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Abstract 

Neuromorphic research community is focused on designing a hardware which is as 

efficient as biological brain in terms of performance, power and area. It opens up 

opportunities to optimize these designs at all levels from architecture to devices. We 

propose a novel architecture to have tight integration between neurons and synapses. Our 

32K bit neuromorphic chip with 256 axons and 256 neurons demonstrates 4 neuromorphic 

cores operating in a completely parallel fashion. Eflash memory core representing synapses 

saves power and area. The Non-volatility of eflash consumes zero static power. The ability 

to store multi-levels of weights in a single cell makes the array denser.  Unlike flash 

technology, eflash doesn’t require specialized fabrication process, hence the neuromorphic 

chip is implemented in 65nm standard CMOS technology. The current sensing neurons 

with parallel reading scheme makes the neuronal operation several orders of magnitude 

faster than state-of-the-art neuromorphic designs. A generic design style of the 

neuromorphic chip can demonstrate various neural network algorithms. As a proof-of-

concept, we implemented Restricted Boltzmann Machine (RBM) algorithm in our chip to 

demonstrate handwritten digit recognition application.  
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Chapter 1 Introduction 

The mysterious engineering behind a mammalian brain has been an inspiration for 

cognitive computing research community since decades. The enormous ability of a 

biological brain to compute complex tasks could outperform latest supercomputers. One of 

the earlier work to demonstrate a massively parallel cortical simulator includes designing 

a model of cat cortex [1] consisting of 109 neurons and 1013 synapses using Blue Gene/P 

supercomputer. The supercomputer uses 147,456 CPUs and 144 TB of main memory. 

However, resources used by this giant computer was several orders of magnitudes larger 

than a biological brain that consumes few watts of power and very small area [2].  Since 

power and area overhead used by a software to demonstrate brain-like network is massive, 

there is an ample scope to design neuromorphic hardware in order to match performance, 

power and area efficiency to a biological brain. 

Despite aggressive scaling of transistor in-order to cope up with Moore’s law, there 

hasn’t been a competitive growth in this area. As neurons and synapses are required to be 

tightly integrated, use of general purpose microprocessors with Von Neumann Architecture 

creates memory access bottleneck [2]. Since the information stored in synapses has analog 

levels and has to be retained for longer durations, using conventional SRAMs for this 

applications results in area overhead and larger static power dissipation. These limitations 

opened up new opportunities to develop novel architectures and design novel devices for 

neuromorphic applications.  

In order to overcome the bottleneck due to Von Neumann Architecture, the 

proposed neuromorphic chips [2] - [5] use novel architectures where the neurons and 
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synapses are tightly integrated. These architectures reduce memory access time and 

improves computation speed. However, these designs use SRAMs to store weights. Hence, 

it incurs lot of area and power overhead. Since these designs access weight array in row-

by-row fashion, hundreds of clock cycles are required to readout all the data from a weight 

matrix. Since synaptic weights are stored in SRAMs, multiple bitcells are required to 

represent a synapse.         

Since the conventional memory cells are inappropriate to store the weights, 

emerging non-volatile memory technologies [6], [7] such as phase-change memory (PCM), 

conductive-bridge memory (CBRAM) and resistive memories (RRAM) have been 

proposed for this application. These novel non-volatile memories storing multiple levels of 

weights are appropriate to imitate synapses. However, they require specialized fabrication 

process.   

Few of the previous works in neuromorphic engineering uses analog circuits to 

represent the synapses [8], [9]. These analog synapses use capacitors to store charge and 

the amount of charge on the capacitor represents a weight magnitude. Although, analog 

implementations gives the flexibility to store any levels of weights, complexity and area 

overhead of these circuits is very high. This could limit the maximum number of synapses 

on each chip.  Since leakage due to capacitors is very high, these designs require additional 

circuitry to retain the level of charge on the capacitor [8].  

