism.  

In the case of SpnF-catalyzed [4+2] cycloaddition, the C-C bond formation 

connecting C-4 to C-12, and C-7 to C-11 may occur in a concerted or stepwise manner, 

depending on the mechanism. Measurement of a secondary kinetic isotope effect from 

the rehybridization of sp2 to sp3 at the reaction center is expected to be useful to 

differentiate among the three proposed reaction mechanisms. Likewise, the mechanism of 

SpnL-catalyzed cyclization can be differentiated by primary or secondary kinetic isotope 

effect depending on whether a C-H bond cleavage reaction is part of the rate limiting 

step.  

1.5. FLUORINATED SUBSTRATE ANALOGS FOR MECHANISTIC STUDIES OF NATURAL 

PRODUCT BIOSYNTHESIS 

As pointed out earlier, the only difference between the two mechanisms proposed 

for SpnL-catalyzed cyclization is the mode of activation of the conjugated enone 

component of C-12 to C-15, a nucleophilic attack at the C-13 position in the Rauhut-

Currier type mechanism or deprotonation at the C-12 position in the Michael addition 

mechanism. In order to distinguish between these two mechanisms, a fluorinated 

mechanistic probe, C13-F analog, was also designed for the study of possible suicide 

inhibition and SpnL-covalent modification (Figure 1-37).  
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Figure 1-37. Mechanistic probes for SpnL-catalyzed cyclization (C13-F analogs). 
 

Many mechanistic studies to determine enzymatic transformations rely on using 

fluoride-containing substrate analog as irreversible inhibitors.108, 109 The unique 

stereoelectronic properties of the fluorine atom make it an effective bioisostere for both 

hydrogen and oxygen atoms.110, 111, 112 Fluorine has a high electronegativity (4.0) and a 

van der Waals radii of 1.47 Å. This is comparable to hydrogen′s van der Waals radii (1.2 

Å) and oxygen′s electronegativity (3.5). Thus, fluorine has been widely used to replace 

hydrogen or oxygen in designing mechanistic probes to study the mechanisms of 

enzymatic transformation. Some fluorine-containing substrate analogs have been 

demonstrated to make covalent modifications to target enzymes, which results in the 

inactivation of the target enzymes.  

Thymidylate synthase is the enzyme used to catalyze the conversion of 2′-

deoxyuridine monophosphate to 2′-deoxythymidine monophosphate (dTMP) with 

concomitant conversion of N
5,N10-methylenetetrahydrofolate to 7,8-dihydrofolate 

(Figure 1-38).83, 84, 85, 86, 111, 112 2′-Doxythymidine monophosphate (dTMP) is 

subsequently phosphorylated to thymidine triphosphate (dTPP), which is then used for 

DNA synthesis and repair. If this enzyme is inhibited, DNA synthesis is blocked. These 

thymidylate synthase inhibitors are used clinically as antitumor and antimicrobial agents. 

When the mechanism-based inactivator, 5-fluoro-2′-deoxyuridylate, was used to facilitate 
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the elucidation of the structure of the inactivated thymidylate synthase complex (Figure 

1-39), it was possible to propose a mechanism for the first part of the enzymatic 

transformation (Figure 1-40, top). The active site cysteine residue first attacks the C-6 

position to afford a substrate-enzyme covalent adduct and to produce an enolate 

intermediate, which is then used to attack methylenetetrahydrofolate at the C-5 position. 

Due to the lack of a proton at the C-5′ position, further transformation is inhibited, 

leading to a covalent inactivation of thymidylate synthase. Combined with other 

biochemical evidences, the mechanism of one carbon unit insertion catalyzed by 

thymidylate synthase was proposed, as shown in Figure 1-40.  
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Figure 1-38. Reaction catalyzed by thymidylate synthase. 
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Figure 1-39. Inactivation of thymidylate synthase by 5-fluoro-2′-deoxyuridylate. 
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Figure 1-40. Proposed mechanism of thymidylate synthase. 
 

The NAD+-dependent enzyme, CDP-D-glucose 4,6-dehydratase (Eod) catalyzes 

the conversion of CDP-D-glucose to CDP-4-keto-6-deoxyglucose (Figure 1-41). 

Labeling studies revealed that the C-4-H lost in the initial oxidation is transferred to the 

C-6-methyl group in the product. Incubation of difluoroglucose derivative with Eod led to 

the formation of a covalent adduct and inactivated the enzyme. The conclusion was 

supported by in vitro activity assay, 19F NMR, and MS analysis (Figure 1-42).113, 114 
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Figure 1-41. Reaction catalyzed by CDP-D-glucose 4,6-dehydratase (Eod). 
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Figure 1-42. Proposed mechanism of Eod inactivation by difluoroglucose derivate. 
 

A mechanistic probe, C13-F analog, was designed, which is predicted to form a 

covalent adduct with SpnL if the SpnL-catalyzed cyclization proceeds through the 

Rauhut-Currier type mechanism. First, the endogenous nucleophile of SpnL attacks the 

C-13 position to make a covalent bond, and the negative charge is stabilized by the keto 

group at the C-15 position to produce an enolate. Second, the enolate, as a Michael 

donor, undergoes the intramolecular cyclization connecting the C-14 and the C-3 

position, the latter of which is a Michael acceptor. After protonation at the C-2 position, a 

proton at the C-14 position is abstracted by a base. If the nucleophile covalently bound at 

the C-14 position is removed by a 1,2-elimination, the turnover product will be the C13-F 

compound. However, if C-13-F, a good leaving group, is removed instead of the 

endogenous nucleophile, SpnL will be inactivated by irreversible inhibition to produce a 

covalent adduct with the inhibitor (Figure 1-43, left). Alternatively, if the SpnL reaction 

proceeds through the Michael addition mechanism and the C13-F analog is a substrate for 

SpnL, the product should be the C-13-F containing cyclized product, which is the same 



 39 

compound produced when the enzyme nucleophile is removed at the last stage of the 

Rauhut-Currier type mechanism (Figure 1-43, right).  
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Figure 1-43. Proposed mechanism for SpnL reaction with C13-F analog through the Rauhut-Currier type 
mechanisms (left) and Michael addition mechanism (right). 
 
1.6. DISSERTATION STATEMENT 

Mechanistic studies of formation of polycyclic system in the biosynthesis of 

natural products have been an attractive area of research, particularly in the context of 

discovery and development since many unusual enzyme reactions must be involved. In 

order to study the mechanisms of enzymatic transformation, many biochemical tools have 

been developed over the years such as various spectroscopic methods, kinetic isotope 

effect measurement, and mechanism-based inhibition among others. Combined with 

organic chemistry to synthesize the novel enzyme substrates and mechanistic probes, 

mechanistic studies of many biosynthetic enzymes have expanded our understanding of 
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natural product biosynthesis. The biosynthetic pathway of spinosyn A is especially 

interesting, as it has two unusual features, the SpnF-catalyzed [4+2] cycloaddition and the 

SpnL-catalyzed cyclization to produce the perhydro-as-indacene core. Therefore, the aim 

of this dissertation is to investigate the detailed mechanistic aspects of the enzymatic 

transformations catalyzed by SpnF and SpnL. Chapter 2 describes the mechanistic 

investigation of SpnF-catalyzed [4+2] cycloaddition in the biosynthesis of spinosyn A. 

The first focus is to distinguish between the three proposed mechanisms: the Diels-Alder 

reaction mechanism, the ionic rearrangement mechanism, and the biradical cyclization 

mechanism. Chemical synthesis of the natural substrate and four deuterium-labeled 

substrate analogs for SpnF allows us to determine the secondary kinetic isotope effects, 

which are informative to differentiate the three proposed mechanisms. The second focus 

is to study the intrinsic properties of SpnF in terms of thermokinetics and 

thermodynamics using chemically synthesized cyclic and non-cyclic SpnF substrate 

analogs. Chapter 3 describes the mechanistic investigation of SpnL-catalyzed cyclization 

in the biosynthesis of spinosyn A. The Rauhut-Currier type mechanism and Michael 

addition mechanism are differentiated by kinetic isotope effect study using a competitive 

and direct comparison activity assay of SpnL with deuterium-labeled SpnL substrate 

analog. The mechanism-based inhibition study using a fluorinated SpnL substrate analog 

is also reported. Additionally, the roles of SAM in SpnF and SpnL are investigated. 
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Chapter 2. Mechanistic Investigation of SpnF-Catalyzed [4+2] 

Cycloaddition in the Biosynthesis of Spinosyn A 

 

2.1. INTRODUCTION 

SpnF-catalyzed [4+2] cycloaddition has attracted significant attention due to its 

mechanistic complexity in the biosynthesis of the perhydro-as-indacene core of spinosyn 

A and its potential as a “Diels-Alderase” reaction (Figure 2-1).37, 38, 39, 40 The substrate of 

SpnF, a keto component with an extended conjugated system spanning from C-11 to C-

15, is biosynthesized through SpnJ-catalyzed oxidation of the C-15 hydroxyl group to 

form a ketone followed by SpnM-catalyzed dehydration of the hydroxyl group at C-11 to 

generate the dienophile moiety. The corresponding diene (C-4 to C-7), which is part of a 

well-conjugated ester, is derived directly from polyketide chain extension catalyzed by 

polyketide synthase (PKS). To explain how SpnF makes a cyclohexene, three plausible 

mechanisms have been proposed (Figure 2-2).  
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Figure 2-1. Established biosynthetic pathway of spinosyn A (1) 
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Figure 2-2.Proposed mechanisms for SpnF-catalyzed [4+2] cycloaddition in the biosynthesis of spinosyn A 
 

The first proposed mechanism, the “Diels-Alder reaction mechanism”, describes 

the formation of the cyclohexene system through a [4+2] cycloaddition between a 

conjugated electron-rich 1,3-diene component and a substituted electron-deficient alkene 

(dienophile) via a concerted, pericyclic, and aromatic transition state.25, 26, 27, 28 

Previously, several putative Diels-Alderases have been reported to catalyze [4+2] 

cycloaddition reactions in natural products biosynthesis such as the formation of 

solanapyrone, lovastatin, and macrophomate. However, the experimental evidence was 

inconclusive due to the fact that the putative cyclases such as solanapyrone synthase 41, 42, 

43 and lovastatin nonaketide synthase (LovB) 44, 45 are multifunctional enzymes which 
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catalyze more than one reaction, and macrophomate synthase (MPS) 46, 47, 48, 49, 50, 51 has 

been shown to have a aldolase activity.52  

The second plausible mechanism to explain SpnF-catalyzed [4+2] cycloaddition 

is the “ionic rearrangement mechanism”. This mechanism describes that the cyclization 

involves a series of ionic rearrangements of the conjugated system by first connecting C-

7 and C-11 in the macrolactone of spinosyn A. This mechanism is similar to those found 

in the biosynthesis of terpenoids.38, 39 Although the exact position of the carbocation in 

the conjugated system is unknown, the oxygen at C-15 should be negatively charged 

through an ionic rearrangement, and this may be a driving force stabilizing the di-ionic 

transition state during the SpnF reaction.  

The third mechanism proposed for SpnF reaction is the “radical cyclization 

mechanism”, which explains the cyclization as a series of events starting with the 

generation of a biradical intermediate, followed by radical induced cyclization to yield a 

product with fixed stereochemistry. While radical cyclization is widely used in the area of 

organic synthesis, DNA photolyases 68, 69 and (6-4) photolyase 70, 71 are two rare 

enzymatic examples which use radical cyclization as part of their reaction mechanism. 

The Diels-Alder reaction is a concerted mechanism, while the ionic rearrangement 

reaction and radical cyclization reaction are stepwise mechanism.  

In the biosynthesis of spinosyn A, the [4+2] cycloaddition to produce the 

stereospecific cyclohexene moiety is consistent with a typical Diels-Alder reaction 

between a diene (C-4 to C-7) and a dienophile (C-11 to C-12) via a stereospecific endo-

mode syn-addition through a pericyclic transition state (Figure 2-3). However, there is no 
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experimental data to support this mechanism. In fact, none of the proposed mechanisms 

for this enzymatic reaction has ever been investigated. To differentiate the reaction 

mechanisms for SpnF-catalyzed cycloaddition, a kinetic isotope effect study is proposed.  
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Figure 2-3. Diels-Alder reaction between diene (C-4 to C-7, bottom) and dienophile (C-11 to C-12, top) 
via the stereospecific endo-mode syn-addition. 
 

The kinetic isotope effect deals with how an isotope substitution changes the rate 

of reaction.58 A primary kinetic isotope effect is directly related to the bond breaking 

event at an X-H/X-D bond, whereas a secondary isotope effect arises from the change of 

rehybridization at the site of action (α-) or isotopic substitution at a site other the reactive 

bond (β-). Due to the change of vibrational mode during the rehybridization of a reaction 

center, measurement of the secondary kinetic isotope effect would provide useful 

information to determine the reaction mechanism. For the mechanistic study of SpnF-

catalyzed [4+2] cycloaddition, four kinds of mechanistic probes are designed, each 

contains a deuterium instead of a hydrogen at one of the four reaction centers of interest, 

namely a C4-D analog, a C7-D analog, a C11-D analog, and a C12-D analog (Figure 2-

4).  
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Figure 2-4. Mechanistic probes for SpnF-catalyzed cycloaddition (C4-D, C7-D, C11-D, and C12-D 
analogs). 
 

No matter which reaction mechanism SpnF-catalyzed [4+2] cycloaddition 

follows, there are changes of hybridization from sp2 to sp3 at the C-4, C-7, C-11, and C-

12 reaction centers, guiding to secondary kinetic isotope effects when the attached 

hydrogen at these sites is replaced by deuterium.115, 116, 117, 118, 119, 120, 121, 122, 134, 124 If the 

[4+2] cycloaddition undergoes the concerted Diels-Alder reaction mechanism, the kinetic 

isotope effects, D(V/K), are expected to be approximately 5% inverse at all reaction 

centers, because of an increased vibrational frequency of the C-H out-of-plane bending 

modes when each carbon is converted from sp2 to sp3 hybridized center.118, 119, 120, 121, 122 

In the case of a stepwise ionic rearrangement mechanism, the C-7 and C-11 positions are 

expected to undergo C-C bond formation first due to the resonance stabilization of the 

ionic characters at the C-4 and the C-12 to C-15 positions of the intermediate, leading to 

around 5% inverse of the kinetic isotope effect for C7D(V/K) and C11D(V/K).123, 124 

Previously, Houk and co-workers demonstrated that the C4D(V/K) effect is around 4% 

normal for a radical intermediate with an sp2 carbon radical at the C-4 position.115 Since 

sp2 carbocations and sp2 carbon radicals have similar C-H vibrational frequencies, the 

secondary kinetic isotope effect at C-4, C4D(V/K), is expected to give a similar value of 

4~5% normal for both the ionic rearrangement and biradical rearrangement 

mechanisms.116, 117 In contrast, the secondary kinetic isotope effect at C-12, C12D(V/K), is 
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expected to be an unity or slightly inverse because C-12 doesn’t undergo a change of 

hybridization during the ionic rearrangement, but does undergo change of sp2 to sp3 

hybridization during C-C bond formation between C-4 and C-12. Finally, study of the 

secondary kinetic isotope effect should be able to distinguish between the stepwise ionic 

rearrangement and biradical rearrangement mechanism according to the order of first C-C 

bond formation during the cyclization. If the C-C bond formation occurs first between C-

4 and C-12 to leave biradical at C-7 and C-11, C4D(V/K) and C12D(V/K) are expected to be 

inverse due to the increased vibrational frequencies of the C-H out-of-plane bending 

modes in sp3 versus sp2 hybridized carbons. Formation of sp2 hybridized carbon radicals 

at C-7 and C-11 are expected to give secondary kinetic isotope effect, C7D(V/K) and 

C11D(V/K), of unity. In contrast, if the C-C bond is formed first between C-7 and C-11, the 

secondary kinetic isotope effects for a biradical rearrangement mechanism will be the 

same as those of the ionic rearrangement mechanism, showing 4% normal for C4D(V/K), 

inverse for C7D(V/K) and C11D(V/K), and unity for C12D(V/K). The predicted secondary 

kinetic isotope effects are summarized in Figure 2-5. Experimentally, second kinetic 

isotope effects will be measured by LC-ESI-MS based on the competitive in vitro activity 

assay with a mixture of natural substrate and labeled probes.123, 124 The experiments to 

determine the secondary kinetic isotope effects will be repeated many times to ensure the 

results are reproducible.  
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Diels-Alder reaction 

mechanism 
Ionic rearrangement 

mechanism 

Biradical rearrangement mechanism 

Biradical 
at C-7 and C-11 

Biradical 
at C-4 and C-12 

C4D(V/K) 0.95 (inverse) 1.04 (normal) 0.95 (inverse) 1.04 (normal) 
C7D(V/K) 0.95 (inverse) 0.95 (inverse) 1.00 (unity) 0.95 (inverse) 
C11D(V/K) 0.95 (inverse) 0.95 (inverse) 1.00 (unity) 0.95 (inverse) 
C12D(V/K) 0.95 (inverse) 1.00 (unity) 0.95 (inverse) 1.00 (unity) 
 

Figure 2-5. The expected secondary kinetic isotope effect for the proposed mechanisms of SpnF-
catalyzed [4+2] cycloaddition in the biosynthesis of spinosyn A. 
 

Another interesting question concerning the SpnF reaction is how SpnF 

accelerates the reaction, whether it acts predominantly by an entropic preorganization or 

an enthalpic transition state stabilization.40, 125, 126, 127, 128, 129, 130 To investigate the intrinsic 

properties of the SpnF reaction, three SpnF substrate analogs are designed as shown in 

Figure 2-6.  
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Figure 2-6. Analogs for studying the intrinsic property of SpnF 
 

In order to differentiate between substrate modifications which specifically affect 

the SpnF reaction and those which simply retard cyclization, the concept of a relative rate 

enhancement is considered. First, rate enhancement is defined as the ability to accelerate 

the rate of SpnF reaction compared to non-enzymatic reaction, that is, RE = kcat/knon, 

accordingly, RENS is equal to (kcat/knon)NS for the natural substrate, and REanalog is equal to 

(kcat/knon)analog.
131 Rate enhancement (RE) can be easily measured for the natural substrate 

or any substrate analog by an in vitro activity assay of SpnF. Second, if a substrate analog 

is modified, the relative rate enhancement is supposed to change in both the enzymatic 
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and non-enzymatic reaction. The relative rate enhancement is defined for natural 

substrate versus substrate analog as RRENS,analog = 
����

�������� � 
�����/�������

�����/�����������. Thus, an 

RRENS,analog of one means that the modification of the substrate doesn’t affect the 

cyclization entropically and enthalpically when the substrate analog undergoes 

cycloaddition enzymatically or non-enzymatically. Two SpnF substrate analogs, C2-3 

Unc and C13-14 Unc, were designed to study the contribution of enthalpic transition state 

stabilization by SpnF, assuming that the cyclic substrates are less affected by entropic 

preorganization. If the enthalpic transition state stabilization is dominant in SpnF 

reaction, RRENS,Unc should be greater than one for C13-14 Unc and C2-3 Unc analogs, 

since there is no conjugation between the dienophile and ketone at the C-15 position in 

the C13-14 Unc analog and between the diene and ester at the C-1 position in the C2-3 

Unc analog. Lacking of resonance stabilization through conjugation is expected to 

attenuate the rate of reaction. If rate increase of SpnF-catalyzed cyclization is observed 

for those two Unc analogs as compared to non-enzymatic reaction, one may hypothesis 

that the intact ketone at C-15 or the ester at C-1 may be more important for SpnF 

reaction. The possible enthanlpic transition state stabilization may be achieved by 

coordination with a Lewis acid, or by accepting a proton in the transition state. If 

RRENS,Unc is less than one, the enthalpic transition state stabilization may be less 

significant for the SpnF reaction. Contribution of entropic preorganization by SpnF can 

be measured with a non-cyclic Linear analog, which is less influenced by the enthalpic 

transition state stabilization since all the functional group are intact except for the lactone 
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ring. If entropic preorganization contributes more to the SpnF reaction, RRENS,Linear 

should be less than one because the enzymatic transformation of the Linear analog is 

more affected by the entropic preorganization by SpnF, compared to the cyclic natural 

substrate. In the case of enthalpic transition state stabilization, RRENS,Linear is expected to 

be slightly greater than one or equal to one because the Linear analog has the same 

conjugation system in its structure as the natural substrate. Along with the temperature 

dependence experiments, combined results will give insight into the SpnF reaction in 

terms of thermodynamics, assuming these substrate analogs are well behaved 

enzymatically and non-enzymatically.  

This chapter summarizes the progress of our mechanistic study of SpnF-catalyzed 

[4+2] cycloaddition to differentiate the three plausible mechanisms: the Diels-Alder 

mechanism, the ionic rearrangement mechanism, and the biradical rearrangement 

mechanism. Also included are the experiments to determine the intrinsic properties of the 

SpnF reaction in terms of entropic preorganization and enthalpic transition state 

stabilization. Studies of the kinetic isotope effects are carried out using four mechanistic 

probes containing one deuterium at four different reaction centers (C4-D, C7-D, C11-D, 

and C12-D analogs). The intrinsic properties of the SpnF reaction are examined using 

two cyclic analogs (C2-3 Unc analog and C13-14 Unc analog) and one non-cyclic analog 

(Linear analog). Since the mechanistic studies are still in progress, no definite 

conclusions concerning the mechanism and intrinsic properties of SpnF can be drawn at 

this time. However, the experiments described in this chapter are the foundation of SpnF 

research. The completion of this project is already in sight.  
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2.2. EXPERIMENTAL PROCEDURES 

2.2.1. Materials and Equipment 

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA), Fisher 

Scientific (Pittsburgh, PA, USA), Tokyo Chemical Industry (TCI; Boston, MA, USA), 

Acros (Geel, Belgium), Alfar Aesar (Ward Hill, Ma, USA) and/or Chem-Impex (Wood 

Dale, IL, USA), and used without further purification unless otherwise specified. 

Escherichia coli DH5α cells were obtained from Bethesda Research Laboratories 

(Muskegon, MI). The vector pEt28b(+) and enzyme KOD DNA polymerase were 

purchased from Novagen (Madison, WI, USA). DNA modifying enzymes (for restriction 

digestion and ligation), PCR primers, and the overexpression host E. coli BL21 star 

(DE3) were acquired from Invitrogen (Carlsbad, CA, USA) and New England Biolabs 

(NEB; Beverly, MA, USA). LB medium is a product of Difco (Detroit, MI, USA) or 

Fisher Scientific, and pre-stained protein markers are products of NEB. Ni-NTA agarose 

and kits for DNA gel extraction and spin miniprep were obtained from Qiagen (Valencia, 

CA, USA). All reagents for SDS-PAGE and Amicon YM-10 filtration products were 

purchased from Bio-Rad (Hercules, CA, USA) and Millipore (Billerica, MA, USA), 

respectively. Analytical thin layer chromatography (TLC) was carried out on pre-coated 

TLC glass plates (Silica gel, Grade 60, F254, 0.25 mm layer thickness) obtained from 

EMD Chemicals (Madison, WI, USA). Flash column chromatography was performed 

(230-400 mesh, Grade 60) by elution with the specified solvents, using materials from 

Sorbent Technologies (Atlanta, GA, USA) or Silicycle (Quebec City, Canada). Protein 
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concentrations were determined by Bradford assay using bovine serum albumin as the 

standard, or measured by nanodrop, ND-1000 UV-VIS spectrophotometer from 

NanoDrop technologies (Wilmington, DE, USA). The relative molecular mass and purity 

of enzyme samples were determined using SDS-polyacrylamide gel electrophoresis as 

described. The general methods and protocols for recombinant DNA manipulations are as 

described by Sanbrook and Russell. DNA sequencing was performed by the Core 

Facilities in the Institute of Cellular and Molecular Biology of the University of Texas at 

Austin. NMR spectra were acquired on a Varian Unity Inova 500 or 600 MHz 

spectrometer, housed in the NMR Facility of the Department of Chemistry and 

Biochemistry in the University of Texas at Austin. The Mass analyses were carried out at 

the Mass Spectrometry and Proteomics Facility of the Department of Chemistry and 

Biochemistry in the University of Texas at Austin.  

2.2.2. Preparation of Enzymes 

Cloning of SpnJ, SpnM, and SpnF, and the expression and purification of their 

products have already been reported.21, 22, 132  

2.2.3. Synthesis of the SpnM Natural Substrate 

A. Preparation of Fragment A: The overall synthetic scheme is shown in Scheme 2-1. 
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Scheme 1. Preparation of Fragment A in the synthesis of natural substrate  
 

5-hydroxy-N-methoxy-N-methylpentanamide (10): A solution of N,O-

dimethylhydroxylamine hydrochloride (69.4 g, 0.71 mol) in dichloromethane (540 mL) 

was added dropwise over a period of three hours to a trimethylaluminum solution (356 

mL, 2M, 711 mmol) under a nitrogen atmosphere at -78 °C. This reaction mixture was 

stirred for 1 hour at -78 °C and slowly warmed to room temperature with stirring over 18 

hours. Then, δ-valerolactone (30 ml, 323 mmol) in dichloromethane (356 mL) was added 

dropwise into the cool reaction mixture in an ice-bath over the course of 1 hour. This 

reaction mixture was slowly warmed to room temperature with stirring over the course of 
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3 hours. To quench the reaction mixture, cold Na+ K+ tartrate solution (Rochelle’s salt, 

75.8 g in water, 200 mL) was added to the reaction mixture in an ice-bath over 3 hours 

with vigorous mechanical stirring. After addition of celite (50 g), the solution was 

allowed to reaction with additional stirring for 1 hour. The liquid fraction was first 

filtered over paper filter, and the solid cake was washed with dichloromethane (200 mL x 

5 times) until no product was detected in the solid cake. The organic fraction of the 

filtrate was extracted with dichloromethane (200 mL x 2 times). The collected organic 

fractions were washed with brine (200 mL) and dried over an anhydrous magnesium 

sulfate pad, before being filtered through a glass filter. The filtrate was concentrated, and 

chromatographed using EtOAc to elute unwanted substances and 10% 

methanol/dichloromethane solution to collect the target compound, 5-hydroxy-N-

methoxy-N-methylpentanamide (51.3 g, 85%). All spectral data is identical to the 

literature reference.  

(S)-5-hydroxy-N-methoxy-N-methylheptanamide (11): 1) DMSO was added to (73.8 

mL, 0.95 mol) to a solution of oxalic chloride (41.7 mL, 0.48 mol) in dichloromethane 

(795 mL) at -78 °C dropwise over an hour. After addition of DMSO, this reaction 

mixture was stirred at -78 °C for an additional 10 min. Then, a solution of 5-hydroxy-N-

methoxy-N-methylpentanamide (51.3 g, 0.32 mol) in dichloromethane (159 mL) was 

added dropwise into the reaction mixture over an hour at -78 °C, with vigorous stirring. 

The reaction mixture was stirred at -78 °C for additional 2 hours. The reaction was 

quenched by adding triethylamine (222 mL) dropwise for 3 hours with vigorous stirring. 

This reaction mixture was warmed to room temperature, and stirred for 18 hours. After 
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water (500 mL) was added, this the aqueous fraction was extracted with dichloromethane 

(500 mL x 3 times), and washed with brine (500 mL). The combined organic fractions 

were then dried over an anhydrous magnesium sulfate pad and concentrated under 

reduced pressure, resulting in a pale brown oil. This residue was purified using flash 

column chromatography, and unwanted compounds were eluted with the isocratic 70% 

EtOAc/Hexane solution first and then the target compound was eluted with EtOAc (47.9 

g, 95 %) 2) Over a period of 3 hours, diethyl zinc solution (692 mL, 1.0 M, 0.69 mol) 

was added dropwise to a solution of aldehyde (47.9 g, 0.30 mol) and (-)-DBNE (4.8 mL, 

0.018 mol) in anhydrous hexane (750 mL) at 0 °C under a nitrogen atmosphere. This 

solution was stirred at 0 °C for 18 hours, and then quenched with saturated the aqueous 

ammonium chloride solution (750 mL) for 2 hours. After filtering the liquid portion and 

the solid fraction with a celite pad with several washes with ethyl acetate (500 mL x 2 

times), the organic and the aqueous layer of the filtrate were separated. Water fraction 

was extracted with ethyl acetate (300 mL x 4 times) and the combined organic fractions 

were washed with brine (400 mL), followed by drying over an anhydrous sodium sulfate 

pad and concentration under reduced pressure. The resulting residue was purified by flash 

column chromatography. The target compound was eluted with 80% of EtOAc/Hexane 

(34.6 g, 61% yield for 2 steps). All spectral data is identical to the literature reference.  

(S)-N-methoxy-5-(4-methoxybenzyloxy)-N-methylheptanamide (12): To a solution of 

(S)-5-hydroxy-N-methoxy-N-methylheptanamide (34.0 g, 0.18 mol) and p-

methoxybenzyl chloride (29.2 mL, 0.22 mol) in anhydrous DMF (360 mL), sodium 

hydride (8.6 g, 0.22 mol) was added portionwise over a period of 30 min at 0 °C with a 
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nitrogen atmosphere. Afterwards, the reaction mixture was slowly warmed to room 

temperature with vigorous stirring over 4 hours. After cooling to 0 °C in an ice-bath, 

water (360 mL) was added dropwise into the reaction mixture over the course of 1 hour 

to avoid a sudden gas eruption. The aqueous layer was extracted with ethyl acetate (200 

mL x 3 times). The collected organic fractions were washed with brine (200 mL x 2 

times), and dried over an anhydrous magnesium sulfate pad. After concentration under 

reduced pressure, the sticky residue was subjected to flash column chromatography. The 

target compound was eluted 30% EtOAc/Hexane solution (49.0 g, 88%). All spectral data 

is consistent with the literature reference.  

(R)-4-benzyl-3-((2R,3S,7S)-3-hydroxy-7-(4-methoxybenzyloxy)-2-

methylnonanoyl)oxazolidin-2-one (13): 1) To a solution of (S)-N-methoxy-5-(4-

methoxybenzyloxy)-N-methylheptanamide (20.0 g, 0.065 mol) in dichloromethane (323 

mL) at -78 °C a DIBALH solution (97 mL, 1.0 M, 0.097 mol) was added over 30 min. 

The reaction mixture was stirred at -78 °C for 4 hours and at 0 °C for 1 hour. Methanol 

(64 mL) was slowly added with vigorous stirring at -78 °C, and the reaction mixture was 

then allowed to warm to room temperature. After 30 min, the aqueous 1 M solution of 

Rochelle’s’ salt (64 mL) was slowly added to the reaction mixture over 30 min. After 

another 30 min, the reaction mixture was filtered with a celite pad and washed with 

dichloromethane (200 mL x 3 times). The separate organic fractions were washed with 

brine (200 mL), and dried over an anhydrous sodium sulfate. After filtration and 

concentration of the solution under reduced pressure, the resulting yellow residue was 

purified using flash column chromatography. The target compound was eluted, the target 



 56 

aldehyde was eluted with 10% to 20% of EtOAc/Hexane solution (15.8 g, 97%). 2) Di-n-

butylboryl trifluoromethanesulfonate (87 mL, 1.0 M, 0.087 mol) was added over the 

course of 30 min to a solution of (R)-4-benzyl-3-propionyloxazolidin-2-one (16.9 g, 0.73 

mol) in dichloromethane (500 mL) at 0 °C, and the reaction mixture was stirred for 30 

min. Triethylamine (14 mL, 0.098 mol) was added to the reaction mixture over 15 min, 

and the solution stirred at 0 °C for 30 min. After cooling to -78 °C, freshly prepared 

aldehyde (20 g, 0.080 mol) in dichloromethane (200 mL) was added slowly to the 

reaction mixture over 1 hour. The reaction mixture was stirred at -78 °C for 1 hour, and 

slowly warmed to 0 °C with stirring over 18 hours. To quench the reaction mixture, pH 

7.0 phosphate buffer (100 mL), methanol (300 mL), and hydrogen peroxide solution (100 

mL) were subsequently added to the reaction mixture with vigorous stirring at 0 °C over 

2 hours. The aqueous fraction was extracted with dichloromethane (150 mL x 3 times), 

and the combined organic fractions were washed with brine (200 mL) and dried over an 

anhydrous sodium sulfate pad. The filtrate was concentrated under reduced pressure to 

give a yellow residue, which was subjected to flash column chromatography. The target 

compound was eluted with 20% to 30% EtOAc/Hexane solution (23.3 g, 66%). All 

spectral data is identical to the literature reference. 

(R)-4-benzyl-3-((2R,3S,7S)-3-(tert-butyldimethylsilyloxy)-7-(4-methoxybenzyloxy)-

2-methylnonanoyl)oxazolidin-2-one (14): TBSOTf (8.8 mL, 38.1 mmol) was added to a 

solution of alcohol compound (8.9 g, 25.4 mmol) and 2,6-lutidine (5.9 mL, 50.8 mmol) in 

dichloromethane (254 mL) at -78 °C over 15 min. The reaction mixture was stirred at -78 

°C for 30 min and 0 °C for 30 min. When the starting material was no longer detectable 
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using TLC, the reaction mixture was quenched with a saturated the aqueous ammonium 

chloride solution (128 mL). After stirring for 30 min, the aqueous fraction was extracted 

with dichloromethane (100 mL x 3 times), which was then dried over an anhydrous 

sodium sulfate pad and concentrated under reduced pressure. The resulting residue was 

purified using flash column chromatography. The target compound was eluted with 10% 

EtOAc/Hexane solution (11.0 g, 93%). All spectral data is consistent with the literature 

reference. 

(2S,3S,7S)-3-(tert-butyldimethylsilyloxy)-7-(4-methoxybenzyloxy)-2-methylnonan-1-

ol (15): (R)-4-benzyl-3-((2R,3S,7S)-3-(tert-butyldimethylsilyloxy)-7-(4-

methoxybenzyloxy)-2-methylnonanoyl)oxazolidin-2-one (11.0 g, 23.8 mmol) and reagent 

grade methanol (2.9 mL, 71.5 mmol) were dissolved in anhydrous THF (119 mL) at 0 °C. 

A lithium borohydride solution (17.8 mL, 35.7 mmol) was added to this reaction mixture 

over 20 min. After stirring at 0 °C for 6 hours, the reaction mixture was quenched with a 

cold the aqueous 15% sodium hydroxide solution (119 mL) with vigorous stirring. The 

aqueous fraction was extracted with ethyl acetate (100 mL x 3 times), and the combined 

organic fractions were washed with brine (100 mL) and dried over an anhydrous sodium 

sulfate pad and concentrated under reduced pressure. The residue was purified using flash 

column chromatography. The target compound was eluted the target compound with 10% 

EtOAc/Hexane solution (4.5 g, 66%). All spectral data is identical to the literature 

reference. 

(4R,5S,6S,10S)-6-(tert-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)-5-

methyldodec-1-en-4-ol (16): 1) At room temperature, (2S,3S,7S)-3-(tert-
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butyldimethylsilyloxy)-7-(4-methoxybenzyloxy)-2-methylnonan-1-ol (4.8 g, 11 mmol), 

tetrapropylammonium perruthenate (TPAP, 200 mg, 0.57 mmol), N-methylmorpholine 

N-oxide (NMO, 2.66 g, 23 mmol) and activated 4 Å molecular sieve (0.96 g) were mixed 

together in dichloromethane (113 mL) with vigorous stirring over 3 hours. The reaction 

mixture was then quenched with the aqueous 10% sodium thiosulfate solution (23 mL). 

The aqueous fraction was extracted with dichloromethane (50 mL x 3 times), and the 

combined organic fractions were washed with brine (50 mL) and dried over an anhydrous 

sodium sulfate pad. The concentrated residue was purified using flash column 

chromatography. An aldehyde intermediate was eluted with 20% EtOAc/Hexane solution 

(4.4 g, 92%). 2) (+)-Ipc2B(allyl) was prepared by mixing (+)-

diisopinocampheylchloroborane (8.9 mL, 1.6 M, 14.2 mmol) and allyl magnesium 

bromide (13.6 mL, 1.0 M, 13.6 mmol) in anhydrous THF (32 mL) at 0 °C for 10 min. 

After cooling to -78 °C, the aldehyde (4.4 g, 10.4 mmol) in THF (10 mL) was added to 

the reaction mixture over 10 min, which was stirred at 0°C for 1.5 hours, and allowed to 

warm to room temperature over the course of 1 hour with stirring. When the aldehyde 

was no longer detectable, the reaction mixture was quenched by subsequent addition of 

methanol (32 mL), the aqueous 1 N sodium hydroxide solution (32 mL), and hydrogen 

peroxide solution (11 mL) at 0 °C. This reaction mixture was stirred at 0 °C for 30 min. 

After filtration through paper filter, the filtrate was extracted with ethyl acetate (100 mL 

x 3 times), and the combined organic fractions were washed with brine (100 mL) and 

dried over an anhydrous sodium sulfate pad. After concentration under reduced pressure, 

the residue was purified using flash column chromatography. The target compound was 
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eluted with 10% to 20% EtOAc/Hexane solution (4.4 g, 90%). All spectral data is 

consistent with the literature reference. 

(4R,5S,6S,10S)-6-(tert-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)-4-

(triethylsilyloxy)-5-methyl1-dodec-1-en-4-ol (17): TESOTf (3.2 mL, 14.1 mmol) was 

added dropwise to a solution of (4R,5S,6S,10S)-6-(tert-butyldimethylsilyloxy)-10-(4-

methoxybenzyloxy)-5-methyldodec-1-en-4-ol (4.4 g, 9.4 mmol) and 2,6-lutidine (2.7 mL, 

23.5 mmol) in anhydrous dichloromethane (141 mL) at -78 °C over 10 min. The reaction 

mixture was stirred at -78 °C for 2 hours and at 0 °C for 30 min, then quenched with 

saturated the aqueous ammonium chloride solution. The aqueous fraction was extracted 

with dichloromethane (50 mL x 3 times), and the combined organic fractions were 

washed with brine (50 mL) and dried over an anhydrous sodium sulfate pad. After 

concentration under reduced pressure, the resulting residue was subjected to flash column 

chromatography. The target compound was eluted with 2% to 5% EtOAc/Hexane (4.4 g, 

89%). All spectral data is identical to the literature reference. 

(5R,6R,7S)-5-allyl-7-((S)-4-(4-methoxybenzyloxy)hexyl)-2,2,3,3,6,9,9,10,10-

nonamethyl-4,8-dioxa-3,9-disilaundecane (18): t-Butyldimethylsilyl 

trifluoromethanesulfonate (4.6 mL, 19.9 mmol) was added dropwise over 20 min to a 

solution of secondary alcohol compound (6.2 g, 13.3 mmol) and 2,6-lutidine (3.8 mL, 

33.1 mmol) in anhydrous dichloromethane (100 mL) at -78 °C. The reaction mixture was 

stirred at -78 °C for 1 hour, at which time the dry ice bath was removed and the reaction 

mixture was stirred for additional 2 hours at room temperature. The reaction mixture was 

quenched with saturated the aqueous sodium bicarbonate solution (100 mL) and extracted 
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with dichloromethane (100 mL x 2 times). The combined organic fractions were washed 

with brine (100 mL), dried over an anhydrous sodium sulfate pad, and concentrated. The 

residue was purified by flash column chromatography. The target compound was eluted 

with 5% EtOAc/Hexane (7.0 g, 12.1 mmol, 91%).  

1H NMR (CDCl3, 600 MHz) δ (ppm) 7.28-7.25 (m, 2H, PhH of PMB), 6.88-6.85 

(dt. 2H, J = 8.7, 2.8, 2.1 Hz, PhH of PMB), 5.84-5.76 (m, 1H, 2-CH), 5.05-5.00 (m, 2H, 

1-CH2), 4.45-4.40 (dd, 2H, J = 18.6, 11.2 Hz, CH2 of PMB), 3.81-3.77 (m, 4H, OCH3 of 

PMB+4-CH), 3.72-3.68 (m, 1H, 6-CH), 3.31-3.26 (m, 1H, 10-CH), 2.31-2.28 (m, 2H, 3-

CH2), 1.65-1.40 (m, 9H, 5-CH+7-CH2+8-CH2+9-CH2+11-CH2), 0.94-0.88 (m, 24H, CH3 

of TBS+12-CH3+5-CH3), 0.05-0.03 (m, 11H, CH3 of TBS); 13C NMR (CDCl3, 150 MHz) 

δ (ppm) 159.04, 135.04, 131.28, 129.24, 116.76, 113.71, 79.89, 72.66, 72.20, 70.50, 

55.27, 40.55, 39.64, 35.04, 33.95, 26.31, 25.96, 20.95, 18.15, 9.50, 9.38, -3.80, -4.46; 

HRMS (ESI, positive) m/z for C33H62O4Si2Na [M+Na]+: calcd 601.4079, found 601.4078. 

(4R,5S,6S,10S)-6-(tert-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)-4-

(triethylsilyloxy)-5-methyldodecane-1,4-diol (19): 1) (4R,5S,6S,10S)-6-(tert-

butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)-4-(tert-butyldimethylsilyloxy)-5-

methyl1-dodec-1-en-4-ol (4.4 g, 7.6 mmol) was dissolved in a solution of THF (22.8 

mL), acetone (22.8 mL), and pH 7 phosphate buffer (22.8 mL), and cooled to 0 °C with 

stirring for 10 min. Osmium tetroxide (0.10 g, 0.38 mmol) and N-methylmorpholine N-

oxide (1.3 g, 11.4 mmol) were subsequently added to the reaction mixture, which was 

stirred at 0 °C for 30 min and at room temperature for 4 hours at which point the starting 

material was no longer visible. The reaction mixture was quenched with subsequent 



 61 

addition of the aqueous 10% sodium thiosulfate solution (34.2 mL) and pH 7 phosphate 

buffer (34.2 mL) at 0 °C. After stirring at 0 °C for 30 min and at room temperature for 30 

min, the aqueous fraction was extracted with ethyl acetate (50 mL x 3 times). The 

combined organic fractions were washed with brine (50 mL), dried over an anhydrous 

sodium sulfate pad, and concentrated to give a pale yellow residue, which was used in the 

next step without further purification. 2) The residue was dissolved in a solution of THF 

(159 mL) and pH 7 phosphate buffer (68 mL) at 0 °C. Sodium (meta)periodate (5.4 g, 

25.1 mmol) was added portionwise to the reaction mixture over 1 hour at 0 °C, followed 

by stirring at room temperature for 18 hours. After quenching the reaction with saturated 

the aqueous ammonium chloride (76 mL), the organic fraction was isolated by extracting 

the aqueous fractions with ethyl acetate (50 mL x 3 times). The combined organic 

fractions were washed with brine (50 mL), dried over an anhydrous sodium sulfate pad, 

and concentrated under reduced pressure. The resulting residue was directly used for the 

next step without further purification. 3) Sodium borohydride (0.5 g, 12.2 mmol) was 

added to a solution of the residue from the previous reaction mixture dissolved in ethanol 

(38 mL) at 0 °C with vigorous stirring over 5 min. After stirring at 0 °C for 4 hours, the 

reaction mixture was quenched with saturated the aqueous ammonium chloride (38 mL). 

The aqueous fraction was extracted with ethyl acetate (50 mL x 4 times), and the 

combined organic fractions were washed with brine (50 mL), dried over an anhydrous 

sodium sulfate pad, and concentrated under reduced pressure. The residue was purified 

using flash column chromatography. The target compound was eluted with 5% to 10% 

EtOAc/Hexane (3.2 g, 74%). All spectral data is identical to the literature reference. 
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(3R,4R,5S,9S)-3,5-bis(tert-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-4-

methylundecan-1-ol (20) : 1) N-methylmorpholine oxide (NMO; 2.1 g, 18.1 mmol) was 

added to a solution of silyl ether compound (7.0 g, 12.1 mmol) in THF (48 mL), acetone 

(48 mL), and pH 7 phosphate buffer (48 mL) at room temperature, followed by the 

addition of osmium tetroxide (0.15 g, 0.60 mmol). The reaction mixture was stirred at 

room temperature for 18 hours. The reaction mixture was poured into an aqueous 10% 

sodium thiosulfate solution (50 mL), and the aqueous fraction was extracted with ethyl 

acetate (50 mL × 3 times). The combined organic fractions were washed with brine (40 

mL), dried over an anhydrous sodium sulfate pad, and concentrated under reduced 

pressure. The resulting crude residue was used without further purification. 2) Sodium 

periodate (10.3 g, 48.4 mmol) was added to a clear solution of the above crude oil in THF 

(150 mL) and pH 7 phosphate buffer (50 mL) at room temperature. The reaction mixture 

was stirred for 3 hours at room temperature. Next, the reaction mixture was quenched 

with a saturated the aqueous sodium bicarbonate solution (50 mL). The aqueous fraction 

was extracted with ethyl acetate (50 mL × 3 times). The combined organic fractions was 

washed with brine (40 mL), dried over an anhydrous sodium sulfate pad, and 

concentrated under reduced pressure. The resulting residue was used in the next step 

without further purification. 3) Sodium borohydride (732 mg, 19.3 mmol) was added to 

the transparent solution of the crude aldehyde in ethyl alcohol (70 mL) at room 

temperature, and the reaction mixture was stirred for 1 hour, at which time the reaction 

was poured into saturated the aqueous ammonium chloride solution (50 mL). The 

aqueous fraction was extracted with ethyl acetate (50 mL × 3 times), and the combined 
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organic fractions were washed with brine (40 mL), dried over an anhydrous sodium 

sulfate pad, and concentrated under reduced pressure. The residue was subjected to flash 

column chromatography. The target compound was eluted with 5% EtOAc/Hexane (6.6 

g, 11.3 mmol, 97% for 3 steps).  

1H NMR (CDCl3, 600 MHz) δ (ppm) 7.26-7.23 (m, 2H, PhH), 6.86-6.84 (m, 2H, 

PhH), 4.45-4.42 (dd, 1H, J = 11.2, 5.0 Hz, CH2 of PMB), 4.40-4.37 (dd, 1H, J = 11.2, 6.6 

Hz, CH2 of PMB), 3.88-3.85 (m, 1H, 3-CH), 3.80-3.75 (m, 4H, 1-CH2+OCH3 of PMB), 

3.70-3.63 (m, 2H, 1-CH2+5-CH), 3.29-3.25 (m, 1H, 9-CH), 2.28 (br, 1H, 1-OH), 1.88-

1.71 (m, 3H, 2-CH2+4-CH), 1.56-1.21 (m, 8H, 10-CH2+8-CH2+7-CH2+6-CH2), 0.90-

0.85 (m, 24H, CH3 of TBS, 11-CH3, 4-CH3), 0.077 (s, 3H, CH3 of TBS), 0.039 (s, 3H, 

CH3 of TBS), 0.016 (s, 3H, CH3 of TBS), 0.005 (s, 3H, CH3 of TBS); 13C NMR (CDCl3, 

150 MHz) δ (ppm) 159.07, 131.20, 129.30, 113.74, 79.84, 72.65, 72.40, 70.54, 70.39, 

59.79, 55.27, 40.32, 35.55, 35.43, 33.93, 26.29, 25.94, 21.20, 18.13, 9.79, 9.47, -3.68, -

4.13, -4.49; HRMS (ESI, positive) m/z for C32H62O5Si2Na [M+Na]+: calcd 605.4026, 

found 605.4026. 

(4R, 5S, 6S, 10S)-6-(tert-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)-4-

(triethylsilyoxy)-5-methyl-1-((1-Phenyl-1H-tetrazol-5-yl)thio)dodecan-4-ol (21): 1-

Phenyl-1H-tetrazole-5-thiol (1.5 g, 8.4 mmol), triphenylphosphine (1.5 g, 8.4 mmol), and 

diisopropyl azodicarboxylate (DIAD; 2.2 g, 8.4 mmol) were added to a solution of a 

primary alcohol (3.2 g, 5.6 mmol) in THF at 0 °C. This reaction mixture was stirred at 0 

°C for 3 hours, and allowed to warm to room temperature over 18 hours. Then, the 

reaction mixture was directly concentrated under reduced pressure, and purified using 
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flash column chromatography. The target compound was eluted with 10% 

EtOAc/Hexane (3.9 g, 93%). All spectral data is identical to the literature reference. 

5-((3R,4R,5S,9S)-3,5-bis(tert-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-4-

methylundecylthio)-1-phenyl-1H-tetrazole (22): 1-Phenyl-1H-tetrazole-5-thiol (3.0 g, 

16.9 mmol) was added to a solution of alcohol (6.6 g, 11.3 mmol) in anhydrous THF (30 

mL) at 0 °C, followed by the addition of triphenylphosphine (4.5 g, 16.9 mmol) and 

diisopropyl azodicarboxylate (DIAD; 3.4 mL, 16.9 mmol). The resulting yellow 

suspension was stirred at 0 °C for 1 hour and then warmed to room temperature over the 

course of 1 hour. The reaction mixture was concentrated under reduced pressure and 

subjected to flash column chromatography, the target thioether compound was eluted 

with 10% EtOAc/Hexane (7.2 g, 9.6 mmol, 85%). 

1H NMR (CDCl3, 600 MHz) δ (ppm) 7.56-7.52 (m, 5H, PhH), 7.26-7.23 (m, 2H, 

PhH of PMB), 6.86-6.83 (m, 2H, PhH of PMB), 4.45-4.39 (dd, 2H, J = 18.3, 11.1 Hz, 

CH2 of PMB), 3.86-3.76 (m, 5H, OCH3 of PMB, 3-CH, 5-CH), 3.40-3.29 (m, 3H, 1-CH2, 

9-CH), 2.20-1.95 (m, 2H, 2-CH2), 1.70-1.65 (m, 1H, 4-CH), 1.59-1.26 (m, 8H, 6-CH2+7-

CH2+8-CH2+10-CH2), 0.91-0.86 (m, 24H, CH3 of TBS, 11-CH3, 4-CH3), 0.05-0.02 (m, 

12H, CH3 of TBS); 13C NMR (CDCl3, 150 MHz) δ (ppm) 159.00, 154.29, 133.79, 

131.25, 129.98, 129.72, 129.21, 123.78, 113.69, 79.75, 72.41, 72.14, 70.45, 55.23, 35.42, 

33.85, 28.91, 26.27, 25.90, 21.20, 18.10, 9.76, 9.50, -3.66, -4.10, -4.38, -4.41; HRMS 

(ESI, positive) m/z for C39H67N4O4Si2S [M+H]+: calcd 743.4416, found 743.4415. 

(4R, 5S, 6S, 10S)-6-(tert-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)-4-

(triethylsilyoxy)-5-methyl-1-((1-Phenyl-1H-tetrazol-5-yl)sulfonyl)dodecan-4-ol (23): 
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1) Ammonium heptamolybdate tetrahydrate (1.0 g, 0.8 mmol) was added to a solution of 

thioether (2.4 g, 3.2 mmol) in ethanol (126 mL) and hydrogen peroxide (3.9 mL) at 0 °C. 

This reaction mixture was stirred at 0 °C for 18 hours. The reaction mixture was 

quenched with brine (126 mL), and the aqueous fraction was extracted with ethyl acetate 

(100 mL x 3 times). The combined organic fractions were washed with brine (100 mL), 

and dried over an anhydrous sodium sulfate pad. The concentrated residue was purified 

using flash column chromatography, the target sulfonate compound was eluted with 10% 

EtOAc/Hexane (1.9 g, 91%). 2) TESOTf (1.0 mL, 4.3 mmol) was slowly added to a 

solution of this sulfonate (1.9 g, 2.9 mmol) and 2,6-lutidine (1.3 mL, 2.5 mmol) in 

dichloromethane (43.2 mL) at -78 °C. The reaction mixture was stirred at -78 °C for 1 

hour and slowly warmed to room temperature with stirring for 30 min. After quenching 

with saturated the aqueous ammonium chloride (50 mL) and extraction with 

dichloromethane (50 mL x 3 times), combined organic fractions were washed with brine 

(50 mL) and dried over an anhydrous sodium sulfate pad, and concentrated under reduced 

pressure. The resulting residue was purified using flash column chromatography. The 

target compound was eluted with 5% EtOAc/Hexane (2.2 g, 98%). All spectral data is 

identical to the literature reference.  

5-((3R,4R,5S,9S)-3,5-bis(tert-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-4-

methylundecylsulfonyl)-1-phenyl-1H-tetrazole (24): The premixed oxidant 

(ammonium heptamolybdate, 2.7 g; 30% H2O2, 10.7 mL) was added to a solution of 

thioether (6.5 g, 8.8 mmol) in ethyl alcohol (50 mL) at 0 °C, and the reaction mixture was 

stirred at 0 °C for 18 hours, at which time the mixture was poured into water (30 mL). 
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The aqueous fraction was extracted with EtOAc (50 mL × 3 times), and the combined 

organic fractions were washed with brine (50 mL), dried over an anhydrous sodium 

sulfate pad, and concentrated under reduced pressure. The residue was subjected to flash 

column chromatography. The target compound was eluted with 2% EtOAc/Hexane (6.0 

g, 7.7 mmol, 89%).  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.71-7.69 (m, 2H, PhH), 7.62-7.57 (m, 3H, 

PhH), 7.26 (d, 2H, J = 9.4 Hz, PhH of PMB), 6.86-6.84 (dd, 2H, J = 8.8, 2.1Hz, PhH of 

PMB), 4.46-4.39 (m, 2H, CH2 of PMB), 3.90-3.74 (m, 7H, OCH3 of PMB+3-CH+5-

CH+1-CH2), 3.31-3.29 (m, 1H, 9-CH), 2.31-2.13 (m, 2H, 2-CH2), 1.61-1.24 (m, 9H, 4-

CH+6-CH2+7-CH2+8-CH2+10-CH2), 0.91-0.85 (m, 24H, CH3 of TBS+12-CH3+4-CH3), 

0.086 (s, 3H, CH3 of TBS), 0.067 (s, 3H, CH3 of TBS), 0.053 (s, 3H, CH3 of TBS), 0.019 

(s, 3H, CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 159.03, 153.48, 133.09, 

131.37, 131.20, 129.68, 129.23, 125.00, 113.72, 79.63, 71.68, 71.53, 70.49, 55.24, 52.11, 

40.69, 35.45, 33.71, 26.34, 25.90, 21.43, 18.09, 18.05, 9.62, 9.49, -3.57, -4.27, -4.48; 

HRMS (ESI, positive) m/z for C39H66N4O6Si2SNa [M+Na]+: calcd 797.4134, found 

797.4143. 

B. Preparation of Fragment B: The overall synthetic scheme is depicted in Scheme 2-2. 
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Scheme 2-2. Preparation of Fragment B in the synthesis of natural substrate  
 

(1S,2S)-1,2-bis((R)-2,2-dimethyl-1,3-dioxolan-4-yl)ethane-1,2-diol (26): D-Mannitol 

(109.3 g, 0.60 mol) and p-toluenesulfonic acid (0.6 g, 3.2 mmol) were stirred in a 

solution of 2,2-dimethoxypropane (180 mL, 1.50 mol) and DMSO (180 mL) at room 

temperature for 2 days. Aqueous 3% sodium bicarbonate solution (360 mL) was slowly 

added to the reaction mixture, and the aqueous fraction was extracted with ethyl acetate 

(1,000 mL x 3 times). The combined organic fractions were washed with water (300 mL 

x 3 times), dried over an anhydrous sodium sulfate pad, and concentrated under reduced 

pressure. The resulting residue was refluxed in hexane solution (1,800 mL) for 1 hour, 

then allowed to cool to 0 °C over 18 hours. White precipitate was filtered through glass 

filter and air-dried to afford a white solid as the target compound (99.1 g, 63%). All 

spectral data is identical to the literature reference.  

(S)-(2,2-dimethyl-1,3-dioxolan-4-yl)methanol (27): Lead (IV) acetate (200.0 g, 0.92 

mol) was slowly added portionwise to a solution of (1S,2S)-1,2-bis((R)-2,2-dimethyl-1,3-
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dioxolan-4-yl)ethane-1,2-diol (120.2 g, 0.46 mol) in THF (600 mL) at 0 °C with 

maintaining the inner temperature below 10 °C for 2 hours. Then, the reaction mixture 

was stirred at 0 °C for 30 min and at room temperature for 30 min, followed by filtering 

through a celite pad and washing with THF. The sodium borohydride (35.2 g, 0.90 mol) 

in the aqueous 4% sodium hydroxide solution was slowly added to the resulting filtrate at 

0 °C for 3 hours while maintaining an inner temperature below 10 °C. The reaction 

mixture was stirred at 0 °C for 30 min and at room temperature for 1.5 hours. The 

reaction mixture was quenched with solid ammonium chloride to adjust the pH to 8.0. 

The reaction mixture was then filtered through celite and separated into an organic 

fraction and aqueous fraction. The aqueous fraction was saturated with solid sodium 

chloride and extracted with ethyl acetate (300 mL x 3 times). The combined organic 

fractions were washed with the aqueous 5% sodium hydroxide in saturated sodium 

chloride solution (1,000 mL), dried over an anhydrous sodium sulfate pad, and 

concentrated under reduced pressure. The resulting residue was vacuum-distilled at 90 °C 

(91.9 g, 76%). All spectral data is consistent with the literature reference.  

(S)-4-((4-methoxybenzyloxy)methyl)-2,2-dimethyl-1,3-dioxolane (28): Sodium 

hydride (33.2 g, 0.83 mol) was added portionwise to a solution of (S)-(2,2-dimethyl-1,3-

dioxolan-4-yl)methanol (91.5 g, 0.69 mol) in anhydrous DMF (1,000 mL) at 0 °C over 30 

min. After stirring for 30 min at 0 °C, PMPCl (124.1 g, 0.79 mol) was added to the 

reaction mixture for 30 min. The reaction mixture was allowed to warm to room 

temperature with vigorous stirring over 18 hours. After quenching this reaction mixture 

in ice-bath with water (1,000 mL), the aqueous fraction was extracted with ethyl acetate 
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(500 mL x 3 times). The combined organic fractions were washed with brine (500 mL), 

dried over an anhydrous sodium sulfate pad, and concentrated under reduced pressure to 

dryness to afford the target compound (174 g, quantitative) with no further purification. 

All spectral data is identical to the literature reference. 

(R)-3-(4-methoxybenzyloxy)propane-1,2-diol (29): Crude starting material (174 g, 0.69 

mol) gained from previous step was stirred in methanol (1,750 mL) with (±)-

camphorsulfonic acid (8.0 g, 34.6 mmol) at room temperature for 2 days. The reaction 

mixture was concentrated under reduced pressure, and mixed with water (1,000 mL) and 

ethyl acetate (1,000 mL). The organic fraction was separated by additional extraction 

with ethyl acetate (500 mL x 2 times), and washed out with brine (500 mL). After drying 

over an anhydrous sodium sulfate pad and concentrating under reduced pressure, the 

resulting residue was subjected to flash column chromatography. The target compound 

was eluted with 50% EtOAc/Hexane solution (132.0 g, 90%). All spectral data is 

identical to the literature reference. 

(R)-2-((4-methoxybenzyloxy)methyl)oxirane (30): 1) p-Toluenesulfonyl chloride 

(148.0 g, 0.78 mol) was added to a solution of diol (132.0 g, 0.62 mol), triethylamine 

(121.4 mL, 0.87 mol), and di-n-butyltin oxide (7.7 g, 31.1 mmol) in dichloromethane 

(1,580 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 30 min, and allowed to 

warm to room temperature with stirring over 18 hours. The reaction mixture was 

quenched with dilute hydrochloric acid solution (0.1 N, 400 mL), and extracted with 

dichloromethane (200 mL x 2 times). The combined organic fractions were washed with 

brine (500 mL), dried over an anhydrous sodium sulfate pad, and concentrated under 
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reduced pressure. The resulting residue was directly used for the epoxidation without 

further purification. 2) Sodium hydride (29.9 g, 0.75 mol) was added to a solution of the 

dried residue from the previous step in THF (1,320 mL) at 0 °C over 30 min under a 

nitrogen atmosphere. The reaction mixture was stirred at 0 °C for 2 hours, and allowed to 

warm to room temperature with stirring over 18 hours. After quenching with saturated the 

aqueous ammonium chloride solution (500 mL) at 0 °C, the aqueous fraction was 

extracted with ethyl acetate (500 mL x 2 times). The combined organic fractions were 

washed with brine (300 mL), dried over an anhydrous sodium sulfate pad, and 

concentrated under reduced pressure. The resulting residue was purified using flash 

column chromatography. The target compound was eluted with 20% to 30% 

EtOAc/Hexane solution (83 g, 69%). All spectral data was identical to the literature 

reference. 

