

A Multicore Neuromorphic Chip Design Using Multilevel

Synapses in 65nm Standard CMOS Technology

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Deepak Kumar Shivsharnappa Tagare

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

Prof. Chris H. Kim

June 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Minnesota Digital Conservancy

https://core.ac.uk/display/211348134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© Deepak Kumar Shivsharnappa Tagare 2015

i

Acknowledgements

I would like to express my sincere gratitude to my advisor, Prof. Chris H. Kim for

giving me an opportunity to work with him. His unmatched teaching has always been a

source of inspiration and a reason to develop my interest towards the subject. His teaching

helped to get best out of me. I am thankful to him for his valuable time spent in guiding

and helping me to improve.

I am privileged being part of VLSI research lab at U of M. Having most dedicated

and humble colleagues around, I could learn a lot from them. My Sincere thanks to

Jongyeon Kim, this work wouldn’t have been possible without his support. He has been

like an elder brother to me. I am also thankful to Weichao Xu for helping me during initial

phase of this project.

I am grateful to all my friends and colleagues whom I met at my work places: Wipro

Technologies, Qualcomm and Intel Corporation. Their actions and decisions have

constantly helped me to improve myself and dream big. I would also want to thank all my

seniors and friends at U of M. Their encouragement has always helped me to take strong

decisions. Their presence made this place lively.

Most importantly, I would like to thank my parents and my brothers for their love,

support, guidance and sacrifices. I wouldn’t have realized my dream without their support.

My sincere gratitude to my uncle Dr. Suryakanth Gangshetty for his encouragement.

ii

This thesis is dedicated to my parents,

iii

Abstract

Neuromorphic research community is focused on designing a hardware which is as

efficient as biological brain in terms of performance, power and area. It opens up

opportunities to optimize these designs at all levels from architecture to devices. We

propose a novel architecture to have tight integration between neurons and synapses. Our

32K bit neuromorphic chip with 256 axons and 256 neurons demonstrates 4 neuromorphic

cores operating in a completely parallel fashion. Eflash memory core representing synapses

saves power and area. The Non-volatility of eflash consumes zero static power. The ability

to store multi-levels of weights in a single cell makes the array denser. Unlike flash

technology, eflash doesn’t require specialized fabrication process, hence the neuromorphic

chip is implemented in 65nm standard CMOS technology. The current sensing neurons

with parallel reading scheme makes the neuronal operation several orders of magnitude

faster than state-of-the-art neuromorphic designs. A generic design style of the

neuromorphic chip can demonstrate various neural network algorithms. As a proof-of-

concept, we implemented Restricted Boltzmann Machine (RBM) algorithm in our chip to

demonstrate handwritten digit recognition application.

iv

Table of Contents

List of figures ... v

Chapter 1 Introduction... 1

Chapter 2 Application .. 4

2.1 Restricted Boltzmann Machine (RBM) based learning ... 5

2.2 Spike generation using neuromorphic core .. 6

2.3 Digit recognition using a classifier .. 6

Chapter 3 Algorithm and training .. 9

Chapter 4 Architecture and design ... 15

4.1 Neuronal dynamics .. 15

4.2 Multicore design .. 17

4.3 Current based reading scheme ... 19

4.4 Design floorplan... 21

Chapter 5 Simulation results ... 23

5.1 Accuracy trend with varying number of neurons ... 23

5.2 Accuracy as a function of image size... 24

5.3 Impact of weight levels on accuracy .. 26

5.4 Grayscale vs binary pixel images .. 29

5.5 Accuracy trend with different number of cores ... 30

5.6 Error tolerant design .. 31

5.7 HSPICE simulation results .. 33

Chapter 6 Conclusion ... 36

Bibliography .. 37

v

List of figures

Figure 2.1 Flow diagram of image recognition algorithm .. 5

Figure 2.2 16x16 pixel image with grayscale and binary values .. 7

Figure 2.3 Distribution of pixel values for grayscale and binary images 7

Figure 2.4 Digit recognition using classifier... 8

Figure 3.1 RBM network .. 10

Figure 3.2 Learning using contrastive divergence .. 11

Figure 3.3 Distribution of real number weight matrix .. 13

Figure 3.4 Distribution of integer weight matrix .. 14

Figure 4.1 Architecture of neuromorphic core ... 16

Figure 4.2 Multicore design .. 18

Figure 4.3 Current based reading scheme ... 20

Figure 4.4 Chip floorplan .. 22

Figure 5.1 Digit recognition accuracy vs number of neurons ... 24

Figure 5.2 Digits of different pixel sizes .. 25

Figure 5.3 Digit recognition accuracy vs number of pixels .. 26

Figure 5.4 Comparison of accuracies for different weight levels 27

Figure 5.5 Digit recognition accuracy vs weight levels .. 28

Figure 5.6 Digit recognition accuracy with grayscale and binary images 29

Figure 5.7 Digit recognition accuracy vs number of cores ... 30

Figure 5.8 Digit recognition accuracy vs spike errors .. 32

Figure 5.9 Internal current verification ... 33

vi

Figure 5.10 Neuron operation ... 34

Figure 5.11 Gaussian distribution of offset current .. 35

1

Chapter 1 Introduction

The mysterious engineering behind a mammalian brain has been an inspiration for

cognitive computing research community since decades. The enormous ability of a

biological brain to compute complex tasks could outperform latest supercomputers. One of

the earlier work to demonstrate a massively parallel cortical simulator includes designing

a model of cat cortex [1] consisting of 109 neurons and 1013 synapses using Blue Gene/P

supercomputer. The supercomputer uses 147,456 CPUs and 144 TB of main memory.