In order to address these issues we proposed a novel architecture with an efficient 

data access scheme and novel synaptic devices which can be implemented using standard 

CMOS technology.  The architecture uses multicores to process the tasks in a highly 

parallel fashion. Each core uses a cross bar memory structure to provide tight integration 
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between neurons and synapses. This solves the memory access bottleneck which can be 

observed in Von Neumann architecture.  Our memory access scheme is completely parallel 

and hence computation speed can be several orders of magnitude larger than their digital 

counterparts [3], [4]. In order to implement synapses, we propose multilevel eflash [10], 

[11] cells. Eflash uses floating gate to store charge which represents a weight level. Unlike 

conventional SRAM, eflash is non-volatile. Hence, it doesn’t require power supply to retain 

the data. This saves enormous leakage power. Data retention time of these cells is several 

years and they just need be refreshed once in a year. The advantage of these cells over 

standard Flash memories is, they don’t require specialized fabrication process and are 

implemented using standard CMOS technology. 

Our neuromorphic design consists of four cores. Each core is 64x128 bit crossbar 

array corresponding to 64 axons and 64 neurons. The building block of these 8K bit cores 

are eflash cells representing synapses. Using four cores together, 32K bit neuromorphic 

chip constitutes 256 axons, 256 neurons and 32K (256x128) synapses. The entire design 

operates in a completely parallel fashion to generate spikes, where each core processes a 

segment of image. 

The later sections are organized in the flowing fashion. In chapter 2, we present 

detailed description of application and the infrastructures used. Chapter 3 describes neural 

network algorithm used for training the system and chapter 4 describes the architecture of 

the neurosynaptic core using multilevel cells. Simulation results and comparisons are 

covered in chapter 5 and we conclude in chapter 6. 
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Chapter 2 Application 

Neuromorphic systems have demonstrated various applications. There has been 

considerable work toward image processing. These applications include designing 

electronic models of retina [6], motion sensors [12], [14], pattern recognition [2] and image 

encoding [4].  Neuromorphic speech processing is one of the emerging field, some of the 

recent works were on designing electronic model of Cochlea [7], [6].  On the other hand, 

neuromorphic systems were also used to design sound localization sensors [14]. Spiking 

silicon Central Pattern Generator (CPG) was designed [15] to demonstrate the group of 

neural circuits in the spinal cord which define the locomotion in animals. Current state-of-

the-art massive designs: SpiNNaker [16] and Neurogrid [17] are designed using multiple 

cores. These designs provide platform for neuroscience experiments.    

We designed our neuromorphic chip to support various neural network 

applications. In order to demonstrate, we considered one of the popular applications: 

handwritten digit recognition. The complete flow diagram of digit recognition application 

is shown in figure 2.1.  The application runs in two phases: training and testing. During 

training phase, weights are learnt. These weights along with the input images generates the 

spikes and these spikes are used to recognize the images during testing phase as shown in 

figure 2.4.  We used a hybrid model consisting of both hardware and software 

infrastructures. This model was chosen in order to have flexibility of using our core for 

various state-of-the-art neuromorphic applications. 
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Figure 2.1 Flow diagram of image recognition algorithm 

 

2.1 Restricted Boltzmann Machine (RBM) based learning 

 The generic design of our neuromorphic core has caliber to enact various neural 

network algorithms. We chose RBM, one of the popular artificial neural algorithm to 

exhibit digit recognition [18]. This algorithm has gained lot for popularity for many 

applications such as dimensionality reduction, classification, feature learning and deep 

learning [18].  RBM neural network model is designed in MATLAB and is trained using 

60,000 handwritten digits from MNIST dataset [19]. These images are represented in a 

gray scale format. Each input image used for training consists of 256 pixels (16x16). The 

training involves learning optimum weights. Learned weights are real numbers and the 

range is based on input image specifications.  
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2.2 Spike generation using neuromorphic core 

Weights learned during training phase are programmed in to the neuromorphic 

cores. Since these values are real numbers, they are converted in to integers. The 10,000 

images from the dataset which were never exposed to the system before are used for testing. 