(R)-(1-(1,3-dithian-2-yl)-3-(4-methoxybenzyloxy)propan-2-yloxy)(tert-

butyl)dimethylsilane (31): 1) n-Butyllithium (239 mL, 2.5 M, 0.60 mol) was added to a 

solution of 1,3-dithiane (65.0 g, 0.54 mol) in THF (980 mL) at -30 °C over 30 min with 

vigorous stirring. After stirring at -30 °C for 2 hours, an epoxide (96.0 g, 0.49 mol) in 

THF (250 mL) was added to the reaction mixture at -30 °C over 30 min, the solution was 

then allowed to warm to 0 °C with stirring over 2 hours. The reaction mixture was 

quenched with saturated the aqueous ammonium chloride solution (500 mL), and the 

aqueous fraction was extracted with ethyl acetate (400 mL x 3 times). The combined 

organic fractions were washed with brine (300 mL), dried over an anhydrous sodium 
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sulfate pad, and concentrated under reduced pressure. The resulting residue was subjected 

to the next step without further purification.  

1H NMR (CDCl3, 400 MHz) δ (ppm) 7.25 (m, 2H, PMB), 6.88 (m, 2H, PMB), 

4.48 (d, J = 1.7 Hz, 2H, PMB), 4.25 (dd, J = 9.6, 4.9 Hz, 1H, 2-H), 4.10 (m, 1H, 2’-H), 

3.80 (s, 3H, PMB), 3.48 (dd, J = 9.5, 3.4 Hz, 1H, 3-H), 3.34 (dd, J = 9.5, 6.9 Hz, 1H, 3-

H), 2.94-2.79 (m, 4H, 3’-H, 5’-H), 2.50 (d, J = 4.2 Hz, 1H, OH), 2.14-1.78 (m, 4H, 1-H, 

4’-H); 13C NMR (CDCl3, 100 MHz) δ (ppm) 159.3, 129.8, 129.3, 113.8, 73.6, 73.0, 67.1, 

55.2, 43.7, 38.9, 30.3, 30.0, 25.9; HRMS (CI, positive) m/z for C15H22NaO3S2 [M+Na]+: 

calcd 337.0904, found 337.0903.  

2) The residue was dissolved in a solution of imidazole (66.6 g, 0.98 mol) in DMF (1,110 

mL) at room temperature. TBSCl (76.0 g, 0.49 mol) was then added to the reaction 

mixture with vigorous stirring. After 18 hours of stirring at ambient temperature, the 

reaction mixture was quenched with saturated the aqueous ammonium chloride solution 

(500 mL), and the aqueous fraction was extracted with ethyl acetate (500 mL x 4 times). 

The combined organic fractions were washed with brine (400 mL), dried over an 

anhydrous sodium sulfate pad, and concentrated under reduced pressure. The resulting 

residue was purified using flash column chromatography. The target compound was 

eluted with 10% to 20% EtOAc/Hexane (110 g, 58% for 2 steps).  

1H NMR (CDCl3, 400 MHz) δ (ppm) 7.28 (m, 2H, PMB), 6.89 (m, 2H, PMB), 

4.47 (s, 2H, PMB), 4.17-4.09 (m, 2H, 2-H, 2′-H), 3.83 (s, 3H, PMB), 3.30 (m, 1H, 3-H), 

2.8902.75 (m, 4H, 4"-H, 6"-H), 2.15-1.62 (m, 4H, 1-H, 5"-H), 0.91 (s, 9H, TBS), 0.13 (s, 

3H, TBS), 0.09 (s, 3H, TBS); 13C NMR (CDCl3, 100 MHz) δ (ppm) 159.1, 130.3, 129.2, 
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113.7, 74.3, 72.9, 67.9, 55.3, 43.6, 40.3, 30.5, 29.9, 26.0, 25.9, 18.1, -4.4, -4.8; HRMS 

(CI, positive) m/z for C21H37O3S2Si [M+H]+: calcd 429.1955, found 429.1948. 

(4R,6R)-6-(tert-butyldimethylsilyloxy)-7-(4-methoxybenzyloxy)hept-1-en-4-ol (32): 

1) A solution of (R)-(1-(1,3-dithian-2-yl)-3-(4-methoxybenzyloxy)propan-2-yloxy)(tert-

butyl)dimethylsilane (50.0 g, 0.12 mol), iodomethane (72.6 mL, 1.17 mol) and calcium 

carbonate (70.0 g, 0.70 mol) in acetonitrile (700 mL) and water (175 mL) was refluxed 

for 8 hours. After cooling and filtering over a celite pad, the filtrate was concentrated 

under reduced pressure to 200 ml to remove the acetonitrile, and extracted with ethyl 

acetate (300 mL x 4 times). The combined organic fractions were dried over an 

anhydrous sodium sulfate pad, and concentrated under reduced pressure. The residue was 

purified using short-pass over a silica gel pad, an aldehyde was eluted with 10% 

EtOAc/Hexane (31.0 g, 79%).  

1H NMR (CDCl3, 400 MHz) δ (ppm) 9.72 (t, J = 2.4 Hz, 1H, 1-H), 7.17 (m, 2H, 

PMB), 6.82 (m, 2H, PMB), 4.39 (s, 2H, PMB), 4.28 (tt, J = 6.4, 5.1 Hz, 1H, 3-H), 3.75 (s, 

3H, PMB), 3.41 (dd, J = 9.5, 5.1 Hz, 1H, 4-H), 3.30 (dd, J = 9.5, 6.4 Hz, 1H, 4-H), 2.58 

(ddd, J = 15.9, 5.1, 2.1 Hz, 1H, 2-H), 2.50 (ddd, J = 15.9, 6.7, 2.7 Hz, 1H, 2-H), 0.80 (s, 

9H, TBS), 0.00 (s, 6H, TBS); 13C NMR (CDCl3, 100 MHz) δ (ppm) 201.5, 159.2, 123.0, 

119.3, 113.8, 73.7, 73.0, 67.3, 55.3, 49.0, 25.7, 18.0, -4.5, -5.0; HRMS (CI, positive) m/z 

for C18H31O4Si [M+H]+: calcd 339.1986, found 339.1984. 

2) (+)-Ipc2B(allyl) was prepared by mixing of (+)-diisopinocampheylchloroborane (77.8 

mL, 1.6 M, 0.13 mol) and allyl magnesium bromide (119.1 mL, 1.0 M, 0.12 mol) in 

anhydrous THF (274 mL) at 0 °C for 1 hour. After cooling to -78 °C, the aldehyde from 
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the previous step (31.0 g, 0.09 mol) in THF (92 mL) was added to the reaction mixture 

over 1 hour, which was stirred at -78 °C for 2 hours, and allowed to warm to room 

temperature for 1 hour with stirring. When the aldehyde was no longer detectable, the 

reaction mixture was quenched by subsequent addition of methanol (274 mL), the 

aqueous 1 N sodium hydroxide solution (274 mL), and hydrogen peroxide solution (92 

mL) at 0 °C. This reaction mixture was stirred at 0 °C for 3 hours. After filtration through 

a paper filter, the filtrate was extracted with ethyl acetate (300 mL x 4 times), and the 

combined organic fractions were washed with brine (500 mL) and dried over an 

anhydrous sodium sulfate pad. After concentration under reduced pressure, the residue 

was purified using flash column chromatography. The target compound was eluted with 

10% EtOAc/Hexane solution (35.2 g, 91%). Spectral data was not collected.  

(5R,7R)-5-allyl-7-((4-methoxybenzyloxy)methyl)-2,2,3,3,9,9,10,10-octamethyl-4,8-

dioxa-3,9-disilaundecane (33): TBSOTf (21.0 mL, 0.09 mol) was added over 20 min to 

a solution of (4R,6R)-6-(tert-butyldimethylsilyloxy)-7-(4-methoxybenzyloxy)hept-1-en-

4-ol (29.0 g, 0.08 mol) and 2,6-lutidine (21.3 mL, 0.18 mol) in dichloromethane (381 

mL) at -78 °C. The reaction mixture was stirred at -78 °C for 2 hours, and allowed to 

warm to 0 °C over 18 hours. After quenching with saturated the aqueous ammonium 

chloride solution (200 mL), the aqueous fraction was extracted with dichloromethane 

(200 mL x 4 times). The combined organic fractions were washed with brine (200 mL), 

dried over an anhydrous sodium sulfate pad, and concentrated under reduced pressure. 

The resulting residue was purified using flash column chromatograph by eluting with 5% 

EtOAc/Hexane (34.1 g, 98%). 
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1H NMR (CDCl3, 300 MHz) δ (ppm) 7.26 (d, J = 8.7 Hz, 2H, PMB-aromatic H), 

6.89 (d, J = 8.5 Hz, 2H, PMP-aromatic H), 5.81 (m, 1H, 6-H), 5.05 (app d, J = 14 Hz, 2H, 

7-H), 4.46 (s, 2H, PMB-CH2), 3.97-3.83 (m, 2H, 2-H, 4-H), 3.80 (s, 3H, PMB-Me), 3.38 

(d, J = 4.9 Hz, 2H, 1-H), 2.34-2.12 (m, 2H, 5-H), 1.78-1.58 (m, 2H, 3-H), 0.91 (s, 9H, 

TBS), 0.90 (s, 9H, TBS), 0.08 (s, 3H, TBS), 0.07 (s, 3H, TBS), 0.05 (s, 3H, TBS), 0.04 

(s, 3H, TBS); 13C NMR (CDCl3, 75 MHz) δ (ppm) 159.0, 135.1, 130.5, 129.2, 116.9, 

113.6, 74.6, 72.8, 69.1, 68.8, 55.2, 42.1, 41.6, 25.9, 25.9, 18.1, 18.0, -4.23, -4.41, -4.54, -

4.82; HRMS (CI, positive) m/z for C27H49O4Si2 [M+H]+: calcd 493.3169, found 

493.3149. 

(5R,7R)-5-((E)-3-iodoallyl)-7-((4-methoxybenzyloxy)methyl)-2,2,3,3,9,9,10,10-

octamethyl-4,8-dioxa-3,9-disilaundecane (34): 1) Allyl compound (10.0 g, 0.02 mol) 

was mixed with water and a solution of sodium (meta)periodate (13.0 g, 0.06 mol), 

osmium (VIII) oxide (0.12 g, 0.48 mmol), and 2,6-lutidine (3.5 mL, 0.03 mol) in 1,4-

dioxane (61 mL) at 0 °C over 18 hours. After quenching with the aqueous 1 N sodium 

thiosulfate solution (40 mL) with stirring for 1 hour, the reaction mixture was filtered 

through a paper filter, and extracted with dichloromethane (100 mL x 3 times). The 

combined organic fractions were washed with brine (150 mL), dried over an anhydrous 

sodium sulfate pad, and concentrated under reduced pressure. The resulting residue was 

purified using flash column chromatography. The target compound was eluted with 5% 

to 10% EtOAc/Hexane (9.8 g, 99%).  

1H NMR (CDCl3, 300 MHz) δ (ppm) 9.77 (t, J = 2.4 Hz, 1H, 1-H), 7.22 (d, J = 

9.6 Hz, 2H, PMB-aromatic H), 6.85 (d, J = 8.4 Hz, 2H, PMB-aromatic H), 4.42 (s, 2H, 
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PMB-CH2), 4.34 (m, 1H, 3-H), 3.84 (m, 1H, 5-H), 3.79 (s, 3H, PMB-Me), 3.34 (m, 2H, 

6-H), 2.50 (m, 2H, 2-H), 1.74 (t, J = 6.3 Hz, 2H, 4-H), 0.85 (s, 9H, TBS), 0.84 (s, 9H, 

TBS), 0.03-0.02 (m, 12H, TBS); 13C NMR (CDCl3, 75 MHz) δ (ppm) 202.2, 159.1, 

130.3, 129.2, 113.7, 74.3, 72.9, 68.7, 65.6, 55.2, 50.4, 42.7, 25.8, 25.7, 18.1, 17.9, -4.23, -

4.41, -4.82, -4.87; HRMS (CI, positive) m/z for C26H47O5Si2 [M+H]+: calcd 495.2962, 

found 495.2970.  

2) A solution of the resulting aldehyde (9.8 g, 18 mmol) and chromium (II) chloride (11.1 

g, 91 mmol) in anhydrous THF (217 mL) was stirred at 0 °C for 30 min. Then, a solution 

of iodoform (14.3 g, 36 mmol) in anhydrous THF (36 mL) was added at 0 °C for 15 min 

under a nitrogen atmosphere. This reaction mixture was stirred at 0 °C for 2 days. The 

reaction mixture was then added to water (150 mL), and filtered through a paper filter 

and washed with ethyl acetate (300 mL x 2 times). The aqueous fraction was extracted 

with ethyl acetate (300 mL x 3 times). The combined organic fractions were washed with 

brine (300 mL), dried over an anhydrous sodium sulfate pad, and concentrated under 

reduced pressure in a bath which was kept below 30 °C. The resulting residue was 

purified twice using flash column chromatography to remove excess amount of iodine, 

the target compound was eluted with a gradient of hexane alone to a 5% EtOAc/Hexane 

solution (10.4 g, 83%).  

1H NMR (CDCl3, 300 MHz) δ (ppm) 7.23 (d, J = 8.7 Hz, 2H, PMB-aromatic H), 

6.86 (d, J = 8.7 Hz, 2H, PMB-aromatic H), 6.53-6.43 (m, 1H, 6-H), 5.99 (d, J = 14.0 Hz, 

1H, 7-H), 4.42 (s, 2H, PMB-CH2), 3.87-3.81 (m, 2H, 2-H, 4-H), 3.79 (s, 3H, PMB-Me), 

3.37-3.27 (m, 2H, 1-H), 2.28-2.20 (m, 1H, 5-H), 2.14-2.04 (m, 1H, 5-H), 1.72-1.54 (m, 
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2H, 3-H), 0.86 (s, 9H, TBS), 0.85 (s, 9H, TBS), 0.03-0.00 (m, 12H, TBS); 13C NMR 

(CDCl3, 75 MHz) δ (ppm) 159.0, 143.2, 130.4, 129.2, 113.7, 74.5, 72.9, 68.9, 68.0, 55.3, 

43.3, 32.3, 25.9, 25.8, 18.1, 18.0, -4.20, -4.48, -4.56, -4.79; HRMS (CI, positive) m/z for 

C27H48IO4Si2 [M+H]+: calcd 619.2136, found 619.2136.  

(2R,4R,E)-2,4-bis(tert-butyldimethylsilyloxy)-7-iodohept-6-en-1-ol (35): 2,3-

Dichloro-5,6-dicyano-p-benzoquinone (DDQ; 1.4 g, 6.2 mmol) was added to a solution 

of (5R,7R)-5-((E)-3-iodoallyl)-7-((4-methoxybenzyloxy)methyl)-2,2,3,3,9,9,10,10-

octamethyl-4,8-dioxa-3,9-disilaundecane (3.2 g, 5.2 mmol) in dichloromethane (15.5 mL) 

and methanol (1.5 mL) 0 °C, and the reaction mixture was stirred 0 °C for 18 hours. The 

reaction mixture was quenched with saturate the aqueous sodium bicarbonate (25 mL) at 

0 °C, and the aqueous fraction was extracted with dichloromethane (30 mL x 4 times). 

The combined organic fractions were washed with brine (30 mL), dried over an 

anhydrous sodium sulfate pad, and concentrated under reduced pressure. The resulting 

residue was subjected to flash column chromatography. The target compound was eluted 

with 5% EtOAc/Hexane (1.42 g, 55%). 

1H NMR (CDCl3, 300 MHz) δ (ppm) 6.46 (dt, J = 14.4, 7.5 Hz, 1H, 6-H), 5.99 

(dt, J = 14.7, 1.2 Hz, 1H, 7-H), 3.89-3.76 (m, 2H, 2-H, 4-H), 3.58-3.51 (m, 1H, 1-H), 

3.48-3.40 (m, 1H, 1-H), 2.30-2.12 (m, 2H, 3-H), 1.73-1.58 (m, 2H, 5-H), 0.87 (s, 9H, 

TBS), 0.86 (s, 9H, TBS), 0.06-0.03 (m, 12H, TBS); 13C NMR (CDCl3, 75 MHz) δ (ppm) 

142.6, 77.0, 69.8, 68.2, 66.1, 43.7, 41.3, 25.79, 25.77, 18.0, 17.9, -4.36, -4.55, -4.64; 

HRMS (CI, positive) m/z for C19H42IO3Si2 [M+H]+: calcd 501.1717, found 501.1703. 
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(2R,4R,E)-2,4-Bis(tert-butyldimethylsilyloxy)-7-iodohept-6-enal (36): An alcohol (2.2 

g, 4.4 mmol) and Dess-Martin periodinane (DMP; 2.2 g, 5.3 mmol) was dissolved in 

dichloromethane (53 mL) at room temperature with stirring for 3 hours. The reaction 

mixture was then quenched with 10% the aqueous sodium thiosulfate (53 mL) and 

saturated the aqueous sodium bicarbonate (53 mL), and the aqueous fraction was 

extracted with dichloromethane (30 mL x 3 times). The combined organic fractions were 

washed with brine (30 mL), dried over an anhydrous sodium sulfate pad, and 

concentrated. The resulting residue was short-pass chromatographed by eluting with 2% 

to 5% EtOAc/Hexane solution (2.1 g, 90%). No spectral data was collected.  

1H NMR (CDCl3, 300 MHz) δ (ppm) 9.57 (d, J = 1.2 Hz, 1H, 1-H), 6.46 (dt, J = 

14.4, 7.5 Hz, 1H, 6-H), 6.04 (d, J = 14.7 Hz, 1H, 7-H), 4.08-4.03 (m, 1H, 2-H), 3.95 (m, 

1H, 4-H), 2.26-2.18 (m, 2H, 5-H), 1.81-1.76 (m, 2H, 3-H), 0.90 (s, 9H, TBS), 0.85 (s, 

9H, TBS), 0.07-0.04 (m, 12H, TBS); 13C NMR (CDCl3, 75 MHz) δ (ppm) 203.4, 142.3, 

77.1, 74.7, 66.8, 43.5, 40.2, 25.8, 25.7, 18.1, 17.9, -4.36, -4.51, -4.64, -4.95; HRMS (CI, 

positive) m/z for C19H40IO3Si2 [M+H]+: calcd 499.1561, found 499.1572.  

C. Preparation of Fragment C: The overall synthetic scheme is figured in Scheme 2-3. 

OH

Bu3SnH, AIBN
70 oC, 18 h

90 %
OHBu3Sn

1. activated MnO2, DCM
RT, 2 days

2. , NaH, THF
0 oC to RT, 6 h

OEt

O
(EtO)2P

O

2 steps, 85 %
Bu3Sn OEt

O

37 38 39  
 
Scheme 2-3. Preparation of Fragment C in the synthesis of natural substrate 
 

(E)-3-(Tributylstannyl)prop-2-en-1-ol (38): Propargyl alcohol (1.5 g, 26.7 mmol) was 

mixed with tributyltin hydride (9.2 mL, 34.7 mmol), to which 2,2′-azobis(2-

methylpropionitrile) (AIBN; 43.8 mg, 0.3 mmol) was added at room temperature. The 
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reaction was gradually heated up to 80 ºC over 1 hour and this temperature was 

maintained for 18 hours under reflux. After completion of the reaction was confirmed by 

TLC analysis, the crude product was directly subjected to flash column chromatography. 

The target compound was eluted with Hexane (4.6 g, 13.1 mmol, 50%).  

1H NMR (CDCl3, 400 MHz) δ 6.24-6.11 (m, 2H, 1-H, 2-H), 4.15 (br d, J = 3.1 

Hz, 2H, 3-H), 1.58-1.43 (m, 6H, Bu3Sn), 1.40-1.1.26 (m, 6H, Bu3Sn), 0.98-0.80 (m, 15H, 

Bu3Sn); 13C NMR (CDCl3, 100 MHz) δ 147.0, 128.3, 66.4, 29.1, 27.3, 13.7, 9.4; HRMS 

(CI, positive) m/z for C15H33OSn [M+H]+: calcd 349.1548, found 139.1550. 

(2E,4Z)-Ethyl 5-(tributylstannyl)penta-2,4-dienoate (39): 1) Activated manganese 

oxide (3.9 g, 44.3 mmol) was added to a solution of alcohol 72 (1.5 g, 4.4 mmol) in 

acetone (50 mL) at room temperature. After stirring for 18 hours, the reaction mixture 

was filtered through a pad of celite to remove the manganese oxide. The filtrate was then 

concentrated under reduced pressure. The crude residue was briefly purified using flash 

column chromatography, the target aldehyde compound was eluted with Hexane (1.3 g, 

3.8 mmol, 85%). The resulting aldehyde was immediately used for the next step, a 

Horner-Wadsworth-Emmons reaction. 2) Sodium hydride (60% in mineral oil, 0.3 g, 5.5 

mmol) was added to a solution of triethylphosphonoacetate (1.1 mL, 5.5 mmol) in THF 

(15 mL) at 0 ºC. Aldehyde 73 (1.3 g, 3.6 mmol) was added to the resulting suspension. 

After 4 hours, the reaction was quenched by adding a saturated the aqueous ammonium 

chloride solution (15 mL), and the mixture was extracted with ethyl acetate (20 mL x 3 

times). The combined organic fractions were washed with a brine solution (30 mL), dried 

over an anhydrous magnesium sulfate pad, and concentrated under reduced pressure. The 
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crude residue was subjected to flash column chromatography. The target compound was 

eluted with 2% EtOAc/Hexane solution (1.1 g, 74%). 

1H NMR (CDCl3, 400 MHz) δ 7.18 (dd, J = 15.4, 10.2 Hz, 1H, 3-H), 6.81 (d, J = 

18.7 Hz, 1H, 1-H), 6.64 (dd, J = 10.2 Hz, 1H, 2-H), 5.79 (d, J = 15.4 Hz, 1H, 4-H), 4.20 

(q, J = 7.1 Hz, 1H, CH3CH2ocO), 1.56-1.41 (m, 6H, Bu3Sn), 1.30-1.26 (m, 9H, Bu3Sn), 

0.95-0.78 (m, 15H, Bu3Sn, CH3CH2OCO); 13C NMR (CDCl3, 100 MHz) δ 167.4, 147.2, 

146.3, 144.2, 119.9, 60.2, 29.0, 27.2, 13.7, 9.6; HRMS (CI, positive) m/z for C19H37O2Sn 

[M+H]+: calcd 417.1816, found 417.1821. 

D. Synthesis of Natural SpnM Substrate by Coupling Reactions and Enzymatic 

Conversion: The overall synthetic scheme is pictured in Scheme 2-4. 
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Scheme 2-4. Preparation of natural SpnM substrate. 
 

(5S,6S,7R,11R,13R,E)-11-(tert-butyldimethylsilyloxy)-13-((E)-3-iodoallyl)-7-

(triethylsilyloxy)-5-((S)-4-(4-methoxybenzyloxy)hexyl)-2,2,3,3,6,15,15,16,16-
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nonamethyl-4,14-dioxa-3,15-disilaheptadec-9-en (42): Compound (42) was prepared 

following the literature reference. 

(1E,4R,6R,7E,10R,11R,12S,16S)-4,6,10,12-Tetrakis(tert-butyldimethylsilyloxy)-11-

methyl-16-(4-methoxybenzyloxy)octadeca-1,7-diene (43): Potassium 

hexamethyldisilazide (KHMDS; 0.5 M in toluene, 5.8 mL, 2.9 mmol) was added 

dropwise over ten min to a solution of fragment A (41) (1.5 g, 1.9 mmol) in THF (19 mL) 

at -78 °C. The reaction mixture was kept stirring at -78 °C for 1 hour, at which time 

fragment B (36) (1.1 g, 2.1 mmol) in THF (10 mL) was added to the resulting yellow 

solution at -78 °C over 30 min. After 4 hours, the temperature was slowly raised to room 

temperature over 1 hour, at which time the mixture was poured into a saturated the 

aqueous sodium bicarbonate solution (20 mL). After stirring for 10 min, the aqueous 

fraction was extracted with ethyl acetate (20 mL × 3 times), dried over an anhydrous 

sodium sulfate pad, filtered, and concentrated under reduced pressure. The residue was 

subjected to flash column chromatography. The target compound was eluted with 2% 

EtOAc/Hexane (1.6 g, 1.5 mmol, 80%). 

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.27-7.25 (t, 2H, J = 4.4 Hz, PhH of PMB), 

6.87-6.85 (dt, 2H, J = 8.7, 2.8 Hz, PhH of PMB), 6.53-6.47 (m, 1H, 2-CH), 6.09-5.98 

(ddt, 1H, J = 34.4, 14.4, 1.3 Hz, 1-CH), 5.57-5.51 (m, 1H, 8-CH), 5.43-5.38 (dd, 1H, J = 

15.4, 6.8 Hz, 7-CH), 4.43 (s, 2H, CH2 of PMB), 4.12-4.08 (m, 1H, 6-CH), 3.84-3.80 (m, 

1H, 4-CH), 3.80 (s, 3H, OCH3 of PMB), 3.77-3.74 (q, 1H, J = 5.6 Hz, 10-CH), 3.70-3.65 

(q, 1H, J = 5.6 Hz, 12-CH), 3.32-3.27 (quint, 1H, J = 5.7 Hz, 16-CH), 2.31-2.21 (m, 3H, 

3-CH2 and 9-CH2), 2.15-2.08 (m, 1H, 3-CH2), 1.74-1.69 (m, 1H, 5-CH2), 1.62-1.25 (m, 
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10H, 5-CH2, 11-CH, 13-CH2, 14-CH2, 15-CH2 and 17-CH2), 0.93-0.84 (m, 42H, 11-C-

CH3, 18-CH3 and CH3 of TBS), 0.10-0.01 (m, 24H, CH3 of TBS); 13C NMR (CDCl3, 125 

MHz) δ (ppm) 143.31, 135.54, 129.17, 126.81, 113.71, 79.79, 72.90, 72.25, 70.74, 70.45, 

68.22, 55.26, 46.03, 43.47, 41.26, 37.87, 35.40, 33.91, 26.25, 25.99, 25.90, 25.85, 21.30, 

18.18, 18.14, 18.12, 18.01, 9.52, -4.24, -4.35, -4.42, -4.49, -4.61, -4.71; HRMS (ESI, 

positive) m/z for C51H99IO6Si4Na [M+Na]+: 1069.5461, found 1069.5460. 

(2E,4E,6E,9R,11R,12E,15R,16S,17S,21S)-Ethyl 9,11,17-tris(tert-

butyldimethylsilyloxy)-15-(triethylsilyloxy)-21-(4-methoxybenzyloxy)-16-

methyltricosa-2,4,6,12-tetraenoate (44): Compound (44) was prepared following the 

literature reference. 

(2E,4E,6E,9R,11R,12E,15R,16R,17S,21S)-Ethyl 9,11,15,17-Tetrakis(tert-

butyldimethylsilyloxy)-16-methyl-21-(4-methoxybenzyloxy)tricosa-2,4,6,12-

tetraenoate (45): Tris(dibenzylideneacetone) dipalladium (Pd2(dba)3; 71 mg, 0.08 mmol) 

and triphenylarsine (71 mg, 0.23 mmol) was added to a solution of vinyliodide (43, 1.6 g, 

1.5 mmol) and fragment C (39) (1.0 g, 2.3 mmol) in anhydrous N,N-dimethylformamide 

(30 mL) at room temperature. The reaction mixture was stirred for 18 hours at room 

temperature, at which time ethyl acetate (150 mL) was added. The reaction mixture was 

washed with water (50 mL × 4 times), and resulting organic fraction was dried over an 

anhydrous sodium sulfate pad, filtered, and concentrated under reduced pressure. The 

residue was subjected to flash column chromatography. The target compound was eluted 

with 2% EtOAc/Hexane (1.2 g, 1.2 mmol, 76%). 
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1H NMR (CDCl3, 500 MHz) δ (ppm) 7.32-7.25 (m, 3H, 3-CH and PhH of PMB), 

6.87-6.85 (d, 2H, J = 8.6 Hz, PhH of PMB), 6.54-6.49 (m, 1H, 5-CH), 6.23-6.18 (m, 1H, 

4-CH), 6.15-6.10 (m, 1H, 6-CH), 5.94-5.88 (m, 1H, 7-CH), 5.86-5.83 (d, 1H, J = 15.4 

Hz, 2-CH), 5.57-5.51 (m, 1H, 13-CH), 5.43-5.38 (m, 1H, 7-CH), 4.43 (s, 2H, CH2 of 

PMB), 4.22-4.18 (q, 2H, J = 7.1 Hz, CH2CH3 of OEt), 4.15-4.11 (m, 1H, 11-CH), 3.86-

3.82 (m, 1H, 9-CH), 3.79 (s, 3H, OCH3 of PMB), 3.76-3.75 (m, 1H, 15-CH), 3.69-3.68 

(m, 1H, 17-CH), 3.30-3.28 (m, 1H, 21-CH), 2.39-2.36 (m, 1H, 8-CH2), 2.27-2.17 (m, 3H, 

14-CH2 and 8-CH2), 1.74-1.69 (m, 1H, 10-CH2), 1.63-1.26 (m, 13H, 10-CH2, 16-CH, 18-

CH2, 19-CH2, 20-CH2, 22-CH2 and CH2CH3 of OEt ), 0.93-0.84 (m, 42H, 16-C-CH3, 23-

CH3 and CH3 of TBS), 0.04-0.01 (m, 24H, CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ 

(ppm) 167.17, 159.02, 144.72, 140.89, 136.54, 135.62, 132.03, 129.18, 128.13, 126.76, 

120.27, 113.71, 79.79, 72.89, 72.27, 70.81, 70.46, 68.95, 60.19, 55.25, 46.16, 41.26, 

40.76, 37.89, 35.42, 33.91, 26.26, 25.99, 25.98, 25.91, 25.86, 21.30, 18.18, 18.14, 18.04, 

14.32, 9.52, -3.72, -3.93, -4.26, -4.31, -4.37, -4.51, -4.72; HRMS (ESI, positive) m/z for 

C58H108O8Si4 [M+Na]+: calcd 1067.7019, found 1067.7005. 

(2E,4E,6E,9R,11R,12E,15R,16S,17S,21S)-9,11,17-tris(tert-butyldimethylsilyloxy)-

15,21-dihydroxy-16-methyltricosa-2,4,6,12-tetraenoic acid (46): Compound (46) was 

prepared following the literature reference.  

(2E,4E,6E,9R,11R,12E,15R,16R,17S,21S)-9,11,15,17-Tetrakis(tert-

butyldimethylsilyloxy)-21-hydroxy-16-methyltricosa-2,4,6,12-tetraenoic acid (47): 1) 

0.5 N Lithium hydroxide solution (8 mL) was added to a solution of long-chain 

compound (45, 0.31 g, 0.30 mmol) in THF (8 mL) and methanol (8 mL) at room 
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temperature. The reaction mixture was stirred under reflux for 3 hours, at which time 

volatile solvents were concentrated under reduced pressure. The pH of the aqueous 

solution was adjusted to approximately 7, and the mixture was extracted with ethyl 

acetate (20 mL × 3 times). The organic fractions were pooled, washed with brine (20 

mL), dried over an anhydrous sodium sulfate, and concentrated under reduced pressure. 

The residue was subjected to flash column chromatography, a carboxylic acid compound 

was eluted with 20% EtOAc/Hexane (0.24 g, 0.24 mmol, 80%). 

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.40-7.34 (dd, 1H, J = 15.1, 11.5 Hz 3-CH), 

7.27-7.25 (m, 2H, PhH of PMB), 6.87-6.84 (dt, 2H, J = 8.7, 2.8, 2.1 Hz, PhH of PMB), 

6.58-6.53 (dd, 1H, J = 14.8, 10.9 Hz, 5-CH), 6.26-6.20 (dd, 1H, J = 14.8, 11.6 Hz, 4-CH), 

6.17-6.12 (m, 1H, 6-CH), 5.98-5.92 (m, 1H, 7-CH), 5.88-5.83 (dd, 1H, J = 15.1, 10.3 Hz, 

2-CH), 5.57-5.51 (m, 1H, 13-CH), 5.43-5.38 (dd, 1H, J = 15.4, 6.8 Hz, 7-CH), 4.43 (s, 

2H, CH2 of PMB), 4.14-4.11 (q, 1H, J = 6.2 Hz, 11-CH), 3.85-3.83 (m, 1H, 9-CH), 3.79 

(s, 3H, OCH3 of PMB), 3.77-3.73 (q, 1H, J = 5.6 Hz, 15-CH), 3.70-3.67 (m, 1H, 17-CH), 

3.30-3.27 (m, 1H, 21-CH), 2.41-2.37 (m, 1H, 8-CH2), 2.27-2.17 (m, 3H, 14-CH2 and 8-

CH2), 1.75-1.26 (m, 11H, 10-CH2, 16-CH, 18-CH2, 19-CH2, 20-CH2 and 22-CH2), 0.90-

0.84 (m, 42H, 16-C-CH3, 23-CH3 and CH3 of TBS), 0.04-0.01 (m, 24H, CH3 of TBS); 

13C NMR (CDCl3, 125 MHz) δ (ppm) 159.03, 147.05, 142.06, 135.60, 131.94, 129.19, 

127.86, 126.80, 118.65, 113.72, 79.80, 72.90, 72.27, 70.82, 70.47, 68.92, 55.26, 46.17, 

41.27, 40.77, 37.89, 35.42, 33.92, 26.26, 25.98, 25.91, 25.86, 21.31, 18.18, 18.15, 18.05, 

9.51, -3.72, -3.75,-3.91, -4.25, -4.31, -4.37, -4.50, -4.71; HRMS (ESI, negative) m/z for 

C56H103O8Si4 [M-H]-: 1015.6736, found 1015.6731. 
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2) 2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ; 107 mg, 0.47 mmol) was added to a 

solution of the carboxylic acid from the previous step (0.24 g, 0.24 mmol) in 

dichloromethane (22 mL) and pH 7 phosphate buffer (2.4 mL) at 0 °C. The reaction 

mixture was stirred at 0 °C for 6 hours, at which time saturated the aqueous sodium 

bicarbonate solution (6 mL) was added. The organic and aqueous fractions were 

separated, and the aqueous fraction was extracted with ethyl acetate (40 mL × 3 times). 

The combined organic fractions were washed with brine (20 mL), dried over an 

anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was 

subjected to flash column chromatography. The target compound was eluted with 20% to 

50% EtOAc/Hexane (0.16 g, 0.18 mmol, 75%). 

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.36 (dd, J = 15.3, 11.3 Hz, 1H, 3-H), 6.55 

(dd, J = 14.8, 10.5 Hz, 1H, 5-H), 6.22 (dd, J = 14.8, 11.3 Hz, 1H, 4-H), 6.14 (dd, J = 15.3, 

10.5 Hz, 1H, 6-H), 5.94 (dt, J = 15.3, 7.4 Hz, 1H, 7-H), 5.82 (d, J = 15.1 Hz, 1H, 2-H), 

5.54 (dt, J = 15.5, 7.2 Hz, 1H, 13-H), 5.39 (dd, J = 15.5, 6.8 Hz, 1H, 12-H), 4.12 (br q, J 

= 12.6, 7.1 Hz, 1H, 11-H), 3.81 (br quint, J = 17.0, 11.8, 6.6 Hz, 1H, 9-H), 3.73 (q, J = 

11.0, 5.5 Hz, 1H, 15-H), 3.67 (q, J = 10.5, 5.5 Hz, 1H, 17-H), 3.48 (m, 1H, 21-H), 2.39-

2.34 (m, 1H, 8-H), 2.24-2.18 (m, 3H, 8-H, 14-H), 1.70 (ddd, J = 13.5, 7.7, 5.5 Hz, 1H, 

10-H), 1.61-1.18 (m, 10H, 10-H, 16-H, 18-H, 19-H, 20-H, 22-H), 0.92 (t, J = 7.5 Hz, 3H, 

23-H), 0.87-0.83 (m, 36H, TBS), 0.83 (d, J-7 Hz, 3H, 16-Me), 0.04-(-0.01) (m, 24H, 

TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 171.3, 147.0, 142,0, 137.4, 135.8, 132.0, 

127.9, 126.9, 120.0, 73.1, 72.6, 72.2, 70.9, 69.0, 60.2, 46.2, 40.8, 40.6, 37.7, 37.4, 35.1, 

30.1, 25.95, 25.93, 25.87, 21.3, 18.2, 18.16, 18.13, 18.0, 9.9, 9.3, -3.77, -3.82, -3.99, -
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4.28, -4.37, -4.38, -4.59,-4.71; HRMS (CI, negative) m/z for C48H96O7Si4 [M-H]-: calcd 

896.6233, found 896.6230. 

(3E,5E,7E,10R,12R,13E,16R,17S,18S,22S)-10,12,18-tris(tert-butyldimethylsilyloxy)-

22-ethyl-16-(triethylsilyloxy)-17-methyloxacyclodocosa-3,5,7,13-tetraen-2-one (48): 

Compound (48) was prepared following the literature reference. 

(3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-10,12,16,18-tetrakis(tert-

butyldimethylsilyloxy)-22-ethyl-17-methyloxacyclodocosa-3,5,7,13-tetraen-2-one 

(49): A solution of N,N-diisopropylethylamine (0.92 mL, 0.4 M, 0.37 mmol) and 

activated 4 Å molecular sieve (164 mg) was mixed with acid compound (47, 164 mg, 

0.18 mmol) in THF (36 mL). 2,4,6-Trichlorobenzoyl chloride solution (0.50 mL, 0.4 M, 

0.20 mmol) was added to the mixture at room temperature. The reaction mixture was 

stirred at room temperature for 3 hours, and concentrated under reduced pressure to 

afford the crude anhydride intermediate. A solution of the obtained anhydride in toluene 

(20 mL) was added to a solution of N,N-dimethylaminopyridine (DMAP; 67 mg, 0.55 

mmol) in toluene (30 mL) using a syringe pump over 3 hours. At the end of the addition, 

the syringe was rinsed with additional toluene (2 mL). After stirring for 18 hours, the 

mixture was quenched with a saturated the aqueous sodium bicarbonate solution (20 mL), 

and the aqueous fraction was extracted with ethyl acetate (40 mL x 3 times). The 

combined organic fractions were washed with brine (20 mL), dried over an anhydrous 

sodium sulfate pad, and concentrated under reduced pressure. The crude residue was 

purified using flash column chromatography. The target compound was eluted with 2% 

EtOAc/Hexane (141 mg, 0.16 mmol, 88%). 
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1H NMR (CDCl3, 500 MHz) δ (ppm) 7.24 (dd, J = 15.3, 11.3 Hz, 1H, 3-H), 6.47 

(dd, J = 14.8, 10.5 Hz, 1H, 5-H), 6.21 (dd, J = 14.8, 11.3 Hz, 1H, 4-H), 6.11 (dd, J = 15.3, 

10.5 Hz, 1H, 6-H), 5.79 (d, J = 15.1 Hz, 1H, 2-H), 5.77 (dt, J = 15.3, 7.4 Hz, 1H, 7-H), 

5.38 (dt, J = 15.5, 7.2 Hz, 1H, 13-H), 5.27 (dd, J = 15.5, 6.8 Hz, 1H, 12-H), 4.85 (m, 1H, 

21-H), 4.01 (br dd, J = 13.4, 6.7 Hz, 1H, 11-H), 3.75 (br ddd, J = 13.0, 9.0, 5.0 Hz, 1H, 9-

H), 3.67 (br dd, J = 9.0, 5.5 Hz, 1H, 15-H), 3.57 (br dd, J = 10.0, 6.0 Hz, 1H, 17-H), 2.46-

2.42 (m, 1H, 8-H), 2.24-2.18 (m, 2H, 14-H, 8-H), 2.12-2.08 (m, 1H, 14-H), 1.42-1.17 (m, 

11H, 10-H, 16-H, 18-H, 19-H, 20-H, 22-H), 0.91 (t, J = 7.5 Hz, 3H, 23-H), 0.874 (s, 9H, 

TBS), 0.897 (s, 9H, TBS), 0.85 (s, 9H, TBS), 0.93 (s, 9H, TBS), 0.74 (d, 3H, J = 7.0 Hz, 

16-Me), 0.04-(-0.01) (m, 24H, TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 167.0, 144.8, 

140.9, 136.0, 135.2, 132.0, 128.0, 127.0, 120.8, 75.2, 73.2, 72.1, 71.1, 69.1, 46.6, 42.3, 

42.1, 38.4, 34.4, 33.4, 29.7, 27.8, 26.04, 25.99, 25.91, 25.8, 21.1, 18.18, 18.14, 18.08, 

18.02, 10.2, 9.9, -3.47, -3.87, -3.97, -4.33, -4.41, -4.53, -4.62; HRMS (CI, negative) m/z 

for C48H94O6Si4 [M-H]-: calcd 878.6128, found 878.6128. 

(3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-22-ethyl-10,12,16,18-tetrahydroxy-17-

methyloxacyclodocosa-3,5,7,13-tetraen-2-one (50): A solution of the macrolactone 

(141 mg, 0.16 mmol) in hydrogen fluoride-pyridine complex (1.4 mL) was stirred at 0 °C 

for 4 days until the starting material was no longer detectable. After quenching with a 

saturated the aqueous sodium bicarbonate solution (20 mL) at 0 °C, the aqueous fraction 

was extracted with dichloromethane (30 mL x 3 times). The combined organic fractions 

were dried over an anhydrous sodium sulfate pad, and concentrated under reduced 
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pressure. The resulting residue was purified using flash column chromatography. The 

target compound was eluted with 5% MeOH/DCM solution (41 mg, 0.097 mmol, 62%). 

1H NMR (DMSO-d6, 500 MHz) δ (ppm) 7.25 (dd, J = 15.2, 11.3 Hz, 1H, 3-H), 

6.70 (dd, J = 14.9, 10.9 Hz, 1H, 5-H), 6.35 (dd, J = 14.9, 11.3 Hz, 1H, 4-H), 6.18 (dd, J = 

15.2, 10.9 Hz, 1H, 6-H), 5.89 (ddd, J = 15.2, 10.3, 5.4 Hz, 1H, 7-H), 5.85 (d, J = 15.2 Hz, 

1H, 2-H), 5.29 (app dd, J = 15.4, 7.2 Hz, 1H, 12-H), 5.18 (ddd, J = 15.4, 7.6, 5.9 Hz, 1H, 

13-H), 4.75 (quint, J = 6.2 Hz, 1H, 21-H), 4.64 (br s, 1H, OH), 4.51 (br s, 1H, OH), 4.38 

(br m, 2H, OH), 3.78 (br s, 1H, 11-H), 3.69 (br s, 1H, 9-H), 3.50 (br s, 1H, 15-H), 3.45 

(br s, 1H, 17-H), 2.52-2.50 (m, 1H, 8-H), 2.08-1.86 (m, 3H, 8-H, 14-H), 1.60-1.45 (m, 

5H, 10-H, 19-H, 22-H), 1.40-1.21 (m, 5H, 10-H, 18-H, 20-H), 1.19-1.54 (m, 1H, 16-H), 

0.84 (t, J = 7.3 Hz, 3H, 23-H), 0.67 (d, J = 7.1 Hz, 3H, 16-Me); 13C NMR (DMSO-d6, 

125 MHz) δ (ppm) 165.9, 144.7, 141.5, 137.0, 136.2, 131.7, 127.8, 126.0, 120.2, 74.7, 

74.4, 73.3, 69.4, 66.9, 54.9, 45.8, 42.8, 38.4, 33.8, 32.8, 27.3, 21.3, 9.72, 6.06; HRMS 

(CI, negative) m/z for C24H38O6 [M-H]-: calcd 422.2668, found 422.2664. 

SpnM Natural substrate (51): SpnJ (7.0 mL of 50 µM in 50 mM Tris·HCl buffer) was 

added to a solution of macrolactone (20.7 mg, 4 mM in DMSO) in Tris·HCl buffer (2.63 

mL of 100 mM Tris·HCl, pH 8.0 and 1.40 mL of water) at 30 °C to initiate the enzymatic 

reaction (total volume 12.25 mL, DMSO 10% v/v). Through the incubation, the reaction 

was monitored by HPLC using a 4 x 250 mm Econosil C18 column (Alltech). The 

detector was set at 254 nm, and the solution was eluted from the column at 1 mL/min 

using the following gradient: initially 30% acetonitrile, the concentration of acetonitrile 

was increased linearly to 45% over 30 min, then increased linearly to 80% over 3 min, 
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and finally decreased linearly back to 30% over 3 min. After 2.5 hours of incubation at 

30 °C the reaction appeared to have reached completion, the reaction mixture was then 

directly filtered through a YM-10 filter by centrifugation at 4,000 rpm over 40 min. The 

clear filtrate was purified by semi-preparative HPLC using a 10 x 250 mm Econosil C18 

column (254 nm, Alltech). The solution was eluted from the column at a rate of 4 

mL/min with water versus acetonitrile by following gradient: initially 30% acetonitrile, 

concentration of acetonitrile was increased linearly to 45% over 30 min, and again 

increased linearly to 80% over 3 min, and finally decreased linearly back to 30% over 3 

min. The collected fractions were pooled, extracted with EtOAc (50 mL x 3 times), dried 

over an anhydrous sodium sulfate pad, and concentrated under reduce pressure (19.0 mg, 

92%). All spectral data is identical to the literature reference. 

2.2.4. Synthesis of the [C4-
2
H] SpnM Substrate Analog (C4-D analog) 

A. Preparation of Fragment C: The overall synthetic scheme is figured in Scheme 2-5.  

OH

Bu3SnD, AIBN
70 oC, 18 h, 40 %

OHBu3Sn

1. activated MnO2, DCM
RT, 2 days

2. , NaH, THF
0 oC to RT, 6 h

OEt

O

(EtO)2P

O

2 steps, 36 %
Bu3Sn OEt

O

D D
37 52 53  

 

Scheme 2-5. Preparation of Fragment C for in the synthesis of [C4-2H] substrate analog. 
 
(E)-3-(Tributylstannyl)prop-2-en-1-ol (52): Compound (52) was prepared following 

the same procedure as compound (38) using tributyltin deuteride instead of tributyltin 

hydride with a yield of 40%.  

1H NMR (CDCl3, 400 MHz) δ (ppm) 6.27-6.13 (m, 1H, 3-H), 4.18-4.16 (m, 2H, 

1-CH2), 1.57-1.47 (m, 6H, Bu3Sn), 1.41-1.27 (m, 6H, Bu3Sn), 1.02-0.82 (m, 15H, 

Bu3Sn); 13C NMR (CDCl3, 100 MHz) δ (ppm) 146.86, 146.67, 146.48, 128.20, 66.32, 
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29.06, 27.27, 13.68, 9.44; HRMS (CI, positive) m/z for C15H31DOSn [M+H]+: calcd 

350.1616, found 350.1618. 

(2E,4Z)-Ethyl 5-(tributylstannyl)penta-2,4-dienoate (53): Compound (53) was 

prepared following the same procedure as compound (39) with a yield of 36% for 2 steps.  

1H NMR (CDCl3, 400 MHz) δ (ppm) 7.19 (d, 1H, J = 15.4 Hz, 3-H), 6.80 (s, 1H, 

5-H), 5.82 (d, 1H, J = 15.4 Hz, 2-H), 4.23-4.18 (q, 2H, J = 7.1 Hz, CH2-CH3), 1.55-1.47 

(m, 6H, Bu3Sn), 1.35-1.27 (m, 9H, Bu3Sn+CH2-CH3), 0.96-0.87 (m, 15H, Bu3Sn); 13C 

NMR (CDCl3, 100 MHz) δ (ppm) 167.41, 147.01, 146.25, 144.08, 119.88, 60.26, 29.03, 

27.22, 14.30, 13.66, 9.63; HRMS (CI, positive) m/z for C19H36DO2Sn [M+H]+: 418.1878, 

found 418.1882 

B. Synthesis of [C4-2H] SpnM Substrate by Coupling Reactions and Enzymatic 

Conversion: The overall synthetic scheme is pictured in Scheme 2-6. 
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Scheme 2-6. Preparation of [C4-2H] SpnM substrate 
 
(2E,4E,6E,9R,11R,12E,15R,16R,17S,21S)-Ethyl 9,11,15,17-Tetrakis(tert-

butyldimethylsilyloxy)-16-methyl-21-(4-methoxybenzyloxy)tricosa-2,4,6,12-
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tetraenoate (54): Compound (54) was prepared following the same procedure as 

compound (45) using compound (53) instead of compound (39) with a yield of 93%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.31-7.25 (m, 3H, Ph of PMB+3-CH), 6.87-

6.84 (m, 2H, Ph of PMB), 6.52 (d, 1H, J = 10.8 Hz, 5-CH), 6.17-6.10 (m, 1H, 6-CH), 

5.94-5.89 (m, 1H, 7-CH), 5.86 (d, 1H, J = 15.3 Hz, 2-CH), 5.57-5.51 (m, 1H, 13-CH), 

5.43-5.39 (dd, 1H, J = 15.4, 6.8 Hz, 12-CH), 4.43 (s, 2H, CH2 of PMB), 4.22-4.18 (q, 2H, 

J = 7.1 Hz, CH3CH2CO(O), 4.15-4.11 (q, 1H, J = 6.6 Hz, 11-CH), 3.86-3.81 (m, 1H, 9-

CH), 3.79 (s, 3H, OCH3 of PMB), 3.77-3.74 (m, 1H, 15-CH), 3.70-3.67 (m, 1H, 17-CH), 

3.30-3.27 (m, 1H, 21-CH) 2.40-2.35 (m, 1H, 8-CH2), 2.27-2.20 (m, 3H, 8-CH2+14-CH), 

1.75-1.69 (m, 1H, 10-CH2), 1.62-1.25 (m, 13H, 10-CH2+16-CH +18-CH2 +19-CH2 +20-

CH2+22-CH2+CH3CH2CO(O)), 0.92-0.84 (m, 42H, CH3 of TBS+16-CH3+23-CH3), 0.04-

0.01 (m, 24H, CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 167.15, 159.01, 

144.64, 140.78, 136.49, 135.61, 131.99, 131.29, 129.17, 126.75, 120.23, 113.70, 79.78, 

72.88, 72.25, 70.80, 70.45, 68.94, 60.17, 55.24, 46.15, 41.23, 40.75, 37.87, 35.41, 33.90, 

25.98, 25.90, 25.86, 21.29, 18.16, 18.13, 18.03, 14.31, 9.50, -3.74, -3.76, -3.94, -4.27, -

4.32, -4.38, -4.52, -4.73; HRMS (ESI, positive) m/z for C58H107DO8Si4 Na [M+Na]+: 

calcd 1068.7076, found 1068.7065. 

(2E,4E,6E,9R,11R,12E,15R,16R,17S,21S)-9,11,15,17-Tetrakis(tert-

butyldimethylsilyloxy)-21-hydroxy-16-methyltricosa-2,4,6,12-tetraenoic acid (55): 

Compound (55) was prepared following the same procedure as compound (47) with a 

yield of 43% for 2 steps.  
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1H NMR (CDCl3, 500 MHz) δ (ppm) 7.38 (d, 1H, 3-CH), 6.56 (d, 1H, 5-CH), 

6.18-6.13 (dd, 1H, J = 14.8, 11.0 Hz, 6-CH), 5.96-5.95 (m, 1H, 7-CH), 5.87 (d, 1H, J = 

15.1 Hz, 2-CH), 5.59-5.52 (m, 1H, 13-CH), 5.44-5.40 (dd, 1H, J = 15.4, 6.7 Hz, 12-CH), 

4.16-4.12 (q, 1H, J = 6.6 Hz, 11-CH), 3.85-3.82 (q, 1H, J = 5.6 Hz, 9-CH), 3.76-3.73 (q, 

1H, J = 5.3 Hz, 15-CH), 3.71-3.68 (q, 1H, J = 5.1 Hz, 17-CH), 3.51-3.48 (m, 1H, 21-CH) 

2.40-2.38 (m, 1H, 8-CH2), 2.27-2.22 (m, 3H, 8-CH2+14-CH), 1.75-1.26 (m, 11H, 10-

CH2+16-CH +18-CH2 +19-CH2 +20-CH2+22-CH2), 0.95-0.84 (m, 42H, CH3 of TBS+16-

CH3+23-CH3), 0.04-0.02 (m, 24H, CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 

171.93, 146.90, 141.89, 137.30, 135.64, 132.00, 127.58, 126.87, 126.68, 119.23, 73.12, 

73.09, 72.77, 72.64, 72.18, 70.79, 68.99, 46.14, 40.90, 40.81, 40.63, 37.80, 37.67, 37.41, 

35.05, 30.09, 29.69, 27.84, 27.03, 21.32, 21.26, 18.19, 18.15, 18.12, 18.04, 16.49, 9.87, 

9.31, -3.78, -3.82, -3.96, -4.00, -4.28, -4.31, -4.32, -4.38, -4.60, -4.71; HRMS (ESI, 

positive) m/z for C48H95DO7Si4 [M-H]-: calcd 896.6223, found 896.6215.  

 (3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-10,12,16,18-tetrakis(tert-

butyldimethylsilyloxy)-22-ethyl-17-methyloxacyclodocosa-3,5,7,13-tetraen-2-one 

(56): Compound (56) was prepared following the same procedure as compound (49) with 

a yield of 72%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.24 (d, J = 15.0, 1H, C3-H), 6.45 (d, J = 

10.5 Hz, 1H, C5-H), 6.11 (dd, J = 15.5, 10.5 Hz, 1H, C6-H), 5.80 (d, J = 15.0 Hz, 1H, 

C2-H), 5.78 (dt, J = 15.5, 8.0 Hz, 1H, C7-H), 5.42-5.22 (m, 2H, C12-H and C13-H), 

4.90-4.80 (m, 1H, C21-H), 4.01 (q, J = 7.0 Hz, 1H, C11-H), 3.80-3.72 (m, 1H, C9-H), 

3.71-3.64 (m, 1H, C15-H), 3.61-3.52 (m, 1H, C17-H), 2.50-2.06 (m, 4H, C8H and C14-
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H), 1.781.16 (m, 11H, C10-H, C16-H, C18H, C19-H, C20-H, C22-H), 0.91-0.80 (m, 

39H, t-Bu of TBS and C23-H), 0.75 (d, J = 7.0 Hz, 3H, C16-Me), 0.08-0.06) (m, 24H, 

CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 166.9, 144.7, 140.8, 136.0, 135.2, 

131.9, 128.0, 127.1, 120.8, 75.2, 73.2, 71.1, 69.1, 46.6, 42.3, 42.1, 38.4, 34.4, 33.4, 27.8, 

26.1, 26.0, 26.0, 25.9, 25.9, 25.8, 21.1, 18.2, 18.2, 18.1, 18.1, 18.1, 18.1, 18.0, 10.2, 9.9, -

3.5, -3.8, -4.0, -4.3, -4.4, -4.5, -4.5, -4.6, -4.6, -4.7, -4.7; HRMS (ESI) m/z for 

C48H93DO6Si4 [M+Na]+: calcd 902.60824, found 902.60711. 

(3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-22-ethyl-10,12,16,18-tetrahydroxy-17-

methyloxacyclodocosa-3,5,7,13-tetraen-2-one with [C4-
2
H] (57): Compound (57) was 

prepared following the same procedure as compound (50) with a yield of 61%. 

1H NMR (CDCl3, 500 MHz) δ (ppm); 13C NMR (CDCl3, 125 MHz) δ (ppm); 

HRMS (ESI, positive) m/z for C24H37DO6 Na [M+Na]+: calcd 446.2623, found 446.2625. 

[C4-
2
H] SpnM substrate analog (58): [C4-2H] SpnM substrate (58) was prepared 

following the same procedure as SpnM natural substrate (51) quantitatively.  

HRMS (ESI, positive) m/z for C24H35DO6 Na [M+Na]+: calcd 444.2467, found 

444.2461. 

2.2.5. Synthesis of the [C7-
2
H] SpnM Substrate Analog (C7-D analog) 

A. Preparation of Fragment B: The overall synthetic scheme is depicted in Scheme 2-7. 
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PMBO
TBSO OTBS 1. NaIO4, OsO4, lutidine,

1,4-dioxane, H2O, RT, 18 h
2. NIS, K2CO3, MeOH

RT, 18 h

2 steps, 73 %
PMBO

TBSO
CO2Me

OTBS

HO
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I O
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I

DMP, DCM
RT, 2h

LiAlD4, Et2O
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PMBO
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OTBS 1. DMP, DCM
RT, 2 h, 93 %
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2.CrCl2, CHI3, THF
0 oC, 2 h, 52 %

I

DDQ, MeOH, DCM
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83 %

33 59

60 61

62 63  
Scheme 2-7. Preparation of fragment B for the synthesis of [C7-2H] substrate analog 
 

(5R,7R)-5-((E)-3-iodoallyl)-7-((4-methoxybenzyloxy)methyl)-2,2,3,3,9,9,10,10-

octamethyl-4,8-dioxa-3,9-disilaundecane (59): 1) Allyl compound (10.0 g, 0.02 mol) 

was mixed with water (20 mL) and a solution sodium (meta)periodate (13.0 g, 0.06 mol), 

osmium (VIII) oxide (0.12 g, 0.48 mmol), 2,6-lutidine (3.5 mL, 0.03 mol) in 1,4-dioxane 

(61 mL) at 0 °C with stirring for 18 hours. After quenching with the aqueous 1 N sodium 

thiosulfate solution (40 mL) with stirring for 1 hour, the reaction mixture was filtered 

through a paper filter, and extracted with dichloromethane (100 mL x 3 times). The 

combined organic fractions were washed with brine (150 mL), dried over an anhydrous 

sodium sulfate pad, and concentrated under reduced pressure. The resulting residue was 

purified using flash column chromatography, an aldehyde compound was eluted with 5% 

to 10% EtOAc/Hexane with a quantitative yield. 2) N-Iodosuccinimide (NIS; 11.3 g, 0.05 

mol) and potassium carbonate (6.9 g. 0.05 mol) was added to a solution of aldehyde from 

previous step in methanol (100 mL) at room temperature. The reaction mixture was 

stirred at room temperature for 18 hours, and quenched with saturated the aqueous 

sodium thiosulfate solution (200 mL). The aqueous fraction was extracted with 

dichloromethane (150 mL x 3 times), and collected organic fractions were dried over an 

anhydrous sodium sulfate pad, filtered and concentrated under the reduced pressure. The 
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resulting residue was subjected to flash column chromatography. The target compound 

was eluted with EtOAc/Hexane (7.2 g, 73%). Spectral data was not collected. 

(3R,5R)-3,5-bis(tert-butyldimethylsilyloxy)-6-(4-methoxybenzyloxy)hexan-1-ol with 

1,1-dideuteride (60): Lithium aluminum deuteride (144 mg, 3.4 mmol) was added to a 

solution of ester compound (3.0 g, 5.7 mmol) in anhydrous diethylether (40 mL) at –78 

°C, and the reaction mixture was stirred at -78 °C for 6 hours. Rochelle’s salt solution (10 

mL) was slowly added to quench the reaction. The organic fraction was separated and the 

aqueous fraction was extracted with ethyl acetate (100 mL × 3 times). The combined 

organic fractions were dried over an anhydrous magnesium sulfate pad, concentrated 

under reduced pressure, and purified using flash column chromatography, 1,1-

dideuterated alcohol was eluted with 10% to 20% EtOAc/Hexane (1.2 g, 2.4 mmol, 

42%). Some of the starting material was recovered (1.5 g, 2.9 mmol, 51%). 

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.23-7.21 (dt, 2H, J = 8.7, 2.8, 2.1 Hz, PhH 

of PMB), 6.86-6.84 (dt, 2H, J = 8.7, 2.8, 2.1 Hz, PhH of PMB), 4.42 (s, 2-H, CH2 of 

PMB), 4.10-4.04 (m, 1H, 5-CH), 3.83-3.79 (m, 1H, 3-CH), 3.77 (s, 3H, OCH3 of PMB), 

3.36-3.29 (m, 2H, 6-CH2), 1.85-1.76 (m, 2H, 2-CH2), 1.71-1.59 (m, 2H, 4-CH2), 0.87 (s, 

9H, CH3 of TBS), 0.86 (s, 9H, CH3 of TBS), 0.06 (d, 6H, J = 7.0 Hz, CH3 of TBS), 0.02 

(s, 6H, CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 159.09, 130.30, 129.15, 

113.65, 74.66, 72.89, 68.93, 55.14, 51.31, 41.78, 37.15, 25.80, 25.77, 18.02, 17.84, -4.21, 

-4.49, -4.83, -4.90; HRMS (ESI, positive) m/z for C26H48D2O5Si2 [M+Na]+: calcd 

523.3215, found 523.3206. 
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(5R,7R)-5-((E)-3-iodoallyl)-7-((4-methoxybenzyloxy)methyl)-2,2,3,3,9,9,10,10-

octamethyl-4,8-dioxa-3,9-disilaundecane with mono-deuteride (61): 1) Dess-Martin 

periodinane (3.2 g, 7.5 mmol) was added to a solution of alcohol compound (3.1 g, 6.3 

mmol) in dichloromethane (150 mL) at room temperature, and the reaction mixture was 

stirred at room temperature for 2 hours. The reaction mixture was washed sequentially 

with saturated the aqueous sodium bicarbonate solution (70 mL), sodium thiosulfate 

solution (50 mL), and brine (80 mL). The organic fraction was dried over an anhydrous 

sodium sulfate pad and concentrated. The residue was purified using flash column 

chromatography, the aldehyde compound was eluted with 5% EtOAc/Hexane (2.9 g, 5.8 

mmol, 93%). 2) The aldehyde was not stable enough for spectroscopic analysis, so it was 

used for the next step directly. A THF (20 mL) solution of compound (2.9 g, 5.8 mmol) 

and iodoform (4.6 g, 11.7 mmol) was added to a mixture of chromium (II) chloride (3.6 

g, 29.1 mmol) in THF (70 mL) over 70 min at 0 °C. The reaction mixture was stirred for 

14 hours at 4 °C and stirred for additional 2 hours at room temperature. The reaction 

mixture was diluted with ethyl acetate (200 mL) and washed with brine (250 mL) and 

water (200 mL). The organic fraction was dried over a magnesium sulfate pad and 

concentrated. The residue was purified using flash column chromatography, the vinyl 

iodide compound was eluted with 2% EtOAc/Hexane (1.9 g, 3.0 mmol, 52%). No 

spectral data was collected. 

