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Abstract 
 
Age-related macular degeneration (AMD) causes damage to the macula- a region at the 

center of the retina needed for sharp central vision. Consequently, the most common 

symptom of AMD is central visual field loss (CFL) due to the formation of central 

scotomas (blind spots). High-resolution activities such as reading are primarily affected. 

We have developed a method using a head-mounted display with an integrated eye 

tracker to aid central field loss patients. We hypothesize that real-time remapping of lost 

information due to CFL onto a functional portion of the retina will improve visual 

performance. The method developed was tested on a first generation device and then a 

second generation device which improved upon the hardware of the first device, as new 

hardware became available. To test, in three different studies, normally sighted subjects 

were asked to wear the head-mounted display with the built-in eye tracker. CFL was 

simulated by placing artificial circular scotomas over the gaze position. Scotoma sizes 

ranged from 2° to 16° of visual angle. For each scotoma size, reading speed was 

measured for two conditions using a modified MNREAD test: no image remapping, and 

remapping of text around the scotoma. We observed statistically significant increase in 

mean reading speeds for the larger scotomas. Results indicate that the device performs as 

expected, and shows promise in improving reading speeds and in general visual 

performance in CFL patients.  
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Background 

 
Overview of the Eye 

The human eye is illustrated in figure 1. The outer layer of the eye, called the fibrous 

tunic, contains the sclera and the cornea [1]. The sclera is the white part of the eye that 

covers the outside of the eyeball. It is connective tissue and serves as a protective coating. 

Muscles that control eye movement attach here. The cornea is the clear, dome-shaped 

window covering the iris and the pupil. It lets in light.  

The middle layer of the eye is called the uvea or the vascular tunic, with three main parts: 

the iris, the choroid, and the ciliary body [1].  The iris, the colored part at the front of the 

eye, lies between the cornea and the lens. It changes the amount of light entering the eye 

as required. The choroid contains blood vessels to supply oxygen and nutrients to the 

retina. Bruch’s membrane is the innermost layer of the choroid. The ciliary body is a 

muscular ring of tissue behind the iris that helps the eye focus by changing the shape of 

the lens. 

The inner layer of the eye is made up of the retina or neural tunic [1]. The retina is a thin 

layer at the back of the eyeball that consists of a thin pigmented layer, the retinal pigment 

epithelium, which assists in absorbing scattered light, and a thick neural layer that 

consists of bipolar cells, photoreceptor cells, and ganglion cells. The photoreceptor cells 

send neural signals to the bipolar cells in response to light, which further transmit the 

signal to retinal ganglion cells. The axons of the retinal ganglion cells then transmit 

information to the brain as the optic nerve.   
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There are two types of photoreceptor cells: the rod cells and the cone cells. Rod cells are 

more abundant and sensitive to light, but provide poor spatial resolution and don’t 

contribute to color vision. They provide vision at low light levels, i.e. scotopic vision. 

Cone cells work at higher light levels and are responsible for color vision and high spatial 

acuity.  

The macula is a highly sensitive region near the center, posterior portion of the retina 

responsible for detailed central vision, allowing us to see objects straight ahead [2]. The 

fovea is a small region located within the center of the macula that spans less than 2 

degrees of visual field. It is completely devoid of rod photoreceptors, and is responsible 

for sharp central vision, required for activities such as reading. It contains the highest 

density of cone photoreceptors in the retina.  

Eye Movements 

Human eyes make a variety of voluntary and involuntary movements to find, fixate on, 

and track visual stimuli. Detailed information on these can be found in Neuroscience, 2nd 

Figure 1: Human Eye [56] 
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Edition, by Purves et al. Eye movements relevant to the research described herein are 

summarized below.  

Fixations are periods when the eye is relatively still, and when new information is 

typically acquired. Generally, fixations last from 200-300ms, the duration depending on 

the task. Saccades are rapid movements of the eye from one fixation point to another. For 

activities such as reading, saccades are usually small in amplitude, and the reader is for 

all intents and purposes, blind during a saccade. They can be much larger for activities 

like gazing around the environment. A typical saccade takes 30-80ms to complete [23]. 

Smooth pursuits are eye movements used to track a moving stimulus such as a baseball 

moving across the field of vision. They are typically slower than saccades.  

Some other eye movements that are studied, albeit not as much, are microsaccades, 

glissades, tremors, and drift. The eyes aren’t completely still during fixations, but in fact 

make small movements. There are three generally accepted fixational eye movements: 

microsaccades, drifts, and tremors [3]. Drifts can be described as a random walk moving 

the eye away from the fixation center. Microsaccades are jerk like movements that 

intermittently correct for drift, and bring the eye back to the original fixation position. 

Tremors are small wave-like movements with a frequency of about 90 Hz that are 

superimposed on to drifts. Their exact role is unclear.  

Frequency and duration measures of the aforementioned eye movements provide some 

insight on how the visual information is processed, and how efficient the visual 

performance is.  Fixation duration is closely linked with cognitive processing of visual 

stimulus. On a very basic scale, a longer fixation indicates deeper cognitive processing 

[23]. In reading, text complexity is found to affect fixation duration. Complex texts elicit 
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longer fixations (Rayner & Pollatsek, 1989). Fixation rate is the number of fixations per 

unit time. Fixation rate declines with increased task difficulty [23]. For still images, the 

number of fixations is about equal to the number of saccades. Saccadic rate decreases 

with task difficulty [5]. Schuchard et al. report that patients with AMD make more and 

shorter saccades than normally sighted subjects in visual search tasks [6]. 

Regressions are when the saccade moves in opposite direction to the text. Regressions 

can be backwards within a word, making it an in-word regression, or between words, 

taking place within a sentence as a whole. Changes in difficulty of text to be read can 

affect the number of regressions [7]. It is possible that a more complex reading task, or 

task perceived as difficult, might require more regressions.  

Other eye movement parameters such as saccade amplitude, duration, etc. can provide 

further insight into visual performance. These are explained in detail by Holmqvist et al. 

in their book “Eye Tracking: A Comprehensive Guide to Methods and Measures”. The 

measures described above will suffice for the research presented herein.  

Pupillary and Visual Axes of the Eye 

The pupillary axis of the eye is the line that is perpendicular to the entrance pupil and 

passes through the center of curvature of the cornea [8]. The optical axis of the eye is the 

line that passes through the center of curvature of the cornea and the center of the pupil. 

If a spherical model of the eye is assumed, the pupillary axis should overlap with the 

optical axis.  

The visual axis of the eye is the line that passes through the fovea and the center of 

curvature of the cornea. It is the line of sight which connects the fixation point with the 
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fovea. Rays along the optical axis pass undeviated through the optics of the eye. Rays 

along the visual axis are refracted as they pass through the optics.  

Gaze location is the point where the visual axis intersects the plane of observation, eg. a 

computer screen. For people with a damaged fovea resulting in central visual field loss 

(CFL), the visual axis is the line connecting the preferred retinal locus (PRL) with the 

center of curvature of the cornea [9]. The PRL is described in the following section.  

Angle kappa is the angle between the pupillary and visual axes. It has vertical and 

horizontal components. If the PRL changes, the pupillary axis remains the same, but the 

angle kappa changes, as the visual axis now concerns the new PRL and center of 

curvature of the cornea.  

Age-Related Macular Degeneration 

Age-related macular degeneration (AMD) is a leading cause of irreversible vision 

impairment among individuals 50 years or older in developed countries. Over 1.75 

million people in the United States suffered from AMD as of 2004, and this number is 

predicted to increase threefold by 2020 owing to the aging of the population [10]. It is 

estimated that 6.5% of the US population aged 40 years or older have some stage of 

AMD, while late stage prevalence in this population is estimated at 0.8%. (Klein et al. 

2011). It causes damage to the macula- a region at the center of the retina needed for 

sharp central vision, thereby causing central visual field loss (CFL).  

AMD inhibits transmission of information being sent from the eye’s photoreceptors by a 

dry or a wet form, which causes the macula to essentially degenerate. Since the macula, 

which also contains the fovea, has the highest cone density, central vision is affected, 
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resulting in partial or complete central vision loss by means of formation of a ‘blind 

spot’, clinically called a central scotoma.   

There are two types of macular degeneration- a dry, or atrophic macular degeneration, 

also called non-neovascular macular degeneration, and a wet, or exudative macular 

degeneration, also called neovascular macular degeneration. The dry form is the most 

common, with 85-90% of the people with AMD exhibiting this variety. It usually causes 

some degree of visual impairment, sometimes leading to severe low vision. The wet form 

affects the remaining 10-15% of the people, and exhibits rapid progression to low vision 

if left untreated [11].  

With age, humans tend to have focal deposition of acellular, polymorphous debris called 

drusen between the retinal pigment epithelium and Bruch’s membrane (Jager et al., 

2008). Drusen are seen in over half the population over 70 years of age [12], and are the 

first clinically detectable feature for AMD. The first signs of macular degeneration are 

the presence of drusen and some degree of visual loss [13]. Dry AMD is due to the 

formation of drusen on the retina, beneath the macula and between the RPE and Bruch’s 

membrane, causing it to degenerate over time. Geographic Atrophy (GA) is the end form 

of dry AMD, and is characterized by the degradation of a large area of RPE cells. In this 

advanced form, GA typically forms an island of atrophied photoreceptor cells which 

cannot be repaired. GA typically starts in the central region of the macula, and progresses 

outwards. Lost photoreceptors results in inhibition of information transmission, causing 

the formation of a blind-spot, also called a scotoma. When central vision is obstructed, 

the blind spot is called a central scotoma. An artist’s impression of progression of a 

central scotoma is shown in figure 2.  
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Figure 2: Left: No scotoma Right: Same image with a central scotoma [57] 
In the wet form of AMD, choroidal neovascular tissue breaks through Bruch’s membrane 

and gets lodged between the RPE and the photoreceptors themselves, causing abnormal 

vessels to grow toward the outer retina from the underlying choroid [14]. These blood 

vessels leak fluid and blood, which can lead to swelling and damage of the macula. The 

damage is rapid and more severe, unlike the gradually progressing GA in dry AMD.  

The dry form of AMD has no single proven treatment [15]. Good nutritional 

supplementation, as discussed by the American Association of Ophthalmology, can 

reduce the impact of AMD by slowing progression, however.  

Treatment of wet AMD may involve anti-VEGF treatment, thermal laser treatment, or 

photodynamic therapy (PDT). These treatments typically serve to reduce, albeit not 

eliminate, the risk of severe vision loss. A comprehensive summary of these methods can 

be found in Victorson’s master’s thesis [16].  

Generally, patients with central scotomas within eccentricities of 20 degrees aren’t aware 

of these field defects. They are reported to describe objects as “vanishing”, “have missing 

parts”, and “blurry” [17]. In a study of 153 patients with AMD, Fletcher et al. found that 

56% of the patients with binocular central scotomas were unaware of their presence [6].  
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PRL 

Activities that are most affected because of the loss of central vision are reading, driving, 

and other related activities of daily living that rely heavily on detailed viewing ability. In 

a study comparing reading rates of people with macular scotomas to normally sighted 

subjects, it was found that reading rates fell from an average maximum of 232 words per 

minute in the normal group to about half of that for the group with dense macular 

scotomas of varying sizes [18].  

In patients with a functioning fovea, fixation involves imaging the fixation target with the 

fovea. Patients with central scotomas, however, use a functional area in the peripheral 

retina in place of the fovea to perform foveal visual tasks. This pseudofovea, used in 

place of the damaged fovea, is called the preferred retinal location or PRL.  Patients with 

AMD may use one or more PRLs with different locations on the retina, depending on 

tasks such as reading, fixating at stationary targets, etc. A study showed that of 825 

patients with low vision, ~84% had established PRLs for fixation [17].  

PRLs used can depend on the task performed. Many patients with low vision use 

different PRLs for reading, and different ones for following moving objects. A study 

reports that PRL used in reading may change based on text size, and patients might use 

multiple PRLs in reading tasks [19].  

Eccentric fixation involves imaging the fixation target with the PRL. In eccentric 

fixation, the oculomotor system is rereferenced and the patient feels that he/she is 

viewing the object directly while using the PRL. Eccentric viewing, on the other hand, 

involves using the PRL for activities, while the patient is aware that he/she is using a 

PRL located above/below/to the side of the fovea, and has the sensation that he/she is 
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looking above/below/to the side of the target [20]. This is an important distinction as the 

oculomotor system orientation is not changed in the latter.  

Using an established PRL for visual tasks can improve visual performance. PRLs in 

specific locations in relation to a central scotoma can provide greater benefits over PRLs 

in other locations. Nilsson et al. states that PRLs above (or below) a central scotoma are 

more advantageous to reading [21]. PRLs to the left of the macular scotoma prove to be 

the slowest in terms of reading speed. This makes sense subjectively, as in this case, the 

scotoma is always covering the upcoming words. Testing monocularly for a fixation task, 

Greenstein et al. found that for 11 eyes with low vision and eccentric fixation, the PRL 

lay above the fovea on the retina for all tested eyes, indicating that the location above the 

fovea was a favorable pseudofoveal location [22]. The degree of eccentricity ranged from 

2 degrees to 11 degrees for the eyes tested. Schuchard et al. found that the most common 

location for PRLs relative to the fovea was the upper left, with 34% of the patients having 

the PRL in that region [17]. In 20 untrained eyes with AMD and dense macular scotomas, 

Nilsson et al. found that 55% had PRLs to the left of the scotoma, 30% had PRLs just 

outside the upper left part of the scotoma, and 10% just outside the lower left [21]. It 

seems that PRL locations are fairly variable among the CFL population. The same study 

involved training the patients to use a more favorable location so as to improve reading 

speeds. 18 of the 20 patients were successfully trained to use a more favorable PRL 

above or below the scotoma over 5 hours of training. Reading speeds increased from an 

average of 9WPM with the untrained unfavorable PRL to 68WPM with the trained PRL, 

indicating a positive effect of training to use eccentric viewing, and of using a more 

favorable PRL.   
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If a subject has binocular central vision loss, PRLs can be present in both eyes. 

Monocular PRLs used when viewing with only one eye can be different than those used 

during binocular viewing. PRLs in both eyes can be in corresponding locations relative to 

the respective foveas, or in different locations. Schuchard, Tekwani et al. reported that for 

people with bilateral central scotomas, 67% of the people saw visual stimuli only with 

one PRL even though they looked at words with both eyes .[61] Tarita-Nistor et al. 

showed that for some patients, the PRL in the dominant eye determined fixation for both 

eyes, with the monocular PRL in the worse eye moving to a corresponding position of the 

PRL in the better eye even though it could land in the scotoma region. [9] Studies have 

shown that for patients with bilateral scotomas, during binocular viewing, the dominant/ 

better eye guides fixations. [24] 

PRL characteristics such as size, relative location, etc. can be assessed using a variety of 

measures. Scanning Laser Ophthalmoscopy (SLO) is an eye examination method that can 

be used to image the retina and determine monocular PRL characteristics. The Nidek 

MP1 Microperimeter is a combined perimetry and fundus image device that can also be 

used to obtain monocular PRL characteristics.  

 

Eye Tracking 

Eye tracking is essentially the measurement of eye activity. More specifically, it involves 

quantifying the point of gaze or the location and/or motion of the eye in relation to the 

head. Preliminary eye trackers have existed since the late 19th century, with invasive 

primitive methods such as a direct mechanical connection used to record onto a rotating 

drum [25]. Photo/ video based eye tracking took advent at the beginning of the 20th 
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century, and in recent times have led to a huge increase eye tracker demand and resultant 

prevalence, with non-invasive video based eye trackers being used in fields ranging from 

medicine, automobiles, defense, gaming, to psychology and even marketing research.  

Eye tracking methodologies can be broadly classified into four categories [26]: 

1) Electrooculography (EOG): systems that measure the skin’s electric potential 

difference using electrodes placed around the eye. These measure eye movements 

in relation to the head position.  

2) Scleral Contact Lens/ Coil systems: Long considered to be the most precise 

method of measuring any eye movements, they measure the electromagnetic 

induction in a silicon contact lens placed directly on the eye. However, they are 

now known to alter saccades of the user [27].  

3) Infrared Oculography: The eye is illuminated by infrared light which is reflected 

by the sclera. The difference in the reflection as the eye position changes is used 

to characterize eye position. 

4) Video Oculography: This method typically disambiguates head movement from 

eye rotation to provide the point of regard. To do so this method uses features 

such as corneal reflection and pupil center position. Video based setups typically 

consists of one or multiple light sources (typically infra-red) coupled with 

miniature cameras. Eye video subjected to image processing techniques then 

provides the point of regard in real time. These are used in this project and are 

described in greater detail below.   
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Video-Based Eye Trackers:  

 This is the most commonly used method of gaze tracking. Video Oculography can 

be classified into different types, based on the features/ techniques used. The community 

on Communication by Gaze Interaction classifies them as follows [28]: 

1) Video Oculography based on pupil image and corneal reflection 

2) Video Oculography based on only the pupil image 

3) Video Oculography based on dual Purkinje image corneal reflection 

 

For all these methods, an infrared light source is used to illuminate the eye and the eye 

image video is captured by an (or multiple) infrared camera(s). For these methods, dark 

pupil tracking involves placing the imaging device such that the pupil is darker than the 

iris, while the bright pupil method involves placement such that the pupil appears to be lit 

up. The first two methods mentioned above are investigated below as they are relevant to 

the project and are typically used with head-mounted setups. These are feature-based 

methods as they identify distinguishing features of the eye like pupil contours, eye 

corners, and corneal reflections to track the eye position. All these methods use the flow 

chart shown in figure 3 to provide eye-gaze position. 

Image Acquisition 

Image Analysis (pupil 
segmentation, etc.) 

User calibration 

Point of Gaze estimation 

Figure 3: Gaze Estimation Flowchart	
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The pupil only and pupil corneal reflection method are described below, as they are most 

relevant to the presented research.  

 

Pupil-Only Method: 

The pupil is segmented out from the eye video captured by the camera, and the pupil 

center is found using image processing techniques. This system is typically used with 

head-mounted setups as it is sensitive to head movements. 

 

Pupil and Corneal Reflection Method: 

Purkinje images are reflections formed when light (infrared) is reflected off of the 

boundaries of the lens and cornea. The first Purkinje image occurs at the interface 

between air and the cornea, the second at the interface between the cornea and aqueous 

humor, the third at the interface between the aqueous humor and the crystalline lens, and 

the fourth at the interface of the crystalline lens with the vitreous humor. The first 

Purkinje image is also called the glint. The pupil, glint and the pupil-glint vector as seen 

by an Arrington Research 60Hz eye tracker integrated into the Sensics zSight HMD body 

is seen in figure 4. The yellow circle outlines the pupil. The red circle outlines the glint. 

The red vector connecting the red and yellow circles is the pupil-glint vector.  