However, resources used by this giant computer was several orders of magnitudes larger

than a biological brain that consumes few watts of power and very small area [2]. Since

power and area overhead used by a software to demonstrate brain-like network is massive,

there is an ample scope to design neuromorphic hardware in order to match performance,

power and area efficiency to a biological brain.

Despite aggressive scaling of transistor in-order to cope up with Moore’s law, there

hasn’t been a competitive growth in this area. As neurons and synapses are required to be

tightly integrated, use of general purpose microprocessors with Von Neumann Architecture

creates memory access bottleneck [2]. Since the information stored in synapses has analog

levels and has to be retained for longer durations, using conventional SRAMs for this

applications results in area overhead and larger static power dissipation. These limitations

opened up new opportunities to develop novel architectures and design novel devices for

neuromorphic applications.

In order to overcome the bottleneck due to Von Neumann Architecture, the

proposed neuromorphic chips [2] - [5] use novel architectures where the neurons and

2

synapses are tightly integrated. These architectures reduce memory access time and

improves computation speed. However, these designs use SRAMs to store weights. Hence,

it incurs lot of area and power overhead. Since these designs access weight array in row-

by-row fashion, hundreds of clock cycles are required to readout all the data from a weight

matrix. Since synaptic weights are stored in SRAMs, multiple bitcells are required to

represent a synapse.

Since the conventional memory cells are inappropriate to store the weights,

emerging non-volatile memory technologies [6], [7] such as phase-change memory (PCM),

conductive-bridge memory (CBRAM) and resistive memories (RRAM) have been

proposed for this application. These novel non-volatile memories storing multiple levels of

weights are appropriate to imitate synapses. However, they require specialized fabrication

process.

Few of the previous works in neuromorphic engineering uses analog circuits to

represent the synapses [8], [9]. These analog synapses use capacitors to store charge and

the amount of charge on the capacitor represents a weight magnitude. Although, analog

implementations gives the flexibility to store any levels of weights, complexity and area

overhead of these circuits is very high. This could limit the maximum number of synapses

on each chip. Since leakage due to capacitors is very high, these designs require additional

circuitry to retain the level of charge on the capacitor [8].

In order to address these issues we proposed a novel architecture with an efficient

data access scheme and novel synaptic devices which can be implemented using standard

CMOS technology. The architecture uses multicores to process the tasks in a highly

parallel fashion. Each core uses a cross bar memory structure to provide tight integration

3

between neurons and synapses. This solves the memory access bottleneck which can be

observed in Von Neumann architecture. Our memory access scheme is completely parallel

and hence computation speed can be several orders of magnitude larger than their digital

counterparts [3], [4]. In order to implement synapses, we propose multilevel eflash [10],

[11] cells. Eflash uses floating gate to store charge which represents a weight level. Unlike

conventional SRAM, eflash is non-volatile. Hence, it doesn’t require power supply to retain

the data. This saves enormous leakage power. Data retention time of these cells is several

years and they just need be refreshed once in a year. The advantage of these cells over

standard Flash memories is, they don’t require specialized fabrication process and are

implemented using standard CMOS technology.

Our neuromorphic design consists of four cores. Each core is 64x128 bit crossbar

array corresponding to 64 axons and 64 neurons. The building block of these 8K bit cores

are eflash cells representing synapses. Using four cores together, 32K bit neuromorphic

chip constitutes 256 axons, 256 neurons and 32K (256x128) synapses. The entire design

operates in a completely parallel fashion to generate spikes, where each core processes a

segment of image.

The later sections are organized in the flowing fashion. In chapter 2, we present

detailed description of application and the infrastructures used. Chapter 3 describes neural

network algorithm used for training the system and chapter 4 describes the architecture of

the neurosynaptic core using multilevel cells. Simulation results and comparisons are

covered in chapter 5 and we conclude in chapter 6.

4

Chapter 2 Application

Neuromorphic systems have demonstrated various applications. There has been

considerable work toward image processing. These applications include designing

electronic models of retina [6], motion sensors [12], [14], pattern recognition [2] and image

encoding [4]. Neuromorphic speech processing is one of the emerging field, some of the

recent works were on designing electronic model of Cochlea [7], [6]. On the other hand,

neuromorphic systems were also used to design sound localization sensors [14]. Spiking

silicon Central Pattern Generator (CPG) was designed [15] to demonstrate the group of

neural circuits in the spinal cord which define the locomotion in animals. Current state-of-

the-art massive designs: SpiNNaker [16] and Neurogrid [17] are designed using multiple

cores. These designs provide platform for neuroscience experiments.

We designed our neuromorphic chip to support various neural network

applications. In order to demonstrate, we considered one of the popular applications:

handwritten digit recognition. The complete flow diagram of digit recognition application

is shown in figure 2.1. The application runs in two phases: training and testing. During

training phase, weights are learnt. These weights along with the input images generates the

spikes and these spikes are used to recognize the images during testing phase as shown in

figure 2.4. We used a hybrid model consisting of both hardware and software

infrastructures. This model was chosen in order to have flexibility of using our core for

various state-of-the-art neuromorphic applications.