Grayscale input images are converted in to binary scale. The pixel distribution is showed 

in figure 2.2 and figure 2.3. These binary pixels act as axons to the cores. Each axon 

corresponds to a wordline of a crossbar memory structure. Hence, it enables a row of 

synapses. Since our reading scheme is completely parallel, all the rows corresponding to 

the active pixels of an image are activated together. Each activated synapse generates 

current. All these currents are summed up together to generate spikes by neurons. Each 

image corresponds to 256 neuronal spikes. Since the design uses four cores, each core 

processes one of the four segments of an image to generate 64 spikes.   

2.3 Digit recognition using a classifier 

The spikes generated by the neuromorphic chip are fed in to classifier to recognize 

digits as shown in figure 2.4. Classifier is a software design implemented in MATLAB. It 

is initially trained using the spikes of 60,000 training images. During testing, depending on 

the pattern of spikes generated by the neuromorphic cores, the classifier predicts the digits. 

Outputs of the classifier are probability values of each digit being a given input. Depending 

on learning quality, the classifier predicts a digit and most of the times it is observed that 

the probability corresponding to one digit will be very close to 1 and all the other values 

will be very close to 0 as shown in figure 2.4. It is also observed that the quality of digit 

recognition is based on weights obtained by the RBM learning software. 
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Figure 2.2 16x16 pixel image with grayscale and binary values 
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Figure 2.3 Distribution of pixel values for grayscale and binary images 
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Figure 2.4 Digit recognition using classifier 
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Chapter 3 Algorithm and training 

Artificial Neural networks (ANN) is a biologically inspired programming model 

that develops an ability in machines to learn from observed data. This network is a system 

of compactly connected neurons which communicate to each other. Connection between 

neurons is defined by a parameter called “weight”. The magnitude of weight decides the 

strength of the connection and hence impact of one neuron on another. These weights are 

adaptive to inputs and are tuned depending on the input patterns. This ability of adapting 

the weights is also called as learning capability. These ANNs cover wide variety of 

applications such as pattern and sequence recognition, novelty detection, sequential 

decision making, robotics and so on. A process of learning can either be supervised or 

unsupervised. In supervised learning, a system learns using labelled training data, where it 

receives both inputs and intended outputs.  

 RBM, one of the popular ANN used for applications like dimensionality reduction 

[18], classification and feature learning. In recent years it has also gained popularity in 

deep learning [20] which is demonstrated in image recognition, speech processing and 

neural language processing (NLP). We have considered a two layer RBM algorithm for 

our application of digit recognition.  As shown in figure 3.1, the network contains one 

visible layer and one hidden layer. If we consider a digit recognition application, input 

pixels are visible effects. These visible effects are associated with hidden causes (neurons). 

Units of one layers are connected to the units of other layer. The strength of connection is 

defined by the magnitude of weight. If the connections is stronger between the pixel and 

neuron, the probability of spiking a neuron is high when a corresponding pixel is high. 
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Figure 3.1 RBM network 

 

A neural network can have connection among the units of same layer. But the RBM 

is a simplified neural network which has an underlying assumption that the units of same 

layer are not connected. This elegant property of RBM makes it one of the appropriate 

algorithm for deep belief network [20].  The deep belief network (deep learning) is not just 

limited to two layers, it has multiple layers. RBM is trained layer-by-layer to encode the 

data efficiently at each layer [18].   

Training procedure used in our application is called as contrastive divergence. 

Since we considered 256 pixels corresponding to each image and 64 neurons per core, we 

trained RBM with a configuration of 256 visible units and 64 hidden units.  The steps in 

training procedure using contrastive divergence are shown in the figure 3.2. 
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Figure 3.2 Learning using contrastive divergence 

 

Given the values of visible units, this algorithm calculates probability of hidden 

units being 1 (P(hj =1)) with the equation (1). 