 

14 
 

The relative locations of the pupil and the glint, i.e. the pupil-glint vector, can be used to 

track the eye. A main advantage of this method, especially in head-mounted systems, is 

that it is more forgiving of errors due to HMD slip on the head.  

Calibration 

All eye tracking systems need to be calibrated to develop a transformation from eye space 

to gaze space, where the point of gaze on the screen is known. As part of the calibration 

procedure, subjects are asked to fixate on fixation points or artifacts displayed at different 

positions on the screen one at a time. 

Eye tracking algorithms can be classified into two types: feature based, and model based 

[29]. Feature based algorithms relate eye features directly to image features based on a 

calibration sequence. They need to be thresholded to determine which features are 

present/ absent, and this adds an ambiguity as the threshold is set by the user [30]. This 

can change between users. Model based algorithms, on the other hand, find the best 

 Figure 4: Pupil-glint vector segmented by the Arrington Eye-Tracker 
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fitting model that works with the image. For example, algorithms might find the best 

fitting ellipse for the pupil. Model based algorithms can provide a more precise estimate, 

but need more processing power. These use eye models that assume that the iris and pupil 

are ellipsoidal, with the pupil at the center of the iris. Further assumptions are also made, 

depending on the algorithm, as described by Holmqvist et al. in the book “Eye Tracking: 

A Comprehensive Guide to Methods and Measures.” 

As mentioned above, feature based algorithms that don’t use a physiological model of the 

eye use a calibration sequence of multiple points to go from eye space to gaze space. 

These sequences are generally of 9+ fixation points on the screen. Once a good 

calibration is obtained, calibration does not need to be repeated for the particular user, 

unless there is a change in the head pose in relation to the eye tracker. In head-mounted 

eye tracker systems, this is referred to as “slip”, and some eye trackers have a slip 

correction mode, where the slip is accounted for by presenting a single calibration point.  

Generally, monocular eye trackers have one camera and one infrared source. Using more 

cameras and more infrared sources can relax head movement and calibration constraints, 

but require more processing power. Guestrin and Eizenman showed that using a stereo 

pair of video cameras, the center of curvature of the cornea and the optical axis could be 

estimated without user calibration [31]. Once the optical axis is known, this system 

would then require a one-point user calibration to estimate the angle kappa between the 

optical axis and the visual axis. The intersection of the visual axis with the screen would 

give the point of gaze.  
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Automatic Calibration  

It is extremely hard to have some populations such as children and those mentally 

challenged to work with an eye tracker’s calibration sequence, resulting in poor 

calibration. To battle problems such as this, Model and Eizenman proposed an automatic 

calibration method for eye-tracking systems [32]. The algorithm proposed works on 

systems with a stereo camera pair, and uses an assumption to estimate the angle between 

the optical and visual axes, thereby eliminating the need for the one-point calibration 

formerly required in these systems. The assumption Model and Eizenman make is that 

when the wearer is looking at any point on an observation surface, the visual axes of both 

eyes intersect. This assumption is true for a majority of the population, but doesn’t hold 

for some samples such as people with strabismus. 

Consider someone wearing a head mounted eye tracker integrated into a head mounted 

display such as an Oculus Rift. If a stereo pair of cameras is used, the optical axes of both 

eyes are known. The observation surface for the wearer is the Rift’s display, which is at a 

fixed distance away from the eyes. At any point on this observation surface the user is 

looking at, the visual axes intersect. We do not need to specify the exact target on the 

screen where the eyes are looking, as the visual axes will intersect at each and every point 

on the surface, as long as the subject is looking somewhere on this specific observation 

surface. We aren’t concerned with where this point is, rather the fact that at any given 

point the visual axes intersect. The optical axes of the user are known. An algorithm can 

now be used to estimate the angle between the visual and optical axes for both eyes such 

that the distance between the intersections of the left and right visual axes with the 

observation surface are minimized. This will give the angle kappa, which can be coupled 
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with the optical axis to estimate the visual axis, and thereby the point of gaze. The 

procedure is explained in great detail in Model and Eizenman’s publication  [32].   

 

Eye Tracker Specifications 

Eye trackers need to be chosen carefully to match the specifications required by a specific 

task. Specification requirements are dictated by the type of data being recorded eg. 

fixations or microsaccades in reading, etc., and the type of application eg. real time image 

remapping vs. post-task analysis. This section examines specifications particular to the 

research presented in this thesis. Holmqvist, in his book, “Eye Tracking: A 

Comprehensive Guide to Methods and Measures”, has an informative section on 

choosing the right eye tracker. 

 

Sampling Frequency: 

Sampling frequency is the number of samples per second recorded by the eye tracker, and 

is measured in hertz (Hz). This typically means the number of times each second the eye 

camera captures an image of the eye, and translates eye position into gaze coordinate on 

screen. Eye trackers of the current generation cover a broad range of needs and 

corresponding price ranges, with cheap off-the-shelf components targeted towards the 

average consumer having a sampling frequency of 25-30Hz with a sub $200 price tag, 

and high-end research-specific eye trackers having sampling frequencies in the 1000Hz 

range. In general, a higher sampling frequency in the 250Hz range is preferred to obtain 

good fixation data, and an accurate measure of other eye movements such as saccades 

and microsaccades. In reading, saccades are around 50ms, so at least a 50Hz system is 
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required to capture them. Shorter the eye movement time, larger the sampling frequency 

required. According to Enright, peak saccade velocity cannot be accurately measured 

with a 60Hz eye tracker for reading research, as saccades are smaller than 10 degrees 

[33]. A 60Hz eye tracker can only accurately measure peak saccade velocity for saccades 

greater than 10 degrees.  

 

Eye-Tracker Latency: 

Eye tracker latency is the average delay from when the eye movement occurs to when the 

gaze position is reported to the computer. It is very important in gaze-contingent systems 

that use eye data for real-time manipulation of images. For example, in a real-time 

blurring algorithm where the image is blurred based on eye position, it is important to 

have the latency as low as possible to provide a comfortable user experience. Generally, a 

good eye tracker will capture an eye image, process the data, and provide gaze 

coordinates to the computer within 1-2 frames. For a 250Hz eye tracker, this puts eye 

tracker latency at about 4-8ms. For a 60Hz eye tracker, however, this becomes a fairly 

large delay of about 16-32ms. Temporal precision is the standard deviation of eye tracker 

latencies, with a high temporal latency meaning that the latency is fairly constant. High 

temporal precision is desired, as is low eye-tracker latency. In experiments when central 

vision is masked by tracking eye movements and masking the point of gaze, eye tracker 

latency needs to be kept at a minimum in particular. This is because if there is a high 

latency, the eye can effectively move faster than the mask can follow, thereby glimpsing 

the unmasked region with central vision – which is exactly what the experiment seeks to 

avoid. In such experiments, the latency must be kept under 25ms in general [34]. This 
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result is based on multiple experiments that suggest that visual suppression is reduced 

within 25ms of a saccade ending. This result is directly related to the research herein, as 

the conducted research revolves around processing the point of central vision in real time.  

Accuracy and Precision: 

Accuracy of an eye tracker is the average difference between the actual gaze position, 

and the gaze position recorded by the eye tracker. A high accuracy around ~0.1 degrees is 

preferred.  

Spatial precision is a measure of the variability among the recorded gaze positions. Both 

high accuracy and high precision are preferred for real time gaze contingent systems.  

 
Low-Vision Aids for Macular Degeneration 

Moshtael et. al state that low vision aids can be broadly divided into two categories based 

on function: those that translate visual information into information conveyed through 

other senses such as sound eg. text readers, and those that render visual information in a 

more visible format to the user, through magnification for example [35].  Magnifiers can 

be optical or digital, ranging from handheld optical ones with magnification ranging from 

1.5x to up to 20x, spectacle-lens mounted magnifiers, to electronic magnifiers. The main 

limitation of optical magnifiers is the limited field of view (FOV).  

Traditionally, most common digital vision aids have included desk mounted CCTVs that 

magnify text placed on their reading platforms, and electronic portable magnifiers that 

plug into laptop computers. They also include other functions such as brightness and 

contrast manipulation and color inversion that are proven to aid people with AMD. A 

comprehensive review of existing aids for AMD can be found in Victorson’s master’s 

thesis [16]. 
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High tech vision aids typically have higher processing power and utilize image 

processing techniques coupled with improved hardware to optimize visual experience. A 

huge advantage of using high tech digital methods over analog ones is the ability to add 

features by something as easy as a software update. Most common image processing 

transforms applied to images include contrast enhancements, magnification of relevant 

areas, edge and contour enhancement, and background attenuation and scene 

simplification [35].  

Head mounted digital aids have seen a rise in popularity lately due to advancements in 

technology. These aids, in the form of bulky goggles worn over the head, typically 

augment reality in real time, by providing image enhancements such as those listed above 

onto the image of the environment in real-time. Head mounted devices that augment 

reality typically have an LCD screen to display visual stimuli to the eyes, a scene camera 

that captures the environment in real time, and a processing unit that applies the required 

image processing algorithms. There are others, like the OrCam that are head-mounted, 

but utilize different techniques. The main advantage of these, over desk-mounted digital 

setups such as CCTVs, are that they are portable and can be used to improve performance 

in activities of daily living that require portability. These are very relevant to the research 

presented herein. A few relevant head mounted digital aids, especially those that have 

been developed recently, are described below. 
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Programmable Remapper 

This device was developed by NASA at the Johnson Space Center in 1990 and is pictured 

in figure 5. The device served to transform an input image rapidly onto a different 

coordinate grid. Though not developed exclusively for this purpose, it had potential to 

improve visual performance in low vision patients. It worked on the same principle as the 

device developed as part of the research project covered in this thesis – relocating the 

image of an object over the damaged macula to the functional part of the retina. The 

device consisted of a scene camera mounted on a head mounted display to capture video 

frames of the environment, which were then fed into and remapped by the remapper. The 

remapped images were then displayed onto the display screens on the HMD. In its 

original form, the remapping was static and didn’t move with eye position. The image 

was always remapped with the remapping at the center of the image, requiring head 

scanning of the environment rather than eye scanning. The remapper setup is shown 

below. 

A handful of remappings were developed as part of the project at the Johnson Space 

Center, to remap images to compensate for visual field defects [36]. These were never 

Figure 5: Programmable Remapper [58] 
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tested with the device itself, possibly because of computational limitations. A figure 

depicting the various remappings can be found in the published paper cited above. 

In its original form, to read the text, the subject would have to stare straight ahead and 

scan a document with the head, as the remapping wouldn’t follow eye-gaze given the 

absence of an eye-tracker. 

Wensveen et. al. paired the programmable remapper with an SRI Purkinje Eye Tracker, 

and tested the device to see if the remapping improved reading rates in normally sighted 

subjects with simulated central scotomas. Pairing an eye tracker with the setup meant that 

circular scotomas could be simulated over the gaze position, thereby simulating vision 

loss. The remapping could also move with gaze position, allowing for eye scanning rather 

than head scanning.  

In the experiment, central scotomas with diameters of 2, 4, and 8 degrees of visual angle 

were simulated on normally sighted subjects. Reading speeds for two remappings were 

measured and compared to the unremapped condition: the 40% remapping which 

exposed 40% of the information hidden behind the scotoma, and the 80%, which exposed 

80% of the remapping. The subjects saw only the part of the image within the circle 

surrounding the scotoma, and the display speed was controlled by the researcher. It was 

found that spatial remapping produced small but significant increases in reading speed for 

the 4 and 8 degree scotomas.  

Ho et al. tested the programmable remapper with eye tracking stabilization on two 

subjects with central scotomas between 4 and 10 degrees [37]. Reading with the eye-

tracker stabilization, one subject showed no significant change in reading speeds with 

remapping. The other subject showed a statistically significant increase (p<0.05) in 
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reading speeds from 30.8WPM to 35.9WPM with remapping. They concluded that more 

testing was needed to assess the efficacy of the device for improving reading 

performance in patients with central scotomas.  

The programmable remapper suffered from severe limitations stemming from limitations 

in the period’s technology. First among them was the device bulk. The device needed a 

very large processing unit apart from the head mounted display to do the actual 

remapping, thereby limiting portability. The SRI eye-tracker was not portable itself 

either. The field of view of the display was very limited as well. Furthermore, due to 

limitations in computing power, the scotomas of patients with CFL in Ho et al.’s 

experiment were approximated as circular and couldn’t be perfectly matched the 

remapped region on the screen. Testing was ultimately abandoned.  

 

IRIS Vision 

IRIS Vision is a very recently developed head mounted low vision aid. It utilizes off the 

shelf components in the form of a Samsung Gear VR™ virtual reality, or other similar 

headsets for head-mounting, and a capable phone such as the Galaxy S6 or the Note 4 

that slides into the VR device and serves as the screen, processor, and camera all at once.  

The IRIS Vision device captures a video stream of the environment using the main 

camera on the smartphone. It then processes the image using the smartphone’s processor, 

and displays the image to the wearer on the phone’s screen. 

The primary feature offered by this device is “bubble view”, which is essentially a 

magnification bubble in the center of the image presented to the eye. The size, shape, 

magnification, and location on the screen of this bubble is user adjustable. By scanning 
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the environment with the head, subjects can bring important objects into the bubble’s 

field, and potentially improve visual performance [38].  

The bubble functionality makes it somewhat similar to a head-mounted electronic 

magnifier, but the digital platform allows for additional features. The device also offers 

contrast and brightness adjustments, and a black and white reading mode which 

emphasizes the contrast of text, thus making it easier to read. It also has an inverted 

reading mode which is found to help people with low vision read better, with white letters 

on a black background.  

Limitations of this device include lack of eye-tracking, placing the requirement of head 

tracking to scan environments, which can seem more unnatural to people. Another 

limitation, which is shared by most if not all head mounted aids of this generation, is the 

size and bulk of the headset. The Gear VR weighs in at 318g without the smartphone, 

putting it at over a pound including the smartphone.  

It is priced between $5 and $200, cost of smartphone not included. The final price 

depends on the choice of VR headset. The device can be bought off the website 

www.visionizellc.com. Images of the device and its functionality can be found on the 

website as well. 

A similar device that incorporates eye-tracking into a virtual reality headset, capable of 

gaze-directed magnification, was demonstrated at the Association for Research in Vision 

and Ophthalmology Conference in 2015 [39]. The device used an Oculus Rift DK2 HMD 

custom-fitted with SMI 60Hz binocular eye trackers. The eye trackers could track a 

patient’s PRL and maintain the magnification bubble at this tracked PRL. Apart from the 

drawback of size and bulk, a big drawback is the device’s latency, quoted at around 60 
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msec. This latency is too high to allow for a naturalistic viewing experience, but is a 

result of technological limitations. No literature could be found on efficacy testing of this 

device with low vision subjects.  

 

Augmented Edge Enhancement Device for Vision Impairment Using 

Google Glass 

Wideband image enhancement involves locating and enhancing the contrast of visually 

relevant features in an image. It is shown to improve visual performance in the visually 

impaired [40]. A head mounted device for vision impairment that provides this 

enhancement over natural scenes as seen by a head mounted camera was implemented 

using the Google Glass augmented reality device [41]. Google Glass is an augmented 

reality device that resembles a pair of eyeglasses. It has a scene camera mounted on the 

eyeglasses that captures an image of the environment as seen by a normally sighted user. 

Glass also houses a processor that can be used to apply the wideband enhancement. The 

wearer can see the natural scene through the eye glasses, and information superimposed 

onto the natural scene via the 13 x 7.3-degree virtual display with a resolution of 640x360 

pixels. This screen is used to superimpose the wideband enhancement onto the natural 

scene. An image of the wideband enhancement as seen by the user can be found in 

Hwang and Peli’s published work cited above. 

This device is less bulky and much more portable than those described previously. A 

limitation is the parallax error because of the horizontal displacement of the camera from 

the screen, which makes it difficult to superimpose the image displayed on the screen 

with what is observed by the wearer for different distances. Another limitation is the 
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small span of the virtual display, which limits the angular extent of the scene to which the 

enhancement can be applied. Low vision subjects benefit from a higher field of view as 

compared to a higher resolution, so the low field of view is a big limitation.  

 

Hypothesis and Device Design 

Hypothesis 

An underlying problem causing decreased performance in visual tasks in CFL is loss of 

visual information to the central scotoma. The central scotoma covers parts of an image, 

thereby rendering it invisible to the patient. If this lost information could be preserved 

and somehow made available to the patient, visual performance could potentially be 

improved. On the basis of this, the research presented herein tests the following 

hypothesis: 

 

“Real-time remapping of visual stimuli to compensate for central vision defects will 

improve visual performance in patients with central visual field loss (CFL)”. 

 

Figure 6 depicts remapping as used for this project. Remapping can preserve scene 

information otherwise lost to the scotoma. If the scotoma can be tracked in real-time, and 

the part of the image lost within the scotoma can be presented to a functional part of the 

retina, visual performance can hypothetically be improved. This can prove especially 

helpful with reading, where words lost within the scotoma can be remapped onto a 

preferred retinal location to aid in improving reading rates.  
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The idea of using remapping to improve reading rates has been tested previously using 

NASA’s Programmable Remapper. As was seen earlier, in 1995, Wensveen et al. 

documented increased reading speeds with remapping in simulated CFL subjects. Ho et 

al. concluded that remapping showed potential with AMD subjects but more testing was 

needed. Testing was ultimately abandoned given the technical limitations of the time.  

This research revisits the concept of using remapping for CFL with new technology 

involving an advanced HMD, more accurate and precise eye tracking, and a standardized 

method for measuring reading performance.  

Device Design 

The device consists of three main components: an HMD, an eye tracker, and a laptop 

computer. An input visual stimulus is fed into the laptop computer. The eye-tracker, 

located within the HMD assembly and invisible to the wearer, tracks the eyes and thereby 

stabilizes the simulated central scotoma in the visual field in real-time. The laptop 

computer runs the image processing algorithm in real-time and generates remapped 

Figure 6: Left: Image with no remapping and circular scotoma Right: Same image, remapped 
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output images based on eye location. The HMD displays processed images in real-time to 

the wearer. The device’s process flow is shown in figure 7.  

A fourth component, namely a scene camera, can be affixed to the HMD to capture the 

environment as a normally sighted person would, and provide the input images for the 

laptop computer for an augmented reality experience. In this case, the wearer could walk 

around with the setup, using remapping to navigate the real world, and perform activities 

of daily living with improved visual performance. Input images could also be text 

documents or any input that would otherwise be displayed on the laptop computer’s 

From embedded eye 
tracker 

Figure 7: Device Process Flow 

Figure 8: Device being used to read an MNREAD sentence 
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screen in the case of normal viewing. Figure 8 shows all components working together, 

for a patient reading a standardized MNREAD reading test sentence. 

 

Remapping 

In order to preserve information lost to the scotoma, the input image has to be scanned 

pixel by pixel and the pixels lost behind the scotoma have to be assigned to a different 

location on the output image by the image processing algorithm. The image has to be 

warped using a spatial transform. This can be done by creating a map from the input 

image to the output image. A remapping algorithm has to be chosen for this purpose.  