5

`
Learning

using RBM

60,000

Training

MNIST dataset
70,000 images

Weights

Neuromorphic
chip

Spikes

Classifier
Digit

recognition

10,000

Testing

Figure 2.1 Flow diagram of image recognition algorithm

2.1 Restricted Boltzmann Machine (RBM) based learning

 The generic design of our neuromorphic core has caliber to enact various neural

network algorithms. We chose RBM, one of the popular artificial neural algorithm to

exhibit digit recognition [18]. This algorithm has gained lot for popularity for many

applications such as dimensionality reduction, classification, feature learning and deep

learning [18]. RBM neural network model is designed in MATLAB and is trained using

60,000 handwritten digits from MNIST dataset [19]. These images are represented in a

gray scale format. Each input image used for training consists of 256 pixels (16x16). The

training involves learning optimum weights. Learned weights are real numbers and the

range is based on input image specifications.

6

2.2 Spike generation using neuromorphic core

Weights learned during training phase are programmed in to the neuromorphic

cores. Since these values are real numbers, they are converted in to integers. The 10,000

images from the dataset which were never exposed to the system before are used for testing.

Grayscale input images are converted in to binary scale. The pixel distribution is showed

in figure 2.2 and figure 2.3. These binary pixels act as axons to the cores. Each axon

corresponds to a wordline of a crossbar memory structure. Hence, it enables a row of

synapses. Since our reading scheme is completely parallel, all the rows corresponding to

the active pixels of an image are activated together. Each activated synapse generates

current. All these currents are summed up together to generate spikes by neurons. Each

image corresponds to 256 neuronal spikes. Since the design uses four cores, each core

processes one of the four segments of an image to generate 64 spikes.

2.3 Digit recognition using a classifier

The spikes generated by the neuromorphic chip are fed in to classifier to recognize

digits as shown in figure 2.4. Classifier is a software design implemented in MATLAB. It

is initially trained using the spikes of 60,000 training images. During testing, depending on

the pattern of spikes generated by the neuromorphic cores, the classifier predicts the digits.

Outputs of the classifier are probability values of each digit being a given input. Depending

on learning quality, the classifier predicts a digit and most of the times it is observed that

the probability corresponding to one digit will be very close to 1 and all the other values

will be very close to 0 as shown in figure 2.4. It is also observed that the quality of digit

recognition is based on weights obtained by the RBM learning software.

7

Grayscale image Binary image

Figure 2.2 16x16 pixel image with grayscale and binary values

Grayscale image

Pixel values Pixel values

N
o

. o
f

p
ix

e
ls

N
o

. o
f

p
ix

e
ls

Binary image

Figure 2.3 Distribution of pixel values for grayscale and binary images

8

1 2 3 4 5 6 7 8 9 0

Classifier

Neuromorphic
chip

256 axons and
256 neurons

256 256 10

16x16 pixel Digit labels

Figure 2.4 Digit recognition using classifier

9

Chapter 3 Algorithm and training

Artificial Neural networks (ANN) is a biologically inspired programming model

that develops an ability in machines to learn from observed data. This network is a system

of compactly connected neurons which communicate to each other. Connection between

neurons is defined by a parameter called “weight”. The magnitude of weight decides the

strength of the connection and hence impact of one neuron on another. These weights are

adaptive to inputs and are tuned depending on the input patterns. This ability of adapting

the weights is also called as learning capability. These ANNs cover wide variety of

applications such as pattern and sequence recognition, novelty detection, sequential

decision making, robotics and so on. A process of learning can either be supervised or

unsupervised. In supervised learning, a system learns using labelled training data, where it

receives both inputs and intended outputs.

 RBM, one of the popular ANN used for applications like dimensionality reduction

[18], classification and feature learning. In recent years it has also gained popularity in

deep learning [20] which is demonstrated in image recognition, speech processing and

neural language processing (NLP). We have considered a two layer RBM algorithm for

our application of digit recognition. As shown in figure 3.1, the network contains one

visible layer and one hidden layer. If we consider a digit recognition application, input

pixels are visible effects. These visible effects are associated with hidden causes (neurons).

Units of one layers are connected to the units of other layer. The strength of connection is

defined by the magnitude of weight. If the connections is stronger between the pixel and

neuron, the probability of spiking a neuron is high when a corresponding pixel is high.

10

Visible units

Hidden units

W1

W2

Wn

Figure 3.1 RBM network

A neural network can have connection among the units of same layer. But the RBM

is a simplified neural network which has an underlying assumption that the units of same

layer are not connected. This elegant property of RBM makes it one of the appropriate

algorithm for deep belief network [20]. The deep belief network (deep learning) is not just

limited to two layers, it has multiple layers. RBM is trained layer-by-layer to encode the

data efficiently at each layer [18].

Training procedure used in our application is called as contrastive divergence.

Since we considered 256 pixels corresponding to each image and 64 neurons per core, we

trained RBM with a configuration of 256 visible units and 64 hidden units. The steps in

training procedure using contrastive divergence are shown in the figure 3.2.