                                   𝑃(ℎ𝑗 = 1) =
1

1+𝑒
(−𝑏𝑗−𝑊𝑖𝑗𝑉𝑖)                       (1) 

Where Vi is the input pixel value, Wij are values of weights which are initially 

assumed to be random and bi, bj are biases of visible and hidden units, respectively. Gibbs 

sampling is used on hidden probabilities to calculate binary states of hidden units (hj).  

Then, the hidden units along with the weight transpose matrix (Wij
T) are used to calculate 

confabulation of an input image (Virec) using equation 2.      

                              𝑉𝑖𝑟𝑒𝑐 =
1

1+𝑒
(−𝑏𝑖−𝑊𝑖𝑗

𝑇 ℎ𝑗)
                                                       (2) 
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It is expected that an input image (Vi) and its confabulation (Virec) to be same, if the 

weights obtained are optimum. However, during initial training phase, the values are 

different. Probability of the hidden units P(hjrec=1) are calculated with the image 

confabulation using equation 3. All these parameters are used by equation 4 to calculate 

update in weights (ΔWij).   

                    𝑃(ℎ𝑗𝑟𝑒𝑐 = 1) =
1

1+𝑒
(−𝑏𝑖−𝑊𝑖𝑗𝑉𝑖𝑟𝑒𝑐)                                                  (3) 

                  ∆𝑊𝑖𝑗 =  𝑉𝑖𝑃(ℎ𝑗 = 1) −  𝑉𝑖𝑟𝑒𝑐𝑃(ℎ𝑗𝑟𝑒𝑐 = 1)                                      (4) 

Images used for training are divided in to batches. After every batch is processed, weights 

are updated with following equation, where ɛ is learning rate. 

                                            𝑊𝑖𝑗 = 𝑊𝑖𝑗 + 𝜀 ∗ ∆𝑊𝑖𝑗                                                              (5) 

In a same way, visible and hidden biases are updated with the following set of equations. 

                                            𝑏𝑖 = 𝑏𝑖 + 𝜀𝑣 ∗ ∆𝑏𝑖                                                                   (6) 

                                           𝑏𝑗 = 𝑏𝑗 + 𝜀ℎ ∗ ∆𝑏𝑗                                                                      (7) 

                                           ∆𝑏𝑖 = 𝑉𝑖 − 𝑉𝑖𝑟𝑒𝑐                                                                        (8) 

                           ∆𝑏𝑗 = 𝑃(ℎ𝑗 = 1) − 𝑃(ℎ𝑗𝑟𝑒𝑐 = 1)                                         (9) 

 

Where Δbi and Δbj are changes to visible and hidden biases, respectively. ɛv and ɛh are 

learning rates for visible and hidden biases. 
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During training process, order of input images is random, hence the weights 

obtained from every training process are different. Most of the times, it is observed that the 

obtained weights are in the range [-4, 4]. We casted real valued weights in to integers in 

order to map them to neuromorphic cores. Since our design is capable of storing multilevel 

weights, we evaluated the robustness of the algorithm and circuit using different ranges of 

the weight matrix such as [-3, 3], [-2, 2] and [-1, 1]  which corresponds to 7 levels, 5 levels 

and 3 levels respectively. Fig. 3.3 and fig. 3.4 shows distribution of weight matrix with real 

number and integer format. 
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Figure 3.3 Distribution of real number weight matrix 
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Figure 3.4 Distribution of integer weight matrix 
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Chapter 4 Architecture and design 

4.1 Neuronal dynamics 

Axons, synapses and integrate and fire (I&F) neurons are the building blocks of our 

neuromorphic core.  Input signal coming from a previous neuron is communicated to next 

neuron using a synapse. In order to overcome the bottle neck of Von Neumann 

Architecture, we proposed the crossbar memory architecture as shown in figure 4.1. 