For reading activities with low vision, the text may require high levels of magnification, 

even after remapping. Given that, it was essential that especially for reading tasks, the 

algorithm chosen preserved readability of the letters. Juday and Barton presented a few 

remapping algorithms for possible use with NASA’s Programmable Remapper [36]. A 

detailed analysis of these can be found in Victorson’s master’s thesis [16]. Of these, the 

Column Gaussian Bump remapping algorithm was chosen.  

The Column Gaussian Bump algorithm is an area preserving remapping. It preserves 

local area and thereby size of the letters, and images below show that words post-remap 

are readable. This algorithm creates a bump in the image corresponding to the height and 

standard deviation of the Gaussian, resulting in some information located farthest from 

the remap center to not be sampled in the output image. However, this information is at 

large enough eccentricities during reading activities to not impact reading ability. The 

algorithm is given by the equations as follows.  
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Here, input image pixels are represented by [x,y] and output image pixels are represented 

by [u,v]. The parameters ‘a’ and ‘b’ correspond to the semi-major and semi-minor 

elliptical axes respectively, and are fit to encapsulate an elliptical scotoma. By specifying 

a = b, the scotoma can be made circular, as was done for the purpose of the research 

studies described herein. This remapping algorithm was chosen as part of previous work 

on the project by Victorson. The Column Gaussian Bump remap is shown in figure 9.  

Mapping can be done in two ways, using a forward map and a reverse or inverse map 

[42]. In an inverse remapping, all output image pixels are iterated over and assigned an 

input pixel, so that every destination pixel has an input pixels assigned, 

 resulting in no holes in the output image [42].   

For the purpose of this thesis, this is the only remapping that was used. A benefit of using 

this digital aid, however, is that any remapping algorithm can be programmed into the 

software by modifying a couple lines of code specifying the warping algorithm. Different 

remappings might prove beneficial for different visual tasks, and this is discussed further 

in the “Future Work” section of the thesis. The equation above shows the forward 

Figure 9: Column Gaussian Bump applied 
to text 
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mapping from input coordinates to output coordinates. However, in practice in the 

software, the inverse mappings were used. This was done by using the OpenCV library’s 

“remap” function which automatically computes the corresponding inverse mapping if a 

forward mapping is specified.  

Prototype Version 1 

A first generation prototype was developed to investigate the concept of using remapping 

for CFL.  

 

Hardware 

The hardware used was chosen as part of a previous project [16] and is listed below. 

 
Table 1: First Generation Prototype Hardware 

Item  Part Total Price 

1 Arrington Research Monocular Eye Tracker (MAU-zSight) 14,088.00 

2 Sensics zSight HMD 12,545.00 

Total  26,633.00 

 
Sensics zSight HMD 

The Sensics zSight HMD fitted with an Arrington Research monocular eye-tracker was 

used for this project. The same image was presented to both eyes, with the two full color 

SXGA OLED display screens (one for each eye) running at a 1280x1024 resolution and 

refreshing at 60Hz. At a 100% binocular overlap, the zSight provided a 60-degree 
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diagonal field of view. The horizontal FOV was 46.9-degrees, and the vertical field of 

view was 37.5-degrees. The HMD is shown in figure 10.  

The zSight HMD allowed for a variety of adjustment features to aid in a snug fit on the 

user’s head. It had an interpupillary distance (IPD) adjustment mechanism, capable of 

fitting users from IPDs of 52mm all the way to 72mm. It also allowed for a diopter 

adjustment of -4 to +4 for each eye. This allowed participants with refractive errors such 

as hyperopia, myopia and presbyopia to use the HMD without using corrective lenses. 

Astigmatism would still need corrective lenses, however. Additionally, the HMD 

provided a head strap tension and head strap height adjustment mechanism. The 

adjustment mechanism can be seen in figure 11.  

Generally, to classify display quality, pixels per inch (ppi) is a good metric, as it can give 

an idea of how sharp the displayed image is on screen. However, since HMDs are 

covering the entire visual field, thereby presenting a virtual reality, this metric isn’t ideal 

for quantifying image quality. The FOV of the HMD has to play a part in the metric as 

well, since a higher resolution screen could provide poorer picture quality as opposed to a 

lower resolution screen if the higher resolution screen supported a much larger FOV. 

Pixels per degree (PPD) of field of view is an alternate metric that can be used. Three 

different PPDs can be used: PPD of horizontal field of view (hPPD), PPD of vertical field 

Figure 10: Sensics zSight HMD 
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of view (vPPD), and PPD of diagonal field of view (dPPD). To quantify this display’s 

pixel density, the hPPD was used.  
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Arrington Research Eye Tracker 

The Arrington Research eye tracker was monocular and tracked the right eye at 60Hz. It 

was chosen because it could be custom fitted into the zSight HMD frame. The eye tracker 

imaged the eye using an infrared camera and two infrared light sources. The camera-light 

source setup was used along with a mirror on a two-bar linkage to image the eye from 

underneath the right eye-lens on the HMD as shown in figure 11 below.  

The eye tracker provided both bright and dark pupil tracking methods, with three 

different measurement principles: pupil only, corneal reflection only, or both together for 

greater tolerance to head movements. It had a manufacturer quoted accuracy of 0.25°-1° 

visual arc, and a spatial resolution of 0.15° visual arc. It allowed for high precision 

tracking at 30Hz and low precision tracking at 60Hz.   

Eye tracking parameters could be accessed via the ViewPoint Eye Tracker 

program/interface. Once a good eye-image was obtained, calibration was required for 

each subject to obtain a good gaze position. Following good calibration, accurate gaze 

position would be output by the eye tracking software, which could be accessed using the 

SDK provided.  
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Eye video is transmitted to the PC via a Sensoray s2255 frame-grabber that 

communicates with the PC via a USB 2.0 connector. The Sensoray frame grabber allows 

for simultaneous capture from 4 NTSC/PAL video sources, with a capture rate of up to 

60/50 fps (NTSC/PAL) in full color mode as used by the eye tracker. The frame grabber 

also has exceptionally low latency which is important for real time applications such as 

this one.  

Figure 12: Sensoray S2255 Frame Grabber 

Figure 11: Arrington eye tracker integrated in the HMD 
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Software 

Overview 
 
C++ was used as the language of choice for a multitude of reasons. A major one was its 

compatibility with the eye tracker SDK and the fact that most products being developed 

that showed promise as future upgrades would have C++ SDKs available. Another reason 

was its suitability for real-time applications in terms of speed.  

The OpenCV image processing library was used for implementing the image processing 

required for this application. Specifically, OpenCV version 2.4.9 was used. OpenCV is 

free for both commercial and academic use, and is tailored for computational efficiency 

with a strong focus on real-time applications [43]. It can also take advantage of multi-

core processing. The presence of a strong user community that aids in troubleshooting 

was another big advantage.  

Intel’s Threading Building Blocks is a template library for task parallelism, and was used 

to multi-thread parts of the program to improve frame rates.  

Arrington Research’s ViewPoint Eye Tracking software was used to interact with the eye 

tracker and perform functions such as eye tracker calibration.  

Visual Studio 2012 IDE was used as the development environment for this project.  
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Implementation 

Using the eye tracker in an image processing program is a two-step process, utilizing two 

different programs- the ViewPoint eye tracking software, and the program written in C++ 

for this project. The image processing program, which in this case is the program that 

simulates and remaps around the artificial scotoma, reads gaze coordinates as output by 

the eye tracker. For this reason, the eye tracker needs to be calibrated using the 

ViewPoint Eye Tracking Software. Once calibrated, the points of gaze have to be 

accessed by the program written in C++ via the eye tracker’s SDK. During testing with 

the written program, periodic checks have to be made to make sure that the eye tracker is 

still calibrated. If not, calibration has to be repeated using the ViewPoint eye tracking 

software. A flow chart describing implementation can be seen in figure 13.  

 

Existing Program Description: 

A first generation prototype with functional software had been created as part of a 

previous master’s thesis that can be consulted for an in-depth understanding of the gen 1 

Figure 13: Software implementation flowchart 
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software [16]. This section provides a summary of this existing work, concentrating on 

implementation of the remapping and efforts to increase frame rates.  

A program was created using C++ and OpenCV 2.4.6 that could simulate an artificial 

scotoma on the point of gaze as output by the eye tracker and remap it using the Column 

Gaussian Bump remapping. The Column Gaussian Bump algorithm results in a bump in 

the output image based on the height and standard deviation of the Gaussian. The X and 

Y remapping matrices are created in OpenCV’s Mat type containers to contain pixel 

information for the input image frame, output image frame, and remapping data in the 

horizontal and vertical directions. Two of these are required, one holding the map in the x 

direction (MapX), and one holding the map in the y direction (MapY). As Victorson 

states, “every pixel in the horizontal and vertical remapping matrices are iterated through, 

and the remapping functions … are evaluated, thereby creating a map from output pixels 

to input pixels based on the Column Gaussian Bump algorithm” [16]. Finally, the 

remapping process is a simple assignment operation involving assigning each output 

pixel the corresponding input pixel since it is a reverse mapping. To map non-integer 

Figure 14: Two-matrix remapping method [16] 
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pixel values, a bilinear interpolation is used. This process is done using OpenCV’s remap 

function.  

To carry out the remapping efficiently, first, it was noted that the Gaussian Bump remap 

kept horizontal remapping static. This can be seen from the equation describing the 

Column Gaussian Bump algorithm, u = x, where the input and output horizontal 

coordinates, u and x respectively, are the same. Next, a remapping method consisting of a 

static global mapping matrix with twice the dimensions of the input frame was created 

(Map2x and Map2y). The elements within this global matrix were populated with 

instructions to remap based on the Gaussian Bump remap equation (eq. 1 and 2) with the 

Gaussian mean at the center of the global matrix. A secondary global matrix the size of 

the input frame then translated this global matrix and sampled based on the gaze input. 

The two-matrix remapping process can be seen in figure 14.  

In the figure, S4. and S4T are the eye gaze locations in the local frame. “src.rows” and 

“src.cols” indicate the rows and columns in the input frame. U	:0V	W are coordinate axes 

for the static global matrix, and #	:0V	% are coordinate axes for the translating local 

frame. X is the position vector of the user’s gaze point in the local frame. 7 is the position 

vector from the global origin to the scotoma center. The vector Y that gives sampling 

location of the translating local matrix in the global frame can be solved for as follows:  

7 = -7=. =6;-Z + -7=. 76[-\	

X = S4] + S4^ 

Y = 	7 − X	 
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The global matrix (Map2X, Map2Y) is populated outside the main input and output loop 

once at the beginning. The local matrix (MapX, MapY) changes based on gaze location, 

and is populated in each frame, i.e. with each loop iteration.  

The program was able to display two sizes of black simulated scotomas at the point of 

gaze and remap it based on the Column Gaussian Bump remapping algorithm. Simulated 

scotomas and corresponding remappings as shown on the HMD are shown in figure 15 

below. The program mirrored the laptop’s screen to the HMD screen. Thus, the laptop 

displayed exactly what was shown on the HMD, i.e. in the case of figure 15, scotomas 

moving along the MNREAD sentences as the wearer’s eye moved.  

Frame rates of 10.1122FPS were achieved at the full HMD resolution of 1280x1024 

when the program was run on an Asus G750JW laptop with an i7 4700HQ CPU clocked 

at 2.4Ghz, 12GB DDR3 RAM, an NVidia GTX 765M GPU with 2GB GDDR5 VRAM, 

and a 1024GB 5400 RPM hard drive.  

 

 

 

 

 

Figure 15: Simulated scotomas and corresponding remappings 
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Avenues for Improvement 
 
A software overhaul of this project was undertaken with a few key objectives in mind. 

These are listed below: 

1) Improve frame rates 

2) Utilize object-oriented programming techniques to allow for code usability 

3) Implement version control 

4) Improve Eye Tracker Calibration 

5) Modify program for use in device testing 

6) Reduce scotoma jitter  

New Software Framework and Description 

Object Oriented Approach 
 
The first step undertaken in rewriting the program was to form a ‘scotoma’ class in C++, 

which would contain all the functions necessary to handle the required actions on the 

scotoma, such as change scotoma size, shape, color, and handle remapping operations. 

This class would provide modularity in that it could be used with a variety of C++ 

projects by simply making an object of this class. The major functions this class handled 

are summarized below.  

Image Reader: takes in a filename/ loads existing files and displays it on the 

HMD. This is the stimulus image to be shown to the subject. 

Scotoma Creator: takes in eye gaze coordinates, scotoma color, and required 

scotoma size. Creates a circular/ elliptical scotoma over the image at the gaze 

location.  
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Move Everything: Handles keyboard events that determine what file to read, 

when to start and stop timer, determine scotoma size, etc.  

Eye Location: Reads in eye location (x, y coordinates) from the eye tracking 

SDK. Also has the ability to calculate smoothed eye location using a simple 

moving average algorithm.   

ROI Magnification: This magnifies the region around the point of gaze.  

Parallel Populated Map X and Y: This creates the X and Y maps for remapping to 

be fed into the remapper function. The maps are created to make a Column 

Gaussian Bump at the point of gaze.  

Remapper: Remaps the image based on the created maps.  

Besides the functions listed above, the class also handles IO for scotoma related 

functions, such as inputting the size of the scotoma, scotoma color, and switching 

remapping on/off based on keyboard input. Furthermore, it handles window events for 

both the console and stimulus windows. Using an object-oriented programming approach 

allowed for encapsulation: being able to hide the state of an object using modifiers like 

public and private functions/ variables. This was used as a tool to enable abstraction, with 

giving access to only the important parameters like output image, functions to be 

implemented, etc. through the scotoma class, thereby making programs using this class 

more robust. Using an object oriented approach also made the code modular, as the 

scotoma class could now be used with any other tests that required use of a simulated 

scotoma. Since the functions accepted window size, image size, etc. as inputs, the class 

could be used with HMDs with different FOVs and resolutions, etc.  
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Version Control: GitHub 
 
Working on locally stored files only backed up locally is extremely error prone. If a 

change is made that renders the program faulty, it might not be possible to undo the edit 

that caused the error, thereby leading to lost progress. A version control system 

automates the task of keeping several versions of software and all its configurations well 

organized. It records changes to a file or set of files in such a way that a revert can be 

made back to any version at any time. To allow for smooth work flow and possible 

collaborations with multiple people working on the same project, it was necessary to 

implement a version control system for the research program. To do this, a Git repository 

was created online and the GitHub version control software was used to back up the 

project. For any offshoots/ new tests related to the software, branch programs were 

created specific to that test.  

 

Improved Frame Rates 
 
The refresh rate of the Sensics zSight HMD was 60Hz. The eye tracker in low precision 

mode outputs gaze coordinates at 60Hz. Thus, for every frame to have an updated eye 

location, the minimum FPS would be 60Hz. At the maximum resolution, the program ran 

at only ~10FPS. Thus, a prime objective of this project was to improve frame rates to 

60FPS so as to deliver a smoother experience to the viewer. The leading cause for the 

low frame rates was the nested “for-loops” that populated the remapping mapping 

matrices [16].  

Intel’s Threading Building Blocks (Intel® TBB) is a library that allows for writing of 

easy parallel C++ programs that take full advantage of multiple processors/ threads. It 
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was noted that the laptop had an i7 processor with 4 cores that could be used to populate 

the remapping matrices instead of having only a single core take on this task. Thus, the 

code could be parallelized using TBB for faster performance and thereby improved frame 

rates. TBB was used instead of the previously used OpenMP as it provided better 

performance benefits. 

As was mentioned previously, the local maps needed to be populated in each iteration. To 

populate a 2D matrix, such as these local maps, a nested for loop was needed, where the 

first loop iterates through the columns, and the second loop iterates through the rows, 

thereby going through the entire map pixel-by-pixel. The pseudo code is given below: 

To speed up the operation, the iteration process could be distributed over all the cores in 

the processor, instead of just one. For example, if there are 100 columns, instead of 1 

processor going through all 100 columns, each of the 4 processors could handle 25 

columns. There were three ways to parallelize: both the first loop and the nested loop 

could be parallelized, or simply the outer loop could be parallelized, or simply the inner 

loop could be parallelized. Since TBB supports nested parallelism, it was initially thought 

that parallelizing both the outer and inner loop would provide maximum benefits.  

On running simulations characterizing frame rates for the three cases mentioned above 

using TBB, however, it was found that frame rates were highest for the case when only 

the outer loop was parallelized. A theory for this is that the overhead vs. performance 

Figure 16: Pseudo code to iterate through a 2D matrix 
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tradeoff is the best for this case. There is a performance overhead associated with 

parallelization, where parallelization only becomes viable over a certain threshold 

number of iterations (for the “for-loop”). The performance overhead associated with 

parallelizing both the outer and inner loops was probably greater than the benefit of 

having both loops parallelized. Thus, as the overhead of parallelizing the inner loop 

seemed to degrade system performance, only the outer loop was parallelized. Frame rates 

jumped from the ~11FPS previously to 62FPS at the same 1280x1024 resolution using 

this method. The figures 17 and 18 below shows all 8 threads being utilized on a machine 

running this program, vs. utilization when the program is not being used. 

 

 

Figure 18: CPU Utilization with program running 

Figure 17: CPU Utilization with program not running 



 

45 
 

Improved Eye Tracker Calibration 

To check calibration, a feature called gaze-cursor could be enabled in the Viewpoint 

software. When this feature was enabled, a green dot would follow any point the subject 

fixated upon on screen. The subject was then asked to focus on known words/icons 

displayed on the desktop. If the green dot wasn’t offset from the point of fixation for 

multiple points spread across the screen, calibration was considered good. It was found 

that using the default software settings either the eye tracker was hard to calibrate for 

certain head shapes, or it didn’t maintain calibration for very long. Calibration was also 

poor for darker eyes. A focus was therefore to get familiar with the ViewPoint Eye 

Tracker software and identify settings that have the biggest impact on calibration.  

It was observed that given that the eye tracker was feature based, a variety of settings 

such as thresholding, segmentation type, etc. needed to be changed on a per-user basis. A 

thorough guide on calibrating the device to obtain the best possible calibration is included 

in the appendix. This was developed by experimenting with the various settings in the 

Viewpoint GUI, and referring to the Viewpoint User Manual for insight into how each 

setting affects eye-tracking. Using the techniques in the guide, calibration was vastly 

improved over the default settings.  

Modifications for use in device testing 

Reading speed tests were carried out with this device to assess efficacy, and are described 

in detail in the sections “Research Study 1 and Research Study 2” later in this thesis. To 

test reading speeds, standardized MNREAD sentences were used as the visual stimulus. 

Subjects were asked to wear the HMD, and the tester interacted with the laptop to 
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conduct testing. The following modifications were conducted to the program to improve 

the testing experience.  