11

V1 V2 V3 V4

V1rec V2rec V3rec V4rec

h1 h2 h3

Visible units

Hidden units

Confabulation/
Reconstruction

Wij

WijT

Vi

hj

Virec

Figure 3.2 Learning using contrastive divergence

Given the values of visible units, this algorithm calculates probability of hidden

units being 1 (P(hj =1)) with the equation (1).

 𝑃(ℎ𝑗 = 1) =
1

1+𝑒
(−𝑏𝑗−𝑊𝑖𝑗𝑉𝑖) (1)

Where Vi is the input pixel value, Wij are values of weights which are initially

assumed to be random and bi, bj are biases of visible and hidden units, respectively. Gibbs

sampling is used on hidden probabilities to calculate binary states of hidden units (hj).

Then, the hidden units along with the weight transpose matrix (Wij
T) are used to calculate

confabulation of an input image (Virec) using equation 2.

 𝑉𝑖𝑟𝑒𝑐 =
1

1+𝑒
(−𝑏𝑖−𝑊𝑖𝑗

𝑇 ℎ𝑗)
 (2)

12

It is expected that an input image (Vi) and its confabulation (Virec) to be same, if the

weights obtained are optimum. However, during initial training phase, the values are

different. Probability of the hidden units P(hjrec=1) are calculated with the image

confabulation using equation 3. All these parameters are used by equation 4 to calculate

update in weights (ΔWij).

 𝑃(ℎ𝑗𝑟𝑒𝑐 = 1) =
1

1+𝑒
(−𝑏𝑖−𝑊𝑖𝑗𝑉𝑖𝑟𝑒𝑐) (3)

 ∆𝑊𝑖𝑗 = 𝑉𝑖𝑃(ℎ𝑗 = 1) − 𝑉𝑖𝑟𝑒𝑐𝑃(ℎ𝑗𝑟𝑒𝑐 = 1) (4)

Images used for training are divided in to batches. After every batch is processed, weights

are updated with following equation, where ɛ is learning rate.

 𝑊𝑖𝑗 = 𝑊𝑖𝑗 + 𝜀 ∗ ∆𝑊𝑖𝑗 (5)

In a same way, visible and hidden biases are updated with the following set of equations.

 𝑏𝑖 = 𝑏𝑖 + 𝜀𝑣 ∗ ∆𝑏𝑖 (6)

 𝑏𝑗 = 𝑏𝑗 + 𝜀ℎ ∗ ∆𝑏𝑗 (7)

 ∆𝑏𝑖 = 𝑉𝑖 − 𝑉𝑖𝑟𝑒𝑐 (8)

 ∆𝑏𝑗 = 𝑃(ℎ𝑗 = 1) − 𝑃(ℎ𝑗𝑟𝑒𝑐 = 1) (9)

Where Δbi and Δbj are changes to visible and hidden biases, respectively. ɛv and ɛh are

learning rates for visible and hidden biases.

13

During training process, order of input images is random, hence the weights

obtained from every training process are different. Most of the times, it is observed that the

obtained weights are in the range [-4, 4]. We casted real valued weights in to integers in

order to map them to neuromorphic cores. Since our design is capable of storing multilevel

weights, we evaluated the robustness of the algorithm and circuit using different ranges of

the weight matrix such as [-3, 3], [-2, 2] and [-1, 1] which corresponds to 7 levels, 5 levels

and 3 levels respectively. Fig. 3.3 and fig. 3.4 shows distribution of weight matrix with real

number and integer format.

F
re

q
u

e
n

cy

Weights

Figure 3.3 Distribution of real number weight matrix

14

F
re

q
u

e
n

cy

Weights

Figure 3.4 Distribution of integer weight matrix

15

Chapter 4 Architecture and design

4.1 Neuronal dynamics

Axons, synapses and integrate and fire (I&F) neurons are the building blocks of our

neuromorphic core. Input signal coming from a previous neuron is communicated to next

neuron using a synapse. In order to overcome the bottle neck of Von Neumann

Architecture, we proposed the crossbar memory architecture as shown in figure 4.1.

Synapses and neurons are tightly integrated in order have faster access time. The

neuromorphic core contains K axons and N neurons. Axon j is connected to neuron i using

weight Wij. The magnitude of this weight defines strength of the connection between pre

and post synaptic neurons. Depending on value of weight, current is generated by a synapse

(Iij). Each neuron corresponds to two columns, one for excitatory and other for inhibitory

current. The current values on each column at a given time t is defined by the following

equation.

 𝐼𝑖(𝑡) = ∑ 𝐴𝑗(𝑡)𝐾
𝑗=1 ∗ 𝐼𝑖𝑗 (10)

Where Aj(t) is axonal input, which is defined by ith pixel of an image. Neuron compares

excitatory (Ii1) current against its inhibitory counterparts (Ii2) and generates a spike (Si)

depending on the threshold value θ. If the difference of excitatory and inhibitory current is

greater than threshold, neuron generates spikes as defined by equation (11).