Synapses and neurons are tightly integrated in order have faster access time. The 

neuromorphic core contains K axons and N neurons. Axon j is connected to neuron i using 

weight Wij. The magnitude of this weight defines strength of the connection between pre 

and post synaptic neurons. Depending on value of weight, current is generated by a synapse 

(Iij). Each neuron corresponds to two columns, one for excitatory and other for inhibitory 

current. The current values on each column at a given time t is defined by the following 

equation.  

               𝐼𝑖(𝑡) =  ∑ 𝐴𝑗(𝑡)𝐾
𝑗=1 ∗ 𝐼𝑖𝑗                                           (10) 

Where Aj(t) is axonal input, which is defined by ith pixel of an image. Neuron compares 

excitatory (Ii1) current against its inhibitory counterparts (Ii2) and generates a spike (Si) 

depending on the threshold value θ. If the difference of excitatory and inhibitory current is 

greater than threshold, neuron generates spikes as defined by equation (11).  

𝑆𝑖(𝑡) =  {
1,                  𝑖𝑓 (𝐼𝑖1 − 𝐼𝑖2) > 𝜃  
0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

                               (11) 
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Figure 4.1 Architecture of neuromorphic core 

 

Each neuron has a threshold value. These threshold values are also programmed in 

multilevel cells as shown in figure 4.1.  Since threshold magnitude can be greater than a 

maximum value that can be stored in a single cell, multiple cells of each column are used 

to store a single value. The threshold value can either be positive or negative. Depending 

on its polarity, it is either added to the excitatory current or inhibitory current. Positive 

threshold is added to the inhibitory current and negative threshold is added to the excitatory 

current.  
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4.2 Multicore design 

In order to make the process of operation completely parallel, we took the 

advantage of multicore design. As shown in figure 4.2, we used 4 core for this operation. 

Each core has 64 axon and 64 neurons. Using 4 symmetric cores, our design demonstrates 

a neuromorphic chip of 256 axons and 256 neurons. Since we use different columns for 

excitatory and inhibitory synapses, the design constitutes 32K synapses.  

RBM is trained with 256 input pixel images and 64 neurons which produces a 

weight matrix of size 16K bits. Since each neuron processes excitatory and inhibitory 

weights separately, we casted the 16K bit weights in to two matrices, one for excitatory 

and one for inhibitory. Columns corresponding to each neuron are placed side by side for 

fast access time. The adjacent placement of excitatory and inhibitory synapses would make 

the design tolerant to process variations. On chip variation parameters such as Random 

Dopant Fluctuation (RDF), temperature variations due to local hotspots are expected to 

produce similar effect on both the columns and hence the neuronal spiking process is more 

variation tolerant. 32K bit weights are divided in to 4 segment, horizontally. Each segment 

of 8K bits is programmed in to one core.  

Input image of 256 pixels is divided in to 4 segments of 64 pixels each. Each core 

process 64 pixels and produces 64 corresponding spikes. These 4 neuromorphic cores 

processes an entire image in a completely parallel fashion to produce 256 spikes, all 

together. In order to take care of multicore design, we trained the off chip classifier with 

spikes from all 4 cores together, using supervised learning. We designed the software 

model to support different number of cores such as 1 core, 2 cores and 4 cores. It is 

observed that the quality of classification is increased by increasing the number of cores.   
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Figure 4.2 Multicore design 
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4.3 Current based reading scheme 

Most of the previous designs uses voltage based row-by-row reading scheme [2]-

[4].  Each pixel enables one word line and the synapses corresponding to the word line are 

enabled. Then, the weights are read on to the bit lines and are accumulated at neurons. The 

cycle continues until all the pixels corresponding to each image are processed. Once all the 

weights are read, neurons compares the membrane potential with the threshold values and 

generates spikes. The entire process from reading pixels to generating spikes takes time of 

hundreds of clock cycles [14].    

Another challenge of these conventional designs is the area overhead due to the 

neuronal circuitry. As explained in [14] each neuron has a 10-bit adder, accumulator and 

comparator. Design [4] would also require multiplier in order to process the grayscale 

image directly. The area required by these conventional neuronal circuitry is very high. 