 
Border Sound 

 
The visual stimulus in terms of the MNREAD sentences occupied a very small region 

around the center of the screen, while the remainder of the screen just displayed a white 

background. To improve eye-tracker accuracy in this region encompassing and 

immediately near the displayed visual stimulus, the calibration grid was presented in a 

small rectangle centered at the center of the screen, but not extending all the way to the 

screen borders. This was because even if the subjects used peripheral vision to read the 

sentences, they wouldn’t need to fixate towards the very border of the screen to complete 

the reading task. Focusing the calibration points in a smaller region meant greater 

accuracy and better eye tracking in the region on and surrounding the visual stimulus. 

The trade-off was that calibration towards the screen borders was poor. It was observed 

that if the subjects looked towards the borders of the screen and back repeatedly, the 

calibration would get offset, and would have to be redone. In order to give subjects a 

Figure 19: Grey area indicates where warning sound is played 
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stimulus to dissuade them from looking towards the screen borders, a function called 

“Border Sound” was written and added to the software. This function played an audible 

beep using the computer’s speakers if the subjects looked outside of the middle 70% of 

the screen width and height. Figure 19 depicts the area that would elicit a sound, if gazed 

in. If the subject would look in the grey area, an audible beep would sound. The 70% 

viewing value was chosen because it seemed to work well in maintaining calibration. It 

could be changed easily by the researcher by accessing the function.  

 

Simultaneous Viewpoint and Visual Stimulus Monitoring 

The existing program worked by mirroring the HMD’s display onto the screen of the 

laptop that ran the program. Thus, the tester saw what the subject saw – the image of the 

visual stimulus and the scotoma moving with the subjects’ gaze. Figure 20 shows an 

example of what was displayed full-screen on both the HMD and the laptop screen.  

While this made programming easy, it was difficult to assess feature detection (eg. check 

if the pupil was found appropriately by the eye-tracking software throughout testing) and 

calibration, as the eye image in Viewpoint was not visible to the tester. With a feature 

based eye tracker such as the Arrington one used here, it was very important that the eye 

image and detected features were always clearly visible, so the tester could ensure good 

calibration and redo it if need be. If the eye-tracker failed to get a good eye image, or 

failed to detect the pupil (see Fig 31 for good eye image and feature detection), the tester 

needed to know this so he/she could void the trial and make necessary changes. It was 

thus important that the tester constantly monitor the eye image shown in the Viewpoint 

software’s GUI. Furthermore, as the tester saw only what the subject saw, he or she had 
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no way of interacting with the Viewpoint GUI if needed without first quitting out of the 

testing program. Thus, if for example, the calibration needed to be redone, he/she would 

have to quit the testing program, switch to the Viewpoint GUI, and redo the calibration, 

thereby undoing any testing done thus far. It was also important that the tester was able to 

monitor other program parameters, like the scotoma size, color, remapping condition, etc. 

quantitatively in a console window, and be able to interact with the program using the 

console window that provided an output for every input. For this reason, a requirement 

for reliable testing of subjects was that the tester could see three things at once: what the 

subject was seeing, i.e. the simulated scotoma on the visual stimulus, the console window 

to interact with the program, and the Viewpoint program to monitor the eye image. 

To do so, instead of running the HMD in duplicate monitor mode, it was run in extended 

monitor mode. Next, within the main rendering loop, once the Mat container containing 

the output image to be displayed onto the HMD was created, a copy of this Mat container 

was made. This was then resized to a smaller size. Then, when the output image was 

displayed full screen onto the HMD, the smaller, resized copy created was displayed in a 

Figure 20: HMD run in Mirror mode - displaying an 
MNREAD sentence with a 4 scotoma. Notice the size 
of the sentence in relation to the screen size 
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window on the laptop’s monitor. The window was positioned on an empty part of the 

screen using calls to OpenCV’s movewindow function. Next, the console window was 

moved onto another empty part of the laptop screen by making calls to WinAPI’s 

GetConsoleWindow and SetWindowPos functions. This allowed the tester to view the 

three required windows, thereby monitoring the Viewpoint GUI, the subject’s testing in 

real-time, and the console window all at once. Figure 21 below depicts what the tester 

saw once this change was made.  

 

Figure 21: Modified programs showing Left: Viewpoint Software GUI, Top Right: Console Window, 
Bottom Right: what the subject sees 

 
 
It can be seen from Figure 21 that having the Viewpoint software allowed for continuous 

monitoring of the eye image, and the feature detection (indicated by the yellow ellipse 

surrounding the pupil in Figure 21, also seen in more detail in Figure 4). The tester could 

also interact with the testing program via the console window, and see what the subject 

was seeing, all at once.  
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Simple Moving Average Filter 

In order to reduce scotoma jitter due to noise in the gaze coordinates output by the eye-

tracker, a simple moving average filter was implemented in software. It took in the 

unfiltered input from the eye tracker, and output the smoothed gaze coordinates. This was 

utilized only for the second of the two studies conducted with this device, and is 

described in detail in the section titled “Simple Moving Average Smoothing Filter 

Implementation and Lag Analysis”. The eye tracker software also had the option of 

outputting smoothed coordinates directly from the SDK. This provided the same values 

for smoothed coordinates as the written function.  

 

Research Study 1 

The aim of the device developed was to test the hypothesis that remapping improves 

visual performance in patients with central visual field loss. The developed device could 

be used to present visual stimuli in both the remapped and unremapped condition to 

patients, and analyze their visual performance in response to both conditions.      

For this study, central visual field loss was simulated on normally sighted subjects. In 

central visual field loss, the scotoma is on or very near the fovea. Thus, central visual 

field loss can be simulated by removing visual information at the point of gaze. In 

practice, this was done by simulating a circular scotoma over the point of gaze which 

rendered any part of the image underneath it invisible. Since the eye tracker in the device 

could provide real time information on gaze location, the simulated scotoma would 

follow the eye, blocking visual information, thereby simulating visual field loss.  

This study was aimed as a pilot study to test reading performance.  
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Hypothesis 

Remapping of text improves reading speeds in subjects with simulated central visual field 

loss.  

 

Methods 

Simulated Scotomas 

Artificial circular scotomas were simulated over the gaze locations. The scotomas were 

white in color. This was because the background displayed to subjects was white, and the 

white scotoma would blend in with the background so that no boundary was visible. A 

majority of subjects with central scotomas from AMD aren’t aware of their presence, and 

a scotoma that blended in with the background would provide a more realistic simulation. 

Scotomas of three different sizes were presented: diameters of 2, 5, and 8 degrees of 

visual angle. These sizes were selected to be similar to the sizes used by Wensveen et al. 

in their study with NASA’s programmable remapper [44]. 

 

Visual Stimulus 

MNREAD sentences are standardized reading sentences with 60 characters each, equally 

spaced over three lines, that can be used to measure reading characteristics. In this case, 

the variable being measured was reading speed in words per minute. MNREAD 

sentences with an ‘x’ height of 0.418 degrees corresponding to 0.7 logMAR print size, 

and a line spacing 3x the font size in Photoshop was used as the visual stimuli in this test. 

For each condition tested, subjects read 5 different MNREAD sentences out loud 
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consecutively, and their reading time and number of errors were measured. No subject 

read the same MNREAD sentence twice. Using these, their reading speed in words per 

minute (WPM) was calculated.  Reading time was recorded manually with a stopwatch. 

The character and scotoma size was in degrees. To display it to the HMD, it needed to be 

converted into pixels, however. This was done as follows. Figure 22 below shows the 

visual angle in humans.  

Required print size: 1 logMAR  

The HMD screen vertically is simulated by the segment ‘AB’. All calculations are carried 

out in pixels. The vertical field of view of the HMD is 37.5 degrees. Hence, B = 37.5	°. 

The pixel resolution of the HMD is 1280x1024. Thus, the vertical pixels,  

b = 1024	?.#>;-. 

B = 2 arctan
b

25
 

5 =
b

2 ∗ tan
B

2

 

5 = 1508	?.#>;-. 

Figure 22: Visual Angle [59] 
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LogMAR: x angle required: 

h6/iYj = logno

:0/;>	-!'9>0V>V	'%	p609	ℎ>./ℎ9

5	:7=	min
 

Solving for 1 LogMAR, 

0.7 = logno

:0/;>

5

60
V>/7>>-

 

:0/;> = 0.418	V>/7>>- 

Now, solving for S for character height: 

b = 259:0
:0/;>

2
 

bn	stuvwx = 2 ∗ 1508 ∗
0.418

2
 

bn	stuvwx = 10.99	~	11	?.#>;-. 

Adobe Photoshop was used to create sentences with the above stated specifications. It 

was found that a font size of 22px on Photoshop corresponded to an ‘x’ height of 11px. 

22 px sized Times New Roman font was used to create the sentences.   

Thus, the font height as specified to Photoshop was 22 pixels as this corresponded to an 

x-height of 11 pixels. The line spacing in Photoshop was set to 66 pixels. The scotoma 

diameters were ~53px, 132px, and 211px for the 2, 5, and 8 degree scotomas 

respectively.  
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Conditions Tested 

Subjects were asked to read 5 unique sentences each for 3 scotoma sizes and 2 

conditions: with remapping and without remapping. Thus, they were presented with 3*2 

= 6 conditions, and read a total of 30 sentences overall. Apart from these, subjects also 

read 5 sentences at the beginning of the test without any simulated scotomas to get their 

baseline reading speeds. 

 

Subjects 
Normally sighted subjects with corrections of optical power less than +- 4 diopters were 

recruited for the study. This was because the objective lenses of the HMD could adjust 

for powers up to +- 4 diopters. 15 subjects were recruited. 5 subjects were omitted from 

testing because good calibration of the eye tracker could not be obtained. Data from 10 

subjects was used.  

 

Testing 

Subjects were calibrated using the Arrington software prior to testing. The calibration 

procedure is detailed in the appendix. Once good calibration was obtained, subjects were 

Figure 23: Left: 2, 5, 8 degree scotomas in white (top) and black (bottom) without remapping. 
Right: 2, 5, 8 degree black scotomas with remapping 
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allowed to get familiar with the virtual environment with 3 sample MNREAD sentences. 

They were briefly shown a 5° scotoma without the remapping. Subjects were told about 

using a peripheral location to read with the scotoma in lieu of central vision, but were 

given no training in doing so.  

Following this, subjects moved on to reading speed testing. Baseline speeds without 

scotomas were always measured first. The experimenter counted down from 3 prior to 

displaying the next sentence, and the subject was instructed to fixate at the location where 

the first letter would be displayed. He/she was also instructed to not blink while reading 

the sentence out loud, and keep the head as still as possible. If subjects blinked naturally, 

it wasn’t a problem, but it was found that if this instruction wasn’t given then subjects 

used forced blinks as a strategy to read foveally, as blinking multiple times made the 

scotoma briefly disappear as the eye-tracker struggled to find gaze position immediately 

post-blink. The experimenter recorded reading time with a stopwatch. Following every 5 

sentences, calibration of the eye tracker was checked using a crosshair screen. The 

crosshair screen had 4 crosshairs at different locations. Subjects were asked to fixate on 

these consecutively while simulating a 2° scotoma. If the scotoma overlapped the 

crosshair while the subject fixated for all the crosshairs, calibration was considered 

adequate. If there was an offset, calibration was repeated and the trials were discarded. 

Following baseline testing, all the six conditions were randomized. All 5 sentences for 

each condition were read consecutively, however. Subjects were allowed to take a break 

whenever they needed to following the completion of a condition, if they felt any 

discomfort or had a headache.  
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A 20 second time limit was enforced for the sentences. If the subjects couldn’t complete a 

sentence in 20 seconds, it was marked as unread and a record of the number of words 

read correctly was not maintained. 

 

Summary of Experimental Design 
• 3 scotoma sizes: 2, 5, and 8 degrees of visual angle for scotoma diameter 

• White scotomas 

• 6 conditions: Remapping and no remapping for each of the 3 sizes 

• 5 MNREAD sentences, 0.418 deg x-height, 3x line spacing for each condition 

• Baseline reading speed measured without scotoma with 5 sentences BEFORE 

testing 

• Reading time is measured using a stopwatch and reading speed (WPM) is 

calculated taking errors made during reading into account 

• 10 normally sighted subjects tested 

Results 
Reading speeds were calculated using the equation  

j>:V.0/	b?>>V =
60# 10 − >7767-

9.z>	.0	->=60V-
 

where errors are the number of words skipped or read incorrectly, and time in seconds is 

the time it took to read the sentence completely. The equation is taken from the 

MNREAD acuity chart [45].   
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Figure 24 shows reading speeds averaged across all 10 subjects with and without 

remapping for the three scotoma sizes. Error bars denote standard error of the mean. 

Overall, remapping significantly increased reading speeds for the 5 and 8 degree 

scotomas (p<0.05), but produced no significant change for the 2° scotoma. A one tailed 

paired t-test was conducted using Excel’s T.Test function, with the last two arguments set 

to 1 each.  

 

* denotes p<0.05, and ** denotes p<0.01.  

The table below denotes the number of sentences subjects were able to completely read 

within the 20 second timeframe allotted to each sentence. The maximum number of 

sentences that could be read was 50, since we had 5 sentences per condition for each of 

the 10 subjects.  

 

 

* 

Figure 24: Average reading speeds with and without remapping 
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Table 2: Sentences completed with and without remapping 
Scotoma Size Sentences Complete 

Without Remapping With Remapping 
2° 50/50 50/50 
5° 49/50 49/50 
8° 38/50 50/50 

 

Figure 25 provides reading speed data for all subjects. These graphs follow the same 

legend as that shown above, with blue representing unremapped, yellow representing 

remapped, and the grey line showing baseline speeds. Baseline speeds are the reading 

speeds under normal conditions without any simulated scotoma or remapping. The y-axis 

represents speeds in words per minute. Subjects 1, 4, 8, 11 and 13 were discarded 

because of poor calibration.  
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Figure 25: Average reading speeds for all subjects 
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Subjectively, all subjects found remapping beneficial for the 5° and 8° scotoma 

conditions. For the 2° scotoma, the majority found it possible to guess words based on 

context, given that the small size meant the scotoma covered only about three to four 

characters at a time. Some subjects experienced a mild headache that subsided after a ten-

minute break. The headache can be attributed to cyber sickness, also known as virtual 

reality sickness.  

 

Discussion 
 
For the 8° and 5° scotomas, the p-values of 0.00015 and 0.02 respectively indicate a 

highly significant effect of remapping on reading speeds. In both cases, reading speeds 

with remapping were much higher than those without. For the 8° scotoma, reading speeds 

increased on average by 47.6%, while for the 5° scotoma, reading speeds increased on 

average by 13%. For the 2° scotoma, no significant effect of remapping on reading 

speeds was seen. It must be noted that a 0.7 logMAR character size corresponds to an ‘x’ 

height of 0.418 degrees of visual angle. This was about half the radius of the 2° scotoma. 

Because of the relatively small size of the scotoma in relation to the size of the characters 

and words, it was possible that its presence was not so disruptive and subjects did not 

need to avert their attention to text in the peripheral retina. Another possibility was that 
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the subjects could complete words based on context. Given the relative size of the 5° and 

8° scotoma compared to the character height, the accuracy of the eye tracker (quoted at 

0.25°-1°) wasn’t an issue, as the foveated character would still be within the scotoma for 

the entire range of accuracy for these bigger scotomas.  

The system latency was another issue. Arrington quoted eye tracker end-to-end latency at 

60ms, which seemed to be a conservative estimate. The remapping software ran at 60Hz, 

with a new frame every 16.6ms. The monitor’s refresh rate was also 60Hz, updating its 

buffer every 16.6ms. This put the maximum system latency at 95ms when all of these 

were out of sync (as no V-sync was used), with a minimum of 76.6ms for the low-

precision 60Hz eye-tracker mode, which was noticeable. Especially for the small 2° 

scotoma, it was possible that the entire scotoma would lag behind the eye position in 

normal reading, thereby allowing subjects to read with central vision if their eyes moved 

too fast. With the 5° and 8° scotoma, this was harder to do, as it was not possible for the 

eyes to move fast enough to escape the larger scotomas. In pilot testing, some subjects 

developed a “cheating” strategy, wherein for the larger scotomas, they used to move their 

eyes to the corners of the screen and back really fast. This would make the scotoma lag, 

and uncover the sentence, thereby allowing them to read with central vision. While 

conducting this test, subjects were instructed not to do so, and their eye position was 

monitored in real-time to mark and void trials where this happened.   

For the 8° scotoma, a number of subjects could not completely read one or more 

sentence, resulting in only 38/50 sentences being read among the 10 subjects. With 

remapping, however, all subjects were able to complete all sentences assigned to them. 

This indicated that remapping provides benefit in reading in simulated CFL subjects. 
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Kwon et al. showed that simulated CFL subjects were able to use eccentric fixation using 

a PRL with 3 hours of testing over 2-3 days [46]. In this study, it was possible that the 

subjects who were able to read the sentences with the larger scotomas were beginning to 

adopt a reliable peripheral retinal location for reading.  

 

Scope for Improvement 
It was noticed that given the placement of the eye tracker right by the cheek bone, some 

jitter was introduced into the eye tracker position due to interference by the cheek bone 

hitting the eye tracker mechanism when the sentences were read out loud. This added a 

resultant noise in the gaze position. There was also inherent noise in the gaze position as 

output by the eye tracker. Part of these problems were inherent to the eye tracking 

hardware and could not be reduced, but it was believed that part of these problems could 

be alleviated via software measures. Next, the line spacing used in the sentences, 3x 

character height, wasn’t representative of text generally encountered in activities of daily 

living. Finally, only 5 sentences were tested per condition. This was thought to be a small 

sample size, and a larger sample size was needed.  

 

Simple Moving Average Smoothing Filter Implementation and Lag 
Analysis 
 
As was noted in the “scope for improvement” section, there was noticeable noise in the 

eye gaze position, and thereby the scotoma position. A straightforward way of dealing 

with this and “smoothing out” the lag was to implement a simple moving average (SMA) 

smoothing filter on the eye gaze data. This could be implemented using a special function 

written, or directly using the eye-tracker SDK, both of which provided identical results.  
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The moving average is a finite response (FIR) filter. For a new frame, instead of using the 

direct output as provided by the eye tracker, the new gaze position would be the average 

of a finite number of past gaze positions as recorded by the eye tracker[47]. Since this 

was a simple moving average filter, all the past samples used carried the same weight. 

The new data sample was thus given by the following equations: 
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Where [x(n), y(n)] would be the coordinates of the new gaze location, and p would be the 

order of the filter, denoting the number of past samples used.  

A drawback of this filter was that as it averages past sample to give the new location, it 

introduces a lag into the system as a byproduct of smoothing. Thus, it has a slow 

response. In a system that already suffered from high latency, this could be a problem. 