(2R,4R,E)-2,4-bis(tert-butyldimethylsilyloxy)-7-iodohept-6-en-1-ol with 6-mono-

deuteride (62): Compound (62) was prepared following the same procedure as 

compound (35) with a yield of 76%. 
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1H NMR (CDCl3, 500 MHz) δ (ppm) 6.05 (s, 1H, 1-CH), 3.90-3.81 (m, 2H, 4-

CH+6-CH), 3.60-3.57 (m, 1H, 7-CH2), 3.49-3.44 (m, 1H, 7-CH2), 2.29-2.25 (m, 1H, 3-

CH2), 2.21-2.16 (m, 1H, 3-CH2), 1.74-1.63 (m, 2H, 5-CH2), 0.90 (s, 9H, CH3 of TBS), 

0.89 (s, 9H, CH3 of TBS), 0.09 (s, 6H, CH3 of TBS), 0.06 (d, 6H, J = 4.4 Hz, CH3 of 

TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 142.47, 142.27, 142.08, 69.81, 68.26, 66.19, 

43.58, 41.36, 25.82, 18.06, 17.98, -4.34, -4.50, -4.61; HRMS (ESI, positive) m/z for 

C19H40DIO3Si2 [M+H]+: 502.1771, found 502.1774. 

(2R,4R,E)-2,4-bis(tert-butyldimethylsilyloxy)-7-iodohept-6-enal with 6-mono-

deuteride (63): Compound (63) was prepared following the same procedure as 

compound (36) with a quantitative yield.  

B. Synthesis of C7-D analog by Coupling Reactions and Enzymatic Conversion: The 

overall synthetic scheme is pictured in Scheme 2-8. 
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Scheme 2-8. Preparation of C7-D SpnM substrate analog. 
 
(5R,7R,11R,12R,13S,E)-7,11-bis(tert-butyldimethylsilyloxy)-5-((E)-3-iodoallyl)-13-

(4-(4-methoxybenzyloxy)hexyl)-2,2,3,3,12,15,15,16,16-nonamethyl-4,14-dioxa-3,15-
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disilaheptadec-8-ene with mono-deuteride (64): Compound (64) was prepared 

following the same procedure as compound (43) using compound (63) instead of 

compound (36) with a yield of 54%. 

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.27-7.25 (m, 2H, Ph of PMB), 6.87-6.85 

(m, 2H, Ph of PMB), 5.99 (s, 1H, 1-CH), 5.57-5.51 (m, 1H, 8-CH), 5.43-5.38 (dd, 1H, J 

= 15.4, 6.8 Hz, 7-CH), 4.43 (s, 2H, CH2 of PMB), 4.12-4.08 (m, 1H, 6-CH), 3.84-3.81 

(m, 1H, 4-CH), 3.80 (s, 3H, OCH3 of PMB), 3.77-3.74 (m, 1H, 10-CH), 3.70-3.65 (m, 

1H, 12-CH), 3.32-3.27 (m, 1H, 16-CH) 2.31-2.21 (m, 3H, 3-CH2+9-CH2), 2.15-2.08 (m, 

1H, 3-CH2), 1.74-1.69 (m, 1H, 5-CH2), 1.62-1.25 (m, 10H, 5-CH2+11-CH +13-CH2 

+14-CH2 +15-CH2+17-CH2), 0.93-0.84 (m, 42H, CH3 of TBS +11-CH3+18-CH3), 

0.10-0.01 (m, 24H, CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 159.01, 143.31, 

143.33, 135.54, 131.31, 129.17, 126.81, 113.71, 79.79, 76.45, 74.78, 72.90, 72.25, 70.74, 

70.45, 68.22, 55.26, 46.03, 43.37, 41.26, 37.84, 35.40, 33.91, 25.99, 25.90, 25.85, 21.30, 

18.18, 18.14, 18.12, 18.01, 9.52, -3.72, -3.90, -4.24, -4.35, -4.42, -4.49, -4.61, -4.71; 

HRMS (ESI, negative) m/z for C51H98DIO6Si4Cl [M+Cl]-: calcd 1082.5320, found 

1082.5324. 

(2E,4E,6E,9R,11R,12E,15R,16R,17S)-ethyl 9,11,15,17-tetrakis(tert-

butyldimethylsilyloxy)-21-(4-methoxybenzyloxy)-16-methyltricosa-2,4,6,12-

tetraenoate with mono-deuteride (65): Compound (65) was prepared following the 

same procedure as compound (45) with a yield of 71%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.31-7.25 (m, 3H, Ph of PMB+3-CH), 6.87-

6.84 (m, 2H, Ph of PMB), 6.52 (d, 1H, J = 10.8 Hz, 5-CH), 6.23-6.18 (m, 1H, 4-CH), 
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6.17-6.10 (m, 1H, 6-CH), 5.86 (d, 1H, J = 15.3 Hz, 2-CH), 5.57-5.51 (m, 1H, 13-CH), 

5.43-5.39 (dd, 1H, J = 15.4, 6.8 Hz, 12-CH), 4.43 (s, 2H, CH2 of PMB), 4.22-4.18 (q, 

2H, J = 7.1 Hz, CH3CH2CO(O), 4.15-4.11 (q, 1H, J = 6.6 Hz, 11-CH), 3.86-3.81 (m, 1H, 

9-CH), 3.79 (s, 3H, OCH3 of PMB), 3.77-3.74 (m, 1H, 15-CH), 3.70-3.67 (m, 1H, 17-

CH), 3.30-3.27 (m, 1H, 21-CH) 2.40-2.35 (m, 1H, 8-CH2), 2.27-2.20 (m, 3H, 8-CH2+14-

CH), 1.75-1.69 (m, 1H, 10-CH2), 1.62-1.25 (m, 13H, 10-CH2, 16-CH, 18-CH2, 19-CH2, 

20-CH2, 22-CH2, CH3CH2CO(O)), 0.92-0.84 (m, 42H, CH3 of TBS, 16-CH3, 23-CH3), 

0.04-0.01 (m, 24H, CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 167.17, 159.02, 

144.72, 140.89, 136.54, 135.62, 132.03, 131.31, 129.18, 128.13, 120.23, 113.70, 79.79, 

72.89, 72.25, 70.80, 70.46, 68.94, 60.17, 55.24, 46.15, 41.23, 40.75, 37.87, 35.41, 33.90, 

25.98, 25.90, 25.86, 21.29, 18.16, 18.13, 18.03, 14.31, 9.50, -3.74, -3.76, -3.94, -4.27, -

4.32, -4.38, -4.52, -4.73; HRMS (ESI, positive) m/z for C58H107DO8Si4 [M+Na]+: calcd 

1068.7076, found 1068.7065. 

(2E,4E,6E,9R,11R,12E,15R,16R,17S,21S)-9,11,15,17-tetrakis(tert-

butyldimethylsilyloxy)-21-hydroxy-16-methyltricosa-2,4,6,12-tetraenoic acid (66): 

Compound (66) was prepared following the same procedure as compound (47) with a 

yield of 60% for 2 steps. No spectral data was collected. 

(3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-10,12,16,18-tetrakis(tert-

butyldimethylsilyloxy)-22-ethyl-17-methyloxacyclodocosa-3,5,7,13-tetraen-2-one 

(67): Compound (67) was prepared following the same procedure as compound (48) with 

a yield of 57% for 2 steps. 
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1H NMR (CDCl3, 500 MHz) δ (ppm) 7.30-7.24 (m, 1H, 3-H), 6.48 (dd, J = 15.0, 

10.5 Hz, 1H, 5-H), 6.25-6.20 (m, 1H, 4-H), 6.13 (d, J = 10.5 Hz, 1H, 6-H), 5.82 (d, J = 

15.0 Hz, 1H, 2-H), 5.43-5.27 (m, 2H, 12-H, 13-H), 4.87 (m, 1H, 21-H), 4.02 (m, 1H, 11-

H), 3.76 (m, 1H, 9-H), 3.68 (m, 1H, 15-H), 3.58 (m, 1H, 17-H), 2.46 (d, J = 10.0 Hz, 1H, 

8-H), 2.37-2.20 (m, 2H, 14-H, 8-H), 2.14-2.04 (m, 1H, 14-H), 1.71-1.20 (m, 11H, 10-H, 

16-H, 18-H, 19-H, 20-H, 22-H), 0.90-0.83 (m, 39H, 23-H, 12 x CH3 of TBS), 0.08-(-

0.02) (m, 24H, 8 x CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 144.8, 140.9, 

135.2, 131.9, 128.0, 127.1, 120.8, 75.2, 73.2, 72.1, 71.1, 69.1, 46.6, 42.4, 42.0, 38.4, 34.4, 

33.4, 27.9, 27.8, 26.1, 26.0, 25.9, 25.8, 21.1, 18.25, 18.11, 18.08, 18.01, 10.2, 9.9, -3.47, -

3.86, -3.96, -4.32, -4.39, -4.52, -4.56, -4.62; HRMS (ESI, positive) m/z for C48H93DO6Si4 

[M+Na]+: calcd 902.6082, found 902.6082. 

(3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-22-ethyl-10,12,16,18-tetrahydroxy-17-

methyloxacyclodocosa-3,5,7,13-tetraen-2-one (68): Compound (68) was prepared 

following the same procedure as compound (50) with a yield of 65%. 

1H NMR (CDCl3, 500 MHz) δ (ppm); 13C NMR (CDCl3, 125 MHz) δ (ppm); 

HRMS (ESI, positive) m/z for C24H37DO6 Na [M+Na]+: 446.2623, found 446.2625. 

[C7-
2
H] SpnM substrate analog (69): Compound (69) was prepared following the same 

procedure as compound (38) with a quantitative yield.  

HRMS (ESI, positive) m/z for C24H35DO6 [M+Na]+: calcd 444.2465, found 

444.2467. 

2.2.6. Synthesis of the [C11-
2
H] SpnM Substrate Analog (C11-D analog) 

A. Preparation of Fragment B: The overall synthetic scheme is depicted in Scheme 2-9. 
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Scheme 2-9. Preparation of fragment B for the synthesis of [C11-2H] SpnM substrate analog. 
 

3-(4-methoxybenzyloxy)propane-1,2-diol (71): 1) Glycerol (92.0 g, 1.0 mol) was mixed 

with 2,2-dimethoxypropane (136 mL, 1.1 mol) in acetone (500 mL) containing a catalytic 

amount of p-toluenesulfonic acid (1.9 g, 10 mmol) at room temperature over 18 hours. 

After the solvent was concentrated under reduced pressure, the residue was vacuum-

distilled at 70-80 °C to afford the intermediate (boiling point 188 °C at 760 torr; 129 g, 

98%). 2) Sodium hydride (60% in mineral oil; 39.2 g, 1.18 mol) was added portionwise 

over 30 min to a solution of above intermediate (129 g, 0.98 mol) in DMF (0.98 L) at 0 

°C with mechanical stirring. After stirring for an additional 30 min, p-methoxybenzyl 

chloride (freshly prepared from the reaction of p-methoxybenzyl alcohol (154.7 g, 1.12 

mol) and thionyl chloride (SOCl2; 233.0 g, 1.96 mol) in diethyl ether (1.12 L)) was added 

to the reaction mixture at 0 °C over 1 hour. The reaction mixture was allowed to warm to 

room temperature with vigorous stirring for 18 hours. After quenching the reaction with 

addition of water (0.98 L) at 0 °C for 30 min, the aqueous fraction was extracted with 
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ethyl acetate (500 mL x 4 times). The combined organic fractions were washed out with 

brine (500 mL), dried over an anhydrous sodium sulfate pad, and concentrated under 

reduced pressure. The resulting residue was concentrated further under high vacuum to 

produce a quantitative amount of an intermediate, which was used directly to the next 

step without further purification. 3) The above intermediate was directly dissolved in a 

solution of the aqueous 1.0 M hydrochloric acid solution (250 mL) and methanol (375 

mL) at room temperature, and stirred at room temperature for 18 hours. After partially 

evaporating methanol under reduced pressure, the organic phase was repeatedly separated 

by the addition of water (400 mL) and ethyl acetate (250 mL x 4 times). The combined 

organic fractions were washed with brine (250 mL), dried over an anhydrous sodium 

sulfate pad, and concentrated under reduced pressure. The resulting residue was subjected 

to the flash column chromatography. The target compound was eluted with 30% to 50% 

of EtOAc/Hexane solution (152 g, 75%). All spectral data was identical to the literature 

reference. 

1-(tert-butyldiphenylsilyloxy)-3-(4-methoxybenzyloxy)propan-2-one (72): 1) tert-

Butyl(chloro)diphenylsilane (80.0 g, 0.29 mol) was added dropwise over 30 min to a 

solution of diol compound (62.0 g, 0.29 mol) and imidazole (39.5 g, 0.58 mol) in 

anhydrous dichloromethane (580 mL) at 0 °C. The reaction mixture was stirred at room 

temperature for 12 hours, and subsequently washed with the aqueous 1.0 M hydrochloric 

acid solution (500 mL x 2 times), water (500 mL), and brine (500 mL). The resulting 

organic fraction was dried over an anhydrous sodium sulfate pad, and concentrated under 

reduced pressure. The residue was purified using flash column chromatography. The 
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target compound was eluted with 10% of EtOAc/Hexane solution (125 g, 96%). 2) Dess-

Martin periodinane (47.0 g, 0.11 mol) was added portionwise to a solution of the above 

compound (100.0 g, 0.10 mol) in anhydrous dichloromethane (500 mL) at 0 °C over 10 

min with vigorous stirring. The reaction mixture was allowed to warm to room 

temperature for 4 hours with stirring. Aqueous 10% sodium thiosulfate solution (500 mL) 

was added to the reaction mixture, and stirred for additional 30 min. The organic phase 

was then separated by extracting the aqueous phase with dichloromethane (200 mL x 3 

times), and dried over an anhydrous sodium sulfate pad. The concentrated residue was 

subjected to the flash column chromatography. The target compound was eluted with 

10% EtOAc/Hexane solution (95 g, 94%). All spectral data is identical to the literature 

reference. 

3-(4-methoxybenzyloxy)propane-1,2-diol with 2-deuteride or 2-deuteride-3-(4-

methoxybenzyloxy)propane-1,2-diol (73): Lithiumaluminum deuteride (10.6 g, 254 

mmol) was added to a solution of the keto compound (95.0 g, 212 mmol) in anhydrous 

THF (1.05 L) at -78 °C over 20 min. The reaction mixture was kept stirring at -78 °C for 

2 hours, and allowed to warm to room temperature for 18 hours with stirring. After 

quenching the reaction at 0 °C with the aqueous 10% sodium hydroxide solution (420 

mL) added dropwise and saturated the aqueous sodium potassium tartrate solution (420 

mL), the reaction mixture was stirred for an additional 1 hour, and filtered through filter 

paper with several washings with ethyl acetate (200 mL x 3 times). The organic fraction 

was separated by extracting the aqueous fraction with ethyl acetate (300 mL x 3 times), 

dried over an anhydrous sodium sulfate pad, and concentrated under reduced pressure. 
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The resulting residue was chromatographed. The target compound was eluted with a 

gradient of 50% EtOAc/Hexane to 100% EtOAc (26.0 g, 58%). All spectral data is 

identical to the literature reference. 

(R)-2-((4-methoxybenzyloxy)methyl)oxirane (74): Compound (74) was prepared 

following the same procedure as compound (30) with a yield of 71% for 2 steps.  

1H NMR (CDCl3, 400 MHz) δ (ppm) 7.25-7.20 (m, 2H, Ph-H), 6.86-6.81 (m, 2H, 

Ph-H), 4.49 (d, J = 11.4 Hz, 1H, CH2 of PMB), 4.44 (d, J = 11.4 Hz, 1H, CH2 of PMB), 

3.75 (s, 3H, CH3-OPh), 3.69 (d, J = 11.6 Hz, 1H, 3-H), 3.36 (d, J = 11.6 Hz, 1H, 3-H), 

2.73 (d, J =5.2 Hz, 1H, 1-H), 2.55 (d, J = 5.2 Hz, 1H, 1-H); 13C NMR (CDCl3, 100 MHz) 

δ (ppm) 159.2 (C-1”), 129.8 (C-4”), 129.3 (C-2”, C-6”), 113.7 (C-3”, C-5”), 72.8 (CH2 

of PMB), 70.3 (C-1), 55.1 (C-OPh), 50.4 (t, J = 26.8 Hz, C-2), 44.1 (C-3); HRMS (CI, 

positive) m/z for C11H13DO3 [M+H] +: calcd 195.1006, found 195.1003. 

(R)-(1-(1,3-dithian-2-yl)-3-(4-methoxybenzyloxy)propan-2-yloxy)(tert-

butyl)dimethylsilane (75): Compound (75) was prepared following the same procedure 

as compound (31) with a yield of 99% for 2 steps.  

1H NMR (CDCl3, 400 MHz) δ (ppm) 7.26-7.20 (m, 2H, Ph-H), 6.88-6.81 (m, 2H, 

Ph-H), 4.42 (s, 2H, CH2 of PMB), 4.10 (dd, J = 9.6, 4.8 Hz, 1H, 4-H), 3.78 (s, 3H, CH3-

OPh), 3.38 (d, J = 9.8 Hz, 1H, 1-H), 3.31 (d, J = 9.8 Hz, 1H, 1-H), 2.69-2.90 (m, 4H, 2’-

H, 4’-H), 2.02-2.12 (m, 1H, 3’-H), 1.94 (dd, J = 14.2, 9.6 Hz, 1H, 3-H), 1.79-1.92 (m, 

2H, 3-H, 3’H), 0.87 (s, 9H, TBS), 0.08 (s, 3H, TBS), 0.04 (s, 3H, TBS); 13C NMR 

(CDCl3, 100 MHz) δ (ppm) 159.1 (C-1”), 130.3 (C-4”), 129.2 (C-2”, C-6”), 113.7 (C-3”, 

C-5”), 74.2 (CH2 of PMB), 72.9 (C-4), 67.5 (t, J = 21.2 Hz, C-3), 55.2 (C-OPhH), 43.6 
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(C-1), 40.2 C-2), 30.4 (C-S), 29.8 (C-S), 26.0 (3 x CH3-C-Si of TBS), 25.9 (C-C-S), 18.1 

(C-Si of TBS), -4.4 (CH3-Si of TBS), -4.9 (CH3-Si of TBS); HRMS (ESI, positive) m/z 

for C21H35DO3S2Si [M+Na]+: calcd 452.1830, found 452.1838. 

(4R,6R)-6-(tert-butyldimethylsilyloxy)-7-(4-methoxybenzyloxy)hept-1-en-4-ol (76): 

Compound (76) was prepared following the same procedure as compound (32) with a 

yield of 65% for 2 steps.  

1H NMR (CDCl3, 400 MHz) δ (ppm) 7.24-7.18 (m, 2H, Ph-H), 6.90-6.80 (m, 2H, 

Ph-H), 5.72-5.88 (m, 1H, 6-H), 5.13-5.03 (m, 2H, 7-H), 4.46 (d, J = 11.6 Hz, 1H, CH2 of 

PMB), 4.43 (s, 1H, CH2 of PMB), 3.92-3.78 (m, 1H, 4-H), 3.79 (s, 3H, CH3-OPh), 3.44 

and 3.41 (dd, J = 9.6 Hz, 1H, 1-H), 3.40 and 3.37 (dd, J = 9.6 Hz, 1H, 1-H), 3.22 (br s, 

1H, OH), 3.13 (br s, 1H, OH), 2.21 (br t, J = 6.4 Hz, 2H, 5-H), 1.73 (ddd, J = 20.0, 14.4, 

2.4 Hz, 1H, 3-H), 1.58 (ddd, J = 16.0, 14.4, 8.8 Hz, 1H, 3-H), 0.85 (s, 9H, TBS), 0.06 (s, 

3H, TBS), 0.04 (s, 3H, TBS); 13C NMR (CDCl3, 100 MHz) δ (ppm) 159.2 (C-1”), 134.5 

(C-6), 130.05 (C-4”), 129.35 (C-2”), 129.33 (C-6”), 117.4 (C-7), 113.7 (C-3”, C-5”), 74.7 

(CH2 of PMB), 73.0 (C-1), 69.1 (C-4), 67.7 (C-2), 55.2 (C-OPhH), 42.4 (C-5), 40.9 (C-

3), 25.8 (3 x CH3-C-Si of TBS), 18.0 (C-Si of TBS), -4.2 and -4.6 (CH3-Si of TBS), -4.8 

and -5.0 (CH3-Si of TBS); HRMS (ESI, positive) m/z for C21H35DO4Si [M+Na]+: calcd 

404.23378, found 404.23305.  

(5R,7R)-5-allyl-7-((4-methoxybenzyloxy)methyl)-2,2,3,3,9,9,10,10-octamethyl-4,8-

dioxa-3,9-disilaundecane (77): Compound (77) was prepared following the same 

procedure as compound (33) with a yield of 98%.  
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1H NMR (CDCl3, 400 MHz) δ (ppm) 7.25-7.21 (m, 2H, Ph-H), 6.87-6.83 (m, 2H, 

Ph-H), 5.85-5.72 (m, 1H, 6-H), 5.05-4.98 (m, 2H, 7-H), 4.44 (d, J = 11.8 Hz, 1H, CH2 of 

PMB), 4.41 (d, J = 11.8 Hz, 1H, CH2 of PMB), 3.90-3.80 (m, 1H, 4-H), 3.79 (s, 3H, 

CH3-OPh), 3.37-3.30 (m, 2H, 1-H), 2.30-2.09 (m, 2H, 5-H), 1.69 (dd, J = 13.8, 6.8 Hz, 

1H, 3-H), 1.62-1.55 (m, 1H, 3-H), 0.86-0.85 (m, 18H, 3 x 2 x CH3-C-Si of TBS), 0.05-

0.00 (m, 12 H, 2 x 2 x CH3-Si of TBS); 13C NMR (CDCl3, 100 MHz) δ (ppm) 159.1 (C-

1”), 135.1 (C-6), 130.6 (C-4”), 129.2 (C-2”, C-6”), 116.9 (C-7), 113.7 (C-3”, C-5”), 75.1 

(CH2 of PMB), 72.9 (C-1), 69.5 (C-4), 68.9 (t, J = 20.3 Hz, C-2), 55.3 (C-OPhH), 42.7 

(C-5), 42.0 (C-3), 26.05 (3 x CH3-C-Si of TBS), 25.90 (3 x CH3-C-Si of TBS), 18.26 (C-

Si of TBS), 18.14 (C-Si of TBS), -3.9 (CH3-Si of TBS), -4.0 (CH3-Si of TBS), -4.2 

(CH3-Si of TBS), -4.2 (CH3-Si of TBS); HRMS (ESI, positive) m/z for C21H35DO4Si 

[M+Na]+: calcd 404.23378, found 404.23305. 

(5R,7R)-5-((E)-3-iodoallyl)-7-((4-methoxybenzyloxy)methyl)-2,2,3,3,9,9,10,10-

octamethyl-4,8-dioxa-3,9-disilaundecane (78): Compound (78) was prepared following 

the same procedure as compound (34) with a yield of 55% for 2 steps.  

1H NMR (CDCl3, 400 MHz) δ (ppm) 7.26-7.19 (m, 2H, Ph-H), 6.89-6.83 (m, 2H, 

Ph-H), 6.48 (dt, J = 14.4, 7.2 Hz, 1H, 2-H), 6.04-5.95 (dt, J =14.4, 1.2 Hz, 1H, 1-H), 

4.48-4.36 (m, 2H, CH2 of PMB), 4.00-3.76 (m, 1H, 4-H), 3.79 (s, 3H, CH3-OPhH), 3.37-

3.27 (m, 2H, 7-H), 2.38-2.02 (m, 2H, 3-H), 1.72-1.51 (m, 2H, 5-H), 0.89-0.84 (m, 18 H, 3 

x 2 x CH3-C-Si of TBS), 0.08-0.00 (m, 12H, 2 x 2 x CH3-Si of TBS); 13C NMR (CDCl3, 

100 MHz) δ (ppm) 159.1 (C-1”), 143.2 (C-2), 130.4 (C-4”), 129.2 (C-2”, C-6”), 113.7 

(C-3”, C-5”), 76.6 (C-1), 74.5 (CH2 of PMB), 72.9 (C-7), 68.7 (C-6), 68.0 (C-4), 55.2 
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(C-OPhH), 44.4 (C-3), 42.9 (C-5), 25.9 and 25.8 (3 x 2 x CH3-C-Si of TBS), 18.2 and 

18.0 (2 x C-Si of TBS), -4.0, -4.2, -4.5, and -4.6 (2 x 2 x CH3-Si of TBS); HRMS (ESI, 

positive) m/z for C27H48DIO4Si2 [M+Na]+: calcd 644.21690, found 644.21675.  

(2R,4R,E)-2,4-bis(tert-butyldimethylsilyloxy)-7-iodohept-6-en-1-ol (79): Compound 

(79) was prepared following the same procedure as compound (35) with a yield of 39%.  

1H NMR (CDCl3, 400 MHz) δ (ppm) 6.48 (dt, J = 14.6, 7.4 Hz, 1H, 2-H), 6.04 (dt, J = 

14.6, 1.2 Hz, 1H, 1-H), 3.80 (quint, J = 6.0 Hz, 1H, 4-H), 3.55 (dd, J = 11.2, 4.8 Hz, 1H, 

7-Ha), 3.44 (dd, J = 11.2 7.8 Hz, 1H, 7-Hb), 2.30-2.12 (m, 3H, 3-H, OH), 1.68 (dd, J = 

14.0, 6.8 Hz, 1H, 5-Ha), 1.62 (dd, J = 14.0, 5.2 Hz, 1H, 5-Hb), 0.88 (s, 9H, 3 x CH3-C-Si 

of TBS), 0.87 (s, 9H, 3 x CH3-C-Si of TBS), 0.06 (s, 6H, 2 x CH3-Si of TBS), 0.04 (s, 

3H, CH3-Si of TBS), 0.03 (s, 3H, CH3-Si of TBS); 13C NMR (CDCl3, 100 MHz) δ (ppm) 

142.6 (C-2), 77.1 (C-1), 69.3 (t, J = 21.0 Hz, C-6), 68.2 (C-4), 66.1 (C-7), 43.7 (C-3), 

41.2 (C-5), 25.80 and 25.77 (3 x 2 x CH3-C-Si of TBS), 18.04 and 17.95 (2 x C-Si of 

TBS), -4.35, -4.51, -4.53, -4.63 (2 x 2 x CH3-Si of TBS); HRMS (ESI, positive) m/z for 

C19H40DIO3Si2 [M+Na]+ : calcd 524.1594, found 524.1601.  

(2R,4R,E)-2,4-bis(tert-butyldimethylsilyloxy)-7-iodohept-6-enal (80): Compound (80) 

was prepared following the same procedure as compound (36) with a yield of 96%.  

1H NMR (CDCl3, 400 MHz) δ (ppm) 9.56 (s, 1H, 7-H), 6.45 (dt, J = 14.4, 7.6 Hz, 

1H, 2-H), 6.03 (dt, J = 14.4, 1.2 Hz, 1H, 1-H), 3.94 (quint, J = 6.0 Hz, 1H, 4-H), 2.30-

2.12 (m, 2H, 3-H), 1.83-1.72 (m, 2H, 5-H), 0.89 (s, 9H, 3 x CH3-C-Si of TBS), 0.85 (s, 

9H, 3 x CH3-C-Si of TBS), 0.06 (s, 3H, CH3-Si of TBS), 0.04 (s, 3H, CH3-Si of TBS), 

0.03 (s, 6H, 2 x CH3-Si of TBS); 13C NMR (CDCl3, 100 MHz) δ (ppm) 203.5 (C-7), 
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142.3 (C-2), 77.1 (C-1), 74.3 (t, J = 21.3 Hz, C-6), 66.7 (C-4), 43.5 (C-3), 40.1 (C-5), 

25.80 and 25.72 (3 x 2 x CH3-C-Si of TBS), 18.07 and 18.01 (2 x C-Si of TBS), -4.36, -

4.51, -4.63, -4.93 (2 x 2 x CH3-Si of TBS); HRMS (ESI, positive) m/z for C19H38DIO3Si2 

[M+H]+: calcd 500.1618, found 500.1609.  

B. Synthesis of [C11-2H] SpnM Substrate by Coupling Reactions and Enzymatic 

Conversion: The overall synthetic scheme is pictured in Scheme 2-10. 
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Scheme 2-10. Preparation of [C11-2H] SpnM substrate analog. 
 

(2E,4E,6E,9R,11R,12E,15R,16R,17S)-ethyl 9,11,15,17-tetrakis(tert-

butyldimethylsilyloxy)-21-(4-methoxybenzyloxy)-16-methyltricosa-2,4,6,12-

tetraenoate with 11-deuteride (81): Compound (81) was prepared following the same 

procedure as compound (43) using compound (80) instead of compound (36) with a yield 

of 78%.  

1H NMR (CDCl3, 400 MHz) δ (ppm) 7.287.21 (m, 2H, CH of PMB), 6.87-6.81 

(m, 2H, CH of PMB), 6.47 (dt, J = 14.6, 7.4 Hz, 1H, C2H), 5.98 (brd, J = 14.6 Hz, 1H, 

C1-H), 5.59-5.43 (m, 1H, C8-H), 5.38 (brd, J = 15.6 Hz, 1H, C7-H), 4.41 (s, 2H, CH2 of 
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PMB), 3.78 (s, 3H, OCH3 of PMB), 3.86-3.70 (m, 2H, C4-H and C10-H), 3.70-3.56 (m, 

1H, C12-H), 3.27 (quint, J = 5.6 Hz, 1H, C16-H), 2.32-2.18 (m, 3H, two C9-H and one 

C3-H), 2.18 and -2.02 (m, 1H, C3-H), 1.75-1.64 (m, 1H, C11-H), 1.64-1.18 (m, 10H, C5-

H, C13-H, C14-H, C15-H and C17-H), 0.96-0.74 (m, 42H, t-Bu of TBS, C11-Me and 

C18H), 0.04-0.01) (m, 24H, CH3 of TBS); 13C NMR (CDCl3, 100 MHz) δ (ppm) 159.0, 

143.3, 135.4, 131.2, 129.2, 126.8, 113.7, 79.8, 72.9, 72.2, 70.4, 68.2, 55.2, 45.9, 43.5, 

41.2, 37.8, 35.4, 33.9, 26.2, 26.0, 26.0, 25.9, 25.8, 25.8, 21.3, 18.2, 18.1, 18.1, 18.0, 4.7, 

4.5, 4.4, 4.4, 4.3, 4.0, 3.9, 3.7, 3.7, 3.6; HRMS (ESI, positive) m/z for C51H98DIO6Si4 

[M+Na]+: calcd 1070.5518, found 1070.5546. 

(2E,4E,6E,9R,11R,12E,15R,16R,17S)-ethyl 9,11,15,17-tetrakis(tert-

butyldimethylsilyloxy)-21-(4-methoxybenzyloxy)-16-methyltricosa-2,4,6,12-

tetraenoate with 11-deutride (82): Compound (82) was prepared following the same 

procedure as compound (45) with a yield of 57%.  

1H NMR (CDCl3, 400 MHz) δ (ppm) 7.28 (dd, J = 15.2, 11.2 Hz, 1H, C3-H), 

7.287.21 (m, 2H, CH of PMB), 6.87-6.81 (m, 2H, CH of PMB), 6.50 (dd, J = 14.6, 11.0 

Hz, 1H, C5-H), 6.18 (dd, J = 14.6, 11.2 Hz, 1H, C4-H), 6.11 (dd, J = 15.0, 11.0 Hz, 1H, 

C6-H), 6.00-5.78 (m, 1H, C7-H), 5.82 (d, J = 15.2 Hz, 1H, C2-H), 5.585.44 (m, 1H, C13-

H), 5.38 (brd, J = 15.6 Hz, 1H, C12-H), 4.40 (s, 2H, CH2 of PMB), 4.18 (q, J = 7.2 Hz, 

2H, CH2 of OEt), 3.77 (s, 3H, OCH3 of PMB), 3.883.70 (m, 2H, C9-H and C15-H), 3.70-

3.56 (m, 1H, C17-H), 3.27 (quint, J = 5.6 Hz, 1H, C21-H), 2.54-2.12 (m, 4H, C8H and 

C14-H), 1.781.20 (m, 11H, C10-H, C16-H, C18H, C19-H, C20-H and C22-H), 1.27 (t, J 

= 7.2 Hz, 3H, CH3 of OEt), 0.94-0.78 (m, 42H, t-Bu of TBS, C16-Me and C23-H), 0.08-
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0.04) (m, 24H, CH3 of TBS); 13C NMR (CDCl3, 100 MHz) δ (ppm) 167.2, 159.0, 144.7, 

140.9, 136.5, 135.5, 132.0, 131.2, 129.2, 128.1, 126.8, 120.2, 113.7, 79.8, 72.2, 70.4, 

68.9, 60.2, 55.2, 46.0, 41.2, 40.8, 35.4, 33.9, 26.2, 26.0, 26.0, 25.9, 25.8, 25.8, 21.3, 18.2, 

18.1, 18.0, 14.3, 9.5, -3.7, -3.8, -3.9, -4.3, -4.3, -4.4,-4.5, -4.7; HRMS (ESI, positive) m/z 

for C58H107DO8Si4 [M+Na]+: calcd 1068.7076, found 1068.7078. 

(2E,4E,6E,9R,11R,12E,15R,16R,17S,21S)-9,11,15,17-tetrakis(tert-

butyldimethylsilyloxy)-21-hydroxy-16-methyltricosa-2,4,6,12-tetraenoic acid with 

11-deuteride (83): Compound (83) was prepared following the same procedure as 

compound (47) with a yield of 51% for 2 steps. 

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.36 (dd, J = 15.3, 11.5 Hz, 1H, C3-H), 6.55 

(dd, J = 15.0, 10.8 Hz, 1H, C5-H), 6.22 (dd, J = 15.0, 11.5 Hz, 1H, C4-H), 6.14 (dd, J = 

15.0, 10.8 Hz, 1H, C6-H), 5.94 (dt, J = 15.0, 7.5 Hz, 1H, C7-H), 5.83 (d, J = 15.3 Hz, 1H, 

C2-H), 5.55 (dt, J = 15.0, 7.5 Hz, 1H, C13-H), 5.40 (brd, J = 15.0 Hz, 1H, C12-H), 3.81 

(quint, 1H, J = 6.0 Hz, C9-H), 3.73 (q, 1H, J = 5.5 Hz, C15-H), 3.67 (q, 1H, J = 5.5 Hz, 

C17-H), 3.54-3.44 (m, 1H, C21-H), 2.482.32 (m, 1H, C8H), 2.32-2.16 (m, 3H, one C8H 

and two C14-H), 1.70 (dd, J = 13.5, 6.0 Hz, 1H, C10-H), 1.65-1.16 (m, 11H, one C10-H, 

C16-H, C18H, C19-H, C20-H, C22-H and OH), 0.92 (t, J = 7.5 Hz, 3H, C23-H), 0.90-

0.84 (m, 36H, tBu of TBS), 0.83 (d, J = 7.0 Hz, 3H, C16-Me), 0.07-0.02) (m, 24H, CH3 

of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 171.1, 147.0, 142.0, 137.4, 135.6, 132.0, 

127.9, 126.9, 119.0, 73.1, 72.6, 72.2, 69.0, 46.0, 40.8, 40.6, 37.7, 37.4, 35.1, 30.1, 26.0, 

26.0, 25.9, 25.9, 21.3, 18.2, 18.2, 18.1, 18.1, 9.9, 9.3, -3.8, -3.8, -4.0, -4.3, -4.4, -4.6, -4.7; 

HRMS (ESI, positive) m/z for C48H95DO7Si4 [M+Na]+: calcd 920.6188, found 920.6179. 
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(3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-10,12,16,18-tetrakis(tert-

butyldimethylsilyloxy)-22-ethyl-17-methyloxacyclodocosa-3,5,7,13-tetraen-2-one 

with 11-deuteride (84): Compound (84) was prepared following the same procedure as 

compound (49) with a yield of 72%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.24 (dd, J = 15.0, 11.0 Hz, 1H, C3-H), 6.47 

(dd, J = 15.0, 10.5 Hz, 1H, C5-H), 6.21 (dd, J = 15.0, 11.0 Hz, 1H, C4-H), 6.12 (dd, J = 

15.5, 10.5 Hz, 1H, C6-H), 5.80 (d, J = 15.0 Hz, 1H, C2-H), 5.78 (dt, J = 15.0, 7.5 Hz, 1H, 

C7-H), 5.42-5.22 (m, 1H, C12-H and C13-H), 4.90-4.80 (m, 1H, C21-H), 3.80-3.72 (m, 

1H, C9-H), 3.71-3.64 (m, 1H, C15-H), 3.61-3.52 (m, 1H, C17-H), 2.50-2.06 (m, 4H, 

C8H and C14-H), 1.781.16 (m, 11H, C10-H, C16-H, C18H, C19-H, C20-H, C22-H), 

0.91 (t, J = 7.5 Hz, 3H, C23-H), 0.90-0.80 (m, 36H, tBu of TBS), 0.75 (d, J = 7.0 Hz, 3H, 

C16-Me), 0.08 -0.08) (m, 24H, CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 

166.9, 144.7, 140.9, 136.0, 135.2, 132.0, 128.0, 127.1, 120.8, 75.2, 73.2, 69.1, 46.5, 42.3, 

42.1, 38.3, 34.4, 33.4, 27.8, 26.0, 26.0, 26.0, 25.9, 25.8, 25.8, 21.1, 18.2, 18.2, 18.1, 18.1, 

18.1, 18.0, 18.0, 10.2, 9.8, -3.5, -3.8, -4.0, -4.3, -4.4, -4.5, -4.5, -4.6, -4.6, -4.7; HRMS 

(ESI, positive) m/z for C48H93DO6Si4 [M+Na]+: calcd 902.6082, found 902.6086. 

(3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-22-ethyl-10,12,16,18-tetrahydroxy-17-

methyloxacyclodocosa-3,5,7,13-tetraen-2-one with 11-deuteride (85): Compound (85) 

was prepared following the same procedure as compound (50) with a yield of 65%.  

1H NMR (CDCl3, 500 MHz) δ (ppm); 13C NMR (CDCl3, 125 MHz) δ (ppm); 

HRMS (ESI, positive) m/z for C24H37DO6 [M+Na]+: calcd 446.2623 , found 446.2635. 
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[C11-
2
H] SpnM substrate analog (86): [C11-2H] SpnM substrate analog (86) was 

prepared following the same procedure as compound (51) quantitatively. MS data was 

not collected. 

2.2.7. Synthesis of the [C12-
2
H] SpnM Substrate Analog (C12-D analog) 

A. Preparation of Fragment B: The overall synthetic scheme is depicted in Scheme 2-11. 

O
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I

NIS, K2CO3, MeOH
RT, 4 h, 72 %

LiAlD4, THF
-78 oC, 2 h, 44 %
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Scheme 2-11. Preparation of fragment B for the synthesis of [C12-2H] SpnM substrate analog. 
 

(2R,4R,E)-ethyl 2,4-bis(tert-butyldimethylsilyloxy)-7-iodohept-6-enoate (87): N-

Iodosuccinimide (NIS; 2.3 g, 10 mmol) and potassium carbonate (1.4 g, 10 mmol) were 

each added subsequently to a solution of aldehyde (freshly prepared; 2.0 g, 4 mmol) in 

methanol (20 mL) at room temperature. The reaction mixture was stirred at room 

temperature for 18 hours. After quenching with saturated the aqueous sodium thiosulfate 

solution (20 mL), the aqueous fraction was extracted with dichloromethane (50 mL x 3 

times). The combined organic fractions were dried over an anhydrous sodium sulfate pad, 

filtered, and concentrated under reduced pressure. The resulting residue was purified 

using flash column chromatography. The target compound was eluted with 5% 

EtOAc/Hexane (1.5 g, 72%).  

1H NMR (CDCl3, 500 MHz) δ (ppm) 6.50 (ddd, 1H, J = 7.1, 8.0, 14.5 Hz, 6-H), 

6.05 (d, 1H, J = 14.5 Hz, 7-H), 4.28 (dd, J = 5.6, 7.1 Hz, 2-H), 3.90-3.85 (m, 1H, 4-H), 

3.71 (s, 3H, OCH3), 2.34-2.29 (m, 1H, 5-H), 2.23-2.17 (m, 1H, 5-H), 1.91-1.80 (m, 2H, 

3-Hs), 0.90 (s, 9H, CH3 of TBS), 0.88 (s, 9H, tBu of TBS), 0.073 (CH3 of TBS), 0.052 
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(CH3 of TBS), 0.047 (CH3 of TBS), 0.045 (CH3 of TBS); 13C NMR (CDCl3, 125 MHz) 

δ (ppm) 173.77 (1-C=O), 142.83 (C-6), 137.46 (C-7), 69.38 (C-2), 67.82 (C-4), 51.78 

(OCH3), 43.33 (C-5), 42.20 (C-3), 25.81 (CH3 of tBu), 25.70 (CH3 of tBu), 18.19 (Me3-

C-Si), 17.99 (Me3-C-Si), -4.55 (CH3 of TBS), -4.70 (CH3 of TBS), -4.70 (CH3 of TBS), 

-5.28 (CH3 of TBS); HRMS (ESI, positive) m/z for C20H41IO4Si2 [M+Na]+: calcd 

551.1480, found 551.1484. 

(2R,4R,E)-2,4-bis(tert-butyldimethylsilyloxy)-7-iodohept-6-en-1-ol with 1-di-

deuteride (88): Lithium aluminum deuteride (LiAlD4; 265 mg, 5.6 mol) was added 

portionwise to a solution of ester compound (2.0 g, 3.8 mmol) in anhydrous THF (37 mL) 

at -78 °C. The reaction mixture was stirred at -78 °C for 2 hours, and quenched with 

saturated the aqueous ammonium chloride solution (37 mL). After filtration and washing 

with ethylacetate (30 mL), the aqueous fraction was extracted with ethyl acetate (50 mL x 

5 times). The combined organic fractions were then dried over an anhydrous sodium 

sulfate pad and concentrated under reduced pressure. The resulting residue was subjected 

with flash column chromatography. The target compound was eluted with 5% to 10% 

EtOAc/Hexane (0.84 g, 44%) with a portion of starting material also recovered (0.92 g, 

46%).  

1H NMR (CDCl3, 600 MHz) δ (ppm) 6.46 (ddd, 1H, J = 7.1, 8.0, 14.5 Hz, 6-H), 

6.04 (d, 1H, J = 14.7 Hz, 7-H), 3.85 (dd, J = 5.7, 7.6 Hz, 2-H), 3.83-3.79 (m, 1H, 4-H), 

2.27-2.22 (m, 1H, 5-H), 2.20-2.15 (m, 1H, 5-H), 1.71-1.61 (m, 2H, 3-Hs), 0.88 (s, 9H, 

CH3 of TBS), 0.87 (s, 9H, tBu of TBS), 0.066 (CH3 of TBS), 0.062 (CH3 of TBS), 0.041 

(CH3 of TBS), 0.032 (CH3 of TBS); 13C NMR (CDCl3, 150 MHz) δ (ppm) 173.77 (1-
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C=O), 142.60 (C-6), 137.30 (C-7), 69.66 (C-2), 68.30 (C-4), 65.44 (quint, J = 20.4 Hz, 

C-1), 43.68 (C-5), 41.29 (C-3), 25.81 (CH3 of tBu), 25.78 (CH3 of tBu), 18.04 (Me3-C-

Si), 17.96 (Me3-C-Si), -4.35 (CH3 of TBS), -4.46 (CH3 of TBS), -4.52 (CH3 of TBS), -

4.63 (CH3 of TBS); HRMS (ESI, positive) m/z for C19H39D2IO3Si2 [M+Na]+: calcd 

525.1657, found 525.1657. 

(2R,4R,E)-2,4-bis(tert-butyldimethylsilyloxy)-7-iodohept-6-enal with 1-deuteriude 

(89): Compound (89) was prepared following the same procedure as compound (36) 

quantitatively. Spectral data was not collected. 

B. Synthesis of [C12-2H] SpnM Substrate analog by Coupling Reactions and Enzymatic 

Conversion: The overall synthetic scheme is pictured in Scheme 2-12. 
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Scheme 2-12. Preparation of [C12-2H] SpnM substrate analog. 
 

(5R,7R,11R,12R,13S,E)-7,11-bis(tert-butyldimethylsilyloxy)-5-((E)-3-iodoallyl)-13-

(4-(4-methoxybenzyloxy)hexyl)-2,2,3,3,12,15,15,16,16-nonamethyl-4,14-dioxa-3,15-

disilaheptadec-8-ene with mono-deuteride (90): Compound (90) was prepared 
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following the same procedure as compound (43) using compound (89) instead of 

compound (36) with a yield of 84%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.27 (d, 2H, J = 8.8 Hz, PhH of PMB), 6.87 

(d, 2H, J = 8.5 Hz, PhH of PMB), 6.54-6.48 (m, 1H, 2-H), 6.01 (d, 1H, J = 14.4 Hz, 1-H), 

5.54 (t, 1H, J = 7.1 Hz, 7-H), 4.44 (s, 2H, CH2 of PMB), 4.11 (t, 1H, J = 5.9 Hz, 6-H), 

3.84-3.81 (m, 4H, 4-H+OCH3 of PMB), 3.79-3.75 (m, 1H, 10-H), 3.72-3.69 (m, 1H, 12-

H), 3.31-3.28 (m, 1H, 16-H), 2.32-2.24 (m, 3H, 3-H2+9-Hs), 2.16-2.10 (m, 1H, 3-H), 

1.77-1.70 (m, 1H, 11-H), 1.65-1.27 (m, 10H, 5-Hs+13-Hs+14-Hs+15-Hs+17-Hs), 0.94-

0.86 (m, 42H, 4 x tBu of TBS+11-CH3+18-Hs), 0.075-0.022 (m, 24H, 8 x CH3 of TBS); 

13C NMR (CDCl3, 125 MHz) δ (ppm) 159.01, 143.30, 135.17 (t, J = 19.1 Hz, C-7), 

131.30, 129.17, 126.69, 113.71, 79.78, 76.45, 72.89, 72.24, 70.65, 70.45, 68.21, 55.25, 

46.01, 43.46, 41.25, 37.82, 35.39, 33.90, 26.34, 26.25, 25.99, 25.90, 25.85, 21.28, 18.17, 

18.14, 18.11, 18.01, 9.51, 3.73, 3.91, 4.25, 4.35, 4.43, 4.50, 4.62, 4.72; HRMS (ESI, 

positive) m/z for C51H98DIO6Si4 [M+Na]+: calcd 1070.5518, found 1070.5506. 

(2E,4E,6E,9R,11R,12E,15R,16R,17S)-ethyl 9,11,15,17-tetrakis(tert-

butyldimethylsilyloxy)-21-(4-methoxybenzyloxy)-16-methyltricosa-2,4,6,12-

tetraenoate with 12-deuteride (91): Compound (91) was prepared following the same 

procedure as compound (45) with a yield of 81%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.40 (dd, 1H, J = 11.3, 14.1 Hz, 3-H), 7.24 

(d, 2H, J = 8.6 Hz, PhH of PMB), 6.84 (d, 2H, J = 8.7 Hz, PhH of PMB), 6.50 (dd, 1H, J 

= 10.8, 14.5 Hz, 5-H), 6.18 (dd, 1H, J = 11.5, 14.8 Hz, 4-H), 6.11 (dd, 1H, J = 11.1, 15.3 

Hz, 6-H), 5.91-5.84 (m, 1H, 7-H), 5.82 (d, 1H, J = 15.3 Hz, 2-H), 5.51 (dd, 1H, J = 6.8, 
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7.2 Hz, 13-H), 4.44 (s, 2H, CH2 of PMB), 4.18 (q, 2H, J = 7.1 Hz, CH2 of Et), 4.13-4.10 

(m, 1H, 21-H), 3.84-3.80 (m, 1H, 11-H), 3.77 (s, 3H, OCH3 of PMB), 3.75-3.72 (m, 1H, 

9-H), 3.68-3.65 (m, 1H, 15-H), 3.28-3.26 (m, 1H, 17-H), 2.38-2.20 (m, 4H, 8-Hs+14-

CH2), 1.72-1.21 (m, 11H, 10-CH2,16-CH+18-CH2+19-CH2+20-CH2+22-CH2), 0.95-

0.82 (m, 45H, 23-CH2+CH3 of Et, 4 x tBu of TBS+16-CH3), 0.030-0.010 (m, 24H, 8 x 

CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 167.16, 159.02, 147.15, 144.71, 

140.89, 140.27, 136.97, 136.53, 135.21 (t, J = 19.5 Hz, 12-C), 132.02, 131.30, 129.17, 

129.16, 128.13, 126.65, 120.27, 114.31, 113.71, 79.78, 72.89, 72.26, 70.72, 70.46, 70.43, 

68.95, 60.17, 55.24, 46.13, 41.24, 40.75, 37.84, 37.77, 35.41, 33.91, 29.14, 27.84, 26.83, 

26.62, 25.98, 25.90, 25.86, 21.29, 18.17, 18.13, 18.08, 18.05, 18.03, 17.52, 16.42, 14.31, 

13.58, 13.55, 9.51, 9.50, 4.72, 4.52, 4.38, 4.30, 4.26, 3.94, 3.76, 3.73; HRMS (ESI, 

positive) m/z for C58H107DO8Si4 [M+Na]+: calcd 1068.7076, found 1068.7075. 

(2E,4E,6E,9R,11R,12E,15R,16R,17S,21S)-9,11,15,17-tetrakis(tert-

butyldimethylsilyloxy)-21-hydroxy-16-methyltricosa-2,4,6,12-tetraenoic acid with 

12-deuteride (92): Compound (92) was prepared following the same procedure as 

compound (47) with a yield of 40% for 2 steps.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.38 (dd, 1H, J = 11.2, 14.9 Hz, 3-H), 6.57 

(dd, 1H, J = 10.4, 14.6 Hz, 5-H), 6.24 83 (dd, 1H, J = 11.5, 14.8 Hz, 4-H), 6.16 (dd, 1H, J 

= 11.1, 15.1 Hz, 6-H), 5.99-5.93 (m, 1H, 7-H), 5.85 (d, 1H, J = 15.2 Hz, 2-H), 5.55 (dd, 

1H, J = 7.0, 7.1 Hz, 13-H), 4.14-4.11 (m, 1H, 21-H), 3.86-3.81 (m, 1H, 11-H), 3.76-3.73 

(m, 1H, 9-H), 3.71-3.68 (m, 1H, 15-H), 3.26-3.18 (m, 1H, 17-H), 2.42-2.33 (m, 1H, 8-H), 

2.27-2.22 (m, 3H, 8-H+14-Hs), 1.75-1.09 (m, 11H, 10-Hs+16-H+18-Hs+19-Hs+20-
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Hs+22-Hs), 0.94 (t, 3H, J = 7.4 Hz, 23-Hs), 0.887– 0.881 (m, 36H, 4 x tBu of TBS), 0.94 

(d, 3H, J = 6.8 Hz, 16-CH3), 0.045-0.017 (m, 24H, 8 x CH3 of TBS); 13C NMR (CDCl3, 

125 MHz) δ (ppm) 171.37, 147.04, 142.05, 137.37, 135.15 (t, J = 19.5 Hz, C-12), 131.99, 

129.25, 128.62, 127.90, 126.77, 119.06, 113.71, 73.08, 72.63, 72.18, 70.77, 68.97, 46.12, 

40.81, 40.64, 37.63, 37.42, 35.05, 30.11, 27.84, 26.83, 25.95, 25.93, 25.86, 21.32, 18.19, 

18.15, 18.12, 18.05, 17.52, 13.58, 9.87, 9.31, -3.78, -3.82, -4.00, -4.29, -4.35, -4.38, -4.59, 

-4.71; HRMS (ESI, positive) m/z for C48H95DO7Si4 [M+Na]+: calcd 920.6188, found 

920.6178. 

(3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-10,12,16,18-tetrakis(tert-

butyldimethylsilyloxy)-22-ethyl-17-methyloxacyclodicosa-3,5,7,13-tetraen-2-one 

with 12-deuteride (93): Compound (93) was prepared following the same procedure as 

compound (49) with a yield of 62% for 2 steps. No spectral data was collected. 

(3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-22-ethyl-10,12,16,18-tetrahydroxy-17-

methyloxacyclodocosa-3,5,7,13-tetraen-2-one with 12-deuteride (94): Compound (94) 

was prepared following the same procedure as compound (50) with a yield of 22%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.25 (dd, 1H, J = 10.7, 14.8 Hz, 3-H), 6.70 

(dd, 1H, J = 11.1, 14.9 Hz, 5-H), 6.35 (dd, 1H, J = 11.0, 14.8 Hz, 4-H), 6.18 (dd, 1H, J = 

10.6, 15.0 Hz, 6-H), 5.92-5.88 (m, 1H, 7-H), 5.85 (d, 1H, J = 15.6 Hz, 2-H), 5.18 (dd, 1H, 

J = 6.6, 7.4 Hz, 13-H), 4.76-4.73 (m, 1H, 21-H), 3.79-3.75 (m, 1H, 11-H), 3.71-3.64 (m, 

1H, 9-H), 3.57-3.51 (m, 1H, 15-H), 3.49-3.43 (m, 1H, 17-H), 2.48-2.09 (m, 4H, 8-Hs+14-

Hs), 1.73-1.22 (m, 11H, 10-Hs+16-H+18-Hs+19-Hs+20-Hs+22-Hs), 0.88-0.81 (m, 6H, 

23-Hs+16-CH3); 13C NMR (CDCl3, 150 MHz) δ (ppm) 166.62 (1-C=O), 145.47 (C-3), 
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142.22 (C-5), 137.68 (C-7), 132.39 (C-6), 128.47 (C-4), 126.57 (C-13), 120.92 (C-2), 

75.46, 75.12, 74.07, 70.07, 67.64, 60.44, 46.52, 43.51, 34.57, 27.98, 22.02, 10.43, 6.78; 

HRMS (ESI, positive) m/z for C24H37DO6 [M+Na]+: calcd 446.2623, found 446.2626. 

[C12-
2
H] SpnM substrate analog (95): Compound (95) was prepared following the 

same procedure as compound (51) quantitatively.  

HRMS (ESI, positive) m/z for C24H35DO6 [M+Na]+: calcd 444.2467, found 

444.2479. 

2.2.8. Synthesis of the Linear SpnF Substrate Analog (Linear analog) 

A. Preparation of Fragment A: The overall synthetic scheme is shown in Scheme 2-13. 
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Scheme 2-13. Preparation of fragment A for the synthesis of Linear SpnF substrate analog. 
 

(R)-4-benzyl-3-((2R,3S)-3-hydroxy-2-methylnonanoyl)oxazolidin-2-one (97): Di-n-

butylboron trifluoromethanesulfonate (107.4 mL, 1.0 M in DCM, 107.4 mmol) was 
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added over 10 min to a solution of chiral auxiliary (25.1 g, 107 mmol) in 

dichloromethane (600 mL) at 0 °C, and the reaction mixture was stirred at the same 

temperature for 10 min. Triethylamine (19.2 mL, 137 mmol) was slowly added to the 

reaction mixture at 0 °C for 10 min, which was then stirred at 0 °C for an additional 30 

min. After cooling the above reaction mixture to -78 °C, heptanal (15.0 g, 131 mmol) in 

dichloromethane (120 mL) was added dropwise to the reaction mixture over 10 min with 

vigorous stirring. The reaction mixture was kept stirring at -78 °C for 1 hour and allowed 

to warm to 0 °C over 18 hours. After sequential quenching with pH 7 phosphate buffer 

(120 mL), methanol (240 mL), and 30% hydrogen peroxide solution (120 mL) at 0 °C 

over 1 hour, the reaction mixture was stirred at room temperature for an additional 1 

hour. The aqueous fraction was extracted with ethyl acetate (200 mL x 4 times), and the 

combined organic fractions were washed with brine (200 mL), dried over an anhydrous 

sodium sulfate pad, and concentrated under reduced pressure. The resulting residue was 

purified using flash column chromatography. The target compound was eluted with 20% 

EtOAc/Hexane (31.2 g, 84%).  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.33-7.30 (m, 2H, Ph-H), 7.27-7.24 (m, 1H, 

Ph-H), 7.20-7.17 (m, 2H, Ph-H), 4.71-4.66 (m, 1H, 4’-H), 4.23-4.15 (dd, J = 17.0, 9.0 Hz, 

2H, 3’-H), 3.94-3.90 (m, 1H, 3-H), 3.75 (ddd, J = 15.0, 7.0, 2.5 Hz, 1H, 2-H), 3.23 (dd, J 

= 13.5, 3.5 Hz, 1H, 5’-Ha), 2.77 (dd, J = 13.5, 9.5 Hz, 1H, 5’-Hb), 1.53-1.38 (m, 2H, 4-

H), 1.31-1.25 (m, 8H, 5-H, 6-H, 7-H, 8-H), 1.24 (d, J = 7.0 Hz, 3H, 10-H), 0.87-0.84 (t, J 

= 7.0 Hz, 3H, 9-H); 13C NMR (CDCl3, 125 MHz) δ (ppm) 177.6 (C-1), 153.0 (1’-C=O), 

135.0 (C1 of Ph), 129.4 (C2, C5 of Ph), 129.0 (C3, C5 of Ph), 127.4 (C4 of Ph), 71.5 (C-
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3), 66.2 (C-3’), 55.1 (4’-CH2), 42.1 (C-2), 37.8 (C-5’), 33.8 (C-4), 31.8 (C-7), 29.2 (C-8), 

26.0 (C-6), 22.6 (C-5), 14.0 (C-10), 10.4 (C-9); HRMS (ESI, positive) m/z for C20H29NO4 

[M+Na]+: calcd 370.1994, found 370.1989. 

(R)-4-benzyl-3-((2R,3S)-3-(tert-butyldimethylsilyloxy)-2-

methylnonanoyl)oxazolidin-2-one (98): Compound (98) was prepared following the 

same procedure as compound (14) with a yield of 93%. 

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.35-7.30 (m, 2H, Ph-H), 7.29-7.25 (m, 1H, 

Ph-H), 7.22-7.18 (m, 1H, Ph-H), 4.66-4.57 (m, 1H, 4’-H), 4.18-4.09 (m, 2H, 3’-H), 3.98 

(dd, J = 11.0, 6.0 Hz, 1H, 3-H), 3.86 (ddd, J = 13.5, 7.0, 5.0 Hz, 1H, 2-H), 3.29 (dd, J = 

13.0, 3.0 Hz, 1H, 5’-Ha), 2.77 (dd, J = 13.5, 10.0 Hz, 1H, 5’-Hb), 1.56-1.59 (m, 2H, 4-

H), 1.31-1.25 (m, 8H, 5-H, 6-H, 7-H, 8-H), 1.20 (d, J = 7.0 Hz, 3H, 10-H), 0.88 (t, J = 3.0 

Hz, 3H, 9-H), 0.87 (s, 9H, TBS), 0.04 (s, 3H, TBS), -0.01 (s, 3H, TBS); 13C NMR 

(CDCl3, 125 MHz) δ (ppm) 175.3 (C-1), 153.1 (C-1’), 135.4 (C1 of Ph), 129.5 (C2, C6 of 

Ph), 128.9 (C3, C5 of Ph), 127.3 (C4 of Ph), 72.9 (C-3), 66.0 (C-3’), 55.8 (C-4’), 42.8 (C-

2), 37.6 (C-5’), 35.6 (C-4), 31.7 (C-7), 29.5 (C-8), 25.8 (3 x CH3-C-Si), 24.9 (C-6), 22.6 

(C-5), 18.0 (CH3-C-Si), 14.1 (C-9), 11.5 (C-10), -4.1 (CH3-Si), -4.8 (CH3-Si); HRMS 

(ESI, positive) m/z for C26H43NO4Si [M+Na]+: calcd 484.2859, found 484.2854. 