We address both the challenges using our novel current based reading scheme as 

shown in figure 4.3. Our reading scheme enables all the word lines together, hence current 

on a bit line is sum of individual currents from all the synaptic cells in a column. Each 

neuron has two currents, excitatory current (Iext) and inhibitory current (Iinh). Difference in 

these two currents along with threshold current decides a spike. Since the process of 

reading current is completely parallel, each neuron in all neuromorphic cores produces 

spikes at same time. This makes reading operation very fast compared the conventional 

row-by-row reading schemes.  The area overhead of current based neurons is smaller than 

the voltage based neuron circuits [4], [14]. Since all wordlines are enabled together, pixel 

values of each image are stored on chip using scan flops.  
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Figure 4.3 Current based reading scheme 
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4.4 Design floorplan 

Figure 4.4 shows floor plan of the neuromorphic chip. In order to take advantage 

of area, two cores are integrated together. Same design is replicated to make it a 4 core 

design. Area of 2 cores is 1100x600 µm2.  Eflash arrays corresponding to 2 cores are placed 

together at the center to make the design denser. Sensing circuitry containing current based 

neurons is placed below the array. Row decoder circuits and pixel-in scan cells are placed 

on both the sides of the array. The corner blocks of the floor plan contains control circuitry 

for memory and neuron operations.  

The design contains 4 scan chains. Two for pixel-in data, one for programming 

weights to core and one for reading out spikes. Initially, weights are programmed in to the 

array. Later, neural operation is performed. The sequence of operation includes following 

steps,  

 Loading pixel values in to the pixel-in scan chain serially.  

 Enabling wordlines corresponding to the active pixels.  

 Spike generation using neurons. 

 Loading spikes in to the spike-out scan chain. 

  Reading out spikes serially. 

Once spikes corresponding to an image are read out, next image pixels are loaded in to the 

pixel-in scan chain. Our design also includes redundant rows and columns in the array to 

replace unexpected non-functional cells after fabrication.    
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Chapter 5 Simulation results 

Our neuromorphic circuit model designed in MATLAB can support various 

configuration and sizes. The digit recognition accuracy is tested by changing different 

parameters such as number of neurons, input image size, weight levels, number of cores 

and introduced errors in the spikes. This section discusses accuracy trend of our software 

model. For all different setups, the RBM and classifier are trained with 60,000 images and 

are tested with other 10,000 images. 

  

5.1 Accuracy trend with varying number of neurons 

  We studied digit recognition accuracy trend by varying number of neurons. All 

input images used in the simulation are of size 484 pixels, weights are 9 levels [-4, 4]. A 

single core design is considered for this study. Figure 5.1 shows accuracy trend. From the 

graph it is observed that the accuracy of digit recognition decreases as the number of 

neurons decrease. When the number of neurons is less than 64, the slope of the curve is 

very high. However, as the number of neurons goes above 64, there is only slight gain in 

the accuracy even with large increase in the number of neurons. As we can see, the 

maximum accuracy is 92.7% when the number of neurons is 256. Even by increasing the 

number of neurons beyond 256, the accuracy increase is negligible. The graph implies that 

for the single core design, the accuracy of image recognition can still be maintained above 

90% even after reducing the number of neurons to 64.  
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Figure 5.1 Digit recognition accuracy vs number of neurons 

  

 

5.2 Accuracy as a function of image size 

Size of the image plays a significant role in classification. Higher the number of 

pixels, better is the image quality. Figure 5.2 shows images with different number of pixels. 