Some testing was carried out to quantify the lag introduced by different orders of this FIR 

filter. To do so, subjects were asked to read sample sentences, and both their filtered and 

unfiltered eye gaze positions were recorded for the same trial. Using MATLAB, the 

average amplitude of the difference between the filtered and unfiltered locations was 

calculated.  
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   Figure 26: Smoothed vs. unsmoothed ‘x’ gaze position for 5, 10, 15, and 20 order SMA filter 
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The graphs in figure 26 show the ‘x’ position with smoothing for filter orders of 5, 10, 

15, and 20. The subject in this case was reading a paragraph of text on screen. In the 

graphs above, the red plot shows ‘x-coordinate’ position with the smoothing filter, while 

the yellow represents unsmoothed coordinates. The movement on the y-axis from 0.1 to 

0.8 and back to 0.1, then repeating the cycle is representative of the subject reading a 

sentence from left to right, then moving to the next sentence. As the subject moves from 

left to right, the value of the ‘x-coordinate’ changes from 0.1 to 0.8. Here, 0 and 1 

represent the left and right borders of the screen.   

 

It can be seen from the graphs that the filtered plots (in red) are noticeably smoother than 

the unfiltered ones. Both the smoothing and the lag increases with increasing filter order, 

as expected. Table below quantifies the mean lag introduced by the filters.  

Table 3: Mean lag induced by FIR smoothing filter 
Filter 
Order 

Mean Lag in % 
Screen Width 

Mean Lag In 
Pixels 

5 1.66 21.23 
10 3.94 50.48 
15 6.37 81.52 
20 7.67 98.15 

 

The ‘x’ height of a character of the MNREAD sentence used in testing was 11 px. Thus, 

for comparison, the mean lag introduced by the 5th order SMA filter was about two 

characters. Qualitatively, the noticeable reduction in scotoma jitter was the maximum for 

the jump from no smoothing to smoothing with a 5th order filter. The lag introduced by 

the 5th order filter was subjectively not noticeable. The improvement on moving to the 

10th order or high filters was negligible, and it also added noticeable amounts of lag.  
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Dr. Stephen Engel, a faculty member in the Department of Psychology at the University 

of Minnesota, and a member of this project team, tried the HMD with the various filters 

and provided valuable feedback, given his prior experience working with eye trackers. He 

found that the 5th order filter added negligible amounts of lag and improved quality 

vastly. The experience was echoed by other testers of the device, which included research 

personnel in the lab. Thus, the 5th order SMA filter was recommended for use in future 

testing.  

 

Research Study 2 

A second research study was conducted using the first generation physical prototype, 

which improved upon the first one by implementing features that alleviated problems 

mentioned in the “scope for improvement” section.  

This study aimed to test the same hypothesis as the previous one: if reading speeds are 

improved in simulated central visual field loss patients with remapping. A few key 

changes were made, however: first, the simple moving average filter of the 5th order was 

implemented, resulting in a much smoother and more comfortable user experience. Next, 

instead of oral reading, subjects read the sentences silently, and used a response box to 

indicate completion of sentence reading. This resulted in less movement of the eye 

tracking mechanism, resulting in further reduced scotoma jitter. Silent reading was also a 

more naturalistic experience, as most daily reading activities are silent as compared to 

oral. Finally, the line spacing between the sentences used as visual stimulus was reduced 

to better represent text encountered in day-to-day activities.  
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Hypothesis 

Remapping of text improves reading speeds in subjects with simulated central visual field 

loss.  

Methods 

Simulated Scotomas 

It was seen that for the 2° scotoma, remapping did not have a significant effect, partly due 

to hardware limitations. For this reason, that scotoma size was omitted from simulations 

in this test. Two scotoma sizes were tested: a 4° scotoma, and an 8° scotoma.  The 

scotomas were white in color to blend with the background. The SMA filter of the 5th 

order was used to smooth eye data real-time, by averaging the most recent 5 points in lieu 

of providing the raw gaze point directly.  

 

Visual Stimulus 

MNREAD sentences were used as visual stimulus again. The same character size of 0.7 

logMAR was used, with “x” height equal to 0.418° of visual angle. A 1.5x line spacing 

was used as compared to the 3x line spacing used in the first study.  

 

Conditions Tested 

The remapped and unremapped conditions were tested for two scotoma sizes: a 4° and an 

8° scotoma. Thus, there were 4 conditions tested. 7 sentences were tested per condition, 

with 7 more for baseline speeds.  
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Subjects 

10 new subjects were recruited with the same criteria as for the previous study. 3 

subjects’ data was either discarded or not collected because proper calibration could not 

be obtained, and testing couldn’t be completed.  

Testing 

Calibration and pre-training procedures were conducted as described previously. The 

main difference in carrying out the testing was that the subjects read the sentences 

silently. At the beginning of testing, subjects were given a response box in the form of a 

game controller. They were told that the time would start following the countdown from 

3 as soon as the new sentence would be displayed. They were asked to read the sentence 

silently and press the “X” button on the controller on completion. Once complete, the 

sentence was hidden and subjects were asked to repeat the sentence out loud. Since 

sentences had only 60 characters with 10-14 words each, repeating the sentence 

following silent reading was never a problem. Errors were marked on a scoring sheet, and 

times were recorded automatically by the program. Calibration was tested after each 

condition. It was also subjectively tested while a sentence was being read, by seeing the 

path of the scotoma and making sanity checks for any obvious offsets in calibration. 

Subjects were allowed to take a break as needed, as long as it was at the end of the 

condition.  

 

Summary of Experiment Design 

• 2 scotoma sizes: 4°, and 8°	of visual angle for scotoma diameter 

• White scotomas 
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• Smoothing using a 5th order Simple Moving Average filter 

• 4 conditions: Remapping and no remapping for each of the 2 sizes 

• 7 MNREAD sentences, 0.418°	x-height, 1.5x line spacing for each condition 

• Sentences read silently and completion indicated using a response box, 20 second 

time limit 

• Baseline reading speed measured without scotoma with 7 sentences before testing 

• Reading time measured automatically by the program and reading speed (WPM) 

is calculated 

 

Results 

Figure 27 shows reading speeds averaged across all the subjects with and without 

remapping for the two scotoma sizes. Error bars denote standard error of the mean. 

Reading speeds were significantly faster with remapping only for the 8° scotoma, though 

there is trend of increasing reading speed with the 4° scotoma. A one tailed paired t-test 

was conducted using Excel’s T.Test function, with the last two arguments set to 1 each. 

Reading speeds increased by about 81% with remapping for the 8° (p<0.05), and by 

about 8% for the 4° (not statistically significant, p>0.05).  

The following table shows the number of sentences read completely in the 20 second 

time limit for the four conditions. The maximum number of sentences that could be read 

was 49, since we had 7 sentences per condition for 7 subjects. Some trials had to be 

discarded due to poor calibration.  
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Figure 27: Reading speeds averaged across all subjects 
 

Table 4: Sentences completed for the different conditions 
Scotoma Size Sentences Complete 

Without Remapping With Remapping 
4° 49/49 49/49 
8° 13/42 46/49 

 

Figure 28 provides reading speed data for all subjects. These graphs follow the same 

legend as that shown above, with blue representing unremapped, yellow representing 

remapped, and the grey line showing baseline speeds. The y-axis represents speeds in 

words per minute. Subjects 2, 3, and 7 were discarded because of poor calibration.  
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Figure 28: Individual Reading Speeds 
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Discussion 

The most notable improvements for the wearer involved a much smoother scotoma when 

following eye movements due to silent reading and the implemented smoothing. The 

reduced line spacing made the task more naturalistic.  

For the 8° scotoma, reading speeds increased significantly with remapping, with a p-

value of 0.037. There was an 81% increase in speeds from 47WPM to 85WPM. For the 

4° scotoma, the 8% increase in reading speeds wasn’t statistically significant. This 

indicated that the increase in reading speeds with remapping was greater and more 

significant for bigger scotomas, as was seen in the previous study where the increase was 

insignificant for the 2°, and got significantly greater for the larger two scotoma sizes. For 

the 8° scotoma, subjects read 46/49 sentences with remapping as opposed to 13/42 

sentences without, indicating that reading performance was much better with the 

remapping for the bigger scotoma size. For the 4°, since all subjects were able to 

complete all sentences both with and without remap, the scotoma perhaps wasn’t very 

disruptive to reading activities.  

It was seen that the increase in speed due to remapping for the 8° changed from 47% with 

the previous study to 81% herein. A possible reason could be that with the 8° scotoma 

and 3x line spacing, the scotoma only covered 2 lines of the three displayed lines, 

allowing the 3rd line to be freely visible to the reader via peripheral vision. With the 1.5x 

line spacing in this test, the 8° scotoma covered most of the 3 lines, thereby making 

reading without remapping that much harder. The remapping exposed more reading 

information in this test as opposed to the previous one.  
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A limitation of this test was a limited sample size, with only 7 subjects tested for 7 

sentences per condition. A larger study could help provide conclusive statements on 

effect of remapping for smaller scotomas, though based on this and the previous study, 

there seems to be an effect of increasing reading speeds with remapping for the 4° and 5° 

scotomas. Another limitation of this study, in line with the previous one, was the latency 

of the device. This, and other hardware limitations, are discussed in the following section 

titled “Device Analysis and Limitations”. 

 

Device Analysis and Limitations 

A physical prototype was successfully developed that obtained a subject’s eye gaze 

position using an eye tracker, remapped input images around a scotoma, and displayed 

these on an HMD worn by the subject in real-time. The developed algorithm utilized a 

conformal image remapping technique to display information lost to the central scotomas 

to a neighboring location on the screen which corresponded to a functional location on 

the retina. The modular nature of the software allowed for the swapping of the used 

remapping algorithm for one better suited for a different task just by changing a single 

line of code. Using a digital platform also allowed for addition of capabilities such as 

magnification, contrast and brightness change, edge enhancement, etc. simply via a 

software update. Central field loss was successfully simulated using artificial scotomas 

on normally sighted subjects to assess device efficacy.  

The two tests conducted to assess device efficacy on simulated central field loss subjects 

indicated that remapping did improve reading speeds. The increase in reading speeds was 

greater for larger scotomas. Thus, the device did show potential in improving reading 
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speeds and perhaps visual performance in general in patients with central visual field loss 

due to diseases such as age-related macular degeneration.  

A big limitation of the device had to do with device shape and bulk, typical of HMDs of 

its generation. The Sensics zSight HMD had most of its bulk distributed towards the 

front, with poor head strap design that caused the HMD to slip towards the wearer’s nose 

with extended wear. Pressure on the wearer’s face was also poorly distributed, resulting 

in marks on the skin with use of over 20 minutes. The field of view, at only 60° diagonal, 

was also far less than the human eye field of view.  

The Arrington Research eye tracker added to the HMD also protruded forward from the 

right eye’s objective lens. The mechanism’s location was not ideal as it would come in 

contact with the cheek bone for certain faces tested. This would result in a movement of 

the eye tracker hardware with certain facial expressions, or when the wearer spoke out 

loud, resulting in change in eye image and loss of calibration. Furthermore, the eye 

tracker imaged the eye from below the optical axis as opposed to along the optical axis, 

which would be ideal. This could result in a poor image of the eye for certain face 

physiologies, such as those which have the eye recessed further into the face, or where 

the eye-lids droop down, common among the elderly. A poor eye image resulted in poor 

calibration, and was the reason a number of subjects had to be removed from the testing. 

Finally, the 60 Hz sampling frequency was less than ideal, and the latency of the system 

meant it wasn’t ideal for real-time applications. A result of the device bulk and the 

necessity to calibrate the eye tracker frequently was that subjects could usually only take 

45 minutes of testing including time for setup and calibration, before finding it too 

uncomfortable to continue use. This severely limited the amount of testing that could be 
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done, a byproduct of which was the limited sample size in terms of total number of 

sentences tested per subject. Given the poor fit and feature-based eye tracking, if the 

device was ever taken off during testing and put back on, it needed to be calibrated again, 

even for the same wearer. The device documentation stated that this would not be needed, 

however, in practice, re-calibration was required each time.  

In conclusion, the system worked well for a first generation prototype, and was a 

functioning proof of concept system.  

 

Prototype Version 2 

A second prototype was developed with improved hardware. It is described in the 

following sections.  

 

Hardware 

The head mounted display used for this prototype was an Oculus Rift DK2. A binocular 

60Hz SMI eye tracker was used for eye tracking. The combination was chosen following 

a demo at the ARVO conference in Denver, Colorado in May 2015. A custom PC was 

built in accordance with Oculus’ specifications to support VR development using the 

Oculus Rift. 
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Table 5: Second Generation Prototype Hardware 
Item  Part Total Price 

1 Oculus Rift DK2 $350 

2 SMI Oculus Eye Tracker Upgrade $14,950 

3 Custom PC Build $1,300 

Total  16,600.00 

 
Oculus Rift DK2 

The Oculus Rift DK2 was a head mounted display released in mid-2014. It had a single 

screen, the left half of which displayed to the left eye, and the right half displayed to the 

right eye. The screen resolution was 1920x1080 pixels, with the resolution per eye being 

960x1080 pixels. It had a refresh rate of 75Hz, and a horizontal field-of-view of 100 

degrees. A user wearing the Rift DK2 is pictured in figure 29. The Rift DK2 was lighter 

than the Sensics HMD used in the first prototype, weighing in at 0.97 lb. It offered a 

much better fit on the head as opposed to the Sensics zSight, a by-product of being lighter 

and better designed. It connected to the computer via an HDMI port. It also offered head-

tracking built in, though that wasn’t used for this project.  

Figure 29: User wearing the Oculus Rift 
DK2 
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The Oculus offered a higher resolution and a higher field of view as compared to the 

previously used HMD. However, the PPD was lower as compared to the Sensics zSight. 

Oculus’ hPPD is calculated below: 

ℎ445 =
ℎ67.8609:;	-=7>>0	7>-6;!9.60	?>7	>%>

ℎ67.8609:;	@AB	?>7	>%>
 

ℎ445|H}s}F =
960

95
 

ℎ445CDEFGHF = ~10ℎ445 

Thus, though the Rift DK2 provided a better viewing experience owing to the greatly 

increased FOV, it provided noticeably poorer picture quality via less sharp images owing 

to the reduced PPD. This could be compared to a standard iPhone 5 that has a pixel 

density of about 100 pixels per degree at normal viewing distance.  

SMI Binocular Eye Tracker 
 
The SMI Binocular Eye Tracker was purchased as an add-on from SMI. To get the 

upgrade installed, the HMD was bought separately and shipped to SMI, who installed the 

eye tracker into the HMD assembly. SMI replaced the Oculus Rift eye lenses with their 

own custom lenses that include the eye tracker fitted in. The SMI eye tracker uses a hot 

mirror + camera assembly located behind the objective lens of the HMD to image the 

Figure 30: Left: Objective lenses as viewed by the wearer. Right: Top view of the HMD with the 
 eye tracker upgrade 



 

78 
 

eye. The advantage of this over the Arrington Eye Tracker is that it images the eye along 

or very close to the optical axis of the eye, thereby providing a much better eye image. 

Another advantage of the setup is that the eye tracker is virtually invisible to the user, and 

is also non-intrusive. A picture of the HMD with the integrated eye tracker as visible to 

the user is shown in figure 30. The exact setup within the HMD housing is proprietary 

and therefore unknown.  

 
The SMI eye tracker was binocular, with two stereo cameras- one for each eye. Thus, 

behind each objective lens pictured above, there was a stereo camera. Both cameras 

imaged the eye with a sampling frequency of 60Hz. The quoted accuracy was 0.5- 1 

degree. The eye tracker connected to the PC via the DK2 USB port, and added 80g to the 

DK2’s weight. It did not need an additional frame grabber as opposed to the Arrington 

Unit. It could track an 80-degree horizontal field of view and a 60-degree vertical field of 

view. SMI quoted eye tracker latency at between 40-60ms.  Since the Oculus Compositor 

utilizes V-Sync, the frame rates were maintained at 75FPS and synced with the refresh 

rate of 75Hz for the Rift. Thus, the overall latency was 53.3ms at a minimum, and 86.6ms 

at a maximum. This was considered high for real-time application, but the eye tracker 

was an upgrade over the previous one in all other aspects.  For communication, SMI 

provided an SDK in C/C++ which could be used to access eye tracking parameters. As 

the eye tracker was located within the objective lens assembly invisible to the user, it 

wasn’t prone to noise from mechanical movements when the subject spoke or changed 

facial expressions, unlike the Sensics assembly of the first generation device.  

The SMI eye tracking system was a model based eye tracking system as opposed to the 

feature based Arrington system. Given the dual stereo camera setup, it was able to find 
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the optical axis of the eye as explained previously in the Calibration section of the 

Background. The system offered a calibrationless eye tracking mode, perhaps based on 

the theory as explained by Eizenman and summarized previously. The exact algorithm 

was proprietary and cannot be reported. For better accuracy, it also offered 1 and 3-point 

calibration modes along with slip compensation.  

 

Custom Computer 
 
All prior development for the project was conducted on a 2015 Macbook Pro 15 inch, 

with an i7 processor, 16 GB RAM, and a 256 GB PCIe based SSD for storage. For the 

Oculus Rift, however, starting with software runtime 0.7, laptops were no longer 

supported. For development, a graphics card with capabilities of the NVidia 970 or 

greater was necessary. This necessitated the building of a custom “Oculus Ready” 

computer for development with the new HMD.  

The main parts chosen are shown in the table. The i7-6700 processor was chosen as it is a 

quad core processor with 8 threads. Since the application was multi-threaded, it would 

benefit from the added threads. The graphics card was chosen to comply with Oculus’ 

requirements, and the motherboard was chosen as it allows expandability should future 

iterations require more processing or video power. Other components were chosen to 

provide the best performance for a reasonable price.  
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Software 
The same C++ platform was used to program this iteration, the reason being 

compatibility with both the Oculus SDK and the SMI Eye Tracking SDK. Visual Studio 

2013 was used as the IDE for development. OpenCV 2.4.9 was used for image 

processing, while OpenGL, the Open Graphics Library, was used along with the Oculus 

SDK for rendering to the rift.  

 

Implementation  
For this iteration, the calibration procedure was included into the main program, with the 

entire testing program running as one unit as opposed to two separate programs for the 

previous device.  The C++ program, on initiation, asked for user input to determine what 

calibration method to use: a calibrationless method, a 1-point calibration, or a 3-point 

Table 6: Custom PC Components 
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calibration. Based on the tester’s input, the program would then call upon the eye 

tracking SDK to launch the calibration application. Once calibration was complete, 

frames as specified by the program were displayed onto the HMD. The software 

implementation flowchart is shown below.  

 

Figure 31: Software implementation flowchart 
 

To render to the Oculus Rift, it was required to render in split-screen stereo, with 

distortion correction for each eye.  

Main Program Description: 

The main program functioned similarly to that created for the previous device. There 

were 2 key differences, however: how the program worked with the eye tracker SDK, 

since a new SDK was being used now given the different eye tracker, and how the 

program rendered the output images onto the Oculus Rift.  