(2S,3S)-3-(tert-butyldimethylsilyloxy)-2-methylnonan-1-ol (99): Compound (99) was 

prepared following the same procedure as compound (15) with a yield of 66%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 3.76-3.73 (m, 1H, 3-H), 3.69 (dd, J = 10.5, 

8.5 Hz, 1H, 1-Ha), 3.51 (dd, J = 10.5, 5.0 Hz, 1H, 1-Hb), 2.47 (br s, 1H, OH), 2.04-1.91 

(m, 1H, 2-H), 1.49-1.43 (m, 2H, 4-H), 1.32-1.24 (m, 8H, 5-H, 6-H, 7-H, 8-H), 0.92 (s, 
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9H, TBS), 0.90 (t, J = 5.5 Hz, 3H, 9-H), 0.81 (d, J = 7.0 Hz, 3H, 10-H), 0.09 (s, 3H, 

TBS), 0.07 (s, 3H, TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 75.9 (C-3), 66.1 (C-1), 

39.5 (C-2), 32.4 (C-4), 31.8 (C-7), 29.5 (C-9), 26.2 (C-6), 25.9 (3 x CH3-C-Si), 22.6 (C-

5), 18.0 (C-Si), 14.1 (C-9), 11.9 (C-10), -4.4 (CH3-Si), -4.5 (CH3-Si); HRMS (ESI, 

positive) m/z for C16H36O2Si [M+Na]+: calcd 311.2382, found 311.2377. 

Tert-butyldimethyl((3S,4S)-3-methyldec-1-en-4-yloxy)silane (100): Compound (100) 

was prepared following the same procedure as compound (16) with a yield of 59% for 2 

steps. 

1H NMR (CDCl3, 500 MHz) δ (ppm) 5.86 (ddd, J = 17.5, 10.0, 7.0 Hz, 1H, 2-H), 

5.00 (ddd, J = 8.5, 2.0, 1.5 Hz, 1H, 1-Ha), 4.97 (dd, J = 3.5, 2.0 Hz, 1H, 1-Hb), 3.52 (dd, 

J = 10.5, 5.0 Hz, 1H, 4-H), 2.33-2.26 (m, 1H, 3-H), 1.40-1.33 (m, 2H, 5-H), 1.29-1.20 

(m, 8H, 6-H, 7-H, 8-H, 9-H), 0.96 (d, J = 6.5 Hz, 3H, 11-H), 0.90 (s, 9H, TBS), 0.89 (t, J 

= 2.5 Hz, 3H, 10-H), 0.04 (s, 6H, TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 141.8 (C-

2), 113.6 (C-1), 76.0 (C-4), 42.7 (C-3), 33.8 (C-5), 31.9 (C-8), 29.6 (C-7), 26.0 (3 x CH3-

C-Si), 25.2 (C-6), 22.6 (C-9), 18.2 (C-Si), 14.8 (C-11), 14.1 (C-10), -4.3 (CH3-Si), -4.4 

(CH3-Si); HRMS (ESI, positive) m/z for C17H36OSi [M+Na]+: calcd 307.2433, found 

307.2428. 

(3S,4S)-4-(tert-butyldimethylsilyloxy)-3-methyldecan-1-ol (101): Borane-THF 

solution (62.2 mL, 1.0 M in THF, 62.2 mmol) was added dropwise to a solution of allyl 

compound (11.8 g, 41.5 mmol) in anhydrous THF (414 mL) at -78 °C over 20 min with 

vigorous stirring. The reaction mixture was kept stirring at -78 °C for 1 hour, and allowed 

to warm to 0 °C for 3 hours. Then, the reaction mixture was quenched with the aqueous 3 
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N sodium hydroxide solution (207 mL) and the aqueous 30% hydrogen peroxide solution 

(207 mL) over 1 hour at 0 °C. The organic fraction was isolated, and the aqueous fraction 

was extracted with ethyl acetate (100 mL x 4 times). The combined organic fractions 

were washed with brine (200 mL), dried over an anhydrous sodium sulfate pad, and 

concentrated under reduced pressure. The resulting residue was subjected to the flash 

column chromatography. The target compound was eluted with 20% EtOAc/Hexane 

(10.5 g, 84%). 

1H NMR (CDCl3, 500 MHz) δ (ppm) 3.69-3.64 (m, 1H, 1-Ha), 3.63-4.57 (m, 1H, 

1-Hb), 3.54-3.50 (m, 1H, 4-H), 1.74-1.68 (m, 2H, 3-H, 2-Ha), 1.46-1.38 (m, 1H, 5-Ha), 

1.37-1.33 (m, 3H, 2-Hb, 5-Hb, 6-Ha), 1.30-1.22 (m, 6H, 7-H, 8-H, 9-H), 1.18-1.14 (m, 

1H, 6-Hb), 0.88 (s, 9H, TBS), 0.86 (t, J = 5.0 Hz, 3H, 10-H), 0.85 (d, J = 4.5 Hz, 3H, 11-

H), 0.05 (s, 6H, TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 76.8 (C-4), 62.1 (C-1), 37.1 

(C-3), 35.6 (C-2), 32.2 (C-5), 31.9 (C-8), 29.5 (C-7), 26.4 (C-6), 25.9 (CH3-C-Si), 22.6 

(C-9), 18.1 (C-Si), 16.9 (C-11), 14.1 (C-10), -4.3 (CH3-Si), -4.4 (CH3-Si). 

(5S,6S,E)-ethyl 6-(tert-butyldimethylsilyloxy)-4-hydroxy-5-methyldodec-2-enoate 

(102): 1) The reaction mixture of alcohol compound (11.5 g, 38.0 mmol), 4-

methylmorpholine N-oxide (NMO; 8.9 g, 76.0 mmol), tetrapropylammonium 

perruthenate (TPAP; 599 mg, 1.9 mmol) and activated 4 Å molecular sieve (1.2 g) in 

dichloromethane (380 mL) was stirred at room temperature for 3 hours. After filtering 

through a paper filter and washing with dichloromethane (100 mL x 2 times), the filtrate 

was directly concentrated and used for the next reaction without further purification. 2) 

Ethyl 2-(phenylsulfinyl)acetate (108, 16.1 g, 76.0 mmol) and piperidine (9.4 mL, 95.3 
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mmol) were pre-mixed in anhydrous acetonitrile (76 mL) with stirring at room 

temperature for 30 min. A solution of the above aldehyde in acetonitrile (38 mL) was 

very slowly added to the reaction mixture via cannular at room temperature over 60 min. 

The reaction mixture was kept stirring at room temperature for 18 hours, and quenched 

with saturated the aqueous sodium bicarbonate solution (114 mL). Organic phase was 

separated, and the aqueous fraction was extracted with ethyl acetate (100 mL x 5 times). 

The combined organic fractions were washed with brine (200 mL), dried over an 

anhydrous sodium sulfate pad, and concentrated. The resulting residue was purified using 

flash column chromatography. The target compound was eluted with 5% EtOAc/Hexane 

(7.5 g, 51% for 2 steps). 

1H NMR (CDCl3, 600 MHz) δ (ppm) 6.87 (dd, J = 15.6, 3.6 Hz, 1H, 3-H), 6.09 

(dd, J = 5.6, 3.6 Hz, 1H, 2-H), 4.91 (quint, J = 2.4 Hz, 1H, 4-H), 4.18 (q, J = 7.2 Hz, 2H, 

14-H), 3.90 (ddd, J = 9.0, 5.4, 3.0 Hz, 1H, 6-H), 1.7601.74 (m, 1H, 5-H), 1.58-1.55 (m, 

1H, 7-Ha), 1.50-1.46 (m, 1H, 7-Hb), 1.29-1.22 (m, 9H, 8-Ha, 9-H, 10-H, 11-H), 1.23 (t, J 

= 7.2 Hz, 3H, 15-H), 1.22-1.17 (m, 1H, 8-Hb), 0.89 (s, 9H, TBS), 0.87 (t, J = 7.2 Hz, 3H, 

12-H), 0.82 (d, J = 7.2 Hz, 3H, 13-H), 0.099 (s, 3 H, TBS), 0.095 (s, 3H, TBS); 13C NMR 

(CDCl3, 150 MHz) δ (ppm) 171.1 (C-1), 166.7 (C-3), 149.4 (C-2), 77.8 (C-6), 74.5 (C-4), 

60.2 (C-14), 39.7 (C-5), 34.7 (C-7), 31.8 (C-10), 29.4 (C-9), 25.9 (3 x CH3-C-Si), 25.6 

(C-8), 22.6 (C-11), 18.0 (C-Si), 14.2 (C-12), 14.0 (C-15), 5.6 (C-13), -3.6 (CH3-Si), -4.5 

(CH3-Si); LRMS (ESI, positive) m/z for C21H42O4Si [M+Na]+: calcd 409.3, found 409.3. 

(5R,6S,E)-ethyl 6-(tert-butyldimethylsilyloxy)-5-methyl-4-(triethylsilyloxy)dodec-2-

enoate (103): TESOTf (5.3 mL, 23.3 mmol) was added over 10 min to a solution of 
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secondary alcohol compound (7.5 g, 19.4 mmol) and 2,6-lutidine (4.5 mL, 38.8 mmol) in 

dichloromethane (193 mL) at -78 °C. The reaction mixture was subsequently kept stirring 

at -78 °C for 30 min and at 0 °C for 1 hour. After quenching the reaction mixture with 

saturated the aqueous ammonium chloride solution (193 mL) over 30 min, the aqueous 

fraction was extracted with dichloromethane (100 mL x 5 times). The combined organic 

fractions were washed with brine (100 mL), dried over an anhydrous sodium sulfate pad, 

and concentrated. The resulting residue was subjected to flash column chromatography. 

The target compound was eluted with 5% EtOAc/Hexane (7.8 g, 80%).  

1H NMR (CDCl3, 500 MHz) δ (ppm) 6.94 (dd, J = 15.5, 6.0 Hz, 1H, 3-H), 5.91 

(dd, J = 15.5, 1.5 Hz, 1H, 2-H), 4.30 (td, J = 6.0, 1.5 Hz, 1H, C-4), 4.18 (q, J = 7.0 Hz, 

2H, 14-H), 3.64 (td, J = 6.0, 4.0 Hz, 1H, 6-H), 1.64-1.60 (m, 1H, 5-H), 1.48-1.43 (m, 2H, 

7-H), 1.27 (t, J = 7.5 Hz, 3H, 15-H), 1.26-1.22 (m, 8H, 8-H, 9-H, 10-H, 11-H), 0.93 (t, J 

= 8.0 Hz, 9H, TES), 0.89 (d, J = 7.0 Hz, 3H, 13-H), 0.87 (m, 3H, C-12), 0.865 (m, 9H, 

TBS), 0.57 (q, J = 5.7 Hz, 6H, TES), 0.02 (s, 3H, TBS), 0.01 (S, 3H, TBS); 13C NMR 

(CDCl3, 125 MHz) δ (ppm) 166.6 (C-1), 150.6 (C-3), 120.6 (C-2), 73.0 (C-4), 72.6 (C-6), 

60.3 (C-14), 43.9 (C-5), 34.6 (C-7), 31.8 (C-10), 29.5 (C-9), 25.9 (3 x CH3-C-Si), 25.4 

(C-8), 22.6 (C-11), 18.2 (C-Si), 14.2 (C-15), 14.1 (C-12), 0.8 (C-13), 6.8 (3 x CH3-CH2-

Si), 5.0 (3 x CH2-Si), -3.7 (CH3-Si), -4.4 (CH3-Si). 

(5R,6S,E)-6-(tert-butyldimethylsilyloxy)-5-methyl-4-(triethylsilyloxy)dodec-2-en-1-ol 

(104): Diisobylaluminium hydride (DIBAL-H; 18.5 mL, 1.0 M in DCM, 18.5 mmol) was 

added dropwise to a solution of ester compound (7.7 g, 15.4 mmol) in dichloromethane 

(154 mL) at -78 °C over 10 min. The reaction mixture was stirred at -78 °C for 30 min 
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and at 0 °C for 1 hour, then quenched with saturated the aqueous Na+K+ tartrate (100 mL) 

at room temperature over 2 hours. After filtering through celite and washing with 

dichloromethane (100 mL x 2 times), the filtrate was extracted with dichloromethane 

(100 mL x 3 times). The combined organic fractions were washed with brine (100 mL), 

dried over an anhydrous sodium sulfate pad, and concentrated under reduced pressure. 

The resulting residue was purified using flash column chromatography. The target 

compound was eluted with 10% EtOAc/Hexane (6.7 g, 95%).  

1H NMR (CDCl3, 500 MHz) δ (ppm) 5.76-5.70 (m, 1H, 3-H), 5.68-5.58 (m, 1H, 

2-H), 4.12 (dd, J = 10.0, 6.0 Hz, 2H, 1-H), 4.11-4.01 (dt, J = 39.0, 6.0 Hz, 1H, 4-H), 3.86-

3.62 (tdt, J = 107.0, 5.0, 3.0 Hz, 1H, 6-H), 1.57-1.52 (m, 1H, 5-H), 1.47-1.42 (m, 2H, 7-

H), 1.29-1.16 (m, 8H, 8-H, 9-H, 10-H, 11-H), 0.94-0.91 (m, 9H, TES), 0.86 (s, 9H, TBS), 

0.85 (m, 3H, 12-H), 0.70 (d, J = 6.0 Hz, 3H, 13-H), 0.58-0.53 (m, 6H, TES), 0.03 (s, 3H, 

TBS), -0.01 (s, 3H, TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 134.8 (C-2), 129.7 (C-

3), 74.2 (C-4), 72.6 (C-6), 63.4 (C-1), 43.8 (C-5), 34.9 (C-7), 31.8 (C-10), 29.5 (C-9), 

25.4 (C-8), 22.6 (C-11), 18.2 (C-Si), 9.4 (C-13), 6.9 (3 x CH3-C-Si), 5.2 (3 x CH2-Si), -

3.6 (CH3-Si), -4.4 (CH3-Si). 

5-((5R,6S,E)-6-(tert-butyldimethylsilyloxy)-5-methyl-4-(triethylsilyloxy)dodec-2-

enylthio)-1-phenyl-1H-tetrazole (105): Compound (105) was prepared following the 

same procedure as compound (22) with a yield of 99%. 

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.54-7.51 (m, 5H, Ph-H), 5.85-5.79 (m, 1H, 

3-H), 5.77-5.71 (m, 1H, 2-H), 4.11-4.02 (m, 2H, 1-H), 4.00-3.83 (m, 1H, 4-H), 3.81-3.56 

(m, 1H, 6-H), 1.55-1.47 (m, 1H, 5-H), 1.45-1.39 (m, 2H, 7-H), 1.29-1.20 (m, 8H, 8-H, 9-
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H, 10-H, 11-H), 0.88-0.84 (m, 20H, TBS, TES, 12-H, 13-H), 0.53-0.49 (m, 6H, TES), -

0.20 (s, 3H, TBS), -0.06 (s, 3H, TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 153.8 (C-1’ 

of tetrazole), 139.3 (C-3), 130.0 (C-1” of PhH), 129.8 (C-3”, 4”, 5” of PhH), 123.9 (C-2” 

of PhH), 123.8 (C-6” of PhH), 123.7 (C-2), 73.9 (C-4), 72.5 (C-6), 43.8 (C-5), 35.0 (C-7), 

34-8 (C-1), 31.8 (C-10), 29.5 (C-9), 25.4 (C-8), 22.6 (C-11), 18.1 (C-Si), 14.1 (C-12), 9.3 

(C-13), 6.8 (3 x CH3-C-Si), 5.1 (3 x CH2-Si), -3.7 (CH3-Si), -4.4 (CH3-Si). 

5-((5R,6S,E)-6-(tert-butyldimethylsilyloxy)-5-methyl-4-(triethylsilyloxy)dodec-2-

enylsulfonyl)-1-phenyl-1H-tetrazole (106): 1) The pre-mixed solution of ammonium 

heptamolybdate (2.4 g, 1.9 mmol) in the aqueous 30% hydrogen peroxide (9.5 mL, 93.0 

mmol) was added over 10 min to a solution of thioether compound (4.8 g, 7.8 mmol) in 

ethanol (62 mL) at 0 °C, and the reaction mixture was stirred at 4 °C for 18 hours. After 

dilution with brine (62 mL) at 0 °C, the aqueous fraction was extracted with ethyl acetate 

(50 mL x 5 times). The combined organic fractions were dried over an anhydrous sodium 

sulfate pad and concentrated under reduced pressure. The residue was subjected to flash 

column chromatography. The intermediate compound was eluted with 10% to 20% 

EtOAc/Hexane (4.0 g, 96%). 2) TESOTf (2.1 mL, 8.9 mmol) was added dropwise over 

20 min to a solution of above compound (4.0 g, 7.5 mmol) and 2,6-lutidine (1.7 mL, 8.9 

mmol) in dichloromethane (75 mL) at -78 °C. The reaction mixture was stirred at -78 °C 

for 1 hour and at 0 °C for 1 hour. After quenching with saturated the aqueous ammonium 

chloride solution (75 mL), the aqueous fraction was extracted with dichloromethane (50 

mL x 4 times). The combined organic fractions were washed with brine (50 mL), dried 

over an anhydrous sodium sulfate pad, and concentrated under reduced pressure. The 
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resulting residue was purified using flash column chromatography. The target compound 

was eluted with 10% EtOAc/Hexane (2.5 g, 50% for 2 steps).  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.66-7.55 (m, 5H, Ph-H), 6.13 (dd, J = 11.4, 

4.8 Hz, 1H, 3-H), 5.66 (ddd, J = 26.0, 12.5, 7.0 Hz, 1H, 2-H), 4.49-4.37 (m, 2H, 1-H), 

4.18-4.05 (m, 1H, 4-H), 3.66 (m, 1H, 6-H), 1.61-1.54 (m, 1H, 5-H), 1.51-1.43 (m, 2H, 7-

H), 1.34-1.19 (m, 8H, 8-H, 9-H, 10-H, 11-H), 0.95-0.81 (m, 20H, TBS, TES, 12-H, 13-

H), 0.53-0.47 (m, 6H, TES), 0.00 (s, 3H, TBS), -0.11 (s, 3H, TBS); 13C NMR (CDCl3, 

125 MHz) δ (ppm) 154.2 (C-1’ of tetrazole), 133.0 (C-3), 131.4 (C-1’ of PhH), 129.7 (C-

3’ of PhH), 129.7 (C-4’ of PhH), 129.7 (C-5’ of PhH), 125.04 (C-2’ of PhH), 124.95 (C-

6’ of PhH), 74.1 (C-4), 73.6 (C-6), 43.7 (C-5), 35.1 (C-7), 34.8 (C-1), 31.9 (C-10), 29.4 

(C-9), 25.3 (C-8), 22.6 (C-11), 18.1 (C-Si),14.1 (C-12), 9.4 (C-13), 6.8 (3 x CH3-C-Si), 

5.5 (3 x CH2-Si), -3.0 (CH3-Si), -3.7 (CH3-Si); LRMS (ESI, positive) m/z for 

C32H58N4O4SSi2 [M+Na]+: calcd 674.3633, found 674.3643. 

Ethyl 2-(phenylsulfinyl)acetate (108): 1) Thiophenol (107, 5.5 g, 50 mmol) was 

dissolved in a sodium methoxide solution (100 mL, 0.5 N in methanol, 50 mmol) at room 

temperature, and cooled to 0 °C. Ethyl bromoacetate (8.4 g, 50 mmol) was added 

dropwise to the reaction mixture at 0 °C with vigorous stirring over 30 min. The reaction 

mixture was then refluxed for 1 hour, and cooled to room temperature, followed by 

dilution with water (100 mL). The aqueous fraction was extracted with dichloromethane 

(100 mL x 4 times), which was washed with brine (50 mL), dried over an anhydrous 

sodium sulfate pad, and concentrated. The resulting residue was purified using flash 

column chromatography. A quantitative amount of sulfide compound was eluted with 2% 
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to 5% EtOAc/Hexane. 2) A solution of above sulfide compound and sodium periodate 

(12.8 g, 60 mmol) in methanol (10 mL) and water (40 mL) was stirred at room 

temperature for 18 hours. After filtering through paper filter and washing with 

dichloromethane (50 mL x 2 times), the aqueous fraction was extracted with 

dichloromethane (50 mL x 3 times). The combined organic fractions were washed with 

brine (100 mL), dried over an anhydrous sodium sulfate pad, and concentrated. The 

resulting residue was flash column chromatographed, and the target sulfoxide compound 

was eluted with 50% EtOAc/Hexane (9.8 g, 93%). 

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.68-7.64 (m, 2H, C-2’, C-5’ of Ph-H), 

7.53-7.50 (m, 3H, C-3’, C-4’, C-5’ of Ph-H), 4.12 (q, J = 7.0 Hz, 2H, C-3), 3.73 (dd, J = 

86.0, 13.5 Hz, 2H, C-2), 1.18 (t, J = 7.0 Hz, 3H, C-4); 13C NMR (CDCl3, 125 MHz) δ 

(ppm) 164.6 (C-1), 143.1 (C-1’ of Ph-H), 131.6 (C-4’ of Ph-H), 129.3 (C-3’, C-5’ of Ph-

H), 124.1 (C-2’, C-5’ of Ph-H), 61.9 (C-3), 61.6 (C-2), 13.9 (C-4); LRMS (ESI, positive) 

m/z for C10H12O3S [M+Na]+: calcd 235.0, found 235.0.  

B. Preparation of Fragment B: The overall synthetic scheme is depicted in Scheme 2-14. 

HO OH PMBO OH

NaH, PMBCl, TBAI, DMF
0 oC, 6 h

77 %

1. (COCl)2, DMSO, Et3N, DCM
-78 oC, 3 h

2. (+)-Ipc2B(Allyl), THF
-78 oC to RT, 3 h

2 steps, 86 %
PMBO

OH TBSCl, imidazole, DCM
RT, 4 h

Quant.

PMBO

OTBS

1. OsO4, NaIO4, 2,6-lutidine, 1,4-dioxane, H2O
RT, 4 h, 87 %

2. CrCl2, CHI3, 1,4-dioxane, THF
4 oC, 3 days, 60 % PMBO

OTBS
I

1. DDQ, DCM, MeOH
0 oC , 4 h, 88 %

2. DMP, DCM
RT, 3 h, 59 %

O

OTBS
I

109 110 111

112 113 114  
 

Scheme 2-14. Preparation of fragment B for the synthesis of Linear SpnF substrate analog. 
 

3-(4-methoxybenzyloxy)propan-1-ol (110): Sodium hydride (8.7 g, 60% in mineral oil, 

0.22 mol) was added to a solution of 1,3-propanediol (109, 15.0 g, 0.20 mol) in 
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anhydrous DMF (591 mL) at 0 °C. The reaction mixture was stirred at room temperature 

for 30 min, and cooled to 0 °C. p-Methoxybenzyl chloride (29.4 mL, 0.22 mol) and 

tetrabutylammonium iodide (8.1 g, 0.02 mol) were subsequently added to the reaction 

mixture with vigorous stirring at 0 °C for 30 min. The reaction mixture was stirred at 0 

°C for 6 hours. After quenching by the addition of cold water (197 mL), the aqueous 

fraction was extracted with ethyl acetate (300 mL x 3 times, 200 mL x 2 times). The 

combined organic fractions were washed with water (200 mL x 3 times) and brine (200 

mL), then dried over an anhydrous sodium sulfate, filtered, and concentrated under 

reduced pressure. The resulting residue was purified using flash column chromatography. 

The target compound was eluted with 10% to 30% EtOAc/Hexane solution (30.0 g, 0.17 

mol, 77%). All spectra data is identical to the literature reference. 

(R)-1-(4-methoxybenzyloxy)hex-5-en-3-ol (111): 1) DMSO (35.5 mL, 0.46 mol) in 

dichloromethane (153 mL) was added to a solution of oxalyl chloride (20.0 mL, 0.23 

mol) in dichloromethane (305 mL) at -78 °C with vigorous stirring for 30 min. The 

reaction mixture was stirred for 30 min at -78 °C. The alcohol compound (30.0 g, 0.15 

mol) in dichloromethane (153 mL) was added to the reaction mixture via cannular at -78 

°C for 10 min. After 1 hour, the reaction mixture was slightly warmed to -60 °C, and 

triethylamine (96 mL, 0.69 mol) was added to the reaction mixture over 10 min. After 

slowly warming the solution to room temperature for 30 min, the reaction mixture was 

quenched with water (611 mL), and the aqueous fraction was extracted with 

dichloromethane (200 mL x 3 times). The combined organic fractions were washed with 

brine (300 mL), dried over an anhydrous sodium sulfate, filtered, and concentrated under 
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reduced pressure. After passing through a celite pad, the filtrate was again concentrated 

and used for the next reaction without further purification. 2) (+)-Ipc2BCl (123.5 mL, 1.6 

M, 0.20 mol) and allylmagnesium bromide (189 mL, 1.0 M, 0.19 mol) were mixed with 

vigorous stirring in THF (435 mL) for 10 min at 0 °C, and then cooled to -78 °C. Freshly 

prepared aldehyde from the previous step in THF (145 mL) was added to the reaction 

mixture at -78 °C over 1 hour. The reaction mixture was stirred at -78 °C for 1.5 hour, 

and allowed to warm to room temperature for 3 hours with stirring. Cold methanol (435 

mL), aqueous 1 N sodium hydroxide solution (435 mL), and aqueous 30% hydrogen 

peroxide solution were subsequently added to the reaction mixture while maintaining the 

temperature of the reaction mixture below 5~10 °C. After stirring at room temperature for 

additional 1.5 hours, the reaction mixture was filtered through paper filter, and washed 

with ethyl acetate (500 mL). The filtrate was phase-separated, and the aqueous fraction 

was extracted with ethylacetate (400 mL x 3 times). The combined organic fractions were 

washed with brine (300 mL), and dried over an anhydrous sodium sulfate pad, filtered, 

and concentrated. The resulting residue was subjected to flash column chromatography. 

The target compound was eluted with 20% EtOAc/Hexane (20.4 g, 60%). All spectral 

data was identical to the literature reference.  

(R)-tert-butyl(1-(4-methoxybenzyloxy)hex-5-en-3-yloxy)dimethylsilane (112): TBSCl 

(14.3 g, 95 mmol) was added to a solution of the alcohol compound (20.4 g, 86 mmol) 

and imidazole (12.9 g, 190 mmol) in DMF (432 mL) at 0 °C. The reaction mixture was 

allowed to warm to room temperature for 18 hours with stirring. Then, the reaction 

mixture was directly concentrated under reduced pressure. The residue was diluted with 
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water (200 mL), and extracted with ethyl acetate (200 mL x 4 times). The combined 

organic fractions were washed with brine (200 mL), dried over an anhydrous sodium 

sulfate pad, and concentrated under reduced pressure. The resulting residue was purified 

using flash column chromatography. The target compound was eluted with 5% 

EtOAc/Hexane with a quantitative yield. Spectral data was not collected. 

(R,E)-tert-butyl(6-iodo-1-(4-methoxybenzyloxy)hex-5-en-3-yloxy)dimethylsilane 

(113): Compound (113) was prepared following the same procedure as compound (34) 

with a yield of 52% for 2 steps. All spectral data was identical to the literature reference. 

(R,E)-tert-butyl(6-iodo-1-(4-methoxybenzyloxy)hex-5-en-3-yloxy)dimethylsilane 

(113): Compound (113) was prepared following the same procedure as compound (35) 

with a yield of 88%. All spectral data was identical to the literature reference. 

(R,E)-3-(tert-butyldimethylsilyloxy)-6-iodohex-5-enal (114): Compound (114) was 

prepared following the same procedure as compound (36) quantitatively. All spectral data 

was consistent with the literature reference.  

C. Synthesis of Linear SpnF Substrate Analog by Coupling Reactions and Enzymatic 

Conversion: The overall synthetic scheme is pictured in Scheme 2-15. 
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Scheme 2-15. Preparation of Linear SpnF substrate analog. 
 

(5S,7E,9E,11R,12R,13S)-13-hexyl-5-((E)-3-iodoallyl)-2,2,3,3,12,15,15,16,16- 

nonamethyl-11-(triethylsilyloxy)-4,14-dioxa-3,15-disilaheptadeca-7,9-diene (115): 

Potassium bis(trimethylsilyl)amide (KHMDS; 12.4 mL, 0.5 M in toluene, 6.2 mmol) was 

added to a solution of sulfone compound (2.4 g, 3.8 mmol) in anhydrous THF (75 mL) at 

-78 °C using a syringe pump over 30 min. The reaction mixture was kept stirring at -78 

°C for 30 min. The aldehyde compound (2.0 g, 5.6 mmol) in anhydrous THF (18 mL) 

was added to the reaction mixture at -78 °C with a syringe pump over 30 min. The 

reaction mixture was stirred at -78 °C for 2 hours, and allowed to slowly warm to room 

temperature for 18 hours with stirring. After quenching with a saturated the aqueous 

sodium bicarbonate solution (2.3 mL), the aqueous fraction was extracted with ethyl 

acetate (60 mL x 3 times). The combined organic fractions were washed with brine (30 

mL), dried over an anhydrous sodium sulfate pad, and concentrated under reduced 

pressure. The resulting dark brown residue was purified using flash column 

chromatography. The target compound was eluted with 5% EtOAc/Hexane (1.5 g, 52%).  
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1H NMR (CDCl3, 500 MHz) δ 6.49 (td, J = 12.0, 6.0 Hz, 1H, 2-H), 6.31 (dd, J = 

22.0, 13.0, 1H, 8-H), 6.03 (dd, J = 15.0, 12.0 Hz, 1H, 7-H), 6.00 (d, J = 12.0 Hz, 1H, 1-

H), 5.60 (ddd, J = 38.0, 13.0, 6.0 Hz, 1H, 9-H), 5.38 (ddd, J = 15.0, 6.0, 2.5 Hz, 1H, 6-H), 

4.10 (dt, J = 29.0 6.0 Hz, 1H, 10-H), 3.88-3.61 (m, 1H, 12-H), 3.75-3.69 (m, 1H, 4-H), 

2.38-2.22 (m, 2H, 5-H), 2.21-2.09 (m, 2H, 3-H), 1.60-1.53 (m, 1H, 11-H), 1.48-1.42 (m, 

2H, 13-H), 1.29-1.22 (m, 8H, 14-H, 15-H, 16-H, 17-H), 0.96-0.84 (m, 17H, 9H of TBS, 

6H of TES, 18-H), 0.57-0.53 (m, 9H, 9H of TES), 0.04-(-0.01) (m, 6H, 6H of TBS); 13C 

NMR (CDCl3, 125 MHz) δ 143.3 (C-2), 137.1 (C-9), 130.0 (C-7), 126.9 (C-6), 125.7 (C-

8), 76.6 (C-1), 74.7 (C-10), 72.5 (C-12), 71.1 (C-4), 44.0 (C-11), 43.5 (C-3), 35.5 (C-5), 

35.0 (C-13), 31.9 (C-16), 29.5 (C-15), 26.1 (C-14), 26.0 (3 x CH3-C-Si), 25.8 (3 x CH3-

C-Si), 22.6 (C-17), 18.2 (C-Si of TBS), 18.1 (C-Si of TBS), 14.1 (C-18), 9.4 (C-19), 6.9 

(3 x CH3-CH2-Si of TES), 5.5 (3 x CH2-Si of TES), -3.6 (CH3-Si of TBS), -4.5 (CH3-Si 

of TBS). 

(2E,4E,6E,9R,11E,13E,15R,16R,17S)-ethyl 9,17-bis(tert-butyldimethylsilyloxy)-16-

methyl-15-(triethylsilyloxy)tricosa-2,4,6,11,13-pentaenoate (116): A vinyl iodide 

compound (1.5 g, 2.0 mmol) and tinylated compound (1.2 g, 2.9 mmol) were mixed in 

anhydrous deoxygenated DMF (39 mL) at room temperature. 

Tris(dibenzylideneacetone)dipalladium (0) (Pd2(dba)3; 89 mg, 0.10 mmol) and 

triphenylarsine (AsPh3; 120 mg, 0.39 mmol) were added to the reaction mixture under a 

nitrogen atmosphere with stirring at room temperature. The reaction mixture was kept 

stirring at room temperature for 18 hours, and then diluted with water (150 mL). Organic 

phase was separated by extracting the aqueous fraction with ethyl acetate (50 mL x 4 
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times), and washing with brine (100 mL). After drying over an anhydrous sodium sulfate 

pad and concentration under reduced pressure, the resulting residue was subjected to 

flash column chromatography. The target compound was eluted with 5% EtOAc/Hexane 

(0.97 g, 1.25 mmol, 64%). 

1H NMR (CDCl3, 500 MHz) δ 7.31 (dt, J = 17.5, 3.0 Hz, 1H, 3-H), 6.51 (ddd, J = 

20.0, 10.5, 5.0 Hz, 1H, 5-H), 6.35 (dd, J = 15.0, 11.5 Hz, 1H, 13-H), 6.24-6.11 (m, 2H, 4-

H, 6-H), 6.08-5.98 (m, 1H, 12-H), 5.95-5.89 (m, 1H, 7-H), 5.84 (dd, J = 15.0, 3.0 Hz, 1H, 

2-H), 5.66-5.55 (m, 1H, 14-H), 5.53-5.42 (m, 1H, 11-H), 4.22 (q, J = 6.0 Hz, 2H, 25-H), 

4.11 (dt, J = 24.5, 8.0 Hz, 1H, 15-H), 3.82-3.75 )m, 1H, 9-H), 3.74-3.63 (m, 1H, 17-H), 

2.42-2.22 (m, 4H, 8-H, 10-H), 1.54-1.47 (m, 3H, 16-H, 18-H), 1.31-1.25 (m, 11H, 19-H, 

20-H, 21-H, 22-H, 26-H), 0.96-0.86 (m, 33H, 3 x CH3-C-Si of TBS at C-9, 3 x CH3-C-Si 

of TBS at C-17, 3 x CH3-CH2-Si of TES, 23-H, 24-H), 0.59-0.52 (m, 6H, 3 x CH3-CH2-

Si of TES), 0.05-0.00 (m, 12H, 2 x CH3-Si of TBS at C-9, 2 x CH3-Si of TBS at C-17); 

13C NMR (CDCl3, 125 MHz) δ 167.2 (C-1), 147.2 (C-3), 140.8 (C-5), 136.4 (C-7), 132.1 

(C-6), 130.8 (C-14), 129.9 (C-12), 128.2 (C-4), 127.4 (C-11), 125.8 (C-13), 119.9 (C-2), 

74.8 (C-15), 72.5 (C-17), 71.9 (C-9), 60.3 (C-25), 44.0 (C-16), 40.8 (C-8), 40.7 (C-10), 

31.9 (C-21), 29.7 (C-20), 29.0 (C-18), 27.2 (C-19), 25.99 (3 x CH3-C-Si of TBS), 25.83 

(3 x CH3-C-Si of TBS), 22.6 (C-22), 18.19 (CH3-C-Si of TBS), 18.09 (CH3-C-Si of 

TBS), 6.97 (3 x CH3-CH2-Si of TES), 14.3 (C-26), 13.7 (C-23), 9.6 (C-24), 5.15 (3 x 

CH3-CH2-Si of TES), -4.34 (2 x CH3-Si of TBS), -4.51 (2 x CH3-Si of TBS). HRMS 

(ESI, positive) m/z for C44H84O5Si3 [M+Na]+: calcd 799.5524, found 799.5500. 
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(2E,4E,6E,9R,11E,13E,16R,17S)-ethyl 9,17-bis(tert-butyldimethylsilyloxy)-16-

methyl-15-oxotricosa-2,4,6,11,13-pentaenoate (117): 1) Pyridinium p-toluenesulfonate 

(PPTS; 646 mg, 2.57 mmol) was added to a solution of 15-OTES compound (800 mg, 

1.03 mmol) in ethanol (21 mL) at room temperature, and the suspended reaction mixture 

was stirred for 18 hours. After dilution with saturated the aqueous sodium bicarbonate 

solution (21 mL), the aqueous fraction was extracted with dichloromethane (20 mL x 5 

times). The combined organic fractions were dried over an anhydrous sodium sulfate pad 

and concentrated. The resulting residue was purified using flash column chromatography. 

The target compound was eluted with 10% EtOAc/Hexane (325 mg, 48%), and a portion 

of the starting material was also recovered (300 mg, 39%). 2) Dess-Martin periodinane 

(DMP; 32 mg, 74 µmol) was added to a solution of secondary-alcohol compound (45 mg, 

68 µmol) in dichloromethane (2 mL) at room temperature. The reaction mixture was 

stirred for 3 hours, and then quenched with saturated the aqueous sodium thiosulfate (2 

mL) and saturated the aqueous sodium bicarbonate (2 mL). The aqueous fraction was 

extracted with dichloromethane (5 mL x 3 times), and the combined organic fractions 

were washed with brine (5 mL), dried over an anhydrous sodium sulfate pad, and 

concentrated under reduced pressure. The resulting residue was subjected to the flash 

column chromatography. The target compound was eluted with 30% EtOAc/Hexane (36 

mg, 80%).  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.30 (dd, J = 30.0, 11.5 Hz, 1H, 3-H), 7.14 

(dd, J = 15.0, 10.0 Hz, 1H, 13-H), 6.52 (dd, J = 14.5, 11.0 Hz, 1H, 5-H), 6.25-6.11 (m, 

5H, 4-H, 6-H, 7-H, 12-H, 14-H), 5.91-5.82 (m, 1H, 11-H), 5.85 (d, J = 15.5 Hz, 1H, 2-H), 
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4.20 (q, J = 7.0 Hz, 2H, 25-H), 3.93-3.89 (m, 1H, 17-H), 3.84-3.79 (m, 1H, 9-H), 2.82 

(dd, J = 7.0, 5.5 Hz, 1H, 16-H), 2.36-2.26 (m, 4H, 8-H, 10-H), 1.44-1.33 (m, 2H, 18-H), 

1.31-1.20 (m, 8H, 19-H, 20-H, 21-H, 22-H), 1.29 (t, J = 7.0 Hz, 3H, 26-H), 1.08 (d, J = 

7.0 Hz, 3H, 24-H), 0.91-0.80 (m, 21H, 3 x 2 x CH3-C-Si of TBS, 23-H), 0.04-0.00 (m, 

12H, 3 x 2 x CH3-Si of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 202.8 (C-15), 167.1 

(C-1), 144.5 (C-3), 142.0 (C-13), 141.1 (C-6), 140.5 (C-5), 135.7 (C-11), 132.4 (C-12), 

131.4 (C-7), 128.5 (C-4), 127.8 (C-14), 120.6 (C-2), 73.8 (C-17), 71.3 (C-9), 60.2 (C-25), 

49.8 (C-16), 40.9 (C-8, C-10), 36.2 (C-18), 31.8 (C-19), 29.4 (C-20), 25.89 (3 x CH3-C-

Si of TBS), 25.77 (3 x CH3-C-Si of TBS), 25.1 (C-21), 22.6 (C-22), 18.08 (3 x CH3-C-Si 

of TBS), 18.03 (3 x CH3-C-Si of TBS), 14.3 (C-26), 14.0 (C-23), 12.3 (C-24), -4.29 (3 x 

CH3-Si of TBS), -4.51 (3 x CH3-Si of TBS); MS data was not collected. 

(2E,4E,6E,9R,11E,13E,15R,16R,17S)-9,15,17-trihydroxy-16-methyltricosa-

2,4,6,11,13-pentaenoic acid (118): 1) A long chain compound (30 mg, 45 µmol) was 

dissolved in a solution of the aqueous 0.5 N lithium hydroxide solution (0.91 mL), 

methanol (0.91 mL), and THF (0.91 mL). The reaction mixture was then refluxed for 2 

hours. After cooling to room temperature, the pH of the aqueous solution was adjusted to 

around 7.0 with the aqueous 1 N hydrochloric acid solution, and then the aqueous 

fraction was extracted with ethyl acetate (5 mL × 3 times). The combined organic 

fractions were dried over an anhydrous sodium sulfate pad and concentrated under 

reduced pressure. The resulting residue was short pass chromatographed through a silica 

gel pad by washing with 30% EtOAc/Hexane solution. The filtrate was concentrated and 

used for the next reaction without further purification. 2) A reaction mixture of the above 
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acid compound was dissolved in tetra-n-butylammonium fluoride solution (2 mL, 1.0 M 

in THF, 2.0 mmol) and was stirred for 18 hours at room temperature. After quenching 

with saturated the aqueous sodium bicarbonate solution (8 mL), the aqueous fraction was 

extracted with ethyl acetate (5 mL x 5 times). The combined organic fractions were dried 

over an anhydrous sodium sulfate pad and concentrated under reduced pressure. The 

resulting residue was purified using flash column chromatography. The target compound 

was eluted with EtOAc added linearly to a 10% MeOH/EtOAc solution (17 mg, 97%).  

1H NMR (CDCl3, 500 MHz) δ (ppm); 13C NMR (CDCl3, 125 MHz) δ (ppm);; 

HRMS (ESI, negative) m/z for C24H38O5 [M-H]-: calcd 405.2641 , found 405.2701. 

(2E,4E,6E,9R,11E,13E,16R,17S)-9,17-dihydroxy-16-methyl-15-oxotricosa-

2,4,6,11,13-pentaenoic acid (119): 1) A keto-compound (30 mg, 45 µmol) was dissolved 

in a solution of the aqueous 0.5 N lithium hydroxide solution (0.91 mL), methanol (0.91 

mL), and THF (0.91 mL), and the reaction mixture was refluxed for 2 hours. After 

cooling to room temperature, the pH of the aqueous solution was adjusted to around 7 

with the aqueous 1 N hydrochloric acid solution, and then the aqueous fraction was then 

extracted with ethyl acetate (5 mL × 3 times). The combined organic fractions were dried 

over an anhydrous sodium sulfate pad and concentrated under reduced pressure. The 

resulting residue was short-passed through a silica gel pad by washing with 30% 

EtOAc/Hexane solution. The filtrate was concentrated and used for the next reaction 

without further purification. 2) A reaction mixture of the above acid compound dissolved 

in tetra-n-butylammonium fluoride solution (2 mL, 1.0 M in THF, 2.0 mmol) was stirred 

for 18 hours at room temperature. After quenching with saturated the aqueous sodium 
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bicarbonate solution (8 mL), the aqueous fraction was extracted with ethyl acetate (5 mL 

x 5 times). The combined organic fractions were dried over an anhydrous sodium sulfate 

pad and concentrated under reduced pressure. The resulting residue was purified using 

flash column chromatography. The target compound was eluted with a changing 

concentration of pure EtOAc to 10% MeOH/EtOAc solution (18 mg, quantitatively).  

1H NMR (CDCl3, 500 MHz) δ (ppm); 7.36-7.31 (m, 1H, 3-H), 7.04-6.88 (m, 1H, 

13-H), 6.57-6.49 (m, 1H, 5-H), 6.31-6.12 (m, 5H, 14-H, 4-H, 6-H, 7-H, 12-H), 5.98-5.72 

(m, 2H, 11-H, 2-H), 3.83-3.81 (m, 1H, 17-H), 3.67-3.62 (m, 1H, 9-H), 3.04-2.97 (m, 1H, 

16-H), 2.66-2.60 (m, 2H, 8-H), 2.34-2.31 (m, 2H, 10-H), 1.80-1.20 (m, 14H, 19-H’s, 20-

H’s, 21-H’s, 22-H’s, 23-H’s, 24-CH3); 13C NMR (CDCl3, 125 MHz) δ (ppm) 198.2 (C-

15), 174.1 (C-1), 158.2 (C-3), 154.2 (C-13), 153.1 (C-6), 145.5 (C-5), 135.4 (C-11), 

124.5 (C-12), 122.7 (C-4), 121.6 (C-4), 120.3 (C-14), 118.7 (C-2), 60.1 (C-17), 56.4 (C-

9), 51.5 (C-16), 39.1 (C-10), 38.6 (C-8), 33.1 (C-18), 31.1 (C-19), 30.0 (C-20), 24.2 (C-

19), 23.7 (C-22), 15.4 (C-23), 14.1 (C-24); HRMS (ESI, negative) m/z for [M-H]-: calcd 

403.2483, found 403.2494. 

2.2.9. Synthesis of the C13-14 Unc SpnF Substrate Analog (C13-14 Unc analog) 

A. Preparation of Fragment A: The overall synthetic scheme is shown in Scheme 2-16. 
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Scheme 2-16. Preparation of fragment A in the synthesis of C13-14 Unc SpnF substrate analog. 
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(4R,S,6S,10S)-6-(tert-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)-5-methyl-4-

(triethylsilyloxy)dodecan-1-ol (120): 9-BBN (28 mL, 0.5 M, 14.0 mmol) was added 

dropwise to a solution of allyl compound (2.7 g, 4.7 mmol) in THF (100 mL) over 45 min 

at 0 °C. After the reaction mixture was stirred for 1.5 hours, water (2.7 mL) and an the 

aqueous 2 N sodium hydroxide solution (26 mL, 56 mmol) were subsequently added over 

20 min. The reaction mixture was stirred for 10 min, and a hydrogen peroxide solution 

(5.4 mL, the aqueous 30% solution) was added over 10 min at 0 °C. After stirring for 3 

hours, the reaction mixture was extracted with ethyl acetate (40 mL x 3 times), and the 

combined organic fractions were dried over an anhydrous sodium sulfate, filtered, and 

concentrated under reduced pressure. The resulting residue was purified using flash 

column chromatography. The target compound was eluted with 10% EtOAc/Hexane 

solution (2.4 g, 4.0 mmol).  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.24 (d, 2H, J = 8.7 Hz, PhH of PMB), 6.85 

(d. 2H, J = 8.7 Hz, PhH of PMB), 4.44 (d, 1H, J = 11.1 Hz, CH2 of PMB), 4.38 (d, 1H, J 

= 11.1 Hz, CH2 of PMB), 3.78-3.75 (m, 4H, OCH3 of PMB+4-H), 3.67-3.63 (m, 1H, 6-

H), 3.60-3.52 (m, 2H, 1-Hs), 3.29-3.24 (m, 1H, 10-H), 2.14-2.11 (m, 1H, 1-OH), 1.71-

1.19 (m, 13H, 2-Hs+3-Hs+5-H+7-Hs 2+8-Hs+9-Hs+11-Hs), 0.95 (t, 9H, J = 8.1 Hz, CH3 

of TES), 0.87 (t, 3H, J = 7.0 Hz. 12-CH3), 0.85 (s, 9H, CH3 of tBu of TBS), 0.84 (t, 3H, 

J = 7.0 Hz, 5-CH3), 0.60 (q, 6H, J = 7.8 Hz, CH2 of TES), 0.014 (s, 3H, CH3 of TBS), -

0.001 (s, 3H, CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 159.07 (Ph(C) of 

PMB), 131.19 (Ph(C) of PMB), 129.31 (Ph of PMB), 113.74 (Ph of PMB), 79.97 (C-10), 
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72.96 (C-6), 72.47 (C-4), 70.61 (CH2 of PMB), 63.30 (C-1), 55.28 (OCH3 of PMB), 

40.16 (C-11), 35.32 (C-5), 33.98 (C-7), 31.40 (C-3), 26.35 (C-9), 25.90 (CH3 of tBu of 

TBS), 21.36 (C-8), 18.12 (Me3(C)-Si), 9.46 (C-12), 9.43 (5-CH3), 6.99 (CH3 of TES), 

5.25 (CH2 of TES), -3.74 (CH3 of TBS), -4.50 (CH3 of TBS); HRMS (CI, positive) m/z 

for C33H65O5Si2 [M+H]+: calcd 597.4371, found 597.4367.  

5-((4R,5S,6S,10S)-6-(tert-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)-5-methyl-

4-(triethylsilyloxy)dodecylthio)-1-phenyl-1H-tetrazole (121): Compound (121) was 

prepared following the same procedure as compound (22) with a yield of 91%.  

1H NMR (CDCl3, 600 MHz) δ (ppm) 7.56-7.50 (m, 5H, PhH), 7.23 (d, 2H, J = 8.7 

Hz, PhH of PMB), 6.83 (d. 2H, J = 8.7 Hz, PhH of PMB), 4.41 (d, 1H, J = 11.1 Hz, CH2 

of PMB), 4.38 (d, 1H, J = 11.1 Hz, CH2 of PMB), 3.76 (s, 3H, OCH3 of PMB), 3.74-

3.71 (m, 1H, 4-H), 3.66-3.64 (m, 1H, 6-H), 3.41-3.67 (m, 2H, 1-Hs), 3.28-3.24 (m, 1H, 

10-H), 1.87-1.76 (m, 2H, 2-Hs), 1.66-1.62 (m, 2H, 3-Hs), 1.57-1.38 (m, 7H, 5-H+7-

Hs+9-Hs+11-Hs), 1.33-1.19 (m, 2H, 8-Hs), 0.92 (t, 9H, J = 8.1 Hz, CH3 of TES), 0.87 (t, 

3H, J = 7.4 Hz. 12-Hs), 0.84 (s, 9H, CH3 of tBu of TBS), 0.83 (t, 3H, J = 7.0 Hz, 5-

CH3), 0.55 (q, 6H, J = 7.9 Hz, CH2 of TES), 0.00 (s, 3H, CH3 of TBS), -0.031 (s, 3H, 

CH3 of TBS); 13C NMR (CDCl3, 150 MHz) δ (ppm) 159.05 (Ph(C) of PMB), 154.33 

(C=N of tetrazole), 133.78 (Ph(C) of Ph), 131.26 (Ph of Ph), 130.02 (Ph(C) of PMB), 

129.74 (Ph of Ph),129.23 (Ph of PMB), 123.80 (Ph of Ph), 113.72 (Ph of PMB), 79.78 

(C-10), 72.74 (C-4), 72.72 (C-6), 70.50 (CH2 of PMB), 55.26 (OCH3 of PMB), 41.00 

(C-11), 35.21 (C-5), 33.88 (C-1), 33.82 (C-7), 33.76 (C-3), 26.29 (C-9), 25.91 (CH3 of 

tBu of TBS), 24.33 (C-2), 21.21 (C-8), 18.12 (Me3(C)-Si), 9.68 (C-12), 9.50 (5-CH3), 
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7.02 (CH3 of TES), 5.34 (CH2 of TES), -3.74 (CH3 of TBS), -4.44 (CH3 of TBS); 

HRMS (CI, positive) m/z for C40H69O4Si2S [M+H]+: calcd 757.4578, found 757.4582. 

5-((4R,5S,6S,10S)-6-(tert-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)-5-methyl-

4-(triethylsilyloxy)dodecylsulfonyl)-1-phenyl-1H-tetrazole (122): 1) Ammonium 

heptamolybdate tetrahydrate (0.53 g, 0.41 mmol) was added to a solution of thioether 

(2.8 g, 3.7 mmol) in ethanol (10 mL) and hydrogen peroxide (2.4 mL) at 0 °C. This 

reaction mixture was stirred at 0°C for 24 hours. The reaction mixture was quenched with 

water (30 mL), and the aqueous fraction was extracted with ethyl acetate (30 mL x 3 

times). The combined organic fractions were dried over an anhydrous sodium sulfate pad. 

The concentrated residue was directly used for TES-protection without further 

purification. 2) TESOTf (1.2 mL, 5.5 mmol) was added to a solution of the above 

sulfonate and 2,6-lutidine (1.1 mL, 9.15 mmol) in dichloromethane (70 mL) at -78 °C. 

The reaction mixture was stirred at -78 °C for 1 hour and slowly warmed to room 

temperature with stirring for 30 min. After quenching with saturated the aqueous 

ammonium chloride (30 mL) and extraction with dichloromethane (15 mL x 3 times), the 

combined organic fractions were washed with brine (20 mL), dried over an anhydrous 

sodium sulfate pad, and concentrated under reduced pressure. The resulting residue was 

purified using flash column chromatography. The target compound was eluted with 5% 

EtOAc/Hexane (2.4 g, 3.1 mmol).  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.67-7.64 (m, 2H, PhH), 7.61-7.56 (m, 3H, 

PhH), 7.22 (d, 2H, J = 8.8 Hz, PhH of PMB), 6.82 (d. 2H, J = 8.8 Hz, PhH of PMB), 4.41 

(d, 1H, J = 11.2 Hz, CH2 of PMB), 4.38 (d, 1H, J = 11.2 Hz, CH2 of PMB), 3.76 (s, 3H, 
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OCH3 of PMB), 3.75-3.52 (m, 4H, 4-H+6-H+1-Hs), 3.29-3.24 (m, 1H, 10-H), 2.00-1.93 

(m, 2H, 2-Hs, 1.76-1.55 (m, 2H, 3-Hs), 1.60-1.55 (m, 2H, 11-Hs), 1.54-1.38 (m, 5H, 5-

H+7-Hs+9-Hs), 1.34-1.18 (m, 2H, 8-Hs), 0.92 (t, 9H, J = 8.1 Hz, CH3 of TES), 0.87 (t, 

3H, J = 7.4 Hz. 12-CH3), 0.84 (s, 9H, CH3 of tBu of TBS), 0.83 (t, 3H, J = 7.0 Hz, 5-

CH3), 0.57 (q, 6H, J = 7.9 Hz, CH2 of TES), 0.016 (s, 3H, CH3 of TBS), -0.009 (s, 3H, 

CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 159.02 (Ph(C) of PMB), 153.50 

(C=N of tetrazole), 133.07 (Ph(C) of Ph), 131.39 (Ph of Ph), 131.26 (Ph(C) of PMB), 

129.67 (Ph of Ph),129.23 (Ph of PMB), 125.03 (Ph of Ph), 113.71 (Ph of PMB), 79.73 

(C-10), 72.66 (C-4), 72.60 (C-6), 70.49 (CH2 of PMB), 56.37 (C-1), 55.25 (OCH3 of 

PMB), 40.99 (C-11), 35.25 (C-5), 33.86 (C-7), 33.07 (C-3), 26.27 (C-9), 25.89 (CH3 of t-

Bu of TBS), 21.36 (C-8), 18.11 (Me3(C)-Si), 17.68 (C-2), 9.82 (C-12), 9.50 (5-CH3), 

6.99 (CH3 of TES), 5.27 (CH2 of TES), -3.72 (CH3 of TBS), -4.41 (CH3 of TBS); 

HRMS (CI, positive) m/z for C40H69N4O6Si2S [M+H]+: calcd 789.4476, found 789.4474. 

B. Synthesis of C13-14 Unc SpnF Substrate Analog by Coupling Reactions and 

Enzymatic Conversion: The overall synthetic scheme is pictured in Scheme 2-17.  
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Scheme 2-17. Preparation of Linear C13-14 Unc SpnF substrate analog. 
 

(5S,6S,7R,13S,E)-13-((E)-3-iodoallyl)-5-(4-(4-methoxybenzyloxy)hexyl)-7-

(triethylsilyloxy)-2,2,3,3,6,15,15,16,16-nonamethyl-4,14-dioxa-3,15-disilaheptadec-

10-en (123): Compound (123) was prepared following the same procedure as compound 

(43) using compound (122) and compound (114) instead of compound (41) and 

compound (36) with a yield of 71%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.24 (d, 2H, J = 8.7 Hz, PhH of PMB), 6.84 

(d. 2H, J = 8.7 Hz, PhH of PMB), 6.51-6.45 (m, 1H, 2-H), 5.98 (d, 1H, J = 14.4 Hz, 1-H), 

5.45-5.39 (m, 1H, 7-H), 5.36-5.31 (m, 1H, 6-H), 4.43 (d, 1H, J = 11.1 Hz, CH2 of PMB), 

4.39 (d, 1H, J = 11.1 Hz, CH2 of PMB), 3.78 (s, 3H, OCH3 of PMB), 3.74-3.70 (m, 1H, 

10-CH), 3.68-3.63 (m, 2H, 4-H+12-H), 3.29-3.25 (m, 1H, 16-H), 2.21-2.15 (m, 2H, 3-Hs), 

2.13-2.07 (m, 2H, 5-Hs), 2.02-1.92 (m, 2H, 8-Hs), 1.59-1.23 (m, 11H, 9-Hs+11-H+13-

Hs+14-Hs+15-Hs+17-Hs), 0.94 (t, 9H, J = 8.1 Hz, CH3 of TES), 0.89 (t, 3H, J = 7.4 Hz. 

18-CH3), 0.87 (s, 9H, CH3 of tBu of TBS), 0.85 (s, 9H, CH3 of tBu of TBS), 0.847 (d, 
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3H, J = 6.9 Hz, 11-CH3), 0.58 (q, 6H, J = 7.8 Hz, CH2 of TES), 0.024 (s, 3H, CH3 of 

TBS), 0.021 (s, 3H, CH3 of TBS), 0.016 (s, 3H, CH3 of TBS), 0.002 (s, 3H, CH3 of 

TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 159.04 (Ph(C) of PMB), 143.45 (C-2), 

133.30 (C-7), 131.269 (Ph(C) of PMB), 129.22 (Ph of PMB), 125.82 (C-6), 113.72 (Ph of 

PMB), 79.83 (C-16), 76.41 (C-1), 72.94 (C-12), 72.83 (C-10), 71.21 (C-4), 70.50 (CH2 

of PMB), 55.26 (OCH3 of PMB), 43.29 (C-3), 40.87 (C-11), 40.56 (C-5), 35.11 (C-15), 

34.79 (C-9), 33.92 (C-13), 27.97 (C-8), 26.30 (C-17), 25.94 (CH3 of tBu of TBS), 25.83 

(CH3 of tBu of TBS), 21.09 (C-14), 18.13 (Me3(C)-Si), 18.07 (Me3(C)-Si), 9.69 (11-

CH3), 9.52 (C-18), 7.05 (CH3 of TES), 5.41 (CH2 of TES), -3.80 (CH3 of TBS), -4.41 

(CH3 of TBS), -4.48 (CH3 of TBS), -4.52 (CH3 of TBS); HRMS (CI, positive) m/z for 

C45H84O5Si3I [M+H]+: calcd 915.4671, found 915.4674. 

(2E,4E,6E,9S,11E,15R,16S,17S)-ethyl 9,17-bis(tert-butyldimethylsilyloxy)-21-(4-

methoxybenzyloxy)-16-methyl-15-(triethylsilyloxy)tricosa-2,4,6,11-tetraenoate (124): 

Compound (124) was prepared following the same procedure as compound (45) with a 

yield of 34%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.30 (dd, 1H, J = 11.5, 15.4 Hz, 3-H), 7.25 

(d, 2H, J = 8.8 Hz, PhH of PMB), 6.86 (d. 2H, J = 8.8 Hz, PhH of PMB), 6.52 (dd, 1H, J 

= 10.7, 14.9 Hz, 5-H), 6.21 (dd, 1H, J = 11.5, 14.9 Hz, 4-H), 6.13 (dd, 1H, J = 11.0, 15.1 

Hz, 6-H), 5.96-5.88 (m, 1H, 7-H), 5.84 (d, 1H, J = 15.4 Hz, 2-H), 5.46-5.36 (m, 2H, 12-

H+11-H), 4.43 (dd, 2H, J = 11.2, 15.9 Hz, CH2 of PMB), 4.20 (q, 2H, J = 7.1 Hz, CH2 

of OEt), 3.79 (s, 3H, OCH3 of PMB), 3.74-3.66 (m, 3H, 15-H+9-H+17-H), 3.30-3.27 (m, 

1H, 21-H), 2.30-2.17 (m, 2H, 8-Hs), 2.13-2.10 (m, 2H, 10-Hs), 2.00-1.92 (m, 2H, 13-Hs), 
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1.59-1.21 (m, 11H, 16-H+14-Hs+22-Hs+20-Hs+18-Hs+19-Hs), 1.26 (t, 3H, J = 7.1 Hz, 

CH3 of OEt), 0.96 (t, 9H, J = 8.1 Hz, CH3 of TES), 0.91 (t, 3H, J = 7.3 Hz. 23-Hs), 0.88 

(s, 9H, CH3 of tBu of TBS), 0.87 (s, 9H, CH3 of tBu of TBS), 0.86 (d, 3H, J = 6.9 Hz, 

16-CH3), 0.59 (q, 6H, J = 8.1 Hz, CH2 of TES), 0.035 (s, 3H, CH3 of TBS), 0.032 (s, 3H, 

CH3 of TBS), 0.019 (s, 6H, CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ (ppm) 167.19 

(1-C=O), 159.05 (Ph(C) of PMB), 144.72 (C-3), 140.92 (C-5), 136.77 (C-7), 133.11 (C-

12), 131.97 (C-6), 131.27 (Ph(C) of PMB), 129.23 (Ph of PMB), 128.10 (C-4), 126.13 

(C-11), 120.26 (C-2), 113.73 (Ph of PMB), 79.83 (C-21), 72.96 (C-17), 72.85 (C-15), 

72.09 (C-9), 70.51 (CH2 of PMB), 60.20 (CH2 of OEt), 55.25 (OCH3 of PMB), 40.98 

(C-16), 40.66 (C-10), 40.59 (C-8), 35.12 (C-20), 34.82 (C-14), 33.92 (C-18), 28.03 (C-

13), 26.31 (C-22), 25.95 (CH3 of tBu of TBS), 25.84 (CH3 of tBu of TBS), 21.09 (C-19), 

18.14 (Me3(C)-Si), 18.11 (Me3(C)-Si), 14.31 (CH3 of OEt), 9.64 (16-CH3), 9.52 (C-23), 

7.05 (CH3 of TES), 5.42 (CH2 of TES), -3.80 (CH3 of TBS), -4.41 (CH3 of TBS), -4.39 

(CH3 of TBS), -4.51 (CH3 of TBS); HRMS (ESI, positive) m/z for C52H94O7Si3 [M+Na]+: 

calcd 937.6205, found 937.6204. 