As the number of pixels in the images decrease, the image quality drops significantly. By 

fixing the number of neurons to 64 in a single core design, we have run the simulation with 

different images of size 484, 256, 121, 64 and 25 pixels. Figure 5.3 shows dependency of 

accuracy on size of the images. If the number of pixels are more than 121, digit recognition 

accuracy doesn’t increase significantly with number of pixels. However, if the pixels are 

less than 121, the size of an image has a significant impact on digit classification.        
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Figure 5.2 Digits of different pixel sizes 

 

Single core design with 64 neurons, 121 pixels and 9 level weights [-4, 4] would recognize 

the images with 91% accuracy. 
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Figure 5.3 Digit recognition accuracy vs number of pixels 

 

5.3 Impact of weight levels on accuracy  

The advantage of multilevel memory cells over single bit memory is the array 

density. Considering 64 neurons and 256 pixel images, we studied the impact of weight 

levels on the digit classification. 4 configuration of weight levels are considered: 9 levels, 

7 levels, 5 levels and 3 levels.  

 Since training process is random, depending on the weights matrix obtained every 

cycle, image recognition accuracy varies. When the design is simulated for a same 

configurations, it gives different accuracy value at each iteration. Figure 5.4 shows 

accuracy values obtained out of 25 iterations. When we used 9 levels of weights, 8 out of 

25 iterations gives accuracy above 80%. On the other hand, if we used 3 levels only 3 

iterations gives accuracy above 80% as shown in figure 5.4. 
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Figure 5.4 Comparison of accuracies for different weight levels 
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Out of 25 cycles of simulations for each weight configuration, if we consider only 

maximum accuracy, the obtained trend is shown in figure 5.5. Though weight levels have 

a weaker dependency on maximum accuracy values, use of higher weight levels gives 

higher digit recognition accuracy in most of the iterations. 

 

 

Figure 5.5 Digit recognition accuracy vs weight levels 
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5.4 Grayscale vs binary pixel images 

Impact of image type is one of the important studies in any image processing 

application. We considered two types of image representations: grayscale and binary 

images. In grayscale images, value of each pixel is represented on a scale from 0 to 255. 

However, binary images have just two levels 0 or 255, as shown in figure 2.2 and figure 

2.3.  Digit recognition accuracy is weakly dependent on the number of levels in a pixel as 

shown in figure 5.6.  The figure compares digit recognition accuracies between grayscale 

and binary images for 25 iterations. Each iteration is run with different set of weights. The 

maximum accuracies with grayscale and binary images are 91.6% and 91.25% 

respectively. The simulations are run considering 9 levels of weights and 64 neurons using 

a single core design.   

 

 

Figure 5.6 Digit recognition accuracy with grayscale and binary images 
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5.5 Accuracy trend with different number of cores   

Studies from 5.1 to 5.4 are based on the single core design. However, if images are 

very big, they have to be processed in segments. In order to demonstrate this idea, we 

modeled multicores in our software. Each core processes 64 pixels and produces 64 spikes. 

We segmented the weight matrix vertically and each segment is programmed in to a single 

core. Each of these cores process the segments of images in parallel as shown in figure 4.2. 

Considering 256 pixel images, 64 neurons for each core and 5 levels of weight, the 

simulations are run for 1, 2 and 4 core designs. The accuracy of digit recognition is shown 

in figure 5.7. Since 4 core structure gives highest accuracy, we designed our neuromorphic 

chip with this configuration. 

 

 

Figure 5.7 Digit recognition accuracy vs number of cores 

91.73

93.73
94.70

80

82

84

86

88

90

92

94

96

98

0 1 2 3 4 5

%
 A

cc
u

ra
cy

Number of cores

Digit recognition accuracy vs number of 
cores



 

31 
 

5.6 Error tolerant design   

Process of chip fabrication incur lot of variations in the circuits. This results in to 

device mismatch. Even two similar circuits produce different current values for same bias 

conditions. Since we are using current based neurons, there could be some errors in the 

spikes. Considering the scenario, we modeled errors in spikes and observed digit 

recognition accuracy. The accuracy is dropped by 12%, if we add 10% errors to spikes.  