The scotoma class created previously was adapted for use here to carry out the image 

processing required to create the simulated scotoma and carry out the remapping. GitHub 

was used for version control. Initially, the program read in an input frame as specified. 
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This could be a video frame from a webcam or an image/ video stored on the computer. 

The program then asked for tester input to specify the calibration, based on which it 

communicated with the eye tracker SDK to calibrate. If a 1 or 3-point calibration is 

selected, the eye tracker SDK displayed the calibration sequence to the user, and stored 

the calibration. The calibration sequence consisted of one-three circles displayed one 

after the other, which the user had to fixate on. Once the calibration sequence was 

accepted, the SDK provided gaze coordinates and other eye parameters to the main 

program, which then carried out the image processing. Since the eye tracker was model-

based, it did not need user settings to threshold the eye or select features. Thus, the only 

requirement on the user’s end was to select the type of calibration as opposed to the 

multitude of user inputs required in the ViewPoint program for the previous eye tracker.  

The same functions for creating the scotoma and remapping as described for the previous 

device were then used to simulate scotomas on the gaze location and carry out the 

remapping. Once all the image processing was conducted, the frame was then ready to be 

displayed onto the Rift, and was lined up for rendering. Rendering to the rift is discussed 

in the following section. A disadvantage of this SDK as opposed to the previous one were 

that this SDK did not specify functions for data storage. The previous one had functions 

to handle storage of data such as gaze coordinates, system time, pupil size, etc. With this 

program, a function had to be written to manually dump data into a txt file.  

 

Rendering to the Rift 

With the previous HMD, once an output frame was created after simulating scotomas, 

remapping, etc. it could be displayed onto the HMD using OpenCV itself, as the HMD 
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worked as an external monitor. All that needed to be done was create an output window, 

display the output frame into it, and push it to this external monitor. This frame would 

then be updated to display a continuous stream to the user, as the eye position/ input 

image changed. Rendering to the Rift, however, needed to be handled differently. Rift 

SDK 0.8.0 and Runtime 0.8 was used for development. 

With the Rift, the same screen displayed to both eyes, with the left half of the screen 

displaying to the left eye, and the right half of the screen displaying to the right eye. 

Thus, the scene had to be rendered in split screen stereo. To provide the very high FOV 

of 100+ degrees, the lenses of the Rift magnified the image, which produced a significant 

pincushion distortion. For the output image to appear “normal” to the wearer, the output 

image had to be barrel distorted. The distortion would be handled by the Rift’s rendering 

engine that could be accessed using Rift’s SDK. OpenGL is a programming interface for 

rendering 2D and 3D graphics. Instead of directly presenting images onto a window as 

with the previous device, textures in swap texture sets containing the rendered scene to be 

viewed had to be supplied to the Oculus compositor for displaying on to the rift.  

To render to the Rift, the scene (in this case the output image) had to be rendered into 

either one or two render textures (one for each eye, or shared between both eyes). These 

textures were then presented to the Rift, and the runtime handled everything from then up 

until presentation onto the HMD screen. A summary of the rendering setup is shown in 

flowchart form below. 
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Figure 32:A normal grid, a grid with pincushion distortion, and a grid with  
barrel distortion [60] 

 

Figure 33: Rendering to the Rift 
 

A programmable pipeline as opposed to a fixed function pipeline in OpenGL was used 

for rendering, as the fixed function pipeline is considered obsolete and offers very limited 

functionality. The scenes to be displayed on the Rift for the purposes of this device did 

not contain any depth information. Both eyes would see the same image. For the purpose 

of the testing conducted, both eyes would be seeing standardized reading sentences. 

Thus, simple 2D vertex and fragment shaders were created and used for rendering.  
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Figure 34: Standardized sentences with a 16° scotoma corrected for distortion, as seen displayed on a 

normal monitor 
In general, OpenCV Mat containers were used to read in input frames, in this case being 

the standardized reading sentences. All the image processing was carried out on these 

frames to simulate scotomas, remap, etc. using the scotoma class. Once this was done, we 

had an output frame in the form of a Mat container. This was then rendered into the swap 

texture set and passed on to the Oculus compositor for display onto the Rift. This was 

done frame by frame 75 times a second, as that was the Rift’s display refresh rate. Stereo 

Labs’ project on attaching stereo cameras and displaying images to the Rift provides an 

in depth procedure of how to display 2D images in OpenCV Mat containers to the Rift 

[48]. This can be used as a guide, and the information therein isn’t repeated here for 

brevity.  

SDL – Simple DirectMedia Library – was used to handle window functions. Specifically, 

it was used to create a window that would mirror what the user was seeing on the Rift. A 

mirror texture was created and used to render into that window so the researcher 
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conducting testing saw exactly what the user was seeing, and had full control over the 

test.  

The final program created was very modular, as what was created was a framework. This 

framework handled setting up the Rift and rendering to the Rift. All that needed to be 

supplied to it was an image in the form of an OpenCV Mat container, and it would 

manage displaying it to the HMD. Between this framework and the ‘scotoma” class 

created, thus, any experiment with simulated scotomas could be designed and easily 

implemented on the Rift.  

 

Automated Data Storage 

The program was also designed to store a variety of eye data when it was being used for 

testing, such as eye gaze coordinates and time of gaze, pupil size and other parameters. 

This could be used for fixation, saccade, smooth pursuit, and other eye movement 

analysis. The program was also modified so as to store the exact reading times 

automatically for use in reading studies as conducted previously. Scripts in Matlab were 

written to extract data from the raw txt files and store it in csv format so as to be easily 

analyzed using either Matlab or Excel. 

 

Research Study 3 

The device was created to test the hypothesis that remapping would improve visual 

performance in people with central visual field loss. It was meant to improve upon the 

limitations of the first generation prototype developed previously. A research study was 

conducted to assess the efficacy of this second generation device. This study analyzed the 
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same variable as the previous studies: reading speed. Did the device improve reading 

speeds in subjects with simulated central visual field loss? As in the previous studies, the 

aim was to simulate central visual field loss on normally sighted subjects, have them read 

standardized sentences, and measure reading speeds with and without remapping to check 

for changes. If the hypothesis was correct, reading speeds with remapping would be 

significantly greater than those without remapping across the subjects for the different 

simulated scotomas.  

It was believed that there was a possibility that subjects might learn and get better at 

reading with remapping over time. Another goal of this test was to study the effects of 

practice on reading speeds both with and without remapping.  

A final goal of this study was to understand the effect remapping had on eye movement 

measures such as number of fixations, saccade lengths, regressions, etc. For this reason, 

eye gaze data and related measures were recorded.  

 

Hypothesis 

Remapping of text improves reading speeds in subjects with simulated central visual field 

loss. Reading speeds with remapping would improve with practice.  

Methods 

Simulated Scotomas 

For this study, three scotoma sizes were tested: 4°, 8°, and 16° of visual angle subtended 

by their diameter. Previous tests revealed no impact of the 2° scotoma. Having scotoma 

diameters ranging from 4° to 16° would allow for testing a broad range of CFL due to 

AMD. Furthermore, with the font size used in this study (described below), the 8° and 
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16° scotomas would mask the same number of characters as the 4° and 8° scotomas from 

study 2, which would allow for some comparisons. No smoothing was required as the 

noise in the output gaze data was minimal, resulting in little to no scotoma jitter. Again, a 

circular scotoma which was white in color to match the background was used.  

 

Visual Stimulus 

MNREAD sentences were used as visual stimulus again. Character height was doubled to 

have an “x” height equal to ~0.8° of visual angle, achieved using a font size of 16px and 

Times New Roman font on Photoshop. As mentioned previously, the pixels per degree of 

the new HMD was much lower than that of the previous HMD, resulting in a less sharp 

image. An x-height of ~0.4° as used previously would require x-heights of 4 pixels on a 

1080px high screen. This would result in a very blurry image. Thus, to allow for a more 

readable character height given the screen resolution constraints, an ‘x-height of ~0.8° 

was used. Another reason for doubling the character size was so that the 8° and 16° 

scotomas in this study would mask the same number of characters as the 4° and 8° 

characters in study 2. A 1.5x line spacing was used. The size in pixels was calculated as 

shown previously, but taking into account the increased FOV (106° vertical FOV) of the 

Rift, and the 2364x1464 resolution of Rift’s texture for both eyes. Subjects read the 

sentences out loud. There was a 20 second time limit. Reading time and number of errors 

were recorded. 

 

NOTE: In Photoshop, a 0.8° character would correspond to an ‘x’ height of 8 pixels 

which would thereby correspond to a font size of 16 pixels (since it was found to be 
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double the ‘x’ height). However, when the font size was set to 16 pixels, it was noted that 

the resultant ‘x’ heights were scaled down to 7 pixels from the expected 8 pixels, perhaps 

a result of Photoshop’s inability to perfectly render such small characters for the used 

font. The width of these characters remained unaffected by this scaling effect. Thus, the 

‘x’ height subtended an angle ~10% lesser than the expected ~0.8°s because of this 

scaling error (so a little less than twice the angle subtended by the ‘x’ height in study 1 

and 2), while the width subtended the angle as expected (twice that of ‘x’ width in study 

1 and 2). Since the width was not affected by scaling, the number of characters masked 

by the 8° and 16° scotomas was the same as those by the 4° and 8° in the previous study. 

Lower case characters such as the ‘x’ were the only ones affected by the vertical scaling 

issue and upper case remained unaffected. Since the error was very low, and the height 

was the only dimension affected, it had a negligible impact on the results of this 

experiment.  

 

Conditions Tested and Effects of Practice 

The remapped and unremapped conditions were tested for three scotoma sizes: 4°, 8° and 

an 16° scotomas. Thus, there were 6 conditions tested. The trial was a blocked trial, with 

all six conditions repeating 3 times, once per block. Thus block 1 consisted of all six 

conditions in a random order. The same conditions were repeated in the same order over 

two more blocks, following block 1. For each condition, subjects read 5 MNREAD 

sentences per block. Thus over the three blocks, per condition, subjects read a total of 15 

sentences. Comparing reading speeds for the same condition between block 1 and block 3 
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would allow us to gauge the effects of practice, with the hypothesis being that reading 

speeds were higher for those in block 3 than in block 1.   

Fixation Analysis 

Gaze position data was recorded for all sentences. This was used along with the IDT 

algorithm coded in Matlab to calculate the number of fixations for each sentence.  

 

Subjects 

12 normally sighted subjects were recruited with the same criteria as for the previous 

study. 1 subject’s data was discarded because the eye-tracker could not achieve reliable 

calibration due to interaction with the subjects’ contact lenses. Data from the 11 

remaining subjects was used.  

 

Testing 

For this test, pre-testing procedures were very limited. The subjects were shown one 

MNREAD sentence and the different scotomas, and were given some background 

information about age-related macular degeneration and central vision loss. They were 

told about the remapping, but weren’t allowed to see the effect in action. They were also 

told about using peripheral vision but given no further training. Subjects usually spent 

between 2 and 5 minutes getting accustomed to the virtual environment and scotoma 

sizes. Next, they were given detailed instructions about the testing (no blinking, oral 

reading, etc.). Prior to testing, the calibrationless method was used, and subjects were 

asked to fixate on a crosshair screen with a black 2-degree scotoma. Generally, there was 

no offset and the scotoma followed the eye well. However, since normally sighted 
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subjects had no problems with the calibration procedure, a 5-point calibration was 

conducted as it provided better accuracy according to the eye-tracker documentation.  

During testing, the crosshair screen was displayed after every 5 sentences of a condition. 

If there was an offset, calibration could be repeated, though this was rarely needed for the 

11 subjects tested. As the subjects read, the errors they made were recorded by the tester 

by striking out those respective words on a response sheet that had all the sentences 

printed out. They were also instructed against “cheating” by making quick eye 

movements to take advantage of the scotoma lag, and their eye movements were 

monitored in real-time by the researcher to look out for this. If any instance of cheating 

was observed, the trial was voided. Subjects were allowed to take a break following any 

condition, though most subjects chose to take a break following the completion of a 

block. Following testing, subjects were asked to answer some questions based on their 

experiences with the device.  

 

Summary of Experiment Design 

• Stimulus: MNREAD sentences with ~0.8° “x” height and 1.5x line spacing. 

• Oral reading: Subjects read out loud and reading speed in WPM was measured 

based on time it took to read 

• 3 scotoma sizes: 4°, 8°, 16° of visual angle subtended by the diameter 

• Two conditions for each: remap and no remap 

o Total of six conditions: 2 cases (r/ no r) for each of the 3 sizes 
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Table 7: Conditions tested in study 3 
Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 

4° No 

Remap 

8° No 

Remap 

16° No 

Remap 

4° Remap 8° Remap 16° Remap 

• 5 sentences per condition. All 5 sentences for a given condition read in succession 

before moving on to the next condition 

• Effects of practice:  

o 3 blocked trial. All conditions repeated over 3 blocks to study effects of 

practice 

o Each block had 6x5 = 30 sentences 

o Thus, 90 sentences read overall with 5 sentences read for baseline speeds 

without a scotoma 

• Baseline speed measured at the end 

• White scotomas 

• 11 normally sighted subjects 
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Results 
Reading speeds were significantly faster for the 16° scotoma with remapping, with a p-

value of 0.007. For the 8° scotoma, there was a borderline significant increase, with a p-

value of 0.058. Figure 35 shows reading speeds averaged over all subjects. Error bars are 

standard error of mean.  

 

Figure 35: Reading speeds averaged across all subjects 
 
 
For this study, even though subjects could not read a particular sentence completely 

within 20 seconds, they were asked to report as many words as they could figure out in 

that time span. This allowed for calculation of reading speed based on the words correctly 

read, even if the sentence wasn’t completed. This eliminated the need for the “sentences 

completely read” metric, as reading speeds could be obtained for all sentences.  

Figure 36 shows individual reading speeds for the 4°, 8°, and 16° scotomas. These are 

organized by increasing baseline speeds by subject.  
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Figure 36: Reading speeds per subject for (top-bottom) 4°, 8°, 16° scotomas, placed in the order 
of increasing baseline speeds by subject 
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The graphs below show block-by-block reading speeds across all subjects for the two 

larger scotoma sizes. For a group of three columns, the left-most bars denote the first 

block, and the right-most bar denotes the third block.  

 

Figure 37: Reading speeds per block across all subjects 
 
 
Preliminary Fixation Results 

The number of fixations per second was analyzed. They were averaged per condition for 

all subjects. The graph below shows fixations per second for the three scotoma sizes 

averaged across all subjects. Fixation data for subject 1 and 9 wasn’t recorded correctly 

as the file got over-written. They had to be excluded from the fixation analysis.  
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Figure 38: Fixations per second across all subjects 
 

 

For the next analysis with fixations, the fixation locations for all 15 sentences of a given 

condition were taken together and superimposed onto a sample sentence read by the 

subjects to create fixation maps. Shown in figures 39 and 40 are sample fixation maps of 

some subjects, divided by category, for the 4 and 8-degree scotoma. Three categories 

were made:  

Category 1: Significant Increase 

Subjects who saw definite speed increases with remapping for both scotoma sizes. 

This was the largest category, with 5 subjects seeing significant increases for the 

8° and 7 for the 16° scotoma. Two subjects’ data are shown.  

Category 2: Minimal Effect 

Subjects who were at the boundary, i.e. remapping was borderline beneficial for 

at least one of the two scotoma sizes, with no decrease in speeds with remapping 

for any of the scotomas. 
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Category 3: Negative Effect 

Subjects who found remapping generally hurtful or inefficient, or reported it as 

such in the survey (resulting in a reading speed decrease). There were only two 

such subjects who found remapping to be an unhelpful experience. One subject’s 

data is shown.  
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Category 1: Significant Speed Increase  

 
Figure 39: Left: Fixation Maps for Subject 8. Right: Fixation Maps for Subject 10 
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Figure 40:  Left: Category 2, Minimal Effect, Subject 7. Right: Category 3, Negative Effect, Subject 6 
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Survey Results 
Subjects were asked three main questions: did remapping help for any/all of the three scotoma sizes? Was the latency in scotoma and 

actual eye movements noticeable? Was there a learning curve and did they get better with practice? Responses are summarized in the 

table below.  

Table 8: Survey Resul7ts 

Subject Did Remapping Help? Latency Learning Curve 2 4 8 
1 didn't matter Helps Helps Noticeable learns to use remapping 
2 Helps Helps Helps Noticeable  Got used to a little 
3 A little A little  A little Noticeable little better with trials 

5 Didn't affect 
reading 

Didn't affect 
reading Made it harder Noticeable gets used to with time 

6 

Could see 
better but not 
more 
comfortable 

didn't see better, 
not more 
comfortable, not 
faster 

made it more difficult  A little 
noticeable not significant adaptation to the remapping 

7 easy with and 
without 

easy with and 
without 

Too annoying, trying to 
stabilize but hard. But 
way easier with 
remapping 

Noticeable gets used to with time 

8 helped helped helped Noticeable got used to a little 
9 didn't matter very helpful very helpful Noticeable got easier because developed strategies to read 

10 helps  helps 
with remap helps, but 
most difficult as 
expected 

Noticeable not sure if she adapted, but said she was using left PRL, 
thinks with more practice would adapt 

11 definitely 
helped definitely helped 

Definitely helped. It 
confused him but he 
liked the extra info 

Some delay 
noticeable learned both remapping and peripheral vision 
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Discussion 

For the 16° scotoma, the p-value of 0.0066 indicates a highly statistically significant 

increase in reading speeds with remapping. The reading speeds increased from an 

average of 21.64 WPM without remapping to 34.83 WPM with remapping – an increase 

of 61%. For the 8° scotoma, the p-value of 0.058 indicates a borderline significant effect 

of remapping on increased reading speeds, with p < 0.05 generally being the normally 

accepted statistically significant range. Reading speeds increased from an average of 

80.18 WPM without remap to 92.67 WPM with remap, an increase of 15.6%. For the 4° 

scotoma, as with study 1, remapping didn’t have any significant effect on reading speeds, 

with speeds without remapping being 130.65WPM, and with remapping being 

127.63WPM, and the p-value for a 1-tailed T-Test being 0.28. 

On an individual basis, most subjects found remapping subjectively beneficial, as it made 

reading more “comfortable” if not faster. Individual reading speed graphs indicate that 

reading speeds significantly increased with remapping for most subjects with the 8° and 

16° scotomas, and subject 5 was the only one to note a statistically significant decreased 

reading speed with remapping for both 8° and 16° scotomas. On the survey, the same 

subject noted that remapping made it harder to read for the 16° scotoma case.  