(2E,4E,6E,9S,11E,15R,16S,17S,21S)-9,17-bis(tert-butyldimethylsilyloxy)-21-

hydroxy-16-methyl-15-(triethylsilyloxy)tricosa-2,4,6,11-tetraenoic acid (125): 

Compound (125) was prepared following the same procedure as compound (47) with a 

yield of 32% for 2 steps.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.37 (dd, 1H, J = 11.3, 14.6 Hz, 3-H), 6.57 

(dd, 1H, J = 11.2, 15.1 Hz, 5-H), 6.24 (dd, 1H, J = 11.4, 14.8 Hz, 4-H), 6.16 (dd, 1H, J = 

11.0, 15.3 Hz, 6-H), 5.99-5.93 (m, 1H, 7-H), 5.85 (d, 1H, J = 15.3 Hz, 2-H), 5.45-5.36 (m, 
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2H, 12-H+11-H), 3.77-3.67 (m, 3H, 15-H+9-H+17-H), 3.54-3.51 (m, 1H, 21-H), 2.34-

2.19 (m, 2H, 8-Hs), 2.14 (d, 2H, J = 5.9, 6.1 Hz, 10-Hs), 2.05-1.93 (m, 2H, 13-Hs), 1.61-

1.25 (m, 11H, 16-H+14-Hs+22-Hs+20-Hs+18-Hs+19-Hs), 0.96 (t, 9H, J = 8.0 Hz, CH3 

of TES), 0.91 (t, 3H, J = 7.3 Hz. 23-Hs), 0.883 (s, 9H, CH3 of tBu of TBS), 0.882 (s, 9H, 

CH3 of tBu of TBS), 0.86 (d, 3H, J = 6.9 Hz, 16-CH3), 0.59 (q, 6H, J = 7.9 Hz, CH2 of 

TES), 0.039 (s, 6H, CH3 of TBS), 0.026 (s, 6H, CH3 of TBS); 13C NMR (CDCl3, 125 

MHz) δ (ppm) 170.01 (1-C=O), 147.04 (C-3), 142.08 (C-5), 137.70 (C-7), 133.12 (C-12), 

131.88 (C-6), 127.83 (C-4), 126.12 (C-11), 118.62 (C-2), 73.22 (C-21), 72.86 (C-17), 

72.81 (C-15), 72.04 (C-9), 40.84 (C-16), 40.65 (C-10), 40.61 (C-8), 37.34 (C-20), 34. 90 

(C-14), 34.79 (C-18), 30.14 (C-13), 28.06 (C-22), 25.95 (CH3 of tBu of TBS), 25.85 

(CH3 of tBu of TBS), 21.18 (C-19), 18.15 (Me3(C)-Si), 9.85 (C-23), 9.67 (16-CH3), 7.05 

(CH3 of TES), 5.42 (CH2 of TES), -3.82 (CH3 of TBS), -4.41 (CH3 of TBS); HRMS 

(ESI, positive) m/z for C42H82O6Si3 [M+Na]+: calcd 789.5309, found 789.5311. 

(3E,5E,7E,10S,12E,16R,17S,18S,22S)-10,18-bis(tert-butyldimethylsilyloxy)-22-ethyl-

17-methyl-16-(triethylsilyloxy)oxacyclodocosa-3,5,7,12-tetraen-2-one (126): 

Compound (126) was prepared following the same procedure as compound (49) with a 

yield of 63% for 2 steps. 

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.20 (dd, 1H, J = 10.7, 14.9 Hz, 3-H), 6.40 

(dd, 1H, J = 10.9, 14.9 Hz, 5-H), 6.19 (dd, 1H, J = 11.2, 14.9 Hz, 4-H), 6.06 (dd, 1H, J = 

10.9, 15.4 Hz, 6-H), 5.79-5.74 (m, 1H, 7-H), 5.78 (d, 1H, J = 15.3 Hz, 2-H), 5.29-5.18 (m, 

2H, 12-H+11-H), 4.84-4.79 (m, 1H, 21-H), 3.85-3.81 (m, 1H, 9-H), 3.67-3.63 (m, 2H, 

15-H+17-H), 2.58-2.54 (m, 1H, 8-H), 2.35-2.31 (m, 1H, 8-H), 2.32-2.26 (m, 2H, 10-Hs), 
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1.86-1.81 (m, 2H, 13-Hs), 1.70-1.23 (m, 11H, 16-H+14-Hs+22-Hs+20-Hs+18-Hs+19-

Hs), 0.98 (t, 9H, J = 8.1 Hz, CH3 of TES), 0.91 (t, 3H, J = 7.5 Hz. 23-Hs), 0.90 (s, 9H, 

CH3 of tBu of TBS), 0.87 (s, 9H, CH3 of tBu of TBS), 0.83 (d, 3H, J = 6.9 Hz, 16-CH3), 

0.603 (q, 6H, J = 7.6 Hz, CH2 of TES), 0.601 (q, 6H, J = 8.0 Hz, CH2 of TES), 0.079 (s, 

6H, CH3 of TBS), 0.028 (s, 3H, CH3 of TBS), 0.023 (s, 3H, CH3 of TBS); 13C NMR 

(CDCl3, 125 MHz) δ (ppm) 166.71 (1-C=O), 144.47 (C-3), 141.65 (C-5), 137.51 (C-7), 

132.83 (C-12), 130.66 (C-6), 127.13 (C-4), 126.30 (C-11), 120.40 (C-2), 75.91 (C-21), 

73.14 (C-17), 72.96 (C-15), 71.18 (C-9), 43.61 (C-8), 42.39 (C-10), 40.75 (C-16), 35.31 

(C-20), 35.02 (C-14), 34.70 (C-18), 28.24 (C-13), 27.99 (C-22), 25.96 (CH3 of tBu of 

TBS), 25.83 (CH3 of tBu of TBS), 19.79 (C-19), 18.16 (Me3(C)-Si), 9.62 (C-23), 9.52 

(16-CH3), 7.08 (CH3 of TES), 5.59 (CH2 of TES), -4.02 (CH3 of TBS), -4.56 (CH3 of 

TBS), -4.77 (CH3 of TBS); LRMS (ESI, positive) m/z for C42H80O5Si3 [M+Na]+: calcd 

771.5211, found 771.67. 

(3E,5E,7E,10S,12E,16R,17R,18S,22S)-22-ethyl-10,16,18-trihydroxy-17-

methyloxacyclodocosa-3,5,7,12-tetraen-2-one (127): Compound (127) was prepared 

following the same procedure as compound (50) with a yield of 84%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.17 (dd, 1H, J = 11.2, 15.3 Hz, 3-H), 6.59 

(dd, 1H, J = 10.8, 14.9 Hz, 5-H), 6.20 (dd, 1H, J = 11.2, 14.8 Hz, 4-H), 6.11 (dd, 1H, J = 

10.9, 15.0 Hz, 6-H), 5.86-5.81 (m, 1H, 7-H), 5.81 (d, 1H, J = 15.3 Hz, 2-H), 5.31-5.21 (m, 

2H, 12-H+11-H), 4.73-4.70 (m, 1H, 21-H), 3.79-3.55 (m, 2H, 9-H+17-H), 3.39-3.32 (m, 

1H, 15-H), 2.57-2.52 (m, 2H, 8-H+10-H), 2.35-2.23 (m, 1H, 14-H), 2.22-1.99 (m, 4H, 8-

H+10-H+13-H+14-H), 1.78-1.67 (m, 1H, 13-H), 1.60-1.09 (m, 9H, 16-H+18-Hs+19-
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Hs+20-Hs+22-Hs), 0.83 (t, 3H, J = 7.4 Hz, 23-Hs), 0.61 (d, 3H, J = 6.9 Hz. 16-CH3); 13C 

NMR (CDCl3, 125 MHz) δ (ppm) 165.77 (1-C=O), 144.56 (C-3), 141.97 (C-5), 138.52 

(C-7), 131.73 (C-12), 129.65 (C-6), 127.04 (C-4), 126.29 (C-11), 119.98 (C-2), 75.00 (C-

21), 74.61 (C-15), 73.90 (C-17), 69.08 (C-16), 34.55 (C-14), 33.15 (C-20), 31.96 (C-18), 

29.17 (C-13), 27.00 (C-22), 20.39 (C-19), 9.52 (C-23), 4.95 (16-CH3); HRMS (ESI, 

positive) m/z for C24H39O5 [M+H]+: calcd 407.2792, found 407.2794. 

C13-14 Unc SpnF substrate analog (128): Compound (128) was prepared following the 

same procedure as compound (51) with a yield of 87%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.24 (dd, 1H, J = 11.2, 15.2 Hz, 3-H), 6.65 

(dd, 1H, J = 10.7, 15.0 Hz, 5-H), 6.31 (dd, 1H, J = 10.9, 14.5 Hz, 4-H), 6.12 (dd, 1H, J = 

11.0, 14.7 Hz, 6-H), 5.86-5.82 (m, 1H, 7-H), 5.82 (d, 1H, J = 15.3 Hz, 2-H), 5.31-5.18 

(m, 2H, 12-H+11-H), 4.73-4.70 (m, 1H, 21-H), 3.69-3.55 (m, 2H, 15-H, 17-H), 3.39-3.31 

(m, 1H, 9-H), 2.57-2.54 (m, 1H, 8-H), 2.44-2.35 (m, 1H, 16-H), 2.32-2.30 (m, 2H, 10-

Hs), 2.21-2.14 (m, 1H, 8-H), 2.10-2.00 (m, 4H, 14-Hs+13-Hs), 1.59-1.50 (m, 2H, 22-Hs), 

1.39-1.22 (m, 6H, 20-Hs+18-Hs+19-Hs), 0.88 (d, 3H, J = 7.1 Hz, 16-CH3), 0.83 (t, 3H, J 

= 7.5 Hz. 23-Hs); 13C NMR (CDCl3, 125 MHz) δ (ppm) 212.11 (15-C=O), 165.84 (1-

C=O), 144.92 (C-3), 142.25 (C-5), 138.33 (C-7), 130.23 (C-12), 129.77 (C-6), 127.25 (C-

4), 127.06 (C-11), 119.93 (C-2), 74.88 (C-21), 70.00 (C-17), 69.45 (C-9), 50.41 (C-16), 

43.10 (C-8), 42.21 (C-10), 40.08 (C-14), 34.08 (C-20), 32.14 (C-18), 27.11 (C-13), 26.41 

(C-22), 21.75 (C-19), 10.34 (C-23), 9.52 (16-CH3); HRMS (ESI, positive) m/z for 

C24H36O5 [M+Na]+: calcd 427.2455, found 427.2451. 

2.2.10. Synthesis of the C2-3 Unc SpnF Substrate Analog (C2-3 Unc analog) 
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A. Preparation of Fragment C: The overall synthetic scheme is figured in Scheme 2-18. 

2, Bu3SnH, AIBN, toluene
70 oC, 1 h, 22 %

Bu3Sn OEt

O

OH

O 1. TsOH, MeOH, DCM
85 oC, 18 h, 83 %

129 130  
 

Scheme 2-18. Preparation of fragment C for the synthesis of C2-3 Unc SpnF substrate analog 
 

(E)-ethyl 5-(tributylstannyl)pent-4-enoate (130): 1) A solution of pent-4-ynoic acid 

(5.0 g, 51.0 mmol) and p-toluenesulfonic acid monohydrate (0.97 g, 5.1 mmol) in 

methanol (30 mL) and dichloromethane (60 mL) was refluxed at 85 °C for 18 hours, and 

then diluted with saturated the aqueous ammonium chloride solution (20 mL) at room 

temperature. The aqueous fraction was extracted with dichloromethane (50 mL x 4 

times). The combined organic fraction were dried over an anhydrous sodium sulfate pad, 

and concentrated under reduced pressure. The residue was purified using flash column 

chromatography. The target compound was eluted with 10% of EtOAc/Hexane solution 

(4.7 g, 83%). 2) A suspension of the above ester compound (4.7 g, 42.0 mmol) and n-

butyltin hydride (15.9 g, 55.0 mmol) in toluene was refluxed at 70 °C for 1 hour, and 

concentrated under reduced pressure. The residue was directly subjected to flash column 

chromatography. The target compound was eluted with 10% EtOAc/Hexane solution (3.6 

g, 22%). All spectral data was identical to the literature reference.  

B. Synthesis of C2-3 Unc SpnF Substrate Analog by Coupling Reactions and Enzymatic 

Conversion: The overall synthetic scheme is pictured in Scheme 2-19. 
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Scheme 2-19. Preparation of C2-3 Unc SpnF substrate analog 
 

(4E,6E,9R,11R,12E,15R,16R,17S)-ethyl 9,11,15,17-tetrakis(tert-

butyldimethylsilyloxy)-21-(4-methoxybenzyloxy)-16-methyltricosa-4,6,12-trienoate 

(131): Compound (131) was prepared following the same procedure as (43) with a yield 

of ??%. 

1H NMR (CDCl3, 500 MHz) δ (ppm); 13C NMR (CDCl3, 125 MHz) δ (ppm); 

HRMS (ESI, positive) m/z for [M+Na]+: calcd , found . 

(4E,6E,9R,11R,12E,15R,16R,17S,21S)-9,11,15,17-tetrakis(tert-

butyldimethylsilyloxy)-21-hydroxy-16-methyltricosa-4,6,12-trienoic acid (132): 

Compound (132) was prepared following the same procedure as (45) with a yield of ??%. 

1H NMR (CDCl3, 500 MHz) δ (ppm); 13C NMR (CDCl3, 125 MHz) δ (ppm); 

HRMS (ESI, positive) m/z for [M+Na]+: calcd , found . 

(5E,7E,10R,12R,13E,16R,17R,18S,22S)-10,12,16,18-tetrakis(tert-

butyldimethylsilyloxy)-22-ethyl-17-methyloxacyclodocosa-5,7,13-trien-2-one (133): 
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Compound (133) was prepared following the same procedure as compound (49) with a 

yield of ??%. 

1H NMR (CDCl3, 500 MHz) δ (ppm); 13C NMR (CDCl3, 125 MHz) δ (ppm); 

HRMS (ESI, positive) m/z for [M+Na]+: calcd , found . 

(3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-22-ethyl-10,12,16,18-tetrahydroxy-17-

methyloxacyclodocosa-3,5,7,13-tetraen-2-one (134): Compound (134) was prepared 

following the same procedure as compound (50) with a yield of ??%. 

1H NMR (CDCl3, 500 MHz) δ (ppm); 13C NMR (CDCl3, 125 MHz) δ (ppm); 

HRMS (ESI, positive) m/z for [M+Na]+: calcd , found . 

C2-3 Unc SpnF substrate analog (135): Compound (135) was prepared following the 

same procedure as compound (51) with a yield of ??%. 

1H NMR (CDCl3, 500 MHz) δ (ppm); 13C NMR (CDCl3, 125 MHz) δ (ppm); 

HRMS (ESI, positive) m/z for [M+Na]+: calcd , found . 

2.2.11. In vitro activity assay of SpnM and SpnF 

Prior to the kinetic isotope effect studies, the activity of SpnM and SpnF was 

verified as follows.  

As a control for SpnM and SpnF, a solution containing SpnM natural substrate 

(100 µM) in pH 8.0 Tris buffer was incubated without SpnM and SpnF at 30 °C for 1 

min, 2 min, 5 min, and 30 min, at which times an aliquat was quenched with half its 

volume of 1:1 DMSO/acetonitrile solution at 0 °C, and subjected to HPLC analysis. 

As a control for SpnF, a solution containing SpnM natural substrate (100 µM) and 

SpnM (10 µM) in pH 8.0 Tris buffer was incubated without SpnF at 30 °C for 1 min, 2 



 151 

min, 5 min, and 30 min, at which times an aliquat was quenched with half its volume of 

1:1 DMSO/acetonitrile at 0 °C, and the protein was precipitated by centrifugation. The 

resulting supernatant was subjected to HPLC analysis. 

For the verification of SpnF activity, a solution containing SpnM natural substrate 

(100 µM), SpnM (10 µM), and SpnF (3 µM) in pH 8.0 Tris buffer was incubated at 30 °C 

for 1 min, 2 min, 5 min, and 30 min, at which times an alquat was quenched with half its 

volume of 1:1 DMSO/acetonitrile at 0 °C, and protein was precipitated by centrifugation. 

The resulting supernatant was subjected to HPLC analysis. 

2.2.12. In vitro activity assay of SpnF-Catalyzed Cycloaddition by Competitive 

Reaction Using SpnM Natural Substrate and Deuterium-Labeled SpnM Substrate 

Analog 

2.2.12.1. Determination of the kinetic parameters for the SpnM reaction for SpnM 

natural substrate and deuterium-labeled SpnM substrate analog 

In order to determine kinetic parameters for SpnM reaction, SpnM natural 

substrate (62.5, 125, 250, 500, 800, and 1000 µM) and para-methoxyacetophenone (100 

µM) was incubated with SpnM (0.1 µM) in pH 8.0 Tris buffer (50 mM) containing 

DMSO (10% v/v) at 30 °C for several time periods, which were selected to measure the 

rate of substrate consumption and product formation. After quenching with an equal 

volume of 1:1 DMSO/acetonitrile solution and precipitating the proteins by 

centrifugation, the supernatant was subjected to HPLC analysis. HPLC conditions were 

as follows: C18 analytical column (250 x 4.6 mm, 5 µm), gradient was from 30% to 45% 

acetonitrile in water for 30 min at a rate of 1 mL/min, compounds were detected using 



 152 

absorbance at 254 nm. The same procedure was conducted with deuterium-labeled SpnM 

substrate analog.  

2.2.12.2. Determination of 
D
knon from competitive in vitro activity assay 

A mixture of SpnM natural substrate, C4-D SpnM substrate analog (250 µM, 

respectively) and para-methoxyacetophenone (100 µM) was incubated with SpnM (1 

µM) in pH 8.0 Tris buffer (50 mM) containing DMSO (10% v/v) at 30 °C. After 5 min, 

15 min, 30 min, 60 min, and 90 min (variable dependant on the reaction progress), a 

reaction aliquot was quenched with an equal volume of 1:1 DMSO/acetonitrile solution 

and the protein was precipitated by centrifugation. The supernatant was subjected to 

HPLC analysis to isolate SpnM product (= identical to SpnF substrate) and SpnF product. 

After evaporation under reduced pressure and a purity check for each collection by HPLC 

analysis, each collection was subjected to Q-ToF-LC-MS. The same experiments were 

performed for a mixture of SpnM natural substrate and each of the other SpnM substrate 

analog (C7-D, C11-D, and C12-D).  

2.2.12.3. Determination of 
D
kenz from competitive in vitro activity assay 

A mixture of SpnM natural substrate and C4-D SpnM substrate analog (250 µM, 

each) and para-methoxyacetophenone (100 µM) was incubated with SpnM (15.8 µM) in 

pH 8.0 Tris buffer (50 mM) containing DMSO (10% v/v) at 30 °C. After a 2 min-

incubation, SpnF (5 µM) was added to initiate the enzymatic conversion of SpnF 

substrate to SpnF product. After several time periods (10 seconds, 50 seconds, 105 

seconds, 165 seconds, 225 seconds, and 290 seconds; 6 points), which were selected to 

measure the rate of reaction progress, a reaction aliquot was quenched with an equal 
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volume of 1:1 DMSO/acetonitrile solution and the proteins was precipitated by 

centrifugation. The supernatant was subjected to HPLC analysis to isolate the SpnM 

product (= identical to the SpnF substrate) and the SpnF product. After evaporation under 

reduced pressure and a purity check for each collection by HPLC analysis, each 

collection was subjected to Q-ToF-LC-MS. The same experiments were performed for a 

mixture of SpnM natural substrate and each of the SpnM substrate analogs (C7-D, C11-

D, and C12-D). 

2.2.13. In vitro activity assay of SpnF-Catalyzed Cycloaddition Reaction Using the 

Linear, C13-14 Unc, and C2-3 Unc SpnF Substrate Analog 

2.2.13.1. Test for non-enzymatic [4+2] cycloaddition of Linear, C13-14 Unc, and C2-

3 Unc SpnF substrate analog  

In order to measure a rate of non-enzymatic [4+2] cycloaddition, Linear, C13-14 

Unc, and C2-3 Unc SpnF substrate analog (250 µM) were each incubated in pH 8.0 Tris 

buffer (50 mM) at 30, 40, 50, 60, and 80 °C for 2 hours or 24 hours (30 reactions total). 

Additionally, the reaction mixtures were refluxed for 24 hours. The reaction mixtures 

were subjected to HPLC analysis to analyze non-enzymatic conversion. HPLC conditions 

were as follows: C18 analytical column (250 x 4.6 nm, 5 µm), elution gradient was 

increased linearly from 30% to 60% acetonitrile in water for 60 min at a rate of 1 

mL/min, compounds detected by their absorbance at 254 nm. 

2.2.13.2. Test for SpnF-catalyzed enzymatic [4+2] cycloaddition of the Linear, C13-

14 Unc, and C2-3 Unc SpnF substrate analog 
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A solution containing Linear SpnF substrate analog (250 µM) in pH 8.0 Tris 

buffer (50 mM) was incubated with SpnF (50 µM, 250 µM, or 500 µM) at 30, 40, 50, and 

60 °C for 2 hours or 24 hours (24 reactions total). The reaction mixtures were quenched 

with an equal volume of 1:1 DMSO/acetonitrile solution and the proteins were 

precipitated by centrifugation. The supernatant was subjected to HPLC analysis to 

analyze the conversion of Linear SpnM substrate analog to product, assuming conversion 

occurred. HPLC conditions were the same as those described in Section 2. 2.13.1.  

2.2.13.3. In vitro inhibition assay of SpnF using Linear, C13-14 Unc, and C2-3 Unc 

SpnF substrate analog 

2.2.13.3.1. Inhibition effect on SpnM by Linear, C13-14 Unc, C2-3 Unc SpnF 

substrate analog 

For the control reaction, a solution containing SpnM natural substrate (100 µM) in 

pH 8.0 Tris buffer (50 mM) containing DMSO (10% v/v) was incubated with SpnM (5 

µM) at 30 °C. At 1 min, 2 min, and 10 min an aliquots was transferred into a solution of 

1:1 DMSO/acetonitrile solution at 0 °C. After precipitation of the proteins by 

centrifugation, the supernatant was subjected to HPLC analysis to show the conversion 

rate of SpnM natural substrate into SpnM product and non-enzymatic cycloaddition 

product. HPLC conditions were the same as described in Section 2.2.13.1.  

For the inhibition assay, a solution containing SpnM natural substrate (100 µM) in 

pH 8.0 Tris buffer (50 mM) containing DMSO (10% v/v) was pre-incubated with Linear 

SpnF substrate analog at variable concentrations (50 µM, and 200 µM) at 30 °C for 2 

min, and then incubated with SpnM (5 µM) at 30 °C. At 1 min, 2 min, and 10 min an 
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aliquot was transferred into a solution of 1:1 DMSO/acetonitrile solution at 0 °C. After 

precipitation of the proteins by centrifugation, the supernatant was subjected to HPLC 

analysis to show the conversion rate of SpnM natural substrate into SpnM product and 

non-enzymatic cycloaddition product. HPLC conditions were the same as described in 

Section 2.2.13.1. 

2.2.13.3.2. Inhibition effect on SpnF by Linear, C13-14 Unc, C2-3 Unc SpnF 

substrate analog 

For the control reaction, a solution containing SpnM natural substrate (300 µM) in 

pH 8.0 Tris buffer (50 mM) containing DMSO (10% v/v) was incubated with SpnM (10 

µM) and SpnF (3 µM) at 30 °C, and at 30 seconds, 60 seconds, 120 seconds, and 180 

seconds an aliquot was transferred into a solution of 1:1 DMSO/acetonitrile solution at 0 

°C. After precipitation of the proteins by centrifugation, the supernatant was subjected to 

HPLC analysis to show the conversion rate of SpnM natural substrate into SpnM product 

and non-enzymatic cycloaddition product. HPLC conditions were the same as described 

in Section 2.2.13.1. 

For the inhibition assay, a solution containing SpnM natural substrate (300 µM) in 

pH 8.0 Tris buffer (50 mM) containing DMSO (10% v/v) was pre-incubated with Linear 

SpnF substrate analog at various concentrations (150 µM, and 450 µM) at 30 °C for 2 

min, and incubated with SpnM (10 µM) and SpnF (3 µM) at 30 °C. At 30 seconds, 60 

seconds, 120 seconds, and 180 seconds an aliquot was transferred into a solution of 1:1 

DMSO/acetonitrile solution at 0 °C. After precipitation of the proteins by centrifugation, 

the supernatant was subjected to HPLC analysis to show the conversion rate of SpnM 
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natural substrate into SpnM product and non-enzymatic cycloaddition product. HPLC 

conditions were the same as described in Section 2.2.13.1. 

 

2.3. RESULTS AND DISCUSSION 

2.3.1. Synthesis of the SpnM Natural Substrate & Deuterium-Labeled SpnM 

Substrate Analogs 

For the SpnF-catalyzed [4+2] cycloaddition, three possible mechanisms are 

proposed, the Diels-Alder reaction mechanism, the ionic rearrangement mechanism, and 

the biradical rearrangement mechanism, shown in Figure 2-7.  
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Figure 2-7. Proposed mechanisms for SpnF reaction. 
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During enzymatic conversion by SpnF, the Diels-Alder reaction mechanism is 

believed to proceed via a concerted, pericyclic, and aromatic transition state leading to an 

inverse kinetic isotope effect at the C-4, C-7, C-11, and C-12 positions when the 

corresponding deuterated compound are used as substrates.118, 119, 120, 121, 122 In contrast, 

the ionic rearrangement mechanism and the biradical rearrangement mechanism are 

expected to proceed in a stepwise manner, where many resonance structures are possible 

for the putative reaction intermediate.123, 124 The ionic rearrangement mechanism predicts 

that the reaction is initiated by a charge separation with a negative charge on the oxygen 

at the C-15 position and a positive charge on a carbon in the conjugated system. 

Subsequent C-C bond formation between C-7 and C-11 will give an inverse kinetic 

isotope effect at both C-7 and C-11 positions. The biradical rearrangement mechanism 

predicts that the biradical can occur on any two carbons in the reaction centers in the 

diene of C-4 to C-7 and the alkene of C-11 to C-12, and that the timing and position of C-

C bond formation may lead to two different sets of kinetic isotope effects, as listed in 

Figure 2-5. However, the secondary kinetic isotope effect between the natural substrate 

and a deuterium-labeled substrate analog is relatively small, less than ten percent, making 

it difficult to determine.115, 116, 117, 118, 119, 120, 121, 122, 123, 124 High accuracy of the 

measurement is essential for the proposed kinetic isotope effects study. Additionally, 

SpnF natural substrate is known to undergo a non-enzymatic [4+2] cycloaddition to 

generate the same product.22 It is important to uncouple the enzymatic and non-enzymatic 

results in the kinetic experiments. In order to overcome these limitations, the SpnM and 



 158 

SpnF coupled competitive kinetic experiments were designed, where SpnF substrates are 

biosynthesized in situ by SpnM, and the kinetic isotope effect is measured based on the 

competitive activity assay of SpnF by incubating SpnF natural substrate and deuterium-

labeled substrate analog in one solution. To accomplish this, SpnM natural substrate and 

its deuterium-labeled derivatives were synthesized. 

Retrosynthetic analysis was applied to design the synthetic schemes for SpnM 

natural substrate and the deuterium-labeled SpnM substrate analogs (Figure 2-8). 

Yamaguchi macrolactonization 133 was selected for the preparation of SpnM natural 

substrate after coupling of the three fragments A, B, and C by Julia-Kocienski olefination 

134, 135 and Stille cross-coupling,136 sequentially. Modifications of fragment B and C were 

envisioned for the synthesis of the deuterium-labeled SpnM substrate analogs.  
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Figure 2-8. Retrosynthetic analysis for the synthesis of SpnM natural substrate and its deuterium-labeled 
derivatives 
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Starting with δ-valerolactone, fragment A was prepared through the introductions 

of three chiral centers by Soai ethylation 137 at C-15, Evans asymmetric aldolation 138 at 

C-16, and Brown’s asymmetric allylation 139, 140, 141 at C-17 position (Scheme 2-1). The 

TES protecting group at the C-15 position of compound (48) could be selectively 

deprotected allowing chemical oxidation of the C-15 hydroxy group with mild acid such 

as pyridinium para-toluenesulfonic acid (PPTS). A global deprotection of the rest of the 

TBS protecting groups should yield the SpnM natural substrate. However, there were 

concerns that the methyl group at C-16 position may epimerize during the global 

deprotection of the TBS’s. Since SpnJ can selectively oxidize the alcohol at the C-15 

position, preparation of alcohol (51) was eventually accomplished by global deprotection 

of compound (48) followed by incubation of compound (50) with SpnJ (Figure 2-9).  
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Figure 2-9. Two synthetic pathways for the preparation of SpnM natural substrate (51) 
 

Fragment B of the natural substrate was prepared from D-mannitol through Corey-

Seabach reaction,142, 143 Brown’s asymmetric allylation,139, 140, 141 Lemieux-Johnson 

oxidation,144 and Takai olefination 145 (Scheme 2-2). The deuterium in fragment B for the 

C7-D and C12-D analogs was introduced using lithiumaluminum deuteride (LiAlD4) to 
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reduce a methyl ester intermediate (59 or 87) which was prepared by a NIS-mediated 

esterification, as shown in Scheme 2-8 (C7-D analog) and Scheme 2-11 (C12-D analog), 

respectively. The deuterium in fragment B for C11-D analog was achirally introduced 

using LiAlD4 to compound 72, resulting in a racemic product 73, which was then 

subjected to a series of transformation to give compound 78. The designed isomer (79) 

was obtained after deprotection of the PMB group with DDQ, as shown in Scheme 2-9. 

Fragment C was prepared from propargyl alcohol (37) by tinnylation and then Horner-

Wadsworth-Emmons olefination,146, 147 where tri-n-butyltin hydride was used for making 

the component for SpnM natural substrate and tri-n-butyltin deuteride was used for 

making the C4-D analog, as shown in Scheme 2-3 and Scheme 2-5, respectively. After 

Yamaguchi macrolactonization 133 of an intermediate (47), which was produced through 

Julia-Kocienski olefination 134, 135 between fragments A and B, and Stille cross-coupling 

136 between fragments A+B and C, the resulting cyclized intermediate (49) was global 

deprotected to yield the SpnJ natural substrate (50, see Scheme 2-4). SpnJ-catalyzed 

oxidation of C15-OH produced the desired compound (51),20 the SpnM natural substrate 

(Figure 2-10). Other deuterium-labeled SpnM natural substrate analogs (58, 69, 86, and 

95) were prepared in the same manner with similar yields.  
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Figure 2-10. HPLC trace of SpnJ-catalyzed oxidation of its natural substrate (50) into product (51) 
 

2.3.2. Synthesis of the Linear, C13-14 Unc, and C2-3 Unc SpnF Substrate Analogs 

It is interesting to investigate what affects the enzymatic acceleration of SpnF-

catalyzed [4+2] cycloaddition as compared to non-enzymatic reaction. Two factors need 

to be considered, an entropic preorganization and enthalpic transition state stabilization. 

To study the relative rate enhancement (RRE),131 three SpnF substrate analogs were 

designed, as shown in Figure 2-6.  

Synthesis of the Linear SpnF substrate analog is slightly different from that of the 

natural substrate (Figure 2-11). Considering the possibility that SpnJ and SpnM may not 

accept the Linear analog as a substrate, the ketone at the C-15 position and the olefin 

through C-11 and C-14 were chemically introduced in fragments A and B. Preparation of 

fragment A from heptanal (96) began with Evans asymmetric aldolation,138 followed by 

TBS protection and one-carbon extension by Wittig reaction 148, 149 to give an alcohol 

intermediate (101, see Scheme 2-13). After olefination with sulfoxide reagent and TBS 

protection of resulting C-15-OH, intermediate 103 was reduced to give an alcohol (104), 
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which was transformed into fragment A by the same procedure that was used in the 

production of the natural substrate. Fragment B is one-carbon shorter than the natural 

substrate, and contains one chiral center at C-9 position, which was introduced by 

Brown’s asymmetric allylation.139, 140, 141 After Julia-Kocienski olefination 134, 135 and 

Stille cross-coupling,136 the C-15-OH of compound 116 was ketonized by selective 

deprotection and oxidation to give intermediate (117). Following hydrolysis and global 

deprotection the Linear SpnF substrate analog (119) was obtained. In contrast, when 

intermediate (116) was directly hydrolyzed and deprotected globally the Linear SpnJ 

substrate analog (118) was obtained as the product. 

HO

OH

OHO

Me
O

H

HH

H

Linear SpnF substrate product

HO

OH

OHO

Me
O

Linear SpnF substrate analog

TBSO O OTBS

OEt

O

Julia-Kocienski olefination Stille cross-coupling

19
12

13 5

6
151721

TBSO OTES
13

151721
S

Fragment A

O

OTBS

9
6

I
Bu3Sn OEt

O

1

5

Fragment B Fragment C

SpnF

Me

Me N N
N

N
PhO O

12

11

 
  

Figure 2-11. Retrosynthetic analysis for the synthesis of Linear SpnF substrate analog 
 

The C13-14 Unc and C2-3 Unc SpnF substrate analogs were also designed based 

on the assumption that SpnJ and SpnM may not recognize the precursors of these 

analogs. Retrosynthetic analysis of C13-14 Unc SpnF substrate analog suggested that 

fragment A and fragment B should be modified to uncouple the olefin at C13 and C14 by 

preparing the C13-14 saturated fragment A (122) and modified fragment B (114), which 
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were already used in the preparation of Linear SpnF substrate analog (Figure 2-12). The 

modified fragment A (122) for C13-14 Unc analog was prepared from the intermediate 

(17) by hydroboration 150 and oxidation as the key reactions. Retrosynthesis of the C2-3 

Unc SpnF substrate analog indicated that only C2-3 saturated fragment C is required 

(Figure 2-13). The macrolactone for C13-14 Unc and C2-3 Unc SpnF substrate analogs 

were prepared following the same procedures used to produce the natural substrate.  
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Figure 2-12. Retrosynthetic analysis for the synthesis of C13-14 Unc SpnF substrate analog 
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Figure 2-13. Retrosynthetic analysis for the synthesis of C2-3 Unc SpnF substrate analog 
 

2.3.3. In vitro activity assay of SpnM and SpnF 

Prior to the kinetic isotope effect study of SpnF, the activities of SpnM and SpnF 

were verified using SpnM natural substrate. SpnM natural substrate was incubated with 

SpnM and/or SpnF at 30 °C for 1 min, 2 min, 5 min, and 30 min, and the 

substrate/product ratio (% of conversion) was determined by HPLC analysis. It was 

found that SpnM-catalyzed dehydration was complete in 5 min, and SpnF-catalyzed 

[4+2] cycloaddition was complete in 30 min. It is notable that SpnF product is also 

produced during SpnM reaction, although not in significant quantities (data not shown). 

The HPLC trace of SpnM natural substrate is shown in Figure 2-14 after completion of 

each enzymatic conversion.  
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Figure 2-14. HPLC trace of SpnM and SpnF reactions. (SpnM (S) = SpnM natural substrate, SpnM (P) 
= SpnM product, SpnF (P) = SpnF product, SpnM (SP) = unknown SpnM side product, PMAP = para-
methoxyacetophenone as internal standard) 
 

2.3.4. In vitro Activity Assay of SpnF-Catalyzed [4+2] Cycloaddition by Competitive 

Reaction using SpnM Natural Substrate and Deuterium-Labeled SpnM Substrate 

Analog 

SpnF-catalyzed [4+2] cycloaddition is an interesting reaction which makes the 

cyclohexene moiety in the biosynthesis of spinosyn A. The [4+2] cycloaddition is 

typically achieved using Diels-Alder reaction in organic synthesis.25, 26, 27, 28 However, 

there is no natural enzyme reported to be a true “Diels-Alderase” although several 

enzymes have been investigated with the intention of finding a “Diels-Alderase.”37, 38, 39, 

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 Three plausible mechanisms have been proposed to 

explain SpnF reaction, as shown in Chapter 1, and α-secondary deuterium kinetic isotope 

effect (KIE) studies are designed to determine the actual mechanism used. The following 
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kinetic isotope effect studies were performed using the C4-D and the C7-D analog as 

substrates. Additional kinetic isotope effect studies are currently in progress, therefore 

this section will be restricted to the results from these two C4-D and C7-D analogs. These 

kinetic studies were collaborate efforts with Dr. Mark Ruszczycky and Byung-sun Jeon, a 

graduate student.  

2.3.4.1. Determination of the kinetic parameters for SpnM reaction for SpnM 

natural substrate and deuterium-labeled SpnM substrate analog 

Using the data from the kinetic experiment, and assuming a zero-order reaction, 

the kinetic parameters for the SpnM reaction at 30 °C at pH 8.0 were determined based 

on the Michaelis-Menten equation. All of kinetic data are comparable to that reported by 

Dr. Kim, a former graduate student in Liu lab. Specifically, he found KM to be 380 ± 51 

uM, and kcat/KM to be 2.6 ±0.42 uM-1s-1.22  

2.3.4.2. Determination of 
D
knon from competitive reaction 

A competitive reaction using SpnM natural substrate and deuterium-labeled 

SpnM substrate analog was designed to differentiate the three proposed SpnF reaction 

mechanisms, as described in Section 2.1.  

To determine the kinetic constant, D
knon for the non-enzymatic [4+2] 

cycloaddition in a competitive reaction using SpnM natural substrate and C7-D SpnM 

substrate analog was measured. The reaction mixture was prepared by mixing the 

unlabeled (natural substrate) and deuterium labeled substrates together. As the reaction 

progresses, the unlabeled material becomes “enriched” in the substrate or in the product 

beyond natural abundance. The enrichment ratio is defined as the ratio of the 



 167 

concentration of the labeled material divided by the concentration of the unlabeled 

material, denoted by �� �  !"#$"%�&%'!"()*+ !"#$"%�&%'!"()*,
 where X is the position of reaction center. 

So, enrichment ratios during the SpnM reaction are expected to change between SpnM 

substrate and SpnM product depending on the mechanism, which can be used to 

determine the KIE of the SpnM reactions. For example, if the enrichment ratio of 

substrate becomes smaller (i.e., more depleted compared to the starting material), 

accompanied by increased enrichment ratio of product, it indicates the labeled material 

reacts faster and there is an inverse kinetic isotope effect. Alternatively, if the enrichment 

ratio of a substrate becomes greater (i.e., more enriched in labeled material), it means the 

unlabeled material reacts faster and there is a normal kinetic isotope effect. A mixture 

prepared as outlined above was incubated with SpnM at 30 °C for several time periods (5 

min, 15 min, 25 min, 40 min, 60 min, and 90 min) to allow the non-enzymatic [4+2] 

cycloaddition of the SpnM product (identical to SpnF substrate) into SpnF product to take 

place. The reaction was then quenched. The kinetic isotope effect can be calculated from 

the enrichment ratios, derived from the MS results of the substrates and products, which 

were isolated from the quenching reaction mixture at various time points. Here, it is 

assumed that the SpnM reaction is less likely to affect the change of enrichment ratio, 

although it is predicted to slightly affect the enrichment ratio in the cases of C11-D 

analog and C12-D analog. In addition, the enrichment ratio is calculated from the MS 

results of SpnM product (identical to SpnF substrate) due to the ease of performing the 

experiment. It is apparent that the concentration of SpnF product is at much lower 
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concentrations than the SpnF substrate in the initial time point, making it difficult to 

conduct MS analysis. To avoid this problem, the MS analysis was mainly performed with 

SpnF substrate when both of substrate and product were isolated. Figure 2-15 shows a 

representative result from the competition assays of SpnM natural substrate and the C7-D 

SpnM substrate analog, showing several ionic states of the sample. 

 
 

Figure 2-15. Representative MS results from the competition reaction of SpnM natural substrate and C7-
D SpnM substrate analog. 
 

Based on the statistical analysis of the MS results, the non-enzymatic kinetic 

isotope effects for C-4 and C-7 positions were determined to be C4D
knon = 0.9975 ± 

0.0033, and C7D
knon = 0.9676± 0.0031, respectively (Figure 2-16). The value for C7D

knon is 

within the expected range of 0.97-0.99, which is based on computational models and 

experimental observations for Diels-Alder reaction mechanism.115, 117, 118, 119 The value of 

C4D
knon is not significantly different from unity, and means that there is relatively little 

change in hybridization of the carbon at the C-4 position during the isotopically sensitive 
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step of the non-enzymatic cycloaddition. In other word, the C-C bond formation at C-4 is 

less likely to occur at an early stage. If the reaction follows the Diels-Alder type 

mechanism, it can be inferred that the non-enzymatic reaction adopts highly or very early 

asynchronous transition state. On the other hand, it may still proceed via a stepwise 

mechanism. However, the non-enzymatic reaction is unlikely to proceed through the 

ionic rearrangement or biradical rearrangement mechanism, which should show a value 

greater than unity for the kinetic isotope effect at the C-4 position, because the inverse 

kinetic isotope effect is observed at the C-7 position. Another possible mechanism is a 

[6+4] cycloaddition followed by a [3,3] sigmatropic rearrangement, suggested by Ken 

Houk to Dr. Liu (not published; Figure 2-17). In this mechanism, a small kinetic isotope 

effect on C-4 position can be explained since a sp2 hybridized carbon at the C-4 position 

does not undergo a significant hybridal change at the initial stage, considered as the rate 

determining step. Additionally, an inverse kinetic isotope effect at C-7 is also well 

explained. The kinetic isotope effect study with C11-D and C12-D analogs will help to 

determine the non-enzymatic reaction mechanism.  

A 

 

B 

 
 

Figure 2-16. Plots of enrichment (Rx) versus reaction progress for (A) C4-D and (B) C7-D kinetic isotope 
effect in the non-enzymatic reaction. 
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Figure 2-17. Alternative mechanism describing a [6+4] cycloaddition followed by a [3+3] sigmatropic 
rearrangement, suggested by Ken Houk 
 

2.3.4.3. Determination of 
D
kenz from the competitive reaction 

To determine the D
kenz for the SpnF-catalyzed [4+2] cycloaddition, another 

competition reaction was performed using SpnM natural substrate and the deuterium-

labeled SpnM substrate analog by a coupled assay with SpnM and SpnF. Unlike the 

determination of the non-enzymatic kinetic isotope effect, the timing of the SpnF reaction 

should be considered because SpnF product is being formed as soon as SpnF substrate 

formed by the SpnM reaction. If SpnF is added too early, it become difficult to measure 

the initial enrichment ratio of SpnF substrate due to the rapid turnover of SpnF substrate 

into SpnF product, a reaction that is approximately 500 times faster than the non-

enzymatic reaction. If SpnF is added too late, the initial non-enzymatic turnover of SpnF 

substrate into product prior to SpnF addition will be problematic. Fortunately, these 

problems were solved by using only the observed fractions of the reaction or 

readjustment of the data to the SpnF addition point. Essentially, the best time to add SpnF 

is right before taking the first aliquot. In other words, the initial enrichment ratio can be 

extrapolated from the enrichment ratio of the first aliquot. The interval between SpnF 

addition and the first aliquot was therefore minimized, to a range of several seconds. 

Next, the concentration of SpnF added must be considered to keep the kinetic isotope 

effect from the non-enzymatic reaction within the margin of error of the kinetic isotope 
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effect from the enzymatic reaction. In addition, the overall reaction time which would be 

adequate to determine the kinetic isotope effect was also considered. Based on the 

enzymatic kinetics and statistic analysis, all of reaction conditions, including the 

concentration of substrates and enzymes, SpnM preincubation time, SpnF addition time 

and quenching time, were determined as described in Section 2.2.12.3.  

From the statistical analysis of the MS results, the kinetic isotope effects of the 

enzymatic reaction were determined in the same manner as the non-enzymatic reaction. 

The results shows that C4D
kenz = 0.9287 ± 0.0087, and C7D

kenz = 1.0033 ± 0.0084 (Figure 

2-18).  

A B 

 

Figure 2-18. Plots of enrichment (Rx) versus fraction of reaction (f) for (A) C4-D and (B) C7-D kinetic 
isotope effect in the enzymatic reaction. 
 

The inverse kinetic isotope effect for C-4 positions is consistent with an sp2 to sp3 

rehybridization in the early stage of the SpnF reaction, and consistent with the Diels-

Alder reaction mechanism. However, the normal or unity kinetic isotope effect for the C-

7 position does not match the expected kinetic isotope effect (inverse) for the Diels-Alder 

reaction mechanism and the ionic rearrangement mechanism, in which the C-C bond 

between the C-7 and C-11 positions form either concurrently with or prior to the 
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formation of the C-4-C-12 bond. Rather, this normal value is consistent with the biradical 

rearrangement mechanism. If the SpnF reaction proceeds through a highly asynchronous 

transition state, similar to the non-enzymatic kinetic isotope effect at the C-4 position, a 

normal kinetic isotope effect may be possible for the Diels-Alder reaction mechanism. 

For the ionic rearrangement, the kinetic isotope effect at the C-7 position must be 

“inverse” due to the early formation of the C-7-C-11 bond during a stepwise reaction 

with a dipolar intermediate, for which the charges are most stabilized along the π-electron 

conjugated systems for both C-4-C-7 and C-11-C-15-Oxygen. Therefore, the normal 

kinetic isotope effect at the C-7 position should rule out the ionic rearrangement 

mechanism. In the case of the biradical rearrangement mechanism, the kinetic isotope 

effect at the C-4 position depends on the timing of the C-C bond formation between the 

C-4 and C-12 positions and the C-7 and C-11 positions is opposite to the order of 

biradical formation. The normal kinetic isotope effect at the C-4 position and the inverse 

kinetic isotope effect at the C-7 position is completely consistent with the biradical 

rearrangement mechanism, where the early biradical formation at C-7 and C-11 positions 

and the early C-C bond formation between C-4 and C-12 positions are involved during 

the SpnF-catalyzed [4+2] cycloaddition (Figure 2-19). This interpretation is consistent 

with the computational results of a simplified model system from the Houk group, which 

suggest that C4D(V/K) would be approximately 0.90-0.96, and C7D(V/K) is expected to be 

1.03-1.15.  

It is conceivable that there is an unusual ionic rearrangement where the charge 

separation happens at the C-7 and C-11 positions without conjugation (Figure 2-20), 
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which was suggested by Dr. Ruszczychy, the post-doc in the Liu Lab. Although the 

kinetic isotope effects from this unusual intermediate may be consistent with the above 

observations, this mechanism seems very unlikely due to the lack of charge stabilization 

at the C-7 and C-11 positions. 
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Figure 2-19. The most likely mechanism for the SpnF-catalyzed cycloaddition based on the current 
estimation of kinetic isotope effects at the C-4 and C-7 positions. 
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Figure 2-20. The ionic rearrangement mechanism via the unusual zwitterion intermediates. 
 

Based on the kinetic isotope effect at the C-4 and C-7 positions for the enzymatic 

SpnF reaction, it is hard to say which mechanism most accurately models the SpnF-

catalyzed [4+2] cycloaddition. However, at least the ionic rearrangement mechanism can 

be ruled out as a possible mechanism. Future kinetic isotope effect studies using the C11-

D and C12-D analog are expected to help further elucidate the reaction mechanism. The 

summary of the current values for the non-enzymatic and enzymatic kinetic isotope effect 

for the [4+2] cycloaddition is shown in Figure 2-21.  
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Secondary kinetic isotope effect  Current estimation 
C4D

knon   0.9975 ± 0.0033 
C7D

knon   0.9676 ± 0.0031 
C4D

kenz = C4D(V/K)   0.9287 ± 0.0087 
C7D

kenz = C7D(V/K)   1.0033 ± 0.0084 
 

Figure 2-21. Current estimations for non-enzymatic and enzymatic kinetic isotope effects for 
the [4+2] cycloaddition in the biosynthesis of spinosyn A. 
 

2.3.5. In vitro Activity Assay of SpnF-Catalyzed [4+2] Cycloaddition using the 

Linear, C13-14 Unc, and C2-3 Unc SpnF Substrate Analogs 

In vitro activity assays of SpnF-catalyzed [4+2] cycloaddition were first 

performed using the Linear SpnF substrate analog and C13-14 Unc SpnF substrate 

analog, described as follows. The experiments for the C2-3 Unc SpnF substrate analog 

are still in progress. 

2.3.5.1. Test for non-enzymatic and enzymatic [4+2] cycloaddition of Linear, C13-14 

Unc, and C2-3 Unc SpnF Substrate Analog 

It is worthwhile to investigate how SpnF accelerates the [4+2] cycloaddition in 

the biosynthesis of spinosyn A, to approximately 500-fold the rate of the non-enzymatic 

from the view of thermokinetics and thermodynamic perspective.22 The two proposed 

hypotheses are the entropic preorganization and enthalpic transition state stabilization. 

The Linear analog is designed to determine the contribution of entropic preorganization 

125, 126, 127, 128, 129, 130 and the two Unc analogs are designed to examine the contribution of 

enthalpic transition state stabilization.  

In terms of entropy, it is likely that an entropic preorganization effect on the 

Linear analog will be more significant than for SpnF natural substrate, due to the fixation 

of the relatively free long chain into the rigid cyclic core and a decrease of the overall 
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entropy after [4+2] cycloaddition. In terms of enthalpy, since the Linear analog has the 

ready [4+2] components to form both the C-1 to C-7 and the C-11 to C-15-ketone 

conjugation systems, same as those in SpnF natural substrate, the difference in the 

stabilization effect is expected to be small or nonexistent, compared to the SpnF natural 

substrate. Thus, the relative rate enhancement for the natural substrate compared to the 

Linear analog (RRENS,Linear) should predominantly be due to the entropic preorganization 

effect rather than the enthalpic transition state stabilization effect . 

The C13-14 Unc and C2-3 Unc analogs may have different enthalpic states 

compared to that of SpnF natural substrate, because the activating groups adjacent to the 

reaction centers of the diene and dienophile have been modified. Entropically, these two 

analogs seem to be similar with SpnF natural substrate due to their structural resemblance 

as a macrolactone ring, although there may still be small entropic differences. Thus, any 

relative rate enhancement for natural substrate compared to the unconjugated analogs 

(RRENS,Unc) is expected to arise predominantly from the enthalpic transition state 

stabilization effect rather than the entropic preorganization effect (Figure 2-22).  

 

 

 

 

 

. 
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Figure 2-22. Expected RRENS,Analog for [4+2] cycloaddition. 
 

In order to investigate the SpnF intrinsic properties, it is necessary to observe the 

mechanistic probes undergoing both the enzymatic and non-enzymatic [4+2] 

cycloadditions, since rate enhancement (RE) is defined as the ratio of enzymatic reaction 

rate divided by non-enzymatic reaction rate. Non-enzymatic conversion of the Linear 

analog and C13-14 Unc analog did not occur even under the reflux condition for 24 hr. 

Moreover, the enzymatic turnover for these two analogs was not observed, even with a 

high concentration of SpnF at the elevated temperature (up to 60 °C) for an extended 

period (up to 24 hr) (Figure 2-23 and Figure 2-24.).  

 
 
Figure 2-23. HPLC trace of Linear SpnF substrate analog for [4+2] cycloaddition. HPLC condition: 
50% to 70% aqueous acetonitrile with a flow rate of 1 mL/min over 30 min. 
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Figure 2-24. HPLC trace of C13-14 Unc SpnF substrate analog for [4+2] cycloaddition. HPLC 
condition: 40% to 60% aqueous acetonitrile with a flow rate of 1 mL/min over 30 min. 
 

Based on the molecular orbital theory for the [4+2] cycloaddition, the collision of 

a diene and dienophile in a face-to-face manner should happen prior to the alignment of 

the “allowed” geometries for the diene and dienophile. After collision of the two 

moieties, the π molecular orbitals of the diene and dienophile are rearranged to match 

each other to make a partial C-C bond if the energy difference is between the highest 

occupied molecular orbital (HOMO) of the diene and the lowest unoccupied molecular 

orbital (LUMO) of the dienophile. This is the general process for the [4+2] cycloaddition 

(Figure 2-25).34, 100  
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Figure 2-25. General procedure for the [4+2] cycloaddition through the collision of diene and 
dienophile, rearrangement, and C-C bond formation. 
 

For the Linear analog, the energy difference between HOMO and LUMO seems 

to be similar to that of SpnF natural substrate. So, the collision of the diene and 

dienophile in the Linear analog should lead to the formation of a [4+2] cycloaddition only 
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if the orientation of the molecular orbitals is correct. However, the higher structural 

flexibility of the Linear analog may have prevented the collision of two reaction centers 

in the proper orientation of diene and dienophile, where the molecular orbitals are in 

different phases. In other word, the Linear analog cannot overcome the higher barrier of 

entropy and facilitate the [4+2] cycloaddition, even though the energy level of HOMO 

and LUMO is comparable to that of SpnF natural substrate. This appears to be the same 

for the enzymatic reaction for several reasons. One possible reason is that SpnF cannot 

accommodate the Linear analog due to its high flexibility. Another plausible reason is 

that SpnF cannot preorganize the Linear analog although SpnF can accommodate the 

Linear analog in its active site. To test this hypothesis, the inhibition assay was 

performed, as described in the next section.  

For the C13-14 Unc analog, the collision of the diene and dienophile is facilitated 

by the structure to a higher degree than the Linear analog, and is probably to a 

comparable degree as the SpnF natural substrate, due to their structural similarity, except 

for one less C-C bond conjugation at the C-13 to C-14 position. One possible explanation 

for the observed data is the incorrect direction of molecular orbitals for HOMO and 

LUMO in the C13-14 Unc analog, a situation similar to the Linear analog. If the direction 

is correct for the [4+2] cycloaddition, the remaining explanation lies in the energy 

difference between HOMO and LUMO. For the [4+2] cycloaddition, the moiety adjacent 

to the diene or dienophile is most critical to the success or failure of the reaction, since it 

can change energy of HOMO and LUMO. SpnF natural substrate has two activated 

conjugations for the diene and dienophile to facilitate even the non-enzymatic 
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cycloaddition. These two conjugations could increase the energy level of HOMO of the 

diene by donating electrons, and lower the energy level of LUMO of the dienophile by 

withdrawing electrons (Figure 2-26). The C13-14 Unc analog is deficient in one of 

conjugation on the C-13 to C-14 position, which does not affect the LUMO of the 

dienophile. Although the energy gap between the LUMO activated by conjugation and 

the original LUMO of the C13-14 Unc analog is unknown, it seems that this gap cannot 

be overcome by SpnF to facilitate the [4+2] cycloaddition of C13-14 Unc analog. In other 

word, the C13-14 Unc analog does not transform due to the lack of enthalpic stabilization 

in the initial collision stage, not in the transition state. Even enzymatic assistance seems 

unable to overcome this energy gap derived from the lack of conjugation at the C-13 to 

C-14 position. As mentioned above, the issue may also be the inability of SpnF to receive 

the C13-14 Unc analog into its active site. To verify the hypothesis that the entropic or 

enthalpic difference may lead to the lack of conversion of the Linear analog and the C13-

14 Unc analog into the [4+2] cycloaddition product, the in vitro inhibition assay was 

performed, as described in next section.  
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Figure 2-26. The change of HOMO and LUMO by the adjacent conjugation in the [4+2] cycloaddition, 
where R1 is electron-withdrawing from dienophile, and R2 is electron-donating to diene. 
 

2.3.5.2. In vitro inhibition assay of SpnF using the Linear, the C13-14 Unc, and the 

C2-3 Unc SpnF substrate analog 
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Since the Linear SpnF substrate analog and the C13-14 Unc SpnF substrate 

analog were not transformed into any product under non-enzymatic and enzymatic 

conditions, several questions need to be addressed to understand the reaction. The first is 

why the [4+2] cycloaddition does not happen under non-enzymatic and enzymatic 

condition, for which some possible explanations were described in previous section in 

terms of entropy and enthalpy. The next question is whether SpnF can accommodate the 

Linear analog or the C13-14 Unc analog in its active site. To verify this, the inhibition 

assay of SpnF is designed to measure the conversion rate of SpnF natural substrate into 

SpnF product in the presence of various concentrations of analog. It is also important to 

confirm that the activity of SpnM is not affected by the Linear and the C13-14 Unc 

analog. Inhibition assays of SpnM with the Linear analog and the C13-14 Unc analog 

showed that these analogs do not affect the activity of SpnM even in the high 

concentration conditions in amount of 40 equivalences to enzyme. Inhibition assays of 

SpnF were performed under two sets of conditions, where a half equivalent or double 

equivalents of SpnM natural substrate was used in competition with one equivalent of 

inhibitor. As reaction proceeded, all SpnM natural substrate was converted to SpnF 

product in the presence of other substrate analogs. The results are shown in Figure 2-27 

and Figure 2-28.  



 181 

 
 

Figure 2-27. Inhibition assay of SpnF with the Linear analog and C13-14 Unc analog in the presence of 
half equivalent of SpnM natural substrate. 
 

 
 

Figure 2-28. Inhibition assay of SpnF with the Linear analog and C13-14 Unc analog in the presence of 
double equivalents of SpnM natural substrate. 
 

The Linear analog seems not to affect the activity of SpnF at low or high 

concentrations while the C13-14 Unc analog shows inhibition of SpnF, at high 

concentrations by around 20% of the initial reaction progress and at low concentrations 

by around 5% (possibly within the margin of error). This observation demonstrated that 

the Linear analog may be not accommodated into the active site of SpnF, and therefore 

does not compete with SpnF natural substrate during the SpnF reaction. In contrast, the 

C13-14 Unc analog competes with SpnF natural substrate to occupy the active site of 

SpnF during the SpnF reaction. Based on the observation that the SpnF product is 
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produced as time goes on in the inhibition assay with the C13-14 Unc analog, the binding 

of C13-14 Unc analog to the active site of SpnF is not tight, and rather reversible. 

The purpose of synthesizing the Linear SpnF substrate analog and the C13-14 

Unc SpnF substrate analog was to address the intrinsic properties of SpnF, specifically 

how SpnF accelerates the enzymatic transformation of [4+2] cycloaddition based on the 

concept of relative rate enhancement. It was assumed that the Linear analog and C13-14 

Unc analog undergo the [4+2] cycloaddition under non-enzymatic and enzymatic 

conditions. However, these two analogs turned out not to undergo the [4+2] 

cycloaddition, even under the somewhat extreme conditions of high temperature or high 

concentration of enzyme. Thus, the reason why these two analogs are not able to undergo 

the [4+2] cycloaddition is pursued in terms of entropy and enthalpy. The inhibition assay 

simply demonstrated that the C13-14 Unc analog may be a reversible inhibitor, but the 

Linear analog is not. Additional experiments will be pursued in order to verify the 

hypothesis that the high entropy of the Linear analog and the low activation of HOMO 

and LUMO of the C13-14 Unc analog block the [4+2] cycloaddition. In addition, the C2-

3 Unc SpnF substrate analog will be used to expand the understanding of SpnF intrinsic 

properties.  

 

2.4. CONCLUSION 

For a long time, many biochemical studies have been devoted to finding a “Diels-

Alderase” in nature. Although solanapyrone synthase41, 42, 43 and lovastatin synthase 

(LovB)44, 45 have shown to catalyze a [4+2] cycloaddition, they turned out to be multi-



 183 

functional enzymes. Thus, conclusive evidence for a naturally occurring Diels-Alderase 

is still lacking.37, 38, 39, 40  

SpnF, the enzyme which catalyzes the [4+2] cycloaddition in the biosynthesis of 

spinosyn A, has attracted significant interest as a real Diels-Alderase. For this interesting 

[4+2] cycloaddition by SpnF, three possible mechanisms have been suggested, the Diels-

Alder reaction mechanism, the ionic rearrangement mechanism, and the biradical 

rearrangement mechanism. In order to distinguish among these three mechanisms, 

experiments to measure the secondary kinetic isotope effects were designed, and 

mechanic probes containing deuterium at appropriate reaction centers were prepared 

through chemoenzymatic syntheses. These include a C4-D, a C7-D, a C11-D, and a C12-

D analog. So far, the ionic rearrangement mechanism has been disproven, based on the 

results of the kinetic isotope effects studies using the C4-D and C7-D analogs. Additional 

experiments in progress using the C11-D and C12-D analogs will provide more details 

about the SpnF-catalyzed [4+2] cycloaddition in the future.  