𝑆𝑖(𝑡) = {
1, 𝑖𝑓 (𝐼𝑖1 − 𝐼𝑖2) > 𝜃
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11)

16

 MLC Array

E

A
x

o
n

 c
ir

cu
it

ry

I&F Neuron circuitry

Pixel-in

01….1

Spikes-out
001..0

Cntrl
Ckt

E

I

I

E

E

I

I

E

E

I

I

E

E

I

I

T T T T

E

I T

Excitatory cell

Inhibitory cell Threshold cell

Figure 4.1 Architecture of neuromorphic core

Each neuron has a threshold value. These threshold values are also programmed in

multilevel cells as shown in figure 4.1. Since threshold magnitude can be greater than a

maximum value that can be stored in a single cell, multiple cells of each column are used

to store a single value. The threshold value can either be positive or negative. Depending

on its polarity, it is either added to the excitatory current or inhibitory current. Positive

threshold is added to the inhibitory current and negative threshold is added to the excitatory

current.

17

4.2 Multicore design

In order to make the process of operation completely parallel, we took the

advantage of multicore design. As shown in figure 4.2, we used 4 core for this operation.

Each core has 64 axon and 64 neurons. Using 4 symmetric cores, our design demonstrates

a neuromorphic chip of 256 axons and 256 neurons. Since we use different columns for

excitatory and inhibitory synapses, the design constitutes 32K synapses.

RBM is trained with 256 input pixel images and 64 neurons which produces a

weight matrix of size 16K bits. Since each neuron processes excitatory and inhibitory

weights separately, we casted the 16K bit weights in to two matrices, one for excitatory

and one for inhibitory. Columns corresponding to each neuron are placed side by side for

fast access time. The adjacent placement of excitatory and inhibitory synapses would make

the design tolerant to process variations. On chip variation parameters such as Random

Dopant Fluctuation (RDF), temperature variations due to local hotspots are expected to

produce similar effect on both the columns and hence the neuronal spiking process is more

variation tolerant. 32K bit weights are divided in to 4 segment, horizontally. Each segment

of 8K bits is programmed in to one core.

Input image of 256 pixels is divided in to 4 segments of 64 pixels each. Each core

process 64 pixels and produces 64 corresponding spikes. These 4 neuromorphic cores

processes an entire image in a completely parallel fashion to produce 256 spikes, all

together. In order to take care of multicore design, we trained the off chip classifier with

spikes from all 4 cores together, using supervised learning. We designed the software

model to support different number of cores such as 1 core, 2 cores and 4 cores. It is

observed that the quality of classification is increased by increasing the number of cores.

18

Core 1

Core 2

Core 3

Core 4

Segment 1

Segment 2

Segment 3

Segment 4

64 Spikes

64 Spikes

64 Spikes

64 Spikes
16x16 Pixel

image

Figure 4.2 Multicore design

19

4.3 Current based reading scheme

Most of the previous designs uses voltage based row-by-row reading scheme [2]-

[4]. Each pixel enables one word line and the synapses corresponding to the word line are

enabled. Then, the weights are read on to the bit lines and are accumulated at neurons. The

cycle continues until all the pixels corresponding to each image are processed. Once all the

weights are read, neurons compares the membrane potential with the threshold values and

generates spikes. The entire process from reading pixels to generating spikes takes time of

hundreds of clock cycles [14].

Another challenge of these conventional designs is the area overhead due to the

neuronal circuitry. As explained in [14] each neuron has a 10-bit adder, accumulator and

comparator. Design [4] would also require multiplier in order to process the grayscale

image directly. The area required by these conventional neuronal circuitry is very high.

We address both the challenges using our novel current based reading scheme as

shown in figure 4.3. Our reading scheme enables all the word lines together, hence current

on a bit line is sum of individual currents from all the synaptic cells in a column. Each

neuron has two currents, excitatory current (Iext) and inhibitory current (Iinh). Difference in

these two currents along with threshold current decides a spike. Since the process of

reading current is completely parallel, each neuron in all neuromorphic cores produces

spikes at same time. This makes reading operation very fast compared the conventional

row-by-row reading schemes. The area overhead of current based neurons is smaller than

the voltage based neuron circuits [4], [14]. Since all wordlines are enabled together, pixel

values of each image are stored on chip using scan flops.

20

E

E

E

T

I

I

I

T

Spike

+ -

WL<0>

WL<1>

WL<2>

WL<63>
I e
xt

I in
h

Current
sensing
neuron

E Excitatory cell

I Inhibitory cell

T Threshold cell

Figure 4.3 Current based reading scheme

21

4.4 Design floorplan

Figure 4.4 shows floor plan of the neuromorphic chip. In order to take advantage

of area, two cores are integrated together. Same design is replicated to make it a 4 core

design. Area of 2 cores is 1100x600 µm2. Eflash arrays corresponding to 2 cores are placed

together at the center to make the design denser. Sensing circuitry containing current based

neurons is placed below the array. Row decoder circuits and pixel-in scan cells are placed

on both the sides of the array. The corner blocks of the floor plan contains control circuitry

for memory and neuron operations.

The design contains 4 scan chains. Two for pixel-in data, one for programming

weights to core and one for reading out spikes. Initially, weights are programmed in to the

array. Later, neural operation is performed. The sequence of operation includes following

steps,

 Loading pixel values in to the pixel-in scan chain serially.

 Enabling wordlines corresponding to the active pixels.

 Spike generation using neurons.

 Loading spikes in to the spike-out scan chain.

 Reading out spikes serially.

Once spikes corresponding to an image are read out, next image pixels are loaded in to the

pixel-in scan chain. Our design also includes redundant rows and columns in the array to

replace unexpected non-functional cells after fabrication.