In order to address the issue, we trained our classifier in two phases. In first phase, 

we train classifier with error free spikes corresponding to all 60,000 images. In second 

phase, we introduced 10% errors in the spikes and trained the classifier again. Using this 

training procedure, the accuracy has dropped by just 4-5% when 10% spike errors are 

introduced in testing image. The trend is shown in figure 5.8. MATLAB simulations are 

run on 4 core design with each core of size 64 axons and 64 neurons. Size of the images 

used are 256 pixels and weight levels are 5. 
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Figure 5.8 Digit recognition accuracy vs spike errors 
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5.7 HSPICE simulation results 

The functionality of neuromorphic core is verified using HSPICE simulations. 

Since current based parallel reading scheme is used, better precision is required while 

programming floating gate node voltages. Hence our circuit is designed to have flexibility 

of verifying programmed weights in terms of drain current. Figure 5.9 shows simulation 

results of internal current verification. Excitatory and inhibitory currents are compared with 

reference current. Since we are verifying currents while programming weights, we can 

program cells for same current even with different amount of variations in them. Even 

though we encounter variations in eflash cells, current verification nullifies the effect.  

Excitatory and inhibitory currents are verified separately. A neuron spikes when excitatory 

current is greater than reference current during excitatory current verification. It also spikes 

when inhibitory current is smaller than reference current during inhibitory current 

verification. 
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REF_CURRENT

EXC_CURRENT

INH_CURRENT

Excitatory current verification Inhibitory current verification

EX > REF REF > IN

Process: ST 65nm                                             Voltage: 1.2V                                                   Temp.: 25°C  

Figure 5.9 Internal current verification 
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Once the programmed weights are verified, neuron operation is performed. During 

this mode, all the wordlines corresponding to pixel value “high” are enabled. Eflash cells 

connected to these wordlines start conducting current. The magnitude of bitline current 

depends on programmed weights at each cell. Neuron compares excitatory and inhibitory 

currents to generate spikes. Spikes are generated if excitatory current is larger than 

inhibitory current as shown in figure 5.10.  

The simulation involves initializing hundreds of floating gate node voltages, 

enabling wordlines depending on the values of pixels and reading out spikes. The entire 

process is automated using PERL scripting. Spikes of software simulations are compared 

with spikes of hardware simulations to verify the functionality of the design.      
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Figure 5.10 Neuron operation 
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Although process variation at eflash cells is nullified by using internal current 

verification, there could be some variations at neurons. This variation causes an offset 

current at neuron. Anticipating this issue, we modelled Gaussian distribution of offset 

current at neurons as shown in figure 5.11. Since these variations are permanent and 

localized to each neuron, training the classifier with these effects could still recognize the 

digits with 94.7% accuracy. Neurons are also designed to have optional offset currents to 

overcome these issues. 
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Figure 5.11 Gaussian distribution of offset current 

Since eflash uses charge to store the weight levels, it could experience charge loss 

due to gate leakage. However, the effect is expected to be even on the adjacent columns, 

which are used for current comparison. This makes the design robust to retention related 

issues.  
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Chapter 6 Conclusion 

We demonstrate a neural network algorithm using neuromorphic chip. Our design 

contains 256 axons and 256 neurons. This novel architecture uses 4 cores to process an 

entire image in completely parallel fashion. Introduction of non-volatile multilevel cells to 

store the weights makes this architecture suitable for neuromorphic application with low 

power consumption. The new current based neurons with parallel reading scheme increases 

the speed of the operation. Anticipating inevitable circuit variations due to fabrication 

process, our error tolerant system is designed to handle 10% spike errors.  

We demonstrate a hybrid hardware-software system. Future scopes of this work are 

building an entire system on chip, introducing learning ability in a hardware. The other 

scope is to demonstrate a system of billions of neurons to mimic human brain operations. 

There are many other directions such as building an accurate model of a biological neuron, 

designing a generic system for visual, audio and locomotion applications.  

The ultimate goal of cognitive computing research community is to build a brain-

like design which is efficient in terms of area, power and performance. Since transistor 

scaling is getting challenging every generation, we need to look in to novel architectures 

to improve overall efficiency of VLSI circuits. We believe our work is one of the step 

towards this goal.  
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