Another interesting question concerning the SpnF reaction is the way it 

accelerates the [4+2] cycloaddition of SpnF substrate into SpnF product in terms of 

thermokinetics and thermodynamics. Two hypotheses have been proposed. The SpnF 

catalysis may be facilitated either by an entropic preorganization or an enthalpic 

transition state stabilization during the enzymatic reaction. To measure the relative rate 

enhancements 131 due to structural perturbations, three mechanistic probes were designed: 

namely, the Linear analog, the C13-14 Unc analog, and the C2-3 Unc analog. So far, the 

Linear analog and C13-14 Unc analog didn’t show any turnover activity under either 
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non-enzymatic or enzymatic conditions, resulting in no further progress concerning 

determination of relative rate enhancement. The C13-14 Unc analog shows inhibition of 

SpnF, probably by competing with SpnF natural substrate for the active site in SpnF, 

while the Linear analog does not inhibit the SpnF reaction. In spite of the limited 

experimental results, it is proposed that SpnF may accommodate the macrolactone 

structure as its adequate substrate rather than the linear structure. Additional experiments 

using the C2-3 Unc analog are expected to expand our understanding of SpnF.  

It is hard to draw any conclusion about the mechanism and intrinsic properties of 

SpnF catalysis based on the results available at this stage. Additional experimental data 

on SpnF reaction are being collected and will provide more insights into the mechanism 

and intrinsic properties of this intriguing enzyme.  
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Chapter 3. Mechanistic Investigation of SpnL-Catalyzed Cyclization In 

the Biosynthesis of Spinosyn A 

 

3.1. INTRODUCTION 

SpnL-catalyzed cyclization is a key reaction to complete the formation of a 

perhydro-as-indacene core in the biosynthesis of spinosyn A (Figure 3-1).20, 21, 22 

Specifically, it is the point where a new C-C bond is formed between C-3 and C-14 to 

produce a cyclopentene moiety with a well controlled stereospecificity. 
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Figure 3-1. Established biosynthetic pathway of spinosyn A (1) 
 

Two suggested mechanisms for SpnL are the Rauhut-Currier type mechanism and 

the Michael addition mechanism (Figure 3-2).29, 30, 31, 132 The Rauhut-Currier reaction 

describes the dimerization or isomerization of alkenes activated by adjacent to an 

electron-withdrawing functional group such as ketone, ester, or nitrile, in the presence of 

an organophosphine of the type R3P as a nucleophile.29, 30 In the SpnL-reaction, one 
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component is the alkene at C-13 and C-14, which is adjacent to an electron-withdrawing 

ketone, and the other component the alkene at C-2 and C-3 connected to an electron-

withdrawing ester. The Rauhut-Currier type mechanism of the SpnL reaction is believed 

to be initiated by the addition of a nucleophile such as cysteine or lysine in SpnL to the 

C-13 position of its substrate to produce an enolate intermediate, which may be stabilized 

by a positively charged residue or metal ion, such as magnesium. The following 

formation of the C-C bond between C-3 and C-14 occurs through a Michael addition, 

followed by a protonation at the C-2 position. Finally, the nucleophile bound to the C-13 

position is released in a 1,2-elimination triggered by the deprotonation at the C-14 

position. During the Rauhut-Currier type mechanism, the sp2-hybridized carbon at C-13 

undergoes two rounds of rehybridization to sp3 by nucleophilic addition, and then back to 

sp2 by release of the nucleophile. Of note, if the nucleophilic amino acid residue of SpnL 

can be made irreversibly bound to the substrate, SpnL’s enzymatic activity would 

expected to be shut down, resulting in a suicide inhibition.  
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Figure 3-2. Plausible mechanisms for SpnL-catalyzed cyclization in the biosynthesis of spinosyn A 
 

Another conceivable mechanism for SpnL-catalyzed cyclization is simply a 

Michael addition initiated by deprotonation at the C-12 position.31 The Michael addition 
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is defined as the organic reaction in which a nucleophilic addition of a carbanion to an 

α,β-unsaturated carbonyl moiety produces a 1,5-diketo-containing moiety. It is proposed 

that at the initial stage of the SpnL reaction, deprotonation of an acidic proton (allylic 

proton) at the C-12 position leads to the production of a long conjugated enolate, which 

may be stabilized by a positively charged residue or a metal ion. The C-C bond is 

subsequently formed between C-13 and C-14, followed by protonation at the C-2 

position. Finally, the desired cyclopentene is produced through the isomerization by 

deprotonation at C-14 and protonation of C-12. While the sp2-hybridzed carbon at the C-

13 position undergoes the rehybridization to sp3 through the Rauhut-Currier type 

mechanisms, sp2-hybridization of C-13 don’t rehybridize in the Michael addition 

mechanism. Rather, the C-H bond breaking at the C-12 position in the first stage is more 

significant in terms of the kinetic isotope effect.  

In other word, the only difference between the two proposed mechanisms is the 

way they activate the conjugated enone component of C-12 to C-15-ketone. The Rauhut-

Currier mechanism utilizes a nucleophilic attack, with an amino acid residue as the 

nucleophile, at the C-13 position, whereas the Michael addition mechanism employs a 

deprotonation at C-12 position.29, 30, 31 Several mechanistic probes were designed to 

distinguish between these two mechanisms, including the C12-D, C13-D, and C13-F 

analogs (Figure 3-3),151 of which the two isotopologs (4 and 5) are used for the study of 

the kinetic isotope effect and the fluoride-containing analog (6) is used for the study of 

SpnL-covalent modification by suicide inhibition (mechanism-based inhibition).  
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Figure 3-3. Mechanistic probes for SpnL-catalyzed cyclization (C12-D, C13-D, and C13-F analogs) 
 

Through the Rauhut-Currier type mechanism, SpnL-catalyzed cyclization is 

prompted by nucleophilic addition, resulting in the rehybridization of the carbon at the C-

13 position from sp2 hybrid to sp3 hybrid, which should give an inverse α-secondary 

kinetic isotope effect.58 The sp2 hybridization of the carbon at C-12 is unaffected 

throughout the reaction, resulting in a unity kinetic isotope effect. Alternatively, if the 

SpnL reaction proceeds via the Michael addition mechanism and undergoes C-H bond 

breaking at the C-12 position, a primary kinetic isotope effect would be observed for 

mechanistic probe 4. The sp2 hybridization at C-13 is unchanged during the reaction and 

an unity kinetic isotope effect for mechanistic probe 5 is expected. Therefore, a kinetic 

isotope effect study, using two deuterium-containing isotopologs, C12-D and C13-D 

analog, will give valuable information which can be used to distinguish between these 

two plausible mechanisms (Figure 3-4).  

 Rauhut-Currier type mechanism Michael addition mechanism 
C12-D analog Unity KIE Primary KIE 
C13-D analog Inverse secondary KIE  Unity KIE 

 

Figure 3-4. The expected kinetic isotope effect for C12-D and C13-D analogs during SpnL reaction 
  

A mechanistic probe, C13-F analog, was also designed as a mechanism-based 

inhibitor to from a covalent adduct with SpnL as a mechanism-based inhibitor, assuming 

that the SpnL-catalyzed cyclization undergoes the Rauhut-Currier type mechanism 
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(Figure 3-5).152 However, there is a possibility that a C13-F containing turnover product 

may be produced no matter which mechanism the SpnL reaction follows.  
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Figure 3-5. Proposed mechanism for SpnL reaction with C13-F analog through the Rauhut-Currier type 
mechanisms (left) and Michael addition mechanism (right). 
 

Curiously, SpnF and SpnL show high sequence homology to S-adenosyl-L-

methionine (SAM) dependent methyltransferases even though their functions in the 

biosynthesis of spinosyn A are not related to a methyl transfer reaction but rather a 

cycloaddition and cyclization reaction, respectively.15, 19, 151 Thus, a question arose about 

the possible function of SAM in the catalytic activity of SpnF and SpnL. Biochemical 

approaches have been used to characterize the relationship of SAM with SpnF and SpnL.  

The purpose of Chapter 3 is to differentiate the reaction mechanisms between the 

Rauhut-Currier type mechanism and Michael addition mechanism using the mechanistic 

probes, C12-D, C13-D, and C13-F analogs, and to study SpnF and SpnL dependency on 
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SAM. First, measurement of the kinetic isotope effect is conducted with the C12-D and 

C13-D analogs. Second, if C13-F analog is covalently bound to SpnL, the Rauhut-Currier 

type mechanism is more likely. However, if the C13-F containing turnover product is 

isolated, one cannot distinguish the Rauhut-Currier mechanism from the Michael addition 

mechanism. Additionally, several biochemical experiments related to SpnL are presented 

in this Chapter, such as the activity assay to determine SAM dependency and the activity 

of several SpnL mutants. On-going biochemical experiments with SpnF and SpnL 

reaction will further verify the reaction mechanism and characterize the enzymes’ 

relationship with SAM in near future. 

 

3.2. EXPERIMENTAL PROCEDURES 

3.2.1. Materials and Equipment 

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA), Fisher 

Scientific (Pittsburgh, PA, USA), Tokyo Chemical Industry (TCI; Boston, MA, USA), 

Acros (Geel, Belgium), Alfar Aesar (Ward Hill, Ma, USA) and/or Chem-Impex (Wood 

Dale, IL, USA), and used without further purification unless otherwise specified. 

Escherichia coli DH5α cells were obtained from Bethesda Research Laboratories 

(Muskegon, MI). The vector pEt28b(+) and enzyme KOD DNA polymerase were 

purchased from Novagen (Madison, WI, USA). DNA modifying enzymes (for restriction 

digestion and ligation), PCR primers, and the overexpression host E. coli BL21 star 

(DE3) were acquired from Invitrogen (Carlsbad, CA, USA) and New England Biolabs 

(NEB; Beverly, MA, USA). LB medium is a product of Difco (Detroit, MI, USA) or 
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Fisher Scientific, and pre-stained protein markers are products of NEB. Ni-NTA agarose 

and kits for DNA gel extraction and spin miniprep were obtained from Qiagen (Valencia, 

CA, USA). All reagents for SDS-PAGE and Amicon YM-10 filtration products were 

purchased from Bio-Rad (Hercules, CA, USA) and Millipore (Billerica, MA, USA), 

respectively. Analytical thin layer chromatography (TLC) was carried out on pre-coated 

TLC glass plates (Silica gel, Grade 60, F254, 0.25 mm layer thickness) obtained from 

EMD Chemicals (Madison, WI, USA). Flash column chromatography was performed 

(230-400 mesh, Grade 60) by elution with the specified solvents, using materials from 

Sorbent Technologies (Atlanta, GA, USA) or Silicycle (Quebec City, Canada). Protein 

concentrations were determined by Bradford assay using bovine serum albumin as the 

standard, or measured by nanodrop, ND-1000 UV-VIS spectrophotometer from 

NanoDrop technologies (Wilmington, DE, USA). The relative molecular mass and purity 

of enzyme samples were determined using SDS-polyacrylamide gel electrophoresis as 

described. The general methods and protocols for recombinant DNA manipulations are as 

described by Sanbrook and Russell. DNA sequencing was performed by the Core 

Facilities in the Institute of Cellular and Molecular Biology of the University of Texas at 

Austin. NMR spectra were acquired on a Varian Unity Inova 500 or 600 MHz 

spectrometer, housed in the NMR Facility of the Department of Chemistry and 

Biochemistry in the University of Texas at Austin. The Mass analyses were carried out at 

the Mass Spectrometry and Proteomics Facility of the Department of Chemistry and 

Biochemistry in the University of Texas at Austin.  

3.2.2. Preparation of Enzymes 
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Cloning of SpnJ, SpnM, and SpnF, and the expression and purification of their 

products have already been reported.  

3.2.3. Synthesis of the SpnL Natural Substrates  

A. Enzymatic conversions: The overall scheme of the enzymatic conversions is shown in 

Scheme 3-1. 
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Scheme 3-1. Preparation of SpnL natural substrate 
 

SpnG natural substrate (11): A solution containing SpnM natural substrate (3; 1.4 mg, 

0.4 mM) in pH 8.0 Tris buffer (50 mM) was incubated with SpnM (10 µM) and SpnF (30 

µM) at 30 °C with stirring. Through the incubation, the reaction was monitored by HPLC 

using a 4 x 250 mm Econosil C18 column (Alltech). Product was detected by absorbance 

at 254 nm, and the column eluted at 1 mL/min with water (A) and acetonitrile (B) using 

the following gradient. Initially 30% B, concentration of B was raised linearly to 45% 

over 30 min, then increased 80% linearly over 3 min, and finally decreased to 30% 

linearly over 3 min. After incubation for 6 hr, at which point the reaction was complete, 

the reaction mixture was directly filtered through a YM-10 membrane filter by 

centrifugation at 4,000 rpm for 40 min. The clear filtrate was purified by semi-
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preparative HPLC using a 10 x 250 mm Econosil C18 column (Alltech). The column was 

eluted at 4 mL/min with water (A) and acetonitrile (B) using the same gradient as that of 

the above analytic HPLC. Collected fractions were pooled, extracted with ethylacetate 

(50 mL x 3 times), dried over an anhydrous sodium sulfate, and concentrated under 

reduced pressure to afford the target compound (1.0 mg, 72%). All spectral data was 

identical to the literature reference.  

SpnL natural substrate (2): SpnG (80 µM) was added to a solution containing SpnG 

natural substrate (11; 2.4 mg, 0.85 mM) and TDP-L-rhamnose (4.0 mg, 1.07 mM) in 

magnesium chloride (5 mM) and pH 8.0 Tris buffer (50 mM) at 30 °C with stirring. 

Through the incubation, the reaction was monitored by HPLC using a 4 x 250 mm 

Econosil C18 column (Alltech). The product was detected by absorbance at 254 nm, and 

column eluted at 1 mL/min with water (A) and acetonitrile (B) using the following 

gradient. Initially the solution was 30% B, then raised linearly to 45% over 30 min, 

further raised to 80% linearly over 3 min, and finally decreased linearly to 30% over 3 

min. After incubation for 1.5 hr, at which point the reaction had completed, the mixture 

was directly filtered through a YM-10 membrane filter by centrifugation at 4,000 rpm for 

40 min. The clear filtrate was purified by semi-preparative HPLC using a 10 x 250 mm 

Econosil C18 column (Alltech). The column was eluted at 4 mL/min with water (A) and 

acetonitrile (B) using the same gradient as the above analytic HPLC. Collected fractions 

were pooled, extracted with ethylacetate (50 mL x 3 times), dried over an anhydrous 

sodium sulfate, and concentrated under reduced pressure to afford the target compound 

(2.0 mg, 62%). All spectral data was identical to the literature reference. 
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3.2.4. Synthesis of the [C12-
2
H] SpnL Substrate Analog 

A. Enzymatic conversions: The overall scheme for enzymatic conversions is shown in 

Scheme 3-2. 
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Scheme 3-2. Preparation of [C12-2H] SpnL substrate analog 
 

[C12-
2
H] SpnL substrate analog (4): [C12-2H] SpnG substrate analog (14) was 

prepared following the same procedure as compound (11) using [C12-2H] SpnM 

substrate analog. [C12-2H] SpnG substrate analog was prepared following the same 

procedure as compound (2) using [C12-2H] SpnG substrate analog (14) with a yield of 

38% for 2 steps.  

1H NMR (DMSO-d6, 500 MHz) δ (ppm) 6.76 (d, 1H, J = 16.6 Hz, 13-H), 6.47 

(dd, 1H, J = 9.5, 15.5 Hz, 3-H), 6.12 (d, 1H, J = 16.6 Hz, 14-H), 5.93 (d, 1H, J = 9.7 Hz, 

6-H), 5.74 (d, 1H, J = 15.5 Hz, 2-H), 5.37 (dt, 1H, J = 3.0, 9.7 Hz, 7-H), 4.75-4.70 (m, 

1H, 21-H), 4.57 (d, 1H, J = 1.3 Hz, 1′-H), 4.31-4.26 (m, 1H, 9-H), 3.52-3.50 (m, 1H, 2-

H), 3.41-3.26 (m, 4H, 4-H, 17-H, 3′-H, 4′-H), 3.18-3.13 (m, 1H, 5′-H), 2.67-2.62 (m, 1H, 

16-H), 2.46-2.41 (m, 1H, 11-H), 2.18-2.12 (m, 1H, 7-H), 1.84-1.13 (m, 12H, 8-Hs+10-

Hs+18-Hs+19-Hs+20-Hs+22-Hs), 1.11 (d, 3H, J = 6.2 Hz, 6′-Hs), 1.05 (d, 3H, J = 6.8 
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Hz, 16-CH3), 0.79 (t, 3H, J = 7.4 Hz, 23-Hs); 13C NMR (DMSO-d6, 125 MHz) δ (ppm) 

202.70, 164.77, 148.22, 147.42, 130.71, 129.07, 127.98, 122.00, 98.62, 75.85, 74.52, 

72.53, 72.04, 70.79, 70.63, 68.56, 63.06, 49.79, 41.82, 41.77, 37.08, 36.07, 35.41, 31.79, 

28.97, 26.64, 21.69, 17.86, 14.53, 9.82; HRMS (ESI, positive) m/z for C30H43DO9 

[M+Na]+: calcd 572.2940, found: 572.2939. 

3.2.5. Synthesis of the [C13-
2
H] SpnL Substrate Analog 

A. Synthesis of Fragment A: The overall synthetic scheme is shown in Scheme 3-3. 
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Scheme 3-3. Preparation of fragment A in the synthesis of [C13-2H] substrate analog 
 

(3R,4R,5S,9S)-methyl 3,5-bis(tert-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-4-

methylundecanoate (16): 1) Allyl compound (15; 3.9 g, 6.74 mmol) was dissolved in a 

solution of THF (20 mL), acetone (20 mL), and pH 7 buffer (20 mL), and cooled to 0 °C 

with stirring for 10 min. Osmium tetroxide (86 mg, 0.34 mmol) and N-methylmorpholine 

N-oxide (1.18 g, 10.11 mmol) were subsequently added into the reaction mixture, which 

was allowed to stir at room temperature for 24 hr. The reaction mixture was quenched 

with the subsequent addition of aqueous 10% sodium thiosulfate solution (20 mL) and 

pH 7 buffer (10 mL) at room temperature. After stirring at room temperature for 30 min, 

the aqueous phase was extracted with ethyl acetate (30 mL x 3 times). The combined 
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organic phases were washed with brine (50 mL), dried over an anhydrous sodium sulfate 

pad, and concentrated to give a pale yellow residue, which was subjected to the next step 

without further purification. 2) This residue was dissolved in a solution of THF (150 mL) 

and pH 7 buffer (60 mL) at room temperature. Sodium (meta)periodate (4.76 g, 22.24 

mmol) was added portionwise into the reaction mixture for 1 hr at 0 °C, followed by 

stirring at room temperature for 24 hr. The suspension was filtered through a filter paper, 

and the organic phase of the filtrate was then separated by extracting the aqueous phases 

with ethyl acetate (30 mL x 3 times). The combined organic phases were washed with 

brine (30 mL), dried over an anhydrous sodium sulfate pad, and concentrated by rotary-

evaporation. The resulting residue was used directly for the next step without further 

purification. 3) N-iodosuccinimide (NIS; 3.79 g, 16.85 mmol) and potassium carbonate 

(2.33 g, 16.85 mol) were added to a solution of the aldehyde from the previous step in 

anhydrous methanol (40 mL) at room temperature. The reaction mixture was stirred at 

room temperature for 38 hr, and quenched with saturated aqueous sodium thiosulfate 

solution (200 mL). The aqueous phase was extracted with dichloromethane (40 mL x 3 

times), and the collected organic phases were dried over an anhydrous sodium sulfate 

pad, filtered and concentrated under reduced pressure. The resulting residue was 

subjected to flash column chromatography on silica gel. The target compound was eluted 

with 3% to 5% EtOAc/Hexane solution (1.94 g, 47%).  

1H NMR (CDCl3, 400 MHz) δ (ppm) 7.25 (d, 2H, J = 7.2 Hz, PhH of PMB), 6.84 

(d, 2H, J = 7.2 Hz, PhH of PMB), 4.42-4.41 (m, 2H, CH2 of PMB), 4.15-4.11 (m, 1H, 3-

CH), 3.77-3.75 (m, 4H, 5-CH and OCH3 of PMB), 3.61 (s, 3H, OMe of CO2Me), 3.30-
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3.26 (m, 1H, 9-CH), 2.55-2.45 (m, 2H, 2-CH2), 1.69-1.23 (m, 8H, 6-CH2+7-CH2+8-

CH2+10-CH2), 0.92-0.81 (m,24H, CH3 of tBu of TBS, 11-CH3, 4-CH3), 0.06-(-0.02) (m, 

12H, CH3 of TBS); 13C NMR (CDCl3, 100 MHz) δ 172.47 (C=O of COOMe), 158.99 (Ph 

of PMB), 131.25 (Ph of PMB), 129.15 (Ph of PMB), 113.67 (Ph of PMB), 79.80 (C-10), 

72.17 (C-6), 70.65 (C-4), 70.44 (CH2 of PMB), 55.24 (OCH3 of PMB), 51.37 (OCH3 of 

COOMe), 41.93, 40.31, 35.04 (C-5), 33.86 (C-7), 26.22 (C-9), 25.97 (CH3 of tBu of 

TBS), 25.83 (CH3 of tBu of TBS), 20.88 (C-8), 18.10 (Me3(C)-Si), 18.02 (Me3(C)-Si), 

9.98, 9.49, -3.79 (CH3 of TBS), -4.37 (CH3 of TBS), -4.46 (CH3 of TBS), -4.52 (CH3 of 

TBS)(ppm) ; HRMS (ESI, positive) m/z for C35H66O6Si2 [M+Na]+: calcd 633.3977, found 

633.3968. 

(3R,4R,5S,9S)-3,5-bis(tert-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-4-

methylundecan-1-ol with di-deuteride at the C-1 position (17): Lithiumaluminum 

deuteride (180 mg, 4.30 mmol) was added to a solution of compound (16; 1.75 g, 2.86 

mmol) in anhydrous diethyl ether (50 mL) portionwise over 5 min at 0 °C. The reaction 

mixture was then stirred at 0 °C for 30 min. After quenching with water (25 mL), the 

aqueous phase was extracted with diethyl ether (20 mL x 2 times). The combined organic 

phases were washed with brine (30 mL), dried over an anhydrous sodium sulfate, filtered, 

and concentrated under reduced pressure. The resulting residue was subjected to flash 

column chromatography on silica gel. The target compound was eluted with 10 % 

EtOAc/Hexanes (17; 82 mg, 0.14 mmol, 5%). A side product was also isolated (18 and 

19; combined yield: 852 g, 1.81 mol, 63%) with 50% EtOAc/Hexane solution.  

Compound 17: 1H NMR (CDCl3, 400 MHz) δ (ppm) ; 7.24 (d, 2H, J = 8.4 Hz, 
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PhH of PMB), 6.85 (d, 2H, J = 8.4 Hz, PhH of PMB),4.44 (d, 1H, J = 11.2 Hz, CH2 of 

PMB), 4.37 (d, 1H, J = 11.2 Hz, CH2 of PMB) 3.88-3.83 (m, 1H, 3-CH), 3.77 (s, 3H, 

OCH3 of PMB), 3.69-3.65 (m, 1H, 5-CH), 3.28-3.25 (m, 1H, 9-CH), 1.87-1.14 (m, 11H, 

2-CH2+4-CH+6-CH2+7-CH2+8-CH2+10-CH2), 0.92-0.84 (m, 24H, CH3 of tBu of TBS, 

11-CH3, 4-CH3), 0.07-(-0.01) (m, 12H, CH3 of TBS); 13C NMR (CDCl3, 100MHz) δ 

(ppm) ; HRMS (ESI, positive) m/z for C32H60D2O5Si2 [M+Na]+: calcd 607.4154, found 

607.4169. 

Mono-deprotected product 18 and 19: HRMS (ESI, positive) m/z for 

C26H46D2O5Si2 [M+Na]+: calcd 493.3289, found 493.3301. 

5-((3R,4R,5S,9S)-3,5-bis(tert-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-4-

methylundecylthio)-1-phenyl-1H-tetrazole with di-deuteride at C-1 position (20): 

Method A: A solution of the alcohol (17, 142 mg, 0.24 mmol), 1-phenyl-1H-tetrazole-5-

thiol (65 mg, 0.36 mmol), triphenylphosphine (96 mg, 0.36 mmol), and diisopropyl 

azodicarboxylate (DIAD; 74 mg, 0.36 mmol) in anhydrous THF (5 mL) was stirred at 

room temperature for 15 hr. The resulting yellow suspension was concentrated under 

reduced pressure and subjected directly to flash column chromatography. An 

intermediate was eluted with 10% EtOAc/Hexane (20, 203 mg, 0.27 mmol, quantitative). 

Method B: 1) A solution of the mono-TBS protected products from the previous step (18 

and 19; 852 mg, 1.81 mmol), 1-phenyl-1H-tetrazole-5-thiol (645 mg, 3.62 mmol), 

triphenylphosphine (475 mg, 1.81 mmol), and diisopropylazodicarboxylate (DIAD; 366 

mg, 1.81 mmol) in anhydrous THF (15 mL) was stirred at room temperature for 15 hr. 

The resulting yellow suspension was concentrated under reduced pressure and subjected 
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directly to flash column chromatography, and the intermediate was eluted with 20% 

EtOAc/Hexane (1.03 g, 1.63 mmol). 2) TBSOTf (1.30 g, 4.90 mmol) was added to a 

solution of the above intermediate (1.03 g, 1.63 mmol) and 2,6-lutidine (0.88 g, 8.10 

mmol) in anhydrous dichloromethane (20 mL) at -78 °C over 5 min. The reaction mixture 

was then slowly warmed to room temperature with stirring for 20 hr. After quenching 

with water (20 mL), the aqueous phase was extracted with dichloromethane (20 mL x 3 

times). The collected organic phases were dried over an anhydrous sodium sulfate pad, 

filtered, and concentrated under reduced pressure. The resulting residue was subjected to 

flash column chromatography. The target compound was eluted with 10% 

EtOAc/Hexane (729 mg, 0.98 mmol, 54% for 2 steps).  

1H NMR (CDCl3, 400 MHz) δ (ppm) ; 7.56-7.50 (m, 5H, PhH), 7.24-7.22 (m, 2H, 

PhH of PMB), 6.85-6.81 (m, 2H, PhH of PMB), 4.43-4.39 (dd, 2H, J = 16.0, 11.2 Hz, 

CH2 of PMB), 3.84-3.74 (m, 5H, OCH3 of PMB, 3-CH, 5-CH), 3.29-3.26 (9-CH), 2.14 

(dd, 1H, J = 14.0, 4.8 Hz, 2-CH2), 1.95 (dd, 1H, J = 14.0, 4.8 Hz, 2-CH2), 1.68-1.24 (m, 

8H, 6-CH2+7-CH2+8-CH2+10-CH2), 0,92-0.79 (m, 24H, CH3 of tBu of TBS, 11-CH3, 4-

CH3), 0.03-(-0.02) (m, 12H, CH3 of TBS);13C NMR (CDCl3, 100 MHz) δ 

(ppm)158.92(Ph(C) of PMB), 154.21 (C=N of tetrazole), 133.69 (Ph(C) of PMB), 131.14 

(Ph(C) of Ph), 129.94 (Ph(C) of PMB), 129.68 (Ph(C) of Ph), 129.18(Ph(C) of Ph), 

123.70 (Ph(C) of Ph), 113.61 (Ph(C) of PMB), 79.65 (C-10), 72.31 (C-4), 71.99 (C-6), 

70.39 (CH2 of PMB), 55.16 (OCH3 of PMB), 40.61 (C-11), 35.34 (C-5), 33.77 (C-7), 

33.59 (C-3), 26.20 (C-9), 25.90 (CH3 of tBu of TBS), 25.87 (CH3 of tBu of TBS), 25.71 

(C-2), 21.13 (C-8), 18.04 (Me3(C)-Si), 9.70 (C-12), 9.46 (5-CH3), -3.71 (CH3 of TBS), -
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4.15 (CH3 of TBS), -4.43 (CH3 of TBS), -4.47 (CH3 of TBS); HRMS (ESI, positive) m/z 

C39H64D2N4O4SSi2 for [M+H]+: calcd 745.4542, found 745.4553. 

5-((3R,4R,5S,9S)-3,5-bis(tert-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-4-

methylundecylsulfonyl)-1-phenyl-1H-tetrazole with di-deuteride at C-1 position (21) 

: A solution of ammonium heptamolybdate tetrahydrate (302 mg, 0.24 mmol) in 30% 

hydrogen peroxide (1.17 mL) was added to a solution of thioether compound (20; 720 

mg, 0.98 mmol) in ethanol (25 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 

21 hr, and the suspension was then filtered through a filter paper. The resulting filtrate 

was evaporated under reduced pressure, and partitioned between ethyl acetate (20 mL x 2 

times) and brine. The combined organic phases were dried over an anhydrous sodium 

sulfate, filtered, and concentrated under reduced pressure. The resulting residue was 

purified with flash column chromatography on silica gel. The target compound was 

eluted with 10% EtOAc/Hexane (697 mg, 0.90 mmol, 92%). 

1H NMR (DMSO-d6, 400 MHz) δ (ppm) 7.69-7.66 (m, 2H, PhH), 7.60-7.55 (m, 

3H, PhH), 7.23 (d, 2H, J = 8.0 Hz, PhH of PMB), 6.83 (d, 2H, J = 8.4 Hz, PhH of PMB), 

4.45-4.36 (m, 2H, CH2 of PMB), 3.88-3.76 (m, 5H, OCH3 of PMB, 3-CH, 5-CH), 3.30-

3.27 (m, 1H, 9-CH), 2.25 (dd, 1H, J = 13.6 Hz, 4 Hz, 2-CH2), 2.12 (dd, 1H, J = 13.6 Hz, 

4.4 Hz, 2-CH2), 1.59-1.24 (m, 9H, 4-CH+6-CH2+7-CH2+8-CH2+10-CH2), 0.90-0.82 (m, 

24H, CH3 of tBu of TBS+12-CH3+4-CH3), 0.07-0.00 (m, 12H, CH3 of TBS); 13C NMR 

(DMSO-d6, 100MHz) δ (ppm) 158.96 (Ph(C) of PMB), 153.39 (C=N of tetrazole), 

133.00 (Ph(C) of PMB), 131.32 (Ph(C) of Ph), 131.08 (Ph(C) of PMB), 129.63 (Ph(C) of 

Ph), 129.22 (Ph(C) of PMB), 124.91 (Ph(C) of Ph), 113.64 (Ph(C) of PMB), 79.55 (C-
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10), 71.58 (C-4), 71.44 (C-6), 70.43 (CH2 of PMB), 55.16 (OCH3 of PMB), 40.58 (C-11), 

35.37 (C-5), 33.65 (C-7), 26.20 (C-9), 26.03, 25.84 (CH3 of tBu of TBS), 25.83 (CH3 of 

tBu of TBS), 21.37 (C-8), 18.04 (Me3(C)-Si), 18.00(Me3(C)-Si), 9.56 (C-12), 9.45 (5-

CH3), -3.60 (CH3 of TBS), -4.33 (CH3 of TBS), -4.54 (CH3 of TBS), -4.58 (CH3 of 

TBS); HRMS (ESI, positive) m/z for C39H64D2N4O6SSi2 [M+H]+: calcd 777.4440, found 

777.4440. 

B. Synthesis of [C13-2H] SpnL Substrate Analog by Coupling reactions and 

enzymatic conversions: The overall synthetic scheme is pictured in Scheme 3-4. 

TBSO

OPMBEt

Me

S

TBSO

N
N

NN
Ph

O O

O
TBSO OTBS

I

KHMDS, THF
-78 oC to RT, 18 h, ?? %

TBSO

OPMBEt

Me

TBSO

I

TBSO OTBS

Pd2(dba)3, Ph3As, DMF
RT, 18 h, ?? %

Bu3Sn OEt

O

TBSO

OPMBEt

Me

TBSO TBSO OTBS

OEt

O TBSO

OHEt

Me

TBSO TBSO OTBS

OH

O
1. LiOH, H2O, THF, MeOH

Reflux, 3 h, ?? %
2. DDQ, DCM, pH 7.0 buffer
-10 oC to 0 oC, 18 h, ?? %

TBSO

OEt

O

Me

OTBS

OTBS
OTBS1. , DIPEA, THF

RT, 3 h

O

Cl

Cl

Cl

Cl

2. DMAP, toluene, RT, 18 h

OH

OEt

O

Me

OH

OH
OHTBAF, THF

OH

OEt

O

Me

OH

OH
OSpnJ

2 steps, ?? %

?? %

21 23

25 26

27 28 29

22 24

D D

OH

OEt

O

Me

OH

OSpnM

30

OH

OEt

O

Me

OH

OSpnF

31

HH

H H

D

D

D D

D D

D

D

OH

OEt

O

Me

O

OSpnG

5

HH

H H

D
O

OH

OH
OH

Me

 
 

Scheme 3-4. Preparation of [C13-2H] SpnL substrate analog 
 

 (1E,4R,6R,7E,10R,11R,12S,16S)-4,6,10,12-Tetrakis(tert-butyldimethylsilyloxy)-11-

methyl-16-(4-methoxybenzyloxy)octadeca-1,7-diene with mono-deuteriude at C-8 

position (23): Potassium hexamethyldisilazide (KHMDS; 0.5 M in toluene, 2.0 mL, 1.00 
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mmol) was added dropwise to a solution of fragment A (21) (706 mg, 0.91 mmol) in THF 

(20 mL) at -78 °C over 10 min. The reaction mixture was stirred at -78 °C for 30 min, at 

which time fragment B (22) (546 mg, 1.09 mmol) in THF (10 mL) was added to the 

resulting yellow solution at -78 °C over 30 min. The reaction temperature was slowly 

raised to room temperature, and the reaction mixture was further stirred at room 

temperature for 19 hr. The mixture was then poured into a saturated aqueous sodium 

bicarbonate solution (20 mL). After stirring for 10 min, the aqueous phase was extracted 

with diethyl ether (30 mL × 2 times). The combined organic phases were then washed 

with brine, dried over an anhydrous sodium sulfate pad, filtered, and concentrated under 

reduced pressure. The residue was subjected to flash column chromatography. The target 

compound was eluted with 2% EtOAc/Hexanes (827 mg, 0.79 mmol, 87%). 

1H NMR (CDCl3, 400 MHz) δ (ppm) 7.25-7.23 (m, 2H, PhH of PMB), 6.85-6.82 

(m, 2H, PhH of PMB), 6.50-6.43 (m, 1H, 2-CH), 6.06-5.96 (ddt, J =26.4, 14.4, 1.2 Hz), 

5.37 (d, 1H, 6.4 Hz, 7-CH), 4.41 (s, 2H, CH2 of PMB), 4.10-4.06 (m, 1H, 6-CH), 3.77 

(s, 3H, OCH3 of PMB), 3.75-3.71 (m, 1H, 10-CH), 3.67-3.66 (m, 1H, 12-CH), 3.28-3.26 

(m, 16-CH), 2.24-2.05 (m, 4H, 3-CH2 and 9-CH2), 1.81-1.23 (m, 11H, 5-CH2, 11-CH, 

13-CH2, 14-CH2, 15-CH2 and 17-CH2), 0.91-0.82 (m, 42H, 11-CH3, 18-CH3 and CH3 of 

tBu of TBS), 0.07-(-0.02) (m, 24H, CH3 of TBS);13C NMR (CDCl3, 100 MHz) δ 

159.01(Ph(C) of PMB), 143.29 (C-2), 135.42 (C-7), 131.29(Ph(C) of PMB), 

129.16(Ph(C) of PMB), 113.70(Ph(C) of PMB), 79.77 (C-16), 76.45 (C-1), 72.89 (C-

12), 72.23 (C-10), 70.68(C-4), 70.45(CH2 of PMB), 68.21, 55.25(OCH3 of PMB), 

46.02, 43.56, 43.46, 41.25 (C-11), 40.23 (C-5),37.75, 35.39 (C-15), 33.90 (C-13), 26.24 
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(C-17), 25.97(CH3 of tBu of TBS), 25.89(CH3 of tBu of TBS), 25.85(CH3 of tBu of 

TBS), 25.74(CH3 of tBu of TBS), 21.28 (C-14), 18.13(Me3(C)-Si), 18.01(Me3(C)-Si), 

9.51 (C-18), -3.74(CH3 of TBS), -3.91(CH3 of TBS), -4.26(CH3 of TBS), -4.35(CH3 of 

TBS), -4.43(CH3 of TBS), -4.49(CH3 of TBS), -4.61(CH3 of TBS), -4.72 (CH3 of 

TBS)(ppm) ; HRMS (ESI, positive) m/z for C51H98DIO6Si4 [M+Na]+: calcd 1070.5518, 

found 1070.5522. 

(2E,4E,6E,9R,11R,12E,15R,16R,17S,21S)-Ethyl 9,11,15,17-Tetrakis(tert-

butyldimethylsilyloxy)-16-methyl-21-(4-methoxybenzyloxy)tricosa-2,4,6,12-

tetraenoate with mono-deuteride at 13-position (25): Tris(dibenzylideneacetone) 

dipalladium (Pd2(dba)3; 36 mg, 0.04 mmol) and triphenylarsine (48 mg, 0.16 mmol) 

were added to a solution of vinyliodide (23, 827 mg, 0.79 mmol) and fragment C (24) 

(491 mg, 1.18 mmol) in anhydrous N,N-dimethylformamide (15 mL) at room 

temperature. The reaction mixture was stirred for 19 hr at room temperature, at which 

time water (30 mL) was added. The reaction mixture was extracted with diethyl ether 

(25 mL × 2 times), and the resulting organic phases were washed with brine (20 mL), 

dried over an anhydrous sodium sulfate pad, filtered, and concentrated under reduced 

pressure. The residue was subjected to flash column chromatography. The target 

compound was eluted with 2% to 5% EtOAc/Hexane (602 mg, 0.58 mmol, 74%). 

1H NMR (CDCl3, 400 MHz) δ (ppm); ) 7.28-7.23 (m, 3H, 3-CH and PhH of 

PMB), 6.84 (d, 2H, J = 8.4 Hz, PhH of PMB), 6.50 (dd, 2H, J = 14.8 Hz, 10.4 Hz, 5-

CH), 6.22-6.07 (m, 2H, 4-CH and 6-CH), 5.92-5.87 (m, 1H, 7-CH), 5.82 (d, 1H, J = 

15.2 Hz, 2-CH), 5.37 (d, 1H, J = 6.8 Hz, 12-CH), 4.40 (s, 2H, CH2 of PMB), 4.18 (q, 



 204 

2H, J = 7.2 Hz, CH2CH3 of OEt), 4.12-4.08 (m, 1H, 11-CH), 3.84-3.79 (m, 1H, 9-CH), 

3.77 (s, 3H, OCH3 of PMB), 3.74-3.70 (m, 1H, 15-CH), 3.68-3.64 (m, 1H, 17-CH), 

3.28-3.24 (m, 1H, 21-CH), 2.37-2.32 (m, 1H, 8-CH2), 2.23-2.18 (m, 3H, 14-CH2 and 8-

CH2), 1.73-1.66 (m, 1H, 10-CH2), 1.61-1.23 (m, 13H, 10-CH2, 16-CH, 18-CH2, 19-CH2, 

20-CH2, 22-CH2 and CH2CH3 of OEt), 0.91-0.82 (m, 42H, 16-CH3, 23-CH3 and CH3 of 

tBu of TBS), 0.01--0.02 (m, 24H, CH3 of TBS); 13C NMR (CDCl3, 100 MHz) δ (ppm) 

167.19 (1-C=O), 158.99(Ph(C) of PMB), 144.74 (C-3), 140.91 (C-5), 136.55 (C-7), 

132.02 (C-6), 131.25(Ph(C) of PMB), 129.19(Ph(C) of PMB), 128.12 (C-4), 120.23 (C-

2), 113.68(Ph(C) of PMB), 79.77 (C-21), 72.84 (C-17), 72.21 (C-9), 70.75, 70.45(CH2 

of PMB), 68.92, 60.20 (CH2 of OEt), 55.25(OCH3 of PMB), 46.12, 41.20, 40.74, 37.75, 

35.38 (C-20), 33.88 (C-18), 26.22 (C-22), 25.96(CH3 of tBu of TBS), 25.89(CH3 of tBu 

of TBS), 25.85(CH3 of tBu of TBS), 21.27 (C-19), 18.13(Me3(C)-Si), 18.03(Me3(C)-Si), 

14.31 (CH3 of OEt), 9.49 (C-23), -3.74(CH3 of TBS), -3.94(CH3 of TBS), -4.32(CH3 of 

TBS), -4.39(CH3 of TBS), -4.53(CH3 of TBS), -4.75(CH3 of TBS); HRMS (ESI, 

positive) m/z for C58H107DO8Si4 [M+Na]+: calcd 1068.7076, found 1068.7096. 

(2E,4E,6E,9R,11R,12E,15R,16R,17S,21S)-9,11,15,17-Tetrakis(tert-

butyldimethylsilyloxy)-21-hydroxy-16-methyltricosa-2,4,6,12-tetraenoic acid with 

mono-deuteride at 13-position (26): Lithium hydroxide (140 mg, 5.83 mg) was added to 

a solution of long-chain compound (25, 602 mg, 0.58 mmol) in a solution of THF (12 

mL), methanol (12 mL), and water (12 mL) at room temperature. The reaction mixture 

was stirred under reflux for 3 hr, at which time volatile solvents were evaporated under 

reduced pressure. The pH of the aqueous solution was adjusted to approximately 7 by 
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addition of 1 N aqueous hydrochloric acid solution, and the mixture was extracted with 

ethyl acetate (20 mL × 3 times). The organic extracts were pooled, dried over an 

anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was 

subjected to flash column chromatography. The target carboxylic acid compound was 

eluted with 20% to 35% EtOAc/Hexane (483 mg, 0.47 mmol, 81%). 

1H NMR (CDCl3, 400 MHz) δ (ppm) 7.36 (dd, 1H, J = 14.4 Hz, 12.0 Hz, 3-CH), 

7.25 (d, 2H, J = 8.0 Hz, PhH of PMB), 6.85 (d, 2H, J = 8.4 Hz, PhH of PMB), 6.55 (dd, 

J = 14.0, 11.2 Hz, 5-CH), 6.25-6.10 (m, 2H, 4-CH and 6-CH), 5.96-5.90 (m, 1H, 7-CH), 

5.83 (d, 1H, J = 15.6 Hz, 2-CH), 5.39 (d, 1H, J = 6.8 Hz, 12-CH), 4.41 (s, 2H, CH2 of 

PMB), 4.12-4.11 (m, 1H, 11-CH), 3.84-3.82 (m, 1H, 9-CH), 3.78 (s, 3H, OCH3 of 

PMB),3.76-3.73 (m, 1H, 15-CH), 3.68-3.66 (m, 1H, 17-CH), 3.29-3.28 (m, 1H, 21-CH), 

2.39-2.36 (m, 1H, 8-CH2), 2.25-2.23 (m, 3H, 14-CH2 and 8-CH2), 1.73-1.24 (m, 11H, 

10-CH2, 16-CH, 18-CH2, 19-CH2, 20-CH2, 22-CH2), 0.91-0.82 (m, 42H, 16-CH3, 23-

CH3 and CH3 of tBu of TBS), 0.02-0.00 (m, 24H, CH3 of TBS); 13C NMR (CDCl3, 125 

MHz) δ (ppm)159.02(Ph(C) of PMB), 147.08 (C-3), 142.09(C-5), 137.51 (C-7), 135.49 

(C-12), 131.94 (C-6), 131.29(Ph(C) of PMB), 129.19(Ph(C) of PMB), 127.86 (C-2), 

118.84 (C-2), 113.71(Ph(C) of PMB), 79.79 (C-21), 72.89 (C-17), 72.26, 70.77, 

70.46(CH2 of PMB), 68.92, 55.25 (OCH3 of PMB), 46.15, 44.36, 41.27, 40.77, 37.77, 

35.41, 33.91, 33.17, 31.42, 29.69, 26.26 (C-22), 25.97(CH3 of tBu of TBS), 25.91(CH3 

of tBu of TBS), 25.85(CH3 of tBu of TBS), 21.30 (C-19), 18.17(Me3(C)-Si), 

18.14(Me3(C)-Si), 18.04(Me3(C)-Si), 9.50, -3.73(CH3 of TBS), -3.76(CH3 of TBS), -

3.92(CH3 of TBS), -4.26(CH3 of TBS), -4,32(CH3 of TBS), -4.37(CH3 of TBS), -
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4.51(CH3 of TBS), -4.72(CH3 of TBS); HRMS (ESI, positive) m/z for C56H103DO9Si4 

[M+Na]+: calcd 1040.6763, found 1040.6747. 

2) 2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ; 269 mg, 1.19 mmol) was added to a 

solution of the carboxylic acid from the previous step (483 mg, 0.47 mmol) in 

dichloromethane (45 mL) and pH 7 phosphate buffer (5 mL) at 0 °C. The reaction 

mixture was stirred at 0 °C for 17 hr, at which time saturated aqueous ammonium 

chloride solution (20 mL) was added. The aqueous phase was extracted with 

dichloromethane (20 mL × 3 times). The combined organic phases were dried over an 

anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was 

subjected to flash column chromatography. The target compound was eluted with 20% to 

35% EtOAc/Hexanes (126 mg, 0.14 mmol, 30%). 

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.37 (dd, 1H, J = 15.1, 11.5 Hz, 3-CH), 6.57 

(dd, 1H, J = 14.6, 11.0 Hz, 5-CH), 6.24 (dd, 1H, J  = 14.6, 11.4 Hz, 4-CH), 6.16 (dd, 

1H, J = 15.1, 11.0 Hz, 6-CH), 5.96 (quint, 1H, J = 7.5 Hz, 7-CH), 5.85 (d, 1H, J = 15.5 

Hz, 2-CH), 5.41 (d, 1H, J = 6.5 Hz, 12-CH), 4.14 (br q, 1H, J = 7.0 Hz, 11-CH), 3.86-

3.81 (m, 1H, 9-H), 3.75 (q, 1H, J = 5.5 Hz, 15-CH), 3.69 (q, 1H, J = 5.5 Hz, 1H, 17-CH), 

3.53-3.49 (m, 1H, 21-H), 2.41-2.37 (m, 1H, 8-CH2),2.26-2.22 (m, 3H, 8-CH2, 14-CH2), 

1.75-1.25 (m, 11H, 10-CH2, 16-CH, 18-CH2, 19-CH2, 20-CH2, 22-CH2), 0.90-0.88 (m, 

42H, 16-CH3, 23-CH3 and CH3 of tBu of TBS), 0.06-0.02 (m, 24H, CH3 of TBS); 13C 

NMR (CDCl3, 125 MHz) δ (ppm) 171.21 (1-C=O), 147.03 (C-3), 142.04 (C-5), 137.38 

(C-7), 132.00 (C-6), 127.91 (C-4), 119.03 (C-2), 73.08 (C-21), 72.63, 72.19, 70.82 (C-9), 

68.97, 46.15, 40.82 (C-16), 40.65, 40.11, 37.57, 37.43, 35.71, 35.06, 30.12, 29.70, 27.84 
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(C-22), 26.84, 25.95(CH3 of tBu of TBS), 25.93(CH3 of tBu of TBS), 25.87(CH3 of tBu of 

TBS), 21.33 (C-19), 18.19(Me3(C)-Si), 18.16(Me3(C)-Si), 18.12(Me3(C)-Si), 

18.05(Me3(C)-Si), 9.88 (C-23), 9.32 (16-CH3), -3.77(CH3 of TBS), -3.82(CH3 of TBS), -

3.98(CH3 of TBS), -4.29(CH3 of TBS), -4.38(CH3 of TBS), -4.59(CH3 of TBS), -

4.71(CH3 of TBS); HRMS (ESI, positive) m/z for C48H95DO7Si4 [M+Na]+: calcd 

920.6188, found 920.6159. 

(3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-10,12,16,18-tetrakis(tert-

butyldimethylsilyloxy)-22-ethyl-17-methyloxacyclodocosa-3,5,7,13-tetraen-2-one 

with mono-deuteride at 13-position (27): A solution of N,N-diisopropylethylamine ( 

0.6 mL, 0.4 M, 0.24 mmol) in THF was mixed with acid compound (26; 108 mg, 0.12 

mmol) in THF (15 mL). A 2,4,6-Trichlorobenzoyl chloride solution (0.33 mL, 0.4 M, 

0.13 mmol) in THF was added to the mixture at room temperature. The reaction mixture 

was stirred at room temperature for 3 hr, and concentrated under reduced pressure to 

afford the crude anhydride intermediate. A solution of the obtained anhydride in toluene 

(6 mL) was added to a solution of N,N-dimethylaminopyridine (DMAP; 44 mg, 0.36 

mmol) in toluene (17 mL) was added using a syringe pump over 3 hr. At the end of the 

addition, the syringe was rinsed with additional toluene (2 mL). After stirring for 14 hr, 

the mixture was quenched with a saturated aqueous sodium bicarbonate solution (10 mL), 

and the aqueous phase was extracted with ethyl acetate (10 mL x 3 times). The combined 

organic phases were washed with brine (20 mL), dried over an anhydrous sodium sulfate 

pad, and concentrated under reduced pressure. The crude residue was purified with flash 

column chromatography. The target compound was eluted with 4% EtOAc/Hexanes (55 
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mg, 0.06 mmol, 52%). 

1H NMR (CDCl3, 500 MHz) δ (ppm); 13C NMR (CDCl3, 125 MHz) δ (ppm) ; 

HRMS (ESI, positive) m/z for C48H93DO6Si4 [M+Na]+: calcd 902.6082 , found 902.6062. 

(3E,5E,7E,10R,12R,13E,16R,17R,18S,22S)-22-ethyl-10,12,16,18-tetrahydroxy-17-

methyloxacyclodocosa-3,5,7,13-tetraen-2-one with mono-deuteride at 13-position 

(28): A solution of the macrolactone ( mg, mmol) in hydrogen fluoride-pyridine complex 

( mL) was stirred at 0 °C for 4 days until the starting material was no longer detectable. 

After quenching with a saturated aqueous sodium bicarbonate solution ( mL) at 0 °C, the 

aqueous phase was extracted with dichloromethane ( mL x 3 times). The combined 

organic phases were dried over an anhydrous sodium sulfate pad, and concentrated under 

reduced pressure. The resulting residue was purified with flash column chromatography 

on silica gel. The target compound was elute with 5% MeOH/DCM solution ( mg, mmol, 

%). 

1H NMR (DMSO-d6, 500 MHz) δ (ppm) ; 13C NMR (DMSO-d6, 125 MHz) δ 

(ppm) ; HRMS (ESI, positive) m/z for C24H37DO6 [M+Na]+: calcd 446.2629, found . 

[C13-
2
H] SpnL substrate analog (5): SpnJ ( µM), SpnM ( µM), SpnF ( µM) and SpnG 

( µM) were added to a solution of macrolactone (28; mg, mM in DMSO) and TDP-L-

rhamnose ( mM) in magnesium chloride ( mM) and Tris·HCl buffer (50 mM) at 30 °C 

with stirring. Through the incubation, the reaction was monitored by HPLC using a 4 x 

250 mm Econosil C18 column (Alltech). Compounds were detected by their absorbance 

at 254 nm, and the column was eluted at a rate of 1 mL/min with water (A) and 

acetonitrile (B) using the following gradient. Initially the eluting solution was only 30% 
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B, then increased at a linear rate to 45% in 30 min, then linearly to 80% in 3 min, and 

finally decreased linearly back to 30% in 3 min. After incubation at 30 °C for 2.5 hr, at 

which point the reaction was completed, the reaction mixture was directly filtered 

through a YM-10 membrane filter by centrifugation at 4,000 rpm over 40 min. The clear 

filtrate was purified by semi-preparative HPLC using a 10 x 250 mm Econosil C18 

column (254 nm, Alltech). The column was eluted at 4 mL/min with water (A) versus 

acetonitrile (B) and the following gradient. Initially the concentration of B in the elution 

solution was 30%. This was raised linearly to 45% in 30 min, then again to 80% linearly 

over 3 min, and finally decreased linearly to 30% in 3 min. Collected fractions were 

pooled, extracted with EtOAc (50 mL x 3 times), dried over an anhydrous sodium sulfate 

pad, and concentrated under reduce pressure to produce a target compound ( mg,%).  

1H NMR (DMSO-d6, 500 MHz) δ (ppm) ; 13C NMR (DMSO-d6, 125 MHz) δ 

(ppm) ; HRMS (CI, negative) m/z for C30H43DO9 [M+Na]+: calcd 572.2940, found . 

3.2.6. Synthesis of the C13-F SpnL Substrate Analogue 

A. Synthesis of C13-F SpnL Substrate Analog by Fragment A Modification, Coupling 

reactions, and enzymatic conversions: The overall synthetic scheme is pictured in 

Scheme 3-5. 



 210 

TBSO

OPMBEt

Me
S

TBSO

N
N

NN
Ph

O O

O
TBSO OTBS

I

KHMDS, THF
-78 oC to RT, 18 h, 84 %

TBSO

OPMBEt

Me

TBSO
I

OTBS OTBS

Pd2(dba)3, Ph3As, DMF
RT, 18 h, 81 %

Bu3Sn OEt

O

TBSO

OPMBEt

Me

TBSO OTBS OTBS

OEt

O TBSO

OHEt

Me

TBSO OTBS OTBS

OH

O
1. LiOH, H2O, THF, MeOH

Ref lux, 3 h, 53 %
2. DDQ, DCM, pH 7.0 buffer
-10 oC to 0 oC, 18 h, 64 %

TBSO

OEt

O

Me

OTBS

OTBS
OTBS1. , DIPEA, THF

RT, 3 h

O

Cl

Cl

Cl

Cl

2. DMAP, toluene, RT, 18 h

OH

OEt

O

Me

OH

OH
OHHF-Pyridine

OH

OEt

O

Me

OH

OH
OSpnJ

2 steps, 49 %

21 %

32: R=H

33: R=F

34

35 36

37 38 39

22 24

R

OH

OEt

O

Me

OH

OSpnM

40

OH

OEt

O

Me

OH

OSpnF

41

HH

H H

F

F

F F

F F

F

F

OH

OEt

O

Me

O

OSpnG

6

HH

H H

F
O

OH

OH
OH

Me

LDA, NFSI, THF
-78 oC to 0 oC, 18 h

81 % (F/H ratio = 4/1)

 
 

Scheme 3-5. Preparation of C13-F SpnL substrate analog 
 

5-((3R,4R,5S,9S)-5-(tert-butyldimethylsilyloxy)-1-fluoro-9-(4-methoxybenzyloxy)-4-

methyl-3-(triethylsilyloxy)undecylsulfonyl)-1-phenyl-1H-tetrazole (33): Lithium 

diisopropylamide solution (1.5 mL, 2.0 M, 3.0 mmol) was added dropwise to a solution 

of the sulfone (1.7 g, 2.2 mmol) in anhydrous THF (50 mL) over 15 min at -78 °C, and 

the reaction mixture was stirred at -78 °C for 1 hr. N-fluorobenzenesulfonimide solution 

(NFSI; 830 mg, 2.6 mmol) in THF (10 mL) was then added to the reaction mixture via 

cannular over 40 min at -78 °C. The reaction mixture was allowed to warm to room 

temperature with stirring for 18 hr. After quenching by addition of a saturated aqueous 

ammonium chloride solution (10 mL) at 0 °C, the aqueous phase was extracted with ethyl 

acetate (50 mL x 3 times). The combined organic phases were washed with brine (40 

mL), dried over an anhydrous sodium sulfate pad, filtered, and concentrated under 
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reduced pressure. The resulting residue was subjected to flash column chromatography. 

The fluoro-compound was eluted with 10% EtOAc/Hexanes (1.4 g, 1.8 mmol). Spectral 

data was not the collected. 

HRMS (ESI, positive) m/z for C39H65FN4O6SSi2 [M+Na]+: calcd 815.4045, found 

815.4043. 

(5R,7R,11R,12R,13S,Z)-7,11-bis(tert-butyldimethylsilyloxy)-9-fluoro-5-((E)-3-

iodoallyl)-13-((S)-4-(4-methoxybenzyloxy)hexyl)-2,2,3,3,12,15,15,16,16-nonamethyl-

4,14-dioxa-3,15-disilaheptadec-8-ene (34): Compound (34) was prepared following the 

same procedure as compound (23) using compound (33) and compound (22) with a yield 

of 84%. No spectral data was the collected.  

(2E,4E,6E,9R,11R,12Z,15R,16R,17S)-ethyl 9,11,17-tris(tert-butyldimethylsilyloxy)-

13-fluoro-21-(4-methoxybenzyloxy)-16-methyl-15-(triethylsilyloxy)tricosa-2,4,6,12-

tetraenoate (35): Compound (35) was prepared following the same procedure as 

compound (25) with a yield of 81%.  

1H NMR (CDCl3, 500 MHz) δ (ppm) 7.27 (dd, 1H, J = 11.1, 15.2 Hz, 3-H), 7.24 

(d, 2H, J = 8.5 Hz, PhH of PMB), 6.84 (d, 2H, J = 8.5 Hz, PhH of PMB), 6.49 (dd, 1H, J 

= 11.0, 14.8 Hz, -CH), 6.18 (dd, 1H, J = 11.3, 14.9 Hz, 4-H), 6.10 (dd, 1H, J = 10.7, 15.1 

Hz, 6-H), 5.92-5.86 (m, 1H, 7-H), 5.82 (d, 1H, J = 15.2 Hz, 2-H), 4.62-4.52 (m, 2H, 21-

H+12-H), 4.41 (s, 2H, CH2 of OMB), 4.18 (q, 2H, J = 7.1 Hz, CH2CH3 of OEt), 4.02-

3.99 (m, 1H, 11-H), 3.84-3.80 (m, 1H, 9-H), 3.77 (s, 3H, OCH3 of PMB), 3.68-3.63 (m, 

1H, 15-H), 3.28-3.25 (m, 1H, 17-H), 2.42-2.18 (m, 1H, 8-H), 2.41-2.20 (m, 5H, 8-H,+10-

Hs+14-Hs), 1.73-1.59 (m, 1H, 10-Hs), 1.54-1.46 (m, 9H, 16-H+18-Hs+19-Hs+20-
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Hs+22-Hs), 1.27 (t, 3H, J = 5.2 Hz, CH2CH3 of OEt), 0.95-0.90 (m, 5H, CH2CH3 of 

TES+23-CH3), 0.88-0.84 (m, 30H, 3xtBu of TBS+16-CH3), 0.58 (t, 3H, J = 7.9 Hz, 

CH2CH3 of TES), 0.039-0.002 (m, 24H, CH3 of TBS); 13C NMR (CDCl3, 125 MHz) δ 

(ppm) 167.18 (1-C=O), 159.01, 158.05, 144.75 (C-3), 136.67 (C-5), 132.04 (C-7), 131.34 

(C-6), 129.17, 128.10 (C-4), 120.22 (C-2), 113.71, 79.83 (C-17), 78.46 (C-21), 72.06 (C-

9), 70.47 (CH2 of PMB), 69.11 (C-15), 68.28 (C-11), 60.18 (OCH2CH3 of OEt), 55.25 

(OCH3 of PMB), 47.27, 40.88 (C-8), 37.43 (C-10), 34.55 (C-14), 30.90, 30.12, 25.96, 

21.03, 18.11 (Me3C of tBu of TBS), 18.02 (Me3C of tBu of TBS), 18.01 (Me3C of tBu 

of TBS), 14.31 (OCH2CH3 of OEt), 9.50 (16-CH3), 9.32 (C-23) 6.99 (CH2CH3 of TES), 

5.28 (CH2CH3 of TES), 3.90 (CH3 of TBS), 4.23 (CH3 of TBS), 4.46 (CH3 of TBS), 

4.57 (CH3 of TBS), 4.71 (CH3 of TBS), 5.02 (CH3 of TBS); 19F NMR (CDCl3, 470 

MHz ) δ (ppm) 105.51 (ddd, J = 17.3, 23.2, 39.5 Hz); HRMS (ESI, positive) m/z for 

C58H107FO8Si4 [M+Na]+: calcd 1085.6925, found 1085.6916. 