22

1
.1

m
m

W
L

D
0

8
1

0
x1

4
0

Cell array
(68WLx320BL)

810x280

64WLs: EX/IN
4WLs: Threshold

64 neurons/
16 redun. neurons

Memory SCAN
100x280

P
ix

el
-I

n
 S

C
A

N
0

 8
1

0
x2

0

Sensing circuit
160x280

Spike-out SCAN
30x280

W
L

D
1

8
1

0
x1

4
0

P
ix

el
-I

n
 S

C
A

N
1

 8
1

0
x2

0

Neuron
Control0

(with VREF)

Neuron
Control1

Memory
Control0

Memory
Control1

eFlash synapse:
1100x600μm2

600 μm

Figure 4.4 Chip floorplan

23

Chapter 5 Simulation results

Our neuromorphic circuit model designed in MATLAB can support various

configuration and sizes. The digit recognition accuracy is tested by changing different

parameters such as number of neurons, input image size, weight levels, number of cores

and introduced errors in the spikes. This section discusses accuracy trend of our software

model. For all different setups, the RBM and classifier are trained with 60,000 images and

are tested with other 10,000 images.

5.1 Accuracy trend with varying number of neurons

 We studied digit recognition accuracy trend by varying number of neurons. All

input images used in the simulation are of size 484 pixels, weights are 9 levels [-4, 4]. A

single core design is considered for this study. Figure 5.1 shows accuracy trend. From the

graph it is observed that the accuracy of digit recognition decreases as the number of

neurons decrease. When the number of neurons is less than 64, the slope of the curve is

very high. However, as the number of neurons goes above 64, there is only slight gain in

the accuracy even with large increase in the number of neurons. As we can see, the

maximum accuracy is 92.7% when the number of neurons is 256. Even by increasing the

number of neurons beyond 256, the accuracy increase is negligible. The graph implies that

for the single core design, the accuracy of image recognition can still be maintained above

90% even after reducing the number of neurons to 64.

24

Figure 5.1 Digit recognition accuracy vs number of neurons

5.2 Accuracy as a function of image size

Size of the image plays a significant role in classification. Higher the number of

pixels, better is the image quality. Figure 5.2 shows images with different number of pixels.

As the number of pixels in the images decrease, the image quality drops significantly. By

fixing the number of neurons to 64 in a single core design, we have run the simulation with

different images of size 484, 256, 121, 64 and 25 pixels. Figure 5.3 shows dependency of

accuracy on size of the images. If the number of pixels are more than 121, digit recognition

accuracy doesn’t increase significantly with number of pixels. However, if the pixels are

less than 121, the size of an image has a significant impact on digit classification.

68.78

79.29

91.81 92.59 92.7

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

%
 A

cc
u

ra
cy

No. of Neurons

Digit recongition accuracy vs number
of neurons

25

22x22 pixels 16x16 pixels

11x11 pixels 8x8 pixels

Figure 5.2 Digits of different pixel sizes

Single core design with 64 neurons, 121 pixels and 9 level weights [-4, 4] would recognize

the images with 91% accuracy.

26

Figure 5.3 Digit recognition accuracy vs number of pixels

5.3 Impact of weight levels on accuracy

The advantage of multilevel memory cells over single bit memory is the array

density. Considering 64 neurons and 256 pixel images, we studied the impact of weight

levels on the digit classification. 4 configuration of weight levels are considered: 9 levels,

7 levels, 5 levels and 3 levels.

 Since training process is random, depending on the weights matrix obtained every

cycle, image recognition accuracy varies. When the design is simulated for a same

configurations, it gives different accuracy value at each iteration. Figure 5.4 shows

accuracy values obtained out of 25 iterations. When we used 9 levels of weights, 8 out of

25 iterations gives accuracy above 80%. On the other hand, if we used 3 levels only 3

iterations gives accuracy above 80% as shown in figure 5.4.

77.25

88.13 90.99 91.52 91.81

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500

%
 A

cc
u

ra
cy

Number of pixels

Digit recognition accuracy vs image size

27

80%

80%

%
 A

cc
ur

ac
y

%
 A

cc
ur

ac
y

Iterations

Iterations

Digit recognition accuracy for 9 level
weights

Digit recognition accuracy for 3 level
weights

Figure 5.4 Comparison of accuracies for different weight levels

28

Out of 25 cycles of simulations for each weight configuration, if we consider only

maximum accuracy, the obtained trend is shown in figure 5.5. Though weight levels have

a weaker dependency on maximum accuracy values, use of higher weight levels gives

higher digit recognition accuracy in most of the iterations.

Figure 5.5 Digit recognition accuracy vs weight levels

91.61 91.73 91.86 92.08

80

82

84

86

88

90

92

94

0 1 2 3 4 5 6 7 8 9 10

%
 A

cc
u

ra
cy

Weight levels

Maximum digit recognition accuracy vs weight
levels

29

5.4 Grayscale vs binary pixel images

Impact of image type is one of the important studies in any image processing

application. We considered two types of image representations: grayscale and binary

images. In grayscale images, value of each pixel is represented on a scale from 0 to 255.