Figure 37 shows that practice over the three blocks with remapping for the 8° and 16° 

scotomas showed a trend of increasing speeds from block 1 to block 3 with remapping, 

albeit not statistically significantly. This, coupled with responses to the survey indicating 

reading with remapping becoming “easier”, indicates that practicing to read with 

remapping might prove beneficial in increasing reading speeds. The trial lasted for a total 
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of 1 hour or under, and it would be necessary to investigate reading speeds with 

remapping over multiple trials conducted over days or weeks to understand the true 

learning effects. Kwon et al. showed spontaneous emergence of a PRL within hours of 

practice with a simulated central scotoma [46]. Another study showed that patients with 

large central scotomas can be trained to use a favorable PRL for reading [21]. As part of 

this study, the mean training time was about 5 hours, with the subjects adapting well to 

the trained PRL. Though these studies didn’t directly train patients to read using 

remapping, they provide an order of magnitude of the timespan subjects might need to 

get accustomed to reading with the remapping.  

A very preliminary fixation analysis was conducted on the collected data using the 

fixation script written. The fixations per second increased significantly with remapping 

for the 8° and 16° scotomas, but decreased for the 4° scotoma. Lesser fixations per 

second indicate that the subject is struggling at interpreting the visual stimulus (here, the 

MNREAD sentence), while higher fixation per second count indicates a lower cognitive 

load, and thereby easier interpretation [49]. This could indicate that for the 8° and 16° 

scotomas, subjects found it easier to process the textual stimulus with the remapping as 

opposed to without. For the 4° scotoma, this also indicated that remapping perhaps was 

more disruptive than beneficial, given the lower fixation per second value for the 

remapped condition. It is important to emphasize that this was a preliminary fixation 

analysis, and must be treated as that. The used I-DT algorithm wasn’t rigorously tested, 

although it does provide average fixation per second values in the ballpark range as 

expected in literature, hinting towards good reliability.  
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The fixation maps included provide a demonstration of the algorithm’s ability to present 

fixation information in an easy-to-comprehend format. One trend that could be seen for 

both subjects for the category 1 of definite speed increase was that the number of 

fixations per sentence decreased for the remapped condition. Both subjects 8 and 10 

made less fixations for the remapped sentences than for the unremapped sentences. This 

may hint towards easier comprehension for the remapped case. For the category 2 

subjects, no significant trend was observed, while for the category 3 subject, a reverse 

trend of increased total number of fixations per sentence with remapping was observed. 

Looking at the fixation maps presented, especially for the 16° scotoma, it seemed like 

different reading strategies were in play for the non-remapped vs. the remapped 

condition. Consider the 16° scotoma fixation maps for subject 8. For the no-remap 

condition the fixations seemed to be concentrated along two vertical columns, one in the 

left half and the other in the right half of the displayed sentence. Subjectively, this could 

be explained by the scotoma behavior observed by the researchers during testing. The 

subjects found it extremely hard to gain any visual information for the non-remapped 

case. A common strategy adopted involved fixating at the left half of the sentence to 

uncover words in the right half of the sentence and try to read, then doing so on the right 

to uncover words on the left half in an effort to read. This resulted in being able to figure 

out some words in the sentence, and would result in the column-distributed fixation map 

as observed. For the remapped case, it could be seen that distribution was evenly spread 

across the sentence area, with fixations observed above and below the sentence as well. A 

reason for this was the instability during fixations while reading. When a subject fixated 
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with the fovea at a point slightly below a word, the remapping would push the word 

above the scotoma. If the subject fixated slightly above, the remapping would push it 

below. When the word was pushed above, the subject would then try to foveate on this 

new region, thereby diverting his/her gaze to the new location above. When they looked 

above, the remapping would push the word back below. This would result in fixation 

spots above the sentence as seen. Same thing happened when the subjects tried to re-

foveate words that were remapped to below the scotoma. This constant “bouncing” above 

and below due to a normally-sighted subjects’ desire to view using central vision any 

word that had been remapped potentially caused the fixation map seen for the 16° 

remapped case. This observed behavior wasn’t ideal. For the remapping to be most 

effective, it would seem that the ideal case would be that the subject would able to 

maintain foveal referencing whereby they follow the sentence with the fovea, while using 

a PRL above or below the scotoma to read, as this is the location where the remapping 

would place the remapped words. If this were to work, then the fixation map would have 

all the fixation points (in blue) either along, very slightly above, or very slightly below, 

the three lines of the MNREAD sentences as opposed scattered everywhere as currently 

observed. Again, this was a preliminary fixation analysis that proved that such an 

analysis could be conducted with this setup.    

The survey provided a qualitative assessment of the remapping from the user’s point-of-

view. From the survey, it could be seen that for the 4° scotoma, only 3 subjects found 

remapping to be helpful. When asked what helpful meant, the general consensus was that 

they “felt” they read faster, and it was easier. For the 8° scotoma, 6 of the subjects found 
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remapping helpful, while for the 16° scotoma, 7 subjects found remapping beneficial. 

Thus, this seemed to support the quantitative analysis that remapping was generally more 

beneficial for larger scotomas. Subjects typically reported back that they didn’t like that 

remapping pushed the image both above and below the scotoma, and would rather prefer 

remapping to one location. 7 subjects reported back that they seemed to get better with 

remapping over time, and some subjects reported that added time with remapping would 

make a huge impact. Finally, all subjects reported noticing a slight lag with the scotoma, 

owing to the latency of the system. This didn’t make reading easier with the 8° and 16° 

scotoma, but could have allowed for some foveal reading with the 4° scotoma in some 

cases, as was discussed for the previous studies.  

Some comparisons can be made between this study with the second generation device 

and with the previous studies with the first generation device. For the first two studies 

conducted, it seemed that there was a small increase in speed with remapping for the 

4°and 5° scotomas (8-13% increase), with a much larger increase (>50%) with the 8° 

scotoma. For this third study, there was a small increase with the 8° scotoma (~15%) 

comparable to the 4/5° scotomas in the first two studies, and a much larger increase with 

the 16° scotoma (>50%) which was comparable to that with the 8° scotoma (~50+%) in 

the first two studies. For the first two studies, a smaller letter size that was half of that of 

the third study was used. The 2°, 4°, and 8° scotomas thus masked the same amount of 

letters of the MNREAD sentences used therein, as did the 4°, 8°, and 16° scotomas in the 

third study which doubled the character size. It might be possible, then, that the benefit 

due to remapping might be dependent on the scotoma size to character height (or font 
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size) ratio, rather than just the scotoma size. As a preliminary observation, it seems that 

the greater the number of characters in text the scotoma obstructs, the greater the benefit 

of remapping in increasing reading speeds. Given that the hardware used and a lot of 

parameters such as scotoma size, character height, and line spacing were varied between 

the three studies conducted, making any definite conclusions would be inappropriate, but 

this basic comparison provides some insight on underlying mechanisms in play. 

This study thus built upon the analysis done in the previous studies, and allowed for a 

more comprehensive analysis of the effects of remapping. To summarize, it could be 

concluded that  

• Simulated scotomas reduced reading speeds, with larger scotomas producing 

slower reading. 

•  Remapping increased reading speeds, with a greater increase for larger scotomas. 

• The increase in reading speeds might be dependent on the scotoma size in relation 

to character size. Potentially, greater the number of characters covered by the 

scotoma, greater the increase in reading speed.  

• Practice potentially increased remapping effects but needed further study. 

• Results show that the device holds promise for use with CFL patients.  

The immediate next step would be to reduce device latency and test with CFL patients.  
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Device Analysis and Limitations 

A second generation prototype was successfully developed that built upon the limitations 

of the first generation device. As with the first device, this prototype utilized eye trackers 

to get eye gaze position and remap the image to make up for central visual field defects, 

using a conformal Column Gaussian Bump remapping. The software utilized the same 

modular design as before, adapting the scotoma class created to deliver image processing 

functionality.  

The HMD used for this prototype was an Oculus Rift DK2 that delivered a higher 

resolution display with a much greater field of view, in excess of 100-degrees. This 

provided a much more realistic experience to the user. The HMD was also more 

comfortable for the user, allowing for longer use in the tests conducted. The SDK 

provided with the HMD handled frame-timing, helping provide a smoother viewing 

experience as well. SMI’s binocular eye trackers that captured the eye at 60 Hz were used 

in this device. These were retro-fitted by SMI into the Rift’s assembly by replacing the 

original objective eye pieces. The eye trackers were model-based, and provided a 

calibration-free mode, along with 1 3, and 5-point eye tracking calibration measures. The 

gaze position provided by these eye trackers had noticeably lesser noise as compared to 

those used in the first generation prototype, and they were far easier and less time 

consuming to calibrate, making them easier to use with people with macular 

degeneration. These eye trackers captured the gaze along the optical axis, thereby 

providing a head-on view of the eyes, as opposed to the previous generation eye tracker 

that looked up at the eyes and suffered from problems such as interference by eye-lids, 
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cheek-bones, etc. The hardware was thus better suited for prolonged, portable use. In 

summary, the biggest improvements over the first generation device were: 

1) A better, more comfortable, more realistic user experience 

2) Better, more reliable eye tracking 

3) Calibration-free mode available for use with AMD subjects 

The testing software allowed for monitoring of the eye via a real-time eye image accessed 

through the eye tracker SDK. It also allowed for a view of the visual stimulus and 

scotoma as seen by the user, allowing the tester to see exactly what the user saw in real-

time. This allowed for a subjective understanding of the strategies the user used in visual 

performance with the remapping. The tester could communicate with the software to 

change testing conditions via a console window. The testing software output eye gaze 

data comprising of gaze coordinates, pupil location, time, etc. into a .txt document. The 

software also automated the storage of reading times. Scripts written in Matlab were able 

to sort these files by conditions tested and save them in an Excel usable format for 

analysis. The fixation analysis code written in Matlab successfully utilized the I-DT 

algorithm to find fixation points and superimpose them on the visual stimulus.  

Comprehensive testing conducted with simulated central visual field loss patients showed 

that remapping improved reading speeds in subjects with simulated central scotomas, and 

the increase was greater for bigger scotomas. This confirmed the hypothesis, and showed 

that the device had potential for testing with AMD subjects with central visual field loss.  
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An important limitation of this device was the system latency, similar in magnitude to 

that of the first generation prototype. SMI, the eye tracker manufacturers, quoted the eye 

tracker latency to be between 40ms and 60ms. The monitor refresh rate of 75 Hz coupled 

with v-sync added 1 frame, or 13.3ms of latency. The 60 Hz eye-tracker, when out of 

sync, would add another frame, or another 13.3ms of latency (as 60 Hz is less than the 

75Hz monitor refresh rate, so one refresh would be skipped every 4 refreshes of the 

monitor). The minimum total latency thus was 40ms + 13.3ms = 53.3ms owing to the 

refresh rate and v-sync. The maximum latency was 60ms + 13.3ms for the monitor and v-

sync + 13.3ms for the eye-tracker being out of sync, giving a maximum of 86.6ms, which 

was considered fairly high for real-time application. Subjects mentioned that latency was 

noticeable during testing, as the scotoma did lag with rapid eye movements. This wasn’t 

as noticeable for the larger 8° and 16° scotomas as mentioned previously, but perhaps 

was an important factor in testing with the 4° scotoma. Though subjects with real central 

scotomas wouldn’t be able to ‘cheat’ the system to make use of the lag as perhaps 

normally sighted subjects could, reducing this latency would be very important for a 

fulfilling realistic experience. The eye-tracker imaged the eye at 60 Hz. Though good for 

a first-generation device, a faster eye tracker would be needed if comprehensive eye-

movement analysis needs to be conducted, as some eye movements could not be imaged 

with a sampling speed of 60 Hz. In general, for presentation of images based on gaze 

position, the image presentation onto the HMD would be limited by the HMD’s refresh 

rate, typically 60-75Hz, rather than the eye tracker’s capture rate as long as the eye-

tracker’s capture rate is faster than HMD screen’s refresh rate. Another limitation was the 
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HMD’s low hPPD. The horizontal pixels per degree value of ~10PPD resulted in a 

noticeably pixelated and thereby less sharp image as compared to the Sensics zSight 

HMD used in the first physical prototype. 

Finally, although the device was an improvement in terms of fit, bulk, and comfort, there 

was a lot of scope for improvement in the device’s form factor. The device build required 

a computer to be attached for image processing. A truly portable device would have all 

the required hardware on-board. Such a device would also perhaps be smaller in size, and 

provide a higher-resolution than the DK2’s 1920x1080 screen.  

In conclusion, the device developed performed as expected, and was a step in the right 

direction following the first generation device. The Future Work section discusses 

immediate next steps.  

Future Work 

This section documents immediate next steps in developing a next-generation prototype. 

It also contains an analysis of existing literature that can be referenced to aid in the next 

steps.  

 

HMD and Eye-Tracker 

As mentioned in the device analysis sections, though the second prototype was a marked 

improvement over the first generation device, there was still scope for improvement, 

primarily in terms of device bulk and screen resolution, to improve user experience. 

HMDs catered toward virtual reality and gaming are constantly being developed by 
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today’s tech giants such as Samsung, HTC, and Oculus. Given the positioning of this 

device as a low-vision device based on advancements in technology, it would be 

important to closely monitor the VR industry for newly launched devices that could be 

used in the project. For this project, the idea is to buy hardware available in the general 

market, and develop the required software, rather than concentrating efforts on 

developing the hardware. While monitoring the market for new devices, things to look 

out for would be: 

1) Device Size and Fit: Is the device lighter than the Rift DK2? Does it offer a better 

form factor? Is it proven to be more comfortable? 

2) All-In-One ability: Does the device have an on-board processor that eliminates 

the need for a laptop, making it more portable? (See GearVR + SMI device 

below)  

3) Viewing: Does the device have a better field-of view (>100-degrees diagonal), 

better resolution (greater than 1920x1080) and greater number of pixels per 

degree? One advantage of working with low-vision subjects is that high spatial 

resolution is not required. For AMD patients using the peripheral retina, the 

critical print size is typically larger than 1 degree. Though a 10 pixel per degree 

resolution might prove blurry for normally sighted subjects, it would not be 

problematic for low vision users, so a higher field-of-view should be prioritized 

over a higher resolution.  

4) Eye Tracking: Does HMD come with eye-trackers build in or does it have to be 

retro-fitted (See FOVE device below)? If the device doesn’t come with eye 
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trackers, do any eye tracking companies retro-fit this device? Three companies to 

contact are ArringtonResearch, EyeTechDS and SMI, as they keep abreast with 

newly launched HMDs. It is also important that the eye tracker images the eye 

along the optical axis as in the second generation device, as opposed to from an 

offset as in the first generation device. Next, eye-tracking frequency (in Hz) and 

end-to-end system latency are important. As a very basic metric, look for eye 

tracking frequency to be greater than the HMD’s refresh rate, and for an eye 

tracker processing time of just one frame (i.e. delivery of gaze coordinates to the 

computer is done within one frame capture by the eye tracker). Finally, binocular 

eye-trackers that can measure the pupillary axis without calibration are required 

for this project. A bonus would be if they include a calibration –free mode that 

estimates the visual axis and thereby the gaze point, as does the eye-tracker used 

in the second generation device.  

These are just a few of the metrics that need to be kept in mind while choosing hardware 

for the next generation device. Finally, the device cost is a very important consideration. 

Both prototypes developed so far have had a high cost, which would be unaffordable to 

the average public. With the DK2, the high cost was primarily because of the high cost of 

retro fitting eye trackers. Up until now, eye trackers have always had to be custom-fitted 

into the HMD as an aftermarket upgrade. As eye tracking gets more popular, eye trackers 

will become part of the HMD device bought off-the-shelf. HMDs with built-in eye 

trackers will be orders of magnitude cheaper than those which have to be custom-fitted.  
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FOVE is a company supported by Microsoft Ventures that has been working on creating 

the world’s first VR Eye-Tracking HMD. The device being developed has the following 

relevant specifications:  

• Weight: 400g 

• Display FOV and Resolution: 100+ degrees, 2560x1440 resolution 

• Built-In Stereo Eye Tracking: 120fps per eye, <1-degree accuracy 

The waitlist for the developer’s kit has been joined, which will allow us to buy the device 

as soon as it hits the market. Since the eye trackers are built into the device, and the 

device is mass manufactured, the developer’s version is quoted to cost around $600. This 

is a huge improvement when compared to the ~$15000 price tag of the second generation 

prototype developed. FOVE’s device is similar to the Rift DK2 in that it would need to 

be powered by the computer. It is recommended that this device be purchased when the 

opportunity arises.  

SMI recently released their eye-tracking upgrade for the GearVR used in the IRIS Vision 

device described previously. The GearVR uses a phone as the screen, processor, and 

camera as described previously. Specifications of the device + upgrade are as follows: 

• Weight: ~350g  

• FOV: 96 degrees. Resolution: ~2560x1440, depends on phone used 

• Eye-Tracking upgrade: 60Hz binocular eye tracking, 0.5-degree accuracy. Offers 

calibration-free mode, 1, and 3-point calibration similar to the current device.  
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The base model of the device costs $12000, but with the analysis software included costs 

$32000. The advantage of this device is that potentially no laptop is required, as the 

phone could be used for the remapping. This would be a step towards are completely 

portable device. However, it still needs to be investigated if the phone has the processing 

power to carry out the remapping in real-time. Finally, since programming for the phone 

would need setting up a new software framework, this would be a time consuming 

process. With this in mind, it is recommended that this device isn’t explored until testing 

on AMD subjects is concluded with positive results.  

Other companies and devices to look out for are the Oculus Rift CV1 and the HTC Vive. 

These devices do not contain eye trackers built in. Thus, simultaneous monitoring of the 

aforementioned eye-tracking companies for any eye-tracking upgrades for these devices 

would be required.  To summarize, it is recommended that devices that improve upon eye 

tracking and HMD specifications be considered for the next generation prototype, with a 

goal of improving user experience. Improving portability should be prioritized below 

improving user experience, and portable devices on different platforms (such as SMI + 

GearVR) must be explored only once a fully-functional computer-based device is 

developed and tested for efficacy.  

 

System Latency 

Currently, the Oculus Rift Compositor uses V-Sync. With the program running at 75Hz, 

the V-sync synchronizes FPS with the monitor’s refresh rate. Thus, minimum system 

delay is 13.3ms. The majority of the ~50+ms system latency in the second generation 
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device comes from the eye-tracker, and is due to the three-part process of imaging the 

eye, locating the pupil, and calculating the gaze position. Going forward, decreasing end-

to-end system latency should be considered of prime importance. In his book, Duchowski 

addresses the importance of system latency in gaze-contingent display applications such 

as ours [50]. To produce indistinguishable lag, it would be required to have an end-to-end 

latency of under 5ms [51], which would prove to be challenging. Bernard et al. were able 

to create a simulated scotoma setup on a head-fixed setup with a CRT monitor (100Hz 

refresh) and head-fixed eye tracker (500Hz) with a latency of between 5ms and 15ms. 