(2E,4E,6E,9R,11R,12Z,15R,16R,17S,21S)-9,11,17-tris(tert-butyldimethylsilyloxy)-

13-fluoro-21-hydroxy-16-methyl-15-(triethylsilyloxy)tricosa-2,4,6,12-tetraenoic acid 

(36): Compound (36) was prepared following the same procedure as compound (26) with 

a yield of 34% for 2 steps.  

1H NMR (CDCl3, 600 MHz) δ (ppm) 7.35 (dd, 1H, J = 11.2, 15.0 Hz, 3-H), 6.55 

(dd, 1H, J = 11.1, 14.9 Hz, 5-H), 6.22 (dd, 1H, J = 11.5, 14.8 Hz, 4-H), 6.15 (dd, 1H, J = 

10.3, 14.8 Hz, 6-H), 5.99-5.92 (m, 1H, 7-H), 5.83 (d, 1H, J = 15.2 Hz, 2-H), 4.63-4.55 (m, 

2H, 21-H+12-H), 3.99-3.97 (m, 1H, 11-H), 3.85-3.81 (m, 1H, 9-H), 3.68-3.63 (m, 1H, 

15-H), 3.51-3.47 (m, 1H, 17-H), 2.64-2.60 (m, 1H, 8-H), 2.41-2.20 (m, 4H, 8-H+10-
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H+14-Hs), 2.15-1.50 (m, 10H, 10-H+16-H+18-Hs+19-Hs+20-Hs+22-Hs), 0.95-0.90 (m, 

5H, CH2CH3 of TES+23-Hs), 0.88-0.84 (m, 30H, 3 x tBu of TBS+16-CH3), 0.58 (t, 3H, 

J = 7.9 Hz, CH2CH3 of TES), 0.039 (s, 3H, CH3 of TBS), 0.024 (s, 3H, CH3 of TBS), 

0.021 (s, 3H, CH3 of TBS), 0.014 (s, 3H, CH3 of TBS), 0.009 (s, 3H, CH3 of TBS), 

0.003 (s, 3H, CH3 of TBS); 13C NMR (CDCl3, 150 MHz) δ (ppm) 158.06 (1-C=O), 

147.00 (C-3), 142.07 (C-5), 137.54 (C-7), 132.02 (C-6), 127.85 (C-4), 121.37 (C-2), 

118.70 (d, J = 12.2 Hz, C-12), 77.70 (C-17), 76.32 (C-21), 73.09 (C-9), 69.61 (C-15), 

68.91 (C-11), 46.17, 40.98 (C-8), 37.42 (C-10), 34.58 (C-14), 30.91, 30.10, 25.94, 21.00, 

18.13 (Me3C of tBu of TBS), 18.06 (Me3C of tBu of TBS), 18.04 (Me3C of tBu of TBS), 

9.86 (16-CH3), 9.38 (C-23) 6.98 (CH2CH3 of TES), 5.27 (CH2CH3 of TES), 3.94 (CH3 

of TBS), 4.33 (CH3 of TBS), 4.46 (CH3 of TBS), 4.57 (CH3 of TBS), 4.71 (CH3 of 

TBS), 5.06 (CH3 of TBS); 19F NMR (CDCl3, 564 MHz ) δ (ppm) 105.41 (ddd, J = 17.2, 

23.0, 39.6 Hz); HRMS (ESI, negative) m/z for C48H94FO7Si4 [M-H]-: calcd 913.6066, 

found 913.6079. 

(3E,5E,7E,10R,12R,13Z,16R,17R,18S,22S)-10,12,18-tris(tert-butyldimethylsilyloxy)-

22-ethyl-14-fluoro-17-methyl-16-(triethylsilyloxy)oxacyclodocosa-3,5,7,13-tetraen-2-

one (37): Compound (37) was prepared following the same procedure as compound (27) 

with a yield of 49% for 2 steps. No spectral data was the collected. 

(3E,5E,7E,10R,12R,13Z,16R,17R,18S,22S)-22-ethyl-14-fluoro-10,12,16,18-

tetrahydroxy-17-methyloxacyclodocosa-3,5,7,13-tetraen-2-one (38): Hydrogen 

fluoride-pyridine complex (0.38 mL) was added to a solution of the macrolactone (41 

mg, 0.046 mmol) in ethanol (3.8 mL) at 0 °C. The reaction mixture was stirred at 4 °C for 
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4 days, at which time the reaction mixture was quenched by adding a saturated aqueous 

sodium bicarbonate solution (5 mL) at 0 °C. The aqueous phase was extracted with 

dichloromethane (25 mL x 3 times), and the combined organic phases were dried over an 

anhydrous sodium sulfate pad, and concentrated under reduced pressure. The resulting 

residue was purified with flash column chromatography on silica gel. The target 

compound was eluted with 7% MeOH/DCM solution (8.5 mg, 0.056 mmol). 

1H NMR (CDCl3, 600 MHz) δ (ppm) 7.23 (dd, 1H, J = 11.3, 15.6 Hz, 3-H), 6.52 

(dd, 1H, J = 10.8, 14.8 Hz, 5-H), 6.24 (dd, 1H, J = 11.2, 14.9 Hz, 4-H), 6.16 (dd, 1H, J = 

10.9, 15.3 Hz, 6-H), 5.81 (d, 1H, J = 15.3 Hz, 2-H), 5.82-5.76 (m, 1H, 7-H), 4.91-4.87 (m, 

1H, 21-H), 4.73 (dd, 1H, J = 3.8, 8.7 Hz, 12-H), 4.64 (dt. 1H, J = 3.8, 8.7 Hz, 11-H), 

4.07-4.05 (m, 1H, 9-H), 3.95-3.91 (m, 1H, 15-H), 3.78-3.75 (m, 1H, 17-H), 2.64-2.60 (m, 

1H, 8-H), 2.43-2.36 (m, 1H, 10-H), 2.34-2.15 (m, 3H, 8-H+14-Hs), 1.71-1.38 (m, 10H, 

10-H+16-H+18-Hs+19-Hs+20-Hs+22-Hs), 0.89 (t, 3H, J = 7.5 Hz, 23-Hs), 0.77 (t, 3H, J 

= 7.1 Hz, 16-CH3); 13C NMR (CDCl3, 150 MHz) δ (ppm) 166.39 (1-C=O), 144.58 (C-3), 

140.73 (C-5), 134.94 (C-7), 133.31 (C-6), 128.36 (C-4), 120.93 (C-2), 111.28 (d, J = 12.4 

Hz, C-12), 77.74 (C-17), 76.02 (C-21), 73.34 (C-9), 70.70 (C-15), 65.48 (d, J = 6.2 Hz, 

C-11), 43.29, 41.44 (C-8), 40.08, 38.21 (C-10), 35.91 (C-14), 34.77, 32.73, 27.68, 9.74 

(C-23), 4.18 (16-CH3); 19F NMR (CDCl3, 564 MHz ) δ (ppm) -105.38 (ddd, J = 17.3, 

23.1, 39.8 Hz); HRMS (ESI, positive) m/z for C24H37FO6 [M+Na]+: calcd 463.24664, 

found 463.24736.  

C13-F SpnL substrate analog (6): 1) A 35 mL solution of fluoro-macrolactone (31.0 

mg, 70.4 µmol), SpnJ (17.4 µM), SpnM (2.5 µM), and SpnF (19.5 µM) in 50 mM 
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Tris·HCl (pH 8) was incubated at 30 °C for 4 hr. The reaction was monitored by HPLC 

for the appearance of product and consumption of substrate, using a 4 x 250 mm Econosil 

C18 column (Alltech). Compounds were detected using absorbance at 254 nm, and the 

column was eluted at a rate of 1mL/mi with water (A) and acetonitrile (B) using the 

following gradient. Initially the concentration of B was 30%, it was increased linearly to 

40% over 36 min, then to 80% over 3 min, kept constant at 80% concentration for 5 min, 

and finally decreased linearly to 30% over 3 min. The product was eluted with a retention 

time of 32.1 min. Based on HPLC analysis, the reaction was almost complete (>95%) 

after 4 hr of incubation. The product was extracted with ethyl acetate (20 mL x 3 times), 

dried over an anhydrous sodium sulfate pad, and concentrated under reduced pressure. 

The residue was purified by flash column chromatography on silica and Prep-HPLC to 

afford a tricyclic aglycone (15.3 mg, 0.0364 mmol, 52%). 2) A 6.8 mL solution including 

above compound (11.4 mg, 0.0704 mmol), TDP-L-rhamnose (9.2 mg, 16.8 mmol), 

MgCl2 (5 mM), and SpnG (80 µM) in 50 mM Tris·HCl (pH 8) was incubated at 30 °C for 

4 hr. The reaction was monitored by HPLC for the appearance of product and 

consumption of substrate, using a 4 x 250 mm Econosil C18 column (Alltech). The 

compounds were detected by absorption at 254 nm, and the column was eluted at a rate 

of 1mL/mi with water (A) and acetonitrile (B) using the following gradient. Initially the 

concentration of B was 30%, this was increased linearly to 40% in 36 min, then to 80% in 

3 min, kept constant at 80% for 5 min, and finally decreased linearly to 30% in 3 min. 

The product eluted had a retention time of 22.1 min. Based on HPLC analysis, the 

reaction was almost complete (>95%) after 4 hr of incubation. The product was extracted 
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with ethyl acetate (20 mL x 3 times), dried over an anhydrous sodium sulfate pad, and 

concentrated under reduced pressure. The resulting residue was directly purified with 

Prep-HPLC to produce a target compound (9.8 mg, 0.0173 mmol, 64%).  

1H NMR (DMSO-d6, 600 MHz) δ (ppm) 6.58 (dd, J = 15.5, 10.0 Hz, 1H, 3-H), 

5.94 (d, J =9.6 Hz, 1H, 6-H), 5.85 (dd, J = 15.6, 0.6 Hz, 1H, 2-H), 5.57 (d, J = 40.8 Hz, 

1H, 14-H), 5.38 (dt, J = 10.8, 4.2 Hz, 1H, 5-H), 4.78-4.74 (m, 1H, 21-H), 4.65-4.63 (m, 

1H, 3’-H), 4.58-4.56 (m, 1H, 1’-H), 4.30-4.26 (m, 1H, 17-H), 3.53-3.51 (m, 1H, 2’-H), 

3.48-3.45 (m, 1H, 9-H), 3.42-3.35 (m, 2H, 4-H, 5’-H), 3.16 (dt, J = 13.2, 5.4 Hz, 1H, 4’-

H), 2.97-2.91 (m, 1H, 12-H), 2.57-2.54 (m, 1H, 7-H), 2.41-2.37 (m, 1H, 16-H), 2.01-1.93 

(m, 3H, 8-Ha, 10-H), 1.84-1.82 (m, 1H, 8-Hb), 1.52-1.34 (m, 5H, 11-H, 18-H, 22-H), 

1.28-1.18 (m, 4H, 19-H, 20-H), 1.12 (d, J = 15.6 Hz, 3H, 6’-H), 1.05 (d, J = 6.6 Hz, 3H, 

24-H), 0.81 (t, J = 7.8 Hz, 3H, 23-H); 13C NMR (DMSO-d6, 150 MHz) δ (ppm) 201.1 (C-

15), 174.2 (C-13), 164.7 (C-1), 145.7 (C-3), 130.7 (C-6), 127.2 (C-5), 122.8 (C-2), 107.7 

(C-14), 98.6 (C-1’), 75.7 (C-21), 74.2 (C-17), 72.0 (C-4’), 71.6 (C-9), 70.7 (C-2’), 70.6 

(C-3’), 68.6 (C-5’), 53.1 (C-16), 45.5 (C-12), 41.0 (C-7), 40.4 (C-4), 36.9 (C-11), 35.41 

(C-10), 35.38 (C-8), 35.1 (C-18), 31.2 (C-20), 27.0 (C-22), 22.0 (C-19), 17.8 (C-6’), 13.9 

(C-24), 9.8 (C-23). HRMS (ESI, positive) m/z for C30H43FO9 [M+Na]+: calcd 589.2789, 

found 589.2794.  

3.2.7. In vitro activity assay of SpnL 

In order to verify the activity of SpnL, a solution containing SpnL natural 

substrate (2; 100 µM) in pH 8.0 Tris buffer (50 mM) was incubated with SpnL (10 µM) 

at 30 °C. Through the incubation, the reaction was monitored by HPLC analysis. HPLC 
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condition was as follows: C18 analytical column (250 x 4.6 mm, 5 µm), gradient from 30 

to 45% acetonitrile in water for 30 min at a rate of 1 mL/min, detected by UV absorption 

at 254 nm. Each aliquot was transferred into half its volume of 1:1 DMSO/acetonitrile 

solution at 0 °C after 1 min, 2 min, 5 min, or 30 min. The quenching mixture was 

centrifuged to precipitate proteins, and the resulting supernatant was subjected to HPLC 

analysis to measure the rate of substrate consumption and product formation.  

3.2.8. Isotope Trace Experiment for the SpnL Reaction 

The pH 8.0 Tris·HCl buffer in a stock solution of SpnL was switched with pD 8.0 

Tris·DCl buffer by centrifugal filtration through a YM 10 membrane filter followed by 

resuspension of the concentrated enzyme in pD 8.0 Tris·DCl buffer. This process was 

repeated twice. A solution containing SpnL natural substrate (2; 500 µM) and SpnL (10 

µM) in pD 8.0 Tris·DCl buffer (50 mM; total volume of 50 µL) was incubated at 30 °C 

for 2 hr. The products were then extracted with ethyl acetate (100 µL) and directly 

analyzed by MS. As a control, SpnL natural product (3; 500 µM) in pD 8.0 Tris·DCl was 

incubated under the same condition, which was extracted with ethyl acetate (100 µL) and 

directly analyzed by MS. 

3.2.9. Kinetic Isotope Effect Studies of the SpnL Reaction Using SpnL Natural 

Substrate and Deuterium-Labeled SpnL Substrate Analogs  

3.2.9.1. Determination of concentration of SpnL natural substrate and deuterium-

labeled SpnL substrate analog 

Prior to the determination of SpnL’s kinetic parameters, concentrations of SpnL 

natural substrate and deuterium-labeled SpnL substrate analog were first standardized 
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based on the area integration of HPLC analysis using para-methoxyacetophenone 

(PMAP) as a reference.  

3.2.9.2. Determination of kinetic parameters for SpnL reaction for SpnL natural 

substrate and deuterium-labeled SpnL substrate analog 

In order to determine kinetic parameters for SpnL reaction, SpnL natural substrate 

(2; 2, 4, 6, 8, 10, 25, 50, 100, 200, and 400 µM; 10 points) and para-

methoxyacetophenone (PMAP; 0.25 equivalent to SpnL natural substrate, used as a 

reference for the reaction progress) was incubated with SpnL (0.5 µM) in pH 8.0 Tris 

buffer (50 mM) containing DMSO (10% v/v) at 30 °C for 1 min and 2 min, which were 

selected to measure the rate of substrate consumption and product formation (Table 2-1). 

After quenching with a half volume of 1:1 DMSO/acetonitrile solution and precipitating 

by centrifugation, the supernatant was subjected to HPLC analysis as described above. 

The same procedure was conducted with the deuterium-labeled SpnL substrate analogs, 

C12-D and C13-D analog. All of the experiments were duplicated at the same time 

period.  

Entry No. 
[SpnL] 
(µM) 

[substrate] 
(µM) 

[PMAP] 
(µM) 

Total volume 
(µL) 

Quenching volume 
(µL) 

Injecting volume 
(µL) 

1 0.5 2.0 0.5 500.0 250.0 500.0 
2 0.5 4.0 1.0 400.0 200.0 400.0 
3 0.5 6.0 1.5 300.0 150.0 300.0 
4 0.5 8.0 2.0 200.0 100.0 200.0 
5 0.5 10.0 2.5 200.0 100.0 200.0 
6 0.5 25.0 6.25 100.0 50.0 100.0 
7 0.5 50.0 12.5 50.0 25.0 50.0 
8 0.5 100.0 25.0 20.0 10.0 20.0 
9 0.5 200.0 50.0 10.0 5.0 10.0 

10 0.5 400.0 100.0 5.0 2.5 5.0 
 
Table 2-1. In vitro activity assay of SpnL for SpnL natural substrate and deuterium-labeled SpnL substrate 
analog  
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3.2.10. Biochemical Studies of the SpnL-Catalyzed Cyclization Using C13-F 

Substrate Analog 

3.2.10.1. In vitro activity assay of SpnL with C13-F SpnL substrate analog 

A solution containing C13-F SpnL substrate analog (=the C13-F analog, 6; 100 

µM), DMSO (5% v/v) in pH 8.0 Tris buffer (50 mM) was pre-incubated at 30 °C for 2 

min, and then the reaction initiated by addition of SpnL (5 µM). Several aliquots were 

quenched with an equal volume of 1:1 DMSO/acetonitrile solution at 0 °C for 30 min and 

4 hr, and the protein precipitated by centrifugation. The resulting supernatant was 

subjected to HPLC analysis as described above. The control reaction was performed with 

SpnL natural substrate under the same condition. 

3.2.10.2. Competition assay of SpnL with SpnL natural substrate and C13-F SpnL 

substrate analog  

A solution containing a mixture of SpnL natural substrate and the C13-F analog 

(totally 500 µM with a ratio of 1:4 by molar concentration) in pH 8.0 Tris buffer (50 mM 

containing 5% v/v of DMSO) was incubated at 30 °C. Two aliquots were quenched with 

an equal volume of 1:1 DMSO/acetonitrile solution at 0 °C, and the protein precipitated 

by centrifugation. The resulting supernatant was subjected to HPLC analysis.  

3.2.10.3. Preincubation in vitro activity assay of SpnL with SpnL natural substrate 

and the C13-F analog 

A solution containing SpnL (20 µM) and the C13-F analog (500 µM) in pH 8.0 

Tris buffer (50 mM) containing (5% v/v) was incubated at 30 °C for various times (5, 10, 
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15, and 30 min), at which point SpnL natural substrate (500 µM) was added to each of the 

reaction mixtures. After continued incubation at 30 °C for 40 min, the reaction mixture 

was quenched with an equal volume of 1:1 DMSO/acetonitrile solution at 0 °C, and the 

precipitate removed by two rounds of centrifugation and supernatant transfer. The 

resulting supernatant was subjected to HPLC analysis. As a control reaction, the same 

experiment was performed for SpnL preincubation without the C13-F analog. 

3.2.10.4. In vitro activity assay of SpnL with SpnL natural substrate, the C13-F 

analog, and L-glutathione 

A solution containing SpnL (10 µM), L-glutathione (0, 250, or 2,000 µM) and the 

C13-F analog (250 µM) in pH 8.0 Tris buffer (50 mM) containing DMSO (5% v/v) was 

preincubated at 30 °C for 5 min, after which SpnL natural substrate (125 µM) was added 

to each of the reaction mixtures. After additional incubation at 30 °C for 30 min, the 

reaction mixture was quenched with an equal volume of 1:1 DMSO/acetonitrile solution 

at 0 °C, and the precipitate was removed by two rounds of centrifugation and supernatant 

transfer. The resulting supernatant was subjected to HPLC analysis. As a control reaction, 

the same experiment was performed for SpnL preincubation without the C13-F analog. 

In order to detect the covalent adduct of the C13-F analog and L-glutathione, a 

solution containing the C13-F analog (3 mM) in pH 8.0 Tris buffer (50 mM) or pH 12.0 

NaOH solution was incubated with L-glutathione (15 mM) at 30 °C in the absence or 

presence of dithiothreitol (100 mM) for 18 hr. The reaction mixture was directly 

subjected to MS analysis. 
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3.2.10.5. Inhibition kinetic study of SpnL with SpnL natural substrate and C13-F 

SpnL substrate analog 

A solution containing the C13-F analog (1.5 µM) and DMSO (6.6%) in pH 8.0 

Tris buffer (50 mM) was preincubated at 30 °C for 2 min. SpnL (1.0 µM) was then added 

into the reaction mixture. After incubation at 30 °C for a specific period of time (10 

seconds and 20 seconds), SpnL natural substrate (125 µM) was added and the reaction 

mixture incubated at 30 °C for additional 30 min. After quenching and two rounds of 

precipitation, the resulting supernatant was subjected to HPLC analysis. As a control 

reaction, the same procedure was conducted without the C13-F analog.  

3.2.10.6. Detection of covalently-modified SpnL with the C13-F analog 

For the inhibition assay, a solution containing SpnL (152 µM) and the C13-F 

analog (300 µM or 75 µM) in pH 8.0 Tris buffer (50 mM) was incubated at 30 °C for 1 

hr, and dialyzed at 4 °C against ammonium bicarbonate buffer (50 mM) thoroughly (4 

times) to remove excess amount of the C13-F analogue. Half of the solution (175 µL) 

was then subjected to ESI-MS analysis. The other half (175 µL) was treated with trypsin 

(5 ug) at 37 °C for 6 hr, and then subjected to ESI-MS analysis. Two sets of reactions 

were prepared as control. One containing only SpnL (152 µM) in pH 8.0 Tris buffer (50 

mM), and the other containing SpnL (152 µM) and SpnL natural substrate (300 µM) in 

pH 8.0 Tris buffer. Both were followed by the same incubation and treatment conditions 

as the inhibition assay. 

3.2.10.7. Detection of covalently-modified SpnL mutant (C71A) with the C13-F 

analog 
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In order to investigate the effect of cysteine residue 71 in the SpnL reaction with 

the C13-F analog, a SpnL mutant (C71A) prepared by Dr. Kim, was used under the same 

experimental conditions described in Section 3.2.9.6. Three trials were performed. SpnL 

C71A alone, SpnL C71A incubated with SpnL natural substrate, and SpnL C71A 

incubated with the C13-F analog. Each trial was analyzed by MALDI-ESI-MS. 

3.2.10.8. Single turnover experiment 

A solution containing the C13-F analog (25 µM or 50 µM) in pH 8.0 Tris buffer (50 mM) 

was preincubated at 30 °C for 2 min. The reaction was initiated by addition of SpnL (22.5 

µM) at 30 °C, and the reaction mixture incubated at 30 °C for either 5 min or 30 min. 

After quenching and two rounds of precipitation, the resulting supernatant was analyzed 

by HPLC.  

3.2.11. Studies on the SAM-dependence of SpnF and SpnL reactions  

3.2.11.1. In vitro activity assay of “as isolated” SpnF and SpnL with external SAM 

First, the content of SAM in as isolated SpnF and SpnL was determined as 

follows. A SpnL solution (210 µM) was denatured with 3 N aqueous hydrochloric acid 

solution at 0 °C, and the protein removed by YM-10 filtration. The resulting filtrate was 

subjected to the UV-VIS and HPLC analysis. The HPLC analysis was conducted with 

Dionex analytical column (CarboPac PA20, 250 x 4.6 mm) eluting with a gradient of 5% 

to 35% aqueous 1 M ammonium acetate solution for 30 min by flow rate of 1.0 mL/min, 

and the compounds detected by UV absorbance at 257 nm. The same procedure was used 

for SpnF. 
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Second, for the control reaction, a solution containing SpnL natural substrate (250 

µM) in pH 8.0 Tris buffer (50 mM) was preincubated without SAM at 30 °C for 2 min, 

and the reaction was then initiated by addition of SpnL (10 µM) at 30 °C. After 

incubation at 30 °C for 3 min, the reaction mixture was quenched with an equal volume 

of 1:1 DMSO/acetonitrile solution at 0 °C, and the protein precipitated by centrifugation. 

The resulting supernatant was subjected to HPLC analysis as described above. 

Third, a solution containing SpnL natural substrate (250 µM) in pH 8.0 Tris 

buffer (50 mM) was preincubated with SAM (500 µM) at 30 °C for 2 min, and the 

reaction then initiated with addition of SpnL (10 µM) at 30 °C. The reaction mixture was 

treated as described above, and submitted to HPLC analysis. 

Lastly, SpnL (10 µM) was preincubated with SAM (500 µM) at 0 °C for 2 hr, and 

then added into a solution containing SpnL natural substrate (250 µM) in pH 8.0 Tris 

buffer (50 mM) at 30 °C. The reaction mixture was treated as described above, and 

submitted to HPLC analysis. 

The same experiments were performed for SpnF in a similar manner using SpnM 

natural substrate combined with SpnM. 

3.2.11.2. In vitro activity assay of apo-SpnF and apo-SpnL with external SAM 

First, A solution containing 1 mL of SpnL (125 µM) in Tris buffer (50 mM) was 

denatured with 2.6 mL of 3 M aqueous KBr solution containing glycerol (20% v/v) at 0 

°C for 2 min, and the protein refolded with 6.6 mL of pH 2.5 saturated aqueous 

ammonium sulfate solution over 5 min. The precipitate was the collected by 

ultracentrifugation (18,000 xg) and resuspended in 4 mL of pH 8.0 Tris buffer (50 mM). 
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The solution was treated again with 3 M KBr solution and 6.6 mL of pH 2.5 saturated 

aqueous ammonium sulfate solution in the same manner described above. The precipitate 

obtained after ultracentrifugation was dissolved in 10 mL of Tris buffer and dialyzed 

against pH 8.0 Tris buffer three times. The dialyzed protein was centrifugally 

concentrated through a YM-10 membrane filter. The supernatant (ca. 1.5 mL) was used 

to determine the SAM content and in the vitro activity assay. The same procedure was 

conducted for SpnF using pH 5.5 saturated aqueous ammonium sulfate solution instead 

of pH 2.5 solution. 

Second, the content of SAM in apo-SpnF and apo-SpnL was determined as 

described above with the UV-VIS analysis and HPLC analysis.  

Third, an in vitro activity assay of apo-SpnF and apo-SpnL in the presence of 

SAM was performed in the same manner as described above. 

Lastly, an in vitro activity assay of apo-SpnF and apo-SpnL was performed in the 

presence of S-adenosyl-l-homocysteine (SAH), 5′-deoxyadenosine, and/or methionine in 

the same manner as described above. 

3.2.11.3. In vitro activity assay of reconstituted-SpnF and reconstituted-SpnL with 

external SAM 

First, a solution containing apo-SpnL (100 µM) in pH 8.0 Tris buffer (50 mM) 

was incubated with SAM (2.5 mM) at 4 °C for 2 hr, at which time excess SAM was 

removed by dialysis against pH 8.0 Tris buffer (50 mM) four times. The dialyzed enzyme 

solution was used to determine the SAM content and in the vitro activity assay. The same 

procedure was conducted for SpnF. 
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Second, the content of SAM in reconstituted-SpnF and reconstituted-SpnL was 

determined as described above with the UV-VIS analysis and HPLC analysis.  

Third, an in vitro activity assay of reconstituted-SpnF and reconstituted-SpnL in 

the absence or presence of SAM was performed in the same manner as described above. 

3.2.11.4. Circular dichroism (CD) experiment 

To compare the overall change of conformation between holo-SpnL (as isolated 

SpnL) and apo-SpnL, two protein samples of holo-SpnL and apo-SpnL were subjected to 

CD analysis. In addition, the conformational changes were monitored from apo-SpnL to 

reconstituted-SpnL during the reconstitution process by adding various equivalencies of 

SAM into apo-SpnL. 

3.2.12. SpnL mutant study using SpnL D57N, E96Q, and E96L 

3.2.12.1. In vitro activity assay of SpnL mutants  

For the saturation in vitro activity assay, a solution containing SpnL natural 

substrate (20 µM) and SpnL mutant (40) in pH 8.0 Tris buffer (50 mM) was incubated at 

37 °C for 3 hr and 20 hr. After quenching with an equal volume of ethanol at 0 °C and 

precipitating proteins by centrifugation, the resulting supernatant was analyzed by HPLC. 

For the time-course in vitro activity assay, a solution containing SpnL natural 

substrate (80 µM) and SpnL mutant (10 µM) in pH 8.0 Tris buffer (50 mM) was 

incubated at 37 °C, and several aliquots were transferred into an equal volume of ethanol 

solution at 0 °C for either 10, 20, 30, 60, 240, or 1,200 min. After removal of protein by 

centrifugation, the resulting supernatants were analyzed by HPLC.  
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3.2.12.2. Detection of covalently-modified SpnL mutants with SpnL natural 

substrate 

To detect the covalent adduct of SpnL mutant with SpnL natural substrate, the 

same procedure was conducted as described in Section 3.2.9.6. The protein samples were 

not treated with trypsin due to no evidence for the formation of the covalent adduct of 

SpnL mutant with SpnL natural substrate. 

3.2.13. Chemoenzymatic total synthesis of spinosyn A 

3.2.13.1. Enzymatic transformation of SpnJ substrate to 17-pseudoaglycone of 

spinosyn A 

A solution containing SpnJ substrate (5 mM) in pH 8.0 Tris buffer (50 mM) was 

incubated at 30 °C. SpnJ (5 µM), SpnM (2.5 µM)/SpnF (10 µM), SpnG (20 µM)/MgCl2 

(2 mM)/TDP-l-rhamnose (1.5 mM), SpnL (20 µM), SpnI (20 µM)/SAM (5 mM), SpnK 

(20 µM)/SAM (5 mM), and SpnH (20 µM)/SAM (5 mM) were added subsequently into 

the reaction mixture at 30 °C every 2 hr. The reaction was monitored by HPLC for the 

appearance of product and consumption of substrate, using a 4 x 250 mm Econosil C18 

column (Alltech). The compounds were detected by absorption at 254 nm, and the 

column was eluted at a rate of 1mL/mi with water (A) and acetonitrile (B) using the 

following gradient. Initially the concentration of B was 30%, this was increased linearly 

to 60% in 60 min, then to 30% in 2 min, kept constant at 30% for 3 min. HPLC analysis 

was performed after 2 hr of incubation for each enzyme (in other word, just before the 

addition of each enzyme).  

3.2.13.2. Chemical conversion of 17-pseudoaglycone to spinosyn A (1) 
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BF3-Et2O (0.2 mL, 0.21 mmol) was added into a reaction mixture containing D-

forosamine (30 mg, 0.18 mmol) and 17-pseudoaglycone of spinosyn A (122 mg, 0.21 

mmol) in dichloromethane (1.5 mL) at 0 °C with vigorous stirring. After 6 hr, the 

reaction mixture was quenched with 2~3 drops of saturated aqueous sodium bicarbonate. 

The aqueous phase was extracted with dichloromethane (1.0 mL x 3 times). The 

combined organic phase was dried over an anhydrous sodium sulfate pad, filtered, and 

concentrated under reduced pressure. The resulting residue was analyzed by HPLC.  

HPLC analysis was performed using a 4 x 250 mm Econosil C18 column (Alltech). The 

compounds were detected by absorbance at 254 nm, and the column was eluted at a rate 

of 1 mL/min with aqueous 20 mM ammonium acetate solution (A) and 20 mM 

ammonium acetate in methanol/acetonitrile (1/1) solution (B) using the following 

gradient. Initially the concentration of B was 80%, this was increased linearly to 90% in 

30 min, then back to 80% in 2 min, and kept constant at 80% for 3 min. The 17-

pseudoaglycone was eluted at 9 min, and spinosyn A was eluted at 20 min.  

 

3.3. RESULTS AND DISCUSSION 

3.3.1. Synthesis of the SpnL Natural Substrate, and Deuterium-Labeled SpnL 

Substrate Analogs 

SpnL-catalyzed cyclization is suggested to proceed through either a Rauhut-

Currier type mechanism 29, 30 or a Michael addition mechanism,31 depending on how the 

conjugated system of C-11 to C-15-oxygen is activated, as shown in Figure 3-2. During 

the SpnL reaction, the rate determining step is thought to be either the nucleophilic 
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addition step for the Rauhut-Currier type mechanism or the deprotonation step for the 

Michael addition mechanism (Figure 3-6, Left dotted box). However, the possibility 

that the rate determining step may be the last step of deprotonation cannot be ruled out 

(Figure 3-6, Right dotted box). Two steps are found in both mechanisms, namely the C-

C bond formation by cyclization and protonation at the C-2 position, so neither step is 

likely to show any kinetic difference. The expected kinetic isotope effects are 

summarized in Figure 3-6 (table). 
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If RDS = the first step  the last step 

Reaction center C-12 C-13  C-12 C-13 
Rauhut-Currier type unity inverse 2°  unity normal 2° 

Michael addition 1° unity  inverse 2° unity 
 

Figure 3-6. Hybridal changes of carbons at C-12 and C-13 positions, and the summary of the expected 
kinetic isotope effects during the SpnL reaction. 1° = primary kinetic isotope effect, 2° = secondary kinetic 
isotope effect. 
 

If the kinetic isotope effect is used to distinguish between the SpnL reaction 

mechanisms, it should be measured for at least two reaction centers to avoid incorrect 

interpretation. The C14-D analog is excluded because the sp2 carbon at the C-14 position 

does not undergo a hybridal change in both mechanisms, leading to a unity kinetic 

isotope effect for both cases.  
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The SpnL natural substrate and C12-D SpnL substrate analog were prepared from 

the corresponding SpnM natural substrate and C12-D SpnM substrate analog, 

respectively, by enzymatic conversions using SpnM (dehydratase), SpnF ([4+2] cyclase), 

and SpnG (rhamnosyl transferase at the C-9-OH).22 In order to prepare the C13-D analog, 

an intermediate (21) containing two deuteriums at the position adjacent to the sulfone 

moiety was used. The methyl ester precursor (16) was first prepared by a NIS-mediated 

esterification developed by McDonald and co-workers.152, 153 Deuteriums were then 

introduced by a lithiumaluminum hydride (LiAlD4) reaction. The issue of TBS-

deprotection during the deuteration reaction was overcome by selective thioetherification 

on the primary alcohol, followed by TBS reprotection of the exposed secondary alcohol. 

During the Julia-Kocienski olefination,134, 135 one deuterium at the C-13 position was 

removed (21 to 23). The C13-D analog was finally prepared by chemoenzymatic 

synthesis. Figure 3-7 shows the enzymatic conversion of SpnM natural substrate (29) to 

SpnG product (5, identical to SpnL natural substrate). 

 
 

Figure 3-7. HPLC trace of SpnM natural substrate (9) into SpnG product (2, SpnL natural substrate). 
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3.3.2. Synthesis of the C13-F SpnL Substrate Analog 

Suicide inactivation, or mechanism-based inactivation, is a widely used technique 

to capture an enzyme active-site nucleophile by a substrate analog which can be 

converted through the normal enzymatic reaction mechanism to generate a negative 

species and form a covalent adduct of the enzyme.62, 63, 154, 155, 156, 157, 158 Usually, suicide 

inactivation occurs at the active site of the enzyme of interest, so the analysis of the 

covalent adduct gives useful information about the reaction mechanism. Because it is a 

good leaving group, fluorine has been widely used in the design of suicide inactivators.84, 

85, 159 Attaching a fluorine atom at the C-13 position on the SpnL natural substrate may 

cause the fluorine to be removed from the reaction intermediate instead of a nucleophile 

in the Rauhut-Currier type mechanism, resulting in the inactivation of SpnL. 

Retrosynthetic analysis was performed to facilitate the design of synthetic scheme for the 

preparation of the C13-F analog. As shown in Scheme 3-5, the fluorination on the C-13 

position was incorporated into a modification of fragment A through electrophilic 

fluorination by N-fluorobenzenesulfonimide (NFSI) with lithium diisopropylamide 

(LDA) (32 to 33).160 The best results were obtained using 2.0 equivalents of LDA and 1.5 

equivalents of NFSI, which yielded a mixture of mono-fluorinated and non-fluorinated 

(starting material) product in a ratio of >85:15. At this stage, these two compounds were 

not separable, so the mixture was directly used for the following coupling reactions. A 

mixture of the two resulting chemical reaction products (38) containing a fluorine or 

hydrogen at the C-13 position was subjected to enzymatic conversions by SpnJ, SpnM, 
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SpnF, and SpnG,20, 22 where the C13-F analog showed similar reactivity as the natural 

substrate for all enzymatic reactions. The mixture was then separated by preparative-

HPLC as the C13-F SpnL substrate analog or SpnL natural substrate. The HPLC trace of 

the SpnG reaction is shown in Figure 3-8.  

 
Figure 3-8. HPLC trace of the SpnG reaction for a mixture of C13-F and natural substrate. (A) a mixture 
of SpnG substrates, (B) a mixture of SpnG products, (C) isolated SpnL natural substrate, (D) isolated 
C13-F SpnL substrate analog, and (E) coinjection of C and D. HPLC condition: 30% to 45% aqueous 
acetonitrile with a flow rate of 1 mL/min over 60 min. 
 

3.3.3. In vitro activity assay of SpnL 

Prior to the kinetic isotope effect study and biochemical study of SpnL, the 

activity of SpnL was verified with the SpnL natural substrate. A solution containing SpnL 

natural substrate (100 µM) with SpnL (10 µM) in pH 8.0 Tris buffer (50 mM) was 

incubated at 30 °C for several time periods (1 min, 2 min, 5 min, and 30 min). HPLC 

analysis showed complete conversion in 30 min (Figure 3-9).  
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Figure 3-9. HPLC trance of SpnL reaction for the SpnL natural substrate. 
 

3.3.4. Isotope Trace Experiment for the SpnL Reaction 

Deuterium isotope trace experiments are one of a biochemical method which is 

widely used for the mechanistic studies, where an enzymatic reaction involves a 

protonation and deprotonation step with its substrate and product.161, 162, 163, 164 If the 

reaction is carried out in D2O, the newly introduced deuterium from D2O in the product 

can be traced by NMR or mass spectroscopy.  

According to the Rauhut-Currier type mechanism, the reaction involves one 

protonation step and one deprotonation step, while the Michael addition mechanism 

includes two protonation steps and two deprotonation steps. If these protonation and 

deprotonation steps are mediated by an amino acid residue carrying a solvent 

exchangeable functional group or a microenvironmental water molecule in the active site 

of SpnL, a solvent hydrogen atom will be incorporated during the protonation steps of the 

SpnL reaction. Namely, if the hydrogen atoms on the general acid/general base group are 
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exchanged with deuterium atoms during the SpnL reaction running in D2O, a deuterium 

atom will be introduced on the SpnL product instead of hydrogen atom (Figure 3-10). 

Therefore, an isotope trace experiment may provide evidence to distinguish between the 

two proposed mechanisms for the SpnL reaction, depending on how many deuteriums are 

introduced into the SpnL product.  

O

OH

OO

Me

O

O

OH

OH
OH

Me

O

OH

ORO

Me

O Nuc

O

OH

ORO

Me

O Nuc

D3O+

O

OH

ORO

Me

O Nuc

D
H H

H H

Base

O

OH

ORO

Me

O

protonation

deprotonation

H

O

OH

ORO

Me

O

deprotonation

Base1Nuc

O

OH

ORO

Me

O

O

OH

ORO

Me

O

DD3O+

protonation
H

H

Base2

D3O+, or Base1H+

deprotonation
& protonation

from D3O+

nucleophilic
addition

cyclization

cyclization

Base1

Base1H
+

Base2

D2O, Base2H
+

D

Base

Nuc, BaseH+

Nuc

O

OH

ORO

Me

O

D

D

D3O+ D2O

D3O
+ D2O

deprotonation
& protonation
from BaseH+

Base1H+, Base2

Base1, Base2H
+

H HR = rhamnose

Rauhut-Currier type mechanism

Michael addition mechanism  
 

Figure 3-10. Deuterium(s) incorporation during the SpnL reaction, depending on the mechanisms. 
 

To exclude the possibility of the deuterium exchange between D2O and SpnL 

product, a control reaction was performed with SpnL product in the deuterated buffer 

solution. SpnL product (500 µM) was incubated with SpnL (10 µM) in pD 8.0 Tris buffer 

(50 mM) at 30 °C for 2 hr, extracted with ethyl acetate, and analyzed by MS. This SpnL 

product showed a peak of 571.3 m/z, corresponding to the sodium salt form and was 

identical to the peak of SpnL product produced by SpnL in pH 8.0 Tris buffer. This 
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demonstrated that no proton in SpnL product is easily interchangeable with hydrogens of 

the water molecules in the buffer solution under the incubation conditions.  

Deuterium isotope experiments were performed by incubation of SpnL natural 

substrate (500 µM) with SpnL (10 µM; buffer of stock solution was exchanged to the 

deuterated buffer as described in Section 3.2.7) in pD 8.0 Tris buffer (50 mM) at 30 °C 

for 2 hr. The product was extracted with ethyl acetate and analyzed by MS. This SpnL 

product showed a peak of 572 m/z, corresponding to the monodeuterated sodium salt 

form of the SpnL product. The MS results are shown in Figure 3-11.  

 
 

Figure 3-11. MS (ESI, positive) results for the isotope trace experiment. (A) Incubation of SpnL natural 
substrate in pD 8.0 Tris buffer, and (B) incubation of SpnL product in pD 8.0 Tris buffer. 
 

The observed increase of one mass unit from the SpnL product enzymatically 

generated in the deuterated buffer solution is consistent with the expected result when the 

SpnL reaction proceeds through the Rauhut-Currier type mechanism. However, if SpnL 

has two different specific bases (base1 and base2) to remove the protons at the C-12 

position and the C-14 position, it is possible to produce the monodeuterated SpnL product 

when incubated in deuterated buffer. For example, base1 is located adjacent to the proton 

at C-12 position, and removes the C-12-H in the first step. This proton may be exchanged 

with deuterium from the deuterated buffer or not. After base2 removes the C-14-H in the 
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last step, the proton or deuterium from base1 will be transferred to the product. If the 

proton bound to base1 is not exchanged, this proton, which originates from C-12-H, is 

rebound to the C-12 position, yielding the M+1 Da SpnL product (monodeuterated at C-

14 in the SpnL product). If the proton bound on base1 is exchangeable with D2O, a new 

deuterium will be introduced at the C-12 position, producing the M+2 Da SpnL product 

(dideuterated SpnL product).  

The results of isotope trace experiments gave information of the middle steps of 

the cyclization reaction, especially the protonation at the C-2 position. However, the 

results could not differentiate between the two plausible mechanisms.  

3.3.5. Kinetic Isotope Effect Studies of the SpnL Reaction Using SpnL Natural 

Substrate and Deuterium-Labeled SpnL Substrate Analogs 

The SpnL-catalyzed cyclization seems to proceed by four steps no matter which 

mechanism is applied. In the case of the Rauhut-Currier type mechanism, the 

nucleophilic addition at the C-13 position activates the conjugated π-system for the C-C 

bond formation. The Michael addition begins with the deprotonation at the C-12 position, 

which activates the conjugated system to generate a closed related enolate intermediate as 

the Rauhut-Currier type mechanism. The cyclization and protonation at the C-2 position 

are the same in both reaction mechanisms. A deprotonation at the C-14 position 

concomitant with removal of nucleophile completes the SpnL reaction in the Rauhut-

Currier type mechanism, whereas a deprotonation at the C-14 position concomitant with 

protonation at the C-12 position finishes the SpnL reaction in the Michael addition 

mechanism. The cyclization and protonation at the C-2 position is known to occur very 
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quickly, compared to the first nucleophilic addition and the last removal of nucleophile in 

the Rauhut-Currier type mechanism or the first deprotonation and the last protonation at 

the C-12 position in the Michael addition mechanism. Thus, the kinetic isotope effect 

studies are focused on the first step and the last step during the SpnL-catalyzed 

cyclization reaction. The expected results are already shown in Figure 3-6. 

The kinetic isotope effect of the SpnL reaction can be measured by two ways.165 

One utilizes the direct comparison activity assay, where the kinetic parameters are 

measured for SpnL natural substrate and deuterium-labeled SpnL substrate analogs, and 

the kinetic isotope effects are determined from those kinetic parameters. The other takes 

advantage of a competitive activity assay, where a mixture of SpnL natural substrate and 

deuterium-labeled SpnL substrate analog are incubated with SpnL under the same 

conditions, and the kinetic isotope effect is determined from the change of the enrichment 

ratio in the remaining SpnL substrate or the resulting SpnL product, which is the same 

method applied for the kinetic isotope effect studies of the SpnF reaction. In the latter 

case, it is possible to determine the kinetic isotope effect regardless of the concentration 

of labeled and unlabeled substrate. However, the former case requires the precise 

measurement of the concentrations of the labeled and unlabeled substrates because 

kinetic parameters such as Vmax or KM are determined based on knowing the 

concentrations of substrate and enzyme. Thus, the concentration of SpnL natural 

substrate and deuterium-labeled SpnL substrate analog were determined using para-

methoxyacetophenone as an internal reference, which was selected due to its high 
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stability and lack of inhibitory activity towards SpnL and non-interference with both 

substrate and product in HPLC analysis.  

Initially, the kinetic parameters of SpnL natural substrate and C12-D SpnL 

substrate analog were determined by general kinetic experiments, as described in Section 

3.2.8, followed by statistical analysis (Figure 3-12).166, 167 The kinetic isotope effect was 

calculated based on these kinetic parameters (Figure 3-13). The value of C12D(V/K) 

corresponds to an inverse secondary kinetic isotope effect. In addition, measurement by 

the competitive experiment of SpnL reaction with SpnL natural substrate and C12-D 

substrate analog gave a kinetic isotope effect of 0.965 ± 0.005, which also corresponds to 

an inverse kinetic isotope effect (Figure 3-14). Thus, the overall result is a slightly 

inverse kinetic isotope effect at the C-12 position. If the rate determining step is the first 

step, this result can rule out the Michael addition mechanism. However, the kinetic 

isotope effect data is more consistent with the Michael addition mechanism if the rate 

determining step is the last step because the expected kinetic isotope effect is a unity for 

the Rauhut-Currier type mechanism, and inverse for the Michael addition mechanism, as 

depicted in Figure 3-6. Thus, it is ambiguous to conclude which mechanism is operative 

in the SpnL reaction. 
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Figure 3-12. Determination of kinetic parameters for the SpnL natural substrate and C12-D substrate 
analog 

 
  SpnL natural substrate C12-D SpnL substrate analog  
 Vmax 0.0189 ± 0.0008 (µM/s) 0.0179 ± 0.0003 (µM/s)  
 KM 16.6410 ± 2.4549 (µM) 13.4508 ± 0.9267 (µM)  
 

C12D(V/K) = 0.88 ± 0.12  
 

Figure 3-13. Kinetic parameters for the SpnL natural substrate and C12-D substrate analog, and the 
kinetic isotope effect determined under the direct comparison conditions. 
 

 
 

Figure 3-14. Plot of enrichment ratio (Rx) versus reaction progress for C12-D kinetic isotope effect of the 
SpnL. 
 

Apparently, additional kinetic isotope effect experiments with the C13-D SpnL 

substrate analog should be performed to differentiate the hypothetical SpnL reaction 
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mechanisms. As of current, the kinetic isotope effect study with this deuterium-labeled 

SpnL substrate analog is still in progress. Taken together of the kinetic isotope effect 

results for both the C-12 and the C-13 position will give sufficient information to 

determine the mechanism of the SpnL reaction conclusively. 

3.3.6. Biochemical Studies of the SpnL-Catalyzed Cyclization using the C13-F SpnL 

Substrate Analog 

3.3.6.1. In vitro activity assay of SpnL with C13-F SpnL substrate analog 

The SpnL-catalyzed cyclization reaction is considered to be initiated by either 

nucleophilic addition at the C-13 position in the Rauhut-Currier type mechanism or 

deprotonation at the C-12 position in the Michael addition mechanism. To distinguish 

between the two mechanisms, a C13-F SpnL substrate analog was designed for the 

detection of SpnL-substrate adduct. The C13-F SpnL substrate analog is expected to 

inactivate the catalytic function of SpnL as a suicide inactivator by covalent modification 

of the nucleophilic amino acid residue in SpnL, if it proceeds through the Rauhut-Currier 

type mechanism. In contrast, the C13-F SpnL substrate analog is expected to be a 

substrate for SpnL, which should be able to transform it to the C13-F-containing 

tetracyclic product, if it uses the Michael addition mechanism (Figure 3-5).  

In order to test whether the C13-F analog is a substrate for SpnL, an in vitro 

activity assay of SpnL was performed by incubating the C13-F analog (100 µM) with 

SpnL (5 µM) in pH 8.0 Tris buffer (50 mM) at 30 °C for 30 min or for 4 hr. No turnover 

was observed for the C13-F analog, while SpnL natural substrate was completely 

transformed into SpnL product in 30 min (Figure 3-15). This result clearly demonstrated 
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that C13-F analog was not a substrate for SpnL. However, it is not clear whether SpnL-

catalyzed cyclization proceeds through the Rauhut-Currier type mechanism. The strong 

electronegativity of fluoride at C-13 position could affect the reactivity with SpnL. Also, 

the slightly bulkier fluoride in the C13-F analog could make it difficult to fit in the active 

site of SpnL. Overall, many factors can have an effect on the activity of SpnL towards 

C13-F analog leading to no turnover of C13-F analog into C13-F-containing SpnL 

product. Therefore, another set of in vitro activity assays of SpnL was used to verify the 

possible inhibitory activity of C13-F analog for SpnL-catalyzed cyclization.  

 
 

Figure 3-15. HPLC trace of SpnL-catalyzed cyclization using C13-F analog 
 

3.2.6.2. Competition assay of SpnL with SpnL natural substrate and C13-F SpnL 

natural substrate analog 

To test the inhibitory activity of C13-F analog on SpnL-catalyzed cyclization, 

SpnL (10 µM) was incubated with a 1:4 mixture of SpnL natural substrate and C13-F 

analog (100 µM and 400 µM) at 30 ºC for several hr. The results of the in vitro activity 

assay are shown in Figure 3-16, depicting that a small amount of SpnL natural substrate 

was transformed into SpnL product, and a large amount of SpnL natural substrate still 
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remained in the mixture. In addition, there was no obvious change of the C13-F analog 

peak, even after 4 hr of incubation. Although the inhibitory mode of action was elusive, 

this result demonstrated that C13-F analog seemed to block the SpnL-catalyzed 

cyclization of SpnL natural substrate into SpnL product. Originally, C13-F analog was 

designed as a suicide inactivator (namely, mechanism-based inhibitor) to covalently 

modify the amino acid residue in the active site of SpnL if the SpnL reaction proceeds 

through the Rauhut-Currier type mechanism. Based on the above preliminary data, 

further experiments were performed to verify the inhibitory activity of C13-F analog in 

SpnL-catalyzed cyclization.  

 
 

Figure 3-16. HPLC trace of SpnL-catalyzed cyclization using SpnL and C13-F analog 
 

3.3.6.3. Preincubation in vitro activity assay of SpnL with SpnL natural substrate 

and C13-F SpnL substrate analog 

A mechanism-based inhibitor is defined as a substrate analog, which can form an 

irreversible complex with an enzyme through a covalent bond during normal reaction 

catalysis, resulting in the complete inactivation of the enzyme. Thus, if an enzyme reacts 

with a mechanism-based inhibitor, its catalytic activity should decrease in proportion to 
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the exposure time to the inhibitor without recovery. Preincubation in vitro activity assays 

were subsequently carried out to detect the change in activity of SpnL, depending on the 

preincubation time with the C13-F analog.  

 A solution containing SpnL (20 µM) and C13-F analog (500 µM) in pH 8 Tris 

buffer (50 mM) was incubated at 30 ºC for varied length of time (5, 10, 15, and 30 min). 

SpnL natural substrate (500 µM) was then added to each of the reaction mixtures. After 

additional incubation at 30 ºC for 40 min to complete the SpnL-catalyzed reaction for 

SpnL natural substrate, the reaction mixture was quenched, precipitated, and analyzed by 

HPLC (Figure 3-17, Right). As a control reaction, the same procedure was performed 

without C13-F analog (Figure 3-17, Left). In the case of SpnL preincubation with C13-F 

analog, no conversion of SpnL natural substrate to SpnL product was observed even after 

only 5-min preincubation, and C13-F analog remained unchanged for both the given 

reaction time, and after 24 hr (data not shown). In contrast, SpnL preincubated without 

C13-F analog was still able to catalyze the SpnL reaction, although its catalytic ability 

decreased depending on the preincubation time.  

These observations suggest two possible explanations for the inhibitory 

mechanism of C13-F analog for SpnL reaction. First, the C13-F analog may bind tightly 

to the active site of SpnL, and inactivate the activity of SpnL even though the C13-F 

analog is still technically a reversible inhibitor. Second, the C13-F analog may be a true 

suicide inactivator of SpnL. In order for the C13-F analog to be a suicide inactivator, the 

C13-F analog should play its role to covalently modify an active site residue in SpnL. 
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Thus, the next experiment was focused on elucidating the target of the C13-F analog 

inhibition, assuming that C13-F analog is an irreversible inhibitor.  

 
 

Figure 3-17. HPLC trace of the SpnL reaction for the preincubation experiment. Left: preincubation of 
SpnL without C13-F analog, Right: preincubation of SpnL with C13-F analog 
 
3.3.6.4. In vitro activity assay of SpnL using the SpnL natural substrate and C13-F 

analog with L-glutathione 

In this experiment, the effect of L-glutathione as a mimic of the active site to react 

with the C13-F analog was studied. According to Hak Joong Kim’s thesis, incubation of 

SpnL natural substrate (2 mM) with L-glutathione (3 mM) in pH 8 Tris buffer (50 mM) at 

30 ºC overnight resulted in the formation of an adduct between SpnL natural substrate 

and L-glutathione as determined by MS. Thus, addition of L-glutathione may trigger the 

SpnL catalysis as glutathione may act as an exogenous nucleophile to initiate the SpnL 

reaction.  

A solution containing SpnL (10 µM), L-glutathione (0, 250, or 2,000 µM) and 

C13-F analog (250 µM) in pH 8.0 Tris buffer (50 mM) was preincubated at 30 ºC for 5 
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min, after which time SpnL natural substrate (125 µM) was added to each of the reaction 

mixtures. After additional incubation at 30 ºC for 30 min to complete the SpnL reaction, 

the reaction mixture was quenched, the protein precipitated, and the supernatant analyzed 

by HPLC. As a control reaction, the same experiment was performed with SpnL 

preincubation in the presence of L-glutathione, but without C13-F analog. SpnL 

preincubated with C13-F analog didn’t catalyze the reaction in the presence of L-

glutathione regardless of its concentration. Even though there has been no obvious 

evidence for L-glutathione to play a role as a cofactor in SpnL, this result demonstrated 

that L-glutathione is at least not the nucleophile to initiate the SpnL reaction, and 

inactivation of SpnL is not related to the depletion of L-glutathione. Thus, the focus was 

turned to the covalent modification of SpnL by C13-F analog, as originally intended. 

Before going to the part of covalent modification study, some of kinetic experiments 

were performed in next section to show the inhibition mode of C13-F analog. 

 
 

Figure 3-18. HPLC trace of SpnL reaction for the test of l-glutathione depletion by C13-F analog. 
 



 245 

3.3.6.5. Inhibition kinetic study of SpnL using SpnL natural substrate and C13-F 

SpnL substrate analog 

A. Theoretical background for irreversible inactivation by mechanism-based inhibitor 

The efficiency of mechanism-based inhibitors, such as suicide inhibitors, can be 

expressed in terms of the kinetic parameters KI and kinact, and the partition ratio, which are 

conventionally determined by a dilution assay. In this method, the enzyme is 

preincubated with the suicide inhibitor followed by adding the substrate and measuring 

the product formation. Kinetic parameters are then determined from the rate of 

irreversible loss of enzyme activity at various inhibitor concentrations.169 Kinetic 

calculation is shown as follows: 

E + S ES E + P

E + I EI EI*
KI

kinact

k1 k2

k-1

 

The general expression for the velocity (or rate) of enzymatic reaction can be 

expressed as: 

d[P]/dt = k2[ES] ……………………………..……………………………………….. (1) 

The overall rate of production of [ES] is expressed as below. It is assumed that 

[ES] remains constant until the substrate for the enzymatic reaction is almost depleted, if 

the substrate is in excess of the enzyme. The change of [ES] over time should be zero at 

the steady-state. 

d[ES]/dt = k1[E][S] – k-1[ES] – k2[ES] = 0 ..………………………...……..……….. (2) 

which can be rearranged to  

[ES] = k1[E][S]/(k-1+k2) ………………………………….……………...………….. (3) 
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Dividing both sides by k1 and solving for [ES],  

[ES] = k1[E][S]/(k-1+k2) = [E][S]/KM  …………………….…………...…………….. (4) 

where KM = (k-1+k2)/k1, which is also known as the Michaelis constant.  

In the presence of inhibitor, the total enzyme concentration can therefore be 

expressed as below: 

KI = [E][I]/[EI] ……………….…………………………………………………….. (5) 

[E]T = [E] + [ES] + [EI] + [EI*] ……………………...…………………………….. (6) 

which can be rearranged to  

[E]T – [EI*] = [E] + [EI] + [ES] = [E] + [E][I]/KI + [E][S]/KM = [E](1 + [I]/KI + [S]/KM) 

…………………………………………………………………………………..……… (7) 

[E] = ([E]T – [EI*])/(1 + [I]/KI + [S]/KM) ………...………..……………………….. (8) 

If it is substituted for the equation (4),  

[ES] = k1[E][S]/(k-1+k2) = [E][S]/KM = ([S]/KM)·{([E]T – [EI*])/(1 + [S]/KM + [I]/KI)} 

………………………………………………………………………………………….. (9) 

d[P]/dt = k2[ES] = (k2[S])·{([E]T – [EI*])/(1 + [S]/KM + [I]/KI)}/KM …………….. (10) 

The same procedure can be used for the second part of inhibition reaction. 

d[EI*]/dt = kinact[EI] = kinact[E][I]/KI = kinact([I]/KI)·([E]T – [EI*])/(1 + [I]/KI + [S]/KM)  

……………………………………………………………………………..………….. (11) 

d[EI*]/([E]T – [EI*]) = kinact·([I]/KI)/(1 + [I]/KI + [S]/KM) ……….……………….. (12) 

If [EI*] = 0 at t = 0, it integrates to: 

-ln{([E]T – [EI*])/[E]T} = kinact·([I]/KI)/(1 + [I]/KI + [S]/KM)·t ……..…………….. (13) 

Solving for [EI*] yields 
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[EI*] = [E]T·{1-e^(-(kinact·([I]/KI))/(1 + [I]/KI + [S]/KM))·t)} ………...………….. (14) 

d[P]/dt = (k2[S] /KM)·{([E]T – [EI*])/(1 + [S]/KM + [I]/KI)}  

 = (k2[S]/KM)·{([E]T – [E]T·{1-e^(-(kinact·[I])/(KI(1 + [I]/KI + [S]/KM))·t)})/(1 + [S]/KM + 

[I]/KI)}  

 = (k2[S][E]T/KM)·{e^(-(kinact·[I])/(KI(1 + [I]/KI + [S]/KM))·t)}/(1 + [S]/KM + [I]/KI) 

………………………………………………………………………………………… (15) 

If [P] = 0 at t = 0, it integrates to 

[P] = (k2[S][E]TKI/KMkinact[I])·{1-e^(-(kinact·[I])/(KI(1 + [I]/KI + [S]/KM))·t …..... (16) 

where KM = 16.64 ± 2.46 M-1 and Vmax = 0.0189 ± 0.0008 s-1 for SpnL natural substrate. 

It is simplified to  

[P] = m1·(1-e^(-m2t+m3) ……………………………..…...……………………….. (17) 

The parameters kinact and KI can be obtained by analyzing the plot between m2 and 

[I]. 

m2 = kinact·([I]/KI)/(1 + [I]/KI + [S]/KM) ……….…………………………………... (18) 

1/m2 = (1 + [I]/KI + [S]/KM))/(kinact·([I]/KI) = (KI·(1 + [S]/KM))/(kinact·[I]) + 1/kinact … (19) 

A plot of 1/m2 versus 1/[I] should result in a linear curve and the value of kinact 

and KI can be obtained from the intercept and slope of that curve.  

If an inhibition assay is set up so that the concentration of inhibitor (C13-F 

analog) present in the incubation after addition of SpnL natural substrate is relatively 

small compared to the concentration of SpnL natural substrate and is assumed to have 

little effect on the SpnL reaction, the rate of SpnL natural substrate turnover is expected 

to be directly proportional to the remaining active enzyme concentration expressed in % 
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activity by measuring the ratio of substrate and product. Experimentally, there are three 

options to measure the progress of the reaction, consumption of substrate, appearance of 

product, and inactivation of enzyme. In this inhibition assay, the concentration of 

remaining active enzyme was calculated by measuring the substrate turnover to product 

after a given preincubation period with inhibitor followed by additional incubation with 

an excess amount of substrate to complete turnover. For the calculation, integrated areas 

of substrate and product were normalized by an internal standard, and its turnover rate 

expressed in % activity of enzyme. The equation (14) doesn’t need a term [S], a 

concentration of substrate because the remaining enzyme doesn’t compete with inhibitor 

and  

[EI*]′ = [E]T·{1-e^(-(kinact·([I]/KI))/(1 + [I]/KI))·t)} = [E]T·{1-e^(-kobs·t)} …..……….. (20) 

[E]T - [EI*]′ = e^(-kobs·t) …………………………………….…….………………. (21) 

where kobs = kinact·([I]/KI)/(1+[I]/KI), and its reciprocal is expressed as  

1/kobs = KI/kinact·(1/[I]) + 1/kinact ....………………………………………..……….. (22) 

Thus, a plot of 1/kobs versus 1/[I] is a straight line and the kinetic parameters, kinact 

and KI can be determined from the intercept and slope of this line.  