However, binary images have just two levels 0 or 255, as shown in figure 2.2 and figure

2.3. Digit recognition accuracy is weakly dependent on the number of levels in a pixel as

shown in figure 5.6. The figure compares digit recognition accuracies between grayscale

and binary images for 25 iterations. Each iteration is run with different set of weights. The

maximum accuracies with grayscale and binary images are 91.6% and 91.25%

respectively. The simulations are run considering 9 levels of weights and 64 neurons using

a single core design.

Figure 5.6 Digit recognition accuracy with grayscale and binary images

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

%
 A

C
C

U
R

A
C

Y

ITERATIONS

Digit recognition accracy with
different image types

Binary image Grayscale image

30

5.5 Accuracy trend with different number of cores

Studies from 5.1 to 5.4 are based on the single core design. However, if images are

very big, they have to be processed in segments. In order to demonstrate this idea, we

modeled multicores in our software. Each core processes 64 pixels and produces 64 spikes.

We segmented the weight matrix vertically and each segment is programmed in to a single

core. Each of these cores process the segments of images in parallel as shown in figure 4.2.

Considering 256 pixel images, 64 neurons for each core and 5 levels of weight, the

simulations are run for 1, 2 and 4 core designs. The accuracy of digit recognition is shown

in figure 5.7. Since 4 core structure gives highest accuracy, we designed our neuromorphic

chip with this configuration.

Figure 5.7 Digit recognition accuracy vs number of cores

91.73

93.73
94.70

80

82

84

86

88

90

92

94

96

98

0 1 2 3 4 5

%
 A

cc
u

ra
cy

Number of cores

Digit recognition accuracy vs number of
cores

31

5.6 Error tolerant design

Process of chip fabrication incur lot of variations in the circuits. This results in to

device mismatch. Even two similar circuits produce different current values for same bias

conditions. Since we are using current based neurons, there could be some errors in the

spikes. Considering the scenario, we modeled errors in spikes and observed digit

recognition accuracy. The accuracy is dropped by 12%, if we add 10% errors to spikes.

In order to address the issue, we trained our classifier in two phases. In first phase,

we train classifier with error free spikes corresponding to all 60,000 images. In second

phase, we introduced 10% errors in the spikes and trained the classifier again. Using this

training procedure, the accuracy has dropped by just 4-5% when 10% spike errors are

introduced in testing image. The trend is shown in figure 5.8. MATLAB simulations are

run on 4 core design with each core of size 64 axons and 64 neurons. Size of the images

used are 256 pixels and weight levels are 5.

32

Figure 5.8 Digit recognition accuracy vs spike errors

33

5.7 HSPICE simulation results

The functionality of neuromorphic core is verified using HSPICE simulations.

Since current based parallel reading scheme is used, better precision is required while

programming floating gate node voltages. Hence our circuit is designed to have flexibility

of verifying programmed weights in terms of drain current. Figure 5.9 shows simulation

results of internal current verification. Excitatory and inhibitory currents are compared with

reference current. Since we are verifying currents while programming weights, we can

program cells for same current even with different amount of variations in them. Even

though we encounter variations in eflash cells, current verification nullifies the effect.

Excitatory and inhibitory currents are verified separately. A neuron spikes when excitatory

current is greater than reference current during excitatory current verification. It also spikes

when inhibitory current is smaller than reference current during inhibitory current

verification.

COLMUX<1:0>

MODE<2:0>

CLK

EXC/INH

SA_EN

SPIKE

REF_CURRENT

EXC_CURRENT

INH_CURRENT

Excitatory current verification Inhibitory current verification

EX > REF REF > IN

Process: ST 65nm Voltage: 1.2V Temp.: 25°C

Figure 5.9 Internal current verification

34

Once the programmed weights are verified, neuron operation is performed. During

this mode, all the wordlines corresponding to pixel value “high” are enabled. Eflash cells

connected to these wordlines start conducting current. The magnitude of bitline current

depends on programmed weights at each cell. Neuron compares excitatory and inhibitory

currents to generate spikes. Spikes are generated if excitatory current is larger than

inhibitory current as shown in figure 5.10.

The simulation involves initializing hundreds of floating gate node voltages,

enabling wordlines depending on the values of pixels and reading out spikes. The entire

process is automated using PERL scripting. Spikes of software simulations are compared

with spikes of hardware simulations to verify the functionality of the design.

COLMUX<1:0>

MODE<2:0>

Erase mode Program mode Neuron sensing mode

CLK

WWL
RWL/EWL

PWLFloating gate node

SA_EN

Excitatory current

Inhibitory current

SPIKE

Process: ST 65nm Voltage: 1.2V Temp.: 25°C

Figure 5.10 Neuron operation

35

Although process variation at eflash cells is nullified by using internal current

verification, there could be some variations at neurons. This variation causes an offset

current at neuron. Anticipating this issue, we modelled Gaussian distribution of offset

current at neurons as shown in figure 5.11. Since these variations are permanent and

localized to each neuron, training the classifier with these effects could still recognize the

digits with 94.7% accuracy. Neurons are also designed to have optional offset currents to

overcome these issues.

-4 -3 -2 -1 0 1 2 3 4
0

2

4

6

8

10

12

F
re

q
u

e
n

cy

Offset current (µA)

Gaussian distribution of variation(offset current)

Offset current range
(-0.5µA to 0.5µA)

Figure 5.11 Gaussian distribution of offset current

Since eflash uses charge to store the weight levels, it could experience charge loss

due to gate leakage. However, the effect is expected to be even on the adjacent columns,

which are used for current comparison. This makes the design robust to retention related

issues.