This would be a good end-goal, and would require hardware advances in HMD displays 

and eye-trackers fitted into HMD shells. An application of eye-tracking in gaming is to 

provide foveated rendering, where the image presented to the fovea is kept at high 

resolution, while everything else is at a lower resolution, to reduce rendering load. For 

this, eye trackers must have low latency so as to keep the sharp image at the fovea. Eye 

trackers that are being developed by the gaming community specifically for foveated 

rendering should be looked at for use in this project, because the latency requirements for 

foveated rendering should be the same as those that apply to this project- just as the sharp 

image must stay at the fovea, the central scotoma must stay at the fovea. A team at 

Microsoft Research saw good results with foveated rendering using a 300Hz eye-tracker 

with a latency of 10ms, and a screen with a refresh rate of 120Hz [52]. These could also 

be parameters to aim for, for future hardware. Currently, the remapping process isn’t 

offloaded onto the Nvidia 970 GPU, as the CPU is able to maintain the 75FPS frame rate 

without any lapses. Going forward, with monitors of higher refresh rates, it might become 
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important to offload onto the GPU in order to prevent any frames dropped at V-Sync at 

the monitor’s refresh rate.  

 

Use with CFL Patients 

Normally sighted subjects calibrate by fixating at points with their fovea. This calibration 

is problematic in patients with CFL because of the limited to complete absent foveal 

function and traditional calibrations assume participants foveate at the calibration target. 

A possible way to calibrate for patients with CFL is to have them fixate on points using 

their PRL. This is problematic, however, since as mentioned in the “Background” section 

of this thesis, patients might not have a well-defined PRL, or might have multiple PRLs 

that they might shift between during the calibration task. Another problem could be that a 

patient uses different PRLs during calibration and the actual task. The problem of 

calibrating the eye tracker for patients with CFL thus poses a problem that needs to be 

solved. Another problem that needs to be solved involves finding a relation between the 

PRL location used in eye tracking calibration and the actual scotoma location (for 

remapping), if a PRL is used for calibration.  Some ideas/ methods used currently are 

mentioned below. 
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Estimating the Scotoma Location on Screen in CFL 

 
Method 1 

As mentioned previously, an eye-tracker using stereo cameras can construct the pupillary 

axis of the eye. This, coupled with the estimation by Model and Eizenman, can predict 

the gaze position without a calibration sequence by estimating the angle kappa [32]. This 

could be the same method used in the calibration-free mode in the second generation 

device (the exact algorithm is proprietary and not known). In low vision patients with a 

PRL, this auto-calibration system would calibrate with respect to a patient’s PRL, instead 

of the non-functional fovea. In patients where the PRL were to change, the pupillary axis 

as measured by the eye tracker would stay the same, but the angle kappa estimate would 

change to reflect the new visual axis [9]. The problem is then narrowed down to 

estimating the foveal viewing location (also ~ the scotoma location since scotomas are on 

the macula, and approximately centered at the normal viewing location) from either the 

stationary pupillary axis measurement or the potentially changing PRL measurement. The 

analysis below presents a possible solution to the scotoma tracking problem, building 

upon the principles used by Tarita-Nistor et al in their work [9].  

In the aforementioned paper by Tarita-Nistor et al., the MP-1 microperimeter was used 

along with the binocular eye tracker to create a transformation from eye-tracking 

measurement to microperimeter coordinates using normally sighted subjects. This 

transformation can be used along with microperimetry to track the scotoma location on 

screen for remapping in low-vision subjects. On normally sighted subjects, the eye 



 

118 
 

tracker provides the angle kappa between the visual axis and pupillary axis, thereby 

providing relative locations of the fovea and point where the pupillary axis intersects the 

retina in eye-tracker space. Using the fundus image and microperimeter along with the 

angle kappa, absolute location of the point where the pupillary axis intersects the retina 

can be found on the fundus image. This can be seen in figure 1 A and B as found in the 

published work by Tarita-Nistor et al. cited above.  

In this paper’s notation, !"##"$%	"'(	!"##")% are the angle kappa measurements for 

the normally sighted subjects. The constant ‘c’ is a scaling factor from eye tracker angles 

to microperimeter angles with a value of 0.817, as found by Tarita-Nistor et al. *%"'(	+% 

are the distances from the center of the optic disk to the fovea measured in degrees.  

Equations (a) and (b) below are taken from Tarita-Nistor et al.’s published work [9], 

*,- = *% − 0 ∗ !"##"$% 

(a) 

+,- = +% − 0 ∗ !"##")% 

(b) 

2ℎ454	*,-"'(	+,- are the distances of the pupillary axis intersection with the retina in 

degrees.  

Now we move to low-vision patients. The work below is a contribution of this master’s 

project. Consider the depiction of a fundus image of the affected eye of a patient with a 

central scotoma shown in figure 41.  
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In figure 41 above, *,-, +,- are estimates found from the data for normally sighted 

subjects. *7, +7give the absolute location of the centroid of the scotoma found using 

microperimetry on the fundus image. The goal of this procedure is to track this centroid 

on the HMD screen, so we need to find the relative location of these in eye-tracker 

coordinates. Let the scotoma axis be the line joining this centroid with the center of 

curvature of the cornea. Let Beta be the angle between the pupillary axis and the scotoma 

axis. Then, in eye-tracker space, 

849"$, 849") = [*7 − *,-0 , +7 − +,-0 ] 

(xc,yc) 
(0,0) 

(xPA,yPA) 

Pupillary	axis	intersection 
Center	of	optic	disk 

Centroid	of	scotoma 

Figure 41: In the fundus image of low-vision subjects, the relative location of the 
centroid of the scotoma can be found using the transform created for normally 
sighted subjects 

0 ∗ 849"$  

0 ∗ 849")  
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The division by ‘c’ is necessary to convert from microperimeter angles to eye-tracker 

angles, based on Tarita-Nistor et al.’s published work [9]. Since the eye-tracker can 

measure the pupillary axis without a calibration sequence, the angle beta can be used 

along with the pupillary axis to find the scotoma axis in eye-tracker coordinates. The 

point where the scotoma axis intersects the screen will be the location of the scotoma on 

screen, and will be the point that needs to be remapped. This is a proposed idea as part of 

a contribution of this thesis towards possible future work, and has not been implemented 

yet. 

 

Method 2 

A radial grating stimulus is another type of stimulus that can be used as a calibration 

stimulus to calibrate the eye-tracker with respect to the damaged fovea in patients with 

CFL, with varying results [53], [54]. In this case, the patients with CFL are asked to align 

their fovea with the center of the stimulus, rather than use a PRL location. The advantage 

is that the eye-tracker coordinates are centered on the fovea, rather a PRL which might 

tentatively be task dependent. A study used alternating black and white radial gratings, 

with 16 alternating wedges of angle 22.5-degrees as calibration stimuli [53]. Patients with 

CFL were asked to align the center of this stimuli with their fovea. 

 It was found that some patients were better able to center the stimuli than others, and the 

technique did not guarantee a foveal fixation as patients still used a PRL in some cases. 

Visual fields were measured using both an SLO and the eye tracker on a computer 

monitor. If the shapes of the visual fields weren’t aligned between the two, it meant that 
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the eye-tracker had been calibrated with respect to a PRL, and needed an offset. The 

offset was manually determined to achieve maximum overlap between the two visual 

fields. In our research work, this offset can be used to determine the scotoma location, 

and thereby the remapping location. Details about the procedure can be found in Sullivan 

and Walker’s published work [53]. A potential limitation of this technique is variability 

in the offset if multiple PRLs are used in measurement of the visual field.  

 

Method 3 

Liu et al. conducted a study involving eye-tracking on 7 long-standing AMD subjects. 

The task was to follow a yellow circular target with a sine-wave velocity profile moving 

across the screen. For the study, a 250Hz eye-tracker was used. A poster of the study was 

presented at the ARVO conference in Seattle in May 2016. The presenter said that the 

subjects were calibrated with respect to a PRL using the default calibration stimuli 

provided by the eye-tracking manufacturers. At least for the tracking task conducted in 

the study, the subjects used the same PRL. It was also mentioned that calibration proved 

to be fairly straightforward with the subjects. For our device, a change in PRL could be 

identified by monitoring the angle kappa to watch for a big change in the values, 

indicating a PRL change.  

To find the scotoma location, the central scotomas and PRLs were mapped using 

microperimetry. The field map was used to make a binary scotoma map, and this was 

pinned to the PRL used in eye tracking the give the scotoma position. This method could 
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be a straightforward method to use going forward, if it is found that subjects use the same 

stable PRL throughout the task presented. It is recommended that this is tried first. 

Further Testing 
 
Visual tasks other than reading 

The tests conducted thus far investigated the method’s efficacy for reading tasks. 

However, with AMD, as mentioned previously, a lot of other activities of daily living are 

also affected. The effect of the remapping method on tasks other than reading needs to be 

investigated. A logical next step would be to test the performance of simulated CFL 

patients in visual search tasks with and without remapping. Walsh and Liu conducted 

visual search tasks on simulated CFL subjects, albeit without remapping [55]. This study 

could be referenced for guidance in creating a visual search paradigm. Another task could 

involve object and/or face recognition.  

A next step would be to move into the realm of augmented reality with the device. This 

would involve affixing stereo cameras onto the device, that would see the environment as 

a normally sighted subject would. Real-time video feeds from the camera would then be 

fed into the remapping software instead of MNREAD sentences or other laptop-generated 

visual stimuli. Thus, a truly portable experience whereby the subject could move around 

and conduct daily living tasks like making a peanut-butter sandwich could be simulated.  

 

Investigate different remappings 
 
The remapping used herein seems to work well for reading tasks. It might not, however, 

be the most effective in other tasks like face recognition, given its tendency to warp a 
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face. An advantage of this device’s software platform is that changing the remapping 

involves changing a simple function in the code. Given this, the effect of different 

remapping algorithms for different tasks must be investigated. A finding could potentially 

be that different subjects prefer different remappings for different tasks. Using the device 

with AMD subjects, it might also be necessary to use different remappings so as to remap 

the lost image onto the PRL, which doesn’t have the same location in all subjects.  
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Appendix 
 
Prototype 1: Eye Tracker Calibration Instructions 

1. Open the ViewPoint Eye Tracker application using the shortcut on the desktop.  

2. Ensure that the EyeCamera window is displayed. If it isn’t, navigate to the 

Windows tab and click on the EyeCamera option to display it in the main user 

window.  

3. The first step is to get a good image of the eye in the EyeCamera.	A good eye 

image is characterized by an unobstructed eye, where the entire iris can be seen in 

all eye positions (when the subject looks at all corners of the screen). To get a 

good eye image, the eye tracking mechanism might have to be moved a little. The 

eye tracking mechanism is located on the right eye piece. Use the stick protruding 

from the end piece of the mechanism to adjust the eye-tracker. Best images have 

been obtained so far by having the stick pulled all the way down, but depending 

on the subject, this might have to be adjusted. Once in position, if this mechanism 

is not tight, it can be tightened using an Allen key (hex key).    

4. Load one of the settings files. To do this, navigate to File (Upper Left Corner) à 

settings à Load Settings.  

o Choose the ‘New Settings’ folder 

o In this folder, a lot of settings files that have worked for a myriad of 

subjects have been stored. Try these settings one by one first to see if the 

eye is well thresholded and the feature well detected with any of these. If 

not, start by loading the one that is relatively the best, and go from there 

following the steps below. These settings files should make calibration for 

new subjects a lot easier.  

5. Once this is done, a region encompassing the eye has to be selected. All of the 

following are done in the EyeCamera window shown below. This is the region in 

which the software searches for the pupil. To do this, click on the ‘Pupil Search 

Area Adjustment’ button in the EyeCamera window, and drag out a rectangle on 
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the eye image with the mouse. A good area should have a good eye image and the 

feature tracked when the eye looks at all four corners of the screen. See figure 42 

below: 

 
Figure 42: Viewpoint EyeCamera Window 

o Once a good area is selected, click on the ‘Lock Search Area Adjustments’ 

Button.  

o Now click on Video Controls à Pupil Segmentation Method à Ellipse 

(Rotated ellipse). 

o Make sure Video Controls à Pupil Type à Dark Pupil is selected. 

o  Now move on to the controls window. This window is shown below. 

6. In the Controls Window, click on Criteria.  

o Change the Maximum Pupil Width to 0.30. Change the Pupil Aspect 

Criterion to 0.6. These should be good starting points, but might need to 

be adjusted depending on the subject. The Viewpoint User Manual has 

details on what the above parameters control.  
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Figure 43: Viewpoint Controls Window 
7. The task at this point is to adjust parameters such that the eye can be lit up well, 

and a good pupil tracking can be obtained.  

o At this point, have the subject look around the screen. If when he/she 

looks around the screen, the pupil is tracked well enough (the yellow 

ellipse on the eye image tracks the pupil), no further settings changes are 

needed. Go to File à Settings, and save the settings file with some name.  

o If tracking is poor at this point, then do the following: On the controls 

window, Click on EyeA. Make sure the ‘Feature Method’ selected is Pupil 

Location as this is the one that seems to work best. Now, the task is to 

adjust the Brightness, Contrast, and Thresholding track bars so we can get 

good tracking.  

o Uncheck AutoImage and Positive-Lock_Threshold-Tracking. 

o Typically, we want to get the contrast as low as possible. The ‘Manual 

Thresholding’ section on page 23 of the ViewPoint EyeTracker manual is 

very helpful. Moving the thresholding slider to the right raises the dark 

pupil threshold ceiling, allowing more (lighter) gray levels to be counted 

as part of the dark pupil. A combination of changes to these three sliders 

should allow for good eye tracking.  
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o Once a good tracking of the eye within the confines of the blue/red 

rectangle (in the EyeCamera box) is obtained, move on to the next step. 

8. Now, we will change some calibration parameters. ‘Calibration’ section 7 in the 

ViewPoint User Guide is a helpful resource.  

o First we will set the number of calibration points. See EyeSpace window 

below: 

o Click on the arrow by the box that reads ‘30’ in the above image. That 

number displays the number of calibration points. Ideally, we want to use 

at least 16 calibration points.  

o Now, click on the Advanced tab. The window titled ‘Advanced 

Calibration’ (see above) should open up. Here, change the stimulus color 

to black if it is not set already. Change background color to white. This 

step can be skipped with normally sighted subjects as it doesn’t make a 

huge difference with them. With low vision subjects, the black and white 

color scheme helps.   
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o Next, click on the drop down next to presentation order, and change it to 

sequential. Change Point Locations to ‘OnContent.’ If this step isn’t done, 

then the calibration points are displayed in a random order. This step and 

related steps can be skipped initially, but can be tried if calibration is 

repeatedly poor. 

Figure 44: EyeSpace and Advanced Calibration Windows 
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o Once you have changed to OnContent, you should be able to choose 

calibration points on the GazeSpace window shown below: 

o On this window, click in the order you want the calibration sequence to be 

displayed. With each click, 1 calibration point will be placed. Distributing 

points such that there are equal number of rows and columns seems to 

work best. With 16 points, then, you can have 4 rows with 4 columns. 

Other assemblies that have been tried and worked well are a circle 

assembly, where the points are distributed in a circular order. A related 

one is concentric circles, where initially, the calibration grid starts off with 

a small circle with say 8 points marking the circumference, and then 

moves onto a larger circle with perhaps 10 points marking the 

circumference, making for a total of 18 points.  

o During testing, it is observed that subjects perform better during 

calibration if the calibration points follow a sequence, rather than be 

displayed arbitrarily. It is also thought that patients with AMD will be able 

to calibrate better with their PRL if they can predict where the next point 

will be. Thus, having a sequential calibration is better. Try placing points 

in a pattern: for example, for a 16-point calibration sequence, place 4 

points in the first row from left to right, then move to the second row and 

place four points from right to left. For the third, move again from left to 

Figure 45: GazeSpace Window 
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right, and finally for the last row, finishing up the last four points from 

right to left. If the OnContent setting is not used, instead keeping it at 

Automatic, setting the “Point Locations” to sequential will make the 

calibration points appear in a sequential order.  

o It is observed that the more the number of calibration points near the 

center of the screen, the better the calibration is near the central region. 

Since the MNREAD sentences occupy only a small region near the center 

of the screen, and there is no other visual stimulus towards the borders of 

the screen during testing, it proves beneficial to have all points near the 

center of the screen. Thus, placing all points within the square shown 

below is a good guiding metric. The size of this square will depend on the 

visual stimulus to be presented during testing, as we want the calibration 

points to encompass the visual stimulus shown. If the OnContent metric 

isn’t use, instead leaving “Point Locations” to automatic, the calibration 

area can be changed by clicking on the “Adjust Calibration Area” button 

on the Advanced Calibration window, and then dragging out a box similar 

to the one shown below in the GazeSpace window.  

o Once this is done, back in the Advanced Calibration window, set the 

Duration. For normally sighted subjects, you want the duration to be 

between 30-40ms. For people with low vision, this must be higher. 

o Once these settings are set, close the advanced calibration window, and 

click on Auto-Calibrate in the EyeSpace window.  

 



 

136 
 

 

9. The message “Get Ready” will appear briefly on the screen. Then, the square 

black stimulus boxes will be displayed in succession on the screen (with duration 

between each box equal to the duration set in the previous step. Ask the subject to 

fixate on these boxes. 

10. Successful calibration will be indicated with well separated configuration of dots, 

with a quasi-rectilinear mapping grid. A good mapping grid is shown below. The 

configuration should be green in color, with yellow dots (as seen in the EyeSpace 

Window). If there are any red dots, they will need to be represented as explained 

in the next step. If there are too many red dots, just repeat the entire calibration by 

hitting Auto-Calibrate once again. 

Place calibration grid 
within this box 
 

Figure 46: Calibration Grid Placement Area 

Figure 47: Acceptable Calibration Grid 
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11. To represent an individual calibration point, click on the calibration point in the 

EyeSpace window, and then click Re-Present. For this step, make sure 

Advancedà Auto Increment, and Advanced à Snap Presentation mode are 

unchecked.  

12. Once a good calibration grid is obtained, go to Interface -> CursorControl -> 

GazeCursor. If this is done, a green dot will appear at wherever the subject looks 

on screen, as detected by the eye tracker. Have subjects fixate at random locations 

on screen and check if the green dot is at the location, or if it is offset by a bit. If 

there is a noticeable offset, repeat the calibration.  

13. Following verification of a good calibration, we can move on to the next step of 

opening up the reading program. DO NOT QUIT THE VIEWPOINT 

PROGRAM. It is good practice to save your settings once a good calibration is 

obtained. File à Settings à Save Settings.  

14. If during testing, the subject detects a slip of the HMD on the head, do a slip 

correction in the Viewpoint Software. This can be done by clicking on the Slip-

Correction button in the EyeSpace window. For this, first click on a point on the 

calibration grid (a point halfway between the center and either the left or right 

side of the grid works well), and then click on the Slip-Correction button. A single 

point will be re-presented to the subject, and the offset due to HMD slip will be 

corrected.  