B. In vitro inhibition assay of SpnL with C13-F analog  

In order to determine the kinetic constants, KI and kinact, for the inhibition caused 

by the C13-F analog, an in vitro inhibition assay of SpnL was performed as follows. A 

solution containing the C13-F analog (1.5 µM, 3.0 µM, or 4.5 µM) in pH 8.0 Tris buffer 

was preincubated with SpnL (1.0 µM) at 30 °C for 10 sec or 20 sec. SpnL natural 

substrate (125 µM) was then added into the reaction mixture. After incubation at 30 °C 
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for 30 min, the reaction mixture was quenched, the protein precipitated, and the 

supernatant analyzed by HPLC. As a control, the reaction was repeated without C13-F 

analog. The results are summarized in Figure 3-19, Figure 3-20, and Figure 3-21, 

showing that the averaged kobs[I] was 18,518 M-1·s-1. According to Equation (19), the plot 

for 1/kobs versus 1/[I] gave two kinetic parameters: KI = 0.58 (µM), and kinact = 0.058 (s
-

1
).  

 
 

Figure 3-20. Inhibition assay results for various concentrations of the C13-F analog 
 

Time (sec) 
Control (no C13-F) [C13-F] = 1.5 µM [C13-F] = 3.0 µM [C13-F] = 4.5 µM 

% activity [E]T-[EI*] % activity [E]T-[EI*] % activity [E]T-[EI*] % activity [E]T-[EI*] 

Zero 100% 1.0 µM 100% 1.00 µM 100% 1.00 µM 100% 1.00 µM 

10 sec - - 54% 0.54 µM 51% 0.51 µM 46% 0.46 µM 

20 sec - - 47% 0.47 µM 43% 0.43 µM 41% 0.41 µM 

kobs - 0.042 s-1 0.048 s-1 0.052 s-1 

kobs/[I] - 28,000 M-1·s-1 16,000 M-1·s-1 11,555 M-1·s-1 

Avg (kobs/[I]) - 18,518 M-1·s-1 

 

Figure 3-19. Inhibition assay of SpnL with C13-F analog. As a control, SpnL activity was measured as 
98.6% at10 sec, and 94.5% at 20 sec) 
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Figure 3-21. Plot for 1/kobs versus 1/[I] 
 

The inhibition assays allowed the determination of two parameters of C13-F 

analog for the SpnL reaction: KI and kinact, showing both tight binding and rapid 

inactivation. The definition of kinact is the rate when the inhibition occurs at maximal 

inactivation, and the definition of KI is the concentration at which the rate is 50% kinact. 

Thus, a low KI value means tight binding between the inhibitor and enzyme at the first 

stage, and a high kinact value means a rapid inactivation of enzyme. From the kinetic 

perspective, C13-F analog seems to be a good inhibitor of SpnL. These kinetic data 

justified for the next experimental step, MS experiment to find covalently modified SpnL. 

3.3.6.6. MS experiments for the detection of covalently-modified SpnL with C13-F 

analog 

The C13-F analog was designed to demonstrate the inactivation of SpnL by 

covalent modification based on the Rauhut-Currier type mechanism. A series of in vitro 

activity assays and inhibition assays seem to support the Rauhut-Currier type mechanism 

because the C13-F analog shows the inhibitory activity for SpnL reaction although the 

mechanism is still unknown. If SpnL makes a covalent bond with the C13-F analog by 
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excluding the fluorine atom during normal catalysis, the mass of the modified SpnL 

should increase by the molecular weight of the C13-F analog without the fluorine atom.  

A solution containing SpnL (152 µM) and C13-F analog (300 µM) in pH 8.0 Tris 

buffer (50 mM) was incubated at 30 °C for 1 hr, and dialyzed at 4 °C against ammonium 

bicarbonate buffer (50 mM) to remove excess C13-F analog. The resulting solution was 

analyzed by MS. For comparison, a solution containing SpnL (152 µM) and SpnL natural 

substrate (300 µM) in pH 8.0 Tris buffer was also analyzed by MS. MS of SpnL itself 

was used as a reference.  

The MS for the control reaction using SpnL treated with SpnL natural substrate 

shows two characteristic peaks of SpnL (MW 32,754 Da; calculated isotopically 

averaged MW 32,782 Da) and the glucuronylated SpnL (MW 32,931 Da = 32,754 + 177 

Da), which is a common post-translational modification observed for His6-tagged 

proteins produced in E. coli (Figure 3-22).169 The MS for the control reaction using SpnL 

only also gave two peaks, corresponding to the native SpnL and the glucuronylated SpnL. 

This is identical to the control reaction of SpnL treated with SpnL natural substrate 

(Figure 3-23). This means that SpnL performs its catalytic role without any modification 

of its active-site residue. However, MS data for SpnL incubated with C13-F analog 

presents an interesting result showing the two peaks of putative SpnL and its 

glucuronylated form increased by approximately 545 Da (Figure 3-24). The first peak 

corresponds to the native form of SpnL covalently modified with the C13-F analog (MW 

33,300 Da = 32,754 + 547 – 1 Da), and the second peak corresponds to the 

glucuronylated form of SpnL covalently modified with the C13-F analog (MW 33,477 



 

Da = 32,754 + 547 + 177 – 1 Da). 

F analog is depicted in Figure 3

 

 

Figure 3-23. ESI-MS spectroscopic data of SpnL

 

Figure 3-22. ESI-
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1 Da). A plausible covalent modification of SpnL 

Figure 3-25.  

MS spectroscopic data of SpnL 
 

Figure 3-24. ESI-MS data of SpnL incubated 
with C13-F analog 
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Figure 3-25. Plausible covalent-modification of SpnL (or glucuronylated SpnL) by the C13-F analog 
 

Above MS data strongly suggests that the C13-F analog is first attacked by a 

nucleophile of SpnL (or its glucuronylated form) and covalently bound to SpnL by 

expelling a fluoride anion (Figure 3-25). Put in another way, a deprotonated nucleophilic 

residue of SpnL (such as a cysteine) attacks an electrophilic position of C13-F analog 

(almost certainly the C-13 position, due to the strongly electronegative fluorine-

substituent) to make a covalent intermediate. After cyclization and protonation at the C-2 

position, deprotonation at the C-14 position coupled with removal of the fluoride anion at 

the C-13 position instead of the SpnL nucleophile produced a covalently-modified SpnL 

(or its glucuronylated form). The position of nucleophilic attack from SpnL on the C13-F 

analog is expected to be the C-13 position, but the identity of the nucleophilic residue of 

SpnL is not immediately apparent. The following experiments were conducted to detect 

the nucleophile of SpnL after covalent modification of SpnL with the C13-F analog. 

To identify the covalent modification site of SpnL, SpnL was first incubated with 

the C13-F analog, and then was digested with trypsin, a serine protease, which cleaves 

peptide chain mainly at the carboxyl side of amino acids lysine and arginine, except when 

either is followed by a proline. This resulting solution was subjected to ESI-MS analysis, 

which is expected to show the change in the mass of fragments from SpnL and SpnL 

covalently-modified with C13-F analog. Figure 3-26 lists the possible fragments of SpnL 
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after treatment with trypsin (SpnL used in this experiment was SpnL-Hi6-tag, but its 

sequence numbering corresponds to natural SpnL. Natural SpnL starts with the residues 

MESIF, noted as number 1). The recorded MS data is shown Figure 3-27. Most peaks in 

the MS are assigned based on their expected MS values, shown in Figure 3-26. By 

comparing the MS from the control (SpnL only) and C13-F (SpnL incubated with C13-F) 

reactions, two new peaks are identified (a=ModiFrag5 and b=ModiFrag4 in Figure 3-

27) which show a mass increase of 547 Da, corresponding to that of the C13-F analog 

without fluoride. They have been designated “ModiFrag4” and “ModiFrag5” in Figure 

3-26. The calculated molecular weight of Fragment 4 is 2248.58 (corresponding to 

2249.14 in MS), and that of its modified fragment, ModiFrag4, is 2795.25 (calculated as 

2248.58 + 546.67; corresponding to 2795.40 in MS). The calculated molecular weight of 

Fragment 5 is 733.84 (corresponding to 734.36 in MS), and that of its modified fragment, 

ModiFrag5, is 1280.51 (calculated as 733.84 + 546.67; corresponding to 1280.64 in MS). 

These results indicate that both fragment 4 and fragment 5 may contain the amino acid 

residue covalently linked to the C13-F analog. Interestingly, both fragments have a 

cysteine residue, Cys60 and Cys71, respectively. Another cysteine residue-containing 

fragment 16 is not modified by the C13-F analog (there is no peak near 2060.45, 

corresponding to the sum of 1513.78 + 546.67).  
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Fragment Amino acids sequences and its calculated mass 
 
Fragment 1 
Fragment 2 
Fragment 3 
Fragment 4 
ModiFrag 4 

Fragment 5 
ModiFrag 5 

Fragment 6 
Fragment 7 
Fragment 8 
Fragment 9 
Fragment 10 
Fragment 11 
Fragment 12 
Fragment 13 
Fragment 14 
Fragment 15 
Fragment 16 
Fragment 17 
Fragment 18 
Fragment 19 
Fragment 20 
Fragment 21 
Fragment 22 
Fragment 23 

 
MGSSHHHHHHSSGLVPR; 1900.06 
GSH1MESIFDALAHGRPLHHGYWAGGYR; 3023.33 
25EDAGATPWSDAADQLTDLFIDK; 2379.51 
47AALRPGAHLFDLGCGNGQPVVR; 2248.58 
47AALRPGAHLFDLGCGNGQPVVR-(C13-F); 2795.25 (= 2248.58 + 546.67) 
69AACASGVR; 733.84 
69AACASGVR-(C13-F); 1280.51 (= 733.84 + 546.67) 
77VTGITVNAQHLAAATR; 1622.84 
93LANETGLAGSLEFDLVDGAQLPYPDGFFQAAWAMQSVVQIVDQAAAIR; 5095.70 
141EVHR; 539.59 
145ILEPGGR; 740.86 
152FVLGDIITR; 1033.23 
161VR; 273.33 
163LPEEYAAVWTGTTAHTLNSFTALVSEAGFEILEVTDLTAQTR; 4555.02 
205CMVSWYVDELLR; 1513.78 
217K; 146.19 
218LDELAGVEPAAVGTYQQR; 2045.27 
236YLGDIAAK; 849.98 
244HGPGPAQLIAAVAEYR; 1649.87 
260K; 146.19 
261HPDYAR; 757.80 
267NEESMGFMLLQAR; 1525.75 
280K; 146.19 
281K; 146.19 
282QS; 232.22 

 
Figure 3-26. Expected MS of fragments of SpnL treated with trypsin after incubation with the C13-F 
analog 
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However, it is unexpected that two different sites on SpnL are modified by the 

C13-F analog. It is probable that the 2:1 ratio of C13-F analog versus SpnL caused the 

modification of two sites in one SpnL. In other words, it is possible that either 

ModiFrag4 and/or ModiFrag5 may be an artifact, which is modified by the C13-F analog 

regardless of the reaction mechanism. While 1 equivalent of SpnL and C13-F analog may 

make an interaction which results in the inactivation of SpnL (namely, specific covalent 

modification based on the reaction mechanism), the extra C13-F analog may further 

modify a different site of the inactivated SpnL (namely, non-specific modification). Thus, 

the next experiment was designed to show the “real” modification site of SpnL by using a 

0.5:1.0 ratio of C13-F analog to SpnL. In theory, a half equivalent of C13-F analog is 

expected to modify one specific site of SpnL (specific covalent modification) based on 

 
 

Figure 3-27. MS for SpnL, which was treated with 2 equivalent of C13-F analog and trypsin. Peaks a 
and b are new peaks not found in the MS of the trypsin-digested sample that wasn’t incubated with C13-
F analog.  
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the Rauhut-Currier type mechanism. After incubation of SpnL (152 µM) and the C13-F 

analog (75 µM) at 30 °C for 1 hr, followed by dialysis and trypsin-digestion at 37 °C for 

6 hr, the resulting solution was analyzed by MS. This MS looks very similar to the 

previous MS result although the peaks corresponding to ModiFrag4 and ModiFrag5 

became smaller than the unmodified peaks of Fragment 4 and Fragment 5 (Figure 3-28). 

This means that formation of either Fragment 4 and/or Fragment 5 may reflect a non-

specific nucleophilic addition of SpnL towards its substrate. In other word, Fragment 4 

and/or Fragment 5 are covalently bound to the C13-F analog in a manner that doesn’t 

depend on the reaction mechanism.  

 
 
Figure 3-28. MS for SpnL, which was treated with 0.5 equivalent of C13-F analog and trypsin. 
 

The two sites of SpnL, corresponding to Fragment 4 and Fragment 5, seem to be 

covalently modified with the C13-F analog independently and by different mechanisms. 
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Notably, the peak corresponding to doubly modified SpnL, with two molecules of C13-F 

analog, was not observed in any of the MS. The next experiments were focused on 

finding the amino acid residues of Fragment 4 and Fragment 5, which are involved in the 

covalent modification of SpnL with the C13-F analog. 

3.3.6.7. MS experiments for the detection of covalently-modified SpnL mutant 

(C71A) with C13-F analog 

Based on the Rauhut-Currier type mechanism, any close by nucleophile in the 

catalytic site of SpnL may make a covalent bond with C13-F analog. Many different 

residues can play a role as the nucleophile, such as lysine, serine, threonine, cysteine, 

tyrosine, asparatate, and glutamate. From the amino acid sequence of Fragment 4 and 

Fragment 5, the cysteine residue in each fragment is the most likely nucleophilic amino 

acid residue. To verify the modification site of SpnL, three mutants of SpnL (C60A, 

C71A, and C205A), prepared by Dr. Kim, a former lab member, were used instead of 

SpnL. Previous in vitro activity assays by Dr. Kim showed that C71A and C205 

mutations had no effect on the activity of SpnL, while the C60A mutant lost its catalytic 

activity. This result suggested that the C60 residue in SpnL is important for its activity. 

Based on the results from the in vitro activity assay of SpnL mutants and MS experiments 

of SpnL modification with the C13-F analog, SpnL C60A and C71A mutants were 

chosen for the MS experiments to determine the specific residue involved in the covalent 

bond formation of SpnL with the C13-F analog. 

As a control, a solution containing SpnL mutant (152 µM) and SpnL natural 

substrate (300 µM) in pH 8.0 Tris buffer (50 mM) was incubated at 30 °C for 1 hr, 
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dialyzed at 4 °C against ammonium bicarbonate buffer (50 mM), trypsin-digested at 37 

°C for 6 hr, and analyzed by MALDI-ESI-MS. For the preparation of ModiFrag4 and 

ModiFrag5 for MS analysis, the C13-F analog (300 µM) was included instead of SpnL 

natural substrate for the SpnL modification in a separate solution, followed by the same 

procedures. The result for the SpnL C71A mutant is shown in Figure 3-29, indicating 

that only Fragment 4 is modified to ModiFrag4, corresponding to the molecular weight 

of 2794.40 in MS. Interestingly, Fragment 5, containing C71A, is not modified with the 

C13-F analog because there is no peak at 1248.45 = 701.78 + 546.67; 69AAAASGVR = 

701.78). This result clearly demonstrated that Cys60 is modified and Cys71 may also be a 

modification site on SpnL of the C13-F analog. Unfortunately, the result for SpnL C60A 

mutant didn’t show the proper MS (data not shown) due to problems of low expression 

and poor purification. Overall, the SpnL mutant study supported that Cys60 and Cys71 

are the modification sites of SpnL by the C13-F analog. To pursue the direct evidence for 

the covalent bonding of cysteine residue with C13-F analog, ESI MS/MS experiments 

were performed as follows.  

 
 

Figure 3-29. MS for SpnL C71A mutant. (A) SpnL C71A incubated with C13-F analog, and (B) SpnL 
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C71A incubated with SpnL natural substrate. 
 

After SpnL (152 µM) was incubated with the C13-F analog (300 µM) at 30 °C for 

1 hr, dialyzed against ammonium bicarbonate buffer (50 mM), and trypsin-digested at 37 

°C for 6 hr, the resulting solution was analyzed by ESI MS/MS. Prior to the analysis of 

the MS results, the ion re-fragmentation of fragment 4 is analyzed based on the protein 

fragmentation ion calculator, which is provided by the website 

(http://db.systemsbiology.net/proteomicsToolkit/FragIonServlet.html, accessed Nov 1, 

2013, Figure 3-30 and Figure 3-31).  

 
 

Figure 3-30. Fragment ion table in average mass for Fragment 4 in SpnL. 
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Figure 3-31. Re-fragmentation of unmodified fragment 4 from the trypsin-digested SpnL C71A mutant 
after preincubation with the C13-F analog 
 

The MS results are shown in Figure 3-32. The re-fragmented ion corresponding 

to b12 was expected to have a m/z = 1262.70 for b12
+ and 631.35 for b12

2+, but the latter 

was shown to have an actual m/z = 631.85 in Figure 3-32 (B). Although the re-

fragmented ion corresponding to b13 was not shown in the MS, modified re-fragmented 

ion corresponding to b15 was shown with a m/z = 676.02 for Modi-b15
3+ (m/z = 2026.4 

from summation of b15
+ (1479.75) and C13-F analog (546.67)) for Modi-b15

+) in Figure 

3-32 (B). The re-fragmented ion corresponding to unmodified b15 was not found in the 

MS (m/z = 1479.75 for b15
+ and m/z = 739.88 for b15

2+). The re-fragmented ion 
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corresponding to y7 was shown at m/z = 752.41 for y7
+ and modified re-fragmented ion 

corresponding to Modi-y11 was also revealed at m/z = 814.92 for (Modi-y11-NH3)
2+ (m/z = 

1628.94 from summation of (y11-NH3)
+ (1082.27) and C13-F analog (546.67) for (Modi-

y11-NH3)
+). Additionally, re-fragmented ions of de-rhamnosylated modified fragment 

such as b15
2+ at m/z = 940.49 and (y13-H2O)2+ at m/z = 872.43 were observed in Figure 3-

32 (C), which indicated the existence of modification of the amino acids between 56F 

and 61G. Based on these observations, the modification site of SpnL should be within the 

amino acid sequence 59-GCG-61 of Fragment 4. Considering that glycine residues have 

no capability to make any covalent bonding, due to their lack of a reactive side chain 

such as amino alcohol or thiol, it is more likely that Cys60 is the modification site of 

SpnL through formation of covalent bond with the C13-F analog.  

Although the MS of Fragment 5 was not good enough to analyze the re-fragmented 

ions (data not shown), Cys71 is the most likely nucleophile to make a covalent 

modification with C13-F analog based on similar reasoning to Fragment 4. The amino 

acid sequence of Fragment 5 is 69-AACASGVR-76, which contains only one cysteine 

residue at 71 position. Serine at 73 might be another option, so more careful analysis of 

Fragment 5 was required in future work. At this stage, these observations suggested that 

Cys60 and Cys71 (or Ser73) are the covalent modification sites of SpnL, and support the 

Rauhut-Currier type mechanism for SpnL-catalyzed cyclization.  



 263 

 
 

 
Figure 3-32. ESI MS/MS for SpnL C71A mutant, trypsin-digested after incubation with C13-F analog 
(continued). 
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Figure 3-32. ESI MS/MS for SpnL C71A mutant, trypsin-digested after incubation with C13-F analog. 
Expanded MS of (A) 200-500 m/z region, (B) 550-850 m/z region, (C) 750-1050 m/z region. The black 
colored arrows indicates the re-fragmented ions originated from the intact inhibitor-bound fragment 4, 
and the red arrows shows the re-fragmented ions derived from the de-rhamnosylated inhibitor-bound 
fragment 4.  
 

All of the experimental observations strongly support the hypothesis that Cys60 

and/or Cys71 (and/or Ser73) are the modification sites of SpnL with the C13-F analog. 

However, it is still unusual that two or three nucleophiles in the active site of SpnL, are 

able to make a covalent bond with the substrate analog. Dr. Choi, a former graduate 

student, suggested a few possible models to explain these unusual observations. The first 

two scenarios require the two cysteine residues, Cys60 and Cys71, to be positioned in the 

same phase. The first scenario is that the C13-F analog is twisted in the SpnL active site, 

which may be different from the positioning of the natural substrate due to the fluoride 

atom at C-13 position. It is well known that carbon-fluoride bonding is more hydrophobic 

than carbon-hydrogen bonding and that fluoride is the most electronegative element. 
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These properties may cause the C13-F analog to bind in a twisted conformation in the 

active site of SpnL. Thus, assuming that the spatial distance of Cys60 and Cys71 are in a 

close proximity, both of the cysteine residues may have access to the electrophilic C-13 

position of the C13-F analog, as depicted in Figure 3-33 (A). Second scenario is also 

based on the structural difference of the C13-F analog from the natural substrate. That is, 

the C13-F analog may have two different binding modes in the active site of SpnL, 

compared to the one binding mode of natural substrate. The C-13 center of the natural 

substrate is positioned toward one of the two cysteines, while the C-13 center of C13-F 

analog can be reached by both cysteines by flipping itself in the active site, as shown in 

Figure 3-33 (B). However, the flipping model is less likely since it is not easy to reverse 

the binding in the active site.  

 
 

Figure 3-33. Two possible scenarios if Cys60 and Cys71 are located in close proximity. (A) Twisted 
positioning scenario, and (B) flipping scenario. 
 

Before going to the third scenario, it is worthwhile to mention that Dr. Choi tried 

to detect the covalent adduct formation of L-glutathione and C13-F analog by incubation 
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at 30 °C for 24 hr, the same way Dr. Kim did with the natural substrate. However, there 

was no evidence for the covalent adduct. Recently, a similar experiment was performed 

for L-glutathione and C13-F analog in pH 12.0 NaOH solution, to enhance the 

nucleophilicity of L-glutathione. Also, an excess of dithiothreitol (DTT) and/or 

magnesium (II) chloride was added into the reaction mixture to avoid the oxidation of L-

glutathione. However, MS still didn’t show any evidence for the covalent adduct (Figure 

3-34). In addition, Dr. Kim found that SpnL C71A and C205A mutants could catalyze the 

SpnL natural substrate cyclization with similar activity as the wild-type SpnL, whereas 

SpnL C60A didn’t show any activity. Dr. Choi reconfirmed this result by HPLC analysis 

(Figure 3-35).  
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Figure 3-34. Expected non-enzymatic covalent adduct formation of L-glutathione with SpnL natural 
substrate and C13-F analog. (A) Reaction with SpnL natural substrate, (B) reaction with C13-F analog, 
and (C) MS (ESI, positive mode) result of reaction (B), showing no adduct formation (GSH = L-
glutathione). 
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Figure 3-35. In vitro activity assay of SpnL and three mutants.  
 

The Aroyan group and Wang group reported an investigation of fluoride-containing 

α,β-unsaturated ketones, describing its low electrophilicity due to the instability induced 

by the fluoride atom (Figure 3-36).30, 170 Generally, the β position in α,β-unsaturated 

ketones becomes more electrophilic due to the partially positive charge developed on it in 

a resonance structure (Figure 3-36 (A)),30 while the β position in fluoride-containing α,β-

unsaturated ketones becomes less electrophilic due to the unstable positive charge 

developed next to a strongly electron-withdrawing fluoride atom (Figure 3-36 (B)).170 

Thus, the relative reactivity of fluoride-containing α,β-unsaturated ketones and α,β-

unsaturated esters are similar (Figure 3-36 (C)). 

 

Figure 3-36. Comparison of reactivity of three α,β-unsaturated ketones toward nucleophilic addition in 
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Rauhut-Currier reaction 

The third scenario is based on the assumption that both Cys60 and Cys71 are 

closely located but in the opposite positions. In this scenario, the C13-F analog is bound 

to the active site in the same location as the natural substrate, and Cys60, the more likely 

nucleophile of SpnL, can initiate the SpnL reaction through the covalent bond formation 

to the C-13 center. However, the low electrophilicity of the C-13 center could cause the 

alternative nucleophilic attack of Cys71 onto the C-3 center due to its relatively higher 

susceptibility than the C-13 position to nucleophilic attack (Figure 3-37 (B)). It is worth 

mentioning that Arg68 and/or Asp57 which are close to the cysteine nucleophile in the 

primary sequence may play a role as the general acid/base required for SpnL reaction 

(Figure 3-37 (A)). 

 
 
Figure 3-37. The third possible scenario if Cys60 and Cys71 are located opposite to the other and in 
close proximity. (A) Route A can occur in the reaction with SpnL natural substrate and C13-F analog, 
and (B) Route B is only possible in the reaction with C13-F analog due to its low electrophilicity at C-
13 center. 
 

3.3.6.8. Single turnover experiment 
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To trap an F-containing product (namely, C13-F SpnL product), a single turnover 

condition was investigated because the newly produced C13-F containing turnover 

product may also be an inhibitor for SpnL. A solution containing SpnL (22.5 µM) and the 

C13-F analog (50 µM or 25 µM) in pH 8.0 Tris buffer (50 mM) was incubated at 30 °C 

for 5 min or 30 min, precipitated, and subjected to HPLC analysis. The HPLC trace from 

the single turnover experiment is shown in Figure 3-38. During the incubation of SpnL 

with the C13-F analog, all the SpnL was expected to be completely inactivated, there 

should be only unreacted C13-F analog and the possible C13-F containing SpnL product 

on HPLC trace. The peak near 15 min was speculated to be the C13-F containing SpnL 

product, and the amount was calculated by comparison with the internal standard. A 3% 

conversion from the C13-F analog as “substrate” was estimated for all of the conditions. 

There was no difference for two sets of experiments (2.0 : 0.9 or 1:0 : 0.9 ratios of C13-F 

analogs to SpnL) or incubation time. When compared with SpnL natural substrate and 

SpnL product, the new peak near 15 min is very likely to be the C13-F containing SpnL 

product (data not shown).  
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Figure 3-38. HPLC trace for the single turnover experiments. (1) SpnL, (2) C13-F analog, and (3)~(6) 
single turnover experimental result. Here, a peak at 6.6 min is PMAP as an internal reference.  
 

The mass data of this peak is shown in Figure 3-39, showing that [M+H]+ equals 

to 585.5 (100%), 586.5 (31%), 587.5 (7%), which did not correspond to the expected 

molecular weight (calculated MW = 566.29, and [M+H]+ = 567.30). If C13-F SpnL 

product was hydrated with one molecule of water, its calculated molecular weight, 

[M+H2O+H]+ = 585.31, matched with the experimental data. Thus, one possible way to 

explain the data is that this isolated compound is a mono-fluoro mono-hydroxyl product 

at the C-13 center, which is produced by hydration at the C-13 position during the SpnL 

reaction (Figure 3-40).  
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Figure 3-39. MS of isolated compound 
 

It was uncertain when the water molecule was added onto the C-13 position. 

Considering the previous result that the C-13 position is not susceptible to water or L-

glutathione attack under physiological conditions, one molecule of water might be added 

to the C-13 position after formation of C13-F containing SpnL product (Figure 3-40, 

dotted box). Initially, the single turnover experiment was designed to differentiate the 

two mechanisms, and the observation of C13-F containing SpnL product is evidence for 

the Michael addition mechanism. However, it is also possible that the fluoride anion and 

nucleophile can compete to be removed at the last step of the SpnL reaction (Figure 3-5). 

Although the C13-F containing SpnL product was observed as a hydrated form by MS, it 

didn’t conclusively differentiate between the Rauhut-Currier type mechanism and the 

Michael addition mechanism.  
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Figure 3-40. Proposed mechanism of H2O incorporation into C13-F containing SpnL product 
 

3.3.6.9. Future works 

Even though C13-F analog inactivated SpnL, it is uncertain whether the 

nucleophilic addition of cysteine or serine (Cys60 or Cys71 or Ser73) occurs at the C-13 

position of C13-F analog because ESI-MS only showed the formation of covalent adduct 

between SpnL and the C13-F analog, and ESI MS/MS only revealed the modification site 

of SpnL as being on Fragment 4 and Fragment 5 (as ModiFrag4 and ModiFrag5). That 

is, it only narrowed down the possible modification sites of SpnL. The 13C13-F analog is 

designed to address the site of covalent bonding on the substrate (Figure 3-41). After 

SpnL is incubated with 13C13-F analog and trypsin-digested, the solution will be 

subjected to ESI-MS and 13C-NMR analysis. ESI-MS is expected to show the formation 

of a covalent adduct the same as the C13-F analog, and 13C-NMR is expected to show a 

peak shift of C-13 from a peak corresponding to sp2 (substrate) to a peak corresponding 

to sp3 (covalent adduct).  
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Figure 3-41. Mechanistic probes for SpnL reaction: 13C13-F analog 
 

3.3.6.10. Conclusion 

Experiments in Section 3.3.4 to 3.3.6 are focused on the identification of the 

inhibition mode for the SpnL-catalyzed cyclization reaction using isotope trace 

experiments, kinetic isotope effect experiments and biochemical experiments mainly 

measured by MS. Isotope trace experiments and kinetic isotope effect experiments show 

that if the rate determining step of SpnL is the first step and all protons in SpnL are 

exchangeable with water, then the Rauhut-Currier type mechanism is more likely. MS of 

SpnL incubated with C13-F analog shows a characteristic peak corresponding to the 

covalently-modified SpnL with C13-F analog by removal of fluoride atom. MS of 

fragmented SpnL, which was incubated with C13-F analog, shows that the two 

modifications occur in the amino acid sequences of Fragment 4 and Fragment 5 of SpnL. 

MS using SpnL C71A mutant indirectly supported the existence of covalent modification 

on Cys71 and also Cys60. ESI MS/MS of SpnL from the re-fragmentation result of 

Fragment 4 revealed that Cys60 was the most likely nucleophile to initiate the SpnL 

reaction, although there is no evidence for Cys71 due to lack of MS for Fragment 5. The 

conclusion from the overall experimental observations is that SpnL-catalyzed cyclization 

follows the Rauhut-Currier type mechanism through the covalent bonding of the substrate 
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with Cys60, Cys71, or Ser73 of SpnL as the first step. If combined with the in vitro 

activity assay of SpnL mutants (C60A, C71A, and C205A), Cys60 may be the most 

likely residue to initiate the SpnL reaction through the covalent bonding in the first step. 

However, additional biochemical experiments should follow to elucidate the details of the 

mechanism in the future. 

3.3.7. Studies on the SAM-dependence of SpnF and SpnL reactions 

S-Adenosylmethionine (SAM or AdoMet) is a biological sulfonium compound 

used in many biological reactions, which was discovered by Cantoni group in 1952.171 It 

is made from adenosine tri-phosphate (ATP) and methionine by methionine 

adenosyltransferase. SAM is involved in numerous biologically important methylation 

reactions, ACP transfer reactions, methylene transfer reactions, amino group transfer 

reactions, ribosyl group transfer reactions, and aminopropyl group transfer reactions.172 

However, the mechanisms of most of these reactions have not been extensively 

characterized. Furthermore, the structural role of SAM has not yet been reported.  

In the biosynthesis of Spinosyn A, SpnF and SpnL have been identified as 

members of the S-adenosyl-l-methionine (SAM) dependent methyltransferase 

superfamily, based on sequence homology (Figure 3-42).15, 19 However, neither of them 

catalyze the methyl transfer reaction.22 Rather, SpnF catalyzes the [4+2] cycloaddition to 

form a cyclohexene ring through bond formation between C-4-C-12 and C-7-C-11, and 

SpnL catalyzes the cyclization which forms a cyclopentene ring through C-3-C-14 bond 

formation. So, a question arose as to what the role of SAM is for SpnF and SpnL 

enzymes. To address this question and to characterize the role of SAM in these two 
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enzymes, various biochemical studies were designed and performed. The same 

experimental procedures were used to show the role of SAM for SpnF and SpnL. 

 
 

Figure 3-42. Sequence comparison of SpnL and SpnF with known SAM-dependent methyltransferases. 
 

3.3.7.1. In vitro activity assay of as-isolated SpnF and SpnL in the presence of 

exogenous SAM 

The SAM content of SpnF and SpnL was first measured by UV and HPLC 

analysis. After denaturation of the as-isolated SpnF and SpnL by treatment with strong 

acid, the resulting solution was subjected to UV and HPLC analysis. As-isolated SpnF 

contains 1.0 equivalent of SAM, and the as-isolated SpnL contains 0.60~0.75 equivalent 

of SAM (Figure 3-43 and Figure 3-44). 
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Figure 3-43. HPLC traces of SAM in SpnF. (a) SAH standard, (b) SAM standard, (c) filtrate of SpnF, 
(d) supernatant of denatured SpnF and (e) coinjection of SAM with supernatant of denature SpnF. 
 
 

 
 

Figure 3-44. HPLC traces of SAM in SpnL. (a) SAM standard, (b) SAH standard, (c) filtrate of SpnL, 
(d) supernatant of denatured SpnL, (e) coinjection of SAM with supernatant of denature SpnL. 
 

An In vitro activity assay of SpnF and SpnL was then performed to show the 

change in activity of SpnF and SpnL with external SAM. A solution containing SpnL 

natural substrate (250 µM) in pH 8.0 Tris buffer (50 mM) was incubated with SpnL (10 

µM) at 30 °C for 3 min. Another solution contained SpnL natural substrate (250 µM) and 

SpnL (10 µM) preincubated with SAM (500 µM) for 2 hr. As a control, a solution 

containing SpnL natural substrate (250 µM) and SpnL (10 µM) in pH 8.0 Tris buffer was 

also incubated under the same conditions. Three solutions were analyzed by HPLC after 

quenching and precipitation of proteins. The same procedure was also performed for the 

SpnF. There was no obvious change between the control reaction and SAM-treated 

reactions (data not shown). In other word, the external SAM didn’t affect the activity of 



 277 

SpnF and SpnL.  

3.3.7.2. In vitro activity assay of apo-SpnF and apo-SpnL with external SAM 

At first, apo-SpnF and SpnL were prepared following the procedure as described 

in Section 3.2.11.2. SAM content and in vitro activity of apo-SpnF and SpnL were 

determined. As expected, apo-SpnF and apo-SpnL didn’t show any trace of SAM, and 

didn’t catalyze their expected reaction, namely [4+2] cycloaddition and cyclization, 

respectively (Figure 3-45 and Figure 3-46). 

 

Apo-enzymes were then incubated with their substrates in the presence of external 

SAM. Apo-SpnF didn’t show any activity (Figure 3-47; SpnF product shown in (b) was 

non-enzymatic product), while apo-SpnL showed activity in a SAM concentration-

 
 

Figure 3-45. HPLC traces of apo-SpnF. (a) SAM standard, (b) filtrate of apo-SpnF, and (c) supernatant 
of denatured apo-SpnF 

 

 
Figure 3-46. HPLC traces of apo-SpnL. (a) SAM standard, (b) filtrate of apo-SpnL, and (c) supernatant 
of denatured apo-SpnL 
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dependent manner (Figure 3-48 (A)). Similarly, SAH increased the activity of apo-SpnL 

(Figure 3-48 (B)), whereas SAH didn’t affect the activity of apo-SpnF (data not shown). 

However, apo-SpnF and apo-SpnL showed no change in activity when 5′-

deoxyadenosine and/or methionine was added (Figure 3-48 (C)).  

 
 

Figure 3-47. HPC traces for in vitro activity assay of apo-SpnF with external SAM.  
 

 

 

 

 

 

 

 

 



 279 

A 

 
B 

 
 

C 

 
 

Figure 3-48. HPLC trace of in vitro activity assay of apo-SpnL in the presence of (A) SAM, (B) SAH, 
and (C) 5′-deoxyadenosine and/or methionine. 
 

3.3.7.3. In vitro activity assay of reconstituted SpnF and reconstituted SpnL with 

external SAM 

Reconstituted enzymes were prepared by incubation of apo-enzymes (100 µM) 

with an excess SAM (2.5 mM) in pH 8.0 Tris buffer at 4 °C for 2 hr, followed by 

repeated dialyses to remove excess SAM in the buffer solution. The SAM content and in 

vitro activity of the reconstituted SpnF and reconstituted SpnL were then determined. UV 

and HPLC analysis revealed that reconstituted SpnF had no SAM, while reconstituted 

SpnL contained 0.70 equivalent of SAM, which is similar to the value of 0.60~0.75 
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equivalent for the as-isolated SpnL (Figure 3-49). Furthermore, the reconstituted SpnF 

didn’t show any activity even with external SAM, whereas reconstituted SpnL showed 

activity without external SAM (Figure 3-50).  

 
 

Figure 3-49. HPLC trace of SAM for (a) SAM standard, (b) as-isolated SpnL, (c) apo-SpnL, and (d) 
reconstituted SpnL 

 

SAM is a common co-substrate for the methyl transfer reactions in biological 

systems.173, 174, 175, 176, 177 The sulfonium ion’s highly reactive methyl group makes it an 

important biological methylating agent. The function of SpnL is to catalyze the 

cyclization of tricyclic aglycone into the tetracyclic aglycone by carbon-carbon bond 

formation between at C-3 and C-14 in the biosynthesis of spinosyn A.22 Thus, SpnL is 

 
 

Figure 3-50. HPLC trace of SpnL reaction with the reconstituted SpnL 
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not considered a methyltransferase. On the other hand, SAM can also be cleaved 

reductively to produce 5′-deoxyadenosyl 5′-radical as an intermediate in many iron-sulfur 

cluster-containing radical SAM enzymes. The hallmark of those radical SAM enzymes is 

the well-conserved CxxxCxxC motif, which coordinates a [4Fe-4S] cluster in the active 

site. The amino acid sequence of SpnL revealed three cysteine residues, Cys60, Cys71, 

and Cys205. However, those three cysteines are located far from each other, indicating 

that SpnL is not a member of the radical SAM enzyme superfamily. SAM is also used in 

the biosynthesis of polyamine. After decarboxylation, the remaining S-

adenosylmethioninamine donates its n-propylamine group to the biosynthesis of 

polyamine such as spermindine and spermine. This is also not the case for SpnL. Thus, 

the role of SAM in SpnL reactions warrants investigation.  

Several biochemical experiments to assay the in vitro activity of as-isolated SpnF, 

apo-SpnF, and reconstituted SpnF didn’t show any clue for the role of SAM in SpnF. 

However, a series of in vitro activity assays of as-isolated SpnL, apo-SpnL, and 

reconstituted SpnL showed that SAM is required for the activity of SpnL, although the 

actual role of SAM is still unknown. Previously, Dr. Choi suggested several possibilities 

for the role of SAM in SpnL, delineated as following.151 First, SAM is simply involved in 

the folding of SpnL (Figure 3-51 (A)). Second, SAM binding to SpnL helps substrate 

binding by inducing a conformational change of SpnL into an active form (Figure 3-51 

(B)). Third, SAM binding fills the active site so that the substrate can bind to the active 

site more tightly (space filling), rather than inducing a conformational change (Figure 3-

51 (C)). Lastly, SAM can be involved in other unknown functions during catalysis. Thus, 
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the next experiment, using circular dichroism spectroscopy, was performed to prove the 

structural change of SpnL during the reconstitution process. 

 
 

Figure 3-51. Three proposed structural roles of SAM in SpnL reaction. (A) assistance in the folding 
process, (B) assistance in proper folding (native folding), and (C) assistance by filling the active site to 
make a substrate near to catalytic residue. 
 

3.3.7.4. Circular dichroism (CD) experiments 

The far-UV circular dichroism (CD) spectrum of proteins can show the 

conformation of their secondary structure as fractions in α-helix and β-sheet.178, 179, 180 It 

is possible that the comparison of the conformations of the as-isolated SpnL, apo-SpnL, 

and reconstituted SpnL may give different results, depending on whether SAM is present. 

Due to the difficulties in measuring CD in typical aqueous buffer systems, the CD 

analysis was optimized to meet the criteria of these experiments. The circular dichroism 

spectrum of SpnL was then measured for the as-isolated SpnL and apo-SpnL. Finally, the 

change of CD of apo-SpnL was measured by the addition of SAM during the 

reconstitution process. The results are shown in Figure 3-52 and Figure 3-53. The 



 

conformational analysis of 

However, apo-SpnL has similar values of ellipticity at 210 nm and 219 nm, while

isolated SpnL has different values of ellipticity at these regions (

addition, the change in the 

dependence of SAM during the reconstitution process, although the difference 

significant (Figure 3-53).  
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Figure 3-53. CD spectrum change 
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 the fraction of α-helix and β-sheet gave similar results. 

similar values of ellipticity at 210 nm and 219 nm, while

different values of ellipticity at these regions (Figure 

 CD spectra at 210 nm and 219 nm shows concentration 

during the reconstitution process, although the difference 

 
 

. CD spectrum of as-isolated SpnL and apo-SpnL (not scaled). 
 

 
 

. CD spectrum change during the reconstitution process (not scaled).
 

Circular dichroism spectrum of the apo-SpnL indicated that the

s already similar to that of the as-isolated Spn

reconstitution with external SAM (i.e., apo-SpnL is at the very least not a random coil). 

sheet gave similar results. 

similar values of ellipticity at 210 nm and 219 nm, while the as-

Figure 3-52). In 

shows concentration 

during the reconstitution process, although the difference is not very 

 

during the reconstitution process (not scaled). 

SpnL indicated that the secondary 

isolated SpnL before 

random coil). 
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Moreover, the conformation of apo-SpnL changed to that of the as-isolated SpnL 

depending on the amount of SAM added, as shown in Figure 3-53.  

In Section 3.3.7.3., several possibilities are proposed for the role of SAM in the 

SpnL reaction. The first possibility that SAM is simply involved in the proper folding of 

SpnL, can be ruled out because apo-SpnL already has a folded structure similar to the as-

isolated SpnL. The second and third suggestions are very similar in that SAM binds to 

SpnL to make the substrate bind more tightly to its active site. The second role proposed 

is a conformational change of the active site, and the third role proposed is the space 

filling model, allowing the substrate to contact the catalytic residue(s) more tightly in the 

active site. These possible structural roles conceptually explain how the activity of SpnL 

might be reliant on the presence of SAM, by making the active site of SpnL more suitable 

for catalysis. Here, it is worthwhile to note that SAH as well as SAM restored the activity 

of apo-SpnL, but the two fragments of SAM, 5′-deoxyadenosine and methionine, didn’t. 

The methyl group in SAM is missing in SAH, indicating that methyl group is not 

required for the activity of SpnL. The remaining two parts corresponding to 5′-

deoxyadenosine and methionine are connected through a sulfur linkage in SAH and 

SAM. If SAM participates in the space filling model, the two fragment molecules, 5′-

deoxyadenosine and methionine should be able to activate the apo-SpnL, especially when 

they are used together. However, there was no restoration of apo-SpnL activity even in 

the presence of both fragment molecules in high concentrations. Rather, the second 

model, suggesting conformational changes of the active site, seems to be more likely, if 

combined with space filling model (third model). That is, assuming that the active site or 
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any other important site for the activity of apo-SpnL has two separated pockets (namely, 

a 5′-deoxyadenosine pocket and a methionine pocket; Figure 3-54, Left: open-shape), 

which can bind to an adenine moiety and the amino acid moiety of SAM, only sulfur-

linked SAM and SAH can restore the activity of apo-SpnL by contracting these two 

pockets more tightly (Figure 3-54, Right: closed-shape). If there’s no linker, the two 

pockets should be still far away and couldn’t affect the activity of apo-SpnL even though 

the two pockets were filled with 5′-deoxyadenosine and methionine. This concept is 

depicted in Figure 3-53.  

 
 
Figure 3-54. New proposed role of SAM in the SpnL reaction. Left: open-shaped, and Right: closed-
shaped. 
 

SpnF and SpnL, in the biosynthesis of spinosyn A, have been classified as 

members of SAM-dependent methyltransferase superfamily due to their characteristic 

DxGCG motif, based on sequence homology. However, SpnF was proved to be involved 

in the [4+2] cycloaddition as part of the formation of cyclohexene ring and SpnL was 

shown to be involved in the ring closure to form the cyclopentene ring during the 

biosynthesis of spinosyn A aglycone. Initially, four possibilities about the structural role 

of SAM in SpnF and SpnL were suggested in Section 3.3.7.3. To verify these hypotheses, 
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several experiments were conducted. The SpnL content of SAM was determined by UV 

and HPLC analysis to be 0.60~0.75 equivalents. A series of in vitro activity assays of as-

isolated SpnL, apo-SpnL, and reconstituted SpnL revealed that SAM is apparently 

required for the SpnL reaction. It was also found that SAH as well as SAM could restore 

the activity of apo-SpnL, but 5′-deoxyadenosine and methionine couldn’t. In addition, the 

circular dichroism spectroscopy disclosed that the conformation of apo-SpnL becomes 

more similar to that of as-isolated SpnL in a SAM concentration dependent manner 

during the reconstitution process. Combined results lead to a slightly modified hypothesis 

about the role of SAM in SpnL, namely that SAM plays a structural role to connect two 

pockets in the active site or any important site for the activity of SpnL, to activate the 

enzyme. At this stage, it is hard to say how SpnL binds to SAM and the substrate, as well 

as which residues of SpnL interact with SAM and the substrate due to the lack of a 

crystal structure containing SAM and the substrate. The crystal structure of SpnL will 

likely reveal the binding site of SAM and the active site, as well as show the structural 

role of SAM in the SpnL reaction. To our knowledge, the structural role of SAM is 

necessarily performed first in the SpnL reaction. Further research will give additional 

clues as other role of SAM in the SpnL reaction, as well as the SpnF reaction.  

3.3.8. SpnL mutant study using SpnL D57N, E96Q, and E96L 

When a known catalytic base, Glu358, in m5U-tRNA methyltransferase was 

mutated to glutamine, the X-ray crystal structure of the mutant enzyme revealed a 

covalently modified enzyme-substrate adduct.181 So far, the X-ray crystal structure of 

SpnL has not been solved yet. However, the non-enzymatic incubation of SpnL with L-
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glutathione led to a Michael addition adduct, although the site of covalent modification is 

not known. Based on the proposed Rauhut-Currier type mechanism, deprotonation after 

the cyclization reaction will expel SpnL and release the SpnL product. If this 

deprotonation step is blocked, the covalently-modified enzyme-substrate adduct will be 

accumulated leading to enzyme inactivation. Recently, it was found that two cysteine 

residues (Cys60 and Cys71) of SpnL are the possible residues to form covalent bonds 

with the substrate/inhibitor during the enzymatic cyclization reaction, as demonstrated by 

the inhibition study using the C13-F analog. Thus, it is proposed that several aspartate or 

glutamate residues near these two cysteine residues are the catalytic base necessary to 

complete the deprotonation and removal of the SpnL active site nucleophile from its 

product. There are total 33 aspartate and glutamate residues in SpnL. Three residues, 

Asp45, Asp57 and Glu96, were selected as the most likely catalytic base involved in the 

deprotonation step. The disappearance of SpnL natural substrate and the absence of any 

product formation upon incubation of SpnL natural substrate with the SpnL mutants is 

expected due to the accumulation of the covalent adduct if one of these selected residues 

is involved in the deprotonation reaction. Furthermore, it is expected that MS or X-ray 

crystallography will show the presence of the SpnL-substrate complex. Three single-

point SpnL mutants were made by Dr. Y.-n. Liu, the research associate in the Liu Lab. 

SpnL D57N, SpnL E96Q, and SpnL E96L were well expressed and purified. However, 

SpnL D45N was not well expressed due to unknown reasons. So, all of the SpnL mutant 

studies were performed using three SpnL mutants, SpnL D57N, SpnL E96Q, and SpnL 

E96L.  
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The in vitro time-course activity assays of the three SpnL mutants were performed 

using the same procedure for assaying the wild type SpnL. A solution containing SpnL 

natural substrate (80 µM) and SpnL mutant proteins (10 µM) in pH 8.0 Tris buffer (50 

mM) was incubated at 37 °C for 20 hr with activity monitored by HPLC analysis. The 

HPLC analysis showed that the activity of SpnL D57N was very similar to that of SpnL, 

while the activity of SpnL E96Q and SpnL E96L were less than that of SpnL (Figure 3-

55). If either Asp57 or Glu96 is the general base responsible for the deprotonation step of 

the reaction, this last step should be prevented and no SpnL product would be detected. 

Specifically, if the SpnL reaction follows the Rauhut-Currier type mechanism, SpnL 

natural substrate should disappear, but SpnL product is expected not to appear because 

the SpnL mutant should be inactivated by covalent modification. If the SpnL reaction 

follows the Michael addition mechanism, SpnL natural substrate should disappear, and an 

isomer of SpnL product should be produced, not the SpnL natural product. However, this 

result clearly showed that all three SpnL mutants catalyze the cyclization reaction, 

although to varying in degrees. Next, to detect the covalent adduct of SpnL mutant with 

SpnL natural substrate, a solution containing SpnL natural substrate and the SpnL mutant 

was incubated at 30 °C for given time, in which time half of SpnL substrate was 

converted into SpnL product. It was assumed that there should be a covalent adduct of a 

SpnL mutant with an intermediate trapped in the middle of the SpnL reaction. The 

reaction mixture was quenched, dialyzed, and submitted to ESI MS analysis. MS result 

didn’t give any promising peaks, corresponding to the covalent adduct for any of the 

three SpnL mutants (data not shown).  
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Figure 3-55. HPLC trace of the in vitro activity assay for SpnL and SpnL mutants. 
 

These results can be explained in two ways, proper-folded or improper-folded (or 

misfolded) SpnL mutants. If the SpnL mutants are properly-folded as the wild type SpnL, 

the slow but complete conversion of SpnL natural substrate into SpnL product means that 

the selected aspartate or glutamate are not directly involved in the deprotonation step. 

Instead, it is possible that other amino acid residues or a water molecule is involved in the 

deprotonation at the C-12 position of SpnL substrate and the enzyme covalent adduct. 

The slow rate of reaction can be explained by low catalytic diad formation of amide 

residue in the SpnL mutants (asparagines in SpnL D57N, and glutamine in SpnL E96Q) 

with the water molecule due to its low hydrogen bonding ability compared to the 

carboxylate moiety of Asp57 or Glu96. In this case, a weakly deprotonated water 

molecule is only able to inefficiently carry out deprotonation. Thus, the reaction rate 
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should be slow. In the case of SpnL E96L, this catalytic diad is less likely to capture a 

water molecule due to its increased lipophilicity from the lysine residue. Another 

possibility is that these asparagine or glutamine may be used as a very week base for the 

deprotonation. Based on the current evidence, these two amino acid residues (D57 and 

E96) seem not to be involved in the deprotonation step directly,. 

Another possibility is the folding problem. It is conceivable that the SpnL mutants 

are improperly folded and therefore have lower activity compared to the wild type SpnL. 

There are two scenarios in this case. One is that the catalytic active site might be distorted 

resulting in a low binding affinity of SpnL mutants for SpnL substrate. Simultaneously, 

the distorted active site may partially block the insertion of SpnL substrate and/or release 

of SpnL product, resulting in the slow cyclization reaction. The other scenario is that the 

misfolded SpnL mutants may place the catalytic asparagine (D57N) or glutamine (E96Q) 

in a less ideal position, although those could still act as a general base involved in the 

deprotonation reaction. During the dynamic protein folding cycle, some of properly-

folded SpnL mutants may function well enough to catalyze the cyclization reaction, 

resulting in complete but slow conversion.  

Initially, the purpose of the SpnL mutant study was to identify the covalent adduct 

of SpnL mutants and SpnL natural substrate to distinguish between the two plausible 

mechanisms: the Rauhut-Currier type mechanism and Michael addition mechanism. 

From the in vitro activity test of three SpnL mutants, Glu96 appears to play an important 

role in the SpnL reaction, compared to Asp57. However, the covalent adduct of SpnL 

mutant and SpnL natural substrate was not detected by ESI MS, so it is still uncertain 
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which mechanism the SpnL reaction follows. However, the in vitro activity difference 

between SpnL E96Q and E96L indicated that the hydrophilic environment near Glu96 is 

more favored and consequently a water molecule in this site can be used as a catalytic 

base as a deprotonated hydroxide ion or partially negative charged water molecule. In this 

case, turnover of SpnL natural substrate into the product occurs regardless of the reaction 

mechanism. Although the reaction mechanism is not distinguished by these experiments, 

Glu96 seems to be an important residue in the SpnL reaction. 

3.3.9. Chemoenzymatic total synthesis of spinosyn A 

The spinosyns exhibit neuronal activity against insects mainly by interacting with 

nicotinergic acetylcholine receptors. A mixture of spinosyn A and spinosyn D, namely 

Spinosad®, has been worldwidely used in agriculture as a highly potent and selective 

insecticide.5, 6, 7 Since Spinosad® resistance has been recently reported, the importance of 

developing modified spinosyns to increase their insecticidal activity against Spinosad®-

resistant insects should not be understated.182, 183, 184, 185  

As described earlier, spinosyn A, which contains a tetracyclic aglycone and two 

appended sugars, is an interesting natural product due to its structural complexity. Many 

research groups have reported the total synthesis of spinosyn A and spinosyn analogs. 

The Evans group 186 and Paquette group 187, 188 reported the synthesis of the tricyclic 

perhydro-as-indacene in spinosyn A. The Roush group 79, 80 and Tietze group 189 have also 

reported the total synthesis of spinosyn A.  

The Roush group utilized a nucleophile induced Michael cyclization 

(corresponding to an intramolecular Rauhut-Currier reaction) and transannular [4+2] 
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cycloaddition from a multi-conjugated macrolactone ring as the key reactions in their 

total synthesis of spinosyn A (Figure 3-56).79, 80  
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Figure 3-56. Retrosynthetic analysis of spinosyn A by the Roush group. (P: protecting group, R1: α-
trimethylrhamnosyl, and R2: forosamine) 
 

Tietze and co-workers reported a synthesis of a novel spinosyn A analog, which 

contains a benzene ring instead of cyclopentene moiety in the aglycone, by two fold Pd-

mediated Heck reaction in 2008 (Figure 3-57).189  

O

OR2

O

Me

O
H

HH

OR1

Grignard
Evans aldolation

Yamaguchi macrolactonization

X

OP

O

O

H

HH

OR1

O

PO

H

Aux

Heck reaction

Heck reaction

O

OP

OR1

PO

I

Br
H

H

 
 

Figure 3-57. Retrosynthetic analysis of spinosyn A analog by the Tietze group. (P: protecting group, 
Aux: Evans chiral auxiliary, R1: α-trimethylrhamnosyl, and R2: pivaloyl) 
 

To my knowledge, the chemoenzymatic total synthesis of spinosyn A is another 

approach to complete the synthesis of the natural product by both organic synthesis and 

biosynthesis containing multi-enzymes. The precursor for the SpnJ reaction was 

synthesized based on organic synthesis utilizing Yamaguchi macrolactonization,133 Julia-

Kocienski olefination,134, 135 and Stille cross-coupling reaction,136 as shown in Figure 2-

8. A series of enzymatic transformations including SpnJ (oxidase), SpnM (dehydratase), 

SpnF (cyclase), SpnG (glycosyltransferase), SpnL (cyclase), SpnI, SpnK, and SpnH (O-

methyltransferases) was then performed in one pot to produce a 17-pseudoaglycone of 

spinosyn A (Figure 1-4, and Figure 3-58).20, 21, 22 Interestingly, it was found that the 
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three methyltransferases could catalyze a series of methylations on the tricyclic aglycone 

substrate, which has not been reported before (Figure 3-59). The final step is expected to 

be a SpnP-catalyzed glycosylation with TDP-D-forosamine, but this has not been 

established yet due to the difficulty to prepare TDP-D-forosamine. Thus, etherification of 

D-forosamine and the tetracyclic precursor was performed by using BF3-Et2O in 

dichloromethane at 0 °C for 6 hr and the desired product was isolated in 38% yield 

(Figure 3-60).  

In conclusion, although the organic synthesis of the macrolactone precursor for 

the enzymatic reactions takes a great deal of time and labor, the final 8 enzymatic 

transformations only take several hr with high stereospecificity and yield. If the final step 

catalyzing the forosamine transfer is established, it will give a more efficient way to 

synthesize spinosyn A. 

 
 

Figure 3-58. HPLC trace of enzymatic transformations using SpnJ, SpnM, SpnF, SpnG, SpnL, SpnI, 
SpnK, and SpnH to produce 17-pseudoaglycone of spinosyn A. (A) SpnJ substrate, (B) SpnJ product, (C) 
SpnM/F product, (D) SpnG product, (E) SpnI product, (F) SpnK product, and (G) SpnH product. (a peak 
near 31 min is a side product of SpnM reaction) 
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Figure 3-59. HPLC trace of SpnL/I/K/H reaction (left) versus SpnI/K/H/L reaction (right). HPLC 
conditions: C18 analytic column (250 x 4.6 mm, 5 um), aqueous acetonitrile: 30% to 60% over 60 min at 
a flow rate of 1 mL/min with detection at 267 nm. 
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Figure 3-60. Etherification of D-forosamine to 17-pseudoaglycone of spinosyn A. 
 

3.4. CONCLUSION 

SpnL-catalyzed cyclization is the second “cross-bridging” process to produce a 

cyclopentene moiety in a perhydro-as-indacene core of spinosyn A. As mechanistic 

studies of SpnF-catalyzed [4+2] cycloaddition have been focused on verifying whether it 

is a true “Diels-Alderase”, mechanistic studies of SpnL-catalyzed cyclization have been 

concentrated on verifying whether it is a “Rauhut-Currierase”, which catalyzes the 

dimerization of two alkenes activated by nucleophilic addition. Since formation of the 

cyclopentene moiety can also proceed through the Michael addition mechanism, by 

which the activation of the conjugated system is initiated by deprotonation at the C-12 

position, many biochemical studies were designed and described in Chapter 3 to 

differentiate the two plausible mechanisms for SpnL reaction. 

A B 
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First, the isotope trace experiment showed that one deuterium is introduced in the 

SpnL product, which seems to support the Rauhut-Currier type mechanism. However, it 

is possible that a proton abstracted by the active site base in the first step can return to the 

C-12 position in the last step through the Michael addition mechanism, resulting in the 

same monodeuterated SpnL product. A slightly inverse kinetic isotope effect for the C12-

D SpnL substrate analog is too ambiguous to draw the conclusion because the result can 

be differently interpreted depending on the rate determining step. If the first step is the 

rate determining step, it is obvious that the Michael addition mechanism can be excluded 

based on the slightly inverse kinetic isotope effect at the C-12. However, we cannot rule 

out the possibility that the last deprotonation step is the more sensitive step for the SpnL 

reaction. Additional kinetic isotope effect studies using the C13-D analog is in progress, 

and expected to give more information about the SpnL mechanism.  

The C13-F SpnL substrate analog was initially designed to inactivate the SpnL 

reaction by covalent modification of active site residue, if the SpnL utilizes the Rauhut-

Currier type mechanism. Biochemical studies show that the C13-F analog is indeed a 

mechanism-based inhibitor which makes a covalent adduct with SpnL. Furthermore, ESI 

MS/MS analysis of the covalent adduct reveals that the amino acid residue responsible 

for the nucleophilic attack is probably Cys60, Cys71, or Ser73, although the exact 

structure of the covalent adduct is still unknown. The newly designed 13C13-F SpnL 

substrate analog is expected to give more evidence for the Rauhut-Currier type 

mechanism. 
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Biochemical studies about the role of SAM in SpnF and SpnL were performed 

using the denaturation and reconstitution of enzymes, and showed that the existence of 

SAM is required for the activity of SpnL, although it is uncertain for SpnF. Moreover, 

CD spectroscopy led to the hypothesis that SAM has a structural function. SAM may 

make the substrate binding site more active by connecting a methionine binding pocket 

and a 5′-deoxyacenosine binding pocket, as described in Section 3.3.6. In addition, SpnL 

mutant studies showed that Glu96 may play an important role in the catalysis of SpnL. 

Finally, the chemoenzymatic total synthesis of spinosyn A was completed by 

etherification of 17-pseudoaglycone and D-forosamine. In the near future, it is expected 

that SpnP, the glycosyltransferase, will be established to catalyze the final step of the 

biosynthesis of spinosyn A. 

In conclusion, many interesting aspects of SpnL-catalyzed cyclization have been 

studied in Chapter 3. Mechanistically, SpnL reaction seems to proceed through the 

Rauhut-Currier type mechanism, based on the biochemical studies using the C13-F 

analog. Additional experimental data on the SpnL-catalyzed reaction will give more 

insights of the reaction mechanism. Also, several other interesting questions, such as why 

SpnF and SpnL are dependent on SAM, and what is the order of enzymatic 

transformations in the biosynthesis of spinosyn A will be further investigated in the 

future. 
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Appendix 

A.1. Spectral Data for Chapter 2 
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A.2. Spectral Data for Chapter 3 
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