36

Chapter 6 Conclusion

We demonstrate a neural network algorithm using neuromorphic chip. Our design

contains 256 axons and 256 neurons. This novel architecture uses 4 cores to process an

entire image in completely parallel fashion. Introduction of non-volatile multilevel cells to

store the weights makes this architecture suitable for neuromorphic application with low

power consumption. The new current based neurons with parallel reading scheme increases

the speed of the operation. Anticipating inevitable circuit variations due to fabrication

process, our error tolerant system is designed to handle 10% spike errors.

We demonstrate a hybrid hardware-software system. Future scopes of this work are

building an entire system on chip, introducing learning ability in a hardware. The other

scope is to demonstrate a system of billions of neurons to mimic human brain operations.

There are many other directions such as building an accurate model of a biological neuron,

designing a generic system for visual, audio and locomotion applications.

The ultimate goal of cognitive computing research community is to build a brain-

like design which is efficient in terms of area, power and performance. Since transistor

scaling is getting challenging every generation, we need to look in to novel architectures

to improve overall efficiency of VLSI circuits. We believe our work is one of the step

towards this goal.

37

Bibliography

[1] R. Ananthanarayanan, et al., “The cat is out of the bag: cortical simulations with

109 neurons, 1013 synapses,” Proc. Conf. High Perf. Computing Networking,

Storage and Analysis (SC09), pp. 1-12, Nov. 2009.

[2] J. Seo, et al., “A 45nm CMOS Neuromorphic Chip with a Scalable Architecture for

Learning in Networks of Spiking Neurons,” Proc. IEEE Custom Integrated Circuits

Conference, 2011.

[3] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha, “A

digital neurosynaptic core using embedded crossbar memory with 45 pJ per spike

in 45 nm,” Proc. IEEE Custom Integr. Circuits Conf., 2011.

[4] P. Knag, J. Kim, T. Chen, Z. Zhang, “Sparse Coding Neural Network ASIC With

On-Chip Learning for Feature Extraction and Encoding,” IEEE Journal of Solid-

State Circuits, Vol. 50, No. 4, April 2015.

[5] S. Moradi, G. Indiveri, “A VLSI network of spiking neurons with an asynchronous

static random access memory,” IEEE Biomedical Circuits and Systems Conference

(BioCAS), 2011.

[6] M. Suri, et al., “CBRAM devices as binary synapses for low-power stochastic

neuromorphic systems: Auditory (Cochlea) and visual (Retina) cognitive

processing applications,” IEEE Intl. Electron Devices Meeting (IEDM), 2012.

[7] S. Park, et al., “Neuromorphic speech systems using advanced ReRAM-based

synapse,” IEEE Intl. Electron Devices Meeting (IEDM), 2013.

38

[8] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking

neurons and bistable synapses with spike-timing dependent plasticity,” IEEE

Trans. Neural Networks, Feb. 2006.

[9] C. Bartolozzi, G. Indiveri, “Synaptic Dynamics in Analog VLSI,” Neural

Computation, Vol. 19, Oct. 2007.

[10] S. Song, K. C. Chun, C.H. Kim, “A Logic-Compatible Embedded Flash Memory

for Zero-Standby Power System-on-Chips Featuring a Multi-Story High Voltage

Switch and a Selective Refresh Scheme,” IEEE Journal of Solid-State circuits, May

2013.

[11] S. Song, K. C. Chun, C.H. Kim, “A Bit-by-Bit Re-Writable Eflash in a Generic 65

nm Logic Process for Moderate-Density Nonvolatile Memory Applications,” IEEE

Journal of Solid-State circuits, Aug. 2013.

[12] A. Steiner, et al., “1kHz 2D silicon retina motion sensor platform,” IEEE Intl.

Symposium on Circuits and Systems (ISCAS), 2014.

[13] C. Brandli, et al., “A 240 × 180 130 dB 3 µs Latency Global Shutter Spatiotemporal

Vision Sensor,” IEEE Journal of Solid-State circuits, Sept. 2014.

[14] N. Iman, et al., “A Digital Neurosynaptic Core Using Event-Driven QDI Circuits,”

IEEE Intl. Symposium on Asynchronous Circuits and Systems (ASYNC), 2012.

[15] F. Tenore et al., “A spiking silicon central pattern generator with floating gate

synapses,” IEEE Intl. Symposium on Circuits and Systems, 2005.

[16] E. Painkras, et al., “Spinnaker: A 1-w 18-core system-on-chip for massively-

parallel neural network simulation,” IEEE Journal of Solid-State Circuits, 2013.

39

[17] B.V. Benjamin, et al., “Neurogrid: A Mixed-Analog-Digital Multichip System for

Large-Scale Neural Simulations,” proceedings of the IEEE, April 2014.

[18] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with

neural networks,” Science, vol. 313, no. 5786, pp. 504–507, July 2006. Online

available: http://dx.doi.org/10.1126/science.1127647.

[19] The MNIST dataset is available at http://yann.lecun.com/exdb/mnist/index.html

[20] G.E. Hinton and S. Osindero, “A fast learing algorithm for deep belief nets,” Neural

Computation, Vol. 19, July 2006